Merge tag 'at91-dt-5.20-3' of git://git.kernel.org/pub/scm/linux/kernel/git/at91...
[platform/kernel/linux-starfive.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90
91 /* Whether the swap controller is active */
92 #ifdef CONFIG_MEMCG_SWAP
93 static bool cgroup_memory_noswap __ro_after_init;
94 #else
95 #define cgroup_memory_noswap            1
96 #endif
97
98 #ifdef CONFIG_CGROUP_WRITEBACK
99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100 #endif
101
102 /* Whether legacy memory+swap accounting is active */
103 static bool do_memsw_account(void)
104 {
105         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
106 }
107
108 #define THRESHOLDS_EVENTS_TARGET 128
109 #define SOFTLIMIT_EVENTS_TARGET 1024
110
111 /*
112  * Cgroups above their limits are maintained in a RB-Tree, independent of
113  * their hierarchy representation
114  */
115
116 struct mem_cgroup_tree_per_node {
117         struct rb_root rb_root;
118         struct rb_node *rb_rightmost;
119         spinlock_t lock;
120 };
121
122 struct mem_cgroup_tree {
123         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
124 };
125
126 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
127
128 /* for OOM */
129 struct mem_cgroup_eventfd_list {
130         struct list_head list;
131         struct eventfd_ctx *eventfd;
132 };
133
134 /*
135  * cgroup_event represents events which userspace want to receive.
136  */
137 struct mem_cgroup_event {
138         /*
139          * memcg which the event belongs to.
140          */
141         struct mem_cgroup *memcg;
142         /*
143          * eventfd to signal userspace about the event.
144          */
145         struct eventfd_ctx *eventfd;
146         /*
147          * Each of these stored in a list by the cgroup.
148          */
149         struct list_head list;
150         /*
151          * register_event() callback will be used to add new userspace
152          * waiter for changes related to this event.  Use eventfd_signal()
153          * on eventfd to send notification to userspace.
154          */
155         int (*register_event)(struct mem_cgroup *memcg,
156                               struct eventfd_ctx *eventfd, const char *args);
157         /*
158          * unregister_event() callback will be called when userspace closes
159          * the eventfd or on cgroup removing.  This callback must be set,
160          * if you want provide notification functionality.
161          */
162         void (*unregister_event)(struct mem_cgroup *memcg,
163                                  struct eventfd_ctx *eventfd);
164         /*
165          * All fields below needed to unregister event when
166          * userspace closes eventfd.
167          */
168         poll_table pt;
169         wait_queue_head_t *wqh;
170         wait_queue_entry_t wait;
171         struct work_struct remove;
172 };
173
174 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
176
177 /* Stuffs for move charges at task migration. */
178 /*
179  * Types of charges to be moved.
180  */
181 #define MOVE_ANON       0x1U
182 #define MOVE_FILE       0x2U
183 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
184
185 /* "mc" and its members are protected by cgroup_mutex */
186 static struct move_charge_struct {
187         spinlock_t        lock; /* for from, to */
188         struct mm_struct  *mm;
189         struct mem_cgroup *from;
190         struct mem_cgroup *to;
191         unsigned long flags;
192         unsigned long precharge;
193         unsigned long moved_charge;
194         unsigned long moved_swap;
195         struct task_struct *moving_task;        /* a task moving charges */
196         wait_queue_head_t waitq;                /* a waitq for other context */
197 } mc = {
198         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
199         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
200 };
201
202 /*
203  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
204  * limit reclaim to prevent infinite loops, if they ever occur.
205  */
206 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
207 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
208
209 /* for encoding cft->private value on file */
210 enum res_type {
211         _MEM,
212         _MEMSWAP,
213         _KMEM,
214         _TCP,
215 };
216
217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
220
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)            \
227         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
228              iter != NULL;                              \
229              iter = mem_cgroup_iter(root, iter, NULL))
230
231 #define for_each_mem_cgroup(iter)                       \
232         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
233              iter != NULL;                              \
234              iter = mem_cgroup_iter(NULL, iter, NULL))
235
236 static inline bool task_is_dying(void)
237 {
238         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239                 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245         if (!memcg)
246                 memcg = root_mem_cgroup;
247         return &memcg->vmpressure;
248 }
249
250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
251 {
252         return container_of(vmpr, struct mem_cgroup, vmpressure);
253 }
254
255 #ifdef CONFIG_MEMCG_KMEM
256 static DEFINE_SPINLOCK(objcg_lock);
257
258 bool mem_cgroup_kmem_disabled(void)
259 {
260         return cgroup_memory_nokmem;
261 }
262
263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264                                       unsigned int nr_pages);
265
266 static void obj_cgroup_release(struct percpu_ref *ref)
267 {
268         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
269         unsigned int nr_bytes;
270         unsigned int nr_pages;
271         unsigned long flags;
272
273         /*
274          * At this point all allocated objects are freed, and
275          * objcg->nr_charged_bytes can't have an arbitrary byte value.
276          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277          *
278          * The following sequence can lead to it:
279          * 1) CPU0: objcg == stock->cached_objcg
280          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281          *          PAGE_SIZE bytes are charged
282          * 3) CPU1: a process from another memcg is allocating something,
283          *          the stock if flushed,
284          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
285          * 5) CPU0: we do release this object,
286          *          92 bytes are added to stock->nr_bytes
287          * 6) CPU0: stock is flushed,
288          *          92 bytes are added to objcg->nr_charged_bytes
289          *
290          * In the result, nr_charged_bytes == PAGE_SIZE.
291          * This page will be uncharged in obj_cgroup_release().
292          */
293         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295         nr_pages = nr_bytes >> PAGE_SHIFT;
296
297         if (nr_pages)
298                 obj_cgroup_uncharge_pages(objcg, nr_pages);
299
300         spin_lock_irqsave(&objcg_lock, flags);
301         list_del(&objcg->list);
302         spin_unlock_irqrestore(&objcg_lock, flags);
303
304         percpu_ref_exit(ref);
305         kfree_rcu(objcg, rcu);
306 }
307
308 static struct obj_cgroup *obj_cgroup_alloc(void)
309 {
310         struct obj_cgroup *objcg;
311         int ret;
312
313         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314         if (!objcg)
315                 return NULL;
316
317         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318                               GFP_KERNEL);
319         if (ret) {
320                 kfree(objcg);
321                 return NULL;
322         }
323         INIT_LIST_HEAD(&objcg->list);
324         return objcg;
325 }
326
327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328                                   struct mem_cgroup *parent)
329 {
330         struct obj_cgroup *objcg, *iter;
331
332         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333
334         spin_lock_irq(&objcg_lock);
335
336         /* 1) Ready to reparent active objcg. */
337         list_add(&objcg->list, &memcg->objcg_list);
338         /* 2) Reparent active objcg and already reparented objcgs to parent. */
339         list_for_each_entry(iter, &memcg->objcg_list, list)
340                 WRITE_ONCE(iter->memcg, parent);
341         /* 3) Move already reparented objcgs to the parent's list */
342         list_splice(&memcg->objcg_list, &parent->objcg_list);
343
344         spin_unlock_irq(&objcg_lock);
345
346         percpu_ref_kill(&objcg->refcnt);
347 }
348
349 /*
350  * A lot of the calls to the cache allocation functions are expected to be
351  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
352  * conditional to this static branch, we'll have to allow modules that does
353  * kmem_cache_alloc and the such to see this symbol as well
354  */
355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
356 EXPORT_SYMBOL(memcg_kmem_enabled_key);
357 #endif
358
359 /**
360  * mem_cgroup_css_from_page - css of the memcg associated with a page
361  * @page: page of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @page is returned.  The returned css remains associated with @page
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
371 {
372         struct mem_cgroup *memcg;
373
374         memcg = page_memcg(page);
375
376         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
377                 memcg = root_mem_cgroup;
378
379         return &memcg->css;
380 }
381
382 /**
383  * page_cgroup_ino - return inode number of the memcg a page is charged to
384  * @page: the page
385  *
386  * Look up the closest online ancestor of the memory cgroup @page is charged to
387  * and return its inode number or 0 if @page is not charged to any cgroup. It
388  * is safe to call this function without holding a reference to @page.
389  *
390  * Note, this function is inherently racy, because there is nothing to prevent
391  * the cgroup inode from getting torn down and potentially reallocated a moment
392  * after page_cgroup_ino() returns, so it only should be used by callers that
393  * do not care (such as procfs interfaces).
394  */
395 ino_t page_cgroup_ino(struct page *page)
396 {
397         struct mem_cgroup *memcg;
398         unsigned long ino = 0;
399
400         rcu_read_lock();
401         memcg = page_memcg_check(page);
402
403         while (memcg && !(memcg->css.flags & CSS_ONLINE))
404                 memcg = parent_mem_cgroup(memcg);
405         if (memcg)
406                 ino = cgroup_ino(memcg->css.cgroup);
407         rcu_read_unlock();
408         return ino;
409 }
410
411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412                                          struct mem_cgroup_tree_per_node *mctz,
413                                          unsigned long new_usage_in_excess)
414 {
415         struct rb_node **p = &mctz->rb_root.rb_node;
416         struct rb_node *parent = NULL;
417         struct mem_cgroup_per_node *mz_node;
418         bool rightmost = true;
419
420         if (mz->on_tree)
421                 return;
422
423         mz->usage_in_excess = new_usage_in_excess;
424         if (!mz->usage_in_excess)
425                 return;
426         while (*p) {
427                 parent = *p;
428                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429                                         tree_node);
430                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
431                         p = &(*p)->rb_left;
432                         rightmost = false;
433                 } else {
434                         p = &(*p)->rb_right;
435                 }
436         }
437
438         if (rightmost)
439                 mctz->rb_rightmost = &mz->tree_node;
440
441         rb_link_node(&mz->tree_node, parent, p);
442         rb_insert_color(&mz->tree_node, &mctz->rb_root);
443         mz->on_tree = true;
444 }
445
446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447                                          struct mem_cgroup_tree_per_node *mctz)
448 {
449         if (!mz->on_tree)
450                 return;
451
452         if (&mz->tree_node == mctz->rb_rightmost)
453                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
454
455         rb_erase(&mz->tree_node, &mctz->rb_root);
456         mz->on_tree = false;
457 }
458
459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460                                        struct mem_cgroup_tree_per_node *mctz)
461 {
462         unsigned long flags;
463
464         spin_lock_irqsave(&mctz->lock, flags);
465         __mem_cgroup_remove_exceeded(mz, mctz);
466         spin_unlock_irqrestore(&mctz->lock, flags);
467 }
468
469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470 {
471         unsigned long nr_pages = page_counter_read(&memcg->memory);
472         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
473         unsigned long excess = 0;
474
475         if (nr_pages > soft_limit)
476                 excess = nr_pages - soft_limit;
477
478         return excess;
479 }
480
481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
482 {
483         unsigned long excess;
484         struct mem_cgroup_per_node *mz;
485         struct mem_cgroup_tree_per_node *mctz;
486
487         mctz = soft_limit_tree.rb_tree_per_node[nid];
488         if (!mctz)
489                 return;
490         /*
491          * Necessary to update all ancestors when hierarchy is used.
492          * because their event counter is not touched.
493          */
494         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
495                 mz = memcg->nodeinfo[nid];
496                 excess = soft_limit_excess(memcg);
497                 /*
498                  * We have to update the tree if mz is on RB-tree or
499                  * mem is over its softlimit.
500                  */
501                 if (excess || mz->on_tree) {
502                         unsigned long flags;
503
504                         spin_lock_irqsave(&mctz->lock, flags);
505                         /* if on-tree, remove it */
506                         if (mz->on_tree)
507                                 __mem_cgroup_remove_exceeded(mz, mctz);
508                         /*
509                          * Insert again. mz->usage_in_excess will be updated.
510                          * If excess is 0, no tree ops.
511                          */
512                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
513                         spin_unlock_irqrestore(&mctz->lock, flags);
514                 }
515         }
516 }
517
518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
519 {
520         struct mem_cgroup_tree_per_node *mctz;
521         struct mem_cgroup_per_node *mz;
522         int nid;
523
524         for_each_node(nid) {
525                 mz = memcg->nodeinfo[nid];
526                 mctz = soft_limit_tree.rb_tree_per_node[nid];
527                 if (mctz)
528                         mem_cgroup_remove_exceeded(mz, mctz);
529         }
530 }
531
532 static struct mem_cgroup_per_node *
533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535         struct mem_cgroup_per_node *mz;
536
537 retry:
538         mz = NULL;
539         if (!mctz->rb_rightmost)
540                 goto done;              /* Nothing to reclaim from */
541
542         mz = rb_entry(mctz->rb_rightmost,
543                       struct mem_cgroup_per_node, tree_node);
544         /*
545          * Remove the node now but someone else can add it back,
546          * we will to add it back at the end of reclaim to its correct
547          * position in the tree.
548          */
549         __mem_cgroup_remove_exceeded(mz, mctz);
550         if (!soft_limit_excess(mz->memcg) ||
551             !css_tryget(&mz->memcg->css))
552                 goto retry;
553 done:
554         return mz;
555 }
556
557 static struct mem_cgroup_per_node *
558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
559 {
560         struct mem_cgroup_per_node *mz;
561
562         spin_lock_irq(&mctz->lock);
563         mz = __mem_cgroup_largest_soft_limit_node(mctz);
564         spin_unlock_irq(&mctz->lock);
565         return mz;
566 }
567
568 /*
569  * memcg and lruvec stats flushing
570  *
571  * Many codepaths leading to stats update or read are performance sensitive and
572  * adding stats flushing in such codepaths is not desirable. So, to optimize the
573  * flushing the kernel does:
574  *
575  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
576  *    rstat update tree grow unbounded.
577  *
578  * 2) Flush the stats synchronously on reader side only when there are more than
579  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
580  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
581  *    only for 2 seconds due to (1).
582  */
583 static void flush_memcg_stats_dwork(struct work_struct *w);
584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
585 static DEFINE_SPINLOCK(stats_flush_lock);
586 static DEFINE_PER_CPU(unsigned int, stats_updates);
587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
588 static u64 flush_next_time;
589
590 #define FLUSH_TIME (2UL*HZ)
591
592 /*
593  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
594  * not rely on this as part of an acquired spinlock_t lock. These functions are
595  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
596  * is sufficient.
597  */
598 static void memcg_stats_lock(void)
599 {
600 #ifdef CONFIG_PREEMPT_RT
601       preempt_disable();
602 #else
603       VM_BUG_ON(!irqs_disabled());
604 #endif
605 }
606
607 static void __memcg_stats_lock(void)
608 {
609 #ifdef CONFIG_PREEMPT_RT
610       preempt_disable();
611 #endif
612 }
613
614 static void memcg_stats_unlock(void)
615 {
616 #ifdef CONFIG_PREEMPT_RT
617       preempt_enable();
618 #endif
619 }
620
621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
622 {
623         unsigned int x;
624
625         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
626
627         x = __this_cpu_add_return(stats_updates, abs(val));
628         if (x > MEMCG_CHARGE_BATCH) {
629                 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
630                 __this_cpu_write(stats_updates, 0);
631         }
632 }
633
634 static void __mem_cgroup_flush_stats(void)
635 {
636         unsigned long flag;
637
638         if (!spin_trylock_irqsave(&stats_flush_lock, flag))
639                 return;
640
641         flush_next_time = jiffies_64 + 2*FLUSH_TIME;
642         cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
643         atomic_set(&stats_flush_threshold, 0);
644         spin_unlock_irqrestore(&stats_flush_lock, flag);
645 }
646
647 void mem_cgroup_flush_stats(void)
648 {
649         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
650                 __mem_cgroup_flush_stats();
651 }
652
653 void mem_cgroup_flush_stats_delayed(void)
654 {
655         if (time_after64(jiffies_64, flush_next_time))
656                 mem_cgroup_flush_stats();
657 }
658
659 static void flush_memcg_stats_dwork(struct work_struct *w)
660 {
661         __mem_cgroup_flush_stats();
662         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
663 }
664
665 /**
666  * __mod_memcg_state - update cgroup memory statistics
667  * @memcg: the memory cgroup
668  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
669  * @val: delta to add to the counter, can be negative
670  */
671 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
672 {
673         if (mem_cgroup_disabled())
674                 return;
675
676         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
677         memcg_rstat_updated(memcg, val);
678 }
679
680 /* idx can be of type enum memcg_stat_item or node_stat_item. */
681 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
682 {
683         long x = 0;
684         int cpu;
685
686         for_each_possible_cpu(cpu)
687                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
688 #ifdef CONFIG_SMP
689         if (x < 0)
690                 x = 0;
691 #endif
692         return x;
693 }
694
695 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
696                               int val)
697 {
698         struct mem_cgroup_per_node *pn;
699         struct mem_cgroup *memcg;
700
701         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
702         memcg = pn->memcg;
703
704         /*
705          * The caller from rmap relay on disabled preemption becase they never
706          * update their counter from in-interrupt context. For these two
707          * counters we check that the update is never performed from an
708          * interrupt context while other caller need to have disabled interrupt.
709          */
710         __memcg_stats_lock();
711         if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
712                 switch (idx) {
713                 case NR_ANON_MAPPED:
714                 case NR_FILE_MAPPED:
715                 case NR_ANON_THPS:
716                 case NR_SHMEM_PMDMAPPED:
717                 case NR_FILE_PMDMAPPED:
718                         WARN_ON_ONCE(!in_task());
719                         break;
720                 default:
721                         WARN_ON_ONCE(!irqs_disabled());
722                 }
723         }
724
725         /* Update memcg */
726         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
727
728         /* Update lruvec */
729         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
730
731         memcg_rstat_updated(memcg, val);
732         memcg_stats_unlock();
733 }
734
735 /**
736  * __mod_lruvec_state - update lruvec memory statistics
737  * @lruvec: the lruvec
738  * @idx: the stat item
739  * @val: delta to add to the counter, can be negative
740  *
741  * The lruvec is the intersection of the NUMA node and a cgroup. This
742  * function updates the all three counters that are affected by a
743  * change of state at this level: per-node, per-cgroup, per-lruvec.
744  */
745 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
746                         int val)
747 {
748         /* Update node */
749         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
750
751         /* Update memcg and lruvec */
752         if (!mem_cgroup_disabled())
753                 __mod_memcg_lruvec_state(lruvec, idx, val);
754 }
755
756 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
757                              int val)
758 {
759         struct page *head = compound_head(page); /* rmap on tail pages */
760         struct mem_cgroup *memcg;
761         pg_data_t *pgdat = page_pgdat(page);
762         struct lruvec *lruvec;
763
764         rcu_read_lock();
765         memcg = page_memcg(head);
766         /* Untracked pages have no memcg, no lruvec. Update only the node */
767         if (!memcg) {
768                 rcu_read_unlock();
769                 __mod_node_page_state(pgdat, idx, val);
770                 return;
771         }
772
773         lruvec = mem_cgroup_lruvec(memcg, pgdat);
774         __mod_lruvec_state(lruvec, idx, val);
775         rcu_read_unlock();
776 }
777 EXPORT_SYMBOL(__mod_lruvec_page_state);
778
779 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
780 {
781         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
782         struct mem_cgroup *memcg;
783         struct lruvec *lruvec;
784
785         rcu_read_lock();
786         memcg = mem_cgroup_from_obj(p);
787
788         /*
789          * Untracked pages have no memcg, no lruvec. Update only the
790          * node. If we reparent the slab objects to the root memcg,
791          * when we free the slab object, we need to update the per-memcg
792          * vmstats to keep it correct for the root memcg.
793          */
794         if (!memcg) {
795                 __mod_node_page_state(pgdat, idx, val);
796         } else {
797                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
798                 __mod_lruvec_state(lruvec, idx, val);
799         }
800         rcu_read_unlock();
801 }
802
803 /**
804  * __count_memcg_events - account VM events in a cgroup
805  * @memcg: the memory cgroup
806  * @idx: the event item
807  * @count: the number of events that occurred
808  */
809 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
810                           unsigned long count)
811 {
812         if (mem_cgroup_disabled())
813                 return;
814
815         memcg_stats_lock();
816         __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
817         memcg_rstat_updated(memcg, count);
818         memcg_stats_unlock();
819 }
820
821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 {
823         return READ_ONCE(memcg->vmstats.events[event]);
824 }
825
826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 {
828         long x = 0;
829         int cpu;
830
831         for_each_possible_cpu(cpu)
832                 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
833         return x;
834 }
835
836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837                                          int nr_pages)
838 {
839         /* pagein of a big page is an event. So, ignore page size */
840         if (nr_pages > 0)
841                 __count_memcg_events(memcg, PGPGIN, 1);
842         else {
843                 __count_memcg_events(memcg, PGPGOUT, 1);
844                 nr_pages = -nr_pages; /* for event */
845         }
846
847         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 }
849
850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851                                        enum mem_cgroup_events_target target)
852 {
853         unsigned long val, next;
854
855         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857         /* from time_after() in jiffies.h */
858         if ((long)(next - val) < 0) {
859                 switch (target) {
860                 case MEM_CGROUP_TARGET_THRESH:
861                         next = val + THRESHOLDS_EVENTS_TARGET;
862                         break;
863                 case MEM_CGROUP_TARGET_SOFTLIMIT:
864                         next = val + SOFTLIMIT_EVENTS_TARGET;
865                         break;
866                 default:
867                         break;
868                 }
869                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870                 return true;
871         }
872         return false;
873 }
874
875 /*
876  * Check events in order.
877  *
878  */
879 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
880 {
881         if (IS_ENABLED(CONFIG_PREEMPT_RT))
882                 return;
883
884         /* threshold event is triggered in finer grain than soft limit */
885         if (unlikely(mem_cgroup_event_ratelimit(memcg,
886                                                 MEM_CGROUP_TARGET_THRESH))) {
887                 bool do_softlimit;
888
889                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
890                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
891                 mem_cgroup_threshold(memcg);
892                 if (unlikely(do_softlimit))
893                         mem_cgroup_update_tree(memcg, nid);
894         }
895 }
896
897 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
898 {
899         /*
900          * mm_update_next_owner() may clear mm->owner to NULL
901          * if it races with swapoff, page migration, etc.
902          * So this can be called with p == NULL.
903          */
904         if (unlikely(!p))
905                 return NULL;
906
907         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
908 }
909 EXPORT_SYMBOL(mem_cgroup_from_task);
910
911 static __always_inline struct mem_cgroup *active_memcg(void)
912 {
913         if (!in_task())
914                 return this_cpu_read(int_active_memcg);
915         else
916                 return current->active_memcg;
917 }
918
919 /**
920  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
921  * @mm: mm from which memcg should be extracted. It can be NULL.
922  *
923  * Obtain a reference on mm->memcg and returns it if successful. If mm
924  * is NULL, then the memcg is chosen as follows:
925  * 1) The active memcg, if set.
926  * 2) current->mm->memcg, if available
927  * 3) root memcg
928  * If mem_cgroup is disabled, NULL is returned.
929  */
930 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
931 {
932         struct mem_cgroup *memcg;
933
934         if (mem_cgroup_disabled())
935                 return NULL;
936
937         /*
938          * Page cache insertions can happen without an
939          * actual mm context, e.g. during disk probing
940          * on boot, loopback IO, acct() writes etc.
941          *
942          * No need to css_get on root memcg as the reference
943          * counting is disabled on the root level in the
944          * cgroup core. See CSS_NO_REF.
945          */
946         if (unlikely(!mm)) {
947                 memcg = active_memcg();
948                 if (unlikely(memcg)) {
949                         /* remote memcg must hold a ref */
950                         css_get(&memcg->css);
951                         return memcg;
952                 }
953                 mm = current->mm;
954                 if (unlikely(!mm))
955                         return root_mem_cgroup;
956         }
957
958         rcu_read_lock();
959         do {
960                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
961                 if (unlikely(!memcg))
962                         memcg = root_mem_cgroup;
963         } while (!css_tryget(&memcg->css));
964         rcu_read_unlock();
965         return memcg;
966 }
967 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968
969 static __always_inline bool memcg_kmem_bypass(void)
970 {
971         /* Allow remote memcg charging from any context. */
972         if (unlikely(active_memcg()))
973                 return false;
974
975         /* Memcg to charge can't be determined. */
976         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
977                 return true;
978
979         return false;
980 }
981
982 /**
983  * mem_cgroup_iter - iterate over memory cgroup hierarchy
984  * @root: hierarchy root
985  * @prev: previously returned memcg, NULL on first invocation
986  * @reclaim: cookie for shared reclaim walks, NULL for full walks
987  *
988  * Returns references to children of the hierarchy below @root, or
989  * @root itself, or %NULL after a full round-trip.
990  *
991  * Caller must pass the return value in @prev on subsequent
992  * invocations for reference counting, or use mem_cgroup_iter_break()
993  * to cancel a hierarchy walk before the round-trip is complete.
994  *
995  * Reclaimers can specify a node in @reclaim to divide up the memcgs
996  * in the hierarchy among all concurrent reclaimers operating on the
997  * same node.
998  */
999 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1000                                    struct mem_cgroup *prev,
1001                                    struct mem_cgroup_reclaim_cookie *reclaim)
1002 {
1003         struct mem_cgroup_reclaim_iter *iter;
1004         struct cgroup_subsys_state *css = NULL;
1005         struct mem_cgroup *memcg = NULL;
1006         struct mem_cgroup *pos = NULL;
1007
1008         if (mem_cgroup_disabled())
1009                 return NULL;
1010
1011         if (!root)
1012                 root = root_mem_cgroup;
1013
1014         rcu_read_lock();
1015
1016         if (reclaim) {
1017                 struct mem_cgroup_per_node *mz;
1018
1019                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1020                 iter = &mz->iter;
1021
1022                 /*
1023                  * On start, join the current reclaim iteration cycle.
1024                  * Exit when a concurrent walker completes it.
1025                  */
1026                 if (!prev)
1027                         reclaim->generation = iter->generation;
1028                 else if (reclaim->generation != iter->generation)
1029                         goto out_unlock;
1030
1031                 while (1) {
1032                         pos = READ_ONCE(iter->position);
1033                         if (!pos || css_tryget(&pos->css))
1034                                 break;
1035                         /*
1036                          * css reference reached zero, so iter->position will
1037                          * be cleared by ->css_released. However, we should not
1038                          * rely on this happening soon, because ->css_released
1039                          * is called from a work queue, and by busy-waiting we
1040                          * might block it. So we clear iter->position right
1041                          * away.
1042                          */
1043                         (void)cmpxchg(&iter->position, pos, NULL);
1044                 }
1045         } else if (prev) {
1046                 pos = prev;
1047         }
1048
1049         if (pos)
1050                 css = &pos->css;
1051
1052         for (;;) {
1053                 css = css_next_descendant_pre(css, &root->css);
1054                 if (!css) {
1055                         /*
1056                          * Reclaimers share the hierarchy walk, and a
1057                          * new one might jump in right at the end of
1058                          * the hierarchy - make sure they see at least
1059                          * one group and restart from the beginning.
1060                          */
1061                         if (!prev)
1062                                 continue;
1063                         break;
1064                 }
1065
1066                 /*
1067                  * Verify the css and acquire a reference.  The root
1068                  * is provided by the caller, so we know it's alive
1069                  * and kicking, and don't take an extra reference.
1070                  */
1071                 if (css == &root->css || css_tryget(css)) {
1072                         memcg = mem_cgroup_from_css(css);
1073                         break;
1074                 }
1075         }
1076
1077         if (reclaim) {
1078                 /*
1079                  * The position could have already been updated by a competing
1080                  * thread, so check that the value hasn't changed since we read
1081                  * it to avoid reclaiming from the same cgroup twice.
1082                  */
1083                 (void)cmpxchg(&iter->position, pos, memcg);
1084
1085                 if (pos)
1086                         css_put(&pos->css);
1087
1088                 if (!memcg)
1089                         iter->generation++;
1090         }
1091
1092 out_unlock:
1093         rcu_read_unlock();
1094         if (prev && prev != root)
1095                 css_put(&prev->css);
1096
1097         return memcg;
1098 }
1099
1100 /**
1101  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1102  * @root: hierarchy root
1103  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1104  */
1105 void mem_cgroup_iter_break(struct mem_cgroup *root,
1106                            struct mem_cgroup *prev)
1107 {
1108         if (!root)
1109                 root = root_mem_cgroup;
1110         if (prev && prev != root)
1111                 css_put(&prev->css);
1112 }
1113
1114 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1115                                         struct mem_cgroup *dead_memcg)
1116 {
1117         struct mem_cgroup_reclaim_iter *iter;
1118         struct mem_cgroup_per_node *mz;
1119         int nid;
1120
1121         for_each_node(nid) {
1122                 mz = from->nodeinfo[nid];
1123                 iter = &mz->iter;
1124                 cmpxchg(&iter->position, dead_memcg, NULL);
1125         }
1126 }
1127
1128 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1129 {
1130         struct mem_cgroup *memcg = dead_memcg;
1131         struct mem_cgroup *last;
1132
1133         do {
1134                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1135                 last = memcg;
1136         } while ((memcg = parent_mem_cgroup(memcg)));
1137
1138         /*
1139          * When cgruop1 non-hierarchy mode is used,
1140          * parent_mem_cgroup() does not walk all the way up to the
1141          * cgroup root (root_mem_cgroup). So we have to handle
1142          * dead_memcg from cgroup root separately.
1143          */
1144         if (last != root_mem_cgroup)
1145                 __invalidate_reclaim_iterators(root_mem_cgroup,
1146                                                 dead_memcg);
1147 }
1148
1149 /**
1150  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1151  * @memcg: hierarchy root
1152  * @fn: function to call for each task
1153  * @arg: argument passed to @fn
1154  *
1155  * This function iterates over tasks attached to @memcg or to any of its
1156  * descendants and calls @fn for each task. If @fn returns a non-zero
1157  * value, the function breaks the iteration loop and returns the value.
1158  * Otherwise, it will iterate over all tasks and return 0.
1159  *
1160  * This function must not be called for the root memory cgroup.
1161  */
1162 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1163                           int (*fn)(struct task_struct *, void *), void *arg)
1164 {
1165         struct mem_cgroup *iter;
1166         int ret = 0;
1167
1168         BUG_ON(memcg == root_mem_cgroup);
1169
1170         for_each_mem_cgroup_tree(iter, memcg) {
1171                 struct css_task_iter it;
1172                 struct task_struct *task;
1173
1174                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1175                 while (!ret && (task = css_task_iter_next(&it)))
1176                         ret = fn(task, arg);
1177                 css_task_iter_end(&it);
1178                 if (ret) {
1179                         mem_cgroup_iter_break(memcg, iter);
1180                         break;
1181                 }
1182         }
1183         return ret;
1184 }
1185
1186 #ifdef CONFIG_DEBUG_VM
1187 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1188 {
1189         struct mem_cgroup *memcg;
1190
1191         if (mem_cgroup_disabled())
1192                 return;
1193
1194         memcg = folio_memcg(folio);
1195
1196         if (!memcg)
1197                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1198         else
1199                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1200 }
1201 #endif
1202
1203 /**
1204  * folio_lruvec_lock - Lock the lruvec for a folio.
1205  * @folio: Pointer to the folio.
1206  *
1207  * These functions are safe to use under any of the following conditions:
1208  * - folio locked
1209  * - folio_test_lru false
1210  * - folio_memcg_lock()
1211  * - folio frozen (refcount of 0)
1212  *
1213  * Return: The lruvec this folio is on with its lock held.
1214  */
1215 struct lruvec *folio_lruvec_lock(struct folio *folio)
1216 {
1217         struct lruvec *lruvec = folio_lruvec(folio);
1218
1219         spin_lock(&lruvec->lru_lock);
1220         lruvec_memcg_debug(lruvec, folio);
1221
1222         return lruvec;
1223 }
1224
1225 /**
1226  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227  * @folio: Pointer to the folio.
1228  *
1229  * These functions are safe to use under any of the following conditions:
1230  * - folio locked
1231  * - folio_test_lru false
1232  * - folio_memcg_lock()
1233  * - folio frozen (refcount of 0)
1234  *
1235  * Return: The lruvec this folio is on with its lock held and interrupts
1236  * disabled.
1237  */
1238 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1239 {
1240         struct lruvec *lruvec = folio_lruvec(folio);
1241
1242         spin_lock_irq(&lruvec->lru_lock);
1243         lruvec_memcg_debug(lruvec, folio);
1244
1245         return lruvec;
1246 }
1247
1248 /**
1249  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1250  * @folio: Pointer to the folio.
1251  * @flags: Pointer to irqsave flags.
1252  *
1253  * These functions are safe to use under any of the following conditions:
1254  * - folio locked
1255  * - folio_test_lru false
1256  * - folio_memcg_lock()
1257  * - folio frozen (refcount of 0)
1258  *
1259  * Return: The lruvec this folio is on with its lock held and interrupts
1260  * disabled.
1261  */
1262 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1263                 unsigned long *flags)
1264 {
1265         struct lruvec *lruvec = folio_lruvec(folio);
1266
1267         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1268         lruvec_memcg_debug(lruvec, folio);
1269
1270         return lruvec;
1271 }
1272
1273 /**
1274  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1275  * @lruvec: mem_cgroup per zone lru vector
1276  * @lru: index of lru list the page is sitting on
1277  * @zid: zone id of the accounted pages
1278  * @nr_pages: positive when adding or negative when removing
1279  *
1280  * This function must be called under lru_lock, just before a page is added
1281  * to or just after a page is removed from an lru list.
1282  */
1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284                                 int zid, int nr_pages)
1285 {
1286         struct mem_cgroup_per_node *mz;
1287         unsigned long *lru_size;
1288         long size;
1289
1290         if (mem_cgroup_disabled())
1291                 return;
1292
1293         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1294         lru_size = &mz->lru_zone_size[zid][lru];
1295
1296         if (nr_pages < 0)
1297                 *lru_size += nr_pages;
1298
1299         size = *lru_size;
1300         if (WARN_ONCE(size < 0,
1301                 "%s(%p, %d, %d): lru_size %ld\n",
1302                 __func__, lruvec, lru, nr_pages, size)) {
1303                 VM_BUG_ON(1);
1304                 *lru_size = 0;
1305         }
1306
1307         if (nr_pages > 0)
1308                 *lru_size += nr_pages;
1309 }
1310
1311 /**
1312  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313  * @memcg: the memory cgroup
1314  *
1315  * Returns the maximum amount of memory @mem can be charged with, in
1316  * pages.
1317  */
1318 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1319 {
1320         unsigned long margin = 0;
1321         unsigned long count;
1322         unsigned long limit;
1323
1324         count = page_counter_read(&memcg->memory);
1325         limit = READ_ONCE(memcg->memory.max);
1326         if (count < limit)
1327                 margin = limit - count;
1328
1329         if (do_memsw_account()) {
1330                 count = page_counter_read(&memcg->memsw);
1331                 limit = READ_ONCE(memcg->memsw.max);
1332                 if (count < limit)
1333                         margin = min(margin, limit - count);
1334                 else
1335                         margin = 0;
1336         }
1337
1338         return margin;
1339 }
1340
1341 /*
1342  * A routine for checking "mem" is under move_account() or not.
1343  *
1344  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1345  * moving cgroups. This is for waiting at high-memory pressure
1346  * caused by "move".
1347  */
1348 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1349 {
1350         struct mem_cgroup *from;
1351         struct mem_cgroup *to;
1352         bool ret = false;
1353         /*
1354          * Unlike task_move routines, we access mc.to, mc.from not under
1355          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1356          */
1357         spin_lock(&mc.lock);
1358         from = mc.from;
1359         to = mc.to;
1360         if (!from)
1361                 goto unlock;
1362
1363         ret = mem_cgroup_is_descendant(from, memcg) ||
1364                 mem_cgroup_is_descendant(to, memcg);
1365 unlock:
1366         spin_unlock(&mc.lock);
1367         return ret;
1368 }
1369
1370 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1371 {
1372         if (mc.moving_task && current != mc.moving_task) {
1373                 if (mem_cgroup_under_move(memcg)) {
1374                         DEFINE_WAIT(wait);
1375                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1376                         /* moving charge context might have finished. */
1377                         if (mc.moving_task)
1378                                 schedule();
1379                         finish_wait(&mc.waitq, &wait);
1380                         return true;
1381                 }
1382         }
1383         return false;
1384 }
1385
1386 struct memory_stat {
1387         const char *name;
1388         unsigned int idx;
1389 };
1390
1391 static const struct memory_stat memory_stats[] = {
1392         { "anon",                       NR_ANON_MAPPED                  },
1393         { "file",                       NR_FILE_PAGES                   },
1394         { "kernel",                     MEMCG_KMEM                      },
1395         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1396         { "pagetables",                 NR_PAGETABLE                    },
1397         { "percpu",                     MEMCG_PERCPU_B                  },
1398         { "sock",                       MEMCG_SOCK                      },
1399         { "vmalloc",                    MEMCG_VMALLOC                   },
1400         { "shmem",                      NR_SHMEM                        },
1401 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1402         { "zswap",                      MEMCG_ZSWAP_B                   },
1403         { "zswapped",                   MEMCG_ZSWAPPED                  },
1404 #endif
1405         { "file_mapped",                NR_FILE_MAPPED                  },
1406         { "file_dirty",                 NR_FILE_DIRTY                   },
1407         { "file_writeback",             NR_WRITEBACK                    },
1408 #ifdef CONFIG_SWAP
1409         { "swapcached",                 NR_SWAPCACHE                    },
1410 #endif
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412         { "anon_thp",                   NR_ANON_THPS                    },
1413         { "file_thp",                   NR_FILE_THPS                    },
1414         { "shmem_thp",                  NR_SHMEM_THPS                   },
1415 #endif
1416         { "inactive_anon",              NR_INACTIVE_ANON                },
1417         { "active_anon",                NR_ACTIVE_ANON                  },
1418         { "inactive_file",              NR_INACTIVE_FILE                },
1419         { "active_file",                NR_ACTIVE_FILE                  },
1420         { "unevictable",                NR_UNEVICTABLE                  },
1421         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1422         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1423
1424         /* The memory events */
1425         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1426         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1427         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1428         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1429         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1430         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1431         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1432 };
1433
1434 /* Translate stat items to the correct unit for memory.stat output */
1435 static int memcg_page_state_unit(int item)
1436 {
1437         switch (item) {
1438         case MEMCG_PERCPU_B:
1439         case MEMCG_ZSWAP_B:
1440         case NR_SLAB_RECLAIMABLE_B:
1441         case NR_SLAB_UNRECLAIMABLE_B:
1442         case WORKINGSET_REFAULT_ANON:
1443         case WORKINGSET_REFAULT_FILE:
1444         case WORKINGSET_ACTIVATE_ANON:
1445         case WORKINGSET_ACTIVATE_FILE:
1446         case WORKINGSET_RESTORE_ANON:
1447         case WORKINGSET_RESTORE_FILE:
1448         case WORKINGSET_NODERECLAIM:
1449                 return 1;
1450         case NR_KERNEL_STACK_KB:
1451                 return SZ_1K;
1452         default:
1453                 return PAGE_SIZE;
1454         }
1455 }
1456
1457 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1458                                                     int item)
1459 {
1460         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1461 }
1462
1463 static char *memory_stat_format(struct mem_cgroup *memcg)
1464 {
1465         struct seq_buf s;
1466         int i;
1467
1468         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1469         if (!s.buffer)
1470                 return NULL;
1471
1472         /*
1473          * Provide statistics on the state of the memory subsystem as
1474          * well as cumulative event counters that show past behavior.
1475          *
1476          * This list is ordered following a combination of these gradients:
1477          * 1) generic big picture -> specifics and details
1478          * 2) reflecting userspace activity -> reflecting kernel heuristics
1479          *
1480          * Current memory state:
1481          */
1482         mem_cgroup_flush_stats();
1483
1484         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1485                 u64 size;
1486
1487                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1488                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1489
1490                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1491                         size += memcg_page_state_output(memcg,
1492                                                         NR_SLAB_RECLAIMABLE_B);
1493                         seq_buf_printf(&s, "slab %llu\n", size);
1494                 }
1495         }
1496
1497         /* Accumulated memory events */
1498
1499         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1500                        memcg_events(memcg, PGFAULT));
1501         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1502                        memcg_events(memcg, PGMAJFAULT));
1503         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1504                        memcg_events(memcg, PGREFILL));
1505         seq_buf_printf(&s, "pgscan %lu\n",
1506                        memcg_events(memcg, PGSCAN_KSWAPD) +
1507                        memcg_events(memcg, PGSCAN_DIRECT));
1508         seq_buf_printf(&s, "pgsteal %lu\n",
1509                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1510                        memcg_events(memcg, PGSTEAL_DIRECT));
1511         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1512                        memcg_events(memcg, PGACTIVATE));
1513         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1514                        memcg_events(memcg, PGDEACTIVATE));
1515         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1516                        memcg_events(memcg, PGLAZYFREE));
1517         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1518                        memcg_events(memcg, PGLAZYFREED));
1519
1520 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1521         seq_buf_printf(&s, "%s %lu\n", vm_event_name(ZSWPIN),
1522                        memcg_events(memcg, ZSWPIN));
1523         seq_buf_printf(&s, "%s %lu\n", vm_event_name(ZSWPOUT),
1524                        memcg_events(memcg, ZSWPOUT));
1525 #endif
1526
1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1529                        memcg_events(memcg, THP_FAULT_ALLOC));
1530         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1531                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1532 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1533
1534         /* The above should easily fit into one page */
1535         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1536
1537         return s.buffer;
1538 }
1539
1540 #define K(x) ((x) << (PAGE_SHIFT-10))
1541 /**
1542  * mem_cgroup_print_oom_context: Print OOM information relevant to
1543  * memory controller.
1544  * @memcg: The memory cgroup that went over limit
1545  * @p: Task that is going to be killed
1546  *
1547  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1548  * enabled
1549  */
1550 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1551 {
1552         rcu_read_lock();
1553
1554         if (memcg) {
1555                 pr_cont(",oom_memcg=");
1556                 pr_cont_cgroup_path(memcg->css.cgroup);
1557         } else
1558                 pr_cont(",global_oom");
1559         if (p) {
1560                 pr_cont(",task_memcg=");
1561                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1562         }
1563         rcu_read_unlock();
1564 }
1565
1566 /**
1567  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1568  * memory controller.
1569  * @memcg: The memory cgroup that went over limit
1570  */
1571 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1572 {
1573         char *buf;
1574
1575         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1576                 K((u64)page_counter_read(&memcg->memory)),
1577                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1578         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1579                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1580                         K((u64)page_counter_read(&memcg->swap)),
1581                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1582         else {
1583                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1584                         K((u64)page_counter_read(&memcg->memsw)),
1585                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1586                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1587                         K((u64)page_counter_read(&memcg->kmem)),
1588                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1589         }
1590
1591         pr_info("Memory cgroup stats for ");
1592         pr_cont_cgroup_path(memcg->css.cgroup);
1593         pr_cont(":");
1594         buf = memory_stat_format(memcg);
1595         if (!buf)
1596                 return;
1597         pr_info("%s", buf);
1598         kfree(buf);
1599 }
1600
1601 /*
1602  * Return the memory (and swap, if configured) limit for a memcg.
1603  */
1604 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1605 {
1606         unsigned long max = READ_ONCE(memcg->memory.max);
1607
1608         if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1609                 if (mem_cgroup_swappiness(memcg))
1610                         max += min(READ_ONCE(memcg->swap.max),
1611                                    (unsigned long)total_swap_pages);
1612         } else { /* v1 */
1613                 if (mem_cgroup_swappiness(memcg)) {
1614                         /* Calculate swap excess capacity from memsw limit */
1615                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1616
1617                         max += min(swap, (unsigned long)total_swap_pages);
1618                 }
1619         }
1620         return max;
1621 }
1622
1623 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1624 {
1625         return page_counter_read(&memcg->memory);
1626 }
1627
1628 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1629                                      int order)
1630 {
1631         struct oom_control oc = {
1632                 .zonelist = NULL,
1633                 .nodemask = NULL,
1634                 .memcg = memcg,
1635                 .gfp_mask = gfp_mask,
1636                 .order = order,
1637         };
1638         bool ret = true;
1639
1640         if (mutex_lock_killable(&oom_lock))
1641                 return true;
1642
1643         if (mem_cgroup_margin(memcg) >= (1 << order))
1644                 goto unlock;
1645
1646         /*
1647          * A few threads which were not waiting at mutex_lock_killable() can
1648          * fail to bail out. Therefore, check again after holding oom_lock.
1649          */
1650         ret = task_is_dying() || out_of_memory(&oc);
1651
1652 unlock:
1653         mutex_unlock(&oom_lock);
1654         return ret;
1655 }
1656
1657 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1658                                    pg_data_t *pgdat,
1659                                    gfp_t gfp_mask,
1660                                    unsigned long *total_scanned)
1661 {
1662         struct mem_cgroup *victim = NULL;
1663         int total = 0;
1664         int loop = 0;
1665         unsigned long excess;
1666         unsigned long nr_scanned;
1667         struct mem_cgroup_reclaim_cookie reclaim = {
1668                 .pgdat = pgdat,
1669         };
1670
1671         excess = soft_limit_excess(root_memcg);
1672
1673         while (1) {
1674                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1675                 if (!victim) {
1676                         loop++;
1677                         if (loop >= 2) {
1678                                 /*
1679                                  * If we have not been able to reclaim
1680                                  * anything, it might because there are
1681                                  * no reclaimable pages under this hierarchy
1682                                  */
1683                                 if (!total)
1684                                         break;
1685                                 /*
1686                                  * We want to do more targeted reclaim.
1687                                  * excess >> 2 is not to excessive so as to
1688                                  * reclaim too much, nor too less that we keep
1689                                  * coming back to reclaim from this cgroup
1690                                  */
1691                                 if (total >= (excess >> 2) ||
1692                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1693                                         break;
1694                         }
1695                         continue;
1696                 }
1697                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1698                                         pgdat, &nr_scanned);
1699                 *total_scanned += nr_scanned;
1700                 if (!soft_limit_excess(root_memcg))
1701                         break;
1702         }
1703         mem_cgroup_iter_break(root_memcg, victim);
1704         return total;
1705 }
1706
1707 #ifdef CONFIG_LOCKDEP
1708 static struct lockdep_map memcg_oom_lock_dep_map = {
1709         .name = "memcg_oom_lock",
1710 };
1711 #endif
1712
1713 static DEFINE_SPINLOCK(memcg_oom_lock);
1714
1715 /*
1716  * Check OOM-Killer is already running under our hierarchy.
1717  * If someone is running, return false.
1718  */
1719 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1720 {
1721         struct mem_cgroup *iter, *failed = NULL;
1722
1723         spin_lock(&memcg_oom_lock);
1724
1725         for_each_mem_cgroup_tree(iter, memcg) {
1726                 if (iter->oom_lock) {
1727                         /*
1728                          * this subtree of our hierarchy is already locked
1729                          * so we cannot give a lock.
1730                          */
1731                         failed = iter;
1732                         mem_cgroup_iter_break(memcg, iter);
1733                         break;
1734                 } else
1735                         iter->oom_lock = true;
1736         }
1737
1738         if (failed) {
1739                 /*
1740                  * OK, we failed to lock the whole subtree so we have
1741                  * to clean up what we set up to the failing subtree
1742                  */
1743                 for_each_mem_cgroup_tree(iter, memcg) {
1744                         if (iter == failed) {
1745                                 mem_cgroup_iter_break(memcg, iter);
1746                                 break;
1747                         }
1748                         iter->oom_lock = false;
1749                 }
1750         } else
1751                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1752
1753         spin_unlock(&memcg_oom_lock);
1754
1755         return !failed;
1756 }
1757
1758 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1759 {
1760         struct mem_cgroup *iter;
1761
1762         spin_lock(&memcg_oom_lock);
1763         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1764         for_each_mem_cgroup_tree(iter, memcg)
1765                 iter->oom_lock = false;
1766         spin_unlock(&memcg_oom_lock);
1767 }
1768
1769 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1770 {
1771         struct mem_cgroup *iter;
1772
1773         spin_lock(&memcg_oom_lock);
1774         for_each_mem_cgroup_tree(iter, memcg)
1775                 iter->under_oom++;
1776         spin_unlock(&memcg_oom_lock);
1777 }
1778
1779 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1780 {
1781         struct mem_cgroup *iter;
1782
1783         /*
1784          * Be careful about under_oom underflows because a child memcg
1785          * could have been added after mem_cgroup_mark_under_oom.
1786          */
1787         spin_lock(&memcg_oom_lock);
1788         for_each_mem_cgroup_tree(iter, memcg)
1789                 if (iter->under_oom > 0)
1790                         iter->under_oom--;
1791         spin_unlock(&memcg_oom_lock);
1792 }
1793
1794 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1795
1796 struct oom_wait_info {
1797         struct mem_cgroup *memcg;
1798         wait_queue_entry_t      wait;
1799 };
1800
1801 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1802         unsigned mode, int sync, void *arg)
1803 {
1804         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1805         struct mem_cgroup *oom_wait_memcg;
1806         struct oom_wait_info *oom_wait_info;
1807
1808         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1809         oom_wait_memcg = oom_wait_info->memcg;
1810
1811         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1812             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1813                 return 0;
1814         return autoremove_wake_function(wait, mode, sync, arg);
1815 }
1816
1817 static void memcg_oom_recover(struct mem_cgroup *memcg)
1818 {
1819         /*
1820          * For the following lockless ->under_oom test, the only required
1821          * guarantee is that it must see the state asserted by an OOM when
1822          * this function is called as a result of userland actions
1823          * triggered by the notification of the OOM.  This is trivially
1824          * achieved by invoking mem_cgroup_mark_under_oom() before
1825          * triggering notification.
1826          */
1827         if (memcg && memcg->under_oom)
1828                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1829 }
1830
1831 /*
1832  * Returns true if successfully killed one or more processes. Though in some
1833  * corner cases it can return true even without killing any process.
1834  */
1835 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1836 {
1837         bool locked, ret;
1838
1839         if (order > PAGE_ALLOC_COSTLY_ORDER)
1840                 return false;
1841
1842         memcg_memory_event(memcg, MEMCG_OOM);
1843
1844         /*
1845          * We are in the middle of the charge context here, so we
1846          * don't want to block when potentially sitting on a callstack
1847          * that holds all kinds of filesystem and mm locks.
1848          *
1849          * cgroup1 allows disabling the OOM killer and waiting for outside
1850          * handling until the charge can succeed; remember the context and put
1851          * the task to sleep at the end of the page fault when all locks are
1852          * released.
1853          *
1854          * On the other hand, in-kernel OOM killer allows for an async victim
1855          * memory reclaim (oom_reaper) and that means that we are not solely
1856          * relying on the oom victim to make a forward progress and we can
1857          * invoke the oom killer here.
1858          *
1859          * Please note that mem_cgroup_out_of_memory might fail to find a
1860          * victim and then we have to bail out from the charge path.
1861          */
1862         if (memcg->oom_kill_disable) {
1863                 if (current->in_user_fault) {
1864                         css_get(&memcg->css);
1865                         current->memcg_in_oom = memcg;
1866                         current->memcg_oom_gfp_mask = mask;
1867                         current->memcg_oom_order = order;
1868                 }
1869                 return false;
1870         }
1871
1872         mem_cgroup_mark_under_oom(memcg);
1873
1874         locked = mem_cgroup_oom_trylock(memcg);
1875
1876         if (locked)
1877                 mem_cgroup_oom_notify(memcg);
1878
1879         mem_cgroup_unmark_under_oom(memcg);
1880         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1881
1882         if (locked)
1883                 mem_cgroup_oom_unlock(memcg);
1884
1885         return ret;
1886 }
1887
1888 /**
1889  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1890  * @handle: actually kill/wait or just clean up the OOM state
1891  *
1892  * This has to be called at the end of a page fault if the memcg OOM
1893  * handler was enabled.
1894  *
1895  * Memcg supports userspace OOM handling where failed allocations must
1896  * sleep on a waitqueue until the userspace task resolves the
1897  * situation.  Sleeping directly in the charge context with all kinds
1898  * of locks held is not a good idea, instead we remember an OOM state
1899  * in the task and mem_cgroup_oom_synchronize() has to be called at
1900  * the end of the page fault to complete the OOM handling.
1901  *
1902  * Returns %true if an ongoing memcg OOM situation was detected and
1903  * completed, %false otherwise.
1904  */
1905 bool mem_cgroup_oom_synchronize(bool handle)
1906 {
1907         struct mem_cgroup *memcg = current->memcg_in_oom;
1908         struct oom_wait_info owait;
1909         bool locked;
1910
1911         /* OOM is global, do not handle */
1912         if (!memcg)
1913                 return false;
1914
1915         if (!handle)
1916                 goto cleanup;
1917
1918         owait.memcg = memcg;
1919         owait.wait.flags = 0;
1920         owait.wait.func = memcg_oom_wake_function;
1921         owait.wait.private = current;
1922         INIT_LIST_HEAD(&owait.wait.entry);
1923
1924         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1925         mem_cgroup_mark_under_oom(memcg);
1926
1927         locked = mem_cgroup_oom_trylock(memcg);
1928
1929         if (locked)
1930                 mem_cgroup_oom_notify(memcg);
1931
1932         if (locked && !memcg->oom_kill_disable) {
1933                 mem_cgroup_unmark_under_oom(memcg);
1934                 finish_wait(&memcg_oom_waitq, &owait.wait);
1935                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1936                                          current->memcg_oom_order);
1937         } else {
1938                 schedule();
1939                 mem_cgroup_unmark_under_oom(memcg);
1940                 finish_wait(&memcg_oom_waitq, &owait.wait);
1941         }
1942
1943         if (locked) {
1944                 mem_cgroup_oom_unlock(memcg);
1945                 /*
1946                  * There is no guarantee that an OOM-lock contender
1947                  * sees the wakeups triggered by the OOM kill
1948                  * uncharges.  Wake any sleepers explicitly.
1949                  */
1950                 memcg_oom_recover(memcg);
1951         }
1952 cleanup:
1953         current->memcg_in_oom = NULL;
1954         css_put(&memcg->css);
1955         return true;
1956 }
1957
1958 /**
1959  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1960  * @victim: task to be killed by the OOM killer
1961  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1962  *
1963  * Returns a pointer to a memory cgroup, which has to be cleaned up
1964  * by killing all belonging OOM-killable tasks.
1965  *
1966  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1967  */
1968 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1969                                             struct mem_cgroup *oom_domain)
1970 {
1971         struct mem_cgroup *oom_group = NULL;
1972         struct mem_cgroup *memcg;
1973
1974         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1975                 return NULL;
1976
1977         if (!oom_domain)
1978                 oom_domain = root_mem_cgroup;
1979
1980         rcu_read_lock();
1981
1982         memcg = mem_cgroup_from_task(victim);
1983         if (memcg == root_mem_cgroup)
1984                 goto out;
1985
1986         /*
1987          * If the victim task has been asynchronously moved to a different
1988          * memory cgroup, we might end up killing tasks outside oom_domain.
1989          * In this case it's better to ignore memory.group.oom.
1990          */
1991         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1992                 goto out;
1993
1994         /*
1995          * Traverse the memory cgroup hierarchy from the victim task's
1996          * cgroup up to the OOMing cgroup (or root) to find the
1997          * highest-level memory cgroup with oom.group set.
1998          */
1999         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2000                 if (memcg->oom_group)
2001                         oom_group = memcg;
2002
2003                 if (memcg == oom_domain)
2004                         break;
2005         }
2006
2007         if (oom_group)
2008                 css_get(&oom_group->css);
2009 out:
2010         rcu_read_unlock();
2011
2012         return oom_group;
2013 }
2014
2015 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2016 {
2017         pr_info("Tasks in ");
2018         pr_cont_cgroup_path(memcg->css.cgroup);
2019         pr_cont(" are going to be killed due to memory.oom.group set\n");
2020 }
2021
2022 /**
2023  * folio_memcg_lock - Bind a folio to its memcg.
2024  * @folio: The folio.
2025  *
2026  * This function prevents unlocked LRU folios from being moved to
2027  * another cgroup.
2028  *
2029  * It ensures lifetime of the bound memcg.  The caller is responsible
2030  * for the lifetime of the folio.
2031  */
2032 void folio_memcg_lock(struct folio *folio)
2033 {
2034         struct mem_cgroup *memcg;
2035         unsigned long flags;
2036
2037         /*
2038          * The RCU lock is held throughout the transaction.  The fast
2039          * path can get away without acquiring the memcg->move_lock
2040          * because page moving starts with an RCU grace period.
2041          */
2042         rcu_read_lock();
2043
2044         if (mem_cgroup_disabled())
2045                 return;
2046 again:
2047         memcg = folio_memcg(folio);
2048         if (unlikely(!memcg))
2049                 return;
2050
2051 #ifdef CONFIG_PROVE_LOCKING
2052         local_irq_save(flags);
2053         might_lock(&memcg->move_lock);
2054         local_irq_restore(flags);
2055 #endif
2056
2057         if (atomic_read(&memcg->moving_account) <= 0)
2058                 return;
2059
2060         spin_lock_irqsave(&memcg->move_lock, flags);
2061         if (memcg != folio_memcg(folio)) {
2062                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2063                 goto again;
2064         }
2065
2066         /*
2067          * When charge migration first begins, we can have multiple
2068          * critical sections holding the fast-path RCU lock and one
2069          * holding the slowpath move_lock. Track the task who has the
2070          * move_lock for unlock_page_memcg().
2071          */
2072         memcg->move_lock_task = current;
2073         memcg->move_lock_flags = flags;
2074 }
2075
2076 void lock_page_memcg(struct page *page)
2077 {
2078         folio_memcg_lock(page_folio(page));
2079 }
2080
2081 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2082 {
2083         if (memcg && memcg->move_lock_task == current) {
2084                 unsigned long flags = memcg->move_lock_flags;
2085
2086                 memcg->move_lock_task = NULL;
2087                 memcg->move_lock_flags = 0;
2088
2089                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2090         }
2091
2092         rcu_read_unlock();
2093 }
2094
2095 /**
2096  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2097  * @folio: The folio.
2098  *
2099  * This releases the binding created by folio_memcg_lock().  This does
2100  * not change the accounting of this folio to its memcg, but it does
2101  * permit others to change it.
2102  */
2103 void folio_memcg_unlock(struct folio *folio)
2104 {
2105         __folio_memcg_unlock(folio_memcg(folio));
2106 }
2107
2108 void unlock_page_memcg(struct page *page)
2109 {
2110         folio_memcg_unlock(page_folio(page));
2111 }
2112
2113 struct memcg_stock_pcp {
2114         local_lock_t stock_lock;
2115         struct mem_cgroup *cached; /* this never be root cgroup */
2116         unsigned int nr_pages;
2117
2118 #ifdef CONFIG_MEMCG_KMEM
2119         struct obj_cgroup *cached_objcg;
2120         struct pglist_data *cached_pgdat;
2121         unsigned int nr_bytes;
2122         int nr_slab_reclaimable_b;
2123         int nr_slab_unreclaimable_b;
2124 #endif
2125
2126         struct work_struct work;
2127         unsigned long flags;
2128 #define FLUSHING_CACHED_CHARGE  0
2129 };
2130 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2131         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2132 };
2133 static DEFINE_MUTEX(percpu_charge_mutex);
2134
2135 #ifdef CONFIG_MEMCG_KMEM
2136 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2137 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2138                                      struct mem_cgroup *root_memcg);
2139 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2140
2141 #else
2142 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2143 {
2144         return NULL;
2145 }
2146 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2147                                      struct mem_cgroup *root_memcg)
2148 {
2149         return false;
2150 }
2151 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2152 {
2153 }
2154 #endif
2155
2156 /**
2157  * consume_stock: Try to consume stocked charge on this cpu.
2158  * @memcg: memcg to consume from.
2159  * @nr_pages: how many pages to charge.
2160  *
2161  * The charges will only happen if @memcg matches the current cpu's memcg
2162  * stock, and at least @nr_pages are available in that stock.  Failure to
2163  * service an allocation will refill the stock.
2164  *
2165  * returns true if successful, false otherwise.
2166  */
2167 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2168 {
2169         struct memcg_stock_pcp *stock;
2170         unsigned long flags;
2171         bool ret = false;
2172
2173         if (nr_pages > MEMCG_CHARGE_BATCH)
2174                 return ret;
2175
2176         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2177
2178         stock = this_cpu_ptr(&memcg_stock);
2179         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2180                 stock->nr_pages -= nr_pages;
2181                 ret = true;
2182         }
2183
2184         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2185
2186         return ret;
2187 }
2188
2189 /*
2190  * Returns stocks cached in percpu and reset cached information.
2191  */
2192 static void drain_stock(struct memcg_stock_pcp *stock)
2193 {
2194         struct mem_cgroup *old = stock->cached;
2195
2196         if (!old)
2197                 return;
2198
2199         if (stock->nr_pages) {
2200                 page_counter_uncharge(&old->memory, stock->nr_pages);
2201                 if (do_memsw_account())
2202                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2203                 stock->nr_pages = 0;
2204         }
2205
2206         css_put(&old->css);
2207         stock->cached = NULL;
2208 }
2209
2210 static void drain_local_stock(struct work_struct *dummy)
2211 {
2212         struct memcg_stock_pcp *stock;
2213         struct obj_cgroup *old = NULL;
2214         unsigned long flags;
2215
2216         /*
2217          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2218          * drain_stock races is that we always operate on local CPU stock
2219          * here with IRQ disabled
2220          */
2221         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2222
2223         stock = this_cpu_ptr(&memcg_stock);
2224         old = drain_obj_stock(stock);
2225         drain_stock(stock);
2226         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2227
2228         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2229         if (old)
2230                 obj_cgroup_put(old);
2231 }
2232
2233 /*
2234  * Cache charges(val) to local per_cpu area.
2235  * This will be consumed by consume_stock() function, later.
2236  */
2237 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2238 {
2239         struct memcg_stock_pcp *stock;
2240
2241         stock = this_cpu_ptr(&memcg_stock);
2242         if (stock->cached != memcg) { /* reset if necessary */
2243                 drain_stock(stock);
2244                 css_get(&memcg->css);
2245                 stock->cached = memcg;
2246         }
2247         stock->nr_pages += nr_pages;
2248
2249         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2250                 drain_stock(stock);
2251 }
2252
2253 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2254 {
2255         unsigned long flags;
2256
2257         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2258         __refill_stock(memcg, nr_pages);
2259         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2260 }
2261
2262 /*
2263  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2264  * of the hierarchy under it.
2265  */
2266 static void drain_all_stock(struct mem_cgroup *root_memcg)
2267 {
2268         int cpu, curcpu;
2269
2270         /* If someone's already draining, avoid adding running more workers. */
2271         if (!mutex_trylock(&percpu_charge_mutex))
2272                 return;
2273         /*
2274          * Notify other cpus that system-wide "drain" is running
2275          * We do not care about races with the cpu hotplug because cpu down
2276          * as well as workers from this path always operate on the local
2277          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2278          */
2279         migrate_disable();
2280         curcpu = smp_processor_id();
2281         for_each_online_cpu(cpu) {
2282                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2283                 struct mem_cgroup *memcg;
2284                 bool flush = false;
2285
2286                 rcu_read_lock();
2287                 memcg = stock->cached;
2288                 if (memcg && stock->nr_pages &&
2289                     mem_cgroup_is_descendant(memcg, root_memcg))
2290                         flush = true;
2291                 else if (obj_stock_flush_required(stock, root_memcg))
2292                         flush = true;
2293                 rcu_read_unlock();
2294
2295                 if (flush &&
2296                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2297                         if (cpu == curcpu)
2298                                 drain_local_stock(&stock->work);
2299                         else
2300                                 schedule_work_on(cpu, &stock->work);
2301                 }
2302         }
2303         migrate_enable();
2304         mutex_unlock(&percpu_charge_mutex);
2305 }
2306
2307 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2308 {
2309         struct memcg_stock_pcp *stock;
2310
2311         stock = &per_cpu(memcg_stock, cpu);
2312         drain_stock(stock);
2313
2314         return 0;
2315 }
2316
2317 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2318                                   unsigned int nr_pages,
2319                                   gfp_t gfp_mask)
2320 {
2321         unsigned long nr_reclaimed = 0;
2322
2323         do {
2324                 unsigned long pflags;
2325
2326                 if (page_counter_read(&memcg->memory) <=
2327                     READ_ONCE(memcg->memory.high))
2328                         continue;
2329
2330                 memcg_memory_event(memcg, MEMCG_HIGH);
2331
2332                 psi_memstall_enter(&pflags);
2333                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2334                                                              gfp_mask, true);
2335                 psi_memstall_leave(&pflags);
2336         } while ((memcg = parent_mem_cgroup(memcg)) &&
2337                  !mem_cgroup_is_root(memcg));
2338
2339         return nr_reclaimed;
2340 }
2341
2342 static void high_work_func(struct work_struct *work)
2343 {
2344         struct mem_cgroup *memcg;
2345
2346         memcg = container_of(work, struct mem_cgroup, high_work);
2347         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2348 }
2349
2350 /*
2351  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2352  * enough to still cause a significant slowdown in most cases, while still
2353  * allowing diagnostics and tracing to proceed without becoming stuck.
2354  */
2355 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2356
2357 /*
2358  * When calculating the delay, we use these either side of the exponentiation to
2359  * maintain precision and scale to a reasonable number of jiffies (see the table
2360  * below.
2361  *
2362  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2363  *   overage ratio to a delay.
2364  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2365  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2366  *   to produce a reasonable delay curve.
2367  *
2368  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2369  * reasonable delay curve compared to precision-adjusted overage, not
2370  * penalising heavily at first, but still making sure that growth beyond the
2371  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2372  * example, with a high of 100 megabytes:
2373  *
2374  *  +-------+------------------------+
2375  *  | usage | time to allocate in ms |
2376  *  +-------+------------------------+
2377  *  | 100M  |                      0 |
2378  *  | 101M  |                      6 |
2379  *  | 102M  |                     25 |
2380  *  | 103M  |                     57 |
2381  *  | 104M  |                    102 |
2382  *  | 105M  |                    159 |
2383  *  | 106M  |                    230 |
2384  *  | 107M  |                    313 |
2385  *  | 108M  |                    409 |
2386  *  | 109M  |                    518 |
2387  *  | 110M  |                    639 |
2388  *  | 111M  |                    774 |
2389  *  | 112M  |                    921 |
2390  *  | 113M  |                   1081 |
2391  *  | 114M  |                   1254 |
2392  *  | 115M  |                   1439 |
2393  *  | 116M  |                   1638 |
2394  *  | 117M  |                   1849 |
2395  *  | 118M  |                   2000 |
2396  *  | 119M  |                   2000 |
2397  *  | 120M  |                   2000 |
2398  *  +-------+------------------------+
2399  */
2400  #define MEMCG_DELAY_PRECISION_SHIFT 20
2401  #define MEMCG_DELAY_SCALING_SHIFT 14
2402
2403 static u64 calculate_overage(unsigned long usage, unsigned long high)
2404 {
2405         u64 overage;
2406
2407         if (usage <= high)
2408                 return 0;
2409
2410         /*
2411          * Prevent division by 0 in overage calculation by acting as if
2412          * it was a threshold of 1 page
2413          */
2414         high = max(high, 1UL);
2415
2416         overage = usage - high;
2417         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2418         return div64_u64(overage, high);
2419 }
2420
2421 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2422 {
2423         u64 overage, max_overage = 0;
2424
2425         do {
2426                 overage = calculate_overage(page_counter_read(&memcg->memory),
2427                                             READ_ONCE(memcg->memory.high));
2428                 max_overage = max(overage, max_overage);
2429         } while ((memcg = parent_mem_cgroup(memcg)) &&
2430                  !mem_cgroup_is_root(memcg));
2431
2432         return max_overage;
2433 }
2434
2435 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2436 {
2437         u64 overage, max_overage = 0;
2438
2439         do {
2440                 overage = calculate_overage(page_counter_read(&memcg->swap),
2441                                             READ_ONCE(memcg->swap.high));
2442                 if (overage)
2443                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2444                 max_overage = max(overage, max_overage);
2445         } while ((memcg = parent_mem_cgroup(memcg)) &&
2446                  !mem_cgroup_is_root(memcg));
2447
2448         return max_overage;
2449 }
2450
2451 /*
2452  * Get the number of jiffies that we should penalise a mischievous cgroup which
2453  * is exceeding its memory.high by checking both it and its ancestors.
2454  */
2455 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2456                                           unsigned int nr_pages,
2457                                           u64 max_overage)
2458 {
2459         unsigned long penalty_jiffies;
2460
2461         if (!max_overage)
2462                 return 0;
2463
2464         /*
2465          * We use overage compared to memory.high to calculate the number of
2466          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2467          * fairly lenient on small overages, and increasingly harsh when the
2468          * memcg in question makes it clear that it has no intention of stopping
2469          * its crazy behaviour, so we exponentially increase the delay based on
2470          * overage amount.
2471          */
2472         penalty_jiffies = max_overage * max_overage * HZ;
2473         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2474         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2475
2476         /*
2477          * Factor in the task's own contribution to the overage, such that four
2478          * N-sized allocations are throttled approximately the same as one
2479          * 4N-sized allocation.
2480          *
2481          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2482          * larger the current charge patch is than that.
2483          */
2484         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2485 }
2486
2487 /*
2488  * Scheduled by try_charge() to be executed from the userland return path
2489  * and reclaims memory over the high limit.
2490  */
2491 void mem_cgroup_handle_over_high(void)
2492 {
2493         unsigned long penalty_jiffies;
2494         unsigned long pflags;
2495         unsigned long nr_reclaimed;
2496         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2497         int nr_retries = MAX_RECLAIM_RETRIES;
2498         struct mem_cgroup *memcg;
2499         bool in_retry = false;
2500
2501         if (likely(!nr_pages))
2502                 return;
2503
2504         memcg = get_mem_cgroup_from_mm(current->mm);
2505         current->memcg_nr_pages_over_high = 0;
2506
2507 retry_reclaim:
2508         /*
2509          * The allocating task should reclaim at least the batch size, but for
2510          * subsequent retries we only want to do what's necessary to prevent oom
2511          * or breaching resource isolation.
2512          *
2513          * This is distinct from memory.max or page allocator behaviour because
2514          * memory.high is currently batched, whereas memory.max and the page
2515          * allocator run every time an allocation is made.
2516          */
2517         nr_reclaimed = reclaim_high(memcg,
2518                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2519                                     GFP_KERNEL);
2520
2521         /*
2522          * memory.high is breached and reclaim is unable to keep up. Throttle
2523          * allocators proactively to slow down excessive growth.
2524          */
2525         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2526                                                mem_find_max_overage(memcg));
2527
2528         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2529                                                 swap_find_max_overage(memcg));
2530
2531         /*
2532          * Clamp the max delay per usermode return so as to still keep the
2533          * application moving forwards and also permit diagnostics, albeit
2534          * extremely slowly.
2535          */
2536         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2537
2538         /*
2539          * Don't sleep if the amount of jiffies this memcg owes us is so low
2540          * that it's not even worth doing, in an attempt to be nice to those who
2541          * go only a small amount over their memory.high value and maybe haven't
2542          * been aggressively reclaimed enough yet.
2543          */
2544         if (penalty_jiffies <= HZ / 100)
2545                 goto out;
2546
2547         /*
2548          * If reclaim is making forward progress but we're still over
2549          * memory.high, we want to encourage that rather than doing allocator
2550          * throttling.
2551          */
2552         if (nr_reclaimed || nr_retries--) {
2553                 in_retry = true;
2554                 goto retry_reclaim;
2555         }
2556
2557         /*
2558          * If we exit early, we're guaranteed to die (since
2559          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2560          * need to account for any ill-begotten jiffies to pay them off later.
2561          */
2562         psi_memstall_enter(&pflags);
2563         schedule_timeout_killable(penalty_jiffies);
2564         psi_memstall_leave(&pflags);
2565
2566 out:
2567         css_put(&memcg->css);
2568 }
2569
2570 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2571                         unsigned int nr_pages)
2572 {
2573         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2574         int nr_retries = MAX_RECLAIM_RETRIES;
2575         struct mem_cgroup *mem_over_limit;
2576         struct page_counter *counter;
2577         unsigned long nr_reclaimed;
2578         bool passed_oom = false;
2579         bool may_swap = true;
2580         bool drained = false;
2581         unsigned long pflags;
2582
2583 retry:
2584         if (consume_stock(memcg, nr_pages))
2585                 return 0;
2586
2587         if (!do_memsw_account() ||
2588             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2589                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2590                         goto done_restock;
2591                 if (do_memsw_account())
2592                         page_counter_uncharge(&memcg->memsw, batch);
2593                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2594         } else {
2595                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2596                 may_swap = false;
2597         }
2598
2599         if (batch > nr_pages) {
2600                 batch = nr_pages;
2601                 goto retry;
2602         }
2603
2604         /*
2605          * Prevent unbounded recursion when reclaim operations need to
2606          * allocate memory. This might exceed the limits temporarily,
2607          * but we prefer facilitating memory reclaim and getting back
2608          * under the limit over triggering OOM kills in these cases.
2609          */
2610         if (unlikely(current->flags & PF_MEMALLOC))
2611                 goto force;
2612
2613         if (unlikely(task_in_memcg_oom(current)))
2614                 goto nomem;
2615
2616         if (!gfpflags_allow_blocking(gfp_mask))
2617                 goto nomem;
2618
2619         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2620
2621         psi_memstall_enter(&pflags);
2622         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2623                                                     gfp_mask, may_swap);
2624         psi_memstall_leave(&pflags);
2625
2626         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2627                 goto retry;
2628
2629         if (!drained) {
2630                 drain_all_stock(mem_over_limit);
2631                 drained = true;
2632                 goto retry;
2633         }
2634
2635         if (gfp_mask & __GFP_NORETRY)
2636                 goto nomem;
2637         /*
2638          * Even though the limit is exceeded at this point, reclaim
2639          * may have been able to free some pages.  Retry the charge
2640          * before killing the task.
2641          *
2642          * Only for regular pages, though: huge pages are rather
2643          * unlikely to succeed so close to the limit, and we fall back
2644          * to regular pages anyway in case of failure.
2645          */
2646         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2647                 goto retry;
2648         /*
2649          * At task move, charge accounts can be doubly counted. So, it's
2650          * better to wait until the end of task_move if something is going on.
2651          */
2652         if (mem_cgroup_wait_acct_move(mem_over_limit))
2653                 goto retry;
2654
2655         if (nr_retries--)
2656                 goto retry;
2657
2658         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2659                 goto nomem;
2660
2661         /* Avoid endless loop for tasks bypassed by the oom killer */
2662         if (passed_oom && task_is_dying())
2663                 goto nomem;
2664
2665         /*
2666          * keep retrying as long as the memcg oom killer is able to make
2667          * a forward progress or bypass the charge if the oom killer
2668          * couldn't make any progress.
2669          */
2670         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2671                            get_order(nr_pages * PAGE_SIZE))) {
2672                 passed_oom = true;
2673                 nr_retries = MAX_RECLAIM_RETRIES;
2674                 goto retry;
2675         }
2676 nomem:
2677         /*
2678          * Memcg doesn't have a dedicated reserve for atomic
2679          * allocations. But like the global atomic pool, we need to
2680          * put the burden of reclaim on regular allocation requests
2681          * and let these go through as privileged allocations.
2682          */
2683         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2684                 return -ENOMEM;
2685 force:
2686         /*
2687          * The allocation either can't fail or will lead to more memory
2688          * being freed very soon.  Allow memory usage go over the limit
2689          * temporarily by force charging it.
2690          */
2691         page_counter_charge(&memcg->memory, nr_pages);
2692         if (do_memsw_account())
2693                 page_counter_charge(&memcg->memsw, nr_pages);
2694
2695         return 0;
2696
2697 done_restock:
2698         if (batch > nr_pages)
2699                 refill_stock(memcg, batch - nr_pages);
2700
2701         /*
2702          * If the hierarchy is above the normal consumption range, schedule
2703          * reclaim on returning to userland.  We can perform reclaim here
2704          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2705          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2706          * not recorded as it most likely matches current's and won't
2707          * change in the meantime.  As high limit is checked again before
2708          * reclaim, the cost of mismatch is negligible.
2709          */
2710         do {
2711                 bool mem_high, swap_high;
2712
2713                 mem_high = page_counter_read(&memcg->memory) >
2714                         READ_ONCE(memcg->memory.high);
2715                 swap_high = page_counter_read(&memcg->swap) >
2716                         READ_ONCE(memcg->swap.high);
2717
2718                 /* Don't bother a random interrupted task */
2719                 if (!in_task()) {
2720                         if (mem_high) {
2721                                 schedule_work(&memcg->high_work);
2722                                 break;
2723                         }
2724                         continue;
2725                 }
2726
2727                 if (mem_high || swap_high) {
2728                         /*
2729                          * The allocating tasks in this cgroup will need to do
2730                          * reclaim or be throttled to prevent further growth
2731                          * of the memory or swap footprints.
2732                          *
2733                          * Target some best-effort fairness between the tasks,
2734                          * and distribute reclaim work and delay penalties
2735                          * based on how much each task is actually allocating.
2736                          */
2737                         current->memcg_nr_pages_over_high += batch;
2738                         set_notify_resume(current);
2739                         break;
2740                 }
2741         } while ((memcg = parent_mem_cgroup(memcg)));
2742
2743         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2744             !(current->flags & PF_MEMALLOC) &&
2745             gfpflags_allow_blocking(gfp_mask)) {
2746                 mem_cgroup_handle_over_high();
2747         }
2748         return 0;
2749 }
2750
2751 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2752                              unsigned int nr_pages)
2753 {
2754         if (mem_cgroup_is_root(memcg))
2755                 return 0;
2756
2757         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2758 }
2759
2760 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2761 {
2762         if (mem_cgroup_is_root(memcg))
2763                 return;
2764
2765         page_counter_uncharge(&memcg->memory, nr_pages);
2766         if (do_memsw_account())
2767                 page_counter_uncharge(&memcg->memsw, nr_pages);
2768 }
2769
2770 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2771 {
2772         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2773         /*
2774          * Any of the following ensures page's memcg stability:
2775          *
2776          * - the page lock
2777          * - LRU isolation
2778          * - lock_page_memcg()
2779          * - exclusive reference
2780          */
2781         folio->memcg_data = (unsigned long)memcg;
2782 }
2783
2784 #ifdef CONFIG_MEMCG_KMEM
2785 /*
2786  * The allocated objcg pointers array is not accounted directly.
2787  * Moreover, it should not come from DMA buffer and is not readily
2788  * reclaimable. So those GFP bits should be masked off.
2789  */
2790 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2791
2792 /*
2793  * mod_objcg_mlstate() may be called with irq enabled, so
2794  * mod_memcg_lruvec_state() should be used.
2795  */
2796 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2797                                      struct pglist_data *pgdat,
2798                                      enum node_stat_item idx, int nr)
2799 {
2800         struct mem_cgroup *memcg;
2801         struct lruvec *lruvec;
2802
2803         rcu_read_lock();
2804         memcg = obj_cgroup_memcg(objcg);
2805         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2806         mod_memcg_lruvec_state(lruvec, idx, nr);
2807         rcu_read_unlock();
2808 }
2809
2810 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2811                                  gfp_t gfp, bool new_slab)
2812 {
2813         unsigned int objects = objs_per_slab(s, slab);
2814         unsigned long memcg_data;
2815         void *vec;
2816
2817         gfp &= ~OBJCGS_CLEAR_MASK;
2818         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2819                            slab_nid(slab));
2820         if (!vec)
2821                 return -ENOMEM;
2822
2823         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2824         if (new_slab) {
2825                 /*
2826                  * If the slab is brand new and nobody can yet access its
2827                  * memcg_data, no synchronization is required and memcg_data can
2828                  * be simply assigned.
2829                  */
2830                 slab->memcg_data = memcg_data;
2831         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2832                 /*
2833                  * If the slab is already in use, somebody can allocate and
2834                  * assign obj_cgroups in parallel. In this case the existing
2835                  * objcg vector should be reused.
2836                  */
2837                 kfree(vec);
2838                 return 0;
2839         }
2840
2841         kmemleak_not_leak(vec);
2842         return 0;
2843 }
2844
2845 /*
2846  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2847  *
2848  * A passed kernel object can be a slab object or a generic kernel page, so
2849  * different mechanisms for getting the memory cgroup pointer should be used.
2850  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2851  * can not know for sure how the kernel object is implemented.
2852  * mem_cgroup_from_obj() can be safely used in such cases.
2853  *
2854  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2855  * cgroup_mutex, etc.
2856  */
2857 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2858 {
2859         struct folio *folio;
2860
2861         if (mem_cgroup_disabled())
2862                 return NULL;
2863
2864         folio = virt_to_folio(p);
2865
2866         /*
2867          * Slab objects are accounted individually, not per-page.
2868          * Memcg membership data for each individual object is saved in
2869          * slab->memcg_data.
2870          */
2871         if (folio_test_slab(folio)) {
2872                 struct obj_cgroup **objcgs;
2873                 struct slab *slab;
2874                 unsigned int off;
2875
2876                 slab = folio_slab(folio);
2877                 objcgs = slab_objcgs(slab);
2878                 if (!objcgs)
2879                         return NULL;
2880
2881                 off = obj_to_index(slab->slab_cache, slab, p);
2882                 if (objcgs[off])
2883                         return obj_cgroup_memcg(objcgs[off]);
2884
2885                 return NULL;
2886         }
2887
2888         /*
2889          * page_memcg_check() is used here, because in theory we can encounter
2890          * a folio where the slab flag has been cleared already, but
2891          * slab->memcg_data has not been freed yet
2892          * page_memcg_check(page) will guarantee that a proper memory
2893          * cgroup pointer or NULL will be returned.
2894          */
2895         return page_memcg_check(folio_page(folio, 0));
2896 }
2897
2898 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2899 {
2900         struct obj_cgroup *objcg = NULL;
2901
2902         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2903                 objcg = rcu_dereference(memcg->objcg);
2904                 if (objcg && obj_cgroup_tryget(objcg))
2905                         break;
2906                 objcg = NULL;
2907         }
2908         return objcg;
2909 }
2910
2911 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2912 {
2913         struct obj_cgroup *objcg = NULL;
2914         struct mem_cgroup *memcg;
2915
2916         if (memcg_kmem_bypass())
2917                 return NULL;
2918
2919         rcu_read_lock();
2920         if (unlikely(active_memcg()))
2921                 memcg = active_memcg();
2922         else
2923                 memcg = mem_cgroup_from_task(current);
2924         objcg = __get_obj_cgroup_from_memcg(memcg);
2925         rcu_read_unlock();
2926         return objcg;
2927 }
2928
2929 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
2930 {
2931         struct obj_cgroup *objcg;
2932
2933         if (!memcg_kmem_enabled() || memcg_kmem_bypass())
2934                 return NULL;
2935
2936         if (PageMemcgKmem(page)) {
2937                 objcg = __folio_objcg(page_folio(page));
2938                 obj_cgroup_get(objcg);
2939         } else {
2940                 struct mem_cgroup *memcg;
2941
2942                 rcu_read_lock();
2943                 memcg = __folio_memcg(page_folio(page));
2944                 if (memcg)
2945                         objcg = __get_obj_cgroup_from_memcg(memcg);
2946                 else
2947                         objcg = NULL;
2948                 rcu_read_unlock();
2949         }
2950         return objcg;
2951 }
2952
2953 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2954 {
2955         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2956         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2957                 if (nr_pages > 0)
2958                         page_counter_charge(&memcg->kmem, nr_pages);
2959                 else
2960                         page_counter_uncharge(&memcg->kmem, -nr_pages);
2961         }
2962 }
2963
2964
2965 /*
2966  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2967  * @objcg: object cgroup to uncharge
2968  * @nr_pages: number of pages to uncharge
2969  */
2970 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2971                                       unsigned int nr_pages)
2972 {
2973         struct mem_cgroup *memcg;
2974
2975         memcg = get_mem_cgroup_from_objcg(objcg);
2976
2977         memcg_account_kmem(memcg, -nr_pages);
2978         refill_stock(memcg, nr_pages);
2979
2980         css_put(&memcg->css);
2981 }
2982
2983 /*
2984  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2985  * @objcg: object cgroup to charge
2986  * @gfp: reclaim mode
2987  * @nr_pages: number of pages to charge
2988  *
2989  * Returns 0 on success, an error code on failure.
2990  */
2991 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2992                                    unsigned int nr_pages)
2993 {
2994         struct mem_cgroup *memcg;
2995         int ret;
2996
2997         memcg = get_mem_cgroup_from_objcg(objcg);
2998
2999         ret = try_charge_memcg(memcg, gfp, nr_pages);
3000         if (ret)
3001                 goto out;
3002
3003         memcg_account_kmem(memcg, nr_pages);
3004 out:
3005         css_put(&memcg->css);
3006
3007         return ret;
3008 }
3009
3010 /**
3011  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3012  * @page: page to charge
3013  * @gfp: reclaim mode
3014  * @order: allocation order
3015  *
3016  * Returns 0 on success, an error code on failure.
3017  */
3018 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3019 {
3020         struct obj_cgroup *objcg;
3021         int ret = 0;
3022
3023         objcg = get_obj_cgroup_from_current();
3024         if (objcg) {
3025                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3026                 if (!ret) {
3027                         page->memcg_data = (unsigned long)objcg |
3028                                 MEMCG_DATA_KMEM;
3029                         return 0;
3030                 }
3031                 obj_cgroup_put(objcg);
3032         }
3033         return ret;
3034 }
3035
3036 /**
3037  * __memcg_kmem_uncharge_page: uncharge a kmem page
3038  * @page: page to uncharge
3039  * @order: allocation order
3040  */
3041 void __memcg_kmem_uncharge_page(struct page *page, int order)
3042 {
3043         struct folio *folio = page_folio(page);
3044         struct obj_cgroup *objcg;
3045         unsigned int nr_pages = 1 << order;
3046
3047         if (!folio_memcg_kmem(folio))
3048                 return;
3049
3050         objcg = __folio_objcg(folio);
3051         obj_cgroup_uncharge_pages(objcg, nr_pages);
3052         folio->memcg_data = 0;
3053         obj_cgroup_put(objcg);
3054 }
3055
3056 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3057                      enum node_stat_item idx, int nr)
3058 {
3059         struct memcg_stock_pcp *stock;
3060         struct obj_cgroup *old = NULL;
3061         unsigned long flags;
3062         int *bytes;
3063
3064         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3065         stock = this_cpu_ptr(&memcg_stock);
3066
3067         /*
3068          * Save vmstat data in stock and skip vmstat array update unless
3069          * accumulating over a page of vmstat data or when pgdat or idx
3070          * changes.
3071          */
3072         if (stock->cached_objcg != objcg) {
3073                 old = drain_obj_stock(stock);
3074                 obj_cgroup_get(objcg);
3075                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3076                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3077                 stock->cached_objcg = objcg;
3078                 stock->cached_pgdat = pgdat;
3079         } else if (stock->cached_pgdat != pgdat) {
3080                 /* Flush the existing cached vmstat data */
3081                 struct pglist_data *oldpg = stock->cached_pgdat;
3082
3083                 if (stock->nr_slab_reclaimable_b) {
3084                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3085                                           stock->nr_slab_reclaimable_b);
3086                         stock->nr_slab_reclaimable_b = 0;
3087                 }
3088                 if (stock->nr_slab_unreclaimable_b) {
3089                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3090                                           stock->nr_slab_unreclaimable_b);
3091                         stock->nr_slab_unreclaimable_b = 0;
3092                 }
3093                 stock->cached_pgdat = pgdat;
3094         }
3095
3096         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3097                                                : &stock->nr_slab_unreclaimable_b;
3098         /*
3099          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3100          * cached locally at least once before pushing it out.
3101          */
3102         if (!*bytes) {
3103                 *bytes = nr;
3104                 nr = 0;
3105         } else {
3106                 *bytes += nr;
3107                 if (abs(*bytes) > PAGE_SIZE) {
3108                         nr = *bytes;
3109                         *bytes = 0;
3110                 } else {
3111                         nr = 0;
3112                 }
3113         }
3114         if (nr)
3115                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3116
3117         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3118         if (old)
3119                 obj_cgroup_put(old);
3120 }
3121
3122 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3123 {
3124         struct memcg_stock_pcp *stock;
3125         unsigned long flags;
3126         bool ret = false;
3127
3128         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3129
3130         stock = this_cpu_ptr(&memcg_stock);
3131         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3132                 stock->nr_bytes -= nr_bytes;
3133                 ret = true;
3134         }
3135
3136         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3137
3138         return ret;
3139 }
3140
3141 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3142 {
3143         struct obj_cgroup *old = stock->cached_objcg;
3144
3145         if (!old)
3146                 return NULL;
3147
3148         if (stock->nr_bytes) {
3149                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3150                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3151
3152                 if (nr_pages) {
3153                         struct mem_cgroup *memcg;
3154
3155                         memcg = get_mem_cgroup_from_objcg(old);
3156
3157                         memcg_account_kmem(memcg, -nr_pages);
3158                         __refill_stock(memcg, nr_pages);
3159
3160                         css_put(&memcg->css);
3161                 }
3162
3163                 /*
3164                  * The leftover is flushed to the centralized per-memcg value.
3165                  * On the next attempt to refill obj stock it will be moved
3166                  * to a per-cpu stock (probably, on an other CPU), see
3167                  * refill_obj_stock().
3168                  *
3169                  * How often it's flushed is a trade-off between the memory
3170                  * limit enforcement accuracy and potential CPU contention,
3171                  * so it might be changed in the future.
3172                  */
3173                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3174                 stock->nr_bytes = 0;
3175         }
3176
3177         /*
3178          * Flush the vmstat data in current stock
3179          */
3180         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3181                 if (stock->nr_slab_reclaimable_b) {
3182                         mod_objcg_mlstate(old, stock->cached_pgdat,
3183                                           NR_SLAB_RECLAIMABLE_B,
3184                                           stock->nr_slab_reclaimable_b);
3185                         stock->nr_slab_reclaimable_b = 0;
3186                 }
3187                 if (stock->nr_slab_unreclaimable_b) {
3188                         mod_objcg_mlstate(old, stock->cached_pgdat,
3189                                           NR_SLAB_UNRECLAIMABLE_B,
3190                                           stock->nr_slab_unreclaimable_b);
3191                         stock->nr_slab_unreclaimable_b = 0;
3192                 }
3193                 stock->cached_pgdat = NULL;
3194         }
3195
3196         stock->cached_objcg = NULL;
3197         /*
3198          * The `old' objects needs to be released by the caller via
3199          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3200          */
3201         return old;
3202 }
3203
3204 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3205                                      struct mem_cgroup *root_memcg)
3206 {
3207         struct mem_cgroup *memcg;
3208
3209         if (stock->cached_objcg) {
3210                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3211                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3212                         return true;
3213         }
3214
3215         return false;
3216 }
3217
3218 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3219                              bool allow_uncharge)
3220 {
3221         struct memcg_stock_pcp *stock;
3222         struct obj_cgroup *old = NULL;
3223         unsigned long flags;
3224         unsigned int nr_pages = 0;
3225
3226         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3227
3228         stock = this_cpu_ptr(&memcg_stock);
3229         if (stock->cached_objcg != objcg) { /* reset if necessary */
3230                 old = drain_obj_stock(stock);
3231                 obj_cgroup_get(objcg);
3232                 stock->cached_objcg = objcg;
3233                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3234                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3235                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3236         }
3237         stock->nr_bytes += nr_bytes;
3238
3239         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3240                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3241                 stock->nr_bytes &= (PAGE_SIZE - 1);
3242         }
3243
3244         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3245         if (old)
3246                 obj_cgroup_put(old);
3247
3248         if (nr_pages)
3249                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3250 }
3251
3252 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3253 {
3254         unsigned int nr_pages, nr_bytes;
3255         int ret;
3256
3257         if (consume_obj_stock(objcg, size))
3258                 return 0;
3259
3260         /*
3261          * In theory, objcg->nr_charged_bytes can have enough
3262          * pre-charged bytes to satisfy the allocation. However,
3263          * flushing objcg->nr_charged_bytes requires two atomic
3264          * operations, and objcg->nr_charged_bytes can't be big.
3265          * The shared objcg->nr_charged_bytes can also become a
3266          * performance bottleneck if all tasks of the same memcg are
3267          * trying to update it. So it's better to ignore it and try
3268          * grab some new pages. The stock's nr_bytes will be flushed to
3269          * objcg->nr_charged_bytes later on when objcg changes.
3270          *
3271          * The stock's nr_bytes may contain enough pre-charged bytes
3272          * to allow one less page from being charged, but we can't rely
3273          * on the pre-charged bytes not being changed outside of
3274          * consume_obj_stock() or refill_obj_stock(). So ignore those
3275          * pre-charged bytes as well when charging pages. To avoid a
3276          * page uncharge right after a page charge, we set the
3277          * allow_uncharge flag to false when calling refill_obj_stock()
3278          * to temporarily allow the pre-charged bytes to exceed the page
3279          * size limit. The maximum reachable value of the pre-charged
3280          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3281          * race.
3282          */
3283         nr_pages = size >> PAGE_SHIFT;
3284         nr_bytes = size & (PAGE_SIZE - 1);
3285
3286         if (nr_bytes)
3287                 nr_pages += 1;
3288
3289         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3290         if (!ret && nr_bytes)
3291                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3292
3293         return ret;
3294 }
3295
3296 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3297 {
3298         refill_obj_stock(objcg, size, true);
3299 }
3300
3301 #endif /* CONFIG_MEMCG_KMEM */
3302
3303 /*
3304  * Because page_memcg(head) is not set on tails, set it now.
3305  */
3306 void split_page_memcg(struct page *head, unsigned int nr)
3307 {
3308         struct folio *folio = page_folio(head);
3309         struct mem_cgroup *memcg = folio_memcg(folio);
3310         int i;
3311
3312         if (mem_cgroup_disabled() || !memcg)
3313                 return;
3314
3315         for (i = 1; i < nr; i++)
3316                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3317
3318         if (folio_memcg_kmem(folio))
3319                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3320         else
3321                 css_get_many(&memcg->css, nr - 1);
3322 }
3323
3324 #ifdef CONFIG_MEMCG_SWAP
3325 /**
3326  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3327  * @entry: swap entry to be moved
3328  * @from:  mem_cgroup which the entry is moved from
3329  * @to:  mem_cgroup which the entry is moved to
3330  *
3331  * It succeeds only when the swap_cgroup's record for this entry is the same
3332  * as the mem_cgroup's id of @from.
3333  *
3334  * Returns 0 on success, -EINVAL on failure.
3335  *
3336  * The caller must have charged to @to, IOW, called page_counter_charge() about
3337  * both res and memsw, and called css_get().
3338  */
3339 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3340                                 struct mem_cgroup *from, struct mem_cgroup *to)
3341 {
3342         unsigned short old_id, new_id;
3343
3344         old_id = mem_cgroup_id(from);
3345         new_id = mem_cgroup_id(to);
3346
3347         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3348                 mod_memcg_state(from, MEMCG_SWAP, -1);
3349                 mod_memcg_state(to, MEMCG_SWAP, 1);
3350                 return 0;
3351         }
3352         return -EINVAL;
3353 }
3354 #else
3355 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3356                                 struct mem_cgroup *from, struct mem_cgroup *to)
3357 {
3358         return -EINVAL;
3359 }
3360 #endif
3361
3362 static DEFINE_MUTEX(memcg_max_mutex);
3363
3364 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3365                                  unsigned long max, bool memsw)
3366 {
3367         bool enlarge = false;
3368         bool drained = false;
3369         int ret;
3370         bool limits_invariant;
3371         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3372
3373         do {
3374                 if (signal_pending(current)) {
3375                         ret = -EINTR;
3376                         break;
3377                 }
3378
3379                 mutex_lock(&memcg_max_mutex);
3380                 /*
3381                  * Make sure that the new limit (memsw or memory limit) doesn't
3382                  * break our basic invariant rule memory.max <= memsw.max.
3383                  */
3384                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3385                                            max <= memcg->memsw.max;
3386                 if (!limits_invariant) {
3387                         mutex_unlock(&memcg_max_mutex);
3388                         ret = -EINVAL;
3389                         break;
3390                 }
3391                 if (max > counter->max)
3392                         enlarge = true;
3393                 ret = page_counter_set_max(counter, max);
3394                 mutex_unlock(&memcg_max_mutex);
3395
3396                 if (!ret)
3397                         break;
3398
3399                 if (!drained) {
3400                         drain_all_stock(memcg);
3401                         drained = true;
3402                         continue;
3403                 }
3404
3405                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3406                                         GFP_KERNEL, !memsw)) {
3407                         ret = -EBUSY;
3408                         break;
3409                 }
3410         } while (true);
3411
3412         if (!ret && enlarge)
3413                 memcg_oom_recover(memcg);
3414
3415         return ret;
3416 }
3417
3418 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3419                                             gfp_t gfp_mask,
3420                                             unsigned long *total_scanned)
3421 {
3422         unsigned long nr_reclaimed = 0;
3423         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3424         unsigned long reclaimed;
3425         int loop = 0;
3426         struct mem_cgroup_tree_per_node *mctz;
3427         unsigned long excess;
3428
3429         if (order > 0)
3430                 return 0;
3431
3432         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3433
3434         /*
3435          * Do not even bother to check the largest node if the root
3436          * is empty. Do it lockless to prevent lock bouncing. Races
3437          * are acceptable as soft limit is best effort anyway.
3438          */
3439         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3440                 return 0;
3441
3442         /*
3443          * This loop can run a while, specially if mem_cgroup's continuously
3444          * keep exceeding their soft limit and putting the system under
3445          * pressure
3446          */
3447         do {
3448                 if (next_mz)
3449                         mz = next_mz;
3450                 else
3451                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3452                 if (!mz)
3453                         break;
3454
3455                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3456                                                     gfp_mask, total_scanned);
3457                 nr_reclaimed += reclaimed;
3458                 spin_lock_irq(&mctz->lock);
3459
3460                 /*
3461                  * If we failed to reclaim anything from this memory cgroup
3462                  * it is time to move on to the next cgroup
3463                  */
3464                 next_mz = NULL;
3465                 if (!reclaimed)
3466                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3467
3468                 excess = soft_limit_excess(mz->memcg);
3469                 /*
3470                  * One school of thought says that we should not add
3471                  * back the node to the tree if reclaim returns 0.
3472                  * But our reclaim could return 0, simply because due
3473                  * to priority we are exposing a smaller subset of
3474                  * memory to reclaim from. Consider this as a longer
3475                  * term TODO.
3476                  */
3477                 /* If excess == 0, no tree ops */
3478                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3479                 spin_unlock_irq(&mctz->lock);
3480                 css_put(&mz->memcg->css);
3481                 loop++;
3482                 /*
3483                  * Could not reclaim anything and there are no more
3484                  * mem cgroups to try or we seem to be looping without
3485                  * reclaiming anything.
3486                  */
3487                 if (!nr_reclaimed &&
3488                         (next_mz == NULL ||
3489                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3490                         break;
3491         } while (!nr_reclaimed);
3492         if (next_mz)
3493                 css_put(&next_mz->memcg->css);
3494         return nr_reclaimed;
3495 }
3496
3497 /*
3498  * Reclaims as many pages from the given memcg as possible.
3499  *
3500  * Caller is responsible for holding css reference for memcg.
3501  */
3502 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3503 {
3504         int nr_retries = MAX_RECLAIM_RETRIES;
3505
3506         /* we call try-to-free pages for make this cgroup empty */
3507         lru_add_drain_all();
3508
3509         drain_all_stock(memcg);
3510
3511         /* try to free all pages in this cgroup */
3512         while (nr_retries && page_counter_read(&memcg->memory)) {
3513                 if (signal_pending(current))
3514                         return -EINTR;
3515
3516                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3517                         nr_retries--;
3518         }
3519
3520         return 0;
3521 }
3522
3523 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3524                                             char *buf, size_t nbytes,
3525                                             loff_t off)
3526 {
3527         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3528
3529         if (mem_cgroup_is_root(memcg))
3530                 return -EINVAL;
3531         return mem_cgroup_force_empty(memcg) ?: nbytes;
3532 }
3533
3534 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3535                                      struct cftype *cft)
3536 {
3537         return 1;
3538 }
3539
3540 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3541                                       struct cftype *cft, u64 val)
3542 {
3543         if (val == 1)
3544                 return 0;
3545
3546         pr_warn_once("Non-hierarchical mode is deprecated. "
3547                      "Please report your usecase to linux-mm@kvack.org if you "
3548                      "depend on this functionality.\n");
3549
3550         return -EINVAL;
3551 }
3552
3553 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3554 {
3555         unsigned long val;
3556
3557         if (mem_cgroup_is_root(memcg)) {
3558                 mem_cgroup_flush_stats();
3559                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3560                         memcg_page_state(memcg, NR_ANON_MAPPED);
3561                 if (swap)
3562                         val += memcg_page_state(memcg, MEMCG_SWAP);
3563         } else {
3564                 if (!swap)
3565                         val = page_counter_read(&memcg->memory);
3566                 else
3567                         val = page_counter_read(&memcg->memsw);
3568         }
3569         return val;
3570 }
3571
3572 enum {
3573         RES_USAGE,
3574         RES_LIMIT,
3575         RES_MAX_USAGE,
3576         RES_FAILCNT,
3577         RES_SOFT_LIMIT,
3578 };
3579
3580 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3581                                struct cftype *cft)
3582 {
3583         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584         struct page_counter *counter;
3585
3586         switch (MEMFILE_TYPE(cft->private)) {
3587         case _MEM:
3588                 counter = &memcg->memory;
3589                 break;
3590         case _MEMSWAP:
3591                 counter = &memcg->memsw;
3592                 break;
3593         case _KMEM:
3594                 counter = &memcg->kmem;
3595                 break;
3596         case _TCP:
3597                 counter = &memcg->tcpmem;
3598                 break;
3599         default:
3600                 BUG();
3601         }
3602
3603         switch (MEMFILE_ATTR(cft->private)) {
3604         case RES_USAGE:
3605                 if (counter == &memcg->memory)
3606                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3607                 if (counter == &memcg->memsw)
3608                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3609                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3610         case RES_LIMIT:
3611                 return (u64)counter->max * PAGE_SIZE;
3612         case RES_MAX_USAGE:
3613                 return (u64)counter->watermark * PAGE_SIZE;
3614         case RES_FAILCNT:
3615                 return counter->failcnt;
3616         case RES_SOFT_LIMIT:
3617                 return (u64)memcg->soft_limit * PAGE_SIZE;
3618         default:
3619                 BUG();
3620         }
3621 }
3622
3623 #ifdef CONFIG_MEMCG_KMEM
3624 static int memcg_online_kmem(struct mem_cgroup *memcg)
3625 {
3626         struct obj_cgroup *objcg;
3627
3628         if (cgroup_memory_nokmem)
3629                 return 0;
3630
3631         if (unlikely(mem_cgroup_is_root(memcg)))
3632                 return 0;
3633
3634         objcg = obj_cgroup_alloc();
3635         if (!objcg)
3636                 return -ENOMEM;
3637
3638         objcg->memcg = memcg;
3639         rcu_assign_pointer(memcg->objcg, objcg);
3640
3641         static_branch_enable(&memcg_kmem_enabled_key);
3642
3643         memcg->kmemcg_id = memcg->id.id;
3644
3645         return 0;
3646 }
3647
3648 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3649 {
3650         struct mem_cgroup *parent;
3651
3652         if (cgroup_memory_nokmem)
3653                 return;
3654
3655         if (unlikely(mem_cgroup_is_root(memcg)))
3656                 return;
3657
3658         parent = parent_mem_cgroup(memcg);
3659         if (!parent)
3660                 parent = root_mem_cgroup;
3661
3662         memcg_reparent_objcgs(memcg, parent);
3663
3664         /*
3665          * After we have finished memcg_reparent_objcgs(), all list_lrus
3666          * corresponding to this cgroup are guaranteed to remain empty.
3667          * The ordering is imposed by list_lru_node->lock taken by
3668          * memcg_reparent_list_lrus().
3669          */
3670         memcg_reparent_list_lrus(memcg, parent);
3671 }
3672 #else
3673 static int memcg_online_kmem(struct mem_cgroup *memcg)
3674 {
3675         return 0;
3676 }
3677 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678 {
3679 }
3680 #endif /* CONFIG_MEMCG_KMEM */
3681
3682 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3683 {
3684         int ret;
3685
3686         mutex_lock(&memcg_max_mutex);
3687
3688         ret = page_counter_set_max(&memcg->tcpmem, max);
3689         if (ret)
3690                 goto out;
3691
3692         if (!memcg->tcpmem_active) {
3693                 /*
3694                  * The active flag needs to be written after the static_key
3695                  * update. This is what guarantees that the socket activation
3696                  * function is the last one to run. See mem_cgroup_sk_alloc()
3697                  * for details, and note that we don't mark any socket as
3698                  * belonging to this memcg until that flag is up.
3699                  *
3700                  * We need to do this, because static_keys will span multiple
3701                  * sites, but we can't control their order. If we mark a socket
3702                  * as accounted, but the accounting functions are not patched in
3703                  * yet, we'll lose accounting.
3704                  *
3705                  * We never race with the readers in mem_cgroup_sk_alloc(),
3706                  * because when this value change, the code to process it is not
3707                  * patched in yet.
3708                  */
3709                 static_branch_inc(&memcg_sockets_enabled_key);
3710                 memcg->tcpmem_active = true;
3711         }
3712 out:
3713         mutex_unlock(&memcg_max_mutex);
3714         return ret;
3715 }
3716
3717 /*
3718  * The user of this function is...
3719  * RES_LIMIT.
3720  */
3721 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3722                                 char *buf, size_t nbytes, loff_t off)
3723 {
3724         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3725         unsigned long nr_pages;
3726         int ret;
3727
3728         buf = strstrip(buf);
3729         ret = page_counter_memparse(buf, "-1", &nr_pages);
3730         if (ret)
3731                 return ret;
3732
3733         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3734         case RES_LIMIT:
3735                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3736                         ret = -EINVAL;
3737                         break;
3738                 }
3739                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3740                 case _MEM:
3741                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3742                         break;
3743                 case _MEMSWAP:
3744                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3745                         break;
3746                 case _KMEM:
3747                         /* kmem.limit_in_bytes is deprecated. */
3748                         ret = -EOPNOTSUPP;
3749                         break;
3750                 case _TCP:
3751                         ret = memcg_update_tcp_max(memcg, nr_pages);
3752                         break;
3753                 }
3754                 break;
3755         case RES_SOFT_LIMIT:
3756                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3757                         ret = -EOPNOTSUPP;
3758                 } else {
3759                         memcg->soft_limit = nr_pages;
3760                         ret = 0;
3761                 }
3762                 break;
3763         }
3764         return ret ?: nbytes;
3765 }
3766
3767 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3768                                 size_t nbytes, loff_t off)
3769 {
3770         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3771         struct page_counter *counter;
3772
3773         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3774         case _MEM:
3775                 counter = &memcg->memory;
3776                 break;
3777         case _MEMSWAP:
3778                 counter = &memcg->memsw;
3779                 break;
3780         case _KMEM:
3781                 counter = &memcg->kmem;
3782                 break;
3783         case _TCP:
3784                 counter = &memcg->tcpmem;
3785                 break;
3786         default:
3787                 BUG();
3788         }
3789
3790         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3791         case RES_MAX_USAGE:
3792                 page_counter_reset_watermark(counter);
3793                 break;
3794         case RES_FAILCNT:
3795                 counter->failcnt = 0;
3796                 break;
3797         default:
3798                 BUG();
3799         }
3800
3801         return nbytes;
3802 }
3803
3804 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3805                                         struct cftype *cft)
3806 {
3807         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3808 }
3809
3810 #ifdef CONFIG_MMU
3811 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3812                                         struct cftype *cft, u64 val)
3813 {
3814         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3815
3816         if (val & ~MOVE_MASK)
3817                 return -EINVAL;
3818
3819         /*
3820          * No kind of locking is needed in here, because ->can_attach() will
3821          * check this value once in the beginning of the process, and then carry
3822          * on with stale data. This means that changes to this value will only
3823          * affect task migrations starting after the change.
3824          */
3825         memcg->move_charge_at_immigrate = val;
3826         return 0;
3827 }
3828 #else
3829 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3830                                         struct cftype *cft, u64 val)
3831 {
3832         return -ENOSYS;
3833 }
3834 #endif
3835
3836 #ifdef CONFIG_NUMA
3837
3838 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3839 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3840 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3841
3842 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3843                                 int nid, unsigned int lru_mask, bool tree)
3844 {
3845         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3846         unsigned long nr = 0;
3847         enum lru_list lru;
3848
3849         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3850
3851         for_each_lru(lru) {
3852                 if (!(BIT(lru) & lru_mask))
3853                         continue;
3854                 if (tree)
3855                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3856                 else
3857                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3858         }
3859         return nr;
3860 }
3861
3862 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3863                                              unsigned int lru_mask,
3864                                              bool tree)
3865 {
3866         unsigned long nr = 0;
3867         enum lru_list lru;
3868
3869         for_each_lru(lru) {
3870                 if (!(BIT(lru) & lru_mask))
3871                         continue;
3872                 if (tree)
3873                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3874                 else
3875                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3876         }
3877         return nr;
3878 }
3879
3880 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3881 {
3882         struct numa_stat {
3883                 const char *name;
3884                 unsigned int lru_mask;
3885         };
3886
3887         static const struct numa_stat stats[] = {
3888                 { "total", LRU_ALL },
3889                 { "file", LRU_ALL_FILE },
3890                 { "anon", LRU_ALL_ANON },
3891                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3892         };
3893         const struct numa_stat *stat;
3894         int nid;
3895         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3896
3897         mem_cgroup_flush_stats();
3898
3899         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3900                 seq_printf(m, "%s=%lu", stat->name,
3901                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3902                                                    false));
3903                 for_each_node_state(nid, N_MEMORY)
3904                         seq_printf(m, " N%d=%lu", nid,
3905                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3906                                                         stat->lru_mask, false));
3907                 seq_putc(m, '\n');
3908         }
3909
3910         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3911
3912                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3913                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3914                                                    true));
3915                 for_each_node_state(nid, N_MEMORY)
3916                         seq_printf(m, " N%d=%lu", nid,
3917                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3918                                                         stat->lru_mask, true));
3919                 seq_putc(m, '\n');
3920         }
3921
3922         return 0;
3923 }
3924 #endif /* CONFIG_NUMA */
3925
3926 static const unsigned int memcg1_stats[] = {
3927         NR_FILE_PAGES,
3928         NR_ANON_MAPPED,
3929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3930         NR_ANON_THPS,
3931 #endif
3932         NR_SHMEM,
3933         NR_FILE_MAPPED,
3934         NR_FILE_DIRTY,
3935         NR_WRITEBACK,
3936         MEMCG_SWAP,
3937 };
3938
3939 static const char *const memcg1_stat_names[] = {
3940         "cache",
3941         "rss",
3942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3943         "rss_huge",
3944 #endif
3945         "shmem",
3946         "mapped_file",
3947         "dirty",
3948         "writeback",
3949         "swap",
3950 };
3951
3952 /* Universal VM events cgroup1 shows, original sort order */
3953 static const unsigned int memcg1_events[] = {
3954         PGPGIN,
3955         PGPGOUT,
3956         PGFAULT,
3957         PGMAJFAULT,
3958 };
3959
3960 static int memcg_stat_show(struct seq_file *m, void *v)
3961 {
3962         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3963         unsigned long memory, memsw;
3964         struct mem_cgroup *mi;
3965         unsigned int i;
3966
3967         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3968
3969         mem_cgroup_flush_stats();
3970
3971         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3972                 unsigned long nr;
3973
3974                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3975                         continue;
3976                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3977                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3978         }
3979
3980         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3981                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3982                            memcg_events_local(memcg, memcg1_events[i]));
3983
3984         for (i = 0; i < NR_LRU_LISTS; i++)
3985                 seq_printf(m, "%s %lu\n", lru_list_name(i),
3986                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3987                            PAGE_SIZE);
3988
3989         /* Hierarchical information */
3990         memory = memsw = PAGE_COUNTER_MAX;
3991         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3992                 memory = min(memory, READ_ONCE(mi->memory.max));
3993                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3994         }
3995         seq_printf(m, "hierarchical_memory_limit %llu\n",
3996                    (u64)memory * PAGE_SIZE);
3997         if (do_memsw_account())
3998                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3999                            (u64)memsw * PAGE_SIZE);
4000
4001         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4002                 unsigned long nr;
4003
4004                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4005                         continue;
4006                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4007                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4008                                                 (u64)nr * PAGE_SIZE);
4009         }
4010
4011         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4012                 seq_printf(m, "total_%s %llu\n",
4013                            vm_event_name(memcg1_events[i]),
4014                            (u64)memcg_events(memcg, memcg1_events[i]));
4015
4016         for (i = 0; i < NR_LRU_LISTS; i++)
4017                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4018                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4019                            PAGE_SIZE);
4020
4021 #ifdef CONFIG_DEBUG_VM
4022         {
4023                 pg_data_t *pgdat;
4024                 struct mem_cgroup_per_node *mz;
4025                 unsigned long anon_cost = 0;
4026                 unsigned long file_cost = 0;
4027
4028                 for_each_online_pgdat(pgdat) {
4029                         mz = memcg->nodeinfo[pgdat->node_id];
4030
4031                         anon_cost += mz->lruvec.anon_cost;
4032                         file_cost += mz->lruvec.file_cost;
4033                 }
4034                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4035                 seq_printf(m, "file_cost %lu\n", file_cost);
4036         }
4037 #endif
4038
4039         return 0;
4040 }
4041
4042 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4043                                       struct cftype *cft)
4044 {
4045         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4046
4047         return mem_cgroup_swappiness(memcg);
4048 }
4049
4050 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4051                                        struct cftype *cft, u64 val)
4052 {
4053         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4054
4055         if (val > 200)
4056                 return -EINVAL;
4057
4058         if (!mem_cgroup_is_root(memcg))
4059                 memcg->swappiness = val;
4060         else
4061                 vm_swappiness = val;
4062
4063         return 0;
4064 }
4065
4066 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4067 {
4068         struct mem_cgroup_threshold_ary *t;
4069         unsigned long usage;
4070         int i;
4071
4072         rcu_read_lock();
4073         if (!swap)
4074                 t = rcu_dereference(memcg->thresholds.primary);
4075         else
4076                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4077
4078         if (!t)
4079                 goto unlock;
4080
4081         usage = mem_cgroup_usage(memcg, swap);
4082
4083         /*
4084          * current_threshold points to threshold just below or equal to usage.
4085          * If it's not true, a threshold was crossed after last
4086          * call of __mem_cgroup_threshold().
4087          */
4088         i = t->current_threshold;
4089
4090         /*
4091          * Iterate backward over array of thresholds starting from
4092          * current_threshold and check if a threshold is crossed.
4093          * If none of thresholds below usage is crossed, we read
4094          * only one element of the array here.
4095          */
4096         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4097                 eventfd_signal(t->entries[i].eventfd, 1);
4098
4099         /* i = current_threshold + 1 */
4100         i++;
4101
4102         /*
4103          * Iterate forward over array of thresholds starting from
4104          * current_threshold+1 and check if a threshold is crossed.
4105          * If none of thresholds above usage is crossed, we read
4106          * only one element of the array here.
4107          */
4108         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4109                 eventfd_signal(t->entries[i].eventfd, 1);
4110
4111         /* Update current_threshold */
4112         t->current_threshold = i - 1;
4113 unlock:
4114         rcu_read_unlock();
4115 }
4116
4117 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4118 {
4119         while (memcg) {
4120                 __mem_cgroup_threshold(memcg, false);
4121                 if (do_memsw_account())
4122                         __mem_cgroup_threshold(memcg, true);
4123
4124                 memcg = parent_mem_cgroup(memcg);
4125         }
4126 }
4127
4128 static int compare_thresholds(const void *a, const void *b)
4129 {
4130         const struct mem_cgroup_threshold *_a = a;
4131         const struct mem_cgroup_threshold *_b = b;
4132
4133         if (_a->threshold > _b->threshold)
4134                 return 1;
4135
4136         if (_a->threshold < _b->threshold)
4137                 return -1;
4138
4139         return 0;
4140 }
4141
4142 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4143 {
4144         struct mem_cgroup_eventfd_list *ev;
4145
4146         spin_lock(&memcg_oom_lock);
4147
4148         list_for_each_entry(ev, &memcg->oom_notify, list)
4149                 eventfd_signal(ev->eventfd, 1);
4150
4151         spin_unlock(&memcg_oom_lock);
4152         return 0;
4153 }
4154
4155 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4156 {
4157         struct mem_cgroup *iter;
4158
4159         for_each_mem_cgroup_tree(iter, memcg)
4160                 mem_cgroup_oom_notify_cb(iter);
4161 }
4162
4163 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4164         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4165 {
4166         struct mem_cgroup_thresholds *thresholds;
4167         struct mem_cgroup_threshold_ary *new;
4168         unsigned long threshold;
4169         unsigned long usage;
4170         int i, size, ret;
4171
4172         ret = page_counter_memparse(args, "-1", &threshold);
4173         if (ret)
4174                 return ret;
4175
4176         mutex_lock(&memcg->thresholds_lock);
4177
4178         if (type == _MEM) {
4179                 thresholds = &memcg->thresholds;
4180                 usage = mem_cgroup_usage(memcg, false);
4181         } else if (type == _MEMSWAP) {
4182                 thresholds = &memcg->memsw_thresholds;
4183                 usage = mem_cgroup_usage(memcg, true);
4184         } else
4185                 BUG();
4186
4187         /* Check if a threshold crossed before adding a new one */
4188         if (thresholds->primary)
4189                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4190
4191         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4192
4193         /* Allocate memory for new array of thresholds */
4194         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4195         if (!new) {
4196                 ret = -ENOMEM;
4197                 goto unlock;
4198         }
4199         new->size = size;
4200
4201         /* Copy thresholds (if any) to new array */
4202         if (thresholds->primary)
4203                 memcpy(new->entries, thresholds->primary->entries,
4204                        flex_array_size(new, entries, size - 1));
4205
4206         /* Add new threshold */
4207         new->entries[size - 1].eventfd = eventfd;
4208         new->entries[size - 1].threshold = threshold;
4209
4210         /* Sort thresholds. Registering of new threshold isn't time-critical */
4211         sort(new->entries, size, sizeof(*new->entries),
4212                         compare_thresholds, NULL);
4213
4214         /* Find current threshold */
4215         new->current_threshold = -1;
4216         for (i = 0; i < size; i++) {
4217                 if (new->entries[i].threshold <= usage) {
4218                         /*
4219                          * new->current_threshold will not be used until
4220                          * rcu_assign_pointer(), so it's safe to increment
4221                          * it here.
4222                          */
4223                         ++new->current_threshold;
4224                 } else
4225                         break;
4226         }
4227
4228         /* Free old spare buffer and save old primary buffer as spare */
4229         kfree(thresholds->spare);
4230         thresholds->spare = thresholds->primary;
4231
4232         rcu_assign_pointer(thresholds->primary, new);
4233
4234         /* To be sure that nobody uses thresholds */
4235         synchronize_rcu();
4236
4237 unlock:
4238         mutex_unlock(&memcg->thresholds_lock);
4239
4240         return ret;
4241 }
4242
4243 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4244         struct eventfd_ctx *eventfd, const char *args)
4245 {
4246         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4247 }
4248
4249 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4250         struct eventfd_ctx *eventfd, const char *args)
4251 {
4252         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4253 }
4254
4255 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4256         struct eventfd_ctx *eventfd, enum res_type type)
4257 {
4258         struct mem_cgroup_thresholds *thresholds;
4259         struct mem_cgroup_threshold_ary *new;
4260         unsigned long usage;
4261         int i, j, size, entries;
4262
4263         mutex_lock(&memcg->thresholds_lock);
4264
4265         if (type == _MEM) {
4266                 thresholds = &memcg->thresholds;
4267                 usage = mem_cgroup_usage(memcg, false);
4268         } else if (type == _MEMSWAP) {
4269                 thresholds = &memcg->memsw_thresholds;
4270                 usage = mem_cgroup_usage(memcg, true);
4271         } else
4272                 BUG();
4273
4274         if (!thresholds->primary)
4275                 goto unlock;
4276
4277         /* Check if a threshold crossed before removing */
4278         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4279
4280         /* Calculate new number of threshold */
4281         size = entries = 0;
4282         for (i = 0; i < thresholds->primary->size; i++) {
4283                 if (thresholds->primary->entries[i].eventfd != eventfd)
4284                         size++;
4285                 else
4286                         entries++;
4287         }
4288
4289         new = thresholds->spare;
4290
4291         /* If no items related to eventfd have been cleared, nothing to do */
4292         if (!entries)
4293                 goto unlock;
4294
4295         /* Set thresholds array to NULL if we don't have thresholds */
4296         if (!size) {
4297                 kfree(new);
4298                 new = NULL;
4299                 goto swap_buffers;
4300         }
4301
4302         new->size = size;
4303
4304         /* Copy thresholds and find current threshold */
4305         new->current_threshold = -1;
4306         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4307                 if (thresholds->primary->entries[i].eventfd == eventfd)
4308                         continue;
4309
4310                 new->entries[j] = thresholds->primary->entries[i];
4311                 if (new->entries[j].threshold <= usage) {
4312                         /*
4313                          * new->current_threshold will not be used
4314                          * until rcu_assign_pointer(), so it's safe to increment
4315                          * it here.
4316                          */
4317                         ++new->current_threshold;
4318                 }
4319                 j++;
4320         }
4321
4322 swap_buffers:
4323         /* Swap primary and spare array */
4324         thresholds->spare = thresholds->primary;
4325
4326         rcu_assign_pointer(thresholds->primary, new);
4327
4328         /* To be sure that nobody uses thresholds */
4329         synchronize_rcu();
4330
4331         /* If all events are unregistered, free the spare array */
4332         if (!new) {
4333                 kfree(thresholds->spare);
4334                 thresholds->spare = NULL;
4335         }
4336 unlock:
4337         mutex_unlock(&memcg->thresholds_lock);
4338 }
4339
4340 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4341         struct eventfd_ctx *eventfd)
4342 {
4343         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4344 }
4345
4346 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4347         struct eventfd_ctx *eventfd)
4348 {
4349         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4350 }
4351
4352 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4353         struct eventfd_ctx *eventfd, const char *args)
4354 {
4355         struct mem_cgroup_eventfd_list *event;
4356
4357         event = kmalloc(sizeof(*event), GFP_KERNEL);
4358         if (!event)
4359                 return -ENOMEM;
4360
4361         spin_lock(&memcg_oom_lock);
4362
4363         event->eventfd = eventfd;
4364         list_add(&event->list, &memcg->oom_notify);
4365
4366         /* already in OOM ? */
4367         if (memcg->under_oom)
4368                 eventfd_signal(eventfd, 1);
4369         spin_unlock(&memcg_oom_lock);
4370
4371         return 0;
4372 }
4373
4374 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4375         struct eventfd_ctx *eventfd)
4376 {
4377         struct mem_cgroup_eventfd_list *ev, *tmp;
4378
4379         spin_lock(&memcg_oom_lock);
4380
4381         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4382                 if (ev->eventfd == eventfd) {
4383                         list_del(&ev->list);
4384                         kfree(ev);
4385                 }
4386         }
4387
4388         spin_unlock(&memcg_oom_lock);
4389 }
4390
4391 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4392 {
4393         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4394
4395         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4396         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4397         seq_printf(sf, "oom_kill %lu\n",
4398                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4399         return 0;
4400 }
4401
4402 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4403         struct cftype *cft, u64 val)
4404 {
4405         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4406
4407         /* cannot set to root cgroup and only 0 and 1 are allowed */
4408         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4409                 return -EINVAL;
4410
4411         memcg->oom_kill_disable = val;
4412         if (!val)
4413                 memcg_oom_recover(memcg);
4414
4415         return 0;
4416 }
4417
4418 #ifdef CONFIG_CGROUP_WRITEBACK
4419
4420 #include <trace/events/writeback.h>
4421
4422 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4423 {
4424         return wb_domain_init(&memcg->cgwb_domain, gfp);
4425 }
4426
4427 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4428 {
4429         wb_domain_exit(&memcg->cgwb_domain);
4430 }
4431
4432 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4433 {
4434         wb_domain_size_changed(&memcg->cgwb_domain);
4435 }
4436
4437 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4438 {
4439         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4440
4441         if (!memcg->css.parent)
4442                 return NULL;
4443
4444         return &memcg->cgwb_domain;
4445 }
4446
4447 /**
4448  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4449  * @wb: bdi_writeback in question
4450  * @pfilepages: out parameter for number of file pages
4451  * @pheadroom: out parameter for number of allocatable pages according to memcg
4452  * @pdirty: out parameter for number of dirty pages
4453  * @pwriteback: out parameter for number of pages under writeback
4454  *
4455  * Determine the numbers of file, headroom, dirty, and writeback pages in
4456  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4457  * is a bit more involved.
4458  *
4459  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4460  * headroom is calculated as the lowest headroom of itself and the
4461  * ancestors.  Note that this doesn't consider the actual amount of
4462  * available memory in the system.  The caller should further cap
4463  * *@pheadroom accordingly.
4464  */
4465 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4466                          unsigned long *pheadroom, unsigned long *pdirty,
4467                          unsigned long *pwriteback)
4468 {
4469         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4470         struct mem_cgroup *parent;
4471
4472         mem_cgroup_flush_stats();
4473
4474         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4475         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4476         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4477                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4478
4479         *pheadroom = PAGE_COUNTER_MAX;
4480         while ((parent = parent_mem_cgroup(memcg))) {
4481                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4482                                             READ_ONCE(memcg->memory.high));
4483                 unsigned long used = page_counter_read(&memcg->memory);
4484
4485                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4486                 memcg = parent;
4487         }
4488 }
4489
4490 /*
4491  * Foreign dirty flushing
4492  *
4493  * There's an inherent mismatch between memcg and writeback.  The former
4494  * tracks ownership per-page while the latter per-inode.  This was a
4495  * deliberate design decision because honoring per-page ownership in the
4496  * writeback path is complicated, may lead to higher CPU and IO overheads
4497  * and deemed unnecessary given that write-sharing an inode across
4498  * different cgroups isn't a common use-case.
4499  *
4500  * Combined with inode majority-writer ownership switching, this works well
4501  * enough in most cases but there are some pathological cases.  For
4502  * example, let's say there are two cgroups A and B which keep writing to
4503  * different but confined parts of the same inode.  B owns the inode and
4504  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4505  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4506  * triggering background writeback.  A will be slowed down without a way to
4507  * make writeback of the dirty pages happen.
4508  *
4509  * Conditions like the above can lead to a cgroup getting repeatedly and
4510  * severely throttled after making some progress after each
4511  * dirty_expire_interval while the underlying IO device is almost
4512  * completely idle.
4513  *
4514  * Solving this problem completely requires matching the ownership tracking
4515  * granularities between memcg and writeback in either direction.  However,
4516  * the more egregious behaviors can be avoided by simply remembering the
4517  * most recent foreign dirtying events and initiating remote flushes on
4518  * them when local writeback isn't enough to keep the memory clean enough.
4519  *
4520  * The following two functions implement such mechanism.  When a foreign
4521  * page - a page whose memcg and writeback ownerships don't match - is
4522  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4523  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4524  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4525  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4526  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4527  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4528  * limited to MEMCG_CGWB_FRN_CNT.
4529  *
4530  * The mechanism only remembers IDs and doesn't hold any object references.
4531  * As being wrong occasionally doesn't matter, updates and accesses to the
4532  * records are lockless and racy.
4533  */
4534 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4535                                              struct bdi_writeback *wb)
4536 {
4537         struct mem_cgroup *memcg = folio_memcg(folio);
4538         struct memcg_cgwb_frn *frn;
4539         u64 now = get_jiffies_64();
4540         u64 oldest_at = now;
4541         int oldest = -1;
4542         int i;
4543
4544         trace_track_foreign_dirty(folio, wb);
4545
4546         /*
4547          * Pick the slot to use.  If there is already a slot for @wb, keep
4548          * using it.  If not replace the oldest one which isn't being
4549          * written out.
4550          */
4551         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4552                 frn = &memcg->cgwb_frn[i];
4553                 if (frn->bdi_id == wb->bdi->id &&
4554                     frn->memcg_id == wb->memcg_css->id)
4555                         break;
4556                 if (time_before64(frn->at, oldest_at) &&
4557                     atomic_read(&frn->done.cnt) == 1) {
4558                         oldest = i;
4559                         oldest_at = frn->at;
4560                 }
4561         }
4562
4563         if (i < MEMCG_CGWB_FRN_CNT) {
4564                 /*
4565                  * Re-using an existing one.  Update timestamp lazily to
4566                  * avoid making the cacheline hot.  We want them to be
4567                  * reasonably up-to-date and significantly shorter than
4568                  * dirty_expire_interval as that's what expires the record.
4569                  * Use the shorter of 1s and dirty_expire_interval / 8.
4570                  */
4571                 unsigned long update_intv =
4572                         min_t(unsigned long, HZ,
4573                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4574
4575                 if (time_before64(frn->at, now - update_intv))
4576                         frn->at = now;
4577         } else if (oldest >= 0) {
4578                 /* replace the oldest free one */
4579                 frn = &memcg->cgwb_frn[oldest];
4580                 frn->bdi_id = wb->bdi->id;
4581                 frn->memcg_id = wb->memcg_css->id;
4582                 frn->at = now;
4583         }
4584 }
4585
4586 /* issue foreign writeback flushes for recorded foreign dirtying events */
4587 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4588 {
4589         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4590         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4591         u64 now = jiffies_64;
4592         int i;
4593
4594         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4595                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4596
4597                 /*
4598                  * If the record is older than dirty_expire_interval,
4599                  * writeback on it has already started.  No need to kick it
4600                  * off again.  Also, don't start a new one if there's
4601                  * already one in flight.
4602                  */
4603                 if (time_after64(frn->at, now - intv) &&
4604                     atomic_read(&frn->done.cnt) == 1) {
4605                         frn->at = 0;
4606                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4607                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4608                                                WB_REASON_FOREIGN_FLUSH,
4609                                                &frn->done);
4610                 }
4611         }
4612 }
4613
4614 #else   /* CONFIG_CGROUP_WRITEBACK */
4615
4616 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4617 {
4618         return 0;
4619 }
4620
4621 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4622 {
4623 }
4624
4625 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4626 {
4627 }
4628
4629 #endif  /* CONFIG_CGROUP_WRITEBACK */
4630
4631 /*
4632  * DO NOT USE IN NEW FILES.
4633  *
4634  * "cgroup.event_control" implementation.
4635  *
4636  * This is way over-engineered.  It tries to support fully configurable
4637  * events for each user.  Such level of flexibility is completely
4638  * unnecessary especially in the light of the planned unified hierarchy.
4639  *
4640  * Please deprecate this and replace with something simpler if at all
4641  * possible.
4642  */
4643
4644 /*
4645  * Unregister event and free resources.
4646  *
4647  * Gets called from workqueue.
4648  */
4649 static void memcg_event_remove(struct work_struct *work)
4650 {
4651         struct mem_cgroup_event *event =
4652                 container_of(work, struct mem_cgroup_event, remove);
4653         struct mem_cgroup *memcg = event->memcg;
4654
4655         remove_wait_queue(event->wqh, &event->wait);
4656
4657         event->unregister_event(memcg, event->eventfd);
4658
4659         /* Notify userspace the event is going away. */
4660         eventfd_signal(event->eventfd, 1);
4661
4662         eventfd_ctx_put(event->eventfd);
4663         kfree(event);
4664         css_put(&memcg->css);
4665 }
4666
4667 /*
4668  * Gets called on EPOLLHUP on eventfd when user closes it.
4669  *
4670  * Called with wqh->lock held and interrupts disabled.
4671  */
4672 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4673                             int sync, void *key)
4674 {
4675         struct mem_cgroup_event *event =
4676                 container_of(wait, struct mem_cgroup_event, wait);
4677         struct mem_cgroup *memcg = event->memcg;
4678         __poll_t flags = key_to_poll(key);
4679
4680         if (flags & EPOLLHUP) {
4681                 /*
4682                  * If the event has been detached at cgroup removal, we
4683                  * can simply return knowing the other side will cleanup
4684                  * for us.
4685                  *
4686                  * We can't race against event freeing since the other
4687                  * side will require wqh->lock via remove_wait_queue(),
4688                  * which we hold.
4689                  */
4690                 spin_lock(&memcg->event_list_lock);
4691                 if (!list_empty(&event->list)) {
4692                         list_del_init(&event->list);
4693                         /*
4694                          * We are in atomic context, but cgroup_event_remove()
4695                          * may sleep, so we have to call it in workqueue.
4696                          */
4697                         schedule_work(&event->remove);
4698                 }
4699                 spin_unlock(&memcg->event_list_lock);
4700         }
4701
4702         return 0;
4703 }
4704
4705 static void memcg_event_ptable_queue_proc(struct file *file,
4706                 wait_queue_head_t *wqh, poll_table *pt)
4707 {
4708         struct mem_cgroup_event *event =
4709                 container_of(pt, struct mem_cgroup_event, pt);
4710
4711         event->wqh = wqh;
4712         add_wait_queue(wqh, &event->wait);
4713 }
4714
4715 /*
4716  * DO NOT USE IN NEW FILES.
4717  *
4718  * Parse input and register new cgroup event handler.
4719  *
4720  * Input must be in format '<event_fd> <control_fd> <args>'.
4721  * Interpretation of args is defined by control file implementation.
4722  */
4723 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4724                                          char *buf, size_t nbytes, loff_t off)
4725 {
4726         struct cgroup_subsys_state *css = of_css(of);
4727         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4728         struct mem_cgroup_event *event;
4729         struct cgroup_subsys_state *cfile_css;
4730         unsigned int efd, cfd;
4731         struct fd efile;
4732         struct fd cfile;
4733         const char *name;
4734         char *endp;
4735         int ret;
4736
4737         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4738                 return -EOPNOTSUPP;
4739
4740         buf = strstrip(buf);
4741
4742         efd = simple_strtoul(buf, &endp, 10);
4743         if (*endp != ' ')
4744                 return -EINVAL;
4745         buf = endp + 1;
4746
4747         cfd = simple_strtoul(buf, &endp, 10);
4748         if ((*endp != ' ') && (*endp != '\0'))
4749                 return -EINVAL;
4750         buf = endp + 1;
4751
4752         event = kzalloc(sizeof(*event), GFP_KERNEL);
4753         if (!event)
4754                 return -ENOMEM;
4755
4756         event->memcg = memcg;
4757         INIT_LIST_HEAD(&event->list);
4758         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4759         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4760         INIT_WORK(&event->remove, memcg_event_remove);
4761
4762         efile = fdget(efd);
4763         if (!efile.file) {
4764                 ret = -EBADF;
4765                 goto out_kfree;
4766         }
4767
4768         event->eventfd = eventfd_ctx_fileget(efile.file);
4769         if (IS_ERR(event->eventfd)) {
4770                 ret = PTR_ERR(event->eventfd);
4771                 goto out_put_efile;
4772         }
4773
4774         cfile = fdget(cfd);
4775         if (!cfile.file) {
4776                 ret = -EBADF;
4777                 goto out_put_eventfd;
4778         }
4779
4780         /* the process need read permission on control file */
4781         /* AV: shouldn't we check that it's been opened for read instead? */
4782         ret = file_permission(cfile.file, MAY_READ);
4783         if (ret < 0)
4784                 goto out_put_cfile;
4785
4786         /*
4787          * Determine the event callbacks and set them in @event.  This used
4788          * to be done via struct cftype but cgroup core no longer knows
4789          * about these events.  The following is crude but the whole thing
4790          * is for compatibility anyway.
4791          *
4792          * DO NOT ADD NEW FILES.
4793          */
4794         name = cfile.file->f_path.dentry->d_name.name;
4795
4796         if (!strcmp(name, "memory.usage_in_bytes")) {
4797                 event->register_event = mem_cgroup_usage_register_event;
4798                 event->unregister_event = mem_cgroup_usage_unregister_event;
4799         } else if (!strcmp(name, "memory.oom_control")) {
4800                 event->register_event = mem_cgroup_oom_register_event;
4801                 event->unregister_event = mem_cgroup_oom_unregister_event;
4802         } else if (!strcmp(name, "memory.pressure_level")) {
4803                 event->register_event = vmpressure_register_event;
4804                 event->unregister_event = vmpressure_unregister_event;
4805         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4806                 event->register_event = memsw_cgroup_usage_register_event;
4807                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4808         } else {
4809                 ret = -EINVAL;
4810                 goto out_put_cfile;
4811         }
4812
4813         /*
4814          * Verify @cfile should belong to @css.  Also, remaining events are
4815          * automatically removed on cgroup destruction but the removal is
4816          * asynchronous, so take an extra ref on @css.
4817          */
4818         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4819                                                &memory_cgrp_subsys);
4820         ret = -EINVAL;
4821         if (IS_ERR(cfile_css))
4822                 goto out_put_cfile;
4823         if (cfile_css != css) {
4824                 css_put(cfile_css);
4825                 goto out_put_cfile;
4826         }
4827
4828         ret = event->register_event(memcg, event->eventfd, buf);
4829         if (ret)
4830                 goto out_put_css;
4831
4832         vfs_poll(efile.file, &event->pt);
4833
4834         spin_lock_irq(&memcg->event_list_lock);
4835         list_add(&event->list, &memcg->event_list);
4836         spin_unlock_irq(&memcg->event_list_lock);
4837
4838         fdput(cfile);
4839         fdput(efile);
4840
4841         return nbytes;
4842
4843 out_put_css:
4844         css_put(css);
4845 out_put_cfile:
4846         fdput(cfile);
4847 out_put_eventfd:
4848         eventfd_ctx_put(event->eventfd);
4849 out_put_efile:
4850         fdput(efile);
4851 out_kfree:
4852         kfree(event);
4853
4854         return ret;
4855 }
4856
4857 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4858 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4859 {
4860         /*
4861          * Deprecated.
4862          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4863          */
4864         return 0;
4865 }
4866 #endif
4867
4868 static struct cftype mem_cgroup_legacy_files[] = {
4869         {
4870                 .name = "usage_in_bytes",
4871                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4872                 .read_u64 = mem_cgroup_read_u64,
4873         },
4874         {
4875                 .name = "max_usage_in_bytes",
4876                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4877                 .write = mem_cgroup_reset,
4878                 .read_u64 = mem_cgroup_read_u64,
4879         },
4880         {
4881                 .name = "limit_in_bytes",
4882                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4883                 .write = mem_cgroup_write,
4884                 .read_u64 = mem_cgroup_read_u64,
4885         },
4886         {
4887                 .name = "soft_limit_in_bytes",
4888                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4889                 .write = mem_cgroup_write,
4890                 .read_u64 = mem_cgroup_read_u64,
4891         },
4892         {
4893                 .name = "failcnt",
4894                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4895                 .write = mem_cgroup_reset,
4896                 .read_u64 = mem_cgroup_read_u64,
4897         },
4898         {
4899                 .name = "stat",
4900                 .seq_show = memcg_stat_show,
4901         },
4902         {
4903                 .name = "force_empty",
4904                 .write = mem_cgroup_force_empty_write,
4905         },
4906         {
4907                 .name = "use_hierarchy",
4908                 .write_u64 = mem_cgroup_hierarchy_write,
4909                 .read_u64 = mem_cgroup_hierarchy_read,
4910         },
4911         {
4912                 .name = "cgroup.event_control",         /* XXX: for compat */
4913                 .write = memcg_write_event_control,
4914                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4915         },
4916         {
4917                 .name = "swappiness",
4918                 .read_u64 = mem_cgroup_swappiness_read,
4919                 .write_u64 = mem_cgroup_swappiness_write,
4920         },
4921         {
4922                 .name = "move_charge_at_immigrate",
4923                 .read_u64 = mem_cgroup_move_charge_read,
4924                 .write_u64 = mem_cgroup_move_charge_write,
4925         },
4926         {
4927                 .name = "oom_control",
4928                 .seq_show = mem_cgroup_oom_control_read,
4929                 .write_u64 = mem_cgroup_oom_control_write,
4930         },
4931         {
4932                 .name = "pressure_level",
4933         },
4934 #ifdef CONFIG_NUMA
4935         {
4936                 .name = "numa_stat",
4937                 .seq_show = memcg_numa_stat_show,
4938         },
4939 #endif
4940         {
4941                 .name = "kmem.limit_in_bytes",
4942                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4943                 .write = mem_cgroup_write,
4944                 .read_u64 = mem_cgroup_read_u64,
4945         },
4946         {
4947                 .name = "kmem.usage_in_bytes",
4948                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4949                 .read_u64 = mem_cgroup_read_u64,
4950         },
4951         {
4952                 .name = "kmem.failcnt",
4953                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4954                 .write = mem_cgroup_reset,
4955                 .read_u64 = mem_cgroup_read_u64,
4956         },
4957         {
4958                 .name = "kmem.max_usage_in_bytes",
4959                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4960                 .write = mem_cgroup_reset,
4961                 .read_u64 = mem_cgroup_read_u64,
4962         },
4963 #if defined(CONFIG_MEMCG_KMEM) && \
4964         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4965         {
4966                 .name = "kmem.slabinfo",
4967                 .seq_show = mem_cgroup_slab_show,
4968         },
4969 #endif
4970         {
4971                 .name = "kmem.tcp.limit_in_bytes",
4972                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4973                 .write = mem_cgroup_write,
4974                 .read_u64 = mem_cgroup_read_u64,
4975         },
4976         {
4977                 .name = "kmem.tcp.usage_in_bytes",
4978                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4979                 .read_u64 = mem_cgroup_read_u64,
4980         },
4981         {
4982                 .name = "kmem.tcp.failcnt",
4983                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4984                 .write = mem_cgroup_reset,
4985                 .read_u64 = mem_cgroup_read_u64,
4986         },
4987         {
4988                 .name = "kmem.tcp.max_usage_in_bytes",
4989                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4990                 .write = mem_cgroup_reset,
4991                 .read_u64 = mem_cgroup_read_u64,
4992         },
4993         { },    /* terminate */
4994 };
4995
4996 /*
4997  * Private memory cgroup IDR
4998  *
4999  * Swap-out records and page cache shadow entries need to store memcg
5000  * references in constrained space, so we maintain an ID space that is
5001  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5002  * memory-controlled cgroups to 64k.
5003  *
5004  * However, there usually are many references to the offline CSS after
5005  * the cgroup has been destroyed, such as page cache or reclaimable
5006  * slab objects, that don't need to hang on to the ID. We want to keep
5007  * those dead CSS from occupying IDs, or we might quickly exhaust the
5008  * relatively small ID space and prevent the creation of new cgroups
5009  * even when there are much fewer than 64k cgroups - possibly none.
5010  *
5011  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5012  * be freed and recycled when it's no longer needed, which is usually
5013  * when the CSS is offlined.
5014  *
5015  * The only exception to that are records of swapped out tmpfs/shmem
5016  * pages that need to be attributed to live ancestors on swapin. But
5017  * those references are manageable from userspace.
5018  */
5019
5020 static DEFINE_IDR(mem_cgroup_idr);
5021
5022 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5023 {
5024         if (memcg->id.id > 0) {
5025                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5026                 memcg->id.id = 0;
5027         }
5028 }
5029
5030 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5031                                                   unsigned int n)
5032 {
5033         refcount_add(n, &memcg->id.ref);
5034 }
5035
5036 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5037 {
5038         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5039                 mem_cgroup_id_remove(memcg);
5040
5041                 /* Memcg ID pins CSS */
5042                 css_put(&memcg->css);
5043         }
5044 }
5045
5046 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5047 {
5048         mem_cgroup_id_put_many(memcg, 1);
5049 }
5050
5051 /**
5052  * mem_cgroup_from_id - look up a memcg from a memcg id
5053  * @id: the memcg id to look up
5054  *
5055  * Caller must hold rcu_read_lock().
5056  */
5057 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5058 {
5059         WARN_ON_ONCE(!rcu_read_lock_held());
5060         return idr_find(&mem_cgroup_idr, id);
5061 }
5062
5063 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5064 {
5065         struct mem_cgroup_per_node *pn;
5066
5067         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5068         if (!pn)
5069                 return 1;
5070
5071         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5072                                                    GFP_KERNEL_ACCOUNT);
5073         if (!pn->lruvec_stats_percpu) {
5074                 kfree(pn);
5075                 return 1;
5076         }
5077
5078         lruvec_init(&pn->lruvec);
5079         pn->memcg = memcg;
5080
5081         memcg->nodeinfo[node] = pn;
5082         return 0;
5083 }
5084
5085 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5086 {
5087         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5088
5089         if (!pn)
5090                 return;
5091
5092         free_percpu(pn->lruvec_stats_percpu);
5093         kfree(pn);
5094 }
5095
5096 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5097 {
5098         int node;
5099
5100         for_each_node(node)
5101                 free_mem_cgroup_per_node_info(memcg, node);
5102         free_percpu(memcg->vmstats_percpu);
5103         kfree(memcg);
5104 }
5105
5106 static void mem_cgroup_free(struct mem_cgroup *memcg)
5107 {
5108         memcg_wb_domain_exit(memcg);
5109         __mem_cgroup_free(memcg);
5110 }
5111
5112 static struct mem_cgroup *mem_cgroup_alloc(void)
5113 {
5114         struct mem_cgroup *memcg;
5115         int node;
5116         int __maybe_unused i;
5117         long error = -ENOMEM;
5118
5119         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5120         if (!memcg)
5121                 return ERR_PTR(error);
5122
5123         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5124                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5125         if (memcg->id.id < 0) {
5126                 error = memcg->id.id;
5127                 goto fail;
5128         }
5129
5130         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5131                                                  GFP_KERNEL_ACCOUNT);
5132         if (!memcg->vmstats_percpu)
5133                 goto fail;
5134
5135         for_each_node(node)
5136                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5137                         goto fail;
5138
5139         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5140                 goto fail;
5141
5142         INIT_WORK(&memcg->high_work, high_work_func);
5143         INIT_LIST_HEAD(&memcg->oom_notify);
5144         mutex_init(&memcg->thresholds_lock);
5145         spin_lock_init(&memcg->move_lock);
5146         vmpressure_init(&memcg->vmpressure);
5147         INIT_LIST_HEAD(&memcg->event_list);
5148         spin_lock_init(&memcg->event_list_lock);
5149         memcg->socket_pressure = jiffies;
5150 #ifdef CONFIG_MEMCG_KMEM
5151         memcg->kmemcg_id = -1;
5152         INIT_LIST_HEAD(&memcg->objcg_list);
5153 #endif
5154 #ifdef CONFIG_CGROUP_WRITEBACK
5155         INIT_LIST_HEAD(&memcg->cgwb_list);
5156         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5157                 memcg->cgwb_frn[i].done =
5158                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5159 #endif
5160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5161         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5162         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5163         memcg->deferred_split_queue.split_queue_len = 0;
5164 #endif
5165         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5166         return memcg;
5167 fail:
5168         mem_cgroup_id_remove(memcg);
5169         __mem_cgroup_free(memcg);
5170         return ERR_PTR(error);
5171 }
5172
5173 static struct cgroup_subsys_state * __ref
5174 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5175 {
5176         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5177         struct mem_cgroup *memcg, *old_memcg;
5178
5179         old_memcg = set_active_memcg(parent);
5180         memcg = mem_cgroup_alloc();
5181         set_active_memcg(old_memcg);
5182         if (IS_ERR(memcg))
5183                 return ERR_CAST(memcg);
5184
5185         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5186         memcg->soft_limit = PAGE_COUNTER_MAX;
5187 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5188         memcg->zswap_max = PAGE_COUNTER_MAX;
5189 #endif
5190         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5191         if (parent) {
5192                 memcg->swappiness = mem_cgroup_swappiness(parent);
5193                 memcg->oom_kill_disable = parent->oom_kill_disable;
5194
5195                 page_counter_init(&memcg->memory, &parent->memory);
5196                 page_counter_init(&memcg->swap, &parent->swap);
5197                 page_counter_init(&memcg->kmem, &parent->kmem);
5198                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5199         } else {
5200                 page_counter_init(&memcg->memory, NULL);
5201                 page_counter_init(&memcg->swap, NULL);
5202                 page_counter_init(&memcg->kmem, NULL);
5203                 page_counter_init(&memcg->tcpmem, NULL);
5204
5205                 root_mem_cgroup = memcg;
5206                 return &memcg->css;
5207         }
5208
5209         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5210                 static_branch_inc(&memcg_sockets_enabled_key);
5211
5212         return &memcg->css;
5213 }
5214
5215 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5216 {
5217         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5218
5219         if (memcg_online_kmem(memcg))
5220                 goto remove_id;
5221
5222         /*
5223          * A memcg must be visible for expand_shrinker_info()
5224          * by the time the maps are allocated. So, we allocate maps
5225          * here, when for_each_mem_cgroup() can't skip it.
5226          */
5227         if (alloc_shrinker_info(memcg))
5228                 goto offline_kmem;
5229
5230         /* Online state pins memcg ID, memcg ID pins CSS */
5231         refcount_set(&memcg->id.ref, 1);
5232         css_get(css);
5233
5234         if (unlikely(mem_cgroup_is_root(memcg)))
5235                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5236                                    2UL*HZ);
5237         return 0;
5238 offline_kmem:
5239         memcg_offline_kmem(memcg);
5240 remove_id:
5241         mem_cgroup_id_remove(memcg);
5242         return -ENOMEM;
5243 }
5244
5245 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5246 {
5247         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5248         struct mem_cgroup_event *event, *tmp;
5249
5250         /*
5251          * Unregister events and notify userspace.
5252          * Notify userspace about cgroup removing only after rmdir of cgroup
5253          * directory to avoid race between userspace and kernelspace.
5254          */
5255         spin_lock_irq(&memcg->event_list_lock);
5256         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5257                 list_del_init(&event->list);
5258                 schedule_work(&event->remove);
5259         }
5260         spin_unlock_irq(&memcg->event_list_lock);
5261
5262         page_counter_set_min(&memcg->memory, 0);
5263         page_counter_set_low(&memcg->memory, 0);
5264
5265         memcg_offline_kmem(memcg);
5266         reparent_shrinker_deferred(memcg);
5267         wb_memcg_offline(memcg);
5268
5269         drain_all_stock(memcg);
5270
5271         mem_cgroup_id_put(memcg);
5272 }
5273
5274 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5275 {
5276         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5277
5278         invalidate_reclaim_iterators(memcg);
5279 }
5280
5281 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5282 {
5283         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5284         int __maybe_unused i;
5285
5286 #ifdef CONFIG_CGROUP_WRITEBACK
5287         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5288                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5289 #endif
5290         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5291                 static_branch_dec(&memcg_sockets_enabled_key);
5292
5293         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5294                 static_branch_dec(&memcg_sockets_enabled_key);
5295
5296         vmpressure_cleanup(&memcg->vmpressure);
5297         cancel_work_sync(&memcg->high_work);
5298         mem_cgroup_remove_from_trees(memcg);
5299         free_shrinker_info(memcg);
5300         mem_cgroup_free(memcg);
5301 }
5302
5303 /**
5304  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5305  * @css: the target css
5306  *
5307  * Reset the states of the mem_cgroup associated with @css.  This is
5308  * invoked when the userland requests disabling on the default hierarchy
5309  * but the memcg is pinned through dependency.  The memcg should stop
5310  * applying policies and should revert to the vanilla state as it may be
5311  * made visible again.
5312  *
5313  * The current implementation only resets the essential configurations.
5314  * This needs to be expanded to cover all the visible parts.
5315  */
5316 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5317 {
5318         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5319
5320         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5321         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5322         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5323         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5324         page_counter_set_min(&memcg->memory, 0);
5325         page_counter_set_low(&memcg->memory, 0);
5326         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5327         memcg->soft_limit = PAGE_COUNTER_MAX;
5328         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5329         memcg_wb_domain_size_changed(memcg);
5330 }
5331
5332 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5333 {
5334         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5336         struct memcg_vmstats_percpu *statc;
5337         long delta, v;
5338         int i, nid;
5339
5340         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5341
5342         for (i = 0; i < MEMCG_NR_STAT; i++) {
5343                 /*
5344                  * Collect the aggregated propagation counts of groups
5345                  * below us. We're in a per-cpu loop here and this is
5346                  * a global counter, so the first cycle will get them.
5347                  */
5348                 delta = memcg->vmstats.state_pending[i];
5349                 if (delta)
5350                         memcg->vmstats.state_pending[i] = 0;
5351
5352                 /* Add CPU changes on this level since the last flush */
5353                 v = READ_ONCE(statc->state[i]);
5354                 if (v != statc->state_prev[i]) {
5355                         delta += v - statc->state_prev[i];
5356                         statc->state_prev[i] = v;
5357                 }
5358
5359                 if (!delta)
5360                         continue;
5361
5362                 /* Aggregate counts on this level and propagate upwards */
5363                 memcg->vmstats.state[i] += delta;
5364                 if (parent)
5365                         parent->vmstats.state_pending[i] += delta;
5366         }
5367
5368         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5369                 delta = memcg->vmstats.events_pending[i];
5370                 if (delta)
5371                         memcg->vmstats.events_pending[i] = 0;
5372
5373                 v = READ_ONCE(statc->events[i]);
5374                 if (v != statc->events_prev[i]) {
5375                         delta += v - statc->events_prev[i];
5376                         statc->events_prev[i] = v;
5377                 }
5378
5379                 if (!delta)
5380                         continue;
5381
5382                 memcg->vmstats.events[i] += delta;
5383                 if (parent)
5384                         parent->vmstats.events_pending[i] += delta;
5385         }
5386
5387         for_each_node_state(nid, N_MEMORY) {
5388                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5389                 struct mem_cgroup_per_node *ppn = NULL;
5390                 struct lruvec_stats_percpu *lstatc;
5391
5392                 if (parent)
5393                         ppn = parent->nodeinfo[nid];
5394
5395                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5396
5397                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5398                         delta = pn->lruvec_stats.state_pending[i];
5399                         if (delta)
5400                                 pn->lruvec_stats.state_pending[i] = 0;
5401
5402                         v = READ_ONCE(lstatc->state[i]);
5403                         if (v != lstatc->state_prev[i]) {
5404                                 delta += v - lstatc->state_prev[i];
5405                                 lstatc->state_prev[i] = v;
5406                         }
5407
5408                         if (!delta)
5409                                 continue;
5410
5411                         pn->lruvec_stats.state[i] += delta;
5412                         if (ppn)
5413                                 ppn->lruvec_stats.state_pending[i] += delta;
5414                 }
5415         }
5416 }
5417
5418 #ifdef CONFIG_MMU
5419 /* Handlers for move charge at task migration. */
5420 static int mem_cgroup_do_precharge(unsigned long count)
5421 {
5422         int ret;
5423
5424         /* Try a single bulk charge without reclaim first, kswapd may wake */
5425         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5426         if (!ret) {
5427                 mc.precharge += count;
5428                 return ret;
5429         }
5430
5431         /* Try charges one by one with reclaim, but do not retry */
5432         while (count--) {
5433                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5434                 if (ret)
5435                         return ret;
5436                 mc.precharge++;
5437                 cond_resched();
5438         }
5439         return 0;
5440 }
5441
5442 union mc_target {
5443         struct page     *page;
5444         swp_entry_t     ent;
5445 };
5446
5447 enum mc_target_type {
5448         MC_TARGET_NONE = 0,
5449         MC_TARGET_PAGE,
5450         MC_TARGET_SWAP,
5451         MC_TARGET_DEVICE,
5452 };
5453
5454 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5455                                                 unsigned long addr, pte_t ptent)
5456 {
5457         struct page *page = vm_normal_page(vma, addr, ptent);
5458
5459         if (!page || !page_mapped(page))
5460                 return NULL;
5461         if (PageAnon(page)) {
5462                 if (!(mc.flags & MOVE_ANON))
5463                         return NULL;
5464         } else {
5465                 if (!(mc.flags & MOVE_FILE))
5466                         return NULL;
5467         }
5468         if (!get_page_unless_zero(page))
5469                 return NULL;
5470
5471         return page;
5472 }
5473
5474 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5475 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5476                         pte_t ptent, swp_entry_t *entry)
5477 {
5478         struct page *page = NULL;
5479         swp_entry_t ent = pte_to_swp_entry(ptent);
5480
5481         if (!(mc.flags & MOVE_ANON))
5482                 return NULL;
5483
5484         /*
5485          * Handle device private pages that are not accessible by the CPU, but
5486          * stored as special swap entries in the page table.
5487          */
5488         if (is_device_private_entry(ent)) {
5489                 page = pfn_swap_entry_to_page(ent);
5490                 if (!get_page_unless_zero(page))
5491                         return NULL;
5492                 return page;
5493         }
5494
5495         if (non_swap_entry(ent))
5496                 return NULL;
5497
5498         /*
5499          * Because lookup_swap_cache() updates some statistics counter,
5500          * we call find_get_page() with swapper_space directly.
5501          */
5502         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5503         entry->val = ent.val;
5504
5505         return page;
5506 }
5507 #else
5508 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5509                         pte_t ptent, swp_entry_t *entry)
5510 {
5511         return NULL;
5512 }
5513 #endif
5514
5515 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5516                         unsigned long addr, pte_t ptent)
5517 {
5518         if (!vma->vm_file) /* anonymous vma */
5519                 return NULL;
5520         if (!(mc.flags & MOVE_FILE))
5521                 return NULL;
5522
5523         /* page is moved even if it's not RSS of this task(page-faulted). */
5524         /* shmem/tmpfs may report page out on swap: account for that too. */
5525         return find_get_incore_page(vma->vm_file->f_mapping,
5526                         linear_page_index(vma, addr));
5527 }
5528
5529 /**
5530  * mem_cgroup_move_account - move account of the page
5531  * @page: the page
5532  * @compound: charge the page as compound or small page
5533  * @from: mem_cgroup which the page is moved from.
5534  * @to: mem_cgroup which the page is moved to. @from != @to.
5535  *
5536  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5537  *
5538  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5539  * from old cgroup.
5540  */
5541 static int mem_cgroup_move_account(struct page *page,
5542                                    bool compound,
5543                                    struct mem_cgroup *from,
5544                                    struct mem_cgroup *to)
5545 {
5546         struct folio *folio = page_folio(page);
5547         struct lruvec *from_vec, *to_vec;
5548         struct pglist_data *pgdat;
5549         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5550         int nid, ret;
5551
5552         VM_BUG_ON(from == to);
5553         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5554         VM_BUG_ON(compound && !folio_test_large(folio));
5555
5556         /*
5557          * Prevent mem_cgroup_migrate() from looking at
5558          * page's memory cgroup of its source page while we change it.
5559          */
5560         ret = -EBUSY;
5561         if (!folio_trylock(folio))
5562                 goto out;
5563
5564         ret = -EINVAL;
5565         if (folio_memcg(folio) != from)
5566                 goto out_unlock;
5567
5568         pgdat = folio_pgdat(folio);
5569         from_vec = mem_cgroup_lruvec(from, pgdat);
5570         to_vec = mem_cgroup_lruvec(to, pgdat);
5571
5572         folio_memcg_lock(folio);
5573
5574         if (folio_test_anon(folio)) {
5575                 if (folio_mapped(folio)) {
5576                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5577                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5578                         if (folio_test_transhuge(folio)) {
5579                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5580                                                    -nr_pages);
5581                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5582                                                    nr_pages);
5583                         }
5584                 }
5585         } else {
5586                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5587                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5588
5589                 if (folio_test_swapbacked(folio)) {
5590                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5591                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5592                 }
5593
5594                 if (folio_mapped(folio)) {
5595                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5596                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5597                 }
5598
5599                 if (folio_test_dirty(folio)) {
5600                         struct address_space *mapping = folio_mapping(folio);
5601
5602                         if (mapping_can_writeback(mapping)) {
5603                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5604                                                    -nr_pages);
5605                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5606                                                    nr_pages);
5607                         }
5608                 }
5609         }
5610
5611         if (folio_test_writeback(folio)) {
5612                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5613                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5614         }
5615
5616         /*
5617          * All state has been migrated, let's switch to the new memcg.
5618          *
5619          * It is safe to change page's memcg here because the page
5620          * is referenced, charged, isolated, and locked: we can't race
5621          * with (un)charging, migration, LRU putback, or anything else
5622          * that would rely on a stable page's memory cgroup.
5623          *
5624          * Note that lock_page_memcg is a memcg lock, not a page lock,
5625          * to save space. As soon as we switch page's memory cgroup to a
5626          * new memcg that isn't locked, the above state can change
5627          * concurrently again. Make sure we're truly done with it.
5628          */
5629         smp_mb();
5630
5631         css_get(&to->css);
5632         css_put(&from->css);
5633
5634         folio->memcg_data = (unsigned long)to;
5635
5636         __folio_memcg_unlock(from);
5637
5638         ret = 0;
5639         nid = folio_nid(folio);
5640
5641         local_irq_disable();
5642         mem_cgroup_charge_statistics(to, nr_pages);
5643         memcg_check_events(to, nid);
5644         mem_cgroup_charge_statistics(from, -nr_pages);
5645         memcg_check_events(from, nid);
5646         local_irq_enable();
5647 out_unlock:
5648         folio_unlock(folio);
5649 out:
5650         return ret;
5651 }
5652
5653 /**
5654  * get_mctgt_type - get target type of moving charge
5655  * @vma: the vma the pte to be checked belongs
5656  * @addr: the address corresponding to the pte to be checked
5657  * @ptent: the pte to be checked
5658  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5659  *
5660  * Returns
5661  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5662  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5663  *     move charge. if @target is not NULL, the page is stored in target->page
5664  *     with extra refcnt got(Callers should handle it).
5665  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5666  *     target for charge migration. if @target is not NULL, the entry is stored
5667  *     in target->ent.
5668  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5669  *     (so ZONE_DEVICE page and thus not on the lru).
5670  *     For now we such page is charge like a regular page would be as for all
5671  *     intent and purposes it is just special memory taking the place of a
5672  *     regular page.
5673  *
5674  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5675  *
5676  * Called with pte lock held.
5677  */
5678
5679 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5680                 unsigned long addr, pte_t ptent, union mc_target *target)
5681 {
5682         struct page *page = NULL;
5683         enum mc_target_type ret = MC_TARGET_NONE;
5684         swp_entry_t ent = { .val = 0 };
5685
5686         if (pte_present(ptent))
5687                 page = mc_handle_present_pte(vma, addr, ptent);
5688         else if (pte_none_mostly(ptent))
5689                 /*
5690                  * PTE markers should be treated as a none pte here, separated
5691                  * from other swap handling below.
5692                  */
5693                 page = mc_handle_file_pte(vma, addr, ptent);
5694         else if (is_swap_pte(ptent))
5695                 page = mc_handle_swap_pte(vma, ptent, &ent);
5696
5697         if (!page && !ent.val)
5698                 return ret;
5699         if (page) {
5700                 /*
5701                  * Do only loose check w/o serialization.
5702                  * mem_cgroup_move_account() checks the page is valid or
5703                  * not under LRU exclusion.
5704                  */
5705                 if (page_memcg(page) == mc.from) {
5706                         ret = MC_TARGET_PAGE;
5707                         if (is_device_private_page(page))
5708                                 ret = MC_TARGET_DEVICE;
5709                         if (target)
5710                                 target->page = page;
5711                 }
5712                 if (!ret || !target)
5713                         put_page(page);
5714         }
5715         /*
5716          * There is a swap entry and a page doesn't exist or isn't charged.
5717          * But we cannot move a tail-page in a THP.
5718          */
5719         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5720             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5721                 ret = MC_TARGET_SWAP;
5722                 if (target)
5723                         target->ent = ent;
5724         }
5725         return ret;
5726 }
5727
5728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5729 /*
5730  * We don't consider PMD mapped swapping or file mapped pages because THP does
5731  * not support them for now.
5732  * Caller should make sure that pmd_trans_huge(pmd) is true.
5733  */
5734 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5735                 unsigned long addr, pmd_t pmd, union mc_target *target)
5736 {
5737         struct page *page = NULL;
5738         enum mc_target_type ret = MC_TARGET_NONE;
5739
5740         if (unlikely(is_swap_pmd(pmd))) {
5741                 VM_BUG_ON(thp_migration_supported() &&
5742                                   !is_pmd_migration_entry(pmd));
5743                 return ret;
5744         }
5745         page = pmd_page(pmd);
5746         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5747         if (!(mc.flags & MOVE_ANON))
5748                 return ret;
5749         if (page_memcg(page) == mc.from) {
5750                 ret = MC_TARGET_PAGE;
5751                 if (target) {
5752                         get_page(page);
5753                         target->page = page;
5754                 }
5755         }
5756         return ret;
5757 }
5758 #else
5759 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5760                 unsigned long addr, pmd_t pmd, union mc_target *target)
5761 {
5762         return MC_TARGET_NONE;
5763 }
5764 #endif
5765
5766 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5767                                         unsigned long addr, unsigned long end,
5768                                         struct mm_walk *walk)
5769 {
5770         struct vm_area_struct *vma = walk->vma;
5771         pte_t *pte;
5772         spinlock_t *ptl;
5773
5774         ptl = pmd_trans_huge_lock(pmd, vma);
5775         if (ptl) {
5776                 /*
5777                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5778                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5779                  * this might change.
5780                  */
5781                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5782                         mc.precharge += HPAGE_PMD_NR;
5783                 spin_unlock(ptl);
5784                 return 0;
5785         }
5786
5787         if (pmd_trans_unstable(pmd))
5788                 return 0;
5789         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5790         for (; addr != end; pte++, addr += PAGE_SIZE)
5791                 if (get_mctgt_type(vma, addr, *pte, NULL))
5792                         mc.precharge++; /* increment precharge temporarily */
5793         pte_unmap_unlock(pte - 1, ptl);
5794         cond_resched();
5795
5796         return 0;
5797 }
5798
5799 static const struct mm_walk_ops precharge_walk_ops = {
5800         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5801 };
5802
5803 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5804 {
5805         unsigned long precharge;
5806
5807         mmap_read_lock(mm);
5808         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5809         mmap_read_unlock(mm);
5810
5811         precharge = mc.precharge;
5812         mc.precharge = 0;
5813
5814         return precharge;
5815 }
5816
5817 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5818 {
5819         unsigned long precharge = mem_cgroup_count_precharge(mm);
5820
5821         VM_BUG_ON(mc.moving_task);
5822         mc.moving_task = current;
5823         return mem_cgroup_do_precharge(precharge);
5824 }
5825
5826 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5827 static void __mem_cgroup_clear_mc(void)
5828 {
5829         struct mem_cgroup *from = mc.from;
5830         struct mem_cgroup *to = mc.to;
5831
5832         /* we must uncharge all the leftover precharges from mc.to */
5833         if (mc.precharge) {
5834                 cancel_charge(mc.to, mc.precharge);
5835                 mc.precharge = 0;
5836         }
5837         /*
5838          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5839          * we must uncharge here.
5840          */
5841         if (mc.moved_charge) {
5842                 cancel_charge(mc.from, mc.moved_charge);
5843                 mc.moved_charge = 0;
5844         }
5845         /* we must fixup refcnts and charges */
5846         if (mc.moved_swap) {
5847                 /* uncharge swap account from the old cgroup */
5848                 if (!mem_cgroup_is_root(mc.from))
5849                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5850
5851                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5852
5853                 /*
5854                  * we charged both to->memory and to->memsw, so we
5855                  * should uncharge to->memory.
5856                  */
5857                 if (!mem_cgroup_is_root(mc.to))
5858                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5859
5860                 mc.moved_swap = 0;
5861         }
5862         memcg_oom_recover(from);
5863         memcg_oom_recover(to);
5864         wake_up_all(&mc.waitq);
5865 }
5866
5867 static void mem_cgroup_clear_mc(void)
5868 {
5869         struct mm_struct *mm = mc.mm;
5870
5871         /*
5872          * we must clear moving_task before waking up waiters at the end of
5873          * task migration.
5874          */
5875         mc.moving_task = NULL;
5876         __mem_cgroup_clear_mc();
5877         spin_lock(&mc.lock);
5878         mc.from = NULL;
5879         mc.to = NULL;
5880         mc.mm = NULL;
5881         spin_unlock(&mc.lock);
5882
5883         mmput(mm);
5884 }
5885
5886 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5887 {
5888         struct cgroup_subsys_state *css;
5889         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5890         struct mem_cgroup *from;
5891         struct task_struct *leader, *p;
5892         struct mm_struct *mm;
5893         unsigned long move_flags;
5894         int ret = 0;
5895
5896         /* charge immigration isn't supported on the default hierarchy */
5897         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5898                 return 0;
5899
5900         /*
5901          * Multi-process migrations only happen on the default hierarchy
5902          * where charge immigration is not used.  Perform charge
5903          * immigration if @tset contains a leader and whine if there are
5904          * multiple.
5905          */
5906         p = NULL;
5907         cgroup_taskset_for_each_leader(leader, css, tset) {
5908                 WARN_ON_ONCE(p);
5909                 p = leader;
5910                 memcg = mem_cgroup_from_css(css);
5911         }
5912         if (!p)
5913                 return 0;
5914
5915         /*
5916          * We are now committed to this value whatever it is. Changes in this
5917          * tunable will only affect upcoming migrations, not the current one.
5918          * So we need to save it, and keep it going.
5919          */
5920         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5921         if (!move_flags)
5922                 return 0;
5923
5924         from = mem_cgroup_from_task(p);
5925
5926         VM_BUG_ON(from == memcg);
5927
5928         mm = get_task_mm(p);
5929         if (!mm)
5930                 return 0;
5931         /* We move charges only when we move a owner of the mm */
5932         if (mm->owner == p) {
5933                 VM_BUG_ON(mc.from);
5934                 VM_BUG_ON(mc.to);
5935                 VM_BUG_ON(mc.precharge);
5936                 VM_BUG_ON(mc.moved_charge);
5937                 VM_BUG_ON(mc.moved_swap);
5938
5939                 spin_lock(&mc.lock);
5940                 mc.mm = mm;
5941                 mc.from = from;
5942                 mc.to = memcg;
5943                 mc.flags = move_flags;
5944                 spin_unlock(&mc.lock);
5945                 /* We set mc.moving_task later */
5946
5947                 ret = mem_cgroup_precharge_mc(mm);
5948                 if (ret)
5949                         mem_cgroup_clear_mc();
5950         } else {
5951                 mmput(mm);
5952         }
5953         return ret;
5954 }
5955
5956 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5957 {
5958         if (mc.to)
5959                 mem_cgroup_clear_mc();
5960 }
5961
5962 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5963                                 unsigned long addr, unsigned long end,
5964                                 struct mm_walk *walk)
5965 {
5966         int ret = 0;
5967         struct vm_area_struct *vma = walk->vma;
5968         pte_t *pte;
5969         spinlock_t *ptl;
5970         enum mc_target_type target_type;
5971         union mc_target target;
5972         struct page *page;
5973
5974         ptl = pmd_trans_huge_lock(pmd, vma);
5975         if (ptl) {
5976                 if (mc.precharge < HPAGE_PMD_NR) {
5977                         spin_unlock(ptl);
5978                         return 0;
5979                 }
5980                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5981                 if (target_type == MC_TARGET_PAGE) {
5982                         page = target.page;
5983                         if (!isolate_lru_page(page)) {
5984                                 if (!mem_cgroup_move_account(page, true,
5985                                                              mc.from, mc.to)) {
5986                                         mc.precharge -= HPAGE_PMD_NR;
5987                                         mc.moved_charge += HPAGE_PMD_NR;
5988                                 }
5989                                 putback_lru_page(page);
5990                         }
5991                         put_page(page);
5992                 } else if (target_type == MC_TARGET_DEVICE) {
5993                         page = target.page;
5994                         if (!mem_cgroup_move_account(page, true,
5995                                                      mc.from, mc.to)) {
5996                                 mc.precharge -= HPAGE_PMD_NR;
5997                                 mc.moved_charge += HPAGE_PMD_NR;
5998                         }
5999                         put_page(page);
6000                 }
6001                 spin_unlock(ptl);
6002                 return 0;
6003         }
6004
6005         if (pmd_trans_unstable(pmd))
6006                 return 0;
6007 retry:
6008         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6009         for (; addr != end; addr += PAGE_SIZE) {
6010                 pte_t ptent = *(pte++);
6011                 bool device = false;
6012                 swp_entry_t ent;
6013
6014                 if (!mc.precharge)
6015                         break;
6016
6017                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6018                 case MC_TARGET_DEVICE:
6019                         device = true;
6020                         fallthrough;
6021                 case MC_TARGET_PAGE:
6022                         page = target.page;
6023                         /*
6024                          * We can have a part of the split pmd here. Moving it
6025                          * can be done but it would be too convoluted so simply
6026                          * ignore such a partial THP and keep it in original
6027                          * memcg. There should be somebody mapping the head.
6028                          */
6029                         if (PageTransCompound(page))
6030                                 goto put;
6031                         if (!device && isolate_lru_page(page))
6032                                 goto put;
6033                         if (!mem_cgroup_move_account(page, false,
6034                                                 mc.from, mc.to)) {
6035                                 mc.precharge--;
6036                                 /* we uncharge from mc.from later. */
6037                                 mc.moved_charge++;
6038                         }
6039                         if (!device)
6040                                 putback_lru_page(page);
6041 put:                    /* get_mctgt_type() gets the page */
6042                         put_page(page);
6043                         break;
6044                 case MC_TARGET_SWAP:
6045                         ent = target.ent;
6046                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6047                                 mc.precharge--;
6048                                 mem_cgroup_id_get_many(mc.to, 1);
6049                                 /* we fixup other refcnts and charges later. */
6050                                 mc.moved_swap++;
6051                         }
6052                         break;
6053                 default:
6054                         break;
6055                 }
6056         }
6057         pte_unmap_unlock(pte - 1, ptl);
6058         cond_resched();
6059
6060         if (addr != end) {
6061                 /*
6062                  * We have consumed all precharges we got in can_attach().
6063                  * We try charge one by one, but don't do any additional
6064                  * charges to mc.to if we have failed in charge once in attach()
6065                  * phase.
6066                  */
6067                 ret = mem_cgroup_do_precharge(1);
6068                 if (!ret)
6069                         goto retry;
6070         }
6071
6072         return ret;
6073 }
6074
6075 static const struct mm_walk_ops charge_walk_ops = {
6076         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6077 };
6078
6079 static void mem_cgroup_move_charge(void)
6080 {
6081         lru_add_drain_all();
6082         /*
6083          * Signal lock_page_memcg() to take the memcg's move_lock
6084          * while we're moving its pages to another memcg. Then wait
6085          * for already started RCU-only updates to finish.
6086          */
6087         atomic_inc(&mc.from->moving_account);
6088         synchronize_rcu();
6089 retry:
6090         if (unlikely(!mmap_read_trylock(mc.mm))) {
6091                 /*
6092                  * Someone who are holding the mmap_lock might be waiting in
6093                  * waitq. So we cancel all extra charges, wake up all waiters,
6094                  * and retry. Because we cancel precharges, we might not be able
6095                  * to move enough charges, but moving charge is a best-effort
6096                  * feature anyway, so it wouldn't be a big problem.
6097                  */
6098                 __mem_cgroup_clear_mc();
6099                 cond_resched();
6100                 goto retry;
6101         }
6102         /*
6103          * When we have consumed all precharges and failed in doing
6104          * additional charge, the page walk just aborts.
6105          */
6106         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6107                         NULL);
6108
6109         mmap_read_unlock(mc.mm);
6110         atomic_dec(&mc.from->moving_account);
6111 }
6112
6113 static void mem_cgroup_move_task(void)
6114 {
6115         if (mc.to) {
6116                 mem_cgroup_move_charge();
6117                 mem_cgroup_clear_mc();
6118         }
6119 }
6120 #else   /* !CONFIG_MMU */
6121 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6122 {
6123         return 0;
6124 }
6125 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6126 {
6127 }
6128 static void mem_cgroup_move_task(void)
6129 {
6130 }
6131 #endif
6132
6133 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6134 {
6135         if (value == PAGE_COUNTER_MAX)
6136                 seq_puts(m, "max\n");
6137         else
6138                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6139
6140         return 0;
6141 }
6142
6143 static u64 memory_current_read(struct cgroup_subsys_state *css,
6144                                struct cftype *cft)
6145 {
6146         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6147
6148         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6149 }
6150
6151 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6152                             struct cftype *cft)
6153 {
6154         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6155
6156         return (u64)memcg->memory.watermark * PAGE_SIZE;
6157 }
6158
6159 static int memory_min_show(struct seq_file *m, void *v)
6160 {
6161         return seq_puts_memcg_tunable(m,
6162                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6163 }
6164
6165 static ssize_t memory_min_write(struct kernfs_open_file *of,
6166                                 char *buf, size_t nbytes, loff_t off)
6167 {
6168         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6169         unsigned long min;
6170         int err;
6171
6172         buf = strstrip(buf);
6173         err = page_counter_memparse(buf, "max", &min);
6174         if (err)
6175                 return err;
6176
6177         page_counter_set_min(&memcg->memory, min);
6178
6179         return nbytes;
6180 }
6181
6182 static int memory_low_show(struct seq_file *m, void *v)
6183 {
6184         return seq_puts_memcg_tunable(m,
6185                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6186 }
6187
6188 static ssize_t memory_low_write(struct kernfs_open_file *of,
6189                                 char *buf, size_t nbytes, loff_t off)
6190 {
6191         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6192         unsigned long low;
6193         int err;
6194
6195         buf = strstrip(buf);
6196         err = page_counter_memparse(buf, "max", &low);
6197         if (err)
6198                 return err;
6199
6200         page_counter_set_low(&memcg->memory, low);
6201
6202         return nbytes;
6203 }
6204
6205 static int memory_high_show(struct seq_file *m, void *v)
6206 {
6207         return seq_puts_memcg_tunable(m,
6208                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6209 }
6210
6211 static ssize_t memory_high_write(struct kernfs_open_file *of,
6212                                  char *buf, size_t nbytes, loff_t off)
6213 {
6214         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6215         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6216         bool drained = false;
6217         unsigned long high;
6218         int err;
6219
6220         buf = strstrip(buf);
6221         err = page_counter_memparse(buf, "max", &high);
6222         if (err)
6223                 return err;
6224
6225         page_counter_set_high(&memcg->memory, high);
6226
6227         for (;;) {
6228                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6229                 unsigned long reclaimed;
6230
6231                 if (nr_pages <= high)
6232                         break;
6233
6234                 if (signal_pending(current))
6235                         break;
6236
6237                 if (!drained) {
6238                         drain_all_stock(memcg);
6239                         drained = true;
6240                         continue;
6241                 }
6242
6243                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6244                                                          GFP_KERNEL, true);
6245
6246                 if (!reclaimed && !nr_retries--)
6247                         break;
6248         }
6249
6250         memcg_wb_domain_size_changed(memcg);
6251         return nbytes;
6252 }
6253
6254 static int memory_max_show(struct seq_file *m, void *v)
6255 {
6256         return seq_puts_memcg_tunable(m,
6257                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6258 }
6259
6260 static ssize_t memory_max_write(struct kernfs_open_file *of,
6261                                 char *buf, size_t nbytes, loff_t off)
6262 {
6263         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6264         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6265         bool drained = false;
6266         unsigned long max;
6267         int err;
6268
6269         buf = strstrip(buf);
6270         err = page_counter_memparse(buf, "max", &max);
6271         if (err)
6272                 return err;
6273
6274         xchg(&memcg->memory.max, max);
6275
6276         for (;;) {
6277                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6278
6279                 if (nr_pages <= max)
6280                         break;
6281
6282                 if (signal_pending(current))
6283                         break;
6284
6285                 if (!drained) {
6286                         drain_all_stock(memcg);
6287                         drained = true;
6288                         continue;
6289                 }
6290
6291                 if (nr_reclaims) {
6292                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6293                                                           GFP_KERNEL, true))
6294                                 nr_reclaims--;
6295                         continue;
6296                 }
6297
6298                 memcg_memory_event(memcg, MEMCG_OOM);
6299                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6300                         break;
6301         }
6302
6303         memcg_wb_domain_size_changed(memcg);
6304         return nbytes;
6305 }
6306
6307 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6308 {
6309         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6310         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6311         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6312         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6313         seq_printf(m, "oom_kill %lu\n",
6314                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6315         seq_printf(m, "oom_group_kill %lu\n",
6316                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6317 }
6318
6319 static int memory_events_show(struct seq_file *m, void *v)
6320 {
6321         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6322
6323         __memory_events_show(m, memcg->memory_events);
6324         return 0;
6325 }
6326
6327 static int memory_events_local_show(struct seq_file *m, void *v)
6328 {
6329         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6330
6331         __memory_events_show(m, memcg->memory_events_local);
6332         return 0;
6333 }
6334
6335 static int memory_stat_show(struct seq_file *m, void *v)
6336 {
6337         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6338         char *buf;
6339
6340         buf = memory_stat_format(memcg);
6341         if (!buf)
6342                 return -ENOMEM;
6343         seq_puts(m, buf);
6344         kfree(buf);
6345         return 0;
6346 }
6347
6348 #ifdef CONFIG_NUMA
6349 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6350                                                      int item)
6351 {
6352         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6353 }
6354
6355 static int memory_numa_stat_show(struct seq_file *m, void *v)
6356 {
6357         int i;
6358         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6359
6360         mem_cgroup_flush_stats();
6361
6362         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6363                 int nid;
6364
6365                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6366                         continue;
6367
6368                 seq_printf(m, "%s", memory_stats[i].name);
6369                 for_each_node_state(nid, N_MEMORY) {
6370                         u64 size;
6371                         struct lruvec *lruvec;
6372
6373                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6374                         size = lruvec_page_state_output(lruvec,
6375                                                         memory_stats[i].idx);
6376                         seq_printf(m, " N%d=%llu", nid, size);
6377                 }
6378                 seq_putc(m, '\n');
6379         }
6380
6381         return 0;
6382 }
6383 #endif
6384
6385 static int memory_oom_group_show(struct seq_file *m, void *v)
6386 {
6387         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388
6389         seq_printf(m, "%d\n", memcg->oom_group);
6390
6391         return 0;
6392 }
6393
6394 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6395                                       char *buf, size_t nbytes, loff_t off)
6396 {
6397         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6398         int ret, oom_group;
6399
6400         buf = strstrip(buf);
6401         if (!buf)
6402                 return -EINVAL;
6403
6404         ret = kstrtoint(buf, 0, &oom_group);
6405         if (ret)
6406                 return ret;
6407
6408         if (oom_group != 0 && oom_group != 1)
6409                 return -EINVAL;
6410
6411         memcg->oom_group = oom_group;
6412
6413         return nbytes;
6414 }
6415
6416 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6417                               size_t nbytes, loff_t off)
6418 {
6419         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6420         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6421         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6422         int err;
6423
6424         buf = strstrip(buf);
6425         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6426         if (err)
6427                 return err;
6428
6429         while (nr_reclaimed < nr_to_reclaim) {
6430                 unsigned long reclaimed;
6431
6432                 if (signal_pending(current))
6433                         return -EINTR;
6434
6435                 /*
6436                  * This is the final attempt, drain percpu lru caches in the
6437                  * hope of introducing more evictable pages for
6438                  * try_to_free_mem_cgroup_pages().
6439                  */
6440                 if (!nr_retries)
6441                         lru_add_drain_all();
6442
6443                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6444                                                 nr_to_reclaim - nr_reclaimed,
6445                                                 GFP_KERNEL, true);
6446
6447                 if (!reclaimed && !nr_retries--)
6448                         return -EAGAIN;
6449
6450                 nr_reclaimed += reclaimed;
6451         }
6452
6453         return nbytes;
6454 }
6455
6456 static struct cftype memory_files[] = {
6457         {
6458                 .name = "current",
6459                 .flags = CFTYPE_NOT_ON_ROOT,
6460                 .read_u64 = memory_current_read,
6461         },
6462         {
6463                 .name = "peak",
6464                 .flags = CFTYPE_NOT_ON_ROOT,
6465                 .read_u64 = memory_peak_read,
6466         },
6467         {
6468                 .name = "min",
6469                 .flags = CFTYPE_NOT_ON_ROOT,
6470                 .seq_show = memory_min_show,
6471                 .write = memory_min_write,
6472         },
6473         {
6474                 .name = "low",
6475                 .flags = CFTYPE_NOT_ON_ROOT,
6476                 .seq_show = memory_low_show,
6477                 .write = memory_low_write,
6478         },
6479         {
6480                 .name = "high",
6481                 .flags = CFTYPE_NOT_ON_ROOT,
6482                 .seq_show = memory_high_show,
6483                 .write = memory_high_write,
6484         },
6485         {
6486                 .name = "max",
6487                 .flags = CFTYPE_NOT_ON_ROOT,
6488                 .seq_show = memory_max_show,
6489                 .write = memory_max_write,
6490         },
6491         {
6492                 .name = "events",
6493                 .flags = CFTYPE_NOT_ON_ROOT,
6494                 .file_offset = offsetof(struct mem_cgroup, events_file),
6495                 .seq_show = memory_events_show,
6496         },
6497         {
6498                 .name = "events.local",
6499                 .flags = CFTYPE_NOT_ON_ROOT,
6500                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6501                 .seq_show = memory_events_local_show,
6502         },
6503         {
6504                 .name = "stat",
6505                 .seq_show = memory_stat_show,
6506         },
6507 #ifdef CONFIG_NUMA
6508         {
6509                 .name = "numa_stat",
6510                 .seq_show = memory_numa_stat_show,
6511         },
6512 #endif
6513         {
6514                 .name = "oom.group",
6515                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6516                 .seq_show = memory_oom_group_show,
6517                 .write = memory_oom_group_write,
6518         },
6519         {
6520                 .name = "reclaim",
6521                 .flags = CFTYPE_NS_DELEGATABLE,
6522                 .write = memory_reclaim,
6523         },
6524         { }     /* terminate */
6525 };
6526
6527 struct cgroup_subsys memory_cgrp_subsys = {
6528         .css_alloc = mem_cgroup_css_alloc,
6529         .css_online = mem_cgroup_css_online,
6530         .css_offline = mem_cgroup_css_offline,
6531         .css_released = mem_cgroup_css_released,
6532         .css_free = mem_cgroup_css_free,
6533         .css_reset = mem_cgroup_css_reset,
6534         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6535         .can_attach = mem_cgroup_can_attach,
6536         .cancel_attach = mem_cgroup_cancel_attach,
6537         .post_attach = mem_cgroup_move_task,
6538         .dfl_cftypes = memory_files,
6539         .legacy_cftypes = mem_cgroup_legacy_files,
6540         .early_init = 0,
6541 };
6542
6543 /*
6544  * This function calculates an individual cgroup's effective
6545  * protection which is derived from its own memory.min/low, its
6546  * parent's and siblings' settings, as well as the actual memory
6547  * distribution in the tree.
6548  *
6549  * The following rules apply to the effective protection values:
6550  *
6551  * 1. At the first level of reclaim, effective protection is equal to
6552  *    the declared protection in memory.min and memory.low.
6553  *
6554  * 2. To enable safe delegation of the protection configuration, at
6555  *    subsequent levels the effective protection is capped to the
6556  *    parent's effective protection.
6557  *
6558  * 3. To make complex and dynamic subtrees easier to configure, the
6559  *    user is allowed to overcommit the declared protection at a given
6560  *    level. If that is the case, the parent's effective protection is
6561  *    distributed to the children in proportion to how much protection
6562  *    they have declared and how much of it they are utilizing.
6563  *
6564  *    This makes distribution proportional, but also work-conserving:
6565  *    if one cgroup claims much more protection than it uses memory,
6566  *    the unused remainder is available to its siblings.
6567  *
6568  * 4. Conversely, when the declared protection is undercommitted at a
6569  *    given level, the distribution of the larger parental protection
6570  *    budget is NOT proportional. A cgroup's protection from a sibling
6571  *    is capped to its own memory.min/low setting.
6572  *
6573  * 5. However, to allow protecting recursive subtrees from each other
6574  *    without having to declare each individual cgroup's fixed share
6575  *    of the ancestor's claim to protection, any unutilized -
6576  *    "floating" - protection from up the tree is distributed in
6577  *    proportion to each cgroup's *usage*. This makes the protection
6578  *    neutral wrt sibling cgroups and lets them compete freely over
6579  *    the shared parental protection budget, but it protects the
6580  *    subtree as a whole from neighboring subtrees.
6581  *
6582  * Note that 4. and 5. are not in conflict: 4. is about protecting
6583  * against immediate siblings whereas 5. is about protecting against
6584  * neighboring subtrees.
6585  */
6586 static unsigned long effective_protection(unsigned long usage,
6587                                           unsigned long parent_usage,
6588                                           unsigned long setting,
6589                                           unsigned long parent_effective,
6590                                           unsigned long siblings_protected)
6591 {
6592         unsigned long protected;
6593         unsigned long ep;
6594
6595         protected = min(usage, setting);
6596         /*
6597          * If all cgroups at this level combined claim and use more
6598          * protection then what the parent affords them, distribute
6599          * shares in proportion to utilization.
6600          *
6601          * We are using actual utilization rather than the statically
6602          * claimed protection in order to be work-conserving: claimed
6603          * but unused protection is available to siblings that would
6604          * otherwise get a smaller chunk than what they claimed.
6605          */
6606         if (siblings_protected > parent_effective)
6607                 return protected * parent_effective / siblings_protected;
6608
6609         /*
6610          * Ok, utilized protection of all children is within what the
6611          * parent affords them, so we know whatever this child claims
6612          * and utilizes is effectively protected.
6613          *
6614          * If there is unprotected usage beyond this value, reclaim
6615          * will apply pressure in proportion to that amount.
6616          *
6617          * If there is unutilized protection, the cgroup will be fully
6618          * shielded from reclaim, but we do return a smaller value for
6619          * protection than what the group could enjoy in theory. This
6620          * is okay. With the overcommit distribution above, effective
6621          * protection is always dependent on how memory is actually
6622          * consumed among the siblings anyway.
6623          */
6624         ep = protected;
6625
6626         /*
6627          * If the children aren't claiming (all of) the protection
6628          * afforded to them by the parent, distribute the remainder in
6629          * proportion to the (unprotected) memory of each cgroup. That
6630          * way, cgroups that aren't explicitly prioritized wrt each
6631          * other compete freely over the allowance, but they are
6632          * collectively protected from neighboring trees.
6633          *
6634          * We're using unprotected memory for the weight so that if
6635          * some cgroups DO claim explicit protection, we don't protect
6636          * the same bytes twice.
6637          *
6638          * Check both usage and parent_usage against the respective
6639          * protected values. One should imply the other, but they
6640          * aren't read atomically - make sure the division is sane.
6641          */
6642         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6643                 return ep;
6644         if (parent_effective > siblings_protected &&
6645             parent_usage > siblings_protected &&
6646             usage > protected) {
6647                 unsigned long unclaimed;
6648
6649                 unclaimed = parent_effective - siblings_protected;
6650                 unclaimed *= usage - protected;
6651                 unclaimed /= parent_usage - siblings_protected;
6652
6653                 ep += unclaimed;
6654         }
6655
6656         return ep;
6657 }
6658
6659 /**
6660  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6661  * @root: the top ancestor of the sub-tree being checked
6662  * @memcg: the memory cgroup to check
6663  *
6664  * WARNING: This function is not stateless! It can only be used as part
6665  *          of a top-down tree iteration, not for isolated queries.
6666  */
6667 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6668                                      struct mem_cgroup *memcg)
6669 {
6670         unsigned long usage, parent_usage;
6671         struct mem_cgroup *parent;
6672
6673         if (mem_cgroup_disabled())
6674                 return;
6675
6676         if (!root)
6677                 root = root_mem_cgroup;
6678
6679         /*
6680          * Effective values of the reclaim targets are ignored so they
6681          * can be stale. Have a look at mem_cgroup_protection for more
6682          * details.
6683          * TODO: calculation should be more robust so that we do not need
6684          * that special casing.
6685          */
6686         if (memcg == root)
6687                 return;
6688
6689         usage = page_counter_read(&memcg->memory);
6690         if (!usage)
6691                 return;
6692
6693         parent = parent_mem_cgroup(memcg);
6694
6695         if (parent == root) {
6696                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6697                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6698                 return;
6699         }
6700
6701         parent_usage = page_counter_read(&parent->memory);
6702
6703         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6704                         READ_ONCE(memcg->memory.min),
6705                         READ_ONCE(parent->memory.emin),
6706                         atomic_long_read(&parent->memory.children_min_usage)));
6707
6708         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6709                         READ_ONCE(memcg->memory.low),
6710                         READ_ONCE(parent->memory.elow),
6711                         atomic_long_read(&parent->memory.children_low_usage)));
6712 }
6713
6714 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6715                         gfp_t gfp)
6716 {
6717         long nr_pages = folio_nr_pages(folio);
6718         int ret;
6719
6720         ret = try_charge(memcg, gfp, nr_pages);
6721         if (ret)
6722                 goto out;
6723
6724         css_get(&memcg->css);
6725         commit_charge(folio, memcg);
6726
6727         local_irq_disable();
6728         mem_cgroup_charge_statistics(memcg, nr_pages);
6729         memcg_check_events(memcg, folio_nid(folio));
6730         local_irq_enable();
6731 out:
6732         return ret;
6733 }
6734
6735 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6736 {
6737         struct mem_cgroup *memcg;
6738         int ret;
6739
6740         memcg = get_mem_cgroup_from_mm(mm);
6741         ret = charge_memcg(folio, memcg, gfp);
6742         css_put(&memcg->css);
6743
6744         return ret;
6745 }
6746
6747 /**
6748  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6749  * @page: page to charge
6750  * @mm: mm context of the victim
6751  * @gfp: reclaim mode
6752  * @entry: swap entry for which the page is allocated
6753  *
6754  * This function charges a page allocated for swapin. Please call this before
6755  * adding the page to the swapcache.
6756  *
6757  * Returns 0 on success. Otherwise, an error code is returned.
6758  */
6759 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6760                                   gfp_t gfp, swp_entry_t entry)
6761 {
6762         struct folio *folio = page_folio(page);
6763         struct mem_cgroup *memcg;
6764         unsigned short id;
6765         int ret;
6766
6767         if (mem_cgroup_disabled())
6768                 return 0;
6769
6770         id = lookup_swap_cgroup_id(entry);
6771         rcu_read_lock();
6772         memcg = mem_cgroup_from_id(id);
6773         if (!memcg || !css_tryget_online(&memcg->css))
6774                 memcg = get_mem_cgroup_from_mm(mm);
6775         rcu_read_unlock();
6776
6777         ret = charge_memcg(folio, memcg, gfp);
6778
6779         css_put(&memcg->css);
6780         return ret;
6781 }
6782
6783 /*
6784  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6785  * @entry: swap entry for which the page is charged
6786  *
6787  * Call this function after successfully adding the charged page to swapcache.
6788  *
6789  * Note: This function assumes the page for which swap slot is being uncharged
6790  * is order 0 page.
6791  */
6792 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6793 {
6794         /*
6795          * Cgroup1's unified memory+swap counter has been charged with the
6796          * new swapcache page, finish the transfer by uncharging the swap
6797          * slot. The swap slot would also get uncharged when it dies, but
6798          * it can stick around indefinitely and we'd count the page twice
6799          * the entire time.
6800          *
6801          * Cgroup2 has separate resource counters for memory and swap,
6802          * so this is a non-issue here. Memory and swap charge lifetimes
6803          * correspond 1:1 to page and swap slot lifetimes: we charge the
6804          * page to memory here, and uncharge swap when the slot is freed.
6805          */
6806         if (!mem_cgroup_disabled() && do_memsw_account()) {
6807                 /*
6808                  * The swap entry might not get freed for a long time,
6809                  * let's not wait for it.  The page already received a
6810                  * memory+swap charge, drop the swap entry duplicate.
6811                  */
6812                 mem_cgroup_uncharge_swap(entry, 1);
6813         }
6814 }
6815
6816 struct uncharge_gather {
6817         struct mem_cgroup *memcg;
6818         unsigned long nr_memory;
6819         unsigned long pgpgout;
6820         unsigned long nr_kmem;
6821         int nid;
6822 };
6823
6824 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6825 {
6826         memset(ug, 0, sizeof(*ug));
6827 }
6828
6829 static void uncharge_batch(const struct uncharge_gather *ug)
6830 {
6831         unsigned long flags;
6832
6833         if (ug->nr_memory) {
6834                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6835                 if (do_memsw_account())
6836                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6837                 if (ug->nr_kmem)
6838                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6839                 memcg_oom_recover(ug->memcg);
6840         }
6841
6842         local_irq_save(flags);
6843         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6844         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6845         memcg_check_events(ug->memcg, ug->nid);
6846         local_irq_restore(flags);
6847
6848         /* drop reference from uncharge_folio */
6849         css_put(&ug->memcg->css);
6850 }
6851
6852 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6853 {
6854         long nr_pages;
6855         struct mem_cgroup *memcg;
6856         struct obj_cgroup *objcg;
6857
6858         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6859
6860         /*
6861          * Nobody should be changing or seriously looking at
6862          * folio memcg or objcg at this point, we have fully
6863          * exclusive access to the folio.
6864          */
6865         if (folio_memcg_kmem(folio)) {
6866                 objcg = __folio_objcg(folio);
6867                 /*
6868                  * This get matches the put at the end of the function and
6869                  * kmem pages do not hold memcg references anymore.
6870                  */
6871                 memcg = get_mem_cgroup_from_objcg(objcg);
6872         } else {
6873                 memcg = __folio_memcg(folio);
6874         }
6875
6876         if (!memcg)
6877                 return;
6878
6879         if (ug->memcg != memcg) {
6880                 if (ug->memcg) {
6881                         uncharge_batch(ug);
6882                         uncharge_gather_clear(ug);
6883                 }
6884                 ug->memcg = memcg;
6885                 ug->nid = folio_nid(folio);
6886
6887                 /* pairs with css_put in uncharge_batch */
6888                 css_get(&memcg->css);
6889         }
6890
6891         nr_pages = folio_nr_pages(folio);
6892
6893         if (folio_memcg_kmem(folio)) {
6894                 ug->nr_memory += nr_pages;
6895                 ug->nr_kmem += nr_pages;
6896
6897                 folio->memcg_data = 0;
6898                 obj_cgroup_put(objcg);
6899         } else {
6900                 /* LRU pages aren't accounted at the root level */
6901                 if (!mem_cgroup_is_root(memcg))
6902                         ug->nr_memory += nr_pages;
6903                 ug->pgpgout++;
6904
6905                 folio->memcg_data = 0;
6906         }
6907
6908         css_put(&memcg->css);
6909 }
6910
6911 void __mem_cgroup_uncharge(struct folio *folio)
6912 {
6913         struct uncharge_gather ug;
6914
6915         /* Don't touch folio->lru of any random page, pre-check: */
6916         if (!folio_memcg(folio))
6917                 return;
6918
6919         uncharge_gather_clear(&ug);
6920         uncharge_folio(folio, &ug);
6921         uncharge_batch(&ug);
6922 }
6923
6924 /**
6925  * __mem_cgroup_uncharge_list - uncharge a list of page
6926  * @page_list: list of pages to uncharge
6927  *
6928  * Uncharge a list of pages previously charged with
6929  * __mem_cgroup_charge().
6930  */
6931 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6932 {
6933         struct uncharge_gather ug;
6934         struct folio *folio;
6935
6936         uncharge_gather_clear(&ug);
6937         list_for_each_entry(folio, page_list, lru)
6938                 uncharge_folio(folio, &ug);
6939         if (ug.memcg)
6940                 uncharge_batch(&ug);
6941 }
6942
6943 /**
6944  * mem_cgroup_migrate - Charge a folio's replacement.
6945  * @old: Currently circulating folio.
6946  * @new: Replacement folio.
6947  *
6948  * Charge @new as a replacement folio for @old. @old will
6949  * be uncharged upon free.
6950  *
6951  * Both folios must be locked, @new->mapping must be set up.
6952  */
6953 void mem_cgroup_migrate(struct folio *old, struct folio *new)
6954 {
6955         struct mem_cgroup *memcg;
6956         long nr_pages = folio_nr_pages(new);
6957         unsigned long flags;
6958
6959         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6960         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6961         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6962         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6963
6964         if (mem_cgroup_disabled())
6965                 return;
6966
6967         /* Page cache replacement: new folio already charged? */
6968         if (folio_memcg(new))
6969                 return;
6970
6971         memcg = folio_memcg(old);
6972         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6973         if (!memcg)
6974                 return;
6975
6976         /* Force-charge the new page. The old one will be freed soon */
6977         if (!mem_cgroup_is_root(memcg)) {
6978                 page_counter_charge(&memcg->memory, nr_pages);
6979                 if (do_memsw_account())
6980                         page_counter_charge(&memcg->memsw, nr_pages);
6981         }
6982
6983         css_get(&memcg->css);
6984         commit_charge(new, memcg);
6985
6986         local_irq_save(flags);
6987         mem_cgroup_charge_statistics(memcg, nr_pages);
6988         memcg_check_events(memcg, folio_nid(new));
6989         local_irq_restore(flags);
6990 }
6991
6992 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6993 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6994
6995 void mem_cgroup_sk_alloc(struct sock *sk)
6996 {
6997         struct mem_cgroup *memcg;
6998
6999         if (!mem_cgroup_sockets_enabled)
7000                 return;
7001
7002         /* Do not associate the sock with unrelated interrupted task's memcg. */
7003         if (!in_task())
7004                 return;
7005
7006         rcu_read_lock();
7007         memcg = mem_cgroup_from_task(current);
7008         if (memcg == root_mem_cgroup)
7009                 goto out;
7010         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7011                 goto out;
7012         if (css_tryget(&memcg->css))
7013                 sk->sk_memcg = memcg;
7014 out:
7015         rcu_read_unlock();
7016 }
7017
7018 void mem_cgroup_sk_free(struct sock *sk)
7019 {
7020         if (sk->sk_memcg)
7021                 css_put(&sk->sk_memcg->css);
7022 }
7023
7024 /**
7025  * mem_cgroup_charge_skmem - charge socket memory
7026  * @memcg: memcg to charge
7027  * @nr_pages: number of pages to charge
7028  * @gfp_mask: reclaim mode
7029  *
7030  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7031  * @memcg's configured limit, %false if it doesn't.
7032  */
7033 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7034                              gfp_t gfp_mask)
7035 {
7036         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7037                 struct page_counter *fail;
7038
7039                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7040                         memcg->tcpmem_pressure = 0;
7041                         return true;
7042                 }
7043                 memcg->tcpmem_pressure = 1;
7044                 if (gfp_mask & __GFP_NOFAIL) {
7045                         page_counter_charge(&memcg->tcpmem, nr_pages);
7046                         return true;
7047                 }
7048                 return false;
7049         }
7050
7051         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7052                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7053                 return true;
7054         }
7055
7056         return false;
7057 }
7058
7059 /**
7060  * mem_cgroup_uncharge_skmem - uncharge socket memory
7061  * @memcg: memcg to uncharge
7062  * @nr_pages: number of pages to uncharge
7063  */
7064 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7065 {
7066         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7067                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7068                 return;
7069         }
7070
7071         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7072
7073         refill_stock(memcg, nr_pages);
7074 }
7075
7076 static int __init cgroup_memory(char *s)
7077 {
7078         char *token;
7079
7080         while ((token = strsep(&s, ",")) != NULL) {
7081                 if (!*token)
7082                         continue;
7083                 if (!strcmp(token, "nosocket"))
7084                         cgroup_memory_nosocket = true;
7085                 if (!strcmp(token, "nokmem"))
7086                         cgroup_memory_nokmem = true;
7087         }
7088         return 1;
7089 }
7090 __setup("cgroup.memory=", cgroup_memory);
7091
7092 /*
7093  * subsys_initcall() for memory controller.
7094  *
7095  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7096  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7097  * basically everything that doesn't depend on a specific mem_cgroup structure
7098  * should be initialized from here.
7099  */
7100 static int __init mem_cgroup_init(void)
7101 {
7102         int cpu, node;
7103
7104         /*
7105          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7106          * used for per-memcg-per-cpu caching of per-node statistics. In order
7107          * to work fine, we should make sure that the overfill threshold can't
7108          * exceed S32_MAX / PAGE_SIZE.
7109          */
7110         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7111
7112         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7113                                   memcg_hotplug_cpu_dead);
7114
7115         for_each_possible_cpu(cpu)
7116                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7117                           drain_local_stock);
7118
7119         for_each_node(node) {
7120                 struct mem_cgroup_tree_per_node *rtpn;
7121
7122                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7123                                     node_online(node) ? node : NUMA_NO_NODE);
7124
7125                 rtpn->rb_root = RB_ROOT;
7126                 rtpn->rb_rightmost = NULL;
7127                 spin_lock_init(&rtpn->lock);
7128                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7129         }
7130
7131         return 0;
7132 }
7133 subsys_initcall(mem_cgroup_init);
7134
7135 #ifdef CONFIG_MEMCG_SWAP
7136 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7137 {
7138         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7139                 /*
7140                  * The root cgroup cannot be destroyed, so it's refcount must
7141                  * always be >= 1.
7142                  */
7143                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7144                         VM_BUG_ON(1);
7145                         break;
7146                 }
7147                 memcg = parent_mem_cgroup(memcg);
7148                 if (!memcg)
7149                         memcg = root_mem_cgroup;
7150         }
7151         return memcg;
7152 }
7153
7154 /**
7155  * mem_cgroup_swapout - transfer a memsw charge to swap
7156  * @folio: folio whose memsw charge to transfer
7157  * @entry: swap entry to move the charge to
7158  *
7159  * Transfer the memsw charge of @folio to @entry.
7160  */
7161 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7162 {
7163         struct mem_cgroup *memcg, *swap_memcg;
7164         unsigned int nr_entries;
7165         unsigned short oldid;
7166
7167         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7168         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7169
7170         if (mem_cgroup_disabled())
7171                 return;
7172
7173         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7174                 return;
7175
7176         memcg = folio_memcg(folio);
7177
7178         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7179         if (!memcg)
7180                 return;
7181
7182         /*
7183          * In case the memcg owning these pages has been offlined and doesn't
7184          * have an ID allocated to it anymore, charge the closest online
7185          * ancestor for the swap instead and transfer the memory+swap charge.
7186          */
7187         swap_memcg = mem_cgroup_id_get_online(memcg);
7188         nr_entries = folio_nr_pages(folio);
7189         /* Get references for the tail pages, too */
7190         if (nr_entries > 1)
7191                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7192         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7193                                    nr_entries);
7194         VM_BUG_ON_FOLIO(oldid, folio);
7195         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7196
7197         folio->memcg_data = 0;
7198
7199         if (!mem_cgroup_is_root(memcg))
7200                 page_counter_uncharge(&memcg->memory, nr_entries);
7201
7202         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7203                 if (!mem_cgroup_is_root(swap_memcg))
7204                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7205                 page_counter_uncharge(&memcg->memsw, nr_entries);
7206         }
7207
7208         /*
7209          * Interrupts should be disabled here because the caller holds the
7210          * i_pages lock which is taken with interrupts-off. It is
7211          * important here to have the interrupts disabled because it is the
7212          * only synchronisation we have for updating the per-CPU variables.
7213          */
7214         memcg_stats_lock();
7215         mem_cgroup_charge_statistics(memcg, -nr_entries);
7216         memcg_stats_unlock();
7217         memcg_check_events(memcg, folio_nid(folio));
7218
7219         css_put(&memcg->css);
7220 }
7221
7222 /**
7223  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7224  * @folio: folio being added to swap
7225  * @entry: swap entry to charge
7226  *
7227  * Try to charge @folio's memcg for the swap space at @entry.
7228  *
7229  * Returns 0 on success, -ENOMEM on failure.
7230  */
7231 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7232 {
7233         unsigned int nr_pages = folio_nr_pages(folio);
7234         struct page_counter *counter;
7235         struct mem_cgroup *memcg;
7236         unsigned short oldid;
7237
7238         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7239                 return 0;
7240
7241         memcg = folio_memcg(folio);
7242
7243         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7244         if (!memcg)
7245                 return 0;
7246
7247         if (!entry.val) {
7248                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7249                 return 0;
7250         }
7251
7252         memcg = mem_cgroup_id_get_online(memcg);
7253
7254         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7255             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7256                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7257                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7258                 mem_cgroup_id_put(memcg);
7259                 return -ENOMEM;
7260         }
7261
7262         /* Get references for the tail pages, too */
7263         if (nr_pages > 1)
7264                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7265         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7266         VM_BUG_ON_FOLIO(oldid, folio);
7267         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7268
7269         return 0;
7270 }
7271
7272 /**
7273  * __mem_cgroup_uncharge_swap - uncharge swap space
7274  * @entry: swap entry to uncharge
7275  * @nr_pages: the amount of swap space to uncharge
7276  */
7277 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7278 {
7279         struct mem_cgroup *memcg;
7280         unsigned short id;
7281
7282         id = swap_cgroup_record(entry, 0, nr_pages);
7283         rcu_read_lock();
7284         memcg = mem_cgroup_from_id(id);
7285         if (memcg) {
7286                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7287                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7288                                 page_counter_uncharge(&memcg->swap, nr_pages);
7289                         else
7290                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7291                 }
7292                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7293                 mem_cgroup_id_put_many(memcg, nr_pages);
7294         }
7295         rcu_read_unlock();
7296 }
7297
7298 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7299 {
7300         long nr_swap_pages = get_nr_swap_pages();
7301
7302         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7303                 return nr_swap_pages;
7304         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7305                 nr_swap_pages = min_t(long, nr_swap_pages,
7306                                       READ_ONCE(memcg->swap.max) -
7307                                       page_counter_read(&memcg->swap));
7308         return nr_swap_pages;
7309 }
7310
7311 bool mem_cgroup_swap_full(struct page *page)
7312 {
7313         struct mem_cgroup *memcg;
7314
7315         VM_BUG_ON_PAGE(!PageLocked(page), page);
7316
7317         if (vm_swap_full())
7318                 return true;
7319         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7320                 return false;
7321
7322         memcg = page_memcg(page);
7323         if (!memcg)
7324                 return false;
7325
7326         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7327                 unsigned long usage = page_counter_read(&memcg->swap);
7328
7329                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7330                     usage * 2 >= READ_ONCE(memcg->swap.max))
7331                         return true;
7332         }
7333
7334         return false;
7335 }
7336
7337 static int __init setup_swap_account(char *s)
7338 {
7339         if (!strcmp(s, "1"))
7340                 cgroup_memory_noswap = false;
7341         else if (!strcmp(s, "0"))
7342                 cgroup_memory_noswap = true;
7343         return 1;
7344 }
7345 __setup("swapaccount=", setup_swap_account);
7346
7347 static u64 swap_current_read(struct cgroup_subsys_state *css,
7348                              struct cftype *cft)
7349 {
7350         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7351
7352         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7353 }
7354
7355 static int swap_high_show(struct seq_file *m, void *v)
7356 {
7357         return seq_puts_memcg_tunable(m,
7358                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7359 }
7360
7361 static ssize_t swap_high_write(struct kernfs_open_file *of,
7362                                char *buf, size_t nbytes, loff_t off)
7363 {
7364         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7365         unsigned long high;
7366         int err;
7367
7368         buf = strstrip(buf);
7369         err = page_counter_memparse(buf, "max", &high);
7370         if (err)
7371                 return err;
7372
7373         page_counter_set_high(&memcg->swap, high);
7374
7375         return nbytes;
7376 }
7377
7378 static int swap_max_show(struct seq_file *m, void *v)
7379 {
7380         return seq_puts_memcg_tunable(m,
7381                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7382 }
7383
7384 static ssize_t swap_max_write(struct kernfs_open_file *of,
7385                               char *buf, size_t nbytes, loff_t off)
7386 {
7387         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7388         unsigned long max;
7389         int err;
7390
7391         buf = strstrip(buf);
7392         err = page_counter_memparse(buf, "max", &max);
7393         if (err)
7394                 return err;
7395
7396         xchg(&memcg->swap.max, max);
7397
7398         return nbytes;
7399 }
7400
7401 static int swap_events_show(struct seq_file *m, void *v)
7402 {
7403         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7404
7405         seq_printf(m, "high %lu\n",
7406                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7407         seq_printf(m, "max %lu\n",
7408                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7409         seq_printf(m, "fail %lu\n",
7410                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7411
7412         return 0;
7413 }
7414
7415 static struct cftype swap_files[] = {
7416         {
7417                 .name = "swap.current",
7418                 .flags = CFTYPE_NOT_ON_ROOT,
7419                 .read_u64 = swap_current_read,
7420         },
7421         {
7422                 .name = "swap.high",
7423                 .flags = CFTYPE_NOT_ON_ROOT,
7424                 .seq_show = swap_high_show,
7425                 .write = swap_high_write,
7426         },
7427         {
7428                 .name = "swap.max",
7429                 .flags = CFTYPE_NOT_ON_ROOT,
7430                 .seq_show = swap_max_show,
7431                 .write = swap_max_write,
7432         },
7433         {
7434                 .name = "swap.events",
7435                 .flags = CFTYPE_NOT_ON_ROOT,
7436                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7437                 .seq_show = swap_events_show,
7438         },
7439         { }     /* terminate */
7440 };
7441
7442 static struct cftype memsw_files[] = {
7443         {
7444                 .name = "memsw.usage_in_bytes",
7445                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7446                 .read_u64 = mem_cgroup_read_u64,
7447         },
7448         {
7449                 .name = "memsw.max_usage_in_bytes",
7450                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7451                 .write = mem_cgroup_reset,
7452                 .read_u64 = mem_cgroup_read_u64,
7453         },
7454         {
7455                 .name = "memsw.limit_in_bytes",
7456                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7457                 .write = mem_cgroup_write,
7458                 .read_u64 = mem_cgroup_read_u64,
7459         },
7460         {
7461                 .name = "memsw.failcnt",
7462                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7463                 .write = mem_cgroup_reset,
7464                 .read_u64 = mem_cgroup_read_u64,
7465         },
7466         { },    /* terminate */
7467 };
7468
7469 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7470 /**
7471  * obj_cgroup_may_zswap - check if this cgroup can zswap
7472  * @objcg: the object cgroup
7473  *
7474  * Check if the hierarchical zswap limit has been reached.
7475  *
7476  * This doesn't check for specific headroom, and it is not atomic
7477  * either. But with zswap, the size of the allocation is only known
7478  * once compression has occured, and this optimistic pre-check avoids
7479  * spending cycles on compression when there is already no room left
7480  * or zswap is disabled altogether somewhere in the hierarchy.
7481  */
7482 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7483 {
7484         struct mem_cgroup *memcg, *original_memcg;
7485         bool ret = true;
7486
7487         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7488                 return true;
7489
7490         original_memcg = get_mem_cgroup_from_objcg(objcg);
7491         for (memcg = original_memcg; memcg != root_mem_cgroup;
7492              memcg = parent_mem_cgroup(memcg)) {
7493                 unsigned long max = READ_ONCE(memcg->zswap_max);
7494                 unsigned long pages;
7495
7496                 if (max == PAGE_COUNTER_MAX)
7497                         continue;
7498                 if (max == 0) {
7499                         ret = false;
7500                         break;
7501                 }
7502
7503                 cgroup_rstat_flush(memcg->css.cgroup);
7504                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7505                 if (pages < max)
7506                         continue;
7507                 ret = false;
7508                 break;
7509         }
7510         mem_cgroup_put(original_memcg);
7511         return ret;
7512 }
7513
7514 /**
7515  * obj_cgroup_charge_zswap - charge compression backend memory
7516  * @objcg: the object cgroup
7517  * @size: size of compressed object
7518  *
7519  * This forces the charge after obj_cgroup_may_swap() allowed
7520  * compression and storage in zwap for this cgroup to go ahead.
7521  */
7522 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7523 {
7524         struct mem_cgroup *memcg;
7525
7526         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7527                 return;
7528
7529         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7530
7531         /* PF_MEMALLOC context, charging must succeed */
7532         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7533                 VM_WARN_ON_ONCE(1);
7534
7535         rcu_read_lock();
7536         memcg = obj_cgroup_memcg(objcg);
7537         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7538         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7539         rcu_read_unlock();
7540 }
7541
7542 /**
7543  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7544  * @objcg: the object cgroup
7545  * @size: size of compressed object
7546  *
7547  * Uncharges zswap memory on page in.
7548  */
7549 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7550 {
7551         struct mem_cgroup *memcg;
7552
7553         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7554                 return;
7555
7556         obj_cgroup_uncharge(objcg, size);
7557
7558         rcu_read_lock();
7559         memcg = obj_cgroup_memcg(objcg);
7560         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7561         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7562         rcu_read_unlock();
7563 }
7564
7565 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7566                               struct cftype *cft)
7567 {
7568         cgroup_rstat_flush(css->cgroup);
7569         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7570 }
7571
7572 static int zswap_max_show(struct seq_file *m, void *v)
7573 {
7574         return seq_puts_memcg_tunable(m,
7575                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7576 }
7577
7578 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7579                                char *buf, size_t nbytes, loff_t off)
7580 {
7581         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7582         unsigned long max;
7583         int err;
7584
7585         buf = strstrip(buf);
7586         err = page_counter_memparse(buf, "max", &max);
7587         if (err)
7588                 return err;
7589
7590         xchg(&memcg->zswap_max, max);
7591
7592         return nbytes;
7593 }
7594
7595 static struct cftype zswap_files[] = {
7596         {
7597                 .name = "zswap.current",
7598                 .flags = CFTYPE_NOT_ON_ROOT,
7599                 .read_u64 = zswap_current_read,
7600         },
7601         {
7602                 .name = "zswap.max",
7603                 .flags = CFTYPE_NOT_ON_ROOT,
7604                 .seq_show = zswap_max_show,
7605                 .write = zswap_max_write,
7606         },
7607         { }     /* terminate */
7608 };
7609 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7610
7611 /*
7612  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7613  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7614  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7615  * boot parameter. This may result in premature OOPS inside
7616  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7617  */
7618 static int __init mem_cgroup_swap_init(void)
7619 {
7620         /* No memory control -> no swap control */
7621         if (mem_cgroup_disabled())
7622                 cgroup_memory_noswap = true;
7623
7624         if (cgroup_memory_noswap)
7625                 return 0;
7626
7627         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7628         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7629 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7630         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7631 #endif
7632         return 0;
7633 }
7634 core_initcall(mem_cgroup_swap_init);
7635
7636 #endif /* CONFIG_MEMCG_SWAP */