1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
65 #include <linux/uaccess.h>
67 #include <trace/events/vmscan.h>
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
72 struct mem_cgroup *root_mem_cgroup __read_mostly;
74 #define MEM_CGROUP_RECLAIM_RETRIES 5
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
86 #define do_swap_account 0
89 /* Whether legacy memory+swap accounting is active */
90 static bool do_memsw_account(void)
92 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
95 static const char *const mem_cgroup_lru_names[] = {
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105 #define NUMAINFO_EVENTS_TARGET 1024
108 * Cgroups above their limits are maintained in a RB-Tree, independent of
109 * their hierarchy representation
112 struct mem_cgroup_tree_per_node {
113 struct rb_root rb_root;
114 struct rb_node *rb_rightmost;
118 struct mem_cgroup_tree {
119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125 struct mem_cgroup_eventfd_list {
126 struct list_head list;
127 struct eventfd_ctx *eventfd;
131 * cgroup_event represents events which userspace want to receive.
133 struct mem_cgroup_event {
135 * memcg which the event belongs to.
137 struct mem_cgroup *memcg;
139 * eventfd to signal userspace about the event.
141 struct eventfd_ctx *eventfd;
143 * Each of these stored in a list by the cgroup.
145 struct list_head list;
147 * register_event() callback will be used to add new userspace
148 * waiter for changes related to this event. Use eventfd_signal()
149 * on eventfd to send notification to userspace.
151 int (*register_event)(struct mem_cgroup *memcg,
152 struct eventfd_ctx *eventfd, const char *args);
154 * unregister_event() callback will be called when userspace closes
155 * the eventfd or on cgroup removing. This callback must be set,
156 * if you want provide notification functionality.
158 void (*unregister_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd);
161 * All fields below needed to unregister event when
162 * userspace closes eventfd.
165 wait_queue_head_t *wqh;
166 wait_queue_entry_t wait;
167 struct work_struct remove;
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 /* Stuffs for move charges at task migration. */
175 * Types of charges to be moved.
177 #define MOVE_ANON 0x1U
178 #define MOVE_FILE 0x2U
179 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183 spinlock_t lock; /* for from, to */
184 struct mm_struct *mm;
185 struct mem_cgroup *from;
186 struct mem_cgroup *to;
188 unsigned long precharge;
189 unsigned long moved_charge;
190 unsigned long moved_swap;
191 struct task_struct *moving_task; /* a task moving charges */
192 wait_queue_head_t waitq; /* a waitq for other context */
194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200 * limit reclaim to prevent infinite loops, if they ever occur.
202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
207 MEM_CGROUP_CHARGE_TYPE_ANON,
208 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
209 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
213 /* for encoding cft->private value on file */
222 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
223 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
224 #define MEMFILE_ATTR(val) ((val) & 0xffff)
225 /* Used for OOM nofiier */
226 #define OOM_CONTROL (0)
229 * Iteration constructs for visiting all cgroups (under a tree). If
230 * loops are exited prematurely (break), mem_cgroup_iter_break() must
231 * be used for reference counting.
233 #define for_each_mem_cgroup_tree(iter, root) \
234 for (iter = mem_cgroup_iter(root, NULL, NULL); \
236 iter = mem_cgroup_iter(root, iter, NULL))
238 #define for_each_mem_cgroup(iter) \
239 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
241 iter = mem_cgroup_iter(NULL, iter, NULL))
243 static inline bool should_force_charge(void)
245 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
246 (current->flags & PF_EXITING);
249 /* Some nice accessors for the vmpressure. */
250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262 #ifdef CONFIG_MEMCG_KMEM
264 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
265 * The main reason for not using cgroup id for this:
266 * this works better in sparse environments, where we have a lot of memcgs,
267 * but only a few kmem-limited. Or also, if we have, for instance, 200
268 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
269 * 200 entry array for that.
271 * The current size of the caches array is stored in memcg_nr_cache_ids. It
272 * will double each time we have to increase it.
274 static DEFINE_IDA(memcg_cache_ida);
275 int memcg_nr_cache_ids;
277 /* Protects memcg_nr_cache_ids */
278 static DECLARE_RWSEM(memcg_cache_ids_sem);
280 void memcg_get_cache_ids(void)
282 down_read(&memcg_cache_ids_sem);
285 void memcg_put_cache_ids(void)
287 up_read(&memcg_cache_ids_sem);
291 * MIN_SIZE is different than 1, because we would like to avoid going through
292 * the alloc/free process all the time. In a small machine, 4 kmem-limited
293 * cgroups is a reasonable guess. In the future, it could be a parameter or
294 * tunable, but that is strictly not necessary.
296 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
297 * this constant directly from cgroup, but it is understandable that this is
298 * better kept as an internal representation in cgroup.c. In any case, the
299 * cgrp_id space is not getting any smaller, and we don't have to necessarily
300 * increase ours as well if it increases.
302 #define MEMCG_CACHES_MIN_SIZE 4
303 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
306 * A lot of the calls to the cache allocation functions are expected to be
307 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
308 * conditional to this static branch, we'll have to allow modules that does
309 * kmem_cache_alloc and the such to see this symbol as well
311 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
312 EXPORT_SYMBOL(memcg_kmem_enabled_key);
314 struct workqueue_struct *memcg_kmem_cache_wq;
316 static int memcg_shrinker_map_size;
317 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
325 int size, int old_size)
327 struct memcg_shrinker_map *new, *old;
330 lockdep_assert_held(&memcg_shrinker_map_mutex);
333 old = rcu_dereference_protected(
334 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
335 /* Not yet online memcg */
339 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
343 /* Set all old bits, clear all new bits */
344 memset(new->map, (int)0xff, old_size);
345 memset((void *)new->map + old_size, 0, size - old_size);
347 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
348 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
354 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356 struct mem_cgroup_per_node *pn;
357 struct memcg_shrinker_map *map;
360 if (mem_cgroup_is_root(memcg))
364 pn = mem_cgroup_nodeinfo(memcg, nid);
365 map = rcu_dereference_protected(pn->shrinker_map, true);
368 rcu_assign_pointer(pn->shrinker_map, NULL);
372 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374 struct memcg_shrinker_map *map;
375 int nid, size, ret = 0;
377 if (mem_cgroup_is_root(memcg))
380 mutex_lock(&memcg_shrinker_map_mutex);
381 size = memcg_shrinker_map_size;
383 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 memcg_free_shrinker_maps(memcg);
389 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 mutex_unlock(&memcg_shrinker_map_mutex);
396 int memcg_expand_shrinker_maps(int new_id)
398 int size, old_size, ret = 0;
399 struct mem_cgroup *memcg;
401 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
402 old_size = memcg_shrinker_map_size;
403 if (size <= old_size)
406 mutex_lock(&memcg_shrinker_map_mutex);
407 if (!root_mem_cgroup)
410 for_each_mem_cgroup(memcg) {
411 if (mem_cgroup_is_root(memcg))
413 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
438 #else /* CONFIG_MEMCG_KMEM */
439 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
443 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
444 #endif /* CONFIG_MEMCG_KMEM */
447 * mem_cgroup_css_from_page - css of the memcg associated with a page
448 * @page: page of interest
450 * If memcg is bound to the default hierarchy, css of the memcg associated
451 * with @page is returned. The returned css remains associated with @page
452 * until it is released.
454 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 struct mem_cgroup *memcg;
461 memcg = page->mem_cgroup;
463 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
464 memcg = root_mem_cgroup;
470 * page_cgroup_ino - return inode number of the memcg a page is charged to
473 * Look up the closest online ancestor of the memory cgroup @page is charged to
474 * and return its inode number or 0 if @page is not charged to any cgroup. It
475 * is safe to call this function without holding a reference to @page.
477 * Note, this function is inherently racy, because there is nothing to prevent
478 * the cgroup inode from getting torn down and potentially reallocated a moment
479 * after page_cgroup_ino() returns, so it only should be used by callers that
480 * do not care (such as procfs interfaces).
482 ino_t page_cgroup_ino(struct page *page)
484 struct mem_cgroup *memcg;
485 unsigned long ino = 0;
488 memcg = READ_ONCE(page->mem_cgroup);
489 while (memcg && !(memcg->css.flags & CSS_ONLINE))
490 memcg = parent_mem_cgroup(memcg);
492 ino = cgroup_ino(memcg->css.cgroup);
497 static struct mem_cgroup_per_node *
498 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
500 int nid = page_to_nid(page);
502 return memcg->nodeinfo[nid];
505 static struct mem_cgroup_tree_per_node *
506 soft_limit_tree_node(int nid)
508 return soft_limit_tree.rb_tree_per_node[nid];
511 static struct mem_cgroup_tree_per_node *
512 soft_limit_tree_from_page(struct page *page)
514 int nid = page_to_nid(page);
516 return soft_limit_tree.rb_tree_per_node[nid];
519 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
520 struct mem_cgroup_tree_per_node *mctz,
521 unsigned long new_usage_in_excess)
523 struct rb_node **p = &mctz->rb_root.rb_node;
524 struct rb_node *parent = NULL;
525 struct mem_cgroup_per_node *mz_node;
526 bool rightmost = true;
531 mz->usage_in_excess = new_usage_in_excess;
532 if (!mz->usage_in_excess)
536 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
538 if (mz->usage_in_excess < mz_node->usage_in_excess) {
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 mctz->rb_rightmost = &mz->tree_node;
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
559 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
560 struct mem_cgroup_tree_per_node *mctz)
565 if (&mz->tree_node == mctz->rb_rightmost)
566 mctz->rb_rightmost = rb_prev(&mz->tree_node);
568 rb_erase(&mz->tree_node, &mctz->rb_root);
572 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
573 struct mem_cgroup_tree_per_node *mctz)
577 spin_lock_irqsave(&mctz->lock, flags);
578 __mem_cgroup_remove_exceeded(mz, mctz);
579 spin_unlock_irqrestore(&mctz->lock, flags);
582 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
584 unsigned long nr_pages = page_counter_read(&memcg->memory);
585 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
586 unsigned long excess = 0;
588 if (nr_pages > soft_limit)
589 excess = nr_pages - soft_limit;
594 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
596 unsigned long excess;
597 struct mem_cgroup_per_node *mz;
598 struct mem_cgroup_tree_per_node *mctz;
600 mctz = soft_limit_tree_from_page(page);
604 * Necessary to update all ancestors when hierarchy is used.
605 * because their event counter is not touched.
607 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
608 mz = mem_cgroup_page_nodeinfo(memcg, page);
609 excess = soft_limit_excess(memcg);
611 * We have to update the tree if mz is on RB-tree or
612 * mem is over its softlimit.
614 if (excess || mz->on_tree) {
617 spin_lock_irqsave(&mctz->lock, flags);
618 /* if on-tree, remove it */
620 __mem_cgroup_remove_exceeded(mz, mctz);
622 * Insert again. mz->usage_in_excess will be updated.
623 * If excess is 0, no tree ops.
625 __mem_cgroup_insert_exceeded(mz, mctz, excess);
626 spin_unlock_irqrestore(&mctz->lock, flags);
631 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
633 struct mem_cgroup_tree_per_node *mctz;
634 struct mem_cgroup_per_node *mz;
638 mz = mem_cgroup_nodeinfo(memcg, nid);
639 mctz = soft_limit_tree_node(nid);
641 mem_cgroup_remove_exceeded(mz, mctz);
645 static struct mem_cgroup_per_node *
646 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
648 struct mem_cgroup_per_node *mz;
652 if (!mctz->rb_rightmost)
653 goto done; /* Nothing to reclaim from */
655 mz = rb_entry(mctz->rb_rightmost,
656 struct mem_cgroup_per_node, tree_node);
658 * Remove the node now but someone else can add it back,
659 * we will to add it back at the end of reclaim to its correct
660 * position in the tree.
662 __mem_cgroup_remove_exceeded(mz, mctz);
663 if (!soft_limit_excess(mz->memcg) ||
664 !css_tryget_online(&mz->memcg->css))
670 static struct mem_cgroup_per_node *
671 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
673 struct mem_cgroup_per_node *mz;
675 spin_lock_irq(&mctz->lock);
676 mz = __mem_cgroup_largest_soft_limit_node(mctz);
677 spin_unlock_irq(&mctz->lock);
682 * __mod_memcg_state - update cgroup memory statistics
683 * @memcg: the memory cgroup
684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685 * @val: delta to add to the counter, can be negative
687 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
691 if (mem_cgroup_disabled())
694 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
695 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
696 struct mem_cgroup *mi;
698 atomic_long_add(x, &memcg->vmstats_local[idx]);
699 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
700 atomic_long_add(x, &mi->vmstats[idx]);
703 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
706 static struct mem_cgroup_per_node *
707 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
709 struct mem_cgroup *parent;
711 parent = parent_mem_cgroup(pn->memcg);
714 return mem_cgroup_nodeinfo(parent, nid);
718 * __mod_lruvec_state - update lruvec memory statistics
719 * @lruvec: the lruvec
720 * @idx: the stat item
721 * @val: delta to add to the counter, can be negative
723 * The lruvec is the intersection of the NUMA node and a cgroup. This
724 * function updates the all three counters that are affected by a
725 * change of state at this level: per-node, per-cgroup, per-lruvec.
727 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
730 pg_data_t *pgdat = lruvec_pgdat(lruvec);
731 struct mem_cgroup_per_node *pn;
732 struct mem_cgroup *memcg;
736 __mod_node_page_state(pgdat, idx, val);
738 if (mem_cgroup_disabled())
741 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
745 __mod_memcg_state(memcg, idx, val);
748 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
749 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
750 struct mem_cgroup_per_node *pi;
752 atomic_long_add(x, &pn->lruvec_stat_local[idx]);
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
761 * __count_memcg_events - account VM events in a cgroup
762 * @memcg: the memory cgroup
763 * @idx: the event item
764 * @count: the number of events that occured
766 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
771 if (mem_cgroup_disabled())
774 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
775 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
776 struct mem_cgroup *mi;
778 atomic_long_add(x, &memcg->vmevents_local[idx]);
779 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
780 atomic_long_add(x, &mi->vmevents[idx]);
783 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
786 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
788 return atomic_long_read(&memcg->vmevents[event]);
791 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
793 return atomic_long_read(&memcg->vmevents_local[event]);
796 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
798 bool compound, int nr_pages)
801 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
802 * counted as CACHE even if it's on ANON LRU.
805 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
807 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
808 if (PageSwapBacked(page))
809 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
813 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
814 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
817 /* pagein of a big page is an event. So, ignore page size */
819 __count_memcg_events(memcg, PGPGIN, 1);
821 __count_memcg_events(memcg, PGPGOUT, 1);
822 nr_pages = -nr_pages; /* for event */
825 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
828 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
829 enum mem_cgroup_events_target target)
831 unsigned long val, next;
833 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
834 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
835 /* from time_after() in jiffies.h */
836 if ((long)(next - val) < 0) {
838 case MEM_CGROUP_TARGET_THRESH:
839 next = val + THRESHOLDS_EVENTS_TARGET;
841 case MEM_CGROUP_TARGET_SOFTLIMIT:
842 next = val + SOFTLIMIT_EVENTS_TARGET;
844 case MEM_CGROUP_TARGET_NUMAINFO:
845 next = val + NUMAINFO_EVENTS_TARGET;
850 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
857 * Check events in order.
860 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
862 /* threshold event is triggered in finer grain than soft limit */
863 if (unlikely(mem_cgroup_event_ratelimit(memcg,
864 MEM_CGROUP_TARGET_THRESH))) {
866 bool do_numainfo __maybe_unused;
868 do_softlimit = mem_cgroup_event_ratelimit(memcg,
869 MEM_CGROUP_TARGET_SOFTLIMIT);
871 do_numainfo = mem_cgroup_event_ratelimit(memcg,
872 MEM_CGROUP_TARGET_NUMAINFO);
874 mem_cgroup_threshold(memcg);
875 if (unlikely(do_softlimit))
876 mem_cgroup_update_tree(memcg, page);
878 if (unlikely(do_numainfo))
879 atomic_inc(&memcg->numainfo_events);
884 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
887 * mm_update_next_owner() may clear mm->owner to NULL
888 * if it races with swapoff, page migration, etc.
889 * So this can be called with p == NULL.
894 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
896 EXPORT_SYMBOL(mem_cgroup_from_task);
899 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
900 * @mm: mm from which memcg should be extracted. It can be NULL.
902 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
903 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
906 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
908 struct mem_cgroup *memcg;
910 if (mem_cgroup_disabled())
916 * Page cache insertions can happen withou an
917 * actual mm context, e.g. during disk probing
918 * on boot, loopback IO, acct() writes etc.
921 memcg = root_mem_cgroup;
923 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
924 if (unlikely(!memcg))
925 memcg = root_mem_cgroup;
927 } while (!css_tryget_online(&memcg->css));
931 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
934 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
935 * @page: page from which memcg should be extracted.
937 * Obtain a reference on page->memcg and returns it if successful. Otherwise
938 * root_mem_cgroup is returned.
940 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
942 struct mem_cgroup *memcg = page->mem_cgroup;
944 if (mem_cgroup_disabled())
948 if (!memcg || !css_tryget_online(&memcg->css))
949 memcg = root_mem_cgroup;
953 EXPORT_SYMBOL(get_mem_cgroup_from_page);
956 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
958 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
960 if (unlikely(current->active_memcg)) {
961 struct mem_cgroup *memcg = root_mem_cgroup;
964 if (css_tryget_online(¤t->active_memcg->css))
965 memcg = current->active_memcg;
969 return get_mem_cgroup_from_mm(current->mm);
973 * mem_cgroup_iter - iterate over memory cgroup hierarchy
974 * @root: hierarchy root
975 * @prev: previously returned memcg, NULL on first invocation
976 * @reclaim: cookie for shared reclaim walks, NULL for full walks
978 * Returns references to children of the hierarchy below @root, or
979 * @root itself, or %NULL after a full round-trip.
981 * Caller must pass the return value in @prev on subsequent
982 * invocations for reference counting, or use mem_cgroup_iter_break()
983 * to cancel a hierarchy walk before the round-trip is complete.
985 * Reclaimers can specify a node and a priority level in @reclaim to
986 * divide up the memcgs in the hierarchy among all concurrent
987 * reclaimers operating on the same node and priority.
989 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
990 struct mem_cgroup *prev,
991 struct mem_cgroup_reclaim_cookie *reclaim)
993 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
994 struct cgroup_subsys_state *css = NULL;
995 struct mem_cgroup *memcg = NULL;
996 struct mem_cgroup *pos = NULL;
998 if (mem_cgroup_disabled())
1002 root = root_mem_cgroup;
1004 if (prev && !reclaim)
1007 if (!root->use_hierarchy && root != root_mem_cgroup) {
1016 struct mem_cgroup_per_node *mz;
1018 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1019 iter = &mz->iter[reclaim->priority];
1021 if (prev && reclaim->generation != iter->generation)
1025 pos = READ_ONCE(iter->position);
1026 if (!pos || css_tryget(&pos->css))
1029 * css reference reached zero, so iter->position will
1030 * be cleared by ->css_released. However, we should not
1031 * rely on this happening soon, because ->css_released
1032 * is called from a work queue, and by busy-waiting we
1033 * might block it. So we clear iter->position right
1036 (void)cmpxchg(&iter->position, pos, NULL);
1044 css = css_next_descendant_pre(css, &root->css);
1047 * Reclaimers share the hierarchy walk, and a
1048 * new one might jump in right at the end of
1049 * the hierarchy - make sure they see at least
1050 * one group and restart from the beginning.
1058 * Verify the css and acquire a reference. The root
1059 * is provided by the caller, so we know it's alive
1060 * and kicking, and don't take an extra reference.
1062 memcg = mem_cgroup_from_css(css);
1064 if (css == &root->css)
1067 if (css_tryget(css))
1075 * The position could have already been updated by a competing
1076 * thread, so check that the value hasn't changed since we read
1077 * it to avoid reclaiming from the same cgroup twice.
1079 (void)cmpxchg(&iter->position, pos, memcg);
1087 reclaim->generation = iter->generation;
1093 if (prev && prev != root)
1094 css_put(&prev->css);
1100 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1101 * @root: hierarchy root
1102 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1104 void mem_cgroup_iter_break(struct mem_cgroup *root,
1105 struct mem_cgroup *prev)
1108 root = root_mem_cgroup;
1109 if (prev && prev != root)
1110 css_put(&prev->css);
1113 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1115 struct mem_cgroup *memcg = dead_memcg;
1116 struct mem_cgroup_reclaim_iter *iter;
1117 struct mem_cgroup_per_node *mz;
1121 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1122 for_each_node(nid) {
1123 mz = mem_cgroup_nodeinfo(memcg, nid);
1124 for (i = 0; i <= DEF_PRIORITY; i++) {
1125 iter = &mz->iter[i];
1126 cmpxchg(&iter->position,
1134 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1135 * @memcg: hierarchy root
1136 * @fn: function to call for each task
1137 * @arg: argument passed to @fn
1139 * This function iterates over tasks attached to @memcg or to any of its
1140 * descendants and calls @fn for each task. If @fn returns a non-zero
1141 * value, the function breaks the iteration loop and returns the value.
1142 * Otherwise, it will iterate over all tasks and return 0.
1144 * This function must not be called for the root memory cgroup.
1146 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1147 int (*fn)(struct task_struct *, void *), void *arg)
1149 struct mem_cgroup *iter;
1152 BUG_ON(memcg == root_mem_cgroup);
1154 for_each_mem_cgroup_tree(iter, memcg) {
1155 struct css_task_iter it;
1156 struct task_struct *task;
1158 css_task_iter_start(&iter->css, 0, &it);
1159 while (!ret && (task = css_task_iter_next(&it)))
1160 ret = fn(task, arg);
1161 css_task_iter_end(&it);
1163 mem_cgroup_iter_break(memcg, iter);
1171 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1173 * @pgdat: pgdat of the page
1175 * This function is only safe when following the LRU page isolation
1176 * and putback protocol: the LRU lock must be held, and the page must
1177 * either be PageLRU() or the caller must have isolated/allocated it.
1179 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1181 struct mem_cgroup_per_node *mz;
1182 struct mem_cgroup *memcg;
1183 struct lruvec *lruvec;
1185 if (mem_cgroup_disabled()) {
1186 lruvec = &pgdat->lruvec;
1190 memcg = page->mem_cgroup;
1192 * Swapcache readahead pages are added to the LRU - and
1193 * possibly migrated - before they are charged.
1196 memcg = root_mem_cgroup;
1198 mz = mem_cgroup_page_nodeinfo(memcg, page);
1199 lruvec = &mz->lruvec;
1202 * Since a node can be onlined after the mem_cgroup was created,
1203 * we have to be prepared to initialize lruvec->zone here;
1204 * and if offlined then reonlined, we need to reinitialize it.
1206 if (unlikely(lruvec->pgdat != pgdat))
1207 lruvec->pgdat = pgdat;
1212 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1213 * @lruvec: mem_cgroup per zone lru vector
1214 * @lru: index of lru list the page is sitting on
1215 * @zid: zone id of the accounted pages
1216 * @nr_pages: positive when adding or negative when removing
1218 * This function must be called under lru_lock, just before a page is added
1219 * to or just after a page is removed from an lru list (that ordering being
1220 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1222 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1223 int zid, int nr_pages)
1225 struct mem_cgroup_per_node *mz;
1226 unsigned long *lru_size;
1229 if (mem_cgroup_disabled())
1232 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1233 lru_size = &mz->lru_zone_size[zid][lru];
1236 *lru_size += nr_pages;
1239 if (WARN_ONCE(size < 0,
1240 "%s(%p, %d, %d): lru_size %ld\n",
1241 __func__, lruvec, lru, nr_pages, size)) {
1247 *lru_size += nr_pages;
1250 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1252 struct mem_cgroup *task_memcg;
1253 struct task_struct *p;
1256 p = find_lock_task_mm(task);
1258 task_memcg = get_mem_cgroup_from_mm(p->mm);
1262 * All threads may have already detached their mm's, but the oom
1263 * killer still needs to detect if they have already been oom
1264 * killed to prevent needlessly killing additional tasks.
1267 task_memcg = mem_cgroup_from_task(task);
1268 css_get(&task_memcg->css);
1271 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1272 css_put(&task_memcg->css);
1277 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1278 * @memcg: the memory cgroup
1280 * Returns the maximum amount of memory @mem can be charged with, in
1283 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1285 unsigned long margin = 0;
1286 unsigned long count;
1287 unsigned long limit;
1289 count = page_counter_read(&memcg->memory);
1290 limit = READ_ONCE(memcg->memory.max);
1292 margin = limit - count;
1294 if (do_memsw_account()) {
1295 count = page_counter_read(&memcg->memsw);
1296 limit = READ_ONCE(memcg->memsw.max);
1298 margin = min(margin, limit - count);
1307 * A routine for checking "mem" is under move_account() or not.
1309 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1310 * moving cgroups. This is for waiting at high-memory pressure
1313 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1315 struct mem_cgroup *from;
1316 struct mem_cgroup *to;
1319 * Unlike task_move routines, we access mc.to, mc.from not under
1320 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1322 spin_lock(&mc.lock);
1328 ret = mem_cgroup_is_descendant(from, memcg) ||
1329 mem_cgroup_is_descendant(to, memcg);
1331 spin_unlock(&mc.lock);
1335 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1337 if (mc.moving_task && current != mc.moving_task) {
1338 if (mem_cgroup_under_move(memcg)) {
1340 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1341 /* moving charge context might have finished. */
1344 finish_wait(&mc.waitq, &wait);
1351 static const unsigned int memcg1_stats[] = {
1362 static const char *const memcg1_stat_names[] = {
1373 #define K(x) ((x) << (PAGE_SHIFT-10))
1375 * mem_cgroup_print_oom_context: Print OOM information relevant to
1376 * memory controller.
1377 * @memcg: The memory cgroup that went over limit
1378 * @p: Task that is going to be killed
1380 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1383 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1388 pr_cont(",oom_memcg=");
1389 pr_cont_cgroup_path(memcg->css.cgroup);
1391 pr_cont(",global_oom");
1393 pr_cont(",task_memcg=");
1394 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1400 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1401 * memory controller.
1402 * @memcg: The memory cgroup that went over limit
1404 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1406 struct mem_cgroup *iter;
1409 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1410 K((u64)page_counter_read(&memcg->memory)),
1411 K((u64)memcg->memory.max), memcg->memory.failcnt);
1412 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1413 K((u64)page_counter_read(&memcg->memsw)),
1414 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1415 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1416 K((u64)page_counter_read(&memcg->kmem)),
1417 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1419 for_each_mem_cgroup_tree(iter, memcg) {
1420 pr_info("Memory cgroup stats for ");
1421 pr_cont_cgroup_path(iter->css.cgroup);
1424 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1425 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1427 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1428 K(memcg_page_state_local(iter,
1432 for (i = 0; i < NR_LRU_LISTS; i++)
1433 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1434 K(memcg_page_state_local(iter,
1442 * Return the memory (and swap, if configured) limit for a memcg.
1444 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1448 max = memcg->memory.max;
1449 if (mem_cgroup_swappiness(memcg)) {
1450 unsigned long memsw_max;
1451 unsigned long swap_max;
1453 memsw_max = memcg->memsw.max;
1454 swap_max = memcg->swap.max;
1455 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1456 max = min(max + swap_max, memsw_max);
1461 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1464 struct oom_control oc = {
1468 .gfp_mask = gfp_mask,
1473 if (mutex_lock_killable(&oom_lock))
1476 * A few threads which were not waiting at mutex_lock_killable() can
1477 * fail to bail out. Therefore, check again after holding oom_lock.
1479 ret = should_force_charge() || out_of_memory(&oc);
1480 mutex_unlock(&oom_lock);
1484 #if MAX_NUMNODES > 1
1487 * test_mem_cgroup_node_reclaimable
1488 * @memcg: the target memcg
1489 * @nid: the node ID to be checked.
1490 * @noswap : specify true here if the user wants flle only information.
1492 * This function returns whether the specified memcg contains any
1493 * reclaimable pages on a node. Returns true if there are any reclaimable
1494 * pages in the node.
1496 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1497 int nid, bool noswap)
1499 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1501 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1502 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1504 if (noswap || !total_swap_pages)
1506 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1507 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1514 * Always updating the nodemask is not very good - even if we have an empty
1515 * list or the wrong list here, we can start from some node and traverse all
1516 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1519 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1523 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1524 * pagein/pageout changes since the last update.
1526 if (!atomic_read(&memcg->numainfo_events))
1528 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1531 /* make a nodemask where this memcg uses memory from */
1532 memcg->scan_nodes = node_states[N_MEMORY];
1534 for_each_node_mask(nid, node_states[N_MEMORY]) {
1536 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1537 node_clear(nid, memcg->scan_nodes);
1540 atomic_set(&memcg->numainfo_events, 0);
1541 atomic_set(&memcg->numainfo_updating, 0);
1545 * Selecting a node where we start reclaim from. Because what we need is just
1546 * reducing usage counter, start from anywhere is O,K. Considering
1547 * memory reclaim from current node, there are pros. and cons.
1549 * Freeing memory from current node means freeing memory from a node which
1550 * we'll use or we've used. So, it may make LRU bad. And if several threads
1551 * hit limits, it will see a contention on a node. But freeing from remote
1552 * node means more costs for memory reclaim because of memory latency.
1554 * Now, we use round-robin. Better algorithm is welcomed.
1556 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1560 mem_cgroup_may_update_nodemask(memcg);
1561 node = memcg->last_scanned_node;
1563 node = next_node_in(node, memcg->scan_nodes);
1565 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1566 * last time it really checked all the LRUs due to rate limiting.
1567 * Fallback to the current node in that case for simplicity.
1569 if (unlikely(node == MAX_NUMNODES))
1570 node = numa_node_id();
1572 memcg->last_scanned_node = node;
1576 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1585 unsigned long *total_scanned)
1587 struct mem_cgroup *victim = NULL;
1590 unsigned long excess;
1591 unsigned long nr_scanned;
1592 struct mem_cgroup_reclaim_cookie reclaim = {
1597 excess = soft_limit_excess(root_memcg);
1600 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1605 * If we have not been able to reclaim
1606 * anything, it might because there are
1607 * no reclaimable pages under this hierarchy
1612 * We want to do more targeted reclaim.
1613 * excess >> 2 is not to excessive so as to
1614 * reclaim too much, nor too less that we keep
1615 * coming back to reclaim from this cgroup
1617 if (total >= (excess >> 2) ||
1618 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1623 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1624 pgdat, &nr_scanned);
1625 *total_scanned += nr_scanned;
1626 if (!soft_limit_excess(root_memcg))
1629 mem_cgroup_iter_break(root_memcg, victim);
1633 #ifdef CONFIG_LOCKDEP
1634 static struct lockdep_map memcg_oom_lock_dep_map = {
1635 .name = "memcg_oom_lock",
1639 static DEFINE_SPINLOCK(memcg_oom_lock);
1642 * Check OOM-Killer is already running under our hierarchy.
1643 * If someone is running, return false.
1645 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1647 struct mem_cgroup *iter, *failed = NULL;
1649 spin_lock(&memcg_oom_lock);
1651 for_each_mem_cgroup_tree(iter, memcg) {
1652 if (iter->oom_lock) {
1654 * this subtree of our hierarchy is already locked
1655 * so we cannot give a lock.
1658 mem_cgroup_iter_break(memcg, iter);
1661 iter->oom_lock = true;
1666 * OK, we failed to lock the whole subtree so we have
1667 * to clean up what we set up to the failing subtree
1669 for_each_mem_cgroup_tree(iter, memcg) {
1670 if (iter == failed) {
1671 mem_cgroup_iter_break(memcg, iter);
1674 iter->oom_lock = false;
1677 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1679 spin_unlock(&memcg_oom_lock);
1684 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1686 struct mem_cgroup *iter;
1688 spin_lock(&memcg_oom_lock);
1689 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1690 for_each_mem_cgroup_tree(iter, memcg)
1691 iter->oom_lock = false;
1692 spin_unlock(&memcg_oom_lock);
1695 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1697 struct mem_cgroup *iter;
1699 spin_lock(&memcg_oom_lock);
1700 for_each_mem_cgroup_tree(iter, memcg)
1702 spin_unlock(&memcg_oom_lock);
1705 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1707 struct mem_cgroup *iter;
1710 * When a new child is created while the hierarchy is under oom,
1711 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1713 spin_lock(&memcg_oom_lock);
1714 for_each_mem_cgroup_tree(iter, memcg)
1715 if (iter->under_oom > 0)
1717 spin_unlock(&memcg_oom_lock);
1720 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1722 struct oom_wait_info {
1723 struct mem_cgroup *memcg;
1724 wait_queue_entry_t wait;
1727 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1728 unsigned mode, int sync, void *arg)
1730 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1731 struct mem_cgroup *oom_wait_memcg;
1732 struct oom_wait_info *oom_wait_info;
1734 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1735 oom_wait_memcg = oom_wait_info->memcg;
1737 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1738 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1740 return autoremove_wake_function(wait, mode, sync, arg);
1743 static void memcg_oom_recover(struct mem_cgroup *memcg)
1746 * For the following lockless ->under_oom test, the only required
1747 * guarantee is that it must see the state asserted by an OOM when
1748 * this function is called as a result of userland actions
1749 * triggered by the notification of the OOM. This is trivially
1750 * achieved by invoking mem_cgroup_mark_under_oom() before
1751 * triggering notification.
1753 if (memcg && memcg->under_oom)
1754 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1764 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1766 enum oom_status ret;
1769 if (order > PAGE_ALLOC_COSTLY_ORDER)
1772 memcg_memory_event(memcg, MEMCG_OOM);
1775 * We are in the middle of the charge context here, so we
1776 * don't want to block when potentially sitting on a callstack
1777 * that holds all kinds of filesystem and mm locks.
1779 * cgroup1 allows disabling the OOM killer and waiting for outside
1780 * handling until the charge can succeed; remember the context and put
1781 * the task to sleep at the end of the page fault when all locks are
1784 * On the other hand, in-kernel OOM killer allows for an async victim
1785 * memory reclaim (oom_reaper) and that means that we are not solely
1786 * relying on the oom victim to make a forward progress and we can
1787 * invoke the oom killer here.
1789 * Please note that mem_cgroup_out_of_memory might fail to find a
1790 * victim and then we have to bail out from the charge path.
1792 if (memcg->oom_kill_disable) {
1793 if (!current->in_user_fault)
1795 css_get(&memcg->css);
1796 current->memcg_in_oom = memcg;
1797 current->memcg_oom_gfp_mask = mask;
1798 current->memcg_oom_order = order;
1803 mem_cgroup_mark_under_oom(memcg);
1805 locked = mem_cgroup_oom_trylock(memcg);
1808 mem_cgroup_oom_notify(memcg);
1810 mem_cgroup_unmark_under_oom(memcg);
1811 if (mem_cgroup_out_of_memory(memcg, mask, order))
1817 mem_cgroup_oom_unlock(memcg);
1823 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1824 * @handle: actually kill/wait or just clean up the OOM state
1826 * This has to be called at the end of a page fault if the memcg OOM
1827 * handler was enabled.
1829 * Memcg supports userspace OOM handling where failed allocations must
1830 * sleep on a waitqueue until the userspace task resolves the
1831 * situation. Sleeping directly in the charge context with all kinds
1832 * of locks held is not a good idea, instead we remember an OOM state
1833 * in the task and mem_cgroup_oom_synchronize() has to be called at
1834 * the end of the page fault to complete the OOM handling.
1836 * Returns %true if an ongoing memcg OOM situation was detected and
1837 * completed, %false otherwise.
1839 bool mem_cgroup_oom_synchronize(bool handle)
1841 struct mem_cgroup *memcg = current->memcg_in_oom;
1842 struct oom_wait_info owait;
1845 /* OOM is global, do not handle */
1852 owait.memcg = memcg;
1853 owait.wait.flags = 0;
1854 owait.wait.func = memcg_oom_wake_function;
1855 owait.wait.private = current;
1856 INIT_LIST_HEAD(&owait.wait.entry);
1858 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1859 mem_cgroup_mark_under_oom(memcg);
1861 locked = mem_cgroup_oom_trylock(memcg);
1864 mem_cgroup_oom_notify(memcg);
1866 if (locked && !memcg->oom_kill_disable) {
1867 mem_cgroup_unmark_under_oom(memcg);
1868 finish_wait(&memcg_oom_waitq, &owait.wait);
1869 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1870 current->memcg_oom_order);
1873 mem_cgroup_unmark_under_oom(memcg);
1874 finish_wait(&memcg_oom_waitq, &owait.wait);
1878 mem_cgroup_oom_unlock(memcg);
1880 * There is no guarantee that an OOM-lock contender
1881 * sees the wakeups triggered by the OOM kill
1882 * uncharges. Wake any sleepers explicitely.
1884 memcg_oom_recover(memcg);
1887 current->memcg_in_oom = NULL;
1888 css_put(&memcg->css);
1893 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1894 * @victim: task to be killed by the OOM killer
1895 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1897 * Returns a pointer to a memory cgroup, which has to be cleaned up
1898 * by killing all belonging OOM-killable tasks.
1900 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1902 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1903 struct mem_cgroup *oom_domain)
1905 struct mem_cgroup *oom_group = NULL;
1906 struct mem_cgroup *memcg;
1908 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1912 oom_domain = root_mem_cgroup;
1916 memcg = mem_cgroup_from_task(victim);
1917 if (memcg == root_mem_cgroup)
1921 * Traverse the memory cgroup hierarchy from the victim task's
1922 * cgroup up to the OOMing cgroup (or root) to find the
1923 * highest-level memory cgroup with oom.group set.
1925 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1926 if (memcg->oom_group)
1929 if (memcg == oom_domain)
1934 css_get(&oom_group->css);
1941 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1943 pr_info("Tasks in ");
1944 pr_cont_cgroup_path(memcg->css.cgroup);
1945 pr_cont(" are going to be killed due to memory.oom.group set\n");
1949 * lock_page_memcg - lock a page->mem_cgroup binding
1952 * This function protects unlocked LRU pages from being moved to
1955 * It ensures lifetime of the returned memcg. Caller is responsible
1956 * for the lifetime of the page; __unlock_page_memcg() is available
1957 * when @page might get freed inside the locked section.
1959 struct mem_cgroup *lock_page_memcg(struct page *page)
1961 struct mem_cgroup *memcg;
1962 unsigned long flags;
1965 * The RCU lock is held throughout the transaction. The fast
1966 * path can get away without acquiring the memcg->move_lock
1967 * because page moving starts with an RCU grace period.
1969 * The RCU lock also protects the memcg from being freed when
1970 * the page state that is going to change is the only thing
1971 * preventing the page itself from being freed. E.g. writeback
1972 * doesn't hold a page reference and relies on PG_writeback to
1973 * keep off truncation, migration and so forth.
1977 if (mem_cgroup_disabled())
1980 memcg = page->mem_cgroup;
1981 if (unlikely(!memcg))
1984 if (atomic_read(&memcg->moving_account) <= 0)
1987 spin_lock_irqsave(&memcg->move_lock, flags);
1988 if (memcg != page->mem_cgroup) {
1989 spin_unlock_irqrestore(&memcg->move_lock, flags);
1994 * When charge migration first begins, we can have locked and
1995 * unlocked page stat updates happening concurrently. Track
1996 * the task who has the lock for unlock_page_memcg().
1998 memcg->move_lock_task = current;
1999 memcg->move_lock_flags = flags;
2003 EXPORT_SYMBOL(lock_page_memcg);
2006 * __unlock_page_memcg - unlock and unpin a memcg
2009 * Unlock and unpin a memcg returned by lock_page_memcg().
2011 void __unlock_page_memcg(struct mem_cgroup *memcg)
2013 if (memcg && memcg->move_lock_task == current) {
2014 unsigned long flags = memcg->move_lock_flags;
2016 memcg->move_lock_task = NULL;
2017 memcg->move_lock_flags = 0;
2019 spin_unlock_irqrestore(&memcg->move_lock, flags);
2026 * unlock_page_memcg - unlock a page->mem_cgroup binding
2029 void unlock_page_memcg(struct page *page)
2031 __unlock_page_memcg(page->mem_cgroup);
2033 EXPORT_SYMBOL(unlock_page_memcg);
2035 struct memcg_stock_pcp {
2036 struct mem_cgroup *cached; /* this never be root cgroup */
2037 unsigned int nr_pages;
2038 struct work_struct work;
2039 unsigned long flags;
2040 #define FLUSHING_CACHED_CHARGE 0
2042 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2043 static DEFINE_MUTEX(percpu_charge_mutex);
2046 * consume_stock: Try to consume stocked charge on this cpu.
2047 * @memcg: memcg to consume from.
2048 * @nr_pages: how many pages to charge.
2050 * The charges will only happen if @memcg matches the current cpu's memcg
2051 * stock, and at least @nr_pages are available in that stock. Failure to
2052 * service an allocation will refill the stock.
2054 * returns true if successful, false otherwise.
2056 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2058 struct memcg_stock_pcp *stock;
2059 unsigned long flags;
2062 if (nr_pages > MEMCG_CHARGE_BATCH)
2065 local_irq_save(flags);
2067 stock = this_cpu_ptr(&memcg_stock);
2068 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2069 stock->nr_pages -= nr_pages;
2073 local_irq_restore(flags);
2079 * Returns stocks cached in percpu and reset cached information.
2081 static void drain_stock(struct memcg_stock_pcp *stock)
2083 struct mem_cgroup *old = stock->cached;
2085 if (stock->nr_pages) {
2086 page_counter_uncharge(&old->memory, stock->nr_pages);
2087 if (do_memsw_account())
2088 page_counter_uncharge(&old->memsw, stock->nr_pages);
2089 css_put_many(&old->css, stock->nr_pages);
2090 stock->nr_pages = 0;
2092 stock->cached = NULL;
2095 static void drain_local_stock(struct work_struct *dummy)
2097 struct memcg_stock_pcp *stock;
2098 unsigned long flags;
2101 * The only protection from memory hotplug vs. drain_stock races is
2102 * that we always operate on local CPU stock here with IRQ disabled
2104 local_irq_save(flags);
2106 stock = this_cpu_ptr(&memcg_stock);
2108 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2110 local_irq_restore(flags);
2114 * Cache charges(val) to local per_cpu area.
2115 * This will be consumed by consume_stock() function, later.
2117 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2119 struct memcg_stock_pcp *stock;
2120 unsigned long flags;
2122 local_irq_save(flags);
2124 stock = this_cpu_ptr(&memcg_stock);
2125 if (stock->cached != memcg) { /* reset if necessary */
2127 stock->cached = memcg;
2129 stock->nr_pages += nr_pages;
2131 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2134 local_irq_restore(flags);
2138 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2139 * of the hierarchy under it.
2141 static void drain_all_stock(struct mem_cgroup *root_memcg)
2145 /* If someone's already draining, avoid adding running more workers. */
2146 if (!mutex_trylock(&percpu_charge_mutex))
2149 * Notify other cpus that system-wide "drain" is running
2150 * We do not care about races with the cpu hotplug because cpu down
2151 * as well as workers from this path always operate on the local
2152 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2155 for_each_online_cpu(cpu) {
2156 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2157 struct mem_cgroup *memcg;
2159 memcg = stock->cached;
2160 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2162 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2163 css_put(&memcg->css);
2166 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2168 drain_local_stock(&stock->work);
2170 schedule_work_on(cpu, &stock->work);
2172 css_put(&memcg->css);
2175 mutex_unlock(&percpu_charge_mutex);
2178 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2180 struct memcg_stock_pcp *stock;
2181 struct mem_cgroup *memcg, *mi;
2183 stock = &per_cpu(memcg_stock, cpu);
2186 for_each_mem_cgroup(memcg) {
2189 for (i = 0; i < MEMCG_NR_STAT; i++) {
2193 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2195 atomic_long_add(x, &memcg->vmstats_local[i]);
2196 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2197 atomic_long_add(x, &memcg->vmstats[i]);
2200 if (i >= NR_VM_NODE_STAT_ITEMS)
2203 for_each_node(nid) {
2204 struct mem_cgroup_per_node *pn;
2206 pn = mem_cgroup_nodeinfo(memcg, nid);
2207 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2209 atomic_long_add(x, &pn->lruvec_stat_local[i]);
2211 atomic_long_add(x, &pn->lruvec_stat[i]);
2212 } while ((pn = parent_nodeinfo(pn, nid)));
2217 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2220 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2222 atomic_long_add(x, &memcg->vmevents_local[i]);
2223 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2224 atomic_long_add(x, &memcg->vmevents[i]);
2232 static void reclaim_high(struct mem_cgroup *memcg,
2233 unsigned int nr_pages,
2237 if (page_counter_read(&memcg->memory) <= memcg->high)
2239 memcg_memory_event(memcg, MEMCG_HIGH);
2240 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2241 } while ((memcg = parent_mem_cgroup(memcg)));
2244 static void high_work_func(struct work_struct *work)
2246 struct mem_cgroup *memcg;
2248 memcg = container_of(work, struct mem_cgroup, high_work);
2249 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2253 * Scheduled by try_charge() to be executed from the userland return path
2254 * and reclaims memory over the high limit.
2256 void mem_cgroup_handle_over_high(void)
2258 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2259 struct mem_cgroup *memcg;
2261 if (likely(!nr_pages))
2264 memcg = get_mem_cgroup_from_mm(current->mm);
2265 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2266 css_put(&memcg->css);
2267 current->memcg_nr_pages_over_high = 0;
2270 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2271 unsigned int nr_pages)
2273 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2274 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2275 struct mem_cgroup *mem_over_limit;
2276 struct page_counter *counter;
2277 unsigned long nr_reclaimed;
2278 bool may_swap = true;
2279 bool drained = false;
2281 enum oom_status oom_status;
2283 if (mem_cgroup_is_root(memcg))
2286 if (consume_stock(memcg, nr_pages))
2289 if (!do_memsw_account() ||
2290 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2291 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2293 if (do_memsw_account())
2294 page_counter_uncharge(&memcg->memsw, batch);
2295 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2297 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2301 if (batch > nr_pages) {
2307 * Unlike in global OOM situations, memcg is not in a physical
2308 * memory shortage. Allow dying and OOM-killed tasks to
2309 * bypass the last charges so that they can exit quickly and
2310 * free their memory.
2312 if (unlikely(should_force_charge()))
2316 * Prevent unbounded recursion when reclaim operations need to
2317 * allocate memory. This might exceed the limits temporarily,
2318 * but we prefer facilitating memory reclaim and getting back
2319 * under the limit over triggering OOM kills in these cases.
2321 if (unlikely(current->flags & PF_MEMALLOC))
2324 if (unlikely(task_in_memcg_oom(current)))
2327 if (!gfpflags_allow_blocking(gfp_mask))
2330 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2332 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2333 gfp_mask, may_swap);
2335 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2339 drain_all_stock(mem_over_limit);
2344 if (gfp_mask & __GFP_NORETRY)
2347 * Even though the limit is exceeded at this point, reclaim
2348 * may have been able to free some pages. Retry the charge
2349 * before killing the task.
2351 * Only for regular pages, though: huge pages are rather
2352 * unlikely to succeed so close to the limit, and we fall back
2353 * to regular pages anyway in case of failure.
2355 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2358 * At task move, charge accounts can be doubly counted. So, it's
2359 * better to wait until the end of task_move if something is going on.
2361 if (mem_cgroup_wait_acct_move(mem_over_limit))
2367 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2370 if (gfp_mask & __GFP_NOFAIL)
2373 if (fatal_signal_pending(current))
2377 * keep retrying as long as the memcg oom killer is able to make
2378 * a forward progress or bypass the charge if the oom killer
2379 * couldn't make any progress.
2381 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2382 get_order(nr_pages * PAGE_SIZE));
2383 switch (oom_status) {
2385 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2394 if (!(gfp_mask & __GFP_NOFAIL))
2398 * The allocation either can't fail or will lead to more memory
2399 * being freed very soon. Allow memory usage go over the limit
2400 * temporarily by force charging it.
2402 page_counter_charge(&memcg->memory, nr_pages);
2403 if (do_memsw_account())
2404 page_counter_charge(&memcg->memsw, nr_pages);
2405 css_get_many(&memcg->css, nr_pages);
2410 css_get_many(&memcg->css, batch);
2411 if (batch > nr_pages)
2412 refill_stock(memcg, batch - nr_pages);
2415 * If the hierarchy is above the normal consumption range, schedule
2416 * reclaim on returning to userland. We can perform reclaim here
2417 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2418 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2419 * not recorded as it most likely matches current's and won't
2420 * change in the meantime. As high limit is checked again before
2421 * reclaim, the cost of mismatch is negligible.
2424 if (page_counter_read(&memcg->memory) > memcg->high) {
2425 /* Don't bother a random interrupted task */
2426 if (in_interrupt()) {
2427 schedule_work(&memcg->high_work);
2430 current->memcg_nr_pages_over_high += batch;
2431 set_notify_resume(current);
2434 } while ((memcg = parent_mem_cgroup(memcg)));
2439 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2441 if (mem_cgroup_is_root(memcg))
2444 page_counter_uncharge(&memcg->memory, nr_pages);
2445 if (do_memsw_account())
2446 page_counter_uncharge(&memcg->memsw, nr_pages);
2448 css_put_many(&memcg->css, nr_pages);
2451 static void lock_page_lru(struct page *page, int *isolated)
2453 pg_data_t *pgdat = page_pgdat(page);
2455 spin_lock_irq(&pgdat->lru_lock);
2456 if (PageLRU(page)) {
2457 struct lruvec *lruvec;
2459 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2461 del_page_from_lru_list(page, lruvec, page_lru(page));
2467 static void unlock_page_lru(struct page *page, int isolated)
2469 pg_data_t *pgdat = page_pgdat(page);
2472 struct lruvec *lruvec;
2474 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2475 VM_BUG_ON_PAGE(PageLRU(page), page);
2477 add_page_to_lru_list(page, lruvec, page_lru(page));
2479 spin_unlock_irq(&pgdat->lru_lock);
2482 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2487 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2490 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2491 * may already be on some other mem_cgroup's LRU. Take care of it.
2494 lock_page_lru(page, &isolated);
2497 * Nobody should be changing or seriously looking at
2498 * page->mem_cgroup at this point:
2500 * - the page is uncharged
2502 * - the page is off-LRU
2504 * - an anonymous fault has exclusive page access, except for
2505 * a locked page table
2507 * - a page cache insertion, a swapin fault, or a migration
2508 * have the page locked
2510 page->mem_cgroup = memcg;
2513 unlock_page_lru(page, isolated);
2516 #ifdef CONFIG_MEMCG_KMEM
2517 static int memcg_alloc_cache_id(void)
2522 id = ida_simple_get(&memcg_cache_ida,
2523 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2527 if (id < memcg_nr_cache_ids)
2531 * There's no space for the new id in memcg_caches arrays,
2532 * so we have to grow them.
2534 down_write(&memcg_cache_ids_sem);
2536 size = 2 * (id + 1);
2537 if (size < MEMCG_CACHES_MIN_SIZE)
2538 size = MEMCG_CACHES_MIN_SIZE;
2539 else if (size > MEMCG_CACHES_MAX_SIZE)
2540 size = MEMCG_CACHES_MAX_SIZE;
2542 err = memcg_update_all_caches(size);
2544 err = memcg_update_all_list_lrus(size);
2546 memcg_nr_cache_ids = size;
2548 up_write(&memcg_cache_ids_sem);
2551 ida_simple_remove(&memcg_cache_ida, id);
2557 static void memcg_free_cache_id(int id)
2559 ida_simple_remove(&memcg_cache_ida, id);
2562 struct memcg_kmem_cache_create_work {
2563 struct mem_cgroup *memcg;
2564 struct kmem_cache *cachep;
2565 struct work_struct work;
2568 static void memcg_kmem_cache_create_func(struct work_struct *w)
2570 struct memcg_kmem_cache_create_work *cw =
2571 container_of(w, struct memcg_kmem_cache_create_work, work);
2572 struct mem_cgroup *memcg = cw->memcg;
2573 struct kmem_cache *cachep = cw->cachep;
2575 memcg_create_kmem_cache(memcg, cachep);
2577 css_put(&memcg->css);
2582 * Enqueue the creation of a per-memcg kmem_cache.
2584 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2585 struct kmem_cache *cachep)
2587 struct memcg_kmem_cache_create_work *cw;
2589 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2593 css_get(&memcg->css);
2596 cw->cachep = cachep;
2597 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2599 queue_work(memcg_kmem_cache_wq, &cw->work);
2602 static inline bool memcg_kmem_bypass(void)
2604 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2610 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2611 * @cachep: the original global kmem cache
2613 * Return the kmem_cache we're supposed to use for a slab allocation.
2614 * We try to use the current memcg's version of the cache.
2616 * If the cache does not exist yet, if we are the first user of it, we
2617 * create it asynchronously in a workqueue and let the current allocation
2618 * go through with the original cache.
2620 * This function takes a reference to the cache it returns to assure it
2621 * won't get destroyed while we are working with it. Once the caller is
2622 * done with it, memcg_kmem_put_cache() must be called to release the
2625 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2627 struct mem_cgroup *memcg;
2628 struct kmem_cache *memcg_cachep;
2631 VM_BUG_ON(!is_root_cache(cachep));
2633 if (memcg_kmem_bypass())
2636 memcg = get_mem_cgroup_from_current();
2637 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2641 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2642 if (likely(memcg_cachep))
2643 return memcg_cachep;
2646 * If we are in a safe context (can wait, and not in interrupt
2647 * context), we could be be predictable and return right away.
2648 * This would guarantee that the allocation being performed
2649 * already belongs in the new cache.
2651 * However, there are some clashes that can arrive from locking.
2652 * For instance, because we acquire the slab_mutex while doing
2653 * memcg_create_kmem_cache, this means no further allocation
2654 * could happen with the slab_mutex held. So it's better to
2657 memcg_schedule_kmem_cache_create(memcg, cachep);
2659 css_put(&memcg->css);
2664 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2665 * @cachep: the cache returned by memcg_kmem_get_cache
2667 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2669 if (!is_root_cache(cachep))
2670 css_put(&cachep->memcg_params.memcg->css);
2674 * __memcg_kmem_charge_memcg: charge a kmem page
2675 * @page: page to charge
2676 * @gfp: reclaim mode
2677 * @order: allocation order
2678 * @memcg: memory cgroup to charge
2680 * Returns 0 on success, an error code on failure.
2682 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2683 struct mem_cgroup *memcg)
2685 unsigned int nr_pages = 1 << order;
2686 struct page_counter *counter;
2689 ret = try_charge(memcg, gfp, nr_pages);
2693 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2694 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2695 cancel_charge(memcg, nr_pages);
2699 page->mem_cgroup = memcg;
2705 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2706 * @page: page to charge
2707 * @gfp: reclaim mode
2708 * @order: allocation order
2710 * Returns 0 on success, an error code on failure.
2712 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2714 struct mem_cgroup *memcg;
2717 if (memcg_kmem_bypass())
2720 memcg = get_mem_cgroup_from_current();
2721 if (!mem_cgroup_is_root(memcg)) {
2722 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2724 __SetPageKmemcg(page);
2726 css_put(&memcg->css);
2730 * __memcg_kmem_uncharge: uncharge a kmem page
2731 * @page: page to uncharge
2732 * @order: allocation order
2734 void __memcg_kmem_uncharge(struct page *page, int order)
2736 struct mem_cgroup *memcg = page->mem_cgroup;
2737 unsigned int nr_pages = 1 << order;
2742 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2744 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2745 page_counter_uncharge(&memcg->kmem, nr_pages);
2747 page_counter_uncharge(&memcg->memory, nr_pages);
2748 if (do_memsw_account())
2749 page_counter_uncharge(&memcg->memsw, nr_pages);
2751 page->mem_cgroup = NULL;
2753 /* slab pages do not have PageKmemcg flag set */
2754 if (PageKmemcg(page))
2755 __ClearPageKmemcg(page);
2757 css_put_many(&memcg->css, nr_pages);
2759 #endif /* CONFIG_MEMCG_KMEM */
2761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2764 * Because tail pages are not marked as "used", set it. We're under
2765 * pgdat->lru_lock and migration entries setup in all page mappings.
2767 void mem_cgroup_split_huge_fixup(struct page *head)
2771 if (mem_cgroup_disabled())
2774 for (i = 1; i < HPAGE_PMD_NR; i++)
2775 head[i].mem_cgroup = head->mem_cgroup;
2777 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2779 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2781 #ifdef CONFIG_MEMCG_SWAP
2783 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2784 * @entry: swap entry to be moved
2785 * @from: mem_cgroup which the entry is moved from
2786 * @to: mem_cgroup which the entry is moved to
2788 * It succeeds only when the swap_cgroup's record for this entry is the same
2789 * as the mem_cgroup's id of @from.
2791 * Returns 0 on success, -EINVAL on failure.
2793 * The caller must have charged to @to, IOW, called page_counter_charge() about
2794 * both res and memsw, and called css_get().
2796 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2797 struct mem_cgroup *from, struct mem_cgroup *to)
2799 unsigned short old_id, new_id;
2801 old_id = mem_cgroup_id(from);
2802 new_id = mem_cgroup_id(to);
2804 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2805 mod_memcg_state(from, MEMCG_SWAP, -1);
2806 mod_memcg_state(to, MEMCG_SWAP, 1);
2812 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2813 struct mem_cgroup *from, struct mem_cgroup *to)
2819 static DEFINE_MUTEX(memcg_max_mutex);
2821 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2822 unsigned long max, bool memsw)
2824 bool enlarge = false;
2825 bool drained = false;
2827 bool limits_invariant;
2828 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2831 if (signal_pending(current)) {
2836 mutex_lock(&memcg_max_mutex);
2838 * Make sure that the new limit (memsw or memory limit) doesn't
2839 * break our basic invariant rule memory.max <= memsw.max.
2841 limits_invariant = memsw ? max >= memcg->memory.max :
2842 max <= memcg->memsw.max;
2843 if (!limits_invariant) {
2844 mutex_unlock(&memcg_max_mutex);
2848 if (max > counter->max)
2850 ret = page_counter_set_max(counter, max);
2851 mutex_unlock(&memcg_max_mutex);
2857 drain_all_stock(memcg);
2862 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2863 GFP_KERNEL, !memsw)) {
2869 if (!ret && enlarge)
2870 memcg_oom_recover(memcg);
2875 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2877 unsigned long *total_scanned)
2879 unsigned long nr_reclaimed = 0;
2880 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2881 unsigned long reclaimed;
2883 struct mem_cgroup_tree_per_node *mctz;
2884 unsigned long excess;
2885 unsigned long nr_scanned;
2890 mctz = soft_limit_tree_node(pgdat->node_id);
2893 * Do not even bother to check the largest node if the root
2894 * is empty. Do it lockless to prevent lock bouncing. Races
2895 * are acceptable as soft limit is best effort anyway.
2897 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2901 * This loop can run a while, specially if mem_cgroup's continuously
2902 * keep exceeding their soft limit and putting the system under
2909 mz = mem_cgroup_largest_soft_limit_node(mctz);
2914 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2915 gfp_mask, &nr_scanned);
2916 nr_reclaimed += reclaimed;
2917 *total_scanned += nr_scanned;
2918 spin_lock_irq(&mctz->lock);
2919 __mem_cgroup_remove_exceeded(mz, mctz);
2922 * If we failed to reclaim anything from this memory cgroup
2923 * it is time to move on to the next cgroup
2927 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2929 excess = soft_limit_excess(mz->memcg);
2931 * One school of thought says that we should not add
2932 * back the node to the tree if reclaim returns 0.
2933 * But our reclaim could return 0, simply because due
2934 * to priority we are exposing a smaller subset of
2935 * memory to reclaim from. Consider this as a longer
2938 /* If excess == 0, no tree ops */
2939 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2940 spin_unlock_irq(&mctz->lock);
2941 css_put(&mz->memcg->css);
2944 * Could not reclaim anything and there are no more
2945 * mem cgroups to try or we seem to be looping without
2946 * reclaiming anything.
2948 if (!nr_reclaimed &&
2950 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2952 } while (!nr_reclaimed);
2954 css_put(&next_mz->memcg->css);
2955 return nr_reclaimed;
2959 * Test whether @memcg has children, dead or alive. Note that this
2960 * function doesn't care whether @memcg has use_hierarchy enabled and
2961 * returns %true if there are child csses according to the cgroup
2962 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2964 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2969 ret = css_next_child(NULL, &memcg->css);
2975 * Reclaims as many pages from the given memcg as possible.
2977 * Caller is responsible for holding css reference for memcg.
2979 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2981 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2983 /* we call try-to-free pages for make this cgroup empty */
2984 lru_add_drain_all();
2986 drain_all_stock(memcg);
2988 /* try to free all pages in this cgroup */
2989 while (nr_retries && page_counter_read(&memcg->memory)) {
2992 if (signal_pending(current))
2995 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2999 /* maybe some writeback is necessary */
3000 congestion_wait(BLK_RW_ASYNC, HZ/10);
3008 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3009 char *buf, size_t nbytes,
3012 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014 if (mem_cgroup_is_root(memcg))
3016 return mem_cgroup_force_empty(memcg) ?: nbytes;
3019 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3022 return mem_cgroup_from_css(css)->use_hierarchy;
3025 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3026 struct cftype *cft, u64 val)
3029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3030 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3032 if (memcg->use_hierarchy == val)
3036 * If parent's use_hierarchy is set, we can't make any modifications
3037 * in the child subtrees. If it is unset, then the change can
3038 * occur, provided the current cgroup has no children.
3040 * For the root cgroup, parent_mem is NULL, we allow value to be
3041 * set if there are no children.
3043 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3044 (val == 1 || val == 0)) {
3045 if (!memcg_has_children(memcg))
3046 memcg->use_hierarchy = val;
3055 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3059 if (mem_cgroup_is_root(memcg)) {
3060 val = memcg_page_state(memcg, MEMCG_CACHE) +
3061 memcg_page_state(memcg, MEMCG_RSS);
3063 val += memcg_page_state(memcg, MEMCG_SWAP);
3066 val = page_counter_read(&memcg->memory);
3068 val = page_counter_read(&memcg->memsw);
3081 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3084 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3085 struct page_counter *counter;
3087 switch (MEMFILE_TYPE(cft->private)) {
3089 counter = &memcg->memory;
3092 counter = &memcg->memsw;
3095 counter = &memcg->kmem;
3098 counter = &memcg->tcpmem;
3104 switch (MEMFILE_ATTR(cft->private)) {
3106 if (counter == &memcg->memory)
3107 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3108 if (counter == &memcg->memsw)
3109 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3110 return (u64)page_counter_read(counter) * PAGE_SIZE;
3112 return (u64)counter->max * PAGE_SIZE;
3114 return (u64)counter->watermark * PAGE_SIZE;
3116 return counter->failcnt;
3117 case RES_SOFT_LIMIT:
3118 return (u64)memcg->soft_limit * PAGE_SIZE;
3124 #ifdef CONFIG_MEMCG_KMEM
3125 static int memcg_online_kmem(struct mem_cgroup *memcg)
3129 if (cgroup_memory_nokmem)
3132 BUG_ON(memcg->kmemcg_id >= 0);
3133 BUG_ON(memcg->kmem_state);
3135 memcg_id = memcg_alloc_cache_id();
3139 static_branch_inc(&memcg_kmem_enabled_key);
3141 * A memory cgroup is considered kmem-online as soon as it gets
3142 * kmemcg_id. Setting the id after enabling static branching will
3143 * guarantee no one starts accounting before all call sites are
3146 memcg->kmemcg_id = memcg_id;
3147 memcg->kmem_state = KMEM_ONLINE;
3148 INIT_LIST_HEAD(&memcg->kmem_caches);
3153 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3155 struct cgroup_subsys_state *css;
3156 struct mem_cgroup *parent, *child;
3159 if (memcg->kmem_state != KMEM_ONLINE)
3162 * Clear the online state before clearing memcg_caches array
3163 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3164 * guarantees that no cache will be created for this cgroup
3165 * after we are done (see memcg_create_kmem_cache()).
3167 memcg->kmem_state = KMEM_ALLOCATED;
3169 memcg_deactivate_kmem_caches(memcg);
3171 kmemcg_id = memcg->kmemcg_id;
3172 BUG_ON(kmemcg_id < 0);
3174 parent = parent_mem_cgroup(memcg);
3176 parent = root_mem_cgroup;
3179 * Change kmemcg_id of this cgroup and all its descendants to the
3180 * parent's id, and then move all entries from this cgroup's list_lrus
3181 * to ones of the parent. After we have finished, all list_lrus
3182 * corresponding to this cgroup are guaranteed to remain empty. The
3183 * ordering is imposed by list_lru_node->lock taken by
3184 * memcg_drain_all_list_lrus().
3186 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3187 css_for_each_descendant_pre(css, &memcg->css) {
3188 child = mem_cgroup_from_css(css);
3189 BUG_ON(child->kmemcg_id != kmemcg_id);
3190 child->kmemcg_id = parent->kmemcg_id;
3191 if (!memcg->use_hierarchy)
3196 memcg_drain_all_list_lrus(kmemcg_id, parent);
3198 memcg_free_cache_id(kmemcg_id);
3201 static void memcg_free_kmem(struct mem_cgroup *memcg)
3203 /* css_alloc() failed, offlining didn't happen */
3204 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3205 memcg_offline_kmem(memcg);
3207 if (memcg->kmem_state == KMEM_ALLOCATED) {
3208 memcg_destroy_kmem_caches(memcg);
3209 static_branch_dec(&memcg_kmem_enabled_key);
3210 WARN_ON(page_counter_read(&memcg->kmem));
3214 static int memcg_online_kmem(struct mem_cgroup *memcg)
3218 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3221 static void memcg_free_kmem(struct mem_cgroup *memcg)
3224 #endif /* CONFIG_MEMCG_KMEM */
3226 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3231 mutex_lock(&memcg_max_mutex);
3232 ret = page_counter_set_max(&memcg->kmem, max);
3233 mutex_unlock(&memcg_max_mutex);
3237 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3241 mutex_lock(&memcg_max_mutex);
3243 ret = page_counter_set_max(&memcg->tcpmem, max);
3247 if (!memcg->tcpmem_active) {
3249 * The active flag needs to be written after the static_key
3250 * update. This is what guarantees that the socket activation
3251 * function is the last one to run. See mem_cgroup_sk_alloc()
3252 * for details, and note that we don't mark any socket as
3253 * belonging to this memcg until that flag is up.
3255 * We need to do this, because static_keys will span multiple
3256 * sites, but we can't control their order. If we mark a socket
3257 * as accounted, but the accounting functions are not patched in
3258 * yet, we'll lose accounting.
3260 * We never race with the readers in mem_cgroup_sk_alloc(),
3261 * because when this value change, the code to process it is not
3264 static_branch_inc(&memcg_sockets_enabled_key);
3265 memcg->tcpmem_active = true;
3268 mutex_unlock(&memcg_max_mutex);
3273 * The user of this function is...
3276 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3277 char *buf, size_t nbytes, loff_t off)
3279 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3280 unsigned long nr_pages;
3283 buf = strstrip(buf);
3284 ret = page_counter_memparse(buf, "-1", &nr_pages);
3288 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3290 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3294 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3296 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3299 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3302 ret = memcg_update_kmem_max(memcg, nr_pages);
3305 ret = memcg_update_tcp_max(memcg, nr_pages);
3309 case RES_SOFT_LIMIT:
3310 memcg->soft_limit = nr_pages;
3314 return ret ?: nbytes;
3317 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3318 size_t nbytes, loff_t off)
3320 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3321 struct page_counter *counter;
3323 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3325 counter = &memcg->memory;
3328 counter = &memcg->memsw;
3331 counter = &memcg->kmem;
3334 counter = &memcg->tcpmem;
3340 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3342 page_counter_reset_watermark(counter);
3345 counter->failcnt = 0;
3354 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3357 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3361 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3362 struct cftype *cft, u64 val)
3364 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3366 if (val & ~MOVE_MASK)
3370 * No kind of locking is needed in here, because ->can_attach() will
3371 * check this value once in the beginning of the process, and then carry
3372 * on with stale data. This means that changes to this value will only
3373 * affect task migrations starting after the change.
3375 memcg->move_charge_at_immigrate = val;
3379 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3380 struct cftype *cft, u64 val)
3388 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3389 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3390 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3392 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3393 int nid, unsigned int lru_mask)
3395 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3396 unsigned long nr = 0;
3399 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3402 if (!(BIT(lru) & lru_mask))
3404 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3409 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3410 unsigned int lru_mask)
3412 unsigned long nr = 0;
3416 if (!(BIT(lru) & lru_mask))
3418 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3423 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3427 unsigned int lru_mask;
3430 static const struct numa_stat stats[] = {
3431 { "total", LRU_ALL },
3432 { "file", LRU_ALL_FILE },
3433 { "anon", LRU_ALL_ANON },
3434 { "unevictable", BIT(LRU_UNEVICTABLE) },
3436 const struct numa_stat *stat;
3439 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3441 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3442 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3443 seq_printf(m, "%s=%lu", stat->name, nr);
3444 for_each_node_state(nid, N_MEMORY) {
3445 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3447 seq_printf(m, " N%d=%lu", nid, nr);
3452 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3453 struct mem_cgroup *iter;
3456 for_each_mem_cgroup_tree(iter, memcg)
3457 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3458 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3459 for_each_node_state(nid, N_MEMORY) {
3461 for_each_mem_cgroup_tree(iter, memcg)
3462 nr += mem_cgroup_node_nr_lru_pages(
3463 iter, nid, stat->lru_mask);
3464 seq_printf(m, " N%d=%lu", nid, nr);
3471 #endif /* CONFIG_NUMA */
3473 /* Universal VM events cgroup1 shows, original sort order */
3474 static const unsigned int memcg1_events[] = {
3481 static const char *const memcg1_event_names[] = {
3488 static int memcg_stat_show(struct seq_file *m, void *v)
3490 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3491 unsigned long memory, memsw;
3492 struct mem_cgroup *mi;
3495 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3496 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3498 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3499 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3501 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3502 memcg_page_state_local(memcg, memcg1_stats[i]) *
3506 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3507 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3508 memcg_events_local(memcg, memcg1_events[i]));
3510 for (i = 0; i < NR_LRU_LISTS; i++)
3511 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3512 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3515 /* Hierarchical information */
3516 memory = memsw = PAGE_COUNTER_MAX;
3517 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3518 memory = min(memory, mi->memory.max);
3519 memsw = min(memsw, mi->memsw.max);
3521 seq_printf(m, "hierarchical_memory_limit %llu\n",
3522 (u64)memory * PAGE_SIZE);
3523 if (do_memsw_account())
3524 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3525 (u64)memsw * PAGE_SIZE);
3527 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3528 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3530 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3531 (u64)memcg_page_state(memcg, i) * PAGE_SIZE);
3534 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3535 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3536 (u64)memcg_events(memcg, i));
3538 for (i = 0; i < NR_LRU_LISTS; i++)
3539 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3540 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3543 #ifdef CONFIG_DEBUG_VM
3546 struct mem_cgroup_per_node *mz;
3547 struct zone_reclaim_stat *rstat;
3548 unsigned long recent_rotated[2] = {0, 0};
3549 unsigned long recent_scanned[2] = {0, 0};
3551 for_each_online_pgdat(pgdat) {
3552 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3553 rstat = &mz->lruvec.reclaim_stat;
3555 recent_rotated[0] += rstat->recent_rotated[0];
3556 recent_rotated[1] += rstat->recent_rotated[1];
3557 recent_scanned[0] += rstat->recent_scanned[0];
3558 recent_scanned[1] += rstat->recent_scanned[1];
3560 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3561 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3562 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3563 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3570 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3573 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3575 return mem_cgroup_swappiness(memcg);
3578 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3579 struct cftype *cft, u64 val)
3581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3587 memcg->swappiness = val;
3589 vm_swappiness = val;
3594 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3596 struct mem_cgroup_threshold_ary *t;
3597 unsigned long usage;
3602 t = rcu_dereference(memcg->thresholds.primary);
3604 t = rcu_dereference(memcg->memsw_thresholds.primary);
3609 usage = mem_cgroup_usage(memcg, swap);
3612 * current_threshold points to threshold just below or equal to usage.
3613 * If it's not true, a threshold was crossed after last
3614 * call of __mem_cgroup_threshold().
3616 i = t->current_threshold;
3619 * Iterate backward over array of thresholds starting from
3620 * current_threshold and check if a threshold is crossed.
3621 * If none of thresholds below usage is crossed, we read
3622 * only one element of the array here.
3624 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3625 eventfd_signal(t->entries[i].eventfd, 1);
3627 /* i = current_threshold + 1 */
3631 * Iterate forward over array of thresholds starting from
3632 * current_threshold+1 and check if a threshold is crossed.
3633 * If none of thresholds above usage is crossed, we read
3634 * only one element of the array here.
3636 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3637 eventfd_signal(t->entries[i].eventfd, 1);
3639 /* Update current_threshold */
3640 t->current_threshold = i - 1;
3645 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3648 __mem_cgroup_threshold(memcg, false);
3649 if (do_memsw_account())
3650 __mem_cgroup_threshold(memcg, true);
3652 memcg = parent_mem_cgroup(memcg);
3656 static int compare_thresholds(const void *a, const void *b)
3658 const struct mem_cgroup_threshold *_a = a;
3659 const struct mem_cgroup_threshold *_b = b;
3661 if (_a->threshold > _b->threshold)
3664 if (_a->threshold < _b->threshold)
3670 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3672 struct mem_cgroup_eventfd_list *ev;
3674 spin_lock(&memcg_oom_lock);
3676 list_for_each_entry(ev, &memcg->oom_notify, list)
3677 eventfd_signal(ev->eventfd, 1);
3679 spin_unlock(&memcg_oom_lock);
3683 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3685 struct mem_cgroup *iter;
3687 for_each_mem_cgroup_tree(iter, memcg)
3688 mem_cgroup_oom_notify_cb(iter);
3691 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3692 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3694 struct mem_cgroup_thresholds *thresholds;
3695 struct mem_cgroup_threshold_ary *new;
3696 unsigned long threshold;
3697 unsigned long usage;
3700 ret = page_counter_memparse(args, "-1", &threshold);
3704 mutex_lock(&memcg->thresholds_lock);
3707 thresholds = &memcg->thresholds;
3708 usage = mem_cgroup_usage(memcg, false);
3709 } else if (type == _MEMSWAP) {
3710 thresholds = &memcg->memsw_thresholds;
3711 usage = mem_cgroup_usage(memcg, true);
3715 /* Check if a threshold crossed before adding a new one */
3716 if (thresholds->primary)
3717 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3719 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3721 /* Allocate memory for new array of thresholds */
3722 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3729 /* Copy thresholds (if any) to new array */
3730 if (thresholds->primary) {
3731 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3732 sizeof(struct mem_cgroup_threshold));
3735 /* Add new threshold */
3736 new->entries[size - 1].eventfd = eventfd;
3737 new->entries[size - 1].threshold = threshold;
3739 /* Sort thresholds. Registering of new threshold isn't time-critical */
3740 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3741 compare_thresholds, NULL);
3743 /* Find current threshold */
3744 new->current_threshold = -1;
3745 for (i = 0; i < size; i++) {
3746 if (new->entries[i].threshold <= usage) {
3748 * new->current_threshold will not be used until
3749 * rcu_assign_pointer(), so it's safe to increment
3752 ++new->current_threshold;
3757 /* Free old spare buffer and save old primary buffer as spare */
3758 kfree(thresholds->spare);
3759 thresholds->spare = thresholds->primary;
3761 rcu_assign_pointer(thresholds->primary, new);
3763 /* To be sure that nobody uses thresholds */
3767 mutex_unlock(&memcg->thresholds_lock);
3772 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3773 struct eventfd_ctx *eventfd, const char *args)
3775 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3778 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3779 struct eventfd_ctx *eventfd, const char *args)
3781 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3784 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3785 struct eventfd_ctx *eventfd, enum res_type type)
3787 struct mem_cgroup_thresholds *thresholds;
3788 struct mem_cgroup_threshold_ary *new;
3789 unsigned long usage;
3792 mutex_lock(&memcg->thresholds_lock);
3795 thresholds = &memcg->thresholds;
3796 usage = mem_cgroup_usage(memcg, false);
3797 } else if (type == _MEMSWAP) {
3798 thresholds = &memcg->memsw_thresholds;
3799 usage = mem_cgroup_usage(memcg, true);
3803 if (!thresholds->primary)
3806 /* Check if a threshold crossed before removing */
3807 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3809 /* Calculate new number of threshold */
3811 for (i = 0; i < thresholds->primary->size; i++) {
3812 if (thresholds->primary->entries[i].eventfd != eventfd)
3816 new = thresholds->spare;
3818 /* Set thresholds array to NULL if we don't have thresholds */
3827 /* Copy thresholds and find current threshold */
3828 new->current_threshold = -1;
3829 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3830 if (thresholds->primary->entries[i].eventfd == eventfd)
3833 new->entries[j] = thresholds->primary->entries[i];
3834 if (new->entries[j].threshold <= usage) {
3836 * new->current_threshold will not be used
3837 * until rcu_assign_pointer(), so it's safe to increment
3840 ++new->current_threshold;
3846 /* Swap primary and spare array */
3847 thresholds->spare = thresholds->primary;
3849 rcu_assign_pointer(thresholds->primary, new);
3851 /* To be sure that nobody uses thresholds */
3854 /* If all events are unregistered, free the spare array */
3856 kfree(thresholds->spare);
3857 thresholds->spare = NULL;
3860 mutex_unlock(&memcg->thresholds_lock);
3863 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3864 struct eventfd_ctx *eventfd)
3866 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3869 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3870 struct eventfd_ctx *eventfd)
3872 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3875 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3876 struct eventfd_ctx *eventfd, const char *args)
3878 struct mem_cgroup_eventfd_list *event;
3880 event = kmalloc(sizeof(*event), GFP_KERNEL);
3884 spin_lock(&memcg_oom_lock);
3886 event->eventfd = eventfd;
3887 list_add(&event->list, &memcg->oom_notify);
3889 /* already in OOM ? */
3890 if (memcg->under_oom)
3891 eventfd_signal(eventfd, 1);
3892 spin_unlock(&memcg_oom_lock);
3897 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3898 struct eventfd_ctx *eventfd)
3900 struct mem_cgroup_eventfd_list *ev, *tmp;
3902 spin_lock(&memcg_oom_lock);
3904 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3905 if (ev->eventfd == eventfd) {
3906 list_del(&ev->list);
3911 spin_unlock(&memcg_oom_lock);
3914 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3916 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3918 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3919 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3920 seq_printf(sf, "oom_kill %lu\n",
3921 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3925 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3926 struct cftype *cft, u64 val)
3928 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3930 /* cannot set to root cgroup and only 0 and 1 are allowed */
3931 if (!css->parent || !((val == 0) || (val == 1)))
3934 memcg->oom_kill_disable = val;
3936 memcg_oom_recover(memcg);
3941 #ifdef CONFIG_CGROUP_WRITEBACK
3943 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3945 return wb_domain_init(&memcg->cgwb_domain, gfp);
3948 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3950 wb_domain_exit(&memcg->cgwb_domain);
3953 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3955 wb_domain_size_changed(&memcg->cgwb_domain);
3958 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3960 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3962 if (!memcg->css.parent)
3965 return &memcg->cgwb_domain;
3969 * idx can be of type enum memcg_stat_item or node_stat_item.
3970 * Keep in sync with memcg_exact_page().
3972 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3974 long x = atomic_long_read(&memcg->vmstats[idx]);
3977 for_each_online_cpu(cpu)
3978 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
3985 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3986 * @wb: bdi_writeback in question
3987 * @pfilepages: out parameter for number of file pages
3988 * @pheadroom: out parameter for number of allocatable pages according to memcg
3989 * @pdirty: out parameter for number of dirty pages
3990 * @pwriteback: out parameter for number of pages under writeback
3992 * Determine the numbers of file, headroom, dirty, and writeback pages in
3993 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3994 * is a bit more involved.
3996 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3997 * headroom is calculated as the lowest headroom of itself and the
3998 * ancestors. Note that this doesn't consider the actual amount of
3999 * available memory in the system. The caller should further cap
4000 * *@pheadroom accordingly.
4002 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4003 unsigned long *pheadroom, unsigned long *pdirty,
4004 unsigned long *pwriteback)
4006 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4007 struct mem_cgroup *parent;
4009 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4011 /* this should eventually include NR_UNSTABLE_NFS */
4012 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4013 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4014 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4015 *pheadroom = PAGE_COUNTER_MAX;
4017 while ((parent = parent_mem_cgroup(memcg))) {
4018 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4019 unsigned long used = page_counter_read(&memcg->memory);
4021 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4026 #else /* CONFIG_CGROUP_WRITEBACK */
4028 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4033 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4037 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4041 #endif /* CONFIG_CGROUP_WRITEBACK */
4044 * DO NOT USE IN NEW FILES.
4046 * "cgroup.event_control" implementation.
4048 * This is way over-engineered. It tries to support fully configurable
4049 * events for each user. Such level of flexibility is completely
4050 * unnecessary especially in the light of the planned unified hierarchy.
4052 * Please deprecate this and replace with something simpler if at all
4057 * Unregister event and free resources.
4059 * Gets called from workqueue.
4061 static void memcg_event_remove(struct work_struct *work)
4063 struct mem_cgroup_event *event =
4064 container_of(work, struct mem_cgroup_event, remove);
4065 struct mem_cgroup *memcg = event->memcg;
4067 remove_wait_queue(event->wqh, &event->wait);
4069 event->unregister_event(memcg, event->eventfd);
4071 /* Notify userspace the event is going away. */
4072 eventfd_signal(event->eventfd, 1);
4074 eventfd_ctx_put(event->eventfd);
4076 css_put(&memcg->css);
4080 * Gets called on EPOLLHUP on eventfd when user closes it.
4082 * Called with wqh->lock held and interrupts disabled.
4084 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4085 int sync, void *key)
4087 struct mem_cgroup_event *event =
4088 container_of(wait, struct mem_cgroup_event, wait);
4089 struct mem_cgroup *memcg = event->memcg;
4090 __poll_t flags = key_to_poll(key);
4092 if (flags & EPOLLHUP) {
4094 * If the event has been detached at cgroup removal, we
4095 * can simply return knowing the other side will cleanup
4098 * We can't race against event freeing since the other
4099 * side will require wqh->lock via remove_wait_queue(),
4102 spin_lock(&memcg->event_list_lock);
4103 if (!list_empty(&event->list)) {
4104 list_del_init(&event->list);
4106 * We are in atomic context, but cgroup_event_remove()
4107 * may sleep, so we have to call it in workqueue.
4109 schedule_work(&event->remove);
4111 spin_unlock(&memcg->event_list_lock);
4117 static void memcg_event_ptable_queue_proc(struct file *file,
4118 wait_queue_head_t *wqh, poll_table *pt)
4120 struct mem_cgroup_event *event =
4121 container_of(pt, struct mem_cgroup_event, pt);
4124 add_wait_queue(wqh, &event->wait);
4128 * DO NOT USE IN NEW FILES.
4130 * Parse input and register new cgroup event handler.
4132 * Input must be in format '<event_fd> <control_fd> <args>'.
4133 * Interpretation of args is defined by control file implementation.
4135 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4136 char *buf, size_t nbytes, loff_t off)
4138 struct cgroup_subsys_state *css = of_css(of);
4139 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4140 struct mem_cgroup_event *event;
4141 struct cgroup_subsys_state *cfile_css;
4142 unsigned int efd, cfd;
4149 buf = strstrip(buf);
4151 efd = simple_strtoul(buf, &endp, 10);
4156 cfd = simple_strtoul(buf, &endp, 10);
4157 if ((*endp != ' ') && (*endp != '\0'))
4161 event = kzalloc(sizeof(*event), GFP_KERNEL);
4165 event->memcg = memcg;
4166 INIT_LIST_HEAD(&event->list);
4167 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4168 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4169 INIT_WORK(&event->remove, memcg_event_remove);
4177 event->eventfd = eventfd_ctx_fileget(efile.file);
4178 if (IS_ERR(event->eventfd)) {
4179 ret = PTR_ERR(event->eventfd);
4186 goto out_put_eventfd;
4189 /* the process need read permission on control file */
4190 /* AV: shouldn't we check that it's been opened for read instead? */
4191 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4196 * Determine the event callbacks and set them in @event. This used
4197 * to be done via struct cftype but cgroup core no longer knows
4198 * about these events. The following is crude but the whole thing
4199 * is for compatibility anyway.
4201 * DO NOT ADD NEW FILES.
4203 name = cfile.file->f_path.dentry->d_name.name;
4205 if (!strcmp(name, "memory.usage_in_bytes")) {
4206 event->register_event = mem_cgroup_usage_register_event;
4207 event->unregister_event = mem_cgroup_usage_unregister_event;
4208 } else if (!strcmp(name, "memory.oom_control")) {
4209 event->register_event = mem_cgroup_oom_register_event;
4210 event->unregister_event = mem_cgroup_oom_unregister_event;
4211 } else if (!strcmp(name, "memory.pressure_level")) {
4212 event->register_event = vmpressure_register_event;
4213 event->unregister_event = vmpressure_unregister_event;
4214 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4215 event->register_event = memsw_cgroup_usage_register_event;
4216 event->unregister_event = memsw_cgroup_usage_unregister_event;
4223 * Verify @cfile should belong to @css. Also, remaining events are
4224 * automatically removed on cgroup destruction but the removal is
4225 * asynchronous, so take an extra ref on @css.
4227 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4228 &memory_cgrp_subsys);
4230 if (IS_ERR(cfile_css))
4232 if (cfile_css != css) {
4237 ret = event->register_event(memcg, event->eventfd, buf);
4241 vfs_poll(efile.file, &event->pt);
4243 spin_lock(&memcg->event_list_lock);
4244 list_add(&event->list, &memcg->event_list);
4245 spin_unlock(&memcg->event_list_lock);
4257 eventfd_ctx_put(event->eventfd);
4266 static struct cftype mem_cgroup_legacy_files[] = {
4268 .name = "usage_in_bytes",
4269 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4270 .read_u64 = mem_cgroup_read_u64,
4273 .name = "max_usage_in_bytes",
4274 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4275 .write = mem_cgroup_reset,
4276 .read_u64 = mem_cgroup_read_u64,
4279 .name = "limit_in_bytes",
4280 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4281 .write = mem_cgroup_write,
4282 .read_u64 = mem_cgroup_read_u64,
4285 .name = "soft_limit_in_bytes",
4286 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4287 .write = mem_cgroup_write,
4288 .read_u64 = mem_cgroup_read_u64,
4292 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4293 .write = mem_cgroup_reset,
4294 .read_u64 = mem_cgroup_read_u64,
4298 .seq_show = memcg_stat_show,
4301 .name = "force_empty",
4302 .write = mem_cgroup_force_empty_write,
4305 .name = "use_hierarchy",
4306 .write_u64 = mem_cgroup_hierarchy_write,
4307 .read_u64 = mem_cgroup_hierarchy_read,
4310 .name = "cgroup.event_control", /* XXX: for compat */
4311 .write = memcg_write_event_control,
4312 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4315 .name = "swappiness",
4316 .read_u64 = mem_cgroup_swappiness_read,
4317 .write_u64 = mem_cgroup_swappiness_write,
4320 .name = "move_charge_at_immigrate",
4321 .read_u64 = mem_cgroup_move_charge_read,
4322 .write_u64 = mem_cgroup_move_charge_write,
4325 .name = "oom_control",
4326 .seq_show = mem_cgroup_oom_control_read,
4327 .write_u64 = mem_cgroup_oom_control_write,
4328 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4331 .name = "pressure_level",
4335 .name = "numa_stat",
4336 .seq_show = memcg_numa_stat_show,
4340 .name = "kmem.limit_in_bytes",
4341 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4342 .write = mem_cgroup_write,
4343 .read_u64 = mem_cgroup_read_u64,
4346 .name = "kmem.usage_in_bytes",
4347 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4348 .read_u64 = mem_cgroup_read_u64,
4351 .name = "kmem.failcnt",
4352 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4353 .write = mem_cgroup_reset,
4354 .read_u64 = mem_cgroup_read_u64,
4357 .name = "kmem.max_usage_in_bytes",
4358 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4359 .write = mem_cgroup_reset,
4360 .read_u64 = mem_cgroup_read_u64,
4362 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4364 .name = "kmem.slabinfo",
4365 .seq_start = memcg_slab_start,
4366 .seq_next = memcg_slab_next,
4367 .seq_stop = memcg_slab_stop,
4368 .seq_show = memcg_slab_show,
4372 .name = "kmem.tcp.limit_in_bytes",
4373 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4374 .write = mem_cgroup_write,
4375 .read_u64 = mem_cgroup_read_u64,
4378 .name = "kmem.tcp.usage_in_bytes",
4379 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4380 .read_u64 = mem_cgroup_read_u64,
4383 .name = "kmem.tcp.failcnt",
4384 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4385 .write = mem_cgroup_reset,
4386 .read_u64 = mem_cgroup_read_u64,
4389 .name = "kmem.tcp.max_usage_in_bytes",
4390 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4391 .write = mem_cgroup_reset,
4392 .read_u64 = mem_cgroup_read_u64,
4394 { }, /* terminate */
4398 * Private memory cgroup IDR
4400 * Swap-out records and page cache shadow entries need to store memcg
4401 * references in constrained space, so we maintain an ID space that is
4402 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4403 * memory-controlled cgroups to 64k.
4405 * However, there usually are many references to the oflline CSS after
4406 * the cgroup has been destroyed, such as page cache or reclaimable
4407 * slab objects, that don't need to hang on to the ID. We want to keep
4408 * those dead CSS from occupying IDs, or we might quickly exhaust the
4409 * relatively small ID space and prevent the creation of new cgroups
4410 * even when there are much fewer than 64k cgroups - possibly none.
4412 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4413 * be freed and recycled when it's no longer needed, which is usually
4414 * when the CSS is offlined.
4416 * The only exception to that are records of swapped out tmpfs/shmem
4417 * pages that need to be attributed to live ancestors on swapin. But
4418 * those references are manageable from userspace.
4421 static DEFINE_IDR(mem_cgroup_idr);
4423 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4425 if (memcg->id.id > 0) {
4426 idr_remove(&mem_cgroup_idr, memcg->id.id);
4431 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4433 refcount_add(n, &memcg->id.ref);
4436 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4438 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4439 mem_cgroup_id_remove(memcg);
4441 /* Memcg ID pins CSS */
4442 css_put(&memcg->css);
4446 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4448 mem_cgroup_id_get_many(memcg, 1);
4451 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4453 mem_cgroup_id_put_many(memcg, 1);
4457 * mem_cgroup_from_id - look up a memcg from a memcg id
4458 * @id: the memcg id to look up
4460 * Caller must hold rcu_read_lock().
4462 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4464 WARN_ON_ONCE(!rcu_read_lock_held());
4465 return idr_find(&mem_cgroup_idr, id);
4468 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4470 struct mem_cgroup_per_node *pn;
4473 * This routine is called against possible nodes.
4474 * But it's BUG to call kmalloc() against offline node.
4476 * TODO: this routine can waste much memory for nodes which will
4477 * never be onlined. It's better to use memory hotplug callback
4480 if (!node_state(node, N_NORMAL_MEMORY))
4482 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4486 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4487 if (!pn->lruvec_stat_cpu) {
4492 lruvec_init(&pn->lruvec);
4493 pn->usage_in_excess = 0;
4494 pn->on_tree = false;
4497 memcg->nodeinfo[node] = pn;
4501 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4503 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4508 free_percpu(pn->lruvec_stat_cpu);
4512 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4517 free_mem_cgroup_per_node_info(memcg, node);
4518 free_percpu(memcg->vmstats_percpu);
4522 static void mem_cgroup_free(struct mem_cgroup *memcg)
4524 memcg_wb_domain_exit(memcg);
4525 __mem_cgroup_free(memcg);
4528 static struct mem_cgroup *mem_cgroup_alloc(void)
4530 struct mem_cgroup *memcg;
4534 size = sizeof(struct mem_cgroup);
4535 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4537 memcg = kzalloc(size, GFP_KERNEL);
4541 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4542 1, MEM_CGROUP_ID_MAX,
4544 if (memcg->id.id < 0)
4547 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4548 if (!memcg->vmstats_percpu)
4552 if (alloc_mem_cgroup_per_node_info(memcg, node))
4555 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4558 INIT_WORK(&memcg->high_work, high_work_func);
4559 memcg->last_scanned_node = MAX_NUMNODES;
4560 INIT_LIST_HEAD(&memcg->oom_notify);
4561 mutex_init(&memcg->thresholds_lock);
4562 spin_lock_init(&memcg->move_lock);
4563 vmpressure_init(&memcg->vmpressure);
4564 INIT_LIST_HEAD(&memcg->event_list);
4565 spin_lock_init(&memcg->event_list_lock);
4566 memcg->socket_pressure = jiffies;
4567 #ifdef CONFIG_MEMCG_KMEM
4568 memcg->kmemcg_id = -1;
4570 #ifdef CONFIG_CGROUP_WRITEBACK
4571 INIT_LIST_HEAD(&memcg->cgwb_list);
4573 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4576 mem_cgroup_id_remove(memcg);
4577 __mem_cgroup_free(memcg);
4581 static struct cgroup_subsys_state * __ref
4582 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4584 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4585 struct mem_cgroup *memcg;
4586 long error = -ENOMEM;
4588 memcg = mem_cgroup_alloc();
4590 return ERR_PTR(error);
4592 memcg->high = PAGE_COUNTER_MAX;
4593 memcg->soft_limit = PAGE_COUNTER_MAX;
4595 memcg->swappiness = mem_cgroup_swappiness(parent);
4596 memcg->oom_kill_disable = parent->oom_kill_disable;
4598 if (parent && parent->use_hierarchy) {
4599 memcg->use_hierarchy = true;
4600 page_counter_init(&memcg->memory, &parent->memory);
4601 page_counter_init(&memcg->swap, &parent->swap);
4602 page_counter_init(&memcg->memsw, &parent->memsw);
4603 page_counter_init(&memcg->kmem, &parent->kmem);
4604 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4606 page_counter_init(&memcg->memory, NULL);
4607 page_counter_init(&memcg->swap, NULL);
4608 page_counter_init(&memcg->memsw, NULL);
4609 page_counter_init(&memcg->kmem, NULL);
4610 page_counter_init(&memcg->tcpmem, NULL);
4612 * Deeper hierachy with use_hierarchy == false doesn't make
4613 * much sense so let cgroup subsystem know about this
4614 * unfortunate state in our controller.
4616 if (parent != root_mem_cgroup)
4617 memory_cgrp_subsys.broken_hierarchy = true;
4620 /* The following stuff does not apply to the root */
4622 root_mem_cgroup = memcg;
4626 error = memcg_online_kmem(memcg);
4630 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4631 static_branch_inc(&memcg_sockets_enabled_key);
4635 mem_cgroup_id_remove(memcg);
4636 mem_cgroup_free(memcg);
4637 return ERR_PTR(-ENOMEM);
4640 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4642 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4645 * A memcg must be visible for memcg_expand_shrinker_maps()
4646 * by the time the maps are allocated. So, we allocate maps
4647 * here, when for_each_mem_cgroup() can't skip it.
4649 if (memcg_alloc_shrinker_maps(memcg)) {
4650 mem_cgroup_id_remove(memcg);
4654 /* Online state pins memcg ID, memcg ID pins CSS */
4655 refcount_set(&memcg->id.ref, 1);
4660 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4662 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4663 struct mem_cgroup_event *event, *tmp;
4666 * Unregister events and notify userspace.
4667 * Notify userspace about cgroup removing only after rmdir of cgroup
4668 * directory to avoid race between userspace and kernelspace.
4670 spin_lock(&memcg->event_list_lock);
4671 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4672 list_del_init(&event->list);
4673 schedule_work(&event->remove);
4675 spin_unlock(&memcg->event_list_lock);
4677 page_counter_set_min(&memcg->memory, 0);
4678 page_counter_set_low(&memcg->memory, 0);
4680 memcg_offline_kmem(memcg);
4681 wb_memcg_offline(memcg);
4683 drain_all_stock(memcg);
4685 mem_cgroup_id_put(memcg);
4688 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4690 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4692 invalidate_reclaim_iterators(memcg);
4695 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4700 static_branch_dec(&memcg_sockets_enabled_key);
4702 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4703 static_branch_dec(&memcg_sockets_enabled_key);
4705 vmpressure_cleanup(&memcg->vmpressure);
4706 cancel_work_sync(&memcg->high_work);
4707 mem_cgroup_remove_from_trees(memcg);
4708 memcg_free_shrinker_maps(memcg);
4709 memcg_free_kmem(memcg);
4710 mem_cgroup_free(memcg);
4714 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4715 * @css: the target css
4717 * Reset the states of the mem_cgroup associated with @css. This is
4718 * invoked when the userland requests disabling on the default hierarchy
4719 * but the memcg is pinned through dependency. The memcg should stop
4720 * applying policies and should revert to the vanilla state as it may be
4721 * made visible again.
4723 * The current implementation only resets the essential configurations.
4724 * This needs to be expanded to cover all the visible parts.
4726 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4728 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4730 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4731 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4732 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4733 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4734 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4735 page_counter_set_min(&memcg->memory, 0);
4736 page_counter_set_low(&memcg->memory, 0);
4737 memcg->high = PAGE_COUNTER_MAX;
4738 memcg->soft_limit = PAGE_COUNTER_MAX;
4739 memcg_wb_domain_size_changed(memcg);
4743 /* Handlers for move charge at task migration. */
4744 static int mem_cgroup_do_precharge(unsigned long count)
4748 /* Try a single bulk charge without reclaim first, kswapd may wake */
4749 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4751 mc.precharge += count;
4755 /* Try charges one by one with reclaim, but do not retry */
4757 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4771 enum mc_target_type {
4778 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4779 unsigned long addr, pte_t ptent)
4781 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4783 if (!page || !page_mapped(page))
4785 if (PageAnon(page)) {
4786 if (!(mc.flags & MOVE_ANON))
4789 if (!(mc.flags & MOVE_FILE))
4792 if (!get_page_unless_zero(page))
4798 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4799 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4800 pte_t ptent, swp_entry_t *entry)
4802 struct page *page = NULL;
4803 swp_entry_t ent = pte_to_swp_entry(ptent);
4805 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4809 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4810 * a device and because they are not accessible by CPU they are store
4811 * as special swap entry in the CPU page table.
4813 if (is_device_private_entry(ent)) {
4814 page = device_private_entry_to_page(ent);
4816 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4817 * a refcount of 1 when free (unlike normal page)
4819 if (!page_ref_add_unless(page, 1, 1))
4825 * Because lookup_swap_cache() updates some statistics counter,
4826 * we call find_get_page() with swapper_space directly.
4828 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4829 if (do_memsw_account())
4830 entry->val = ent.val;
4835 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4836 pte_t ptent, swp_entry_t *entry)
4842 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4843 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4845 struct page *page = NULL;
4846 struct address_space *mapping;
4849 if (!vma->vm_file) /* anonymous vma */
4851 if (!(mc.flags & MOVE_FILE))
4854 mapping = vma->vm_file->f_mapping;
4855 pgoff = linear_page_index(vma, addr);
4857 /* page is moved even if it's not RSS of this task(page-faulted). */
4859 /* shmem/tmpfs may report page out on swap: account for that too. */
4860 if (shmem_mapping(mapping)) {
4861 page = find_get_entry(mapping, pgoff);
4862 if (xa_is_value(page)) {
4863 swp_entry_t swp = radix_to_swp_entry(page);
4864 if (do_memsw_account())
4866 page = find_get_page(swap_address_space(swp),
4870 page = find_get_page(mapping, pgoff);
4872 page = find_get_page(mapping, pgoff);
4878 * mem_cgroup_move_account - move account of the page
4880 * @compound: charge the page as compound or small page
4881 * @from: mem_cgroup which the page is moved from.
4882 * @to: mem_cgroup which the page is moved to. @from != @to.
4884 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4886 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4889 static int mem_cgroup_move_account(struct page *page,
4891 struct mem_cgroup *from,
4892 struct mem_cgroup *to)
4894 unsigned long flags;
4895 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4899 VM_BUG_ON(from == to);
4900 VM_BUG_ON_PAGE(PageLRU(page), page);
4901 VM_BUG_ON(compound && !PageTransHuge(page));
4904 * Prevent mem_cgroup_migrate() from looking at
4905 * page->mem_cgroup of its source page while we change it.
4908 if (!trylock_page(page))
4912 if (page->mem_cgroup != from)
4915 anon = PageAnon(page);
4917 spin_lock_irqsave(&from->move_lock, flags);
4919 if (!anon && page_mapped(page)) {
4920 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4921 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4925 * move_lock grabbed above and caller set from->moving_account, so
4926 * mod_memcg_page_state will serialize updates to PageDirty.
4927 * So mapping should be stable for dirty pages.
4929 if (!anon && PageDirty(page)) {
4930 struct address_space *mapping = page_mapping(page);
4932 if (mapping_cap_account_dirty(mapping)) {
4933 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4934 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4938 if (PageWriteback(page)) {
4939 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4940 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4944 * It is safe to change page->mem_cgroup here because the page
4945 * is referenced, charged, and isolated - we can't race with
4946 * uncharging, charging, migration, or LRU putback.
4949 /* caller should have done css_get */
4950 page->mem_cgroup = to;
4951 spin_unlock_irqrestore(&from->move_lock, flags);
4955 local_irq_disable();
4956 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4957 memcg_check_events(to, page);
4958 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4959 memcg_check_events(from, page);
4968 * get_mctgt_type - get target type of moving charge
4969 * @vma: the vma the pte to be checked belongs
4970 * @addr: the address corresponding to the pte to be checked
4971 * @ptent: the pte to be checked
4972 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4975 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4976 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4977 * move charge. if @target is not NULL, the page is stored in target->page
4978 * with extra refcnt got(Callers should handle it).
4979 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4980 * target for charge migration. if @target is not NULL, the entry is stored
4982 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4983 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4984 * For now we such page is charge like a regular page would be as for all
4985 * intent and purposes it is just special memory taking the place of a
4988 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4990 * Called with pte lock held.
4993 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4994 unsigned long addr, pte_t ptent, union mc_target *target)
4996 struct page *page = NULL;
4997 enum mc_target_type ret = MC_TARGET_NONE;
4998 swp_entry_t ent = { .val = 0 };
5000 if (pte_present(ptent))
5001 page = mc_handle_present_pte(vma, addr, ptent);
5002 else if (is_swap_pte(ptent))
5003 page = mc_handle_swap_pte(vma, ptent, &ent);
5004 else if (pte_none(ptent))
5005 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5007 if (!page && !ent.val)
5011 * Do only loose check w/o serialization.
5012 * mem_cgroup_move_account() checks the page is valid or
5013 * not under LRU exclusion.
5015 if (page->mem_cgroup == mc.from) {
5016 ret = MC_TARGET_PAGE;
5017 if (is_device_private_page(page) ||
5018 is_device_public_page(page))
5019 ret = MC_TARGET_DEVICE;
5021 target->page = page;
5023 if (!ret || !target)
5027 * There is a swap entry and a page doesn't exist or isn't charged.
5028 * But we cannot move a tail-page in a THP.
5030 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5031 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5032 ret = MC_TARGET_SWAP;
5039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5041 * We don't consider PMD mapped swapping or file mapped pages because THP does
5042 * not support them for now.
5043 * Caller should make sure that pmd_trans_huge(pmd) is true.
5045 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5046 unsigned long addr, pmd_t pmd, union mc_target *target)
5048 struct page *page = NULL;
5049 enum mc_target_type ret = MC_TARGET_NONE;
5051 if (unlikely(is_swap_pmd(pmd))) {
5052 VM_BUG_ON(thp_migration_supported() &&
5053 !is_pmd_migration_entry(pmd));
5056 page = pmd_page(pmd);
5057 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5058 if (!(mc.flags & MOVE_ANON))
5060 if (page->mem_cgroup == mc.from) {
5061 ret = MC_TARGET_PAGE;
5064 target->page = page;
5070 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5071 unsigned long addr, pmd_t pmd, union mc_target *target)
5073 return MC_TARGET_NONE;
5077 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5078 unsigned long addr, unsigned long end,
5079 struct mm_walk *walk)
5081 struct vm_area_struct *vma = walk->vma;
5085 ptl = pmd_trans_huge_lock(pmd, vma);
5088 * Note their can not be MC_TARGET_DEVICE for now as we do not
5089 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5090 * MEMORY_DEVICE_PRIVATE but this might change.
5092 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5093 mc.precharge += HPAGE_PMD_NR;
5098 if (pmd_trans_unstable(pmd))
5100 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5101 for (; addr != end; pte++, addr += PAGE_SIZE)
5102 if (get_mctgt_type(vma, addr, *pte, NULL))
5103 mc.precharge++; /* increment precharge temporarily */
5104 pte_unmap_unlock(pte - 1, ptl);
5110 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5112 unsigned long precharge;
5114 struct mm_walk mem_cgroup_count_precharge_walk = {
5115 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5118 down_read(&mm->mmap_sem);
5119 walk_page_range(0, mm->highest_vm_end,
5120 &mem_cgroup_count_precharge_walk);
5121 up_read(&mm->mmap_sem);
5123 precharge = mc.precharge;
5129 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5131 unsigned long precharge = mem_cgroup_count_precharge(mm);
5133 VM_BUG_ON(mc.moving_task);
5134 mc.moving_task = current;
5135 return mem_cgroup_do_precharge(precharge);
5138 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5139 static void __mem_cgroup_clear_mc(void)
5141 struct mem_cgroup *from = mc.from;
5142 struct mem_cgroup *to = mc.to;
5144 /* we must uncharge all the leftover precharges from mc.to */
5146 cancel_charge(mc.to, mc.precharge);
5150 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5151 * we must uncharge here.
5153 if (mc.moved_charge) {
5154 cancel_charge(mc.from, mc.moved_charge);
5155 mc.moved_charge = 0;
5157 /* we must fixup refcnts and charges */
5158 if (mc.moved_swap) {
5159 /* uncharge swap account from the old cgroup */
5160 if (!mem_cgroup_is_root(mc.from))
5161 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5163 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5166 * we charged both to->memory and to->memsw, so we
5167 * should uncharge to->memory.
5169 if (!mem_cgroup_is_root(mc.to))
5170 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5172 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5173 css_put_many(&mc.to->css, mc.moved_swap);
5177 memcg_oom_recover(from);
5178 memcg_oom_recover(to);
5179 wake_up_all(&mc.waitq);
5182 static void mem_cgroup_clear_mc(void)
5184 struct mm_struct *mm = mc.mm;
5187 * we must clear moving_task before waking up waiters at the end of
5190 mc.moving_task = NULL;
5191 __mem_cgroup_clear_mc();
5192 spin_lock(&mc.lock);
5196 spin_unlock(&mc.lock);
5201 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5203 struct cgroup_subsys_state *css;
5204 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5205 struct mem_cgroup *from;
5206 struct task_struct *leader, *p;
5207 struct mm_struct *mm;
5208 unsigned long move_flags;
5211 /* charge immigration isn't supported on the default hierarchy */
5212 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5216 * Multi-process migrations only happen on the default hierarchy
5217 * where charge immigration is not used. Perform charge
5218 * immigration if @tset contains a leader and whine if there are
5222 cgroup_taskset_for_each_leader(leader, css, tset) {
5225 memcg = mem_cgroup_from_css(css);
5231 * We are now commited to this value whatever it is. Changes in this
5232 * tunable will only affect upcoming migrations, not the current one.
5233 * So we need to save it, and keep it going.
5235 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5239 from = mem_cgroup_from_task(p);
5241 VM_BUG_ON(from == memcg);
5243 mm = get_task_mm(p);
5246 /* We move charges only when we move a owner of the mm */
5247 if (mm->owner == p) {
5250 VM_BUG_ON(mc.precharge);
5251 VM_BUG_ON(mc.moved_charge);
5252 VM_BUG_ON(mc.moved_swap);
5254 spin_lock(&mc.lock);
5258 mc.flags = move_flags;
5259 spin_unlock(&mc.lock);
5260 /* We set mc.moving_task later */
5262 ret = mem_cgroup_precharge_mc(mm);
5264 mem_cgroup_clear_mc();
5271 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5274 mem_cgroup_clear_mc();
5277 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5278 unsigned long addr, unsigned long end,
5279 struct mm_walk *walk)
5282 struct vm_area_struct *vma = walk->vma;
5285 enum mc_target_type target_type;
5286 union mc_target target;
5289 ptl = pmd_trans_huge_lock(pmd, vma);
5291 if (mc.precharge < HPAGE_PMD_NR) {
5295 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5296 if (target_type == MC_TARGET_PAGE) {
5298 if (!isolate_lru_page(page)) {
5299 if (!mem_cgroup_move_account(page, true,
5301 mc.precharge -= HPAGE_PMD_NR;
5302 mc.moved_charge += HPAGE_PMD_NR;
5304 putback_lru_page(page);
5307 } else if (target_type == MC_TARGET_DEVICE) {
5309 if (!mem_cgroup_move_account(page, true,
5311 mc.precharge -= HPAGE_PMD_NR;
5312 mc.moved_charge += HPAGE_PMD_NR;
5320 if (pmd_trans_unstable(pmd))
5323 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5324 for (; addr != end; addr += PAGE_SIZE) {
5325 pte_t ptent = *(pte++);
5326 bool device = false;
5332 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5333 case MC_TARGET_DEVICE:
5336 case MC_TARGET_PAGE:
5339 * We can have a part of the split pmd here. Moving it
5340 * can be done but it would be too convoluted so simply
5341 * ignore such a partial THP and keep it in original
5342 * memcg. There should be somebody mapping the head.
5344 if (PageTransCompound(page))
5346 if (!device && isolate_lru_page(page))
5348 if (!mem_cgroup_move_account(page, false,
5351 /* we uncharge from mc.from later. */
5355 putback_lru_page(page);
5356 put: /* get_mctgt_type() gets the page */
5359 case MC_TARGET_SWAP:
5361 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5363 /* we fixup refcnts and charges later. */
5371 pte_unmap_unlock(pte - 1, ptl);
5376 * We have consumed all precharges we got in can_attach().
5377 * We try charge one by one, but don't do any additional
5378 * charges to mc.to if we have failed in charge once in attach()
5381 ret = mem_cgroup_do_precharge(1);
5389 static void mem_cgroup_move_charge(void)
5391 struct mm_walk mem_cgroup_move_charge_walk = {
5392 .pmd_entry = mem_cgroup_move_charge_pte_range,
5396 lru_add_drain_all();
5398 * Signal lock_page_memcg() to take the memcg's move_lock
5399 * while we're moving its pages to another memcg. Then wait
5400 * for already started RCU-only updates to finish.
5402 atomic_inc(&mc.from->moving_account);
5405 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5407 * Someone who are holding the mmap_sem might be waiting in
5408 * waitq. So we cancel all extra charges, wake up all waiters,
5409 * and retry. Because we cancel precharges, we might not be able
5410 * to move enough charges, but moving charge is a best-effort
5411 * feature anyway, so it wouldn't be a big problem.
5413 __mem_cgroup_clear_mc();
5418 * When we have consumed all precharges and failed in doing
5419 * additional charge, the page walk just aborts.
5421 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5423 up_read(&mc.mm->mmap_sem);
5424 atomic_dec(&mc.from->moving_account);
5427 static void mem_cgroup_move_task(void)
5430 mem_cgroup_move_charge();
5431 mem_cgroup_clear_mc();
5434 #else /* !CONFIG_MMU */
5435 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5439 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5442 static void mem_cgroup_move_task(void)
5448 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5449 * to verify whether we're attached to the default hierarchy on each mount
5452 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5455 * use_hierarchy is forced on the default hierarchy. cgroup core
5456 * guarantees that @root doesn't have any children, so turning it
5457 * on for the root memcg is enough.
5459 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5460 root_mem_cgroup->use_hierarchy = true;
5462 root_mem_cgroup->use_hierarchy = false;
5465 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5467 if (value == PAGE_COUNTER_MAX)
5468 seq_puts(m, "max\n");
5470 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5475 static u64 memory_current_read(struct cgroup_subsys_state *css,
5478 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5480 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5483 static int memory_min_show(struct seq_file *m, void *v)
5485 return seq_puts_memcg_tunable(m,
5486 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5489 static ssize_t memory_min_write(struct kernfs_open_file *of,
5490 char *buf, size_t nbytes, loff_t off)
5492 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5496 buf = strstrip(buf);
5497 err = page_counter_memparse(buf, "max", &min);
5501 page_counter_set_min(&memcg->memory, min);
5506 static int memory_low_show(struct seq_file *m, void *v)
5508 return seq_puts_memcg_tunable(m,
5509 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5512 static ssize_t memory_low_write(struct kernfs_open_file *of,
5513 char *buf, size_t nbytes, loff_t off)
5515 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5519 buf = strstrip(buf);
5520 err = page_counter_memparse(buf, "max", &low);
5524 page_counter_set_low(&memcg->memory, low);
5529 static int memory_high_show(struct seq_file *m, void *v)
5531 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5534 static ssize_t memory_high_write(struct kernfs_open_file *of,
5535 char *buf, size_t nbytes, loff_t off)
5537 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5538 unsigned long nr_pages;
5542 buf = strstrip(buf);
5543 err = page_counter_memparse(buf, "max", &high);
5549 nr_pages = page_counter_read(&memcg->memory);
5550 if (nr_pages > high)
5551 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5554 memcg_wb_domain_size_changed(memcg);
5558 static int memory_max_show(struct seq_file *m, void *v)
5560 return seq_puts_memcg_tunable(m,
5561 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5564 static ssize_t memory_max_write(struct kernfs_open_file *of,
5565 char *buf, size_t nbytes, loff_t off)
5567 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5568 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5569 bool drained = false;
5573 buf = strstrip(buf);
5574 err = page_counter_memparse(buf, "max", &max);
5578 xchg(&memcg->memory.max, max);
5581 unsigned long nr_pages = page_counter_read(&memcg->memory);
5583 if (nr_pages <= max)
5586 if (signal_pending(current)) {
5592 drain_all_stock(memcg);
5598 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5604 memcg_memory_event(memcg, MEMCG_OOM);
5605 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5609 memcg_wb_domain_size_changed(memcg);
5613 static int memory_events_show(struct seq_file *m, void *v)
5615 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5617 seq_printf(m, "low %lu\n",
5618 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5619 seq_printf(m, "high %lu\n",
5620 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5621 seq_printf(m, "max %lu\n",
5622 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5623 seq_printf(m, "oom %lu\n",
5624 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5625 seq_printf(m, "oom_kill %lu\n",
5626 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5631 static int memory_stat_show(struct seq_file *m, void *v)
5633 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5637 * Provide statistics on the state of the memory subsystem as
5638 * well as cumulative event counters that show past behavior.
5640 * This list is ordered following a combination of these gradients:
5641 * 1) generic big picture -> specifics and details
5642 * 2) reflecting userspace activity -> reflecting kernel heuristics
5644 * Current memory state:
5647 seq_printf(m, "anon %llu\n",
5648 (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE);
5649 seq_printf(m, "file %llu\n",
5650 (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE);
5651 seq_printf(m, "kernel_stack %llu\n",
5652 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024);
5653 seq_printf(m, "slab %llu\n",
5654 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
5655 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
5657 seq_printf(m, "sock %llu\n",
5658 (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE);
5660 seq_printf(m, "shmem %llu\n",
5661 (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE);
5662 seq_printf(m, "file_mapped %llu\n",
5663 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE);
5664 seq_printf(m, "file_dirty %llu\n",
5665 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE);
5666 seq_printf(m, "file_writeback %llu\n",
5667 (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE);
5670 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5671 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5672 * arse because it requires migrating the work out of rmap to a place
5673 * where the page->mem_cgroup is set up and stable.
5675 seq_printf(m, "anon_thp %llu\n",
5676 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE);
5678 for (i = 0; i < NR_LRU_LISTS; i++)
5679 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5680 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
5683 seq_printf(m, "slab_reclaimable %llu\n",
5684 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
5686 seq_printf(m, "slab_unreclaimable %llu\n",
5687 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
5690 /* Accumulated memory events */
5692 seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
5693 seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
5695 seq_printf(m, "workingset_refault %lu\n",
5696 memcg_page_state(memcg, WORKINGSET_REFAULT));
5697 seq_printf(m, "workingset_activate %lu\n",
5698 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
5699 seq_printf(m, "workingset_nodereclaim %lu\n",
5700 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
5702 seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
5703 seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) +
5704 memcg_events(memcg, PGSCAN_DIRECT));
5705 seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) +
5706 memcg_events(memcg, PGSTEAL_DIRECT));
5707 seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
5708 seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
5709 seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
5710 seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
5712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5713 seq_printf(m, "thp_fault_alloc %lu\n",
5714 memcg_events(memcg, THP_FAULT_ALLOC));
5715 seq_printf(m, "thp_collapse_alloc %lu\n",
5716 memcg_events(memcg, THP_COLLAPSE_ALLOC));
5717 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5722 static int memory_oom_group_show(struct seq_file *m, void *v)
5724 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5726 seq_printf(m, "%d\n", memcg->oom_group);
5731 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5732 char *buf, size_t nbytes, loff_t off)
5734 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5737 buf = strstrip(buf);
5741 ret = kstrtoint(buf, 0, &oom_group);
5745 if (oom_group != 0 && oom_group != 1)
5748 memcg->oom_group = oom_group;
5753 static struct cftype memory_files[] = {
5756 .flags = CFTYPE_NOT_ON_ROOT,
5757 .read_u64 = memory_current_read,
5761 .flags = CFTYPE_NOT_ON_ROOT,
5762 .seq_show = memory_min_show,
5763 .write = memory_min_write,
5767 .flags = CFTYPE_NOT_ON_ROOT,
5768 .seq_show = memory_low_show,
5769 .write = memory_low_write,
5773 .flags = CFTYPE_NOT_ON_ROOT,
5774 .seq_show = memory_high_show,
5775 .write = memory_high_write,
5779 .flags = CFTYPE_NOT_ON_ROOT,
5780 .seq_show = memory_max_show,
5781 .write = memory_max_write,
5785 .flags = CFTYPE_NOT_ON_ROOT,
5786 .file_offset = offsetof(struct mem_cgroup, events_file),
5787 .seq_show = memory_events_show,
5791 .flags = CFTYPE_NOT_ON_ROOT,
5792 .seq_show = memory_stat_show,
5795 .name = "oom.group",
5796 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5797 .seq_show = memory_oom_group_show,
5798 .write = memory_oom_group_write,
5803 struct cgroup_subsys memory_cgrp_subsys = {
5804 .css_alloc = mem_cgroup_css_alloc,
5805 .css_online = mem_cgroup_css_online,
5806 .css_offline = mem_cgroup_css_offline,
5807 .css_released = mem_cgroup_css_released,
5808 .css_free = mem_cgroup_css_free,
5809 .css_reset = mem_cgroup_css_reset,
5810 .can_attach = mem_cgroup_can_attach,
5811 .cancel_attach = mem_cgroup_cancel_attach,
5812 .post_attach = mem_cgroup_move_task,
5813 .bind = mem_cgroup_bind,
5814 .dfl_cftypes = memory_files,
5815 .legacy_cftypes = mem_cgroup_legacy_files,
5820 * mem_cgroup_protected - check if memory consumption is in the normal range
5821 * @root: the top ancestor of the sub-tree being checked
5822 * @memcg: the memory cgroup to check
5824 * WARNING: This function is not stateless! It can only be used as part
5825 * of a top-down tree iteration, not for isolated queries.
5827 * Returns one of the following:
5828 * MEMCG_PROT_NONE: cgroup memory is not protected
5829 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5830 * an unprotected supply of reclaimable memory from other cgroups.
5831 * MEMCG_PROT_MIN: cgroup memory is protected
5833 * @root is exclusive; it is never protected when looked at directly
5835 * To provide a proper hierarchical behavior, effective memory.min/low values
5836 * are used. Below is the description of how effective memory.low is calculated.
5837 * Effective memory.min values is calculated in the same way.
5839 * Effective memory.low is always equal or less than the original memory.low.
5840 * If there is no memory.low overcommittment (which is always true for
5841 * top-level memory cgroups), these two values are equal.
5842 * Otherwise, it's a part of parent's effective memory.low,
5843 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5844 * memory.low usages, where memory.low usage is the size of actually
5848 * elow = min( memory.low, parent->elow * ------------------ ),
5849 * siblings_low_usage
5851 * | memory.current, if memory.current < memory.low
5856 * Such definition of the effective memory.low provides the expected
5857 * hierarchical behavior: parent's memory.low value is limiting
5858 * children, unprotected memory is reclaimed first and cgroups,
5859 * which are not using their guarantee do not affect actual memory
5862 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5864 * A A/memory.low = 2G, A/memory.current = 6G
5866 * BC DE B/memory.low = 3G B/memory.current = 2G
5867 * C/memory.low = 1G C/memory.current = 2G
5868 * D/memory.low = 0 D/memory.current = 2G
5869 * E/memory.low = 10G E/memory.current = 0
5871 * and the memory pressure is applied, the following memory distribution
5872 * is expected (approximately):
5874 * A/memory.current = 2G
5876 * B/memory.current = 1.3G
5877 * C/memory.current = 0.6G
5878 * D/memory.current = 0
5879 * E/memory.current = 0
5881 * These calculations require constant tracking of the actual low usages
5882 * (see propagate_protected_usage()), as well as recursive calculation of
5883 * effective memory.low values. But as we do call mem_cgroup_protected()
5884 * path for each memory cgroup top-down from the reclaim,
5885 * it's possible to optimize this part, and save calculated elow
5886 * for next usage. This part is intentionally racy, but it's ok,
5887 * as memory.low is a best-effort mechanism.
5889 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5890 struct mem_cgroup *memcg)
5892 struct mem_cgroup *parent;
5893 unsigned long emin, parent_emin;
5894 unsigned long elow, parent_elow;
5895 unsigned long usage;
5897 if (mem_cgroup_disabled())
5898 return MEMCG_PROT_NONE;
5901 root = root_mem_cgroup;
5903 return MEMCG_PROT_NONE;
5905 usage = page_counter_read(&memcg->memory);
5907 return MEMCG_PROT_NONE;
5909 emin = memcg->memory.min;
5910 elow = memcg->memory.low;
5912 parent = parent_mem_cgroup(memcg);
5913 /* No parent means a non-hierarchical mode on v1 memcg */
5915 return MEMCG_PROT_NONE;
5920 parent_emin = READ_ONCE(parent->memory.emin);
5921 emin = min(emin, parent_emin);
5922 if (emin && parent_emin) {
5923 unsigned long min_usage, siblings_min_usage;
5925 min_usage = min(usage, memcg->memory.min);
5926 siblings_min_usage = atomic_long_read(
5927 &parent->memory.children_min_usage);
5929 if (min_usage && siblings_min_usage)
5930 emin = min(emin, parent_emin * min_usage /
5931 siblings_min_usage);
5934 parent_elow = READ_ONCE(parent->memory.elow);
5935 elow = min(elow, parent_elow);
5936 if (elow && parent_elow) {
5937 unsigned long low_usage, siblings_low_usage;
5939 low_usage = min(usage, memcg->memory.low);
5940 siblings_low_usage = atomic_long_read(
5941 &parent->memory.children_low_usage);
5943 if (low_usage && siblings_low_usage)
5944 elow = min(elow, parent_elow * low_usage /
5945 siblings_low_usage);
5949 memcg->memory.emin = emin;
5950 memcg->memory.elow = elow;
5953 return MEMCG_PROT_MIN;
5954 else if (usage <= elow)
5955 return MEMCG_PROT_LOW;
5957 return MEMCG_PROT_NONE;
5961 * mem_cgroup_try_charge - try charging a page
5962 * @page: page to charge
5963 * @mm: mm context of the victim
5964 * @gfp_mask: reclaim mode
5965 * @memcgp: charged memcg return
5966 * @compound: charge the page as compound or small page
5968 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5969 * pages according to @gfp_mask if necessary.
5971 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5972 * Otherwise, an error code is returned.
5974 * After page->mapping has been set up, the caller must finalize the
5975 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5976 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5978 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5979 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5982 struct mem_cgroup *memcg = NULL;
5983 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5986 if (mem_cgroup_disabled())
5989 if (PageSwapCache(page)) {
5991 * Every swap fault against a single page tries to charge the
5992 * page, bail as early as possible. shmem_unuse() encounters
5993 * already charged pages, too. The USED bit is protected by
5994 * the page lock, which serializes swap cache removal, which
5995 * in turn serializes uncharging.
5997 VM_BUG_ON_PAGE(!PageLocked(page), page);
5998 if (compound_head(page)->mem_cgroup)
6001 if (do_swap_account) {
6002 swp_entry_t ent = { .val = page_private(page), };
6003 unsigned short id = lookup_swap_cgroup_id(ent);
6006 memcg = mem_cgroup_from_id(id);
6007 if (memcg && !css_tryget_online(&memcg->css))
6014 memcg = get_mem_cgroup_from_mm(mm);
6016 ret = try_charge(memcg, gfp_mask, nr_pages);
6018 css_put(&memcg->css);
6024 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6025 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6028 struct mem_cgroup *memcg;
6031 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6033 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6038 * mem_cgroup_commit_charge - commit a page charge
6039 * @page: page to charge
6040 * @memcg: memcg to charge the page to
6041 * @lrucare: page might be on LRU already
6042 * @compound: charge the page as compound or small page
6044 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6045 * after page->mapping has been set up. This must happen atomically
6046 * as part of the page instantiation, i.e. under the page table lock
6047 * for anonymous pages, under the page lock for page and swap cache.
6049 * In addition, the page must not be on the LRU during the commit, to
6050 * prevent racing with task migration. If it might be, use @lrucare.
6052 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6054 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6055 bool lrucare, bool compound)
6057 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6059 VM_BUG_ON_PAGE(!page->mapping, page);
6060 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6062 if (mem_cgroup_disabled())
6065 * Swap faults will attempt to charge the same page multiple
6066 * times. But reuse_swap_page() might have removed the page
6067 * from swapcache already, so we can't check PageSwapCache().
6072 commit_charge(page, memcg, lrucare);
6074 local_irq_disable();
6075 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6076 memcg_check_events(memcg, page);
6079 if (do_memsw_account() && PageSwapCache(page)) {
6080 swp_entry_t entry = { .val = page_private(page) };
6082 * The swap entry might not get freed for a long time,
6083 * let's not wait for it. The page already received a
6084 * memory+swap charge, drop the swap entry duplicate.
6086 mem_cgroup_uncharge_swap(entry, nr_pages);
6091 * mem_cgroup_cancel_charge - cancel a page charge
6092 * @page: page to charge
6093 * @memcg: memcg to charge the page to
6094 * @compound: charge the page as compound or small page
6096 * Cancel a charge transaction started by mem_cgroup_try_charge().
6098 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6101 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6103 if (mem_cgroup_disabled())
6106 * Swap faults will attempt to charge the same page multiple
6107 * times. But reuse_swap_page() might have removed the page
6108 * from swapcache already, so we can't check PageSwapCache().
6113 cancel_charge(memcg, nr_pages);
6116 struct uncharge_gather {
6117 struct mem_cgroup *memcg;
6118 unsigned long pgpgout;
6119 unsigned long nr_anon;
6120 unsigned long nr_file;
6121 unsigned long nr_kmem;
6122 unsigned long nr_huge;
6123 unsigned long nr_shmem;
6124 struct page *dummy_page;
6127 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6129 memset(ug, 0, sizeof(*ug));
6132 static void uncharge_batch(const struct uncharge_gather *ug)
6134 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6135 unsigned long flags;
6137 if (!mem_cgroup_is_root(ug->memcg)) {
6138 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6139 if (do_memsw_account())
6140 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6141 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6142 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6143 memcg_oom_recover(ug->memcg);
6146 local_irq_save(flags);
6147 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6148 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6149 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6150 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6151 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6152 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6153 memcg_check_events(ug->memcg, ug->dummy_page);
6154 local_irq_restore(flags);
6156 if (!mem_cgroup_is_root(ug->memcg))
6157 css_put_many(&ug->memcg->css, nr_pages);
6160 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6162 VM_BUG_ON_PAGE(PageLRU(page), page);
6163 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6164 !PageHWPoison(page) , page);
6166 if (!page->mem_cgroup)
6170 * Nobody should be changing or seriously looking at
6171 * page->mem_cgroup at this point, we have fully
6172 * exclusive access to the page.
6175 if (ug->memcg != page->mem_cgroup) {
6178 uncharge_gather_clear(ug);
6180 ug->memcg = page->mem_cgroup;
6183 if (!PageKmemcg(page)) {
6184 unsigned int nr_pages = 1;
6186 if (PageTransHuge(page)) {
6187 nr_pages <<= compound_order(page);
6188 ug->nr_huge += nr_pages;
6191 ug->nr_anon += nr_pages;
6193 ug->nr_file += nr_pages;
6194 if (PageSwapBacked(page))
6195 ug->nr_shmem += nr_pages;
6199 ug->nr_kmem += 1 << compound_order(page);
6200 __ClearPageKmemcg(page);
6203 ug->dummy_page = page;
6204 page->mem_cgroup = NULL;
6207 static void uncharge_list(struct list_head *page_list)
6209 struct uncharge_gather ug;
6210 struct list_head *next;
6212 uncharge_gather_clear(&ug);
6215 * Note that the list can be a single page->lru; hence the
6216 * do-while loop instead of a simple list_for_each_entry().
6218 next = page_list->next;
6222 page = list_entry(next, struct page, lru);
6223 next = page->lru.next;
6225 uncharge_page(page, &ug);
6226 } while (next != page_list);
6229 uncharge_batch(&ug);
6233 * mem_cgroup_uncharge - uncharge a page
6234 * @page: page to uncharge
6236 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6237 * mem_cgroup_commit_charge().
6239 void mem_cgroup_uncharge(struct page *page)
6241 struct uncharge_gather ug;
6243 if (mem_cgroup_disabled())
6246 /* Don't touch page->lru of any random page, pre-check: */
6247 if (!page->mem_cgroup)
6250 uncharge_gather_clear(&ug);
6251 uncharge_page(page, &ug);
6252 uncharge_batch(&ug);
6256 * mem_cgroup_uncharge_list - uncharge a list of page
6257 * @page_list: list of pages to uncharge
6259 * Uncharge a list of pages previously charged with
6260 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6262 void mem_cgroup_uncharge_list(struct list_head *page_list)
6264 if (mem_cgroup_disabled())
6267 if (!list_empty(page_list))
6268 uncharge_list(page_list);
6272 * mem_cgroup_migrate - charge a page's replacement
6273 * @oldpage: currently circulating page
6274 * @newpage: replacement page
6276 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6277 * be uncharged upon free.
6279 * Both pages must be locked, @newpage->mapping must be set up.
6281 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6283 struct mem_cgroup *memcg;
6284 unsigned int nr_pages;
6286 unsigned long flags;
6288 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6289 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6290 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6291 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6294 if (mem_cgroup_disabled())
6297 /* Page cache replacement: new page already charged? */
6298 if (newpage->mem_cgroup)
6301 /* Swapcache readahead pages can get replaced before being charged */
6302 memcg = oldpage->mem_cgroup;
6306 /* Force-charge the new page. The old one will be freed soon */
6307 compound = PageTransHuge(newpage);
6308 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6310 page_counter_charge(&memcg->memory, nr_pages);
6311 if (do_memsw_account())
6312 page_counter_charge(&memcg->memsw, nr_pages);
6313 css_get_many(&memcg->css, nr_pages);
6315 commit_charge(newpage, memcg, false);
6317 local_irq_save(flags);
6318 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6319 memcg_check_events(memcg, newpage);
6320 local_irq_restore(flags);
6323 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6324 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6326 void mem_cgroup_sk_alloc(struct sock *sk)
6328 struct mem_cgroup *memcg;
6330 if (!mem_cgroup_sockets_enabled)
6334 * Socket cloning can throw us here with sk_memcg already
6335 * filled. It won't however, necessarily happen from
6336 * process context. So the test for root memcg given
6337 * the current task's memcg won't help us in this case.
6339 * Respecting the original socket's memcg is a better
6340 * decision in this case.
6343 css_get(&sk->sk_memcg->css);
6348 memcg = mem_cgroup_from_task(current);
6349 if (memcg == root_mem_cgroup)
6351 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6353 if (css_tryget_online(&memcg->css))
6354 sk->sk_memcg = memcg;
6359 void mem_cgroup_sk_free(struct sock *sk)
6362 css_put(&sk->sk_memcg->css);
6366 * mem_cgroup_charge_skmem - charge socket memory
6367 * @memcg: memcg to charge
6368 * @nr_pages: number of pages to charge
6370 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6371 * @memcg's configured limit, %false if the charge had to be forced.
6373 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6375 gfp_t gfp_mask = GFP_KERNEL;
6377 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6378 struct page_counter *fail;
6380 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6381 memcg->tcpmem_pressure = 0;
6384 page_counter_charge(&memcg->tcpmem, nr_pages);
6385 memcg->tcpmem_pressure = 1;
6389 /* Don't block in the packet receive path */
6391 gfp_mask = GFP_NOWAIT;
6393 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6395 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6398 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6403 * mem_cgroup_uncharge_skmem - uncharge socket memory
6404 * @memcg: memcg to uncharge
6405 * @nr_pages: number of pages to uncharge
6407 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6409 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6410 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6414 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6416 refill_stock(memcg, nr_pages);
6419 static int __init cgroup_memory(char *s)
6423 while ((token = strsep(&s, ",")) != NULL) {
6426 if (!strcmp(token, "nosocket"))
6427 cgroup_memory_nosocket = true;
6428 if (!strcmp(token, "nokmem"))
6429 cgroup_memory_nokmem = true;
6433 __setup("cgroup.memory=", cgroup_memory);
6436 * subsys_initcall() for memory controller.
6438 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6439 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6440 * basically everything that doesn't depend on a specific mem_cgroup structure
6441 * should be initialized from here.
6443 static int __init mem_cgroup_init(void)
6447 #ifdef CONFIG_MEMCG_KMEM
6449 * Kmem cache creation is mostly done with the slab_mutex held,
6450 * so use a workqueue with limited concurrency to avoid stalling
6451 * all worker threads in case lots of cgroups are created and
6452 * destroyed simultaneously.
6454 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6455 BUG_ON(!memcg_kmem_cache_wq);
6458 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6459 memcg_hotplug_cpu_dead);
6461 for_each_possible_cpu(cpu)
6462 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6465 for_each_node(node) {
6466 struct mem_cgroup_tree_per_node *rtpn;
6468 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6469 node_online(node) ? node : NUMA_NO_NODE);
6471 rtpn->rb_root = RB_ROOT;
6472 rtpn->rb_rightmost = NULL;
6473 spin_lock_init(&rtpn->lock);
6474 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6479 subsys_initcall(mem_cgroup_init);
6481 #ifdef CONFIG_MEMCG_SWAP
6482 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6484 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6486 * The root cgroup cannot be destroyed, so it's refcount must
6489 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6493 memcg = parent_mem_cgroup(memcg);
6495 memcg = root_mem_cgroup;
6501 * mem_cgroup_swapout - transfer a memsw charge to swap
6502 * @page: page whose memsw charge to transfer
6503 * @entry: swap entry to move the charge to
6505 * Transfer the memsw charge of @page to @entry.
6507 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6509 struct mem_cgroup *memcg, *swap_memcg;
6510 unsigned int nr_entries;
6511 unsigned short oldid;
6513 VM_BUG_ON_PAGE(PageLRU(page), page);
6514 VM_BUG_ON_PAGE(page_count(page), page);
6516 if (!do_memsw_account())
6519 memcg = page->mem_cgroup;
6521 /* Readahead page, never charged */
6526 * In case the memcg owning these pages has been offlined and doesn't
6527 * have an ID allocated to it anymore, charge the closest online
6528 * ancestor for the swap instead and transfer the memory+swap charge.
6530 swap_memcg = mem_cgroup_id_get_online(memcg);
6531 nr_entries = hpage_nr_pages(page);
6532 /* Get references for the tail pages, too */
6534 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6535 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6537 VM_BUG_ON_PAGE(oldid, page);
6538 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6540 page->mem_cgroup = NULL;
6542 if (!mem_cgroup_is_root(memcg))
6543 page_counter_uncharge(&memcg->memory, nr_entries);
6545 if (memcg != swap_memcg) {
6546 if (!mem_cgroup_is_root(swap_memcg))
6547 page_counter_charge(&swap_memcg->memsw, nr_entries);
6548 page_counter_uncharge(&memcg->memsw, nr_entries);
6552 * Interrupts should be disabled here because the caller holds the
6553 * i_pages lock which is taken with interrupts-off. It is
6554 * important here to have the interrupts disabled because it is the
6555 * only synchronisation we have for updating the per-CPU variables.
6557 VM_BUG_ON(!irqs_disabled());
6558 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6560 memcg_check_events(memcg, page);
6562 if (!mem_cgroup_is_root(memcg))
6563 css_put_many(&memcg->css, nr_entries);
6567 * mem_cgroup_try_charge_swap - try charging swap space for a page
6568 * @page: page being added to swap
6569 * @entry: swap entry to charge
6571 * Try to charge @page's memcg for the swap space at @entry.
6573 * Returns 0 on success, -ENOMEM on failure.
6575 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6577 unsigned int nr_pages = hpage_nr_pages(page);
6578 struct page_counter *counter;
6579 struct mem_cgroup *memcg;
6580 unsigned short oldid;
6582 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6585 memcg = page->mem_cgroup;
6587 /* Readahead page, never charged */
6592 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6596 memcg = mem_cgroup_id_get_online(memcg);
6598 if (!mem_cgroup_is_root(memcg) &&
6599 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6600 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6601 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6602 mem_cgroup_id_put(memcg);
6606 /* Get references for the tail pages, too */
6608 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6609 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6610 VM_BUG_ON_PAGE(oldid, page);
6611 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6617 * mem_cgroup_uncharge_swap - uncharge swap space
6618 * @entry: swap entry to uncharge
6619 * @nr_pages: the amount of swap space to uncharge
6621 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6623 struct mem_cgroup *memcg;
6626 if (!do_swap_account)
6629 id = swap_cgroup_record(entry, 0, nr_pages);
6631 memcg = mem_cgroup_from_id(id);
6633 if (!mem_cgroup_is_root(memcg)) {
6634 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6635 page_counter_uncharge(&memcg->swap, nr_pages);
6637 page_counter_uncharge(&memcg->memsw, nr_pages);
6639 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6640 mem_cgroup_id_put_many(memcg, nr_pages);
6645 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6647 long nr_swap_pages = get_nr_swap_pages();
6649 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6650 return nr_swap_pages;
6651 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6652 nr_swap_pages = min_t(long, nr_swap_pages,
6653 READ_ONCE(memcg->swap.max) -
6654 page_counter_read(&memcg->swap));
6655 return nr_swap_pages;
6658 bool mem_cgroup_swap_full(struct page *page)
6660 struct mem_cgroup *memcg;
6662 VM_BUG_ON_PAGE(!PageLocked(page), page);
6666 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6669 memcg = page->mem_cgroup;
6673 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6674 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6680 /* for remember boot option*/
6681 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6682 static int really_do_swap_account __initdata = 1;
6684 static int really_do_swap_account __initdata;
6687 static int __init enable_swap_account(char *s)
6689 if (!strcmp(s, "1"))
6690 really_do_swap_account = 1;
6691 else if (!strcmp(s, "0"))
6692 really_do_swap_account = 0;
6695 __setup("swapaccount=", enable_swap_account);
6697 static u64 swap_current_read(struct cgroup_subsys_state *css,
6700 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6702 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6705 static int swap_max_show(struct seq_file *m, void *v)
6707 return seq_puts_memcg_tunable(m,
6708 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6711 static ssize_t swap_max_write(struct kernfs_open_file *of,
6712 char *buf, size_t nbytes, loff_t off)
6714 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6718 buf = strstrip(buf);
6719 err = page_counter_memparse(buf, "max", &max);
6723 xchg(&memcg->swap.max, max);
6728 static int swap_events_show(struct seq_file *m, void *v)
6730 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6732 seq_printf(m, "max %lu\n",
6733 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6734 seq_printf(m, "fail %lu\n",
6735 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6740 static struct cftype swap_files[] = {
6742 .name = "swap.current",
6743 .flags = CFTYPE_NOT_ON_ROOT,
6744 .read_u64 = swap_current_read,
6748 .flags = CFTYPE_NOT_ON_ROOT,
6749 .seq_show = swap_max_show,
6750 .write = swap_max_write,
6753 .name = "swap.events",
6754 .flags = CFTYPE_NOT_ON_ROOT,
6755 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6756 .seq_show = swap_events_show,
6761 static struct cftype memsw_cgroup_files[] = {
6763 .name = "memsw.usage_in_bytes",
6764 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6765 .read_u64 = mem_cgroup_read_u64,
6768 .name = "memsw.max_usage_in_bytes",
6769 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770 .write = mem_cgroup_reset,
6771 .read_u64 = mem_cgroup_read_u64,
6774 .name = "memsw.limit_in_bytes",
6775 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6776 .write = mem_cgroup_write,
6777 .read_u64 = mem_cgroup_read_u64,
6780 .name = "memsw.failcnt",
6781 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6782 .write = mem_cgroup_reset,
6783 .read_u64 = mem_cgroup_read_u64,
6785 { }, /* terminate */
6788 static int __init mem_cgroup_swap_init(void)
6790 if (!mem_cgroup_disabled() && really_do_swap_account) {
6791 do_swap_account = 1;
6792 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6794 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6795 memsw_cgroup_files));
6799 subsys_initcall(mem_cgroup_swap_init);
6801 #endif /* CONFIG_MEMCG_SWAP */