Merge branch 'akpm' (patches from Andrew)
[platform/kernel/linux-exynos.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_node {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148         struct list_head list;
149         struct eventfd_ctx *eventfd;
150 };
151
152 /*
153  * cgroup_event represents events which userspace want to receive.
154  */
155 struct mem_cgroup_event {
156         /*
157          * memcg which the event belongs to.
158          */
159         struct mem_cgroup *memcg;
160         /*
161          * eventfd to signal userspace about the event.
162          */
163         struct eventfd_ctx *eventfd;
164         /*
165          * Each of these stored in a list by the cgroup.
166          */
167         struct list_head list;
168         /*
169          * register_event() callback will be used to add new userspace
170          * waiter for changes related to this event.  Use eventfd_signal()
171          * on eventfd to send notification to userspace.
172          */
173         int (*register_event)(struct mem_cgroup *memcg,
174                               struct eventfd_ctx *eventfd, const char *args);
175         /*
176          * unregister_event() callback will be called when userspace closes
177          * the eventfd or on cgroup removing.  This callback must be set,
178          * if you want provide notification functionality.
179          */
180         void (*unregister_event)(struct mem_cgroup *memcg,
181                                  struct eventfd_ctx *eventfd);
182         /*
183          * All fields below needed to unregister event when
184          * userspace closes eventfd.
185          */
186         poll_table pt;
187         wait_queue_head_t *wqh;
188         wait_queue_t wait;
189         struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197  * Types of charges to be moved.
198  */
199 #define MOVE_ANON       0x1U
200 #define MOVE_FILE       0x2U
201 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205         spinlock_t        lock; /* for from, to */
206         struct mm_struct  *mm;
207         struct mem_cgroup *from;
208         struct mem_cgroup *to;
209         unsigned long flags;
210         unsigned long precharge;
211         unsigned long moved_charge;
212         unsigned long moved_swap;
213         struct task_struct *moving_task;        /* a task moving charges */
214         wait_queue_head_t waitq;                /* a waitq for other context */
215 } mc = {
216         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222  * limit reclaim to prevent infinite loops, if they ever occur.
223  */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229         MEM_CGROUP_CHARGE_TYPE_ANON,
230         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
232         NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237         _MEM,
238         _MEMSWAP,
239         _OOM_TYPE,
240         _KMEM,
241         _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL             (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253         if (!memcg)
254                 memcg = root_mem_cgroup;
255         return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265         return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288         down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293         up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323  * mem_cgroup_css_from_page - css of the memcg associated with a page
324  * @page: page of interest
325  *
326  * If memcg is bound to the default hierarchy, css of the memcg associated
327  * with @page is returned.  The returned css remains associated with @page
328  * until it is released.
329  *
330  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331  * is returned.
332  */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335         struct mem_cgroup *memcg;
336
337         memcg = page->mem_cgroup;
338
339         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340                 memcg = root_mem_cgroup;
341
342         return &memcg->css;
343 }
344
345 /**
346  * page_cgroup_ino - return inode number of the memcg a page is charged to
347  * @page: the page
348  *
349  * Look up the closest online ancestor of the memory cgroup @page is charged to
350  * and return its inode number or 0 if @page is not charged to any cgroup. It
351  * is safe to call this function without holding a reference to @page.
352  *
353  * Note, this function is inherently racy, because there is nothing to prevent
354  * the cgroup inode from getting torn down and potentially reallocated a moment
355  * after page_cgroup_ino() returns, so it only should be used by callers that
356  * do not care (such as procfs interfaces).
357  */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360         struct mem_cgroup *memcg;
361         unsigned long ino = 0;
362
363         rcu_read_lock();
364         memcg = READ_ONCE(page->mem_cgroup);
365         while (memcg && !(memcg->css.flags & CSS_ONLINE))
366                 memcg = parent_mem_cgroup(memcg);
367         if (memcg)
368                 ino = cgroup_ino(memcg->css.cgroup);
369         rcu_read_unlock();
370         return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376         int nid = page_to_nid(page);
377
378         return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384         return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390         int nid = page_to_nid(page);
391
392         return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396                                          struct mem_cgroup_tree_per_node *mctz,
397                                          unsigned long new_usage_in_excess)
398 {
399         struct rb_node **p = &mctz->rb_root.rb_node;
400         struct rb_node *parent = NULL;
401         struct mem_cgroup_per_node *mz_node;
402
403         if (mz->on_tree)
404                 return;
405
406         mz->usage_in_excess = new_usage_in_excess;
407         if (!mz->usage_in_excess)
408                 return;
409         while (*p) {
410                 parent = *p;
411                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412                                         tree_node);
413                 if (mz->usage_in_excess < mz_node->usage_in_excess)
414                         p = &(*p)->rb_left;
415                 /*
416                  * We can't avoid mem cgroups that are over their soft
417                  * limit by the same amount
418                  */
419                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420                         p = &(*p)->rb_right;
421         }
422         rb_link_node(&mz->tree_node, parent, p);
423         rb_insert_color(&mz->tree_node, &mctz->rb_root);
424         mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428                                          struct mem_cgroup_tree_per_node *mctz)
429 {
430         if (!mz->on_tree)
431                 return;
432         rb_erase(&mz->tree_node, &mctz->rb_root);
433         mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437                                        struct mem_cgroup_tree_per_node *mctz)
438 {
439         unsigned long flags;
440
441         spin_lock_irqsave(&mctz->lock, flags);
442         __mem_cgroup_remove_exceeded(mz, mctz);
443         spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448         unsigned long nr_pages = page_counter_read(&memcg->memory);
449         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450         unsigned long excess = 0;
451
452         if (nr_pages > soft_limit)
453                 excess = nr_pages - soft_limit;
454
455         return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460         unsigned long excess;
461         struct mem_cgroup_per_node *mz;
462         struct mem_cgroup_tree_per_node *mctz;
463
464         mctz = soft_limit_tree_from_page(page);
465         /*
466          * Necessary to update all ancestors when hierarchy is used.
467          * because their event counter is not touched.
468          */
469         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470                 mz = mem_cgroup_page_nodeinfo(memcg, page);
471                 excess = soft_limit_excess(memcg);
472                 /*
473                  * We have to update the tree if mz is on RB-tree or
474                  * mem is over its softlimit.
475                  */
476                 if (excess || mz->on_tree) {
477                         unsigned long flags;
478
479                         spin_lock_irqsave(&mctz->lock, flags);
480                         /* if on-tree, remove it */
481                         if (mz->on_tree)
482                                 __mem_cgroup_remove_exceeded(mz, mctz);
483                         /*
484                          * Insert again. mz->usage_in_excess will be updated.
485                          * If excess is 0, no tree ops.
486                          */
487                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
488                         spin_unlock_irqrestore(&mctz->lock, flags);
489                 }
490         }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495         struct mem_cgroup_tree_per_node *mctz;
496         struct mem_cgroup_per_node *mz;
497         int nid;
498
499         for_each_node(nid) {
500                 mz = mem_cgroup_nodeinfo(memcg, nid);
501                 mctz = soft_limit_tree_node(nid);
502                 mem_cgroup_remove_exceeded(mz, mctz);
503         }
504 }
505
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509         struct rb_node *rightmost = NULL;
510         struct mem_cgroup_per_node *mz;
511
512 retry:
513         mz = NULL;
514         rightmost = rb_last(&mctz->rb_root);
515         if (!rightmost)
516                 goto done;              /* Nothing to reclaim from */
517
518         mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519         /*
520          * Remove the node now but someone else can add it back,
521          * we will to add it back at the end of reclaim to its correct
522          * position in the tree.
523          */
524         __mem_cgroup_remove_exceeded(mz, mctz);
525         if (!soft_limit_excess(mz->memcg) ||
526             !css_tryget_online(&mz->memcg->css))
527                 goto retry;
528 done:
529         return mz;
530 }
531
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535         struct mem_cgroup_per_node *mz;
536
537         spin_lock_irq(&mctz->lock);
538         mz = __mem_cgroup_largest_soft_limit_node(mctz);
539         spin_unlock_irq(&mctz->lock);
540         return mz;
541 }
542
543 /*
544  * Return page count for single (non recursive) @memcg.
545  *
546  * Implementation Note: reading percpu statistics for memcg.
547  *
548  * Both of vmstat[] and percpu_counter has threshold and do periodic
549  * synchronization to implement "quick" read. There are trade-off between
550  * reading cost and precision of value. Then, we may have a chance to implement
551  * a periodic synchronization of counter in memcg's counter.
552  *
553  * But this _read() function is used for user interface now. The user accounts
554  * memory usage by memory cgroup and he _always_ requires exact value because
555  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556  * have to visit all online cpus and make sum. So, for now, unnecessary
557  * synchronization is not implemented. (just implemented for cpu hotplug)
558  *
559  * If there are kernel internal actions which can make use of some not-exact
560  * value, and reading all cpu value can be performance bottleneck in some
561  * common workload, threshold and synchronization as vmstat[] should be
562  * implemented.
563  */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567         long val = 0;
568         int cpu;
569
570         /* Per-cpu values can be negative, use a signed accumulator */
571         for_each_possible_cpu(cpu)
572                 val += per_cpu(memcg->stat->count[idx], cpu);
573         /*
574          * Summing races with updates, so val may be negative.  Avoid exposing
575          * transient negative values.
576          */
577         if (val < 0)
578                 val = 0;
579         return val;
580 }
581
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583                                             enum mem_cgroup_events_index idx)
584 {
585         unsigned long val = 0;
586         int cpu;
587
588         for_each_possible_cpu(cpu)
589                 val += per_cpu(memcg->stat->events[idx], cpu);
590         return val;
591 }
592
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594                                          struct page *page,
595                                          bool compound, int nr_pages)
596 {
597         /*
598          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599          * counted as CACHE even if it's on ANON LRU.
600          */
601         if (PageAnon(page))
602                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603                                 nr_pages);
604         else
605                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606                                 nr_pages);
607
608         if (compound) {
609                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611                                 nr_pages);
612         }
613
614         /* pagein of a big page is an event. So, ignore page size */
615         if (nr_pages > 0)
616                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617         else {
618                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619                 nr_pages = -nr_pages; /* for event */
620         }
621
622         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626                                            int nid, unsigned int lru_mask)
627 {
628         unsigned long nr = 0;
629         struct mem_cgroup_per_node *mz;
630         enum lru_list lru;
631
632         VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
634         for_each_lru(lru) {
635                 if (!(BIT(lru) & lru_mask))
636                         continue;
637                 mz = mem_cgroup_nodeinfo(memcg, nid);
638                 nr += mz->lru_size[lru];
639         }
640         return nr;
641 }
642
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644                         unsigned int lru_mask)
645 {
646         unsigned long nr = 0;
647         int nid;
648
649         for_each_node_state(nid, N_MEMORY)
650                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651         return nr;
652 }
653
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655                                        enum mem_cgroup_events_target target)
656 {
657         unsigned long val, next;
658
659         val = __this_cpu_read(memcg->stat->nr_page_events);
660         next = __this_cpu_read(memcg->stat->targets[target]);
661         /* from time_after() in jiffies.h */
662         if ((long)next - (long)val < 0) {
663                 switch (target) {
664                 case MEM_CGROUP_TARGET_THRESH:
665                         next = val + THRESHOLDS_EVENTS_TARGET;
666                         break;
667                 case MEM_CGROUP_TARGET_SOFTLIMIT:
668                         next = val + SOFTLIMIT_EVENTS_TARGET;
669                         break;
670                 case MEM_CGROUP_TARGET_NUMAINFO:
671                         next = val + NUMAINFO_EVENTS_TARGET;
672                         break;
673                 default:
674                         break;
675                 }
676                 __this_cpu_write(memcg->stat->targets[target], next);
677                 return true;
678         }
679         return false;
680 }
681
682 /*
683  * Check events in order.
684  *
685  */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688         /* threshold event is triggered in finer grain than soft limit */
689         if (unlikely(mem_cgroup_event_ratelimit(memcg,
690                                                 MEM_CGROUP_TARGET_THRESH))) {
691                 bool do_softlimit;
692                 bool do_numainfo __maybe_unused;
693
694                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698                                                 MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700                 mem_cgroup_threshold(memcg);
701                 if (unlikely(do_softlimit))
702                         mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704                 if (unlikely(do_numainfo))
705                         atomic_inc(&memcg->numainfo_events);
706 #endif
707         }
708 }
709
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712         /*
713          * mm_update_next_owner() may clear mm->owner to NULL
714          * if it races with swapoff, page migration, etc.
715          * So this can be called with p == NULL.
716          */
717         if (unlikely(!p))
718                 return NULL;
719
720         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726         struct mem_cgroup *memcg = NULL;
727
728         rcu_read_lock();
729         do {
730                 /*
731                  * Page cache insertions can happen withou an
732                  * actual mm context, e.g. during disk probing
733                  * on boot, loopback IO, acct() writes etc.
734                  */
735                 if (unlikely(!mm))
736                         memcg = root_mem_cgroup;
737                 else {
738                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739                         if (unlikely(!memcg))
740                                 memcg = root_mem_cgroup;
741                 }
742         } while (!css_tryget_online(&memcg->css));
743         rcu_read_unlock();
744         return memcg;
745 }
746
747 /**
748  * mem_cgroup_iter - iterate over memory cgroup hierarchy
749  * @root: hierarchy root
750  * @prev: previously returned memcg, NULL on first invocation
751  * @reclaim: cookie for shared reclaim walks, NULL for full walks
752  *
753  * Returns references to children of the hierarchy below @root, or
754  * @root itself, or %NULL after a full round-trip.
755  *
756  * Caller must pass the return value in @prev on subsequent
757  * invocations for reference counting, or use mem_cgroup_iter_break()
758  * to cancel a hierarchy walk before the round-trip is complete.
759  *
760  * Reclaimers can specify a zone and a priority level in @reclaim to
761  * divide up the memcgs in the hierarchy among all concurrent
762  * reclaimers operating on the same zone and priority.
763  */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765                                    struct mem_cgroup *prev,
766                                    struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769         struct cgroup_subsys_state *css = NULL;
770         struct mem_cgroup *memcg = NULL;
771         struct mem_cgroup *pos = NULL;
772
773         if (mem_cgroup_disabled())
774                 return NULL;
775
776         if (!root)
777                 root = root_mem_cgroup;
778
779         if (prev && !reclaim)
780                 pos = prev;
781
782         if (!root->use_hierarchy && root != root_mem_cgroup) {
783                 if (prev)
784                         goto out;
785                 return root;
786         }
787
788         rcu_read_lock();
789
790         if (reclaim) {
791                 struct mem_cgroup_per_node *mz;
792
793                 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794                 iter = &mz->iter[reclaim->priority];
795
796                 if (prev && reclaim->generation != iter->generation)
797                         goto out_unlock;
798
799                 while (1) {
800                         pos = READ_ONCE(iter->position);
801                         if (!pos || css_tryget(&pos->css))
802                                 break;
803                         /*
804                          * css reference reached zero, so iter->position will
805                          * be cleared by ->css_released. However, we should not
806                          * rely on this happening soon, because ->css_released
807                          * is called from a work queue, and by busy-waiting we
808                          * might block it. So we clear iter->position right
809                          * away.
810                          */
811                         (void)cmpxchg(&iter->position, pos, NULL);
812                 }
813         }
814
815         if (pos)
816                 css = &pos->css;
817
818         for (;;) {
819                 css = css_next_descendant_pre(css, &root->css);
820                 if (!css) {
821                         /*
822                          * Reclaimers share the hierarchy walk, and a
823                          * new one might jump in right at the end of
824                          * the hierarchy - make sure they see at least
825                          * one group and restart from the beginning.
826                          */
827                         if (!prev)
828                                 continue;
829                         break;
830                 }
831
832                 /*
833                  * Verify the css and acquire a reference.  The root
834                  * is provided by the caller, so we know it's alive
835                  * and kicking, and don't take an extra reference.
836                  */
837                 memcg = mem_cgroup_from_css(css);
838
839                 if (css == &root->css)
840                         break;
841
842                 if (css_tryget(css))
843                         break;
844
845                 memcg = NULL;
846         }
847
848         if (reclaim) {
849                 /*
850                  * The position could have already been updated by a competing
851                  * thread, so check that the value hasn't changed since we read
852                  * it to avoid reclaiming from the same cgroup twice.
853                  */
854                 (void)cmpxchg(&iter->position, pos, memcg);
855
856                 if (pos)
857                         css_put(&pos->css);
858
859                 if (!memcg)
860                         iter->generation++;
861                 else if (!prev)
862                         reclaim->generation = iter->generation;
863         }
864
865 out_unlock:
866         rcu_read_unlock();
867 out:
868         if (prev && prev != root)
869                 css_put(&prev->css);
870
871         return memcg;
872 }
873
874 /**
875  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876  * @root: hierarchy root
877  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878  */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880                            struct mem_cgroup *prev)
881 {
882         if (!root)
883                 root = root_mem_cgroup;
884         if (prev && prev != root)
885                 css_put(&prev->css);
886 }
887
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890         struct mem_cgroup *memcg = dead_memcg;
891         struct mem_cgroup_reclaim_iter *iter;
892         struct mem_cgroup_per_node *mz;
893         int nid;
894         int i;
895
896         while ((memcg = parent_mem_cgroup(memcg))) {
897                 for_each_node(nid) {
898                         mz = mem_cgroup_nodeinfo(memcg, nid);
899                         for (i = 0; i <= DEF_PRIORITY; i++) {
900                                 iter = &mz->iter[i];
901                                 cmpxchg(&iter->position,
902                                         dead_memcg, NULL);
903                         }
904                 }
905         }
906 }
907
908 /*
909  * Iteration constructs for visiting all cgroups (under a tree).  If
910  * loops are exited prematurely (break), mem_cgroup_iter_break() must
911  * be used for reference counting.
912  */
913 #define for_each_mem_cgroup_tree(iter, root)            \
914         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
915              iter != NULL;                              \
916              iter = mem_cgroup_iter(root, iter, NULL))
917
918 #define for_each_mem_cgroup(iter)                       \
919         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
920              iter != NULL;                              \
921              iter = mem_cgroup_iter(NULL, iter, NULL))
922
923 /**
924  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
925  * @memcg: hierarchy root
926  * @fn: function to call for each task
927  * @arg: argument passed to @fn
928  *
929  * This function iterates over tasks attached to @memcg or to any of its
930  * descendants and calls @fn for each task. If @fn returns a non-zero
931  * value, the function breaks the iteration loop and returns the value.
932  * Otherwise, it will iterate over all tasks and return 0.
933  *
934  * This function must not be called for the root memory cgroup.
935  */
936 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
937                           int (*fn)(struct task_struct *, void *), void *arg)
938 {
939         struct mem_cgroup *iter;
940         int ret = 0;
941
942         BUG_ON(memcg == root_mem_cgroup);
943
944         for_each_mem_cgroup_tree(iter, memcg) {
945                 struct css_task_iter it;
946                 struct task_struct *task;
947
948                 css_task_iter_start(&iter->css, &it);
949                 while (!ret && (task = css_task_iter_next(&it)))
950                         ret = fn(task, arg);
951                 css_task_iter_end(&it);
952                 if (ret) {
953                         mem_cgroup_iter_break(memcg, iter);
954                         break;
955                 }
956         }
957         return ret;
958 }
959
960 /**
961  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
962  * @page: the page
963  * @zone: zone of the page
964  *
965  * This function is only safe when following the LRU page isolation
966  * and putback protocol: the LRU lock must be held, and the page must
967  * either be PageLRU() or the caller must have isolated/allocated it.
968  */
969 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
970 {
971         struct mem_cgroup_per_node *mz;
972         struct mem_cgroup *memcg;
973         struct lruvec *lruvec;
974
975         if (mem_cgroup_disabled()) {
976                 lruvec = &pgdat->lruvec;
977                 goto out;
978         }
979
980         memcg = page->mem_cgroup;
981         /*
982          * Swapcache readahead pages are added to the LRU - and
983          * possibly migrated - before they are charged.
984          */
985         if (!memcg)
986                 memcg = root_mem_cgroup;
987
988         mz = mem_cgroup_page_nodeinfo(memcg, page);
989         lruvec = &mz->lruvec;
990 out:
991         /*
992          * Since a node can be onlined after the mem_cgroup was created,
993          * we have to be prepared to initialize lruvec->zone here;
994          * and if offlined then reonlined, we need to reinitialize it.
995          */
996         if (unlikely(lruvec->pgdat != pgdat))
997                 lruvec->pgdat = pgdat;
998         return lruvec;
999 }
1000
1001 /**
1002  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1003  * @lruvec: mem_cgroup per zone lru vector
1004  * @lru: index of lru list the page is sitting on
1005  * @nr_pages: positive when adding or negative when removing
1006  *
1007  * This function must be called under lru_lock, just before a page is added
1008  * to or just after a page is removed from an lru list (that ordering being
1009  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010  */
1011 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012                                 int nr_pages)
1013 {
1014         struct mem_cgroup_per_node *mz;
1015         unsigned long *lru_size;
1016         long size;
1017         bool empty;
1018
1019         if (mem_cgroup_disabled())
1020                 return;
1021
1022         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1023         lru_size = mz->lru_size + lru;
1024         empty = list_empty(lruvec->lists + lru);
1025
1026         if (nr_pages < 0)
1027                 *lru_size += nr_pages;
1028
1029         size = *lru_size;
1030         if (WARN_ONCE(size < 0 || empty != !size,
1031                 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1032                 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1033                 VM_BUG_ON(1);
1034                 *lru_size = 0;
1035         }
1036
1037         if (nr_pages > 0)
1038                 *lru_size += nr_pages;
1039 }
1040
1041 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1042 {
1043         struct mem_cgroup *task_memcg;
1044         struct task_struct *p;
1045         bool ret;
1046
1047         p = find_lock_task_mm(task);
1048         if (p) {
1049                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1050                 task_unlock(p);
1051         } else {
1052                 /*
1053                  * All threads may have already detached their mm's, but the oom
1054                  * killer still needs to detect if they have already been oom
1055                  * killed to prevent needlessly killing additional tasks.
1056                  */
1057                 rcu_read_lock();
1058                 task_memcg = mem_cgroup_from_task(task);
1059                 css_get(&task_memcg->css);
1060                 rcu_read_unlock();
1061         }
1062         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1063         css_put(&task_memcg->css);
1064         return ret;
1065 }
1066
1067 /**
1068  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1069  * @memcg: the memory cgroup
1070  *
1071  * Returns the maximum amount of memory @mem can be charged with, in
1072  * pages.
1073  */
1074 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1075 {
1076         unsigned long margin = 0;
1077         unsigned long count;
1078         unsigned long limit;
1079
1080         count = page_counter_read(&memcg->memory);
1081         limit = READ_ONCE(memcg->memory.limit);
1082         if (count < limit)
1083                 margin = limit - count;
1084
1085         if (do_memsw_account()) {
1086                 count = page_counter_read(&memcg->memsw);
1087                 limit = READ_ONCE(memcg->memsw.limit);
1088                 if (count <= limit)
1089                         margin = min(margin, limit - count);
1090                 else
1091                         margin = 0;
1092         }
1093
1094         return margin;
1095 }
1096
1097 /*
1098  * A routine for checking "mem" is under move_account() or not.
1099  *
1100  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101  * moving cgroups. This is for waiting at high-memory pressure
1102  * caused by "move".
1103  */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106         struct mem_cgroup *from;
1107         struct mem_cgroup *to;
1108         bool ret = false;
1109         /*
1110          * Unlike task_move routines, we access mc.to, mc.from not under
1111          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112          */
1113         spin_lock(&mc.lock);
1114         from = mc.from;
1115         to = mc.to;
1116         if (!from)
1117                 goto unlock;
1118
1119         ret = mem_cgroup_is_descendant(from, memcg) ||
1120                 mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122         spin_unlock(&mc.lock);
1123         return ret;
1124 }
1125
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128         if (mc.moving_task && current != mc.moving_task) {
1129                 if (mem_cgroup_under_move(memcg)) {
1130                         DEFINE_WAIT(wait);
1131                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132                         /* moving charge context might have finished. */
1133                         if (mc.moving_task)
1134                                 schedule();
1135                         finish_wait(&mc.waitq, &wait);
1136                         return true;
1137                 }
1138         }
1139         return false;
1140 }
1141
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145  * @memcg: The memory cgroup that went over limit
1146  * @p: Task that is going to be killed
1147  *
1148  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149  * enabled
1150  */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153         struct mem_cgroup *iter;
1154         unsigned int i;
1155
1156         rcu_read_lock();
1157
1158         if (p) {
1159                 pr_info("Task in ");
1160                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161                 pr_cont(" killed as a result of limit of ");
1162         } else {
1163                 pr_info("Memory limit reached of cgroup ");
1164         }
1165
1166         pr_cont_cgroup_path(memcg->css.cgroup);
1167         pr_cont("\n");
1168
1169         rcu_read_unlock();
1170
1171         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172                 K((u64)page_counter_read(&memcg->memory)),
1173                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175                 K((u64)page_counter_read(&memcg->memsw)),
1176                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178                 K((u64)page_counter_read(&memcg->kmem)),
1179                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180
1181         for_each_mem_cgroup_tree(iter, memcg) {
1182                 pr_info("Memory cgroup stats for ");
1183                 pr_cont_cgroup_path(iter->css.cgroup);
1184                 pr_cont(":");
1185
1186                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188                                 continue;
1189                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190                                 K(mem_cgroup_read_stat(iter, i)));
1191                 }
1192
1193                 for (i = 0; i < NR_LRU_LISTS; i++)
1194                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196
1197                 pr_cont("\n");
1198         }
1199 }
1200
1201 /*
1202  * This function returns the number of memcg under hierarchy tree. Returns
1203  * 1(self count) if no children.
1204  */
1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 {
1207         int num = 0;
1208         struct mem_cgroup *iter;
1209
1210         for_each_mem_cgroup_tree(iter, memcg)
1211                 num++;
1212         return num;
1213 }
1214
1215 /*
1216  * Return the memory (and swap, if configured) limit for a memcg.
1217  */
1218 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1219 {
1220         unsigned long limit;
1221
1222         limit = memcg->memory.limit;
1223         if (mem_cgroup_swappiness(memcg)) {
1224                 unsigned long memsw_limit;
1225                 unsigned long swap_limit;
1226
1227                 memsw_limit = memcg->memsw.limit;
1228                 swap_limit = memcg->swap.limit;
1229                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230                 limit = min(limit + swap_limit, memsw_limit);
1231         }
1232         return limit;
1233 }
1234
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236                                      int order)
1237 {
1238         struct oom_control oc = {
1239                 .zonelist = NULL,
1240                 .nodemask = NULL,
1241                 .memcg = memcg,
1242                 .gfp_mask = gfp_mask,
1243                 .order = order,
1244         };
1245         bool ret;
1246
1247         mutex_lock(&oom_lock);
1248         ret = out_of_memory(&oc);
1249         mutex_unlock(&oom_lock);
1250         return ret;
1251 }
1252
1253 #if MAX_NUMNODES > 1
1254
1255 /**
1256  * test_mem_cgroup_node_reclaimable
1257  * @memcg: the target memcg
1258  * @nid: the node ID to be checked.
1259  * @noswap : specify true here if the user wants flle only information.
1260  *
1261  * This function returns whether the specified memcg contains any
1262  * reclaimable pages on a node. Returns true if there are any reclaimable
1263  * pages in the node.
1264  */
1265 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1266                 int nid, bool noswap)
1267 {
1268         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1269                 return true;
1270         if (noswap || !total_swap_pages)
1271                 return false;
1272         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1273                 return true;
1274         return false;
1275
1276 }
1277
1278 /*
1279  * Always updating the nodemask is not very good - even if we have an empty
1280  * list or the wrong list here, we can start from some node and traverse all
1281  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282  *
1283  */
1284 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1285 {
1286         int nid;
1287         /*
1288          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1289          * pagein/pageout changes since the last update.
1290          */
1291         if (!atomic_read(&memcg->numainfo_events))
1292                 return;
1293         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1294                 return;
1295
1296         /* make a nodemask where this memcg uses memory from */
1297         memcg->scan_nodes = node_states[N_MEMORY];
1298
1299         for_each_node_mask(nid, node_states[N_MEMORY]) {
1300
1301                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1302                         node_clear(nid, memcg->scan_nodes);
1303         }
1304
1305         atomic_set(&memcg->numainfo_events, 0);
1306         atomic_set(&memcg->numainfo_updating, 0);
1307 }
1308
1309 /*
1310  * Selecting a node where we start reclaim from. Because what we need is just
1311  * reducing usage counter, start from anywhere is O,K. Considering
1312  * memory reclaim from current node, there are pros. and cons.
1313  *
1314  * Freeing memory from current node means freeing memory from a node which
1315  * we'll use or we've used. So, it may make LRU bad. And if several threads
1316  * hit limits, it will see a contention on a node. But freeing from remote
1317  * node means more costs for memory reclaim because of memory latency.
1318  *
1319  * Now, we use round-robin. Better algorithm is welcomed.
1320  */
1321 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1322 {
1323         int node;
1324
1325         mem_cgroup_may_update_nodemask(memcg);
1326         node = memcg->last_scanned_node;
1327
1328         node = next_node_in(node, memcg->scan_nodes);
1329         /*
1330          * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1331          * last time it really checked all the LRUs due to rate limiting.
1332          * Fallback to the current node in that case for simplicity.
1333          */
1334         if (unlikely(node == MAX_NUMNODES))
1335                 node = numa_node_id();
1336
1337         memcg->last_scanned_node = node;
1338         return node;
1339 }
1340 #else
1341 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1342 {
1343         return 0;
1344 }
1345 #endif
1346
1347 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1348                                    pg_data_t *pgdat,
1349                                    gfp_t gfp_mask,
1350                                    unsigned long *total_scanned)
1351 {
1352         struct mem_cgroup *victim = NULL;
1353         int total = 0;
1354         int loop = 0;
1355         unsigned long excess;
1356         unsigned long nr_scanned;
1357         struct mem_cgroup_reclaim_cookie reclaim = {
1358                 .pgdat = pgdat,
1359                 .priority = 0,
1360         };
1361
1362         excess = soft_limit_excess(root_memcg);
1363
1364         while (1) {
1365                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1366                 if (!victim) {
1367                         loop++;
1368                         if (loop >= 2) {
1369                                 /*
1370                                  * If we have not been able to reclaim
1371                                  * anything, it might because there are
1372                                  * no reclaimable pages under this hierarchy
1373                                  */
1374                                 if (!total)
1375                                         break;
1376                                 /*
1377                                  * We want to do more targeted reclaim.
1378                                  * excess >> 2 is not to excessive so as to
1379                                  * reclaim too much, nor too less that we keep
1380                                  * coming back to reclaim from this cgroup
1381                                  */
1382                                 if (total >= (excess >> 2) ||
1383                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1384                                         break;
1385                         }
1386                         continue;
1387                 }
1388                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1389                                         pgdat, &nr_scanned);
1390                 *total_scanned += nr_scanned;
1391                 if (!soft_limit_excess(root_memcg))
1392                         break;
1393         }
1394         mem_cgroup_iter_break(root_memcg, victim);
1395         return total;
1396 }
1397
1398 #ifdef CONFIG_LOCKDEP
1399 static struct lockdep_map memcg_oom_lock_dep_map = {
1400         .name = "memcg_oom_lock",
1401 };
1402 #endif
1403
1404 static DEFINE_SPINLOCK(memcg_oom_lock);
1405
1406 /*
1407  * Check OOM-Killer is already running under our hierarchy.
1408  * If someone is running, return false.
1409  */
1410 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1411 {
1412         struct mem_cgroup *iter, *failed = NULL;
1413
1414         spin_lock(&memcg_oom_lock);
1415
1416         for_each_mem_cgroup_tree(iter, memcg) {
1417                 if (iter->oom_lock) {
1418                         /*
1419                          * this subtree of our hierarchy is already locked
1420                          * so we cannot give a lock.
1421                          */
1422                         failed = iter;
1423                         mem_cgroup_iter_break(memcg, iter);
1424                         break;
1425                 } else
1426                         iter->oom_lock = true;
1427         }
1428
1429         if (failed) {
1430                 /*
1431                  * OK, we failed to lock the whole subtree so we have
1432                  * to clean up what we set up to the failing subtree
1433                  */
1434                 for_each_mem_cgroup_tree(iter, memcg) {
1435                         if (iter == failed) {
1436                                 mem_cgroup_iter_break(memcg, iter);
1437                                 break;
1438                         }
1439                         iter->oom_lock = false;
1440                 }
1441         } else
1442                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1443
1444         spin_unlock(&memcg_oom_lock);
1445
1446         return !failed;
1447 }
1448
1449 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1450 {
1451         struct mem_cgroup *iter;
1452
1453         spin_lock(&memcg_oom_lock);
1454         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1455         for_each_mem_cgroup_tree(iter, memcg)
1456                 iter->oom_lock = false;
1457         spin_unlock(&memcg_oom_lock);
1458 }
1459
1460 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1461 {
1462         struct mem_cgroup *iter;
1463
1464         spin_lock(&memcg_oom_lock);
1465         for_each_mem_cgroup_tree(iter, memcg)
1466                 iter->under_oom++;
1467         spin_unlock(&memcg_oom_lock);
1468 }
1469
1470 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1471 {
1472         struct mem_cgroup *iter;
1473
1474         /*
1475          * When a new child is created while the hierarchy is under oom,
1476          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1477          */
1478         spin_lock(&memcg_oom_lock);
1479         for_each_mem_cgroup_tree(iter, memcg)
1480                 if (iter->under_oom > 0)
1481                         iter->under_oom--;
1482         spin_unlock(&memcg_oom_lock);
1483 }
1484
1485 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486
1487 struct oom_wait_info {
1488         struct mem_cgroup *memcg;
1489         wait_queue_t    wait;
1490 };
1491
1492 static int memcg_oom_wake_function(wait_queue_t *wait,
1493         unsigned mode, int sync, void *arg)
1494 {
1495         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1496         struct mem_cgroup *oom_wait_memcg;
1497         struct oom_wait_info *oom_wait_info;
1498
1499         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500         oom_wait_memcg = oom_wait_info->memcg;
1501
1502         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1503             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1504                 return 0;
1505         return autoremove_wake_function(wait, mode, sync, arg);
1506 }
1507
1508 static void memcg_oom_recover(struct mem_cgroup *memcg)
1509 {
1510         /*
1511          * For the following lockless ->under_oom test, the only required
1512          * guarantee is that it must see the state asserted by an OOM when
1513          * this function is called as a result of userland actions
1514          * triggered by the notification of the OOM.  This is trivially
1515          * achieved by invoking mem_cgroup_mark_under_oom() before
1516          * triggering notification.
1517          */
1518         if (memcg && memcg->under_oom)
1519                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1520 }
1521
1522 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1523 {
1524         if (!current->memcg_may_oom)
1525                 return;
1526         /*
1527          * We are in the middle of the charge context here, so we
1528          * don't want to block when potentially sitting on a callstack
1529          * that holds all kinds of filesystem and mm locks.
1530          *
1531          * Also, the caller may handle a failed allocation gracefully
1532          * (like optional page cache readahead) and so an OOM killer
1533          * invocation might not even be necessary.
1534          *
1535          * That's why we don't do anything here except remember the
1536          * OOM context and then deal with it at the end of the page
1537          * fault when the stack is unwound, the locks are released,
1538          * and when we know whether the fault was overall successful.
1539          */
1540         css_get(&memcg->css);
1541         current->memcg_in_oom = memcg;
1542         current->memcg_oom_gfp_mask = mask;
1543         current->memcg_oom_order = order;
1544 }
1545
1546 /**
1547  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1548  * @handle: actually kill/wait or just clean up the OOM state
1549  *
1550  * This has to be called at the end of a page fault if the memcg OOM
1551  * handler was enabled.
1552  *
1553  * Memcg supports userspace OOM handling where failed allocations must
1554  * sleep on a waitqueue until the userspace task resolves the
1555  * situation.  Sleeping directly in the charge context with all kinds
1556  * of locks held is not a good idea, instead we remember an OOM state
1557  * in the task and mem_cgroup_oom_synchronize() has to be called at
1558  * the end of the page fault to complete the OOM handling.
1559  *
1560  * Returns %true if an ongoing memcg OOM situation was detected and
1561  * completed, %false otherwise.
1562  */
1563 bool mem_cgroup_oom_synchronize(bool handle)
1564 {
1565         struct mem_cgroup *memcg = current->memcg_in_oom;
1566         struct oom_wait_info owait;
1567         bool locked;
1568
1569         /* OOM is global, do not handle */
1570         if (!memcg)
1571                 return false;
1572
1573         if (!handle)
1574                 goto cleanup;
1575
1576         owait.memcg = memcg;
1577         owait.wait.flags = 0;
1578         owait.wait.func = memcg_oom_wake_function;
1579         owait.wait.private = current;
1580         INIT_LIST_HEAD(&owait.wait.task_list);
1581
1582         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1583         mem_cgroup_mark_under_oom(memcg);
1584
1585         locked = mem_cgroup_oom_trylock(memcg);
1586
1587         if (locked)
1588                 mem_cgroup_oom_notify(memcg);
1589
1590         if (locked && !memcg->oom_kill_disable) {
1591                 mem_cgroup_unmark_under_oom(memcg);
1592                 finish_wait(&memcg_oom_waitq, &owait.wait);
1593                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1594                                          current->memcg_oom_order);
1595         } else {
1596                 schedule();
1597                 mem_cgroup_unmark_under_oom(memcg);
1598                 finish_wait(&memcg_oom_waitq, &owait.wait);
1599         }
1600
1601         if (locked) {
1602                 mem_cgroup_oom_unlock(memcg);
1603                 /*
1604                  * There is no guarantee that an OOM-lock contender
1605                  * sees the wakeups triggered by the OOM kill
1606                  * uncharges.  Wake any sleepers explicitely.
1607                  */
1608                 memcg_oom_recover(memcg);
1609         }
1610 cleanup:
1611         current->memcg_in_oom = NULL;
1612         css_put(&memcg->css);
1613         return true;
1614 }
1615
1616 /**
1617  * lock_page_memcg - lock a page->mem_cgroup binding
1618  * @page: the page
1619  *
1620  * This function protects unlocked LRU pages from being moved to
1621  * another cgroup and stabilizes their page->mem_cgroup binding.
1622  */
1623 void lock_page_memcg(struct page *page)
1624 {
1625         struct mem_cgroup *memcg;
1626         unsigned long flags;
1627
1628         /*
1629          * The RCU lock is held throughout the transaction.  The fast
1630          * path can get away without acquiring the memcg->move_lock
1631          * because page moving starts with an RCU grace period.
1632          */
1633         rcu_read_lock();
1634
1635         if (mem_cgroup_disabled())
1636                 return;
1637 again:
1638         memcg = page->mem_cgroup;
1639         if (unlikely(!memcg))
1640                 return;
1641
1642         if (atomic_read(&memcg->moving_account) <= 0)
1643                 return;
1644
1645         spin_lock_irqsave(&memcg->move_lock, flags);
1646         if (memcg != page->mem_cgroup) {
1647                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1648                 goto again;
1649         }
1650
1651         /*
1652          * When charge migration first begins, we can have locked and
1653          * unlocked page stat updates happening concurrently.  Track
1654          * the task who has the lock for unlock_page_memcg().
1655          */
1656         memcg->move_lock_task = current;
1657         memcg->move_lock_flags = flags;
1658
1659         return;
1660 }
1661 EXPORT_SYMBOL(lock_page_memcg);
1662
1663 /**
1664  * unlock_page_memcg - unlock a page->mem_cgroup binding
1665  * @page: the page
1666  */
1667 void unlock_page_memcg(struct page *page)
1668 {
1669         struct mem_cgroup *memcg = page->mem_cgroup;
1670
1671         if (memcg && memcg->move_lock_task == current) {
1672                 unsigned long flags = memcg->move_lock_flags;
1673
1674                 memcg->move_lock_task = NULL;
1675                 memcg->move_lock_flags = 0;
1676
1677                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678         }
1679
1680         rcu_read_unlock();
1681 }
1682 EXPORT_SYMBOL(unlock_page_memcg);
1683
1684 /*
1685  * size of first charge trial. "32" comes from vmscan.c's magic value.
1686  * TODO: maybe necessary to use big numbers in big irons.
1687  */
1688 #define CHARGE_BATCH    32U
1689 struct memcg_stock_pcp {
1690         struct mem_cgroup *cached; /* this never be root cgroup */
1691         unsigned int nr_pages;
1692         struct work_struct work;
1693         unsigned long flags;
1694 #define FLUSHING_CACHED_CHARGE  0
1695 };
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697 static DEFINE_MUTEX(percpu_charge_mutex);
1698
1699 /**
1700  * consume_stock: Try to consume stocked charge on this cpu.
1701  * @memcg: memcg to consume from.
1702  * @nr_pages: how many pages to charge.
1703  *
1704  * The charges will only happen if @memcg matches the current cpu's memcg
1705  * stock, and at least @nr_pages are available in that stock.  Failure to
1706  * service an allocation will refill the stock.
1707  *
1708  * returns true if successful, false otherwise.
1709  */
1710 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1711 {
1712         struct memcg_stock_pcp *stock;
1713         unsigned long flags;
1714         bool ret = false;
1715
1716         if (nr_pages > CHARGE_BATCH)
1717                 return ret;
1718
1719         local_irq_save(flags);
1720
1721         stock = this_cpu_ptr(&memcg_stock);
1722         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1723                 stock->nr_pages -= nr_pages;
1724                 ret = true;
1725         }
1726
1727         local_irq_restore(flags);
1728
1729         return ret;
1730 }
1731
1732 /*
1733  * Returns stocks cached in percpu and reset cached information.
1734  */
1735 static void drain_stock(struct memcg_stock_pcp *stock)
1736 {
1737         struct mem_cgroup *old = stock->cached;
1738
1739         if (stock->nr_pages) {
1740                 page_counter_uncharge(&old->memory, stock->nr_pages);
1741                 if (do_memsw_account())
1742                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1743                 css_put_many(&old->css, stock->nr_pages);
1744                 stock->nr_pages = 0;
1745         }
1746         stock->cached = NULL;
1747 }
1748
1749 static void drain_local_stock(struct work_struct *dummy)
1750 {
1751         struct memcg_stock_pcp *stock;
1752         unsigned long flags;
1753
1754         local_irq_save(flags);
1755
1756         stock = this_cpu_ptr(&memcg_stock);
1757         drain_stock(stock);
1758         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1759
1760         local_irq_restore(flags);
1761 }
1762
1763 /*
1764  * Cache charges(val) to local per_cpu area.
1765  * This will be consumed by consume_stock() function, later.
1766  */
1767 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1768 {
1769         struct memcg_stock_pcp *stock;
1770         unsigned long flags;
1771
1772         local_irq_save(flags);
1773
1774         stock = this_cpu_ptr(&memcg_stock);
1775         if (stock->cached != memcg) { /* reset if necessary */
1776                 drain_stock(stock);
1777                 stock->cached = memcg;
1778         }
1779         stock->nr_pages += nr_pages;
1780
1781         local_irq_restore(flags);
1782 }
1783
1784 /*
1785  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1786  * of the hierarchy under it.
1787  */
1788 static void drain_all_stock(struct mem_cgroup *root_memcg)
1789 {
1790         int cpu, curcpu;
1791
1792         /* If someone's already draining, avoid adding running more workers. */
1793         if (!mutex_trylock(&percpu_charge_mutex))
1794                 return;
1795         /* Notify other cpus that system-wide "drain" is running */
1796         get_online_cpus();
1797         curcpu = get_cpu();
1798         for_each_online_cpu(cpu) {
1799                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1800                 struct mem_cgroup *memcg;
1801
1802                 memcg = stock->cached;
1803                 if (!memcg || !stock->nr_pages)
1804                         continue;
1805                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1806                         continue;
1807                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1808                         if (cpu == curcpu)
1809                                 drain_local_stock(&stock->work);
1810                         else
1811                                 schedule_work_on(cpu, &stock->work);
1812                 }
1813         }
1814         put_cpu();
1815         put_online_cpus();
1816         mutex_unlock(&percpu_charge_mutex);
1817 }
1818
1819 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1820                                         unsigned long action,
1821                                         void *hcpu)
1822 {
1823         int cpu = (unsigned long)hcpu;
1824         struct memcg_stock_pcp *stock;
1825
1826         if (action == CPU_ONLINE)
1827                 return NOTIFY_OK;
1828
1829         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1830                 return NOTIFY_OK;
1831
1832         stock = &per_cpu(memcg_stock, cpu);
1833         drain_stock(stock);
1834         return NOTIFY_OK;
1835 }
1836
1837 static void reclaim_high(struct mem_cgroup *memcg,
1838                          unsigned int nr_pages,
1839                          gfp_t gfp_mask)
1840 {
1841         do {
1842                 if (page_counter_read(&memcg->memory) <= memcg->high)
1843                         continue;
1844                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1845                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1846         } while ((memcg = parent_mem_cgroup(memcg)));
1847 }
1848
1849 static void high_work_func(struct work_struct *work)
1850 {
1851         struct mem_cgroup *memcg;
1852
1853         memcg = container_of(work, struct mem_cgroup, high_work);
1854         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1855 }
1856
1857 /*
1858  * Scheduled by try_charge() to be executed from the userland return path
1859  * and reclaims memory over the high limit.
1860  */
1861 void mem_cgroup_handle_over_high(void)
1862 {
1863         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1864         struct mem_cgroup *memcg;
1865
1866         if (likely(!nr_pages))
1867                 return;
1868
1869         memcg = get_mem_cgroup_from_mm(current->mm);
1870         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1871         css_put(&memcg->css);
1872         current->memcg_nr_pages_over_high = 0;
1873 }
1874
1875 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1876                       unsigned int nr_pages)
1877 {
1878         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1879         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1880         struct mem_cgroup *mem_over_limit;
1881         struct page_counter *counter;
1882         unsigned long nr_reclaimed;
1883         bool may_swap = true;
1884         bool drained = false;
1885
1886         if (mem_cgroup_is_root(memcg))
1887                 return 0;
1888 retry:
1889         if (consume_stock(memcg, nr_pages))
1890                 return 0;
1891
1892         if (!do_memsw_account() ||
1893             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1894                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1895                         goto done_restock;
1896                 if (do_memsw_account())
1897                         page_counter_uncharge(&memcg->memsw, batch);
1898                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1899         } else {
1900                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1901                 may_swap = false;
1902         }
1903
1904         if (batch > nr_pages) {
1905                 batch = nr_pages;
1906                 goto retry;
1907         }
1908
1909         /*
1910          * Unlike in global OOM situations, memcg is not in a physical
1911          * memory shortage.  Allow dying and OOM-killed tasks to
1912          * bypass the last charges so that they can exit quickly and
1913          * free their memory.
1914          */
1915         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1916                      fatal_signal_pending(current) ||
1917                      current->flags & PF_EXITING))
1918                 goto force;
1919
1920         if (unlikely(task_in_memcg_oom(current)))
1921                 goto nomem;
1922
1923         if (!gfpflags_allow_blocking(gfp_mask))
1924                 goto nomem;
1925
1926         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1927
1928         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1929                                                     gfp_mask, may_swap);
1930
1931         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1932                 goto retry;
1933
1934         if (!drained) {
1935                 drain_all_stock(mem_over_limit);
1936                 drained = true;
1937                 goto retry;
1938         }
1939
1940         if (gfp_mask & __GFP_NORETRY)
1941                 goto nomem;
1942         /*
1943          * Even though the limit is exceeded at this point, reclaim
1944          * may have been able to free some pages.  Retry the charge
1945          * before killing the task.
1946          *
1947          * Only for regular pages, though: huge pages are rather
1948          * unlikely to succeed so close to the limit, and we fall back
1949          * to regular pages anyway in case of failure.
1950          */
1951         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1952                 goto retry;
1953         /*
1954          * At task move, charge accounts can be doubly counted. So, it's
1955          * better to wait until the end of task_move if something is going on.
1956          */
1957         if (mem_cgroup_wait_acct_move(mem_over_limit))
1958                 goto retry;
1959
1960         if (nr_retries--)
1961                 goto retry;
1962
1963         if (gfp_mask & __GFP_NOFAIL)
1964                 goto force;
1965
1966         if (fatal_signal_pending(current))
1967                 goto force;
1968
1969         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1970
1971         mem_cgroup_oom(mem_over_limit, gfp_mask,
1972                        get_order(nr_pages * PAGE_SIZE));
1973 nomem:
1974         if (!(gfp_mask & __GFP_NOFAIL))
1975                 return -ENOMEM;
1976 force:
1977         /*
1978          * The allocation either can't fail or will lead to more memory
1979          * being freed very soon.  Allow memory usage go over the limit
1980          * temporarily by force charging it.
1981          */
1982         page_counter_charge(&memcg->memory, nr_pages);
1983         if (do_memsw_account())
1984                 page_counter_charge(&memcg->memsw, nr_pages);
1985         css_get_many(&memcg->css, nr_pages);
1986
1987         return 0;
1988
1989 done_restock:
1990         css_get_many(&memcg->css, batch);
1991         if (batch > nr_pages)
1992                 refill_stock(memcg, batch - nr_pages);
1993
1994         /*
1995          * If the hierarchy is above the normal consumption range, schedule
1996          * reclaim on returning to userland.  We can perform reclaim here
1997          * if __GFP_RECLAIM but let's always punt for simplicity and so that
1998          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
1999          * not recorded as it most likely matches current's and won't
2000          * change in the meantime.  As high limit is checked again before
2001          * reclaim, the cost of mismatch is negligible.
2002          */
2003         do {
2004                 if (page_counter_read(&memcg->memory) > memcg->high) {
2005                         /* Don't bother a random interrupted task */
2006                         if (in_interrupt()) {
2007                                 schedule_work(&memcg->high_work);
2008                                 break;
2009                         }
2010                         current->memcg_nr_pages_over_high += batch;
2011                         set_notify_resume(current);
2012                         break;
2013                 }
2014         } while ((memcg = parent_mem_cgroup(memcg)));
2015
2016         return 0;
2017 }
2018
2019 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2020 {
2021         if (mem_cgroup_is_root(memcg))
2022                 return;
2023
2024         page_counter_uncharge(&memcg->memory, nr_pages);
2025         if (do_memsw_account())
2026                 page_counter_uncharge(&memcg->memsw, nr_pages);
2027
2028         css_put_many(&memcg->css, nr_pages);
2029 }
2030
2031 static void lock_page_lru(struct page *page, int *isolated)
2032 {
2033         struct zone *zone = page_zone(page);
2034
2035         spin_lock_irq(zone_lru_lock(zone));
2036         if (PageLRU(page)) {
2037                 struct lruvec *lruvec;
2038
2039                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2040                 ClearPageLRU(page);
2041                 del_page_from_lru_list(page, lruvec, page_lru(page));
2042                 *isolated = 1;
2043         } else
2044                 *isolated = 0;
2045 }
2046
2047 static void unlock_page_lru(struct page *page, int isolated)
2048 {
2049         struct zone *zone = page_zone(page);
2050
2051         if (isolated) {
2052                 struct lruvec *lruvec;
2053
2054                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2055                 VM_BUG_ON_PAGE(PageLRU(page), page);
2056                 SetPageLRU(page);
2057                 add_page_to_lru_list(page, lruvec, page_lru(page));
2058         }
2059         spin_unlock_irq(zone_lru_lock(zone));
2060 }
2061
2062 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2063                           bool lrucare)
2064 {
2065         int isolated;
2066
2067         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2068
2069         /*
2070          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2071          * may already be on some other mem_cgroup's LRU.  Take care of it.
2072          */
2073         if (lrucare)
2074                 lock_page_lru(page, &isolated);
2075
2076         /*
2077          * Nobody should be changing or seriously looking at
2078          * page->mem_cgroup at this point:
2079          *
2080          * - the page is uncharged
2081          *
2082          * - the page is off-LRU
2083          *
2084          * - an anonymous fault has exclusive page access, except for
2085          *   a locked page table
2086          *
2087          * - a page cache insertion, a swapin fault, or a migration
2088          *   have the page locked
2089          */
2090         page->mem_cgroup = memcg;
2091
2092         if (lrucare)
2093                 unlock_page_lru(page, isolated);
2094 }
2095
2096 #ifndef CONFIG_SLOB
2097 static int memcg_alloc_cache_id(void)
2098 {
2099         int id, size;
2100         int err;
2101
2102         id = ida_simple_get(&memcg_cache_ida,
2103                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2104         if (id < 0)
2105                 return id;
2106
2107         if (id < memcg_nr_cache_ids)
2108                 return id;
2109
2110         /*
2111          * There's no space for the new id in memcg_caches arrays,
2112          * so we have to grow them.
2113          */
2114         down_write(&memcg_cache_ids_sem);
2115
2116         size = 2 * (id + 1);
2117         if (size < MEMCG_CACHES_MIN_SIZE)
2118                 size = MEMCG_CACHES_MIN_SIZE;
2119         else if (size > MEMCG_CACHES_MAX_SIZE)
2120                 size = MEMCG_CACHES_MAX_SIZE;
2121
2122         err = memcg_update_all_caches(size);
2123         if (!err)
2124                 err = memcg_update_all_list_lrus(size);
2125         if (!err)
2126                 memcg_nr_cache_ids = size;
2127
2128         up_write(&memcg_cache_ids_sem);
2129
2130         if (err) {
2131                 ida_simple_remove(&memcg_cache_ida, id);
2132                 return err;
2133         }
2134         return id;
2135 }
2136
2137 static void memcg_free_cache_id(int id)
2138 {
2139         ida_simple_remove(&memcg_cache_ida, id);
2140 }
2141
2142 struct memcg_kmem_cache_create_work {
2143         struct mem_cgroup *memcg;
2144         struct kmem_cache *cachep;
2145         struct work_struct work;
2146 };
2147
2148 static void memcg_kmem_cache_create_func(struct work_struct *w)
2149 {
2150         struct memcg_kmem_cache_create_work *cw =
2151                 container_of(w, struct memcg_kmem_cache_create_work, work);
2152         struct mem_cgroup *memcg = cw->memcg;
2153         struct kmem_cache *cachep = cw->cachep;
2154
2155         memcg_create_kmem_cache(memcg, cachep);
2156
2157         css_put(&memcg->css);
2158         kfree(cw);
2159 }
2160
2161 /*
2162  * Enqueue the creation of a per-memcg kmem_cache.
2163  */
2164 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2165                                                struct kmem_cache *cachep)
2166 {
2167         struct memcg_kmem_cache_create_work *cw;
2168
2169         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2170         if (!cw)
2171                 return;
2172
2173         css_get(&memcg->css);
2174
2175         cw->memcg = memcg;
2176         cw->cachep = cachep;
2177         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2178
2179         schedule_work(&cw->work);
2180 }
2181
2182 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2183                                              struct kmem_cache *cachep)
2184 {
2185         /*
2186          * We need to stop accounting when we kmalloc, because if the
2187          * corresponding kmalloc cache is not yet created, the first allocation
2188          * in __memcg_schedule_kmem_cache_create will recurse.
2189          *
2190          * However, it is better to enclose the whole function. Depending on
2191          * the debugging options enabled, INIT_WORK(), for instance, can
2192          * trigger an allocation. This too, will make us recurse. Because at
2193          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2194          * the safest choice is to do it like this, wrapping the whole function.
2195          */
2196         current->memcg_kmem_skip_account = 1;
2197         __memcg_schedule_kmem_cache_create(memcg, cachep);
2198         current->memcg_kmem_skip_account = 0;
2199 }
2200
2201 static inline bool memcg_kmem_bypass(void)
2202 {
2203         if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2204                 return true;
2205         return false;
2206 }
2207
2208 /**
2209  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2210  * @cachep: the original global kmem cache
2211  *
2212  * Return the kmem_cache we're supposed to use for a slab allocation.
2213  * We try to use the current memcg's version of the cache.
2214  *
2215  * If the cache does not exist yet, if we are the first user of it, we
2216  * create it asynchronously in a workqueue and let the current allocation
2217  * go through with the original cache.
2218  *
2219  * This function takes a reference to the cache it returns to assure it
2220  * won't get destroyed while we are working with it. Once the caller is
2221  * done with it, memcg_kmem_put_cache() must be called to release the
2222  * reference.
2223  */
2224 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2225 {
2226         struct mem_cgroup *memcg;
2227         struct kmem_cache *memcg_cachep;
2228         int kmemcg_id;
2229
2230         VM_BUG_ON(!is_root_cache(cachep));
2231
2232         if (memcg_kmem_bypass())
2233                 return cachep;
2234
2235         if (current->memcg_kmem_skip_account)
2236                 return cachep;
2237
2238         memcg = get_mem_cgroup_from_mm(current->mm);
2239         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2240         if (kmemcg_id < 0)
2241                 goto out;
2242
2243         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2244         if (likely(memcg_cachep))
2245                 return memcg_cachep;
2246
2247         /*
2248          * If we are in a safe context (can wait, and not in interrupt
2249          * context), we could be be predictable and return right away.
2250          * This would guarantee that the allocation being performed
2251          * already belongs in the new cache.
2252          *
2253          * However, there are some clashes that can arrive from locking.
2254          * For instance, because we acquire the slab_mutex while doing
2255          * memcg_create_kmem_cache, this means no further allocation
2256          * could happen with the slab_mutex held. So it's better to
2257          * defer everything.
2258          */
2259         memcg_schedule_kmem_cache_create(memcg, cachep);
2260 out:
2261         css_put(&memcg->css);
2262         return cachep;
2263 }
2264
2265 /**
2266  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2267  * @cachep: the cache returned by memcg_kmem_get_cache
2268  */
2269 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2270 {
2271         if (!is_root_cache(cachep))
2272                 css_put(&cachep->memcg_params.memcg->css);
2273 }
2274
2275 /**
2276  * memcg_kmem_charge: charge a kmem page
2277  * @page: page to charge
2278  * @gfp: reclaim mode
2279  * @order: allocation order
2280  * @memcg: memory cgroup to charge
2281  *
2282  * Returns 0 on success, an error code on failure.
2283  */
2284 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2285                             struct mem_cgroup *memcg)
2286 {
2287         unsigned int nr_pages = 1 << order;
2288         struct page_counter *counter;
2289         int ret;
2290
2291         ret = try_charge(memcg, gfp, nr_pages);
2292         if (ret)
2293                 return ret;
2294
2295         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2296             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2297                 cancel_charge(memcg, nr_pages);
2298                 return -ENOMEM;
2299         }
2300
2301         page->mem_cgroup = memcg;
2302
2303         return 0;
2304 }
2305
2306 /**
2307  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2308  * @page: page to charge
2309  * @gfp: reclaim mode
2310  * @order: allocation order
2311  *
2312  * Returns 0 on success, an error code on failure.
2313  */
2314 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2315 {
2316         struct mem_cgroup *memcg;
2317         int ret = 0;
2318
2319         if (memcg_kmem_bypass())
2320                 return 0;
2321
2322         memcg = get_mem_cgroup_from_mm(current->mm);
2323         if (!mem_cgroup_is_root(memcg)) {
2324                 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2325                 if (!ret)
2326                         __SetPageKmemcg(page);
2327         }
2328         css_put(&memcg->css);
2329         return ret;
2330 }
2331 /**
2332  * memcg_kmem_uncharge: uncharge a kmem page
2333  * @page: page to uncharge
2334  * @order: allocation order
2335  */
2336 void memcg_kmem_uncharge(struct page *page, int order)
2337 {
2338         struct mem_cgroup *memcg = page->mem_cgroup;
2339         unsigned int nr_pages = 1 << order;
2340
2341         if (!memcg)
2342                 return;
2343
2344         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2345
2346         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2347                 page_counter_uncharge(&memcg->kmem, nr_pages);
2348
2349         page_counter_uncharge(&memcg->memory, nr_pages);
2350         if (do_memsw_account())
2351                 page_counter_uncharge(&memcg->memsw, nr_pages);
2352
2353         page->mem_cgroup = NULL;
2354
2355         /* slab pages do not have PageKmemcg flag set */
2356         if (PageKmemcg(page))
2357                 __ClearPageKmemcg(page);
2358
2359         css_put_many(&memcg->css, nr_pages);
2360 }
2361 #endif /* !CONFIG_SLOB */
2362
2363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2364
2365 /*
2366  * Because tail pages are not marked as "used", set it. We're under
2367  * zone_lru_lock and migration entries setup in all page mappings.
2368  */
2369 void mem_cgroup_split_huge_fixup(struct page *head)
2370 {
2371         int i;
2372
2373         if (mem_cgroup_disabled())
2374                 return;
2375
2376         for (i = 1; i < HPAGE_PMD_NR; i++)
2377                 head[i].mem_cgroup = head->mem_cgroup;
2378
2379         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2380                        HPAGE_PMD_NR);
2381 }
2382 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2383
2384 #ifdef CONFIG_MEMCG_SWAP
2385 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2386                                          bool charge)
2387 {
2388         int val = (charge) ? 1 : -1;
2389         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2390 }
2391
2392 /**
2393  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2394  * @entry: swap entry to be moved
2395  * @from:  mem_cgroup which the entry is moved from
2396  * @to:  mem_cgroup which the entry is moved to
2397  *
2398  * It succeeds only when the swap_cgroup's record for this entry is the same
2399  * as the mem_cgroup's id of @from.
2400  *
2401  * Returns 0 on success, -EINVAL on failure.
2402  *
2403  * The caller must have charged to @to, IOW, called page_counter_charge() about
2404  * both res and memsw, and called css_get().
2405  */
2406 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2407                                 struct mem_cgroup *from, struct mem_cgroup *to)
2408 {
2409         unsigned short old_id, new_id;
2410
2411         old_id = mem_cgroup_id(from);
2412         new_id = mem_cgroup_id(to);
2413
2414         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2415                 mem_cgroup_swap_statistics(from, false);
2416                 mem_cgroup_swap_statistics(to, true);
2417                 return 0;
2418         }
2419         return -EINVAL;
2420 }
2421 #else
2422 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2423                                 struct mem_cgroup *from, struct mem_cgroup *to)
2424 {
2425         return -EINVAL;
2426 }
2427 #endif
2428
2429 static DEFINE_MUTEX(memcg_limit_mutex);
2430
2431 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2432                                    unsigned long limit)
2433 {
2434         unsigned long curusage;
2435         unsigned long oldusage;
2436         bool enlarge = false;
2437         int retry_count;
2438         int ret;
2439
2440         /*
2441          * For keeping hierarchical_reclaim simple, how long we should retry
2442          * is depends on callers. We set our retry-count to be function
2443          * of # of children which we should visit in this loop.
2444          */
2445         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2446                       mem_cgroup_count_children(memcg);
2447
2448         oldusage = page_counter_read(&memcg->memory);
2449
2450         do {
2451                 if (signal_pending(current)) {
2452                         ret = -EINTR;
2453                         break;
2454                 }
2455
2456                 mutex_lock(&memcg_limit_mutex);
2457                 if (limit > memcg->memsw.limit) {
2458                         mutex_unlock(&memcg_limit_mutex);
2459                         ret = -EINVAL;
2460                         break;
2461                 }
2462                 if (limit > memcg->memory.limit)
2463                         enlarge = true;
2464                 ret = page_counter_limit(&memcg->memory, limit);
2465                 mutex_unlock(&memcg_limit_mutex);
2466
2467                 if (!ret)
2468                         break;
2469
2470                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2471
2472                 curusage = page_counter_read(&memcg->memory);
2473                 /* Usage is reduced ? */
2474                 if (curusage >= oldusage)
2475                         retry_count--;
2476                 else
2477                         oldusage = curusage;
2478         } while (retry_count);
2479
2480         if (!ret && enlarge)
2481                 memcg_oom_recover(memcg);
2482
2483         return ret;
2484 }
2485
2486 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2487                                          unsigned long limit)
2488 {
2489         unsigned long curusage;
2490         unsigned long oldusage;
2491         bool enlarge = false;
2492         int retry_count;
2493         int ret;
2494
2495         /* see mem_cgroup_resize_res_limit */
2496         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2497                       mem_cgroup_count_children(memcg);
2498
2499         oldusage = page_counter_read(&memcg->memsw);
2500
2501         do {
2502                 if (signal_pending(current)) {
2503                         ret = -EINTR;
2504                         break;
2505                 }
2506
2507                 mutex_lock(&memcg_limit_mutex);
2508                 if (limit < memcg->memory.limit) {
2509                         mutex_unlock(&memcg_limit_mutex);
2510                         ret = -EINVAL;
2511                         break;
2512                 }
2513                 if (limit > memcg->memsw.limit)
2514                         enlarge = true;
2515                 ret = page_counter_limit(&memcg->memsw, limit);
2516                 mutex_unlock(&memcg_limit_mutex);
2517
2518                 if (!ret)
2519                         break;
2520
2521                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2522
2523                 curusage = page_counter_read(&memcg->memsw);
2524                 /* Usage is reduced ? */
2525                 if (curusage >= oldusage)
2526                         retry_count--;
2527                 else
2528                         oldusage = curusage;
2529         } while (retry_count);
2530
2531         if (!ret && enlarge)
2532                 memcg_oom_recover(memcg);
2533
2534         return ret;
2535 }
2536
2537 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2538                                             gfp_t gfp_mask,
2539                                             unsigned long *total_scanned)
2540 {
2541         unsigned long nr_reclaimed = 0;
2542         struct mem_cgroup_per_node *mz, *next_mz = NULL;
2543         unsigned long reclaimed;
2544         int loop = 0;
2545         struct mem_cgroup_tree_per_node *mctz;
2546         unsigned long excess;
2547         unsigned long nr_scanned;
2548
2549         if (order > 0)
2550                 return 0;
2551
2552         mctz = soft_limit_tree_node(pgdat->node_id);
2553
2554         /*
2555          * Do not even bother to check the largest node if the root
2556          * is empty. Do it lockless to prevent lock bouncing. Races
2557          * are acceptable as soft limit is best effort anyway.
2558          */
2559         if (RB_EMPTY_ROOT(&mctz->rb_root))
2560                 return 0;
2561
2562         /*
2563          * This loop can run a while, specially if mem_cgroup's continuously
2564          * keep exceeding their soft limit and putting the system under
2565          * pressure
2566          */
2567         do {
2568                 if (next_mz)
2569                         mz = next_mz;
2570                 else
2571                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2572                 if (!mz)
2573                         break;
2574
2575                 nr_scanned = 0;
2576                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2577                                                     gfp_mask, &nr_scanned);
2578                 nr_reclaimed += reclaimed;
2579                 *total_scanned += nr_scanned;
2580                 spin_lock_irq(&mctz->lock);
2581                 __mem_cgroup_remove_exceeded(mz, mctz);
2582
2583                 /*
2584                  * If we failed to reclaim anything from this memory cgroup
2585                  * it is time to move on to the next cgroup
2586                  */
2587                 next_mz = NULL;
2588                 if (!reclaimed)
2589                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2590
2591                 excess = soft_limit_excess(mz->memcg);
2592                 /*
2593                  * One school of thought says that we should not add
2594                  * back the node to the tree if reclaim returns 0.
2595                  * But our reclaim could return 0, simply because due
2596                  * to priority we are exposing a smaller subset of
2597                  * memory to reclaim from. Consider this as a longer
2598                  * term TODO.
2599                  */
2600                 /* If excess == 0, no tree ops */
2601                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2602                 spin_unlock_irq(&mctz->lock);
2603                 css_put(&mz->memcg->css);
2604                 loop++;
2605                 /*
2606                  * Could not reclaim anything and there are no more
2607                  * mem cgroups to try or we seem to be looping without
2608                  * reclaiming anything.
2609                  */
2610                 if (!nr_reclaimed &&
2611                         (next_mz == NULL ||
2612                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2613                         break;
2614         } while (!nr_reclaimed);
2615         if (next_mz)
2616                 css_put(&next_mz->memcg->css);
2617         return nr_reclaimed;
2618 }
2619
2620 /*
2621  * Test whether @memcg has children, dead or alive.  Note that this
2622  * function doesn't care whether @memcg has use_hierarchy enabled and
2623  * returns %true if there are child csses according to the cgroup
2624  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2625  */
2626 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2627 {
2628         bool ret;
2629
2630         rcu_read_lock();
2631         ret = css_next_child(NULL, &memcg->css);
2632         rcu_read_unlock();
2633         return ret;
2634 }
2635
2636 /*
2637  * Reclaims as many pages from the given memcg as possible.
2638  *
2639  * Caller is responsible for holding css reference for memcg.
2640  */
2641 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642 {
2643         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2644
2645         /* we call try-to-free pages for make this cgroup empty */
2646         lru_add_drain_all();
2647         /* try to free all pages in this cgroup */
2648         while (nr_retries && page_counter_read(&memcg->memory)) {
2649                 int progress;
2650
2651                 if (signal_pending(current))
2652                         return -EINTR;
2653
2654                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655                                                         GFP_KERNEL, true);
2656                 if (!progress) {
2657                         nr_retries--;
2658                         /* maybe some writeback is necessary */
2659                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2660                 }
2661
2662         }
2663
2664         return 0;
2665 }
2666
2667 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668                                             char *buf, size_t nbytes,
2669                                             loff_t off)
2670 {
2671         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2672
2673         if (mem_cgroup_is_root(memcg))
2674                 return -EINVAL;
2675         return mem_cgroup_force_empty(memcg) ?: nbytes;
2676 }
2677
2678 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679                                      struct cftype *cft)
2680 {
2681         return mem_cgroup_from_css(css)->use_hierarchy;
2682 }
2683
2684 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685                                       struct cftype *cft, u64 val)
2686 {
2687         int retval = 0;
2688         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2689         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2690
2691         if (memcg->use_hierarchy == val)
2692                 return 0;
2693
2694         /*
2695          * If parent's use_hierarchy is set, we can't make any modifications
2696          * in the child subtrees. If it is unset, then the change can
2697          * occur, provided the current cgroup has no children.
2698          *
2699          * For the root cgroup, parent_mem is NULL, we allow value to be
2700          * set if there are no children.
2701          */
2702         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2703                                 (val == 1 || val == 0)) {
2704                 if (!memcg_has_children(memcg))
2705                         memcg->use_hierarchy = val;
2706                 else
2707                         retval = -EBUSY;
2708         } else
2709                 retval = -EINVAL;
2710
2711         return retval;
2712 }
2713
2714 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2715 {
2716         struct mem_cgroup *iter;
2717         int i;
2718
2719         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2720
2721         for_each_mem_cgroup_tree(iter, memcg) {
2722                 for (i = 0; i < MEMCG_NR_STAT; i++)
2723                         stat[i] += mem_cgroup_read_stat(iter, i);
2724         }
2725 }
2726
2727 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2728 {
2729         struct mem_cgroup *iter;
2730         int i;
2731
2732         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2733
2734         for_each_mem_cgroup_tree(iter, memcg) {
2735                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736                         events[i] += mem_cgroup_read_events(iter, i);
2737         }
2738 }
2739
2740 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2741 {
2742         unsigned long val = 0;
2743
2744         if (mem_cgroup_is_root(memcg)) {
2745                 struct mem_cgroup *iter;
2746
2747                 for_each_mem_cgroup_tree(iter, memcg) {
2748                         val += mem_cgroup_read_stat(iter,
2749                                         MEM_CGROUP_STAT_CACHE);
2750                         val += mem_cgroup_read_stat(iter,
2751                                         MEM_CGROUP_STAT_RSS);
2752                         if (swap)
2753                                 val += mem_cgroup_read_stat(iter,
2754                                                 MEM_CGROUP_STAT_SWAP);
2755                 }
2756         } else {
2757                 if (!swap)
2758                         val = page_counter_read(&memcg->memory);
2759                 else
2760                         val = page_counter_read(&memcg->memsw);
2761         }
2762         return val;
2763 }
2764
2765 enum {
2766         RES_USAGE,
2767         RES_LIMIT,
2768         RES_MAX_USAGE,
2769         RES_FAILCNT,
2770         RES_SOFT_LIMIT,
2771 };
2772
2773 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2774                                struct cftype *cft)
2775 {
2776         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2777         struct page_counter *counter;
2778
2779         switch (MEMFILE_TYPE(cft->private)) {
2780         case _MEM:
2781                 counter = &memcg->memory;
2782                 break;
2783         case _MEMSWAP:
2784                 counter = &memcg->memsw;
2785                 break;
2786         case _KMEM:
2787                 counter = &memcg->kmem;
2788                 break;
2789         case _TCP:
2790                 counter = &memcg->tcpmem;
2791                 break;
2792         default:
2793                 BUG();
2794         }
2795
2796         switch (MEMFILE_ATTR(cft->private)) {
2797         case RES_USAGE:
2798                 if (counter == &memcg->memory)
2799                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2800                 if (counter == &memcg->memsw)
2801                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2802                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2803         case RES_LIMIT:
2804                 return (u64)counter->limit * PAGE_SIZE;
2805         case RES_MAX_USAGE:
2806                 return (u64)counter->watermark * PAGE_SIZE;
2807         case RES_FAILCNT:
2808                 return counter->failcnt;
2809         case RES_SOFT_LIMIT:
2810                 return (u64)memcg->soft_limit * PAGE_SIZE;
2811         default:
2812                 BUG();
2813         }
2814 }
2815
2816 #ifndef CONFIG_SLOB
2817 static int memcg_online_kmem(struct mem_cgroup *memcg)
2818 {
2819         int memcg_id;
2820
2821         if (cgroup_memory_nokmem)
2822                 return 0;
2823
2824         BUG_ON(memcg->kmemcg_id >= 0);
2825         BUG_ON(memcg->kmem_state);
2826
2827         memcg_id = memcg_alloc_cache_id();
2828         if (memcg_id < 0)
2829                 return memcg_id;
2830
2831         static_branch_inc(&memcg_kmem_enabled_key);
2832         /*
2833          * A memory cgroup is considered kmem-online as soon as it gets
2834          * kmemcg_id. Setting the id after enabling static branching will
2835          * guarantee no one starts accounting before all call sites are
2836          * patched.
2837          */
2838         memcg->kmemcg_id = memcg_id;
2839         memcg->kmem_state = KMEM_ONLINE;
2840
2841         return 0;
2842 }
2843
2844 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2845 {
2846         struct cgroup_subsys_state *css;
2847         struct mem_cgroup *parent, *child;
2848         int kmemcg_id;
2849
2850         if (memcg->kmem_state != KMEM_ONLINE)
2851                 return;
2852         /*
2853          * Clear the online state before clearing memcg_caches array
2854          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855          * guarantees that no cache will be created for this cgroup
2856          * after we are done (see memcg_create_kmem_cache()).
2857          */
2858         memcg->kmem_state = KMEM_ALLOCATED;
2859
2860         memcg_deactivate_kmem_caches(memcg);
2861
2862         kmemcg_id = memcg->kmemcg_id;
2863         BUG_ON(kmemcg_id < 0);
2864
2865         parent = parent_mem_cgroup(memcg);
2866         if (!parent)
2867                 parent = root_mem_cgroup;
2868
2869         /*
2870          * Change kmemcg_id of this cgroup and all its descendants to the
2871          * parent's id, and then move all entries from this cgroup's list_lrus
2872          * to ones of the parent. After we have finished, all list_lrus
2873          * corresponding to this cgroup are guaranteed to remain empty. The
2874          * ordering is imposed by list_lru_node->lock taken by
2875          * memcg_drain_all_list_lrus().
2876          */
2877         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2878         css_for_each_descendant_pre(css, &memcg->css) {
2879                 child = mem_cgroup_from_css(css);
2880                 BUG_ON(child->kmemcg_id != kmemcg_id);
2881                 child->kmemcg_id = parent->kmemcg_id;
2882                 if (!memcg->use_hierarchy)
2883                         break;
2884         }
2885         rcu_read_unlock();
2886
2887         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889         memcg_free_cache_id(kmemcg_id);
2890 }
2891
2892 static void memcg_free_kmem(struct mem_cgroup *memcg)
2893 {
2894         /* css_alloc() failed, offlining didn't happen */
2895         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896                 memcg_offline_kmem(memcg);
2897
2898         if (memcg->kmem_state == KMEM_ALLOCATED) {
2899                 memcg_destroy_kmem_caches(memcg);
2900                 static_branch_dec(&memcg_kmem_enabled_key);
2901                 WARN_ON(page_counter_read(&memcg->kmem));
2902         }
2903 }
2904 #else
2905 static int memcg_online_kmem(struct mem_cgroup *memcg)
2906 {
2907         return 0;
2908 }
2909 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910 {
2911 }
2912 static void memcg_free_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 #endif /* !CONFIG_SLOB */
2916
2917 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918                                    unsigned long limit)
2919 {
2920         int ret;
2921
2922         mutex_lock(&memcg_limit_mutex);
2923         ret = page_counter_limit(&memcg->kmem, limit);
2924         mutex_unlock(&memcg_limit_mutex);
2925         return ret;
2926 }
2927
2928 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929 {
2930         int ret;
2931
2932         mutex_lock(&memcg_limit_mutex);
2933
2934         ret = page_counter_limit(&memcg->tcpmem, limit);
2935         if (ret)
2936                 goto out;
2937
2938         if (!memcg->tcpmem_active) {
2939                 /*
2940                  * The active flag needs to be written after the static_key
2941                  * update. This is what guarantees that the socket activation
2942                  * function is the last one to run. See mem_cgroup_sk_alloc()
2943                  * for details, and note that we don't mark any socket as
2944                  * belonging to this memcg until that flag is up.
2945                  *
2946                  * We need to do this, because static_keys will span multiple
2947                  * sites, but we can't control their order. If we mark a socket
2948                  * as accounted, but the accounting functions are not patched in
2949                  * yet, we'll lose accounting.
2950                  *
2951                  * We never race with the readers in mem_cgroup_sk_alloc(),
2952                  * because when this value change, the code to process it is not
2953                  * patched in yet.
2954                  */
2955                 static_branch_inc(&memcg_sockets_enabled_key);
2956                 memcg->tcpmem_active = true;
2957         }
2958 out:
2959         mutex_unlock(&memcg_limit_mutex);
2960         return ret;
2961 }
2962
2963 /*
2964  * The user of this function is...
2965  * RES_LIMIT.
2966  */
2967 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968                                 char *buf, size_t nbytes, loff_t off)
2969 {
2970         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971         unsigned long nr_pages;
2972         int ret;
2973
2974         buf = strstrip(buf);
2975         ret = page_counter_memparse(buf, "-1", &nr_pages);
2976         if (ret)
2977                 return ret;
2978
2979         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980         case RES_LIMIT:
2981                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982                         ret = -EINVAL;
2983                         break;
2984                 }
2985                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986                 case _MEM:
2987                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988                         break;
2989                 case _MEMSWAP:
2990                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991                         break;
2992                 case _KMEM:
2993                         ret = memcg_update_kmem_limit(memcg, nr_pages);
2994                         break;
2995                 case _TCP:
2996                         ret = memcg_update_tcp_limit(memcg, nr_pages);
2997                         break;
2998                 }
2999                 break;
3000         case RES_SOFT_LIMIT:
3001                 memcg->soft_limit = nr_pages;
3002                 ret = 0;
3003                 break;
3004         }
3005         return ret ?: nbytes;
3006 }
3007
3008 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009                                 size_t nbytes, loff_t off)
3010 {
3011         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012         struct page_counter *counter;
3013
3014         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015         case _MEM:
3016                 counter = &memcg->memory;
3017                 break;
3018         case _MEMSWAP:
3019                 counter = &memcg->memsw;
3020                 break;
3021         case _KMEM:
3022                 counter = &memcg->kmem;
3023                 break;
3024         case _TCP:
3025                 counter = &memcg->tcpmem;
3026                 break;
3027         default:
3028                 BUG();
3029         }
3030
3031         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032         case RES_MAX_USAGE:
3033                 page_counter_reset_watermark(counter);
3034                 break;
3035         case RES_FAILCNT:
3036                 counter->failcnt = 0;
3037                 break;
3038         default:
3039                 BUG();
3040         }
3041
3042         return nbytes;
3043 }
3044
3045 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046                                         struct cftype *cft)
3047 {
3048         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049 }
3050
3051 #ifdef CONFIG_MMU
3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053                                         struct cftype *cft, u64 val)
3054 {
3055         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057         if (val & ~MOVE_MASK)
3058                 return -EINVAL;
3059
3060         /*
3061          * No kind of locking is needed in here, because ->can_attach() will
3062          * check this value once in the beginning of the process, and then carry
3063          * on with stale data. This means that changes to this value will only
3064          * affect task migrations starting after the change.
3065          */
3066         memcg->move_charge_at_immigrate = val;
3067         return 0;
3068 }
3069 #else
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071                                         struct cftype *cft, u64 val)
3072 {
3073         return -ENOSYS;
3074 }
3075 #endif
3076
3077 #ifdef CONFIG_NUMA
3078 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079 {
3080         struct numa_stat {
3081                 const char *name;
3082                 unsigned int lru_mask;
3083         };
3084
3085         static const struct numa_stat stats[] = {
3086                 { "total", LRU_ALL },
3087                 { "file", LRU_ALL_FILE },
3088                 { "anon", LRU_ALL_ANON },
3089                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090         };
3091         const struct numa_stat *stat;
3092         int nid;
3093         unsigned long nr;
3094         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098                 seq_printf(m, "%s=%lu", stat->name, nr);
3099                 for_each_node_state(nid, N_MEMORY) {
3100                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101                                                           stat->lru_mask);
3102                         seq_printf(m, " N%d=%lu", nid, nr);
3103                 }
3104                 seq_putc(m, '\n');
3105         }
3106
3107         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108                 struct mem_cgroup *iter;
3109
3110                 nr = 0;
3111                 for_each_mem_cgroup_tree(iter, memcg)
3112                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114                 for_each_node_state(nid, N_MEMORY) {
3115                         nr = 0;
3116                         for_each_mem_cgroup_tree(iter, memcg)
3117                                 nr += mem_cgroup_node_nr_lru_pages(
3118                                         iter, nid, stat->lru_mask);
3119                         seq_printf(m, " N%d=%lu", nid, nr);
3120                 }
3121                 seq_putc(m, '\n');
3122         }
3123
3124         return 0;
3125 }
3126 #endif /* CONFIG_NUMA */
3127
3128 static int memcg_stat_show(struct seq_file *m, void *v)
3129 {
3130         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131         unsigned long memory, memsw;
3132         struct mem_cgroup *mi;
3133         unsigned int i;
3134
3135         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136                      MEM_CGROUP_STAT_NSTATS);
3137         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138                      MEM_CGROUP_EVENTS_NSTATS);
3139         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143                         continue;
3144                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146         }
3147
3148         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150                            mem_cgroup_read_events(memcg, i));
3151
3152         for (i = 0; i < NR_LRU_LISTS; i++)
3153                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156         /* Hierarchical information */
3157         memory = memsw = PAGE_COUNTER_MAX;
3158         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159                 memory = min(memory, mi->memory.limit);
3160                 memsw = min(memsw, mi->memsw.limit);
3161         }
3162         seq_printf(m, "hierarchical_memory_limit %llu\n",
3163                    (u64)memory * PAGE_SIZE);
3164         if (do_memsw_account())
3165                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166                            (u64)memsw * PAGE_SIZE);
3167
3168         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169                 unsigned long long val = 0;
3170
3171                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172                         continue;
3173                 for_each_mem_cgroup_tree(mi, memcg)
3174                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176         }
3177
3178         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179                 unsigned long long val = 0;
3180
3181                 for_each_mem_cgroup_tree(mi, memcg)
3182                         val += mem_cgroup_read_events(mi, i);
3183                 seq_printf(m, "total_%s %llu\n",
3184                            mem_cgroup_events_names[i], val);
3185         }
3186
3187         for (i = 0; i < NR_LRU_LISTS; i++) {
3188                 unsigned long long val = 0;
3189
3190                 for_each_mem_cgroup_tree(mi, memcg)
3191                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193         }
3194
3195 #ifdef CONFIG_DEBUG_VM
3196         {
3197                 pg_data_t *pgdat;
3198                 struct mem_cgroup_per_node *mz;
3199                 struct zone_reclaim_stat *rstat;
3200                 unsigned long recent_rotated[2] = {0, 0};
3201                 unsigned long recent_scanned[2] = {0, 0};
3202
3203                 for_each_online_pgdat(pgdat) {
3204                         mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3205                         rstat = &mz->lruvec.reclaim_stat;
3206
3207                         recent_rotated[0] += rstat->recent_rotated[0];
3208                         recent_rotated[1] += rstat->recent_rotated[1];
3209                         recent_scanned[0] += rstat->recent_scanned[0];
3210                         recent_scanned[1] += rstat->recent_scanned[1];
3211                 }
3212                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3216         }
3217 #endif
3218
3219         return 0;
3220 }
3221
3222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223                                       struct cftype *cft)
3224 {
3225         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226
3227         return mem_cgroup_swappiness(memcg);
3228 }
3229
3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231                                        struct cftype *cft, u64 val)
3232 {
3233         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3234
3235         if (val > 100)
3236                 return -EINVAL;
3237
3238         if (css->parent)
3239                 memcg->swappiness = val;
3240         else
3241                 vm_swappiness = val;
3242
3243         return 0;
3244 }
3245
3246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247 {
3248         struct mem_cgroup_threshold_ary *t;
3249         unsigned long usage;
3250         int i;
3251
3252         rcu_read_lock();
3253         if (!swap)
3254                 t = rcu_dereference(memcg->thresholds.primary);
3255         else
3256                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3257
3258         if (!t)
3259                 goto unlock;
3260
3261         usage = mem_cgroup_usage(memcg, swap);
3262
3263         /*
3264          * current_threshold points to threshold just below or equal to usage.
3265          * If it's not true, a threshold was crossed after last
3266          * call of __mem_cgroup_threshold().
3267          */
3268         i = t->current_threshold;
3269
3270         /*
3271          * Iterate backward over array of thresholds starting from
3272          * current_threshold and check if a threshold is crossed.
3273          * If none of thresholds below usage is crossed, we read
3274          * only one element of the array here.
3275          */
3276         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277                 eventfd_signal(t->entries[i].eventfd, 1);
3278
3279         /* i = current_threshold + 1 */
3280         i++;
3281
3282         /*
3283          * Iterate forward over array of thresholds starting from
3284          * current_threshold+1 and check if a threshold is crossed.
3285          * If none of thresholds above usage is crossed, we read
3286          * only one element of the array here.
3287          */
3288         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289                 eventfd_signal(t->entries[i].eventfd, 1);
3290
3291         /* Update current_threshold */
3292         t->current_threshold = i - 1;
3293 unlock:
3294         rcu_read_unlock();
3295 }
3296
3297 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298 {
3299         while (memcg) {
3300                 __mem_cgroup_threshold(memcg, false);
3301                 if (do_memsw_account())
3302                         __mem_cgroup_threshold(memcg, true);
3303
3304                 memcg = parent_mem_cgroup(memcg);
3305         }
3306 }
3307
3308 static int compare_thresholds(const void *a, const void *b)
3309 {
3310         const struct mem_cgroup_threshold *_a = a;
3311         const struct mem_cgroup_threshold *_b = b;
3312
3313         if (_a->threshold > _b->threshold)
3314                 return 1;
3315
3316         if (_a->threshold < _b->threshold)
3317                 return -1;
3318
3319         return 0;
3320 }
3321
3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3323 {
3324         struct mem_cgroup_eventfd_list *ev;
3325
3326         spin_lock(&memcg_oom_lock);
3327
3328         list_for_each_entry(ev, &memcg->oom_notify, list)
3329                 eventfd_signal(ev->eventfd, 1);
3330
3331         spin_unlock(&memcg_oom_lock);
3332         return 0;
3333 }
3334
3335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3336 {
3337         struct mem_cgroup *iter;
3338
3339         for_each_mem_cgroup_tree(iter, memcg)
3340                 mem_cgroup_oom_notify_cb(iter);
3341 }
3342
3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3344         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345 {
3346         struct mem_cgroup_thresholds *thresholds;
3347         struct mem_cgroup_threshold_ary *new;
3348         unsigned long threshold;
3349         unsigned long usage;
3350         int i, size, ret;
3351
3352         ret = page_counter_memparse(args, "-1", &threshold);
3353         if (ret)
3354                 return ret;
3355
3356         mutex_lock(&memcg->thresholds_lock);
3357
3358         if (type == _MEM) {
3359                 thresholds = &memcg->thresholds;
3360                 usage = mem_cgroup_usage(memcg, false);
3361         } else if (type == _MEMSWAP) {
3362                 thresholds = &memcg->memsw_thresholds;
3363                 usage = mem_cgroup_usage(memcg, true);
3364         } else
3365                 BUG();
3366
3367         /* Check if a threshold crossed before adding a new one */
3368         if (thresholds->primary)
3369                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370
3371         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372
3373         /* Allocate memory for new array of thresholds */
3374         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375                         GFP_KERNEL);
3376         if (!new) {
3377                 ret = -ENOMEM;
3378                 goto unlock;
3379         }
3380         new->size = size;
3381
3382         /* Copy thresholds (if any) to new array */
3383         if (thresholds->primary) {
3384                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385                                 sizeof(struct mem_cgroup_threshold));
3386         }
3387
3388         /* Add new threshold */
3389         new->entries[size - 1].eventfd = eventfd;
3390         new->entries[size - 1].threshold = threshold;
3391
3392         /* Sort thresholds. Registering of new threshold isn't time-critical */
3393         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394                         compare_thresholds, NULL);
3395
3396         /* Find current threshold */
3397         new->current_threshold = -1;
3398         for (i = 0; i < size; i++) {
3399                 if (new->entries[i].threshold <= usage) {
3400                         /*
3401                          * new->current_threshold will not be used until
3402                          * rcu_assign_pointer(), so it's safe to increment
3403                          * it here.
3404                          */
3405                         ++new->current_threshold;
3406                 } else
3407                         break;
3408         }
3409
3410         /* Free old spare buffer and save old primary buffer as spare */
3411         kfree(thresholds->spare);
3412         thresholds->spare = thresholds->primary;
3413
3414         rcu_assign_pointer(thresholds->primary, new);
3415
3416         /* To be sure that nobody uses thresholds */
3417         synchronize_rcu();
3418
3419 unlock:
3420         mutex_unlock(&memcg->thresholds_lock);
3421
3422         return ret;
3423 }
3424
3425 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3426         struct eventfd_ctx *eventfd, const char *args)
3427 {
3428         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3429 }
3430
3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432         struct eventfd_ctx *eventfd, const char *args)
3433 {
3434         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3435 }
3436
3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3438         struct eventfd_ctx *eventfd, enum res_type type)
3439 {
3440         struct mem_cgroup_thresholds *thresholds;
3441         struct mem_cgroup_threshold_ary *new;
3442         unsigned long usage;
3443         int i, j, size;
3444
3445         mutex_lock(&memcg->thresholds_lock);
3446
3447         if (type == _MEM) {
3448                 thresholds = &memcg->thresholds;
3449                 usage = mem_cgroup_usage(memcg, false);
3450         } else if (type == _MEMSWAP) {
3451                 thresholds = &memcg->memsw_thresholds;
3452                 usage = mem_cgroup_usage(memcg, true);
3453         } else
3454                 BUG();
3455
3456         if (!thresholds->primary)
3457                 goto unlock;
3458
3459         /* Check if a threshold crossed before removing */
3460         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461
3462         /* Calculate new number of threshold */
3463         size = 0;
3464         for (i = 0; i < thresholds->primary->size; i++) {
3465                 if (thresholds->primary->entries[i].eventfd != eventfd)
3466                         size++;
3467         }
3468
3469         new = thresholds->spare;
3470
3471         /* Set thresholds array to NULL if we don't have thresholds */
3472         if (!size) {
3473                 kfree(new);
3474                 new = NULL;
3475                 goto swap_buffers;
3476         }
3477
3478         new->size = size;
3479
3480         /* Copy thresholds and find current threshold */
3481         new->current_threshold = -1;
3482         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483                 if (thresholds->primary->entries[i].eventfd == eventfd)
3484                         continue;
3485
3486                 new->entries[j] = thresholds->primary->entries[i];
3487                 if (new->entries[j].threshold <= usage) {
3488                         /*
3489                          * new->current_threshold will not be used
3490                          * until rcu_assign_pointer(), so it's safe to increment
3491                          * it here.
3492                          */
3493                         ++new->current_threshold;
3494                 }
3495                 j++;
3496         }
3497
3498 swap_buffers:
3499         /* Swap primary and spare array */
3500         thresholds->spare = thresholds->primary;
3501
3502         rcu_assign_pointer(thresholds->primary, new);
3503
3504         /* To be sure that nobody uses thresholds */
3505         synchronize_rcu();
3506
3507         /* If all events are unregistered, free the spare array */
3508         if (!new) {
3509                 kfree(thresholds->spare);
3510                 thresholds->spare = NULL;
3511         }
3512 unlock:
3513         mutex_unlock(&memcg->thresholds_lock);
3514 }
3515
3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3517         struct eventfd_ctx *eventfd)
3518 {
3519         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3520 }
3521
3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3523         struct eventfd_ctx *eventfd)
3524 {
3525         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3526 }
3527
3528 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3529         struct eventfd_ctx *eventfd, const char *args)
3530 {
3531         struct mem_cgroup_eventfd_list *event;
3532
3533         event = kmalloc(sizeof(*event), GFP_KERNEL);
3534         if (!event)
3535                 return -ENOMEM;
3536
3537         spin_lock(&memcg_oom_lock);
3538
3539         event->eventfd = eventfd;
3540         list_add(&event->list, &memcg->oom_notify);
3541
3542         /* already in OOM ? */
3543         if (memcg->under_oom)
3544                 eventfd_signal(eventfd, 1);
3545         spin_unlock(&memcg_oom_lock);
3546
3547         return 0;
3548 }
3549
3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3551         struct eventfd_ctx *eventfd)
3552 {
3553         struct mem_cgroup_eventfd_list *ev, *tmp;
3554
3555         spin_lock(&memcg_oom_lock);
3556
3557         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3558                 if (ev->eventfd == eventfd) {
3559                         list_del(&ev->list);
3560                         kfree(ev);
3561                 }
3562         }
3563
3564         spin_unlock(&memcg_oom_lock);
3565 }
3566
3567 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3568 {
3569         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3570
3571         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3572         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3573         return 0;
3574 }
3575
3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3577         struct cftype *cft, u64 val)
3578 {
3579         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580
3581         /* cannot set to root cgroup and only 0 and 1 are allowed */
3582         if (!css->parent || !((val == 0) || (val == 1)))
3583                 return -EINVAL;
3584
3585         memcg->oom_kill_disable = val;
3586         if (!val)
3587                 memcg_oom_recover(memcg);
3588
3589         return 0;
3590 }
3591
3592 #ifdef CONFIG_CGROUP_WRITEBACK
3593
3594 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595 {
3596         return &memcg->cgwb_list;
3597 }
3598
3599 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600 {
3601         return wb_domain_init(&memcg->cgwb_domain, gfp);
3602 }
3603
3604 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605 {
3606         wb_domain_exit(&memcg->cgwb_domain);
3607 }
3608
3609 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610 {
3611         wb_domain_size_changed(&memcg->cgwb_domain);
3612 }
3613
3614 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615 {
3616         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617
3618         if (!memcg->css.parent)
3619                 return NULL;
3620
3621         return &memcg->cgwb_domain;
3622 }
3623
3624 /**
3625  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626  * @wb: bdi_writeback in question
3627  * @pfilepages: out parameter for number of file pages
3628  * @pheadroom: out parameter for number of allocatable pages according to memcg
3629  * @pdirty: out parameter for number of dirty pages
3630  * @pwriteback: out parameter for number of pages under writeback
3631  *
3632  * Determine the numbers of file, headroom, dirty, and writeback pages in
3633  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3634  * is a bit more involved.
3635  *
3636  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3637  * headroom is calculated as the lowest headroom of itself and the
3638  * ancestors.  Note that this doesn't consider the actual amount of
3639  * available memory in the system.  The caller should further cap
3640  * *@pheadroom accordingly.
3641  */
3642 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643                          unsigned long *pheadroom, unsigned long *pdirty,
3644                          unsigned long *pwriteback)
3645 {
3646         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647         struct mem_cgroup *parent;
3648
3649         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650
3651         /* this should eventually include NR_UNSTABLE_NFS */
3652         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3653         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654                                                      (1 << LRU_ACTIVE_FILE));
3655         *pheadroom = PAGE_COUNTER_MAX;
3656
3657         while ((parent = parent_mem_cgroup(memcg))) {
3658                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659                 unsigned long used = page_counter_read(&memcg->memory);
3660
3661                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3662                 memcg = parent;
3663         }
3664 }
3665
3666 #else   /* CONFIG_CGROUP_WRITEBACK */
3667
3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669 {
3670         return 0;
3671 }
3672
3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674 {
3675 }
3676
3677 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678 {
3679 }
3680
3681 #endif  /* CONFIG_CGROUP_WRITEBACK */
3682
3683 /*
3684  * DO NOT USE IN NEW FILES.
3685  *
3686  * "cgroup.event_control" implementation.
3687  *
3688  * This is way over-engineered.  It tries to support fully configurable
3689  * events for each user.  Such level of flexibility is completely
3690  * unnecessary especially in the light of the planned unified hierarchy.
3691  *
3692  * Please deprecate this and replace with something simpler if at all
3693  * possible.
3694  */
3695
3696 /*
3697  * Unregister event and free resources.
3698  *
3699  * Gets called from workqueue.
3700  */
3701 static void memcg_event_remove(struct work_struct *work)
3702 {
3703         struct mem_cgroup_event *event =
3704                 container_of(work, struct mem_cgroup_event, remove);
3705         struct mem_cgroup *memcg = event->memcg;
3706
3707         remove_wait_queue(event->wqh, &event->wait);
3708
3709         event->unregister_event(memcg, event->eventfd);
3710
3711         /* Notify userspace the event is going away. */
3712         eventfd_signal(event->eventfd, 1);
3713
3714         eventfd_ctx_put(event->eventfd);
3715         kfree(event);
3716         css_put(&memcg->css);
3717 }
3718
3719 /*
3720  * Gets called on POLLHUP on eventfd when user closes it.
3721  *
3722  * Called with wqh->lock held and interrupts disabled.
3723  */
3724 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725                             int sync, void *key)
3726 {
3727         struct mem_cgroup_event *event =
3728                 container_of(wait, struct mem_cgroup_event, wait);
3729         struct mem_cgroup *memcg = event->memcg;
3730         unsigned long flags = (unsigned long)key;
3731
3732         if (flags & POLLHUP) {
3733                 /*
3734                  * If the event has been detached at cgroup removal, we
3735                  * can simply return knowing the other side will cleanup
3736                  * for us.
3737                  *
3738                  * We can't race against event freeing since the other
3739                  * side will require wqh->lock via remove_wait_queue(),
3740                  * which we hold.
3741                  */
3742                 spin_lock(&memcg->event_list_lock);
3743                 if (!list_empty(&event->list)) {
3744                         list_del_init(&event->list);
3745                         /*
3746                          * We are in atomic context, but cgroup_event_remove()
3747                          * may sleep, so we have to call it in workqueue.
3748                          */
3749                         schedule_work(&event->remove);
3750                 }
3751                 spin_unlock(&memcg->event_list_lock);
3752         }
3753
3754         return 0;
3755 }
3756
3757 static void memcg_event_ptable_queue_proc(struct file *file,
3758                 wait_queue_head_t *wqh, poll_table *pt)
3759 {
3760         struct mem_cgroup_event *event =
3761                 container_of(pt, struct mem_cgroup_event, pt);
3762
3763         event->wqh = wqh;
3764         add_wait_queue(wqh, &event->wait);
3765 }
3766
3767 /*
3768  * DO NOT USE IN NEW FILES.
3769  *
3770  * Parse input and register new cgroup event handler.
3771  *
3772  * Input must be in format '<event_fd> <control_fd> <args>'.
3773  * Interpretation of args is defined by control file implementation.
3774  */
3775 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776                                          char *buf, size_t nbytes, loff_t off)
3777 {
3778         struct cgroup_subsys_state *css = of_css(of);
3779         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3780         struct mem_cgroup_event *event;
3781         struct cgroup_subsys_state *cfile_css;
3782         unsigned int efd, cfd;
3783         struct fd efile;
3784         struct fd cfile;
3785         const char *name;
3786         char *endp;
3787         int ret;
3788
3789         buf = strstrip(buf);
3790
3791         efd = simple_strtoul(buf, &endp, 10);
3792         if (*endp != ' ')
3793                 return -EINVAL;
3794         buf = endp + 1;
3795
3796         cfd = simple_strtoul(buf, &endp, 10);
3797         if ((*endp != ' ') && (*endp != '\0'))
3798                 return -EINVAL;
3799         buf = endp + 1;
3800
3801         event = kzalloc(sizeof(*event), GFP_KERNEL);
3802         if (!event)
3803                 return -ENOMEM;
3804
3805         event->memcg = memcg;
3806         INIT_LIST_HEAD(&event->list);
3807         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809         INIT_WORK(&event->remove, memcg_event_remove);
3810
3811         efile = fdget(efd);
3812         if (!efile.file) {
3813                 ret = -EBADF;
3814                 goto out_kfree;
3815         }
3816
3817         event->eventfd = eventfd_ctx_fileget(efile.file);
3818         if (IS_ERR(event->eventfd)) {
3819                 ret = PTR_ERR(event->eventfd);
3820                 goto out_put_efile;
3821         }
3822
3823         cfile = fdget(cfd);
3824         if (!cfile.file) {
3825                 ret = -EBADF;
3826                 goto out_put_eventfd;
3827         }
3828
3829         /* the process need read permission on control file */
3830         /* AV: shouldn't we check that it's been opened for read instead? */
3831         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832         if (ret < 0)
3833                 goto out_put_cfile;
3834
3835         /*
3836          * Determine the event callbacks and set them in @event.  This used
3837          * to be done via struct cftype but cgroup core no longer knows
3838          * about these events.  The following is crude but the whole thing
3839          * is for compatibility anyway.
3840          *
3841          * DO NOT ADD NEW FILES.
3842          */
3843         name = cfile.file->f_path.dentry->d_name.name;
3844
3845         if (!strcmp(name, "memory.usage_in_bytes")) {
3846                 event->register_event = mem_cgroup_usage_register_event;
3847                 event->unregister_event = mem_cgroup_usage_unregister_event;
3848         } else if (!strcmp(name, "memory.oom_control")) {
3849                 event->register_event = mem_cgroup_oom_register_event;
3850                 event->unregister_event = mem_cgroup_oom_unregister_event;
3851         } else if (!strcmp(name, "memory.pressure_level")) {
3852                 event->register_event = vmpressure_register_event;
3853                 event->unregister_event = vmpressure_unregister_event;
3854         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3855                 event->register_event = memsw_cgroup_usage_register_event;
3856                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3857         } else {
3858                 ret = -EINVAL;
3859                 goto out_put_cfile;
3860         }
3861
3862         /*
3863          * Verify @cfile should belong to @css.  Also, remaining events are
3864          * automatically removed on cgroup destruction but the removal is
3865          * asynchronous, so take an extra ref on @css.
3866          */
3867         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3868                                                &memory_cgrp_subsys);
3869         ret = -EINVAL;
3870         if (IS_ERR(cfile_css))
3871                 goto out_put_cfile;
3872         if (cfile_css != css) {
3873                 css_put(cfile_css);
3874                 goto out_put_cfile;
3875         }
3876
3877         ret = event->register_event(memcg, event->eventfd, buf);
3878         if (ret)
3879                 goto out_put_css;
3880
3881         efile.file->f_op->poll(efile.file, &event->pt);
3882
3883         spin_lock(&memcg->event_list_lock);
3884         list_add(&event->list, &memcg->event_list);
3885         spin_unlock(&memcg->event_list_lock);
3886
3887         fdput(cfile);
3888         fdput(efile);
3889
3890         return nbytes;
3891
3892 out_put_css:
3893         css_put(css);
3894 out_put_cfile:
3895         fdput(cfile);
3896 out_put_eventfd:
3897         eventfd_ctx_put(event->eventfd);
3898 out_put_efile:
3899         fdput(efile);
3900 out_kfree:
3901         kfree(event);
3902
3903         return ret;
3904 }
3905
3906 static struct cftype mem_cgroup_legacy_files[] = {
3907         {
3908                 .name = "usage_in_bytes",
3909                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3910                 .read_u64 = mem_cgroup_read_u64,
3911         },
3912         {
3913                 .name = "max_usage_in_bytes",
3914                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3915                 .write = mem_cgroup_reset,
3916                 .read_u64 = mem_cgroup_read_u64,
3917         },
3918         {
3919                 .name = "limit_in_bytes",
3920                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3921                 .write = mem_cgroup_write,
3922                 .read_u64 = mem_cgroup_read_u64,
3923         },
3924         {
3925                 .name = "soft_limit_in_bytes",
3926                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3927                 .write = mem_cgroup_write,
3928                 .read_u64 = mem_cgroup_read_u64,
3929         },
3930         {
3931                 .name = "failcnt",
3932                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3933                 .write = mem_cgroup_reset,
3934                 .read_u64 = mem_cgroup_read_u64,
3935         },
3936         {
3937                 .name = "stat",
3938                 .seq_show = memcg_stat_show,
3939         },
3940         {
3941                 .name = "force_empty",
3942                 .write = mem_cgroup_force_empty_write,
3943         },
3944         {
3945                 .name = "use_hierarchy",
3946                 .write_u64 = mem_cgroup_hierarchy_write,
3947                 .read_u64 = mem_cgroup_hierarchy_read,
3948         },
3949         {
3950                 .name = "cgroup.event_control",         /* XXX: for compat */
3951                 .write = memcg_write_event_control,
3952                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3953         },
3954         {
3955                 .name = "swappiness",
3956                 .read_u64 = mem_cgroup_swappiness_read,
3957                 .write_u64 = mem_cgroup_swappiness_write,
3958         },
3959         {
3960                 .name = "move_charge_at_immigrate",
3961                 .read_u64 = mem_cgroup_move_charge_read,
3962                 .write_u64 = mem_cgroup_move_charge_write,
3963         },
3964         {
3965                 .name = "oom_control",
3966                 .seq_show = mem_cgroup_oom_control_read,
3967                 .write_u64 = mem_cgroup_oom_control_write,
3968                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969         },
3970         {
3971                 .name = "pressure_level",
3972         },
3973 #ifdef CONFIG_NUMA
3974         {
3975                 .name = "numa_stat",
3976                 .seq_show = memcg_numa_stat_show,
3977         },
3978 #endif
3979         {
3980                 .name = "kmem.limit_in_bytes",
3981                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3982                 .write = mem_cgroup_write,
3983                 .read_u64 = mem_cgroup_read_u64,
3984         },
3985         {
3986                 .name = "kmem.usage_in_bytes",
3987                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3988                 .read_u64 = mem_cgroup_read_u64,
3989         },
3990         {
3991                 .name = "kmem.failcnt",
3992                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3993                 .write = mem_cgroup_reset,
3994                 .read_u64 = mem_cgroup_read_u64,
3995         },
3996         {
3997                 .name = "kmem.max_usage_in_bytes",
3998                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3999                 .write = mem_cgroup_reset,
4000                 .read_u64 = mem_cgroup_read_u64,
4001         },
4002 #ifdef CONFIG_SLABINFO
4003         {
4004                 .name = "kmem.slabinfo",
4005                 .seq_start = slab_start,
4006                 .seq_next = slab_next,
4007                 .seq_stop = slab_stop,
4008                 .seq_show = memcg_slab_show,
4009         },
4010 #endif
4011         {
4012                 .name = "kmem.tcp.limit_in_bytes",
4013                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014                 .write = mem_cgroup_write,
4015                 .read_u64 = mem_cgroup_read_u64,
4016         },
4017         {
4018                 .name = "kmem.tcp.usage_in_bytes",
4019                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020                 .read_u64 = mem_cgroup_read_u64,
4021         },
4022         {
4023                 .name = "kmem.tcp.failcnt",
4024                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025                 .write = mem_cgroup_reset,
4026                 .read_u64 = mem_cgroup_read_u64,
4027         },
4028         {
4029                 .name = "kmem.tcp.max_usage_in_bytes",
4030                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031                 .write = mem_cgroup_reset,
4032                 .read_u64 = mem_cgroup_read_u64,
4033         },
4034         { },    /* terminate */
4035 };
4036
4037 /*
4038  * Private memory cgroup IDR
4039  *
4040  * Swap-out records and page cache shadow entries need to store memcg
4041  * references in constrained space, so we maintain an ID space that is
4042  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4043  * memory-controlled cgroups to 64k.
4044  *
4045  * However, there usually are many references to the oflline CSS after
4046  * the cgroup has been destroyed, such as page cache or reclaimable
4047  * slab objects, that don't need to hang on to the ID. We want to keep
4048  * those dead CSS from occupying IDs, or we might quickly exhaust the
4049  * relatively small ID space and prevent the creation of new cgroups
4050  * even when there are much fewer than 64k cgroups - possibly none.
4051  *
4052  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4053  * be freed and recycled when it's no longer needed, which is usually
4054  * when the CSS is offlined.
4055  *
4056  * The only exception to that are records of swapped out tmpfs/shmem
4057  * pages that need to be attributed to live ancestors on swapin. But
4058  * those references are manageable from userspace.
4059  */
4060
4061 static DEFINE_IDR(mem_cgroup_idr);
4062
4063 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4064 {
4065         VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4066         atomic_add(n, &memcg->id.ref);
4067 }
4068
4069 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4070 {
4071         VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4072         if (atomic_sub_and_test(n, &memcg->id.ref)) {
4073                 idr_remove(&mem_cgroup_idr, memcg->id.id);
4074                 memcg->id.id = 0;
4075
4076                 /* Memcg ID pins CSS */
4077                 css_put(&memcg->css);
4078         }
4079 }
4080
4081 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4082 {
4083         mem_cgroup_id_get_many(memcg, 1);
4084 }
4085
4086 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4087 {
4088         mem_cgroup_id_put_many(memcg, 1);
4089 }
4090
4091 /**
4092  * mem_cgroup_from_id - look up a memcg from a memcg id
4093  * @id: the memcg id to look up
4094  *
4095  * Caller must hold rcu_read_lock().
4096  */
4097 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4098 {
4099         WARN_ON_ONCE(!rcu_read_lock_held());
4100         return idr_find(&mem_cgroup_idr, id);
4101 }
4102
4103 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4104 {
4105         struct mem_cgroup_per_node *pn;
4106         int tmp = node;
4107         /*
4108          * This routine is called against possible nodes.
4109          * But it's BUG to call kmalloc() against offline node.
4110          *
4111          * TODO: this routine can waste much memory for nodes which will
4112          *       never be onlined. It's better to use memory hotplug callback
4113          *       function.
4114          */
4115         if (!node_state(node, N_NORMAL_MEMORY))
4116                 tmp = -1;
4117         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4118         if (!pn)
4119                 return 1;
4120
4121         lruvec_init(&pn->lruvec);
4122         pn->usage_in_excess = 0;
4123         pn->on_tree = false;
4124         pn->memcg = memcg;
4125
4126         memcg->nodeinfo[node] = pn;
4127         return 0;
4128 }
4129
4130 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4131 {
4132         kfree(memcg->nodeinfo[node]);
4133 }
4134
4135 static void mem_cgroup_free(struct mem_cgroup *memcg)
4136 {
4137         int node;
4138
4139         memcg_wb_domain_exit(memcg);
4140         for_each_node(node)
4141                 free_mem_cgroup_per_node_info(memcg, node);
4142         free_percpu(memcg->stat);
4143         kfree(memcg);
4144 }
4145
4146 static struct mem_cgroup *mem_cgroup_alloc(void)
4147 {
4148         struct mem_cgroup *memcg;
4149         size_t size;
4150         int node;
4151
4152         size = sizeof(struct mem_cgroup);
4153         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4154
4155         memcg = kzalloc(size, GFP_KERNEL);
4156         if (!memcg)
4157                 return NULL;
4158
4159         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4160                                  1, MEM_CGROUP_ID_MAX,
4161                                  GFP_KERNEL);
4162         if (memcg->id.id < 0)
4163                 goto fail;
4164
4165         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4166         if (!memcg->stat)
4167                 goto fail;
4168
4169         for_each_node(node)
4170                 if (alloc_mem_cgroup_per_node_info(memcg, node))
4171                         goto fail;
4172
4173         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4174                 goto fail;
4175
4176         INIT_WORK(&memcg->high_work, high_work_func);
4177         memcg->last_scanned_node = MAX_NUMNODES;
4178         INIT_LIST_HEAD(&memcg->oom_notify);
4179         mutex_init(&memcg->thresholds_lock);
4180         spin_lock_init(&memcg->move_lock);
4181         vmpressure_init(&memcg->vmpressure);
4182         INIT_LIST_HEAD(&memcg->event_list);
4183         spin_lock_init(&memcg->event_list_lock);
4184         memcg->socket_pressure = jiffies;
4185 #ifndef CONFIG_SLOB
4186         memcg->kmemcg_id = -1;
4187 #endif
4188 #ifdef CONFIG_CGROUP_WRITEBACK
4189         INIT_LIST_HEAD(&memcg->cgwb_list);
4190 #endif
4191         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4192         return memcg;
4193 fail:
4194         if (memcg->id.id > 0)
4195                 idr_remove(&mem_cgroup_idr, memcg->id.id);
4196         mem_cgroup_free(memcg);
4197         return NULL;
4198 }
4199
4200 static struct cgroup_subsys_state * __ref
4201 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4202 {
4203         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4204         struct mem_cgroup *memcg;
4205         long error = -ENOMEM;
4206
4207         memcg = mem_cgroup_alloc();
4208         if (!memcg)
4209                 return ERR_PTR(error);
4210
4211         memcg->high = PAGE_COUNTER_MAX;
4212         memcg->soft_limit = PAGE_COUNTER_MAX;
4213         if (parent) {
4214                 memcg->swappiness = mem_cgroup_swappiness(parent);
4215                 memcg->oom_kill_disable = parent->oom_kill_disable;
4216         }
4217         if (parent && parent->use_hierarchy) {
4218                 memcg->use_hierarchy = true;
4219                 page_counter_init(&memcg->memory, &parent->memory);
4220                 page_counter_init(&memcg->swap, &parent->swap);
4221                 page_counter_init(&memcg->memsw, &parent->memsw);
4222                 page_counter_init(&memcg->kmem, &parent->kmem);
4223                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4224         } else {
4225                 page_counter_init(&memcg->memory, NULL);
4226                 page_counter_init(&memcg->swap, NULL);
4227                 page_counter_init(&memcg->memsw, NULL);
4228                 page_counter_init(&memcg->kmem, NULL);
4229                 page_counter_init(&memcg->tcpmem, NULL);
4230                 /*
4231                  * Deeper hierachy with use_hierarchy == false doesn't make
4232                  * much sense so let cgroup subsystem know about this
4233                  * unfortunate state in our controller.
4234                  */
4235                 if (parent != root_mem_cgroup)
4236                         memory_cgrp_subsys.broken_hierarchy = true;
4237         }
4238
4239         /* The following stuff does not apply to the root */
4240         if (!parent) {
4241                 root_mem_cgroup = memcg;
4242                 return &memcg->css;
4243         }
4244
4245         error = memcg_online_kmem(memcg);
4246         if (error)
4247                 goto fail;
4248
4249         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4250                 static_branch_inc(&memcg_sockets_enabled_key);
4251
4252         return &memcg->css;
4253 fail:
4254         mem_cgroup_free(memcg);
4255         return ERR_PTR(-ENOMEM);
4256 }
4257
4258 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4259 {
4260         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4261
4262         /* Online state pins memcg ID, memcg ID pins CSS */
4263         atomic_set(&memcg->id.ref, 1);
4264         css_get(css);
4265         return 0;
4266 }
4267
4268 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4269 {
4270         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4271         struct mem_cgroup_event *event, *tmp;
4272
4273         /*
4274          * Unregister events and notify userspace.
4275          * Notify userspace about cgroup removing only after rmdir of cgroup
4276          * directory to avoid race between userspace and kernelspace.
4277          */
4278         spin_lock(&memcg->event_list_lock);
4279         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4280                 list_del_init(&event->list);
4281                 schedule_work(&event->remove);
4282         }
4283         spin_unlock(&memcg->event_list_lock);
4284
4285         memcg_offline_kmem(memcg);
4286         wb_memcg_offline(memcg);
4287
4288         mem_cgroup_id_put(memcg);
4289 }
4290
4291 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4292 {
4293         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4294
4295         invalidate_reclaim_iterators(memcg);
4296 }
4297
4298 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4299 {
4300         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301
4302         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4303                 static_branch_dec(&memcg_sockets_enabled_key);
4304
4305         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4306                 static_branch_dec(&memcg_sockets_enabled_key);
4307
4308         vmpressure_cleanup(&memcg->vmpressure);
4309         cancel_work_sync(&memcg->high_work);
4310         mem_cgroup_remove_from_trees(memcg);
4311         memcg_free_kmem(memcg);
4312         mem_cgroup_free(memcg);
4313 }
4314
4315 /**
4316  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4317  * @css: the target css
4318  *
4319  * Reset the states of the mem_cgroup associated with @css.  This is
4320  * invoked when the userland requests disabling on the default hierarchy
4321  * but the memcg is pinned through dependency.  The memcg should stop
4322  * applying policies and should revert to the vanilla state as it may be
4323  * made visible again.
4324  *
4325  * The current implementation only resets the essential configurations.
4326  * This needs to be expanded to cover all the visible parts.
4327  */
4328 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4329 {
4330         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4331
4332         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4333         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4334         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4335         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4336         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4337         memcg->low = 0;
4338         memcg->high = PAGE_COUNTER_MAX;
4339         memcg->soft_limit = PAGE_COUNTER_MAX;
4340         memcg_wb_domain_size_changed(memcg);
4341 }
4342
4343 #ifdef CONFIG_MMU
4344 /* Handlers for move charge at task migration. */
4345 static int mem_cgroup_do_precharge(unsigned long count)
4346 {
4347         int ret;
4348
4349         /* Try a single bulk charge without reclaim first, kswapd may wake */
4350         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4351         if (!ret) {
4352                 mc.precharge += count;
4353                 return ret;
4354         }
4355
4356         /* Try charges one by one with reclaim */
4357         while (count--) {
4358                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4359                 if (ret)
4360                         return ret;
4361                 mc.precharge++;
4362                 cond_resched();
4363         }
4364         return 0;
4365 }
4366
4367 union mc_target {
4368         struct page     *page;
4369         swp_entry_t     ent;
4370 };
4371
4372 enum mc_target_type {
4373         MC_TARGET_NONE = 0,
4374         MC_TARGET_PAGE,
4375         MC_TARGET_SWAP,
4376 };
4377
4378 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4379                                                 unsigned long addr, pte_t ptent)
4380 {
4381         struct page *page = vm_normal_page(vma, addr, ptent);
4382
4383         if (!page || !page_mapped(page))
4384                 return NULL;
4385         if (PageAnon(page)) {
4386                 if (!(mc.flags & MOVE_ANON))
4387                         return NULL;
4388         } else {
4389                 if (!(mc.flags & MOVE_FILE))
4390                         return NULL;
4391         }
4392         if (!get_page_unless_zero(page))
4393                 return NULL;
4394
4395         return page;
4396 }
4397
4398 #ifdef CONFIG_SWAP
4399 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4400                         pte_t ptent, swp_entry_t *entry)
4401 {
4402         struct page *page = NULL;
4403         swp_entry_t ent = pte_to_swp_entry(ptent);
4404
4405         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4406                 return NULL;
4407         /*
4408          * Because lookup_swap_cache() updates some statistics counter,
4409          * we call find_get_page() with swapper_space directly.
4410          */
4411         page = find_get_page(swap_address_space(ent), swp_offset(ent));
4412         if (do_memsw_account())
4413                 entry->val = ent.val;
4414
4415         return page;
4416 }
4417 #else
4418 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4419                         pte_t ptent, swp_entry_t *entry)
4420 {
4421         return NULL;
4422 }
4423 #endif
4424
4425 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4426                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4427 {
4428         struct page *page = NULL;
4429         struct address_space *mapping;
4430         pgoff_t pgoff;
4431
4432         if (!vma->vm_file) /* anonymous vma */
4433                 return NULL;
4434         if (!(mc.flags & MOVE_FILE))
4435                 return NULL;
4436
4437         mapping = vma->vm_file->f_mapping;
4438         pgoff = linear_page_index(vma, addr);
4439
4440         /* page is moved even if it's not RSS of this task(page-faulted). */
4441 #ifdef CONFIG_SWAP
4442         /* shmem/tmpfs may report page out on swap: account for that too. */
4443         if (shmem_mapping(mapping)) {
4444                 page = find_get_entry(mapping, pgoff);
4445                 if (radix_tree_exceptional_entry(page)) {
4446                         swp_entry_t swp = radix_to_swp_entry(page);
4447                         if (do_memsw_account())
4448                                 *entry = swp;
4449                         page = find_get_page(swap_address_space(swp),
4450                                              swp_offset(swp));
4451                 }
4452         } else
4453                 page = find_get_page(mapping, pgoff);
4454 #else
4455         page = find_get_page(mapping, pgoff);
4456 #endif
4457         return page;
4458 }
4459
4460 /**
4461  * mem_cgroup_move_account - move account of the page
4462  * @page: the page
4463  * @compound: charge the page as compound or small page
4464  * @from: mem_cgroup which the page is moved from.
4465  * @to: mem_cgroup which the page is moved to. @from != @to.
4466  *
4467  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4468  *
4469  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4470  * from old cgroup.
4471  */
4472 static int mem_cgroup_move_account(struct page *page,
4473                                    bool compound,
4474                                    struct mem_cgroup *from,
4475                                    struct mem_cgroup *to)
4476 {
4477         unsigned long flags;
4478         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4479         int ret;
4480         bool anon;
4481
4482         VM_BUG_ON(from == to);
4483         VM_BUG_ON_PAGE(PageLRU(page), page);
4484         VM_BUG_ON(compound && !PageTransHuge(page));
4485
4486         /*
4487          * Prevent mem_cgroup_migrate() from looking at
4488          * page->mem_cgroup of its source page while we change it.
4489          */
4490         ret = -EBUSY;
4491         if (!trylock_page(page))
4492                 goto out;
4493
4494         ret = -EINVAL;
4495         if (page->mem_cgroup != from)
4496                 goto out_unlock;
4497
4498         anon = PageAnon(page);
4499
4500         spin_lock_irqsave(&from->move_lock, flags);
4501
4502         if (!anon && page_mapped(page)) {
4503                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4504                                nr_pages);
4505                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4506                                nr_pages);
4507         }
4508
4509         /*
4510          * move_lock grabbed above and caller set from->moving_account, so
4511          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4512          * So mapping should be stable for dirty pages.
4513          */
4514         if (!anon && PageDirty(page)) {
4515                 struct address_space *mapping = page_mapping(page);
4516
4517                 if (mapping_cap_account_dirty(mapping)) {
4518                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4519                                        nr_pages);
4520                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4521                                        nr_pages);
4522                 }
4523         }
4524
4525         if (PageWriteback(page)) {
4526                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4527                                nr_pages);
4528                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4529                                nr_pages);
4530         }
4531
4532         /*
4533          * It is safe to change page->mem_cgroup here because the page
4534          * is referenced, charged, and isolated - we can't race with
4535          * uncharging, charging, migration, or LRU putback.
4536          */
4537
4538         /* caller should have done css_get */
4539         page->mem_cgroup = to;
4540         spin_unlock_irqrestore(&from->move_lock, flags);
4541
4542         ret = 0;
4543
4544         local_irq_disable();
4545         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4546         memcg_check_events(to, page);
4547         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4548         memcg_check_events(from, page);
4549         local_irq_enable();
4550 out_unlock:
4551         unlock_page(page);
4552 out:
4553         return ret;
4554 }
4555
4556 /**
4557  * get_mctgt_type - get target type of moving charge
4558  * @vma: the vma the pte to be checked belongs
4559  * @addr: the address corresponding to the pte to be checked
4560  * @ptent: the pte to be checked
4561  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4562  *
4563  * Returns
4564  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4565  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4566  *     move charge. if @target is not NULL, the page is stored in target->page
4567  *     with extra refcnt got(Callers should handle it).
4568  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4569  *     target for charge migration. if @target is not NULL, the entry is stored
4570  *     in target->ent.
4571  *
4572  * Called with pte lock held.
4573  */
4574
4575 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4576                 unsigned long addr, pte_t ptent, union mc_target *target)
4577 {
4578         struct page *page = NULL;
4579         enum mc_target_type ret = MC_TARGET_NONE;
4580         swp_entry_t ent = { .val = 0 };
4581
4582         if (pte_present(ptent))
4583                 page = mc_handle_present_pte(vma, addr, ptent);
4584         else if (is_swap_pte(ptent))
4585                 page = mc_handle_swap_pte(vma, ptent, &ent);
4586         else if (pte_none(ptent))
4587                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4588
4589         if (!page && !ent.val)
4590                 return ret;
4591         if (page) {
4592                 /*
4593                  * Do only loose check w/o serialization.
4594                  * mem_cgroup_move_account() checks the page is valid or
4595                  * not under LRU exclusion.
4596                  */
4597                 if (page->mem_cgroup == mc.from) {
4598                         ret = MC_TARGET_PAGE;
4599                         if (target)
4600                                 target->page = page;
4601                 }
4602                 if (!ret || !target)
4603                         put_page(page);
4604         }
4605         /* There is a swap entry and a page doesn't exist or isn't charged */
4606         if (ent.val && !ret &&
4607             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4608                 ret = MC_TARGET_SWAP;
4609                 if (target)
4610                         target->ent = ent;
4611         }
4612         return ret;
4613 }
4614
4615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4616 /*
4617  * We don't consider swapping or file mapped pages because THP does not
4618  * support them for now.
4619  * Caller should make sure that pmd_trans_huge(pmd) is true.
4620  */
4621 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4622                 unsigned long addr, pmd_t pmd, union mc_target *target)
4623 {
4624         struct page *page = NULL;
4625         enum mc_target_type ret = MC_TARGET_NONE;
4626
4627         page = pmd_page(pmd);
4628         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4629         if (!(mc.flags & MOVE_ANON))
4630                 return ret;
4631         if (page->mem_cgroup == mc.from) {
4632                 ret = MC_TARGET_PAGE;
4633                 if (target) {
4634                         get_page(page);
4635                         target->page = page;
4636                 }
4637         }
4638         return ret;
4639 }
4640 #else
4641 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642                 unsigned long addr, pmd_t pmd, union mc_target *target)
4643 {
4644         return MC_TARGET_NONE;
4645 }
4646 #endif
4647
4648 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4649                                         unsigned long addr, unsigned long end,
4650                                         struct mm_walk *walk)
4651 {
4652         struct vm_area_struct *vma = walk->vma;
4653         pte_t *pte;
4654         spinlock_t *ptl;
4655
4656         ptl = pmd_trans_huge_lock(pmd, vma);
4657         if (ptl) {
4658                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4659                         mc.precharge += HPAGE_PMD_NR;
4660                 spin_unlock(ptl);
4661                 return 0;
4662         }
4663
4664         if (pmd_trans_unstable(pmd))
4665                 return 0;
4666         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4667         for (; addr != end; pte++, addr += PAGE_SIZE)
4668                 if (get_mctgt_type(vma, addr, *pte, NULL))
4669                         mc.precharge++; /* increment precharge temporarily */
4670         pte_unmap_unlock(pte - 1, ptl);
4671         cond_resched();
4672
4673         return 0;
4674 }
4675
4676 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4677 {
4678         unsigned long precharge;
4679
4680         struct mm_walk mem_cgroup_count_precharge_walk = {
4681                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4682                 .mm = mm,
4683         };
4684         down_read(&mm->mmap_sem);
4685         walk_page_range(0, mm->highest_vm_end,
4686                         &mem_cgroup_count_precharge_walk);
4687         up_read(&mm->mmap_sem);
4688
4689         precharge = mc.precharge;
4690         mc.precharge = 0;
4691
4692         return precharge;
4693 }
4694
4695 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4696 {
4697         unsigned long precharge = mem_cgroup_count_precharge(mm);
4698
4699         VM_BUG_ON(mc.moving_task);
4700         mc.moving_task = current;
4701         return mem_cgroup_do_precharge(precharge);
4702 }
4703
4704 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4705 static void __mem_cgroup_clear_mc(void)
4706 {
4707         struct mem_cgroup *from = mc.from;
4708         struct mem_cgroup *to = mc.to;
4709
4710         /* we must uncharge all the leftover precharges from mc.to */
4711         if (mc.precharge) {
4712                 cancel_charge(mc.to, mc.precharge);
4713                 mc.precharge = 0;
4714         }
4715         /*
4716          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4717          * we must uncharge here.
4718          */
4719         if (mc.moved_charge) {
4720                 cancel_charge(mc.from, mc.moved_charge);
4721                 mc.moved_charge = 0;
4722         }
4723         /* we must fixup refcnts and charges */
4724         if (mc.moved_swap) {
4725                 /* uncharge swap account from the old cgroup */
4726                 if (!mem_cgroup_is_root(mc.from))
4727                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4728
4729                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4730
4731                 /*
4732                  * we charged both to->memory and to->memsw, so we
4733                  * should uncharge to->memory.
4734                  */
4735                 if (!mem_cgroup_is_root(mc.to))
4736                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4737
4738                 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4739                 css_put_many(&mc.to->css, mc.moved_swap);
4740
4741                 mc.moved_swap = 0;
4742         }
4743         memcg_oom_recover(from);
4744         memcg_oom_recover(to);
4745         wake_up_all(&mc.waitq);
4746 }
4747
4748 static void mem_cgroup_clear_mc(void)
4749 {
4750         struct mm_struct *mm = mc.mm;
4751
4752         /*
4753          * we must clear moving_task before waking up waiters at the end of
4754          * task migration.
4755          */
4756         mc.moving_task = NULL;
4757         __mem_cgroup_clear_mc();
4758         spin_lock(&mc.lock);
4759         mc.from = NULL;
4760         mc.to = NULL;
4761         mc.mm = NULL;
4762         spin_unlock(&mc.lock);
4763
4764         mmput(mm);
4765 }
4766
4767 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4768 {
4769         struct cgroup_subsys_state *css;
4770         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4771         struct mem_cgroup *from;
4772         struct task_struct *leader, *p;
4773         struct mm_struct *mm;
4774         unsigned long move_flags;
4775         int ret = 0;
4776
4777         /* charge immigration isn't supported on the default hierarchy */
4778         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4779                 return 0;
4780
4781         /*
4782          * Multi-process migrations only happen on the default hierarchy
4783          * where charge immigration is not used.  Perform charge
4784          * immigration if @tset contains a leader and whine if there are
4785          * multiple.
4786          */
4787         p = NULL;
4788         cgroup_taskset_for_each_leader(leader, css, tset) {
4789                 WARN_ON_ONCE(p);
4790                 p = leader;
4791                 memcg = mem_cgroup_from_css(css);
4792         }
4793         if (!p)
4794                 return 0;
4795
4796         /*
4797          * We are now commited to this value whatever it is. Changes in this
4798          * tunable will only affect upcoming migrations, not the current one.
4799          * So we need to save it, and keep it going.
4800          */
4801         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4802         if (!move_flags)
4803                 return 0;
4804
4805         from = mem_cgroup_from_task(p);
4806
4807         VM_BUG_ON(from == memcg);
4808
4809         mm = get_task_mm(p);
4810         if (!mm)
4811                 return 0;
4812         /* We move charges only when we move a owner of the mm */
4813         if (mm->owner == p) {
4814                 VM_BUG_ON(mc.from);
4815                 VM_BUG_ON(mc.to);
4816                 VM_BUG_ON(mc.precharge);
4817                 VM_BUG_ON(mc.moved_charge);
4818                 VM_BUG_ON(mc.moved_swap);
4819
4820                 spin_lock(&mc.lock);
4821                 mc.mm = mm;
4822                 mc.from = from;
4823                 mc.to = memcg;
4824                 mc.flags = move_flags;
4825                 spin_unlock(&mc.lock);
4826                 /* We set mc.moving_task later */
4827
4828                 ret = mem_cgroup_precharge_mc(mm);
4829                 if (ret)
4830                         mem_cgroup_clear_mc();
4831         } else {
4832                 mmput(mm);
4833         }
4834         return ret;
4835 }
4836
4837 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4838 {
4839         if (mc.to)
4840                 mem_cgroup_clear_mc();
4841 }
4842
4843 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4844                                 unsigned long addr, unsigned long end,
4845                                 struct mm_walk *walk)
4846 {
4847         int ret = 0;
4848         struct vm_area_struct *vma = walk->vma;
4849         pte_t *pte;
4850         spinlock_t *ptl;
4851         enum mc_target_type target_type;
4852         union mc_target target;
4853         struct page *page;
4854
4855         ptl = pmd_trans_huge_lock(pmd, vma);
4856         if (ptl) {
4857                 if (mc.precharge < HPAGE_PMD_NR) {
4858                         spin_unlock(ptl);
4859                         return 0;
4860                 }
4861                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4862                 if (target_type == MC_TARGET_PAGE) {
4863                         page = target.page;
4864                         if (!isolate_lru_page(page)) {
4865                                 if (!mem_cgroup_move_account(page, true,
4866                                                              mc.from, mc.to)) {
4867                                         mc.precharge -= HPAGE_PMD_NR;
4868                                         mc.moved_charge += HPAGE_PMD_NR;
4869                                 }
4870                                 putback_lru_page(page);
4871                         }
4872                         put_page(page);
4873                 }
4874                 spin_unlock(ptl);
4875                 return 0;
4876         }
4877
4878         if (pmd_trans_unstable(pmd))
4879                 return 0;
4880 retry:
4881         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4882         for (; addr != end; addr += PAGE_SIZE) {
4883                 pte_t ptent = *(pte++);
4884                 swp_entry_t ent;
4885
4886                 if (!mc.precharge)
4887                         break;
4888
4889                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4890                 case MC_TARGET_PAGE:
4891                         page = target.page;
4892                         /*
4893                          * We can have a part of the split pmd here. Moving it
4894                          * can be done but it would be too convoluted so simply
4895                          * ignore such a partial THP and keep it in original
4896                          * memcg. There should be somebody mapping the head.
4897                          */
4898                         if (PageTransCompound(page))
4899                                 goto put;
4900                         if (isolate_lru_page(page))
4901                                 goto put;
4902                         if (!mem_cgroup_move_account(page, false,
4903                                                 mc.from, mc.to)) {
4904                                 mc.precharge--;
4905                                 /* we uncharge from mc.from later. */
4906                                 mc.moved_charge++;
4907                         }
4908                         putback_lru_page(page);
4909 put:                    /* get_mctgt_type() gets the page */
4910                         put_page(page);
4911                         break;
4912                 case MC_TARGET_SWAP:
4913                         ent = target.ent;
4914                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4915                                 mc.precharge--;
4916                                 /* we fixup refcnts and charges later. */
4917                                 mc.moved_swap++;
4918                         }
4919                         break;
4920                 default:
4921                         break;
4922                 }
4923         }
4924         pte_unmap_unlock(pte - 1, ptl);
4925         cond_resched();
4926
4927         if (addr != end) {
4928                 /*
4929                  * We have consumed all precharges we got in can_attach().
4930                  * We try charge one by one, but don't do any additional
4931                  * charges to mc.to if we have failed in charge once in attach()
4932                  * phase.
4933                  */
4934                 ret = mem_cgroup_do_precharge(1);
4935                 if (!ret)
4936                         goto retry;
4937         }
4938
4939         return ret;
4940 }
4941
4942 static void mem_cgroup_move_charge(void)
4943 {
4944         struct mm_walk mem_cgroup_move_charge_walk = {
4945                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4946                 .mm = mc.mm,
4947         };
4948
4949         lru_add_drain_all();
4950         /*
4951          * Signal lock_page_memcg() to take the memcg's move_lock
4952          * while we're moving its pages to another memcg. Then wait
4953          * for already started RCU-only updates to finish.
4954          */
4955         atomic_inc(&mc.from->moving_account);
4956         synchronize_rcu();
4957 retry:
4958         if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4959                 /*
4960                  * Someone who are holding the mmap_sem might be waiting in
4961                  * waitq. So we cancel all extra charges, wake up all waiters,
4962                  * and retry. Because we cancel precharges, we might not be able
4963                  * to move enough charges, but moving charge is a best-effort
4964                  * feature anyway, so it wouldn't be a big problem.
4965                  */
4966                 __mem_cgroup_clear_mc();
4967                 cond_resched();
4968                 goto retry;
4969         }
4970         /*
4971          * When we have consumed all precharges and failed in doing
4972          * additional charge, the page walk just aborts.
4973          */
4974         walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4975
4976         up_read(&mc.mm->mmap_sem);
4977         atomic_dec(&mc.from->moving_account);
4978 }
4979
4980 static void mem_cgroup_move_task(void)
4981 {
4982         if (mc.to) {
4983                 mem_cgroup_move_charge();
4984                 mem_cgroup_clear_mc();
4985         }
4986 }
4987 #else   /* !CONFIG_MMU */
4988 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4989 {
4990         return 0;
4991 }
4992 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4993 {
4994 }
4995 static void mem_cgroup_move_task(void)
4996 {
4997 }
4998 #endif
4999
5000 /*
5001  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5002  * to verify whether we're attached to the default hierarchy on each mount
5003  * attempt.
5004  */
5005 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5006 {
5007         /*
5008          * use_hierarchy is forced on the default hierarchy.  cgroup core
5009          * guarantees that @root doesn't have any children, so turning it
5010          * on for the root memcg is enough.
5011          */
5012         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5013                 root_mem_cgroup->use_hierarchy = true;
5014         else
5015                 root_mem_cgroup->use_hierarchy = false;
5016 }
5017
5018 static u64 memory_current_read(struct cgroup_subsys_state *css,
5019                                struct cftype *cft)
5020 {
5021         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5022
5023         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5024 }
5025
5026 static int memory_low_show(struct seq_file *m, void *v)
5027 {
5028         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5029         unsigned long low = READ_ONCE(memcg->low);
5030
5031         if (low == PAGE_COUNTER_MAX)
5032                 seq_puts(m, "max\n");
5033         else
5034                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5035
5036         return 0;
5037 }
5038
5039 static ssize_t memory_low_write(struct kernfs_open_file *of,
5040                                 char *buf, size_t nbytes, loff_t off)
5041 {
5042         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5043         unsigned long low;
5044         int err;
5045
5046         buf = strstrip(buf);
5047         err = page_counter_memparse(buf, "max", &low);
5048         if (err)
5049                 return err;
5050
5051         memcg->low = low;
5052
5053         return nbytes;
5054 }
5055
5056 static int memory_high_show(struct seq_file *m, void *v)
5057 {
5058         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5059         unsigned long high = READ_ONCE(memcg->high);
5060
5061         if (high == PAGE_COUNTER_MAX)
5062                 seq_puts(m, "max\n");
5063         else
5064                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5065
5066         return 0;
5067 }
5068
5069 static ssize_t memory_high_write(struct kernfs_open_file *of,
5070                                  char *buf, size_t nbytes, loff_t off)
5071 {
5072         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5073         unsigned long nr_pages;
5074         unsigned long high;
5075         int err;
5076
5077         buf = strstrip(buf);
5078         err = page_counter_memparse(buf, "max", &high);
5079         if (err)
5080                 return err;
5081
5082         memcg->high = high;
5083
5084         nr_pages = page_counter_read(&memcg->memory);
5085         if (nr_pages > high)
5086                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5087                                              GFP_KERNEL, true);
5088
5089         memcg_wb_domain_size_changed(memcg);
5090         return nbytes;
5091 }
5092
5093 static int memory_max_show(struct seq_file *m, void *v)
5094 {
5095         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5096         unsigned long max = READ_ONCE(memcg->memory.limit);
5097
5098         if (max == PAGE_COUNTER_MAX)
5099                 seq_puts(m, "max\n");
5100         else
5101                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5102
5103         return 0;
5104 }
5105
5106 static ssize_t memory_max_write(struct kernfs_open_file *of,
5107                                 char *buf, size_t nbytes, loff_t off)
5108 {
5109         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5110         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5111         bool drained = false;
5112         unsigned long max;
5113         int err;
5114
5115         buf = strstrip(buf);
5116         err = page_counter_memparse(buf, "max", &max);
5117         if (err)
5118                 return err;
5119
5120         xchg(&memcg->memory.limit, max);
5121
5122         for (;;) {
5123                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5124
5125                 if (nr_pages <= max)
5126                         break;
5127
5128                 if (signal_pending(current)) {
5129                         err = -EINTR;
5130                         break;
5131                 }
5132
5133                 if (!drained) {
5134                         drain_all_stock(memcg);
5135                         drained = true;
5136                         continue;
5137                 }
5138
5139                 if (nr_reclaims) {
5140                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5141                                                           GFP_KERNEL, true))
5142                                 nr_reclaims--;
5143                         continue;
5144                 }
5145
5146                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5147                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5148                         break;
5149         }
5150
5151         memcg_wb_domain_size_changed(memcg);
5152         return nbytes;
5153 }
5154
5155 static int memory_events_show(struct seq_file *m, void *v)
5156 {
5157         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5158
5159         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5160         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5161         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5162         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5163
5164         return 0;
5165 }
5166
5167 static int memory_stat_show(struct seq_file *m, void *v)
5168 {
5169         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5170         unsigned long stat[MEMCG_NR_STAT];
5171         unsigned long events[MEMCG_NR_EVENTS];
5172         int i;
5173
5174         /*
5175          * Provide statistics on the state of the memory subsystem as
5176          * well as cumulative event counters that show past behavior.
5177          *
5178          * This list is ordered following a combination of these gradients:
5179          * 1) generic big picture -> specifics and details
5180          * 2) reflecting userspace activity -> reflecting kernel heuristics
5181          *
5182          * Current memory state:
5183          */
5184
5185         tree_stat(memcg, stat);
5186         tree_events(memcg, events);
5187
5188         seq_printf(m, "anon %llu\n",
5189                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5190         seq_printf(m, "file %llu\n",
5191                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5192         seq_printf(m, "kernel_stack %llu\n",
5193                    (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5194         seq_printf(m, "slab %llu\n",
5195                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5196                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5197         seq_printf(m, "sock %llu\n",
5198                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5199
5200         seq_printf(m, "file_mapped %llu\n",
5201                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5202         seq_printf(m, "file_dirty %llu\n",
5203                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5204         seq_printf(m, "file_writeback %llu\n",
5205                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5206
5207         for (i = 0; i < NR_LRU_LISTS; i++) {
5208                 struct mem_cgroup *mi;
5209                 unsigned long val = 0;
5210
5211                 for_each_mem_cgroup_tree(mi, memcg)
5212                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5213                 seq_printf(m, "%s %llu\n",
5214                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5215         }
5216
5217         seq_printf(m, "slab_reclaimable %llu\n",
5218                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5219         seq_printf(m, "slab_unreclaimable %llu\n",
5220                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5221
5222         /* Accumulated memory events */
5223
5224         seq_printf(m, "pgfault %lu\n",
5225                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5226         seq_printf(m, "pgmajfault %lu\n",
5227                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5228
5229         return 0;
5230 }
5231
5232 static struct cftype memory_files[] = {
5233         {
5234                 .name = "current",
5235                 .flags = CFTYPE_NOT_ON_ROOT,
5236                 .read_u64 = memory_current_read,
5237         },
5238         {
5239                 .name = "low",
5240                 .flags = CFTYPE_NOT_ON_ROOT,
5241                 .seq_show = memory_low_show,
5242                 .write = memory_low_write,
5243         },
5244         {
5245                 .name = "high",
5246                 .flags = CFTYPE_NOT_ON_ROOT,
5247                 .seq_show = memory_high_show,
5248                 .write = memory_high_write,
5249         },
5250         {
5251                 .name = "max",
5252                 .flags = CFTYPE_NOT_ON_ROOT,
5253                 .seq_show = memory_max_show,
5254                 .write = memory_max_write,
5255         },
5256         {
5257                 .name = "events",
5258                 .flags = CFTYPE_NOT_ON_ROOT,
5259                 .file_offset = offsetof(struct mem_cgroup, events_file),
5260                 .seq_show = memory_events_show,
5261         },
5262         {
5263                 .name = "stat",
5264                 .flags = CFTYPE_NOT_ON_ROOT,
5265                 .seq_show = memory_stat_show,
5266         },
5267         { }     /* terminate */
5268 };
5269
5270 struct cgroup_subsys memory_cgrp_subsys = {
5271         .css_alloc = mem_cgroup_css_alloc,
5272         .css_online = mem_cgroup_css_online,
5273         .css_offline = mem_cgroup_css_offline,
5274         .css_released = mem_cgroup_css_released,
5275         .css_free = mem_cgroup_css_free,
5276         .css_reset = mem_cgroup_css_reset,
5277         .can_attach = mem_cgroup_can_attach,
5278         .cancel_attach = mem_cgroup_cancel_attach,
5279         .post_attach = mem_cgroup_move_task,
5280         .bind = mem_cgroup_bind,
5281         .dfl_cftypes = memory_files,
5282         .legacy_cftypes = mem_cgroup_legacy_files,
5283         .early_init = 0,
5284 };
5285
5286 /**
5287  * mem_cgroup_low - check if memory consumption is below the normal range
5288  * @root: the highest ancestor to consider
5289  * @memcg: the memory cgroup to check
5290  *
5291  * Returns %true if memory consumption of @memcg, and that of all
5292  * configurable ancestors up to @root, is below the normal range.
5293  */
5294 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5295 {
5296         if (mem_cgroup_disabled())
5297                 return false;
5298
5299         /*
5300          * The toplevel group doesn't have a configurable range, so
5301          * it's never low when looked at directly, and it is not
5302          * considered an ancestor when assessing the hierarchy.
5303          */
5304
5305         if (memcg == root_mem_cgroup)
5306                 return false;
5307
5308         if (page_counter_read(&memcg->memory) >= memcg->low)
5309                 return false;
5310
5311         while (memcg != root) {
5312                 memcg = parent_mem_cgroup(memcg);
5313
5314                 if (memcg == root_mem_cgroup)
5315                         break;
5316
5317                 if (page_counter_read(&memcg->memory) >= memcg->low)
5318                         return false;
5319         }
5320         return true;
5321 }
5322
5323 /**
5324  * mem_cgroup_try_charge - try charging a page
5325  * @page: page to charge
5326  * @mm: mm context of the victim
5327  * @gfp_mask: reclaim mode
5328  * @memcgp: charged memcg return
5329  * @compound: charge the page as compound or small page
5330  *
5331  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5332  * pages according to @gfp_mask if necessary.
5333  *
5334  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5335  * Otherwise, an error code is returned.
5336  *
5337  * After page->mapping has been set up, the caller must finalize the
5338  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5339  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5340  */
5341 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5342                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5343                           bool compound)
5344 {
5345         struct mem_cgroup *memcg = NULL;
5346         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5347         int ret = 0;
5348
5349         if (mem_cgroup_disabled())
5350                 goto out;
5351
5352         if (PageSwapCache(page)) {
5353                 /*
5354                  * Every swap fault against a single page tries to charge the
5355                  * page, bail as early as possible.  shmem_unuse() encounters
5356                  * already charged pages, too.  The USED bit is protected by
5357                  * the page lock, which serializes swap cache removal, which
5358                  * in turn serializes uncharging.
5359                  */
5360                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5361                 if (page->mem_cgroup)
5362                         goto out;
5363
5364                 if (do_swap_account) {
5365                         swp_entry_t ent = { .val = page_private(page), };
5366                         unsigned short id = lookup_swap_cgroup_id(ent);
5367
5368                         rcu_read_lock();
5369                         memcg = mem_cgroup_from_id(id);
5370                         if (memcg && !css_tryget_online(&memcg->css))
5371                                 memcg = NULL;
5372                         rcu_read_unlock();
5373                 }
5374         }
5375
5376         if (!memcg)
5377                 memcg = get_mem_cgroup_from_mm(mm);
5378
5379         ret = try_charge(memcg, gfp_mask, nr_pages);
5380
5381         css_put(&memcg->css);
5382 out:
5383         *memcgp = memcg;
5384         return ret;
5385 }
5386
5387 /**
5388  * mem_cgroup_commit_charge - commit a page charge
5389  * @page: page to charge
5390  * @memcg: memcg to charge the page to
5391  * @lrucare: page might be on LRU already
5392  * @compound: charge the page as compound or small page
5393  *
5394  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5395  * after page->mapping has been set up.  This must happen atomically
5396  * as part of the page instantiation, i.e. under the page table lock
5397  * for anonymous pages, under the page lock for page and swap cache.
5398  *
5399  * In addition, the page must not be on the LRU during the commit, to
5400  * prevent racing with task migration.  If it might be, use @lrucare.
5401  *
5402  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5403  */
5404 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5405                               bool lrucare, bool compound)
5406 {
5407         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5408
5409         VM_BUG_ON_PAGE(!page->mapping, page);
5410         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5411
5412         if (mem_cgroup_disabled())
5413                 return;
5414         /*
5415          * Swap faults will attempt to charge the same page multiple
5416          * times.  But reuse_swap_page() might have removed the page
5417          * from swapcache already, so we can't check PageSwapCache().
5418          */
5419         if (!memcg)
5420                 return;
5421
5422         commit_charge(page, memcg, lrucare);
5423
5424         local_irq_disable();
5425         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5426         memcg_check_events(memcg, page);
5427         local_irq_enable();
5428
5429         if (do_memsw_account() && PageSwapCache(page)) {
5430                 swp_entry_t entry = { .val = page_private(page) };
5431                 /*
5432                  * The swap entry might not get freed for a long time,
5433                  * let's not wait for it.  The page already received a
5434                  * memory+swap charge, drop the swap entry duplicate.
5435                  */
5436                 mem_cgroup_uncharge_swap(entry);
5437         }
5438 }
5439
5440 /**
5441  * mem_cgroup_cancel_charge - cancel a page charge
5442  * @page: page to charge
5443  * @memcg: memcg to charge the page to
5444  * @compound: charge the page as compound or small page
5445  *
5446  * Cancel a charge transaction started by mem_cgroup_try_charge().
5447  */
5448 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5449                 bool compound)
5450 {
5451         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5452
5453         if (mem_cgroup_disabled())
5454                 return;
5455         /*
5456          * Swap faults will attempt to charge the same page multiple
5457          * times.  But reuse_swap_page() might have removed the page
5458          * from swapcache already, so we can't check PageSwapCache().
5459          */
5460         if (!memcg)
5461                 return;
5462
5463         cancel_charge(memcg, nr_pages);
5464 }
5465
5466 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5467                            unsigned long nr_anon, unsigned long nr_file,
5468                            unsigned long nr_huge, unsigned long nr_kmem,
5469                            struct page *dummy_page)
5470 {
5471         unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5472         unsigned long flags;
5473
5474         if (!mem_cgroup_is_root(memcg)) {
5475                 page_counter_uncharge(&memcg->memory, nr_pages);
5476                 if (do_memsw_account())
5477                         page_counter_uncharge(&memcg->memsw, nr_pages);
5478                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5479                         page_counter_uncharge(&memcg->kmem, nr_kmem);
5480                 memcg_oom_recover(memcg);
5481         }
5482
5483         local_irq_save(flags);
5484         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5485         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5486         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5487         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5488         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5489         memcg_check_events(memcg, dummy_page);
5490         local_irq_restore(flags);
5491
5492         if (!mem_cgroup_is_root(memcg))
5493                 css_put_many(&memcg->css, nr_pages);
5494 }
5495
5496 static void uncharge_list(struct list_head *page_list)
5497 {
5498         struct mem_cgroup *memcg = NULL;
5499         unsigned long nr_anon = 0;
5500         unsigned long nr_file = 0;
5501         unsigned long nr_huge = 0;
5502         unsigned long nr_kmem = 0;
5503         unsigned long pgpgout = 0;
5504         struct list_head *next;
5505         struct page *page;
5506
5507         /*
5508          * Note that the list can be a single page->lru; hence the
5509          * do-while loop instead of a simple list_for_each_entry().
5510          */
5511         next = page_list->next;
5512         do {
5513                 page = list_entry(next, struct page, lru);
5514                 next = page->lru.next;
5515
5516                 VM_BUG_ON_PAGE(PageLRU(page), page);
5517                 VM_BUG_ON_PAGE(page_count(page), page);
5518
5519                 if (!page->mem_cgroup)
5520                         continue;
5521
5522                 /*
5523                  * Nobody should be changing or seriously looking at
5524                  * page->mem_cgroup at this point, we have fully
5525                  * exclusive access to the page.
5526                  */
5527
5528                 if (memcg != page->mem_cgroup) {
5529                         if (memcg) {
5530                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5531                                                nr_huge, nr_kmem, page);
5532                                 pgpgout = nr_anon = nr_file =
5533                                         nr_huge = nr_kmem = 0;
5534                         }
5535                         memcg = page->mem_cgroup;
5536                 }
5537
5538                 if (!PageKmemcg(page)) {
5539                         unsigned int nr_pages = 1;
5540
5541                         if (PageTransHuge(page)) {
5542                                 nr_pages <<= compound_order(page);
5543                                 nr_huge += nr_pages;
5544                         }
5545                         if (PageAnon(page))
5546                                 nr_anon += nr_pages;
5547                         else
5548                                 nr_file += nr_pages;
5549                         pgpgout++;
5550                 } else {
5551                         nr_kmem += 1 << compound_order(page);
5552                         __ClearPageKmemcg(page);
5553                 }
5554
5555                 page->mem_cgroup = NULL;
5556         } while (next != page_list);
5557
5558         if (memcg)
5559                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5560                                nr_huge, nr_kmem, page);
5561 }
5562
5563 /**
5564  * mem_cgroup_uncharge - uncharge a page
5565  * @page: page to uncharge
5566  *
5567  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5568  * mem_cgroup_commit_charge().
5569  */
5570 void mem_cgroup_uncharge(struct page *page)
5571 {
5572         if (mem_cgroup_disabled())
5573                 return;
5574
5575         /* Don't touch page->lru of any random page, pre-check: */
5576         if (!page->mem_cgroup)
5577                 return;
5578
5579         INIT_LIST_HEAD(&page->lru);
5580         uncharge_list(&page->lru);
5581 }
5582
5583 /**
5584  * mem_cgroup_uncharge_list - uncharge a list of page
5585  * @page_list: list of pages to uncharge
5586  *
5587  * Uncharge a list of pages previously charged with
5588  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5589  */
5590 void mem_cgroup_uncharge_list(struct list_head *page_list)
5591 {
5592         if (mem_cgroup_disabled())
5593                 return;
5594
5595         if (!list_empty(page_list))
5596                 uncharge_list(page_list);
5597 }
5598
5599 /**
5600  * mem_cgroup_migrate - charge a page's replacement
5601  * @oldpage: currently circulating page
5602  * @newpage: replacement page
5603  *
5604  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5605  * be uncharged upon free.
5606  *
5607  * Both pages must be locked, @newpage->mapping must be set up.
5608  */
5609 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5610 {
5611         struct mem_cgroup *memcg;
5612         unsigned int nr_pages;
5613         bool compound;
5614         unsigned long flags;
5615
5616         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5617         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5618         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5619         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5620                        newpage);
5621
5622         if (mem_cgroup_disabled())
5623                 return;
5624
5625         /* Page cache replacement: new page already charged? */
5626         if (newpage->mem_cgroup)
5627                 return;
5628
5629         /* Swapcache readahead pages can get replaced before being charged */
5630         memcg = oldpage->mem_cgroup;
5631         if (!memcg)
5632                 return;
5633
5634         /* Force-charge the new page. The old one will be freed soon */
5635         compound = PageTransHuge(newpage);
5636         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5637
5638         page_counter_charge(&memcg->memory, nr_pages);
5639         if (do_memsw_account())
5640                 page_counter_charge(&memcg->memsw, nr_pages);
5641         css_get_many(&memcg->css, nr_pages);
5642
5643         commit_charge(newpage, memcg, false);
5644
5645         local_irq_save(flags);
5646         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5647         memcg_check_events(memcg, newpage);
5648         local_irq_restore(flags);
5649 }
5650
5651 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5652 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5653
5654 void mem_cgroup_sk_alloc(struct sock *sk)
5655 {
5656         struct mem_cgroup *memcg;
5657
5658         if (!mem_cgroup_sockets_enabled)
5659                 return;
5660
5661         /*
5662          * Socket cloning can throw us here with sk_memcg already
5663          * filled. It won't however, necessarily happen from
5664          * process context. So the test for root memcg given
5665          * the current task's memcg won't help us in this case.
5666          *
5667          * Respecting the original socket's memcg is a better
5668          * decision in this case.
5669          */
5670         if (sk->sk_memcg) {
5671                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5672                 css_get(&sk->sk_memcg->css);
5673                 return;
5674         }
5675
5676         rcu_read_lock();
5677         memcg = mem_cgroup_from_task(current);
5678         if (memcg == root_mem_cgroup)
5679                 goto out;
5680         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5681                 goto out;
5682         if (css_tryget_online(&memcg->css))
5683                 sk->sk_memcg = memcg;
5684 out:
5685         rcu_read_unlock();
5686 }
5687
5688 void mem_cgroup_sk_free(struct sock *sk)
5689 {
5690         if (sk->sk_memcg)
5691                 css_put(&sk->sk_memcg->css);
5692 }
5693
5694 /**
5695  * mem_cgroup_charge_skmem - charge socket memory
5696  * @memcg: memcg to charge
5697  * @nr_pages: number of pages to charge
5698  *
5699  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5700  * @memcg's configured limit, %false if the charge had to be forced.
5701  */
5702 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5703 {
5704         gfp_t gfp_mask = GFP_KERNEL;
5705
5706         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5707                 struct page_counter *fail;
5708
5709                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5710                         memcg->tcpmem_pressure = 0;
5711                         return true;
5712                 }
5713                 page_counter_charge(&memcg->tcpmem, nr_pages);
5714                 memcg->tcpmem_pressure = 1;
5715                 return false;
5716         }
5717
5718         /* Don't block in the packet receive path */
5719         if (in_softirq())
5720                 gfp_mask = GFP_NOWAIT;
5721
5722         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5723
5724         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5725                 return true;
5726
5727         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5728         return false;
5729 }
5730
5731 /**
5732  * mem_cgroup_uncharge_skmem - uncharge socket memory
5733  * @memcg - memcg to uncharge
5734  * @nr_pages - number of pages to uncharge
5735  */
5736 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5737 {
5738         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5739                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5740                 return;
5741         }
5742
5743         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5744
5745         page_counter_uncharge(&memcg->memory, nr_pages);
5746         css_put_many(&memcg->css, nr_pages);
5747 }
5748
5749 static int __init cgroup_memory(char *s)
5750 {
5751         char *token;
5752
5753         while ((token = strsep(&s, ",")) != NULL) {
5754                 if (!*token)
5755                         continue;
5756                 if (!strcmp(token, "nosocket"))
5757                         cgroup_memory_nosocket = true;
5758                 if (!strcmp(token, "nokmem"))
5759                         cgroup_memory_nokmem = true;
5760         }
5761         return 0;
5762 }
5763 __setup("cgroup.memory=", cgroup_memory);
5764
5765 /*
5766  * subsys_initcall() for memory controller.
5767  *
5768  * Some parts like hotcpu_notifier() have to be initialized from this context
5769  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5770  * everything that doesn't depend on a specific mem_cgroup structure should
5771  * be initialized from here.
5772  */
5773 static int __init mem_cgroup_init(void)
5774 {
5775         int cpu, node;
5776
5777         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5778
5779         for_each_possible_cpu(cpu)
5780                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5781                           drain_local_stock);
5782
5783         for_each_node(node) {
5784                 struct mem_cgroup_tree_per_node *rtpn;
5785
5786                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5787                                     node_online(node) ? node : NUMA_NO_NODE);
5788
5789                 rtpn->rb_root = RB_ROOT;
5790                 spin_lock_init(&rtpn->lock);
5791                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5792         }
5793
5794         return 0;
5795 }
5796 subsys_initcall(mem_cgroup_init);
5797
5798 #ifdef CONFIG_MEMCG_SWAP
5799 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5800 {
5801         while (!atomic_inc_not_zero(&memcg->id.ref)) {
5802                 /*
5803                  * The root cgroup cannot be destroyed, so it's refcount must
5804                  * always be >= 1.
5805                  */
5806                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5807                         VM_BUG_ON(1);
5808                         break;
5809                 }
5810                 memcg = parent_mem_cgroup(memcg);
5811                 if (!memcg)
5812                         memcg = root_mem_cgroup;
5813         }
5814         return memcg;
5815 }
5816
5817 /**
5818  * mem_cgroup_swapout - transfer a memsw charge to swap
5819  * @page: page whose memsw charge to transfer
5820  * @entry: swap entry to move the charge to
5821  *
5822  * Transfer the memsw charge of @page to @entry.
5823  */
5824 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5825 {
5826         struct mem_cgroup *memcg, *swap_memcg;
5827         unsigned short oldid;
5828
5829         VM_BUG_ON_PAGE(PageLRU(page), page);
5830         VM_BUG_ON_PAGE(page_count(page), page);
5831
5832         if (!do_memsw_account())
5833                 return;
5834
5835         memcg = page->mem_cgroup;
5836
5837         /* Readahead page, never charged */
5838         if (!memcg)
5839                 return;
5840
5841         /*
5842          * In case the memcg owning these pages has been offlined and doesn't
5843          * have an ID allocated to it anymore, charge the closest online
5844          * ancestor for the swap instead and transfer the memory+swap charge.
5845          */
5846         swap_memcg = mem_cgroup_id_get_online(memcg);
5847         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5848         VM_BUG_ON_PAGE(oldid, page);
5849         mem_cgroup_swap_statistics(swap_memcg, true);
5850
5851         page->mem_cgroup = NULL;
5852
5853         if (!mem_cgroup_is_root(memcg))
5854                 page_counter_uncharge(&memcg->memory, 1);
5855
5856         if (memcg != swap_memcg) {
5857                 if (!mem_cgroup_is_root(swap_memcg))
5858                         page_counter_charge(&swap_memcg->memsw, 1);
5859                 page_counter_uncharge(&memcg->memsw, 1);
5860         }
5861
5862         /*
5863          * Interrupts should be disabled here because the caller holds the
5864          * mapping->tree_lock lock which is taken with interrupts-off. It is
5865          * important here to have the interrupts disabled because it is the
5866          * only synchronisation we have for udpating the per-CPU variables.
5867          */
5868         VM_BUG_ON(!irqs_disabled());
5869         mem_cgroup_charge_statistics(memcg, page, false, -1);
5870         memcg_check_events(memcg, page);
5871
5872         if (!mem_cgroup_is_root(memcg))
5873                 css_put(&memcg->css);
5874 }
5875
5876 /*
5877  * mem_cgroup_try_charge_swap - try charging a swap entry
5878  * @page: page being added to swap
5879  * @entry: swap entry to charge
5880  *
5881  * Try to charge @entry to the memcg that @page belongs to.
5882  *
5883  * Returns 0 on success, -ENOMEM on failure.
5884  */
5885 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5886 {
5887         struct mem_cgroup *memcg;
5888         struct page_counter *counter;
5889         unsigned short oldid;
5890
5891         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5892                 return 0;
5893
5894         memcg = page->mem_cgroup;
5895
5896         /* Readahead page, never charged */
5897         if (!memcg)
5898                 return 0;
5899
5900         memcg = mem_cgroup_id_get_online(memcg);
5901
5902         if (!mem_cgroup_is_root(memcg) &&
5903             !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5904                 mem_cgroup_id_put(memcg);
5905                 return -ENOMEM;
5906         }
5907
5908         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5909         VM_BUG_ON_PAGE(oldid, page);
5910         mem_cgroup_swap_statistics(memcg, true);
5911
5912         return 0;
5913 }
5914
5915 /**
5916  * mem_cgroup_uncharge_swap - uncharge a swap entry
5917  * @entry: swap entry to uncharge
5918  *
5919  * Drop the swap charge associated with @entry.
5920  */
5921 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5922 {
5923         struct mem_cgroup *memcg;
5924         unsigned short id;
5925
5926         if (!do_swap_account)
5927                 return;
5928
5929         id = swap_cgroup_record(entry, 0);
5930         rcu_read_lock();
5931         memcg = mem_cgroup_from_id(id);
5932         if (memcg) {
5933                 if (!mem_cgroup_is_root(memcg)) {
5934                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5935                                 page_counter_uncharge(&memcg->swap, 1);
5936                         else
5937                                 page_counter_uncharge(&memcg->memsw, 1);
5938                 }
5939                 mem_cgroup_swap_statistics(memcg, false);
5940                 mem_cgroup_id_put(memcg);
5941         }
5942         rcu_read_unlock();
5943 }
5944
5945 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5946 {
5947         long nr_swap_pages = get_nr_swap_pages();
5948
5949         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950                 return nr_swap_pages;
5951         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5952                 nr_swap_pages = min_t(long, nr_swap_pages,
5953                                       READ_ONCE(memcg->swap.limit) -
5954                                       page_counter_read(&memcg->swap));
5955         return nr_swap_pages;
5956 }
5957
5958 bool mem_cgroup_swap_full(struct page *page)
5959 {
5960         struct mem_cgroup *memcg;
5961
5962         VM_BUG_ON_PAGE(!PageLocked(page), page);
5963
5964         if (vm_swap_full())
5965                 return true;
5966         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5967                 return false;
5968
5969         memcg = page->mem_cgroup;
5970         if (!memcg)
5971                 return false;
5972
5973         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5974                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5975                         return true;
5976
5977         return false;
5978 }
5979
5980 /* for remember boot option*/
5981 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5982 static int really_do_swap_account __initdata = 1;
5983 #else
5984 static int really_do_swap_account __initdata;
5985 #endif
5986
5987 static int __init enable_swap_account(char *s)
5988 {
5989         if (!strcmp(s, "1"))
5990                 really_do_swap_account = 1;
5991         else if (!strcmp(s, "0"))
5992                 really_do_swap_account = 0;
5993         return 1;
5994 }
5995 __setup("swapaccount=", enable_swap_account);
5996
5997 static u64 swap_current_read(struct cgroup_subsys_state *css,
5998                              struct cftype *cft)
5999 {
6000         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6001
6002         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6003 }
6004
6005 static int swap_max_show(struct seq_file *m, void *v)
6006 {
6007         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6008         unsigned long max = READ_ONCE(memcg->swap.limit);
6009
6010         if (max == PAGE_COUNTER_MAX)
6011                 seq_puts(m, "max\n");
6012         else
6013                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6014
6015         return 0;
6016 }
6017
6018 static ssize_t swap_max_write(struct kernfs_open_file *of,
6019                               char *buf, size_t nbytes, loff_t off)
6020 {
6021         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6022         unsigned long max;
6023         int err;
6024
6025         buf = strstrip(buf);
6026         err = page_counter_memparse(buf, "max", &max);
6027         if (err)
6028                 return err;
6029
6030         mutex_lock(&memcg_limit_mutex);
6031         err = page_counter_limit(&memcg->swap, max);
6032         mutex_unlock(&memcg_limit_mutex);
6033         if (err)
6034                 return err;
6035
6036         return nbytes;
6037 }
6038
6039 static struct cftype swap_files[] = {
6040         {
6041                 .name = "swap.current",
6042                 .flags = CFTYPE_NOT_ON_ROOT,
6043                 .read_u64 = swap_current_read,
6044         },
6045         {
6046                 .name = "swap.max",
6047                 .flags = CFTYPE_NOT_ON_ROOT,
6048                 .seq_show = swap_max_show,
6049                 .write = swap_max_write,
6050         },
6051         { }     /* terminate */
6052 };
6053
6054 static struct cftype memsw_cgroup_files[] = {
6055         {
6056                 .name = "memsw.usage_in_bytes",
6057                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6058                 .read_u64 = mem_cgroup_read_u64,
6059         },
6060         {
6061                 .name = "memsw.max_usage_in_bytes",
6062                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6063                 .write = mem_cgroup_reset,
6064                 .read_u64 = mem_cgroup_read_u64,
6065         },
6066         {
6067                 .name = "memsw.limit_in_bytes",
6068                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6069                 .write = mem_cgroup_write,
6070                 .read_u64 = mem_cgroup_read_u64,
6071         },
6072         {
6073                 .name = "memsw.failcnt",
6074                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6075                 .write = mem_cgroup_reset,
6076                 .read_u64 = mem_cgroup_read_u64,
6077         },
6078         { },    /* terminate */
6079 };
6080
6081 static int __init mem_cgroup_swap_init(void)
6082 {
6083         if (!mem_cgroup_disabled() && really_do_swap_account) {
6084                 do_swap_account = 1;
6085                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6086                                                swap_files));
6087                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6088                                                   memsw_cgroup_files));
6089         }
6090         return 0;
6091 }
6092 subsys_initcall(mem_cgroup_swap_init);
6093
6094 #endif /* CONFIG_MEMCG_SWAP */