tracing: Fix a possible race when disabling buffered events
[platform/kernel/linux-starfive.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108
109 struct mem_cgroup_tree_per_node {
110         struct rb_root rb_root;
111         struct rb_node *rb_rightmost;
112         spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123         struct list_head list;
124         struct eventfd_ctx *eventfd;
125 };
126
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131         /*
132          * memcg which the event belongs to.
133          */
134         struct mem_cgroup *memcg;
135         /*
136          * eventfd to signal userspace about the event.
137          */
138         struct eventfd_ctx *eventfd;
139         /*
140          * Each of these stored in a list by the cgroup.
141          */
142         struct list_head list;
143         /*
144          * register_event() callback will be used to add new userspace
145          * waiter for changes related to this event.  Use eventfd_signal()
146          * on eventfd to send notification to userspace.
147          */
148         int (*register_event)(struct mem_cgroup *memcg,
149                               struct eventfd_ctx *eventfd, const char *args);
150         /*
151          * unregister_event() callback will be called when userspace closes
152          * the eventfd or on cgroup removing.  This callback must be set,
153          * if you want provide notification functionality.
154          */
155         void (*unregister_event)(struct mem_cgroup *memcg,
156                                  struct eventfd_ctx *eventfd);
157         /*
158          * All fields below needed to unregister event when
159          * userspace closes eventfd.
160          */
161         poll_table pt;
162         wait_queue_head_t *wqh;
163         wait_queue_entry_t wait;
164         struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON       0x1U
175 #define MOVE_FILE       0x2U
176 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180         spinlock_t        lock; /* for from, to */
181         struct mm_struct  *mm;
182         struct mem_cgroup *from;
183         struct mem_cgroup *to;
184         unsigned long flags;
185         unsigned long precharge;
186         unsigned long moved_charge;
187         unsigned long moved_swap;
188         struct task_struct *moving_task;        /* a task moving charges */
189         wait_queue_head_t waitq;                /* a waitq for other context */
190 } mc = {
191         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 /* for encoding cft->private value on file */
203 enum res_type {
204         _MEM,
205         _MEMSWAP,
206         _KMEM,
207         _TCP,
208 };
209
210 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
211 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
212 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
213
214 /*
215  * Iteration constructs for visiting all cgroups (under a tree).  If
216  * loops are exited prematurely (break), mem_cgroup_iter_break() must
217  * be used for reference counting.
218  */
219 #define for_each_mem_cgroup_tree(iter, root)            \
220         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
221              iter != NULL;                              \
222              iter = mem_cgroup_iter(root, iter, NULL))
223
224 #define for_each_mem_cgroup(iter)                       \
225         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
226              iter != NULL;                              \
227              iter = mem_cgroup_iter(NULL, iter, NULL))
228
229 static inline bool task_is_dying(void)
230 {
231         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
232                 (current->flags & PF_EXITING);
233 }
234
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238         if (!memcg)
239                 memcg = root_mem_cgroup;
240         return &memcg->vmpressure;
241 }
242
243 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
244 {
245         return container_of(vmpr, struct mem_cgroup, vmpressure);
246 }
247
248 #ifdef CONFIG_MEMCG_KMEM
249 static DEFINE_SPINLOCK(objcg_lock);
250
251 bool mem_cgroup_kmem_disabled(void)
252 {
253         return cgroup_memory_nokmem;
254 }
255
256 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
257                                       unsigned int nr_pages);
258
259 static void obj_cgroup_release(struct percpu_ref *ref)
260 {
261         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
262         unsigned int nr_bytes;
263         unsigned int nr_pages;
264         unsigned long flags;
265
266         /*
267          * At this point all allocated objects are freed, and
268          * objcg->nr_charged_bytes can't have an arbitrary byte value.
269          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270          *
271          * The following sequence can lead to it:
272          * 1) CPU0: objcg == stock->cached_objcg
273          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274          *          PAGE_SIZE bytes are charged
275          * 3) CPU1: a process from another memcg is allocating something,
276          *          the stock if flushed,
277          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
278          * 5) CPU0: we do release this object,
279          *          92 bytes are added to stock->nr_bytes
280          * 6) CPU0: stock is flushed,
281          *          92 bytes are added to objcg->nr_charged_bytes
282          *
283          * In the result, nr_charged_bytes == PAGE_SIZE.
284          * This page will be uncharged in obj_cgroup_release().
285          */
286         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288         nr_pages = nr_bytes >> PAGE_SHIFT;
289
290         if (nr_pages)
291                 obj_cgroup_uncharge_pages(objcg, nr_pages);
292
293         spin_lock_irqsave(&objcg_lock, flags);
294         list_del(&objcg->list);
295         spin_unlock_irqrestore(&objcg_lock, flags);
296
297         percpu_ref_exit(ref);
298         kfree_rcu(objcg, rcu);
299 }
300
301 static struct obj_cgroup *obj_cgroup_alloc(void)
302 {
303         struct obj_cgroup *objcg;
304         int ret;
305
306         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307         if (!objcg)
308                 return NULL;
309
310         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311                               GFP_KERNEL);
312         if (ret) {
313                 kfree(objcg);
314                 return NULL;
315         }
316         INIT_LIST_HEAD(&objcg->list);
317         return objcg;
318 }
319
320 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321                                   struct mem_cgroup *parent)
322 {
323         struct obj_cgroup *objcg, *iter;
324
325         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326
327         spin_lock_irq(&objcg_lock);
328
329         /* 1) Ready to reparent active objcg. */
330         list_add(&objcg->list, &memcg->objcg_list);
331         /* 2) Reparent active objcg and already reparented objcgs to parent. */
332         list_for_each_entry(iter, &memcg->objcg_list, list)
333                 WRITE_ONCE(iter->memcg, parent);
334         /* 3) Move already reparented objcgs to the parent's list */
335         list_splice(&memcg->objcg_list, &parent->objcg_list);
336
337         spin_unlock_irq(&objcg_lock);
338
339         percpu_ref_kill(&objcg->refcnt);
340 }
341
342 /*
343  * A lot of the calls to the cache allocation functions are expected to be
344  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
345  * conditional to this static branch, we'll have to allow modules that does
346  * kmem_cache_alloc and the such to see this symbol as well
347  */
348 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
349 EXPORT_SYMBOL(memcg_kmem_enabled_key);
350 #endif
351
352 /**
353  * mem_cgroup_css_from_page - css of the memcg associated with a page
354  * @page: page of interest
355  *
356  * If memcg is bound to the default hierarchy, css of the memcg associated
357  * with @page is returned.  The returned css remains associated with @page
358  * until it is released.
359  *
360  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
361  * is returned.
362  */
363 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
364 {
365         struct mem_cgroup *memcg;
366
367         memcg = page_memcg(page);
368
369         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
370                 memcg = root_mem_cgroup;
371
372         return &memcg->css;
373 }
374
375 /**
376  * page_cgroup_ino - return inode number of the memcg a page is charged to
377  * @page: the page
378  *
379  * Look up the closest online ancestor of the memory cgroup @page is charged to
380  * and return its inode number or 0 if @page is not charged to any cgroup. It
381  * is safe to call this function without holding a reference to @page.
382  *
383  * Note, this function is inherently racy, because there is nothing to prevent
384  * the cgroup inode from getting torn down and potentially reallocated a moment
385  * after page_cgroup_ino() returns, so it only should be used by callers that
386  * do not care (such as procfs interfaces).
387  */
388 ino_t page_cgroup_ino(struct page *page)
389 {
390         struct mem_cgroup *memcg;
391         unsigned long ino = 0;
392
393         rcu_read_lock();
394         memcg = page_memcg_check(page);
395
396         while (memcg && !(memcg->css.flags & CSS_ONLINE))
397                 memcg = parent_mem_cgroup(memcg);
398         if (memcg)
399                 ino = cgroup_ino(memcg->css.cgroup);
400         rcu_read_unlock();
401         return ino;
402 }
403
404 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
405                                          struct mem_cgroup_tree_per_node *mctz,
406                                          unsigned long new_usage_in_excess)
407 {
408         struct rb_node **p = &mctz->rb_root.rb_node;
409         struct rb_node *parent = NULL;
410         struct mem_cgroup_per_node *mz_node;
411         bool rightmost = true;
412
413         if (mz->on_tree)
414                 return;
415
416         mz->usage_in_excess = new_usage_in_excess;
417         if (!mz->usage_in_excess)
418                 return;
419         while (*p) {
420                 parent = *p;
421                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
422                                         tree_node);
423                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
424                         p = &(*p)->rb_left;
425                         rightmost = false;
426                 } else {
427                         p = &(*p)->rb_right;
428                 }
429         }
430
431         if (rightmost)
432                 mctz->rb_rightmost = &mz->tree_node;
433
434         rb_link_node(&mz->tree_node, parent, p);
435         rb_insert_color(&mz->tree_node, &mctz->rb_root);
436         mz->on_tree = true;
437 }
438
439 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440                                          struct mem_cgroup_tree_per_node *mctz)
441 {
442         if (!mz->on_tree)
443                 return;
444
445         if (&mz->tree_node == mctz->rb_rightmost)
446                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
447
448         rb_erase(&mz->tree_node, &mctz->rb_root);
449         mz->on_tree = false;
450 }
451
452 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
453                                        struct mem_cgroup_tree_per_node *mctz)
454 {
455         unsigned long flags;
456
457         spin_lock_irqsave(&mctz->lock, flags);
458         __mem_cgroup_remove_exceeded(mz, mctz);
459         spin_unlock_irqrestore(&mctz->lock, flags);
460 }
461
462 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463 {
464         unsigned long nr_pages = page_counter_read(&memcg->memory);
465         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
466         unsigned long excess = 0;
467
468         if (nr_pages > soft_limit)
469                 excess = nr_pages - soft_limit;
470
471         return excess;
472 }
473
474 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
475 {
476         unsigned long excess;
477         struct mem_cgroup_per_node *mz;
478         struct mem_cgroup_tree_per_node *mctz;
479
480         mctz = soft_limit_tree.rb_tree_per_node[nid];
481         if (!mctz)
482                 return;
483         /*
484          * Necessary to update all ancestors when hierarchy is used.
485          * because their event counter is not touched.
486          */
487         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
488                 mz = memcg->nodeinfo[nid];
489                 excess = soft_limit_excess(memcg);
490                 /*
491                  * We have to update the tree if mz is on RB-tree or
492                  * mem is over its softlimit.
493                  */
494                 if (excess || mz->on_tree) {
495                         unsigned long flags;
496
497                         spin_lock_irqsave(&mctz->lock, flags);
498                         /* if on-tree, remove it */
499                         if (mz->on_tree)
500                                 __mem_cgroup_remove_exceeded(mz, mctz);
501                         /*
502                          * Insert again. mz->usage_in_excess will be updated.
503                          * If excess is 0, no tree ops.
504                          */
505                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
506                         spin_unlock_irqrestore(&mctz->lock, flags);
507                 }
508         }
509 }
510
511 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512 {
513         struct mem_cgroup_tree_per_node *mctz;
514         struct mem_cgroup_per_node *mz;
515         int nid;
516
517         for_each_node(nid) {
518                 mz = memcg->nodeinfo[nid];
519                 mctz = soft_limit_tree.rb_tree_per_node[nid];
520                 if (mctz)
521                         mem_cgroup_remove_exceeded(mz, mctz);
522         }
523 }
524
525 static struct mem_cgroup_per_node *
526 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
527 {
528         struct mem_cgroup_per_node *mz;
529
530 retry:
531         mz = NULL;
532         if (!mctz->rb_rightmost)
533                 goto done;              /* Nothing to reclaim from */
534
535         mz = rb_entry(mctz->rb_rightmost,
536                       struct mem_cgroup_per_node, tree_node);
537         /*
538          * Remove the node now but someone else can add it back,
539          * we will to add it back at the end of reclaim to its correct
540          * position in the tree.
541          */
542         __mem_cgroup_remove_exceeded(mz, mctz);
543         if (!soft_limit_excess(mz->memcg) ||
544             !css_tryget(&mz->memcg->css))
545                 goto retry;
546 done:
547         return mz;
548 }
549
550 static struct mem_cgroup_per_node *
551 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
552 {
553         struct mem_cgroup_per_node *mz;
554
555         spin_lock_irq(&mctz->lock);
556         mz = __mem_cgroup_largest_soft_limit_node(mctz);
557         spin_unlock_irq(&mctz->lock);
558         return mz;
559 }
560
561 /*
562  * memcg and lruvec stats flushing
563  *
564  * Many codepaths leading to stats update or read are performance sensitive and
565  * adding stats flushing in such codepaths is not desirable. So, to optimize the
566  * flushing the kernel does:
567  *
568  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
569  *    rstat update tree grow unbounded.
570  *
571  * 2) Flush the stats synchronously on reader side only when there are more than
572  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
573  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
574  *    only for 2 seconds due to (1).
575  */
576 static void flush_memcg_stats_dwork(struct work_struct *w);
577 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
578 static DEFINE_SPINLOCK(stats_flush_lock);
579 static DEFINE_PER_CPU(unsigned int, stats_updates);
580 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
581 static u64 flush_next_time;
582
583 #define FLUSH_TIME (2UL*HZ)
584
585 /*
586  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
587  * not rely on this as part of an acquired spinlock_t lock. These functions are
588  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
589  * is sufficient.
590  */
591 static void memcg_stats_lock(void)
592 {
593         preempt_disable_nested();
594         VM_WARN_ON_IRQS_ENABLED();
595 }
596
597 static void __memcg_stats_lock(void)
598 {
599         preempt_disable_nested();
600 }
601
602 static void memcg_stats_unlock(void)
603 {
604         preempt_enable_nested();
605 }
606
607 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
608 {
609         unsigned int x;
610
611         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
612
613         x = __this_cpu_add_return(stats_updates, abs(val));
614         if (x > MEMCG_CHARGE_BATCH) {
615                 /*
616                  * If stats_flush_threshold exceeds the threshold
617                  * (>num_online_cpus()), cgroup stats update will be triggered
618                  * in __mem_cgroup_flush_stats(). Increasing this var further
619                  * is redundant and simply adds overhead in atomic update.
620                  */
621                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
622                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
623                 __this_cpu_write(stats_updates, 0);
624         }
625 }
626
627 static void __mem_cgroup_flush_stats(void)
628 {
629         unsigned long flag;
630
631         if (!spin_trylock_irqsave(&stats_flush_lock, flag))
632                 return;
633
634         flush_next_time = jiffies_64 + 2*FLUSH_TIME;
635         cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
636         atomic_set(&stats_flush_threshold, 0);
637         spin_unlock_irqrestore(&stats_flush_lock, flag);
638 }
639
640 void mem_cgroup_flush_stats(void)
641 {
642         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
643                 __mem_cgroup_flush_stats();
644 }
645
646 void mem_cgroup_flush_stats_delayed(void)
647 {
648         if (time_after64(jiffies_64, flush_next_time))
649                 mem_cgroup_flush_stats();
650 }
651
652 static void flush_memcg_stats_dwork(struct work_struct *w)
653 {
654         __mem_cgroup_flush_stats();
655         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
656 }
657
658 /* Subset of vm_event_item to report for memcg event stats */
659 static const unsigned int memcg_vm_event_stat[] = {
660         PGPGIN,
661         PGPGOUT,
662         PGSCAN_KSWAPD,
663         PGSCAN_DIRECT,
664         PGSTEAL_KSWAPD,
665         PGSTEAL_DIRECT,
666         PGFAULT,
667         PGMAJFAULT,
668         PGREFILL,
669         PGACTIVATE,
670         PGDEACTIVATE,
671         PGLAZYFREE,
672         PGLAZYFREED,
673 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
674         ZSWPIN,
675         ZSWPOUT,
676 #endif
677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
678         THP_FAULT_ALLOC,
679         THP_COLLAPSE_ALLOC,
680 #endif
681 };
682
683 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
684 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
685
686 static void init_memcg_events(void)
687 {
688         int i;
689
690         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
691                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
692 }
693
694 static inline int memcg_events_index(enum vm_event_item idx)
695 {
696         return mem_cgroup_events_index[idx] - 1;
697 }
698
699 struct memcg_vmstats_percpu {
700         /* Local (CPU and cgroup) page state & events */
701         long                    state[MEMCG_NR_STAT];
702         unsigned long           events[NR_MEMCG_EVENTS];
703
704         /* Delta calculation for lockless upward propagation */
705         long                    state_prev[MEMCG_NR_STAT];
706         unsigned long           events_prev[NR_MEMCG_EVENTS];
707
708         /* Cgroup1: threshold notifications & softlimit tree updates */
709         unsigned long           nr_page_events;
710         unsigned long           targets[MEM_CGROUP_NTARGETS];
711 };
712
713 struct memcg_vmstats {
714         /* Aggregated (CPU and subtree) page state & events */
715         long                    state[MEMCG_NR_STAT];
716         unsigned long           events[NR_MEMCG_EVENTS];
717
718         /* Pending child counts during tree propagation */
719         long                    state_pending[MEMCG_NR_STAT];
720         unsigned long           events_pending[NR_MEMCG_EVENTS];
721 };
722
723 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
724 {
725         long x = READ_ONCE(memcg->vmstats->state[idx]);
726 #ifdef CONFIG_SMP
727         if (x < 0)
728                 x = 0;
729 #endif
730         return x;
731 }
732
733 /**
734  * __mod_memcg_state - update cgroup memory statistics
735  * @memcg: the memory cgroup
736  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
737  * @val: delta to add to the counter, can be negative
738  */
739 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
740 {
741         if (mem_cgroup_disabled())
742                 return;
743
744         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
745         memcg_rstat_updated(memcg, val);
746 }
747
748 /* idx can be of type enum memcg_stat_item or node_stat_item. */
749 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
750 {
751         long x = 0;
752         int cpu;
753
754         for_each_possible_cpu(cpu)
755                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
756 #ifdef CONFIG_SMP
757         if (x < 0)
758                 x = 0;
759 #endif
760         return x;
761 }
762
763 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
764                               int val)
765 {
766         struct mem_cgroup_per_node *pn;
767         struct mem_cgroup *memcg;
768
769         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
770         memcg = pn->memcg;
771
772         /*
773          * The caller from rmap relay on disabled preemption becase they never
774          * update their counter from in-interrupt context. For these two
775          * counters we check that the update is never performed from an
776          * interrupt context while other caller need to have disabled interrupt.
777          */
778         __memcg_stats_lock();
779         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
780                 switch (idx) {
781                 case NR_ANON_MAPPED:
782                 case NR_FILE_MAPPED:
783                 case NR_ANON_THPS:
784                 case NR_SHMEM_PMDMAPPED:
785                 case NR_FILE_PMDMAPPED:
786                         WARN_ON_ONCE(!in_task());
787                         break;
788                 default:
789                         VM_WARN_ON_IRQS_ENABLED();
790                 }
791         }
792
793         /* Update memcg */
794         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
795
796         /* Update lruvec */
797         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
798
799         memcg_rstat_updated(memcg, val);
800         memcg_stats_unlock();
801 }
802
803 /**
804  * __mod_lruvec_state - update lruvec memory statistics
805  * @lruvec: the lruvec
806  * @idx: the stat item
807  * @val: delta to add to the counter, can be negative
808  *
809  * The lruvec is the intersection of the NUMA node and a cgroup. This
810  * function updates the all three counters that are affected by a
811  * change of state at this level: per-node, per-cgroup, per-lruvec.
812  */
813 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
814                         int val)
815 {
816         /* Update node */
817         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
818
819         /* Update memcg and lruvec */
820         if (!mem_cgroup_disabled())
821                 __mod_memcg_lruvec_state(lruvec, idx, val);
822 }
823
824 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
825                              int val)
826 {
827         struct page *head = compound_head(page); /* rmap on tail pages */
828         struct mem_cgroup *memcg;
829         pg_data_t *pgdat = page_pgdat(page);
830         struct lruvec *lruvec;
831
832         rcu_read_lock();
833         memcg = page_memcg(head);
834         /* Untracked pages have no memcg, no lruvec. Update only the node */
835         if (!memcg) {
836                 rcu_read_unlock();
837                 __mod_node_page_state(pgdat, idx, val);
838                 return;
839         }
840
841         lruvec = mem_cgroup_lruvec(memcg, pgdat);
842         __mod_lruvec_state(lruvec, idx, val);
843         rcu_read_unlock();
844 }
845 EXPORT_SYMBOL(__mod_lruvec_page_state);
846
847 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
848 {
849         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
850         struct mem_cgroup *memcg;
851         struct lruvec *lruvec;
852
853         rcu_read_lock();
854         memcg = mem_cgroup_from_slab_obj(p);
855
856         /*
857          * Untracked pages have no memcg, no lruvec. Update only the
858          * node. If we reparent the slab objects to the root memcg,
859          * when we free the slab object, we need to update the per-memcg
860          * vmstats to keep it correct for the root memcg.
861          */
862         if (!memcg) {
863                 __mod_node_page_state(pgdat, idx, val);
864         } else {
865                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
866                 __mod_lruvec_state(lruvec, idx, val);
867         }
868         rcu_read_unlock();
869 }
870
871 /**
872  * __count_memcg_events - account VM events in a cgroup
873  * @memcg: the memory cgroup
874  * @idx: the event item
875  * @count: the number of events that occurred
876  */
877 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
878                           unsigned long count)
879 {
880         int index = memcg_events_index(idx);
881
882         if (mem_cgroup_disabled() || index < 0)
883                 return;
884
885         memcg_stats_lock();
886         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
887         memcg_rstat_updated(memcg, count);
888         memcg_stats_unlock();
889 }
890
891 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
892 {
893         int index = memcg_events_index(event);
894
895         if (index < 0)
896                 return 0;
897         return READ_ONCE(memcg->vmstats->events[index]);
898 }
899
900 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
901 {
902         long x = 0;
903         int cpu;
904         int index = memcg_events_index(event);
905
906         if (index < 0)
907                 return 0;
908
909         for_each_possible_cpu(cpu)
910                 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
911         return x;
912 }
913
914 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
915                                          int nr_pages)
916 {
917         /* pagein of a big page is an event. So, ignore page size */
918         if (nr_pages > 0)
919                 __count_memcg_events(memcg, PGPGIN, 1);
920         else {
921                 __count_memcg_events(memcg, PGPGOUT, 1);
922                 nr_pages = -nr_pages; /* for event */
923         }
924
925         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
926 }
927
928 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
929                                        enum mem_cgroup_events_target target)
930 {
931         unsigned long val, next;
932
933         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
934         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
935         /* from time_after() in jiffies.h */
936         if ((long)(next - val) < 0) {
937                 switch (target) {
938                 case MEM_CGROUP_TARGET_THRESH:
939                         next = val + THRESHOLDS_EVENTS_TARGET;
940                         break;
941                 case MEM_CGROUP_TARGET_SOFTLIMIT:
942                         next = val + SOFTLIMIT_EVENTS_TARGET;
943                         break;
944                 default:
945                         break;
946                 }
947                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
948                 return true;
949         }
950         return false;
951 }
952
953 /*
954  * Check events in order.
955  *
956  */
957 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
958 {
959         if (IS_ENABLED(CONFIG_PREEMPT_RT))
960                 return;
961
962         /* threshold event is triggered in finer grain than soft limit */
963         if (unlikely(mem_cgroup_event_ratelimit(memcg,
964                                                 MEM_CGROUP_TARGET_THRESH))) {
965                 bool do_softlimit;
966
967                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
968                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
969                 mem_cgroup_threshold(memcg);
970                 if (unlikely(do_softlimit))
971                         mem_cgroup_update_tree(memcg, nid);
972         }
973 }
974
975 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
976 {
977         /*
978          * mm_update_next_owner() may clear mm->owner to NULL
979          * if it races with swapoff, page migration, etc.
980          * So this can be called with p == NULL.
981          */
982         if (unlikely(!p))
983                 return NULL;
984
985         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
986 }
987 EXPORT_SYMBOL(mem_cgroup_from_task);
988
989 static __always_inline struct mem_cgroup *active_memcg(void)
990 {
991         if (!in_task())
992                 return this_cpu_read(int_active_memcg);
993         else
994                 return current->active_memcg;
995 }
996
997 /**
998  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
999  * @mm: mm from which memcg should be extracted. It can be NULL.
1000  *
1001  * Obtain a reference on mm->memcg and returns it if successful. If mm
1002  * is NULL, then the memcg is chosen as follows:
1003  * 1) The active memcg, if set.
1004  * 2) current->mm->memcg, if available
1005  * 3) root memcg
1006  * If mem_cgroup is disabled, NULL is returned.
1007  */
1008 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1009 {
1010         struct mem_cgroup *memcg;
1011
1012         if (mem_cgroup_disabled())
1013                 return NULL;
1014
1015         /*
1016          * Page cache insertions can happen without an
1017          * actual mm context, e.g. during disk probing
1018          * on boot, loopback IO, acct() writes etc.
1019          *
1020          * No need to css_get on root memcg as the reference
1021          * counting is disabled on the root level in the
1022          * cgroup core. See CSS_NO_REF.
1023          */
1024         if (unlikely(!mm)) {
1025                 memcg = active_memcg();
1026                 if (unlikely(memcg)) {
1027                         /* remote memcg must hold a ref */
1028                         css_get(&memcg->css);
1029                         return memcg;
1030                 }
1031                 mm = current->mm;
1032                 if (unlikely(!mm))
1033                         return root_mem_cgroup;
1034         }
1035
1036         rcu_read_lock();
1037         do {
1038                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1039                 if (unlikely(!memcg))
1040                         memcg = root_mem_cgroup;
1041         } while (!css_tryget(&memcg->css));
1042         rcu_read_unlock();
1043         return memcg;
1044 }
1045 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1046
1047 static __always_inline bool memcg_kmem_bypass(void)
1048 {
1049         /* Allow remote memcg charging from any context. */
1050         if (unlikely(active_memcg()))
1051                 return false;
1052
1053         /* Memcg to charge can't be determined. */
1054         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1055                 return true;
1056
1057         return false;
1058 }
1059
1060 /**
1061  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1062  * @root: hierarchy root
1063  * @prev: previously returned memcg, NULL on first invocation
1064  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1065  *
1066  * Returns references to children of the hierarchy below @root, or
1067  * @root itself, or %NULL after a full round-trip.
1068  *
1069  * Caller must pass the return value in @prev on subsequent
1070  * invocations for reference counting, or use mem_cgroup_iter_break()
1071  * to cancel a hierarchy walk before the round-trip is complete.
1072  *
1073  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1074  * in the hierarchy among all concurrent reclaimers operating on the
1075  * same node.
1076  */
1077 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1078                                    struct mem_cgroup *prev,
1079                                    struct mem_cgroup_reclaim_cookie *reclaim)
1080 {
1081         struct mem_cgroup_reclaim_iter *iter;
1082         struct cgroup_subsys_state *css = NULL;
1083         struct mem_cgroup *memcg = NULL;
1084         struct mem_cgroup *pos = NULL;
1085
1086         if (mem_cgroup_disabled())
1087                 return NULL;
1088
1089         if (!root)
1090                 root = root_mem_cgroup;
1091
1092         rcu_read_lock();
1093
1094         if (reclaim) {
1095                 struct mem_cgroup_per_node *mz;
1096
1097                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1098                 iter = &mz->iter;
1099
1100                 /*
1101                  * On start, join the current reclaim iteration cycle.
1102                  * Exit when a concurrent walker completes it.
1103                  */
1104                 if (!prev)
1105                         reclaim->generation = iter->generation;
1106                 else if (reclaim->generation != iter->generation)
1107                         goto out_unlock;
1108
1109                 while (1) {
1110                         pos = READ_ONCE(iter->position);
1111                         if (!pos || css_tryget(&pos->css))
1112                                 break;
1113                         /*
1114                          * css reference reached zero, so iter->position will
1115                          * be cleared by ->css_released. However, we should not
1116                          * rely on this happening soon, because ->css_released
1117                          * is called from a work queue, and by busy-waiting we
1118                          * might block it. So we clear iter->position right
1119                          * away.
1120                          */
1121                         (void)cmpxchg(&iter->position, pos, NULL);
1122                 }
1123         } else if (prev) {
1124                 pos = prev;
1125         }
1126
1127         if (pos)
1128                 css = &pos->css;
1129
1130         for (;;) {
1131                 css = css_next_descendant_pre(css, &root->css);
1132                 if (!css) {
1133                         /*
1134                          * Reclaimers share the hierarchy walk, and a
1135                          * new one might jump in right at the end of
1136                          * the hierarchy - make sure they see at least
1137                          * one group and restart from the beginning.
1138                          */
1139                         if (!prev)
1140                                 continue;
1141                         break;
1142                 }
1143
1144                 /*
1145                  * Verify the css and acquire a reference.  The root
1146                  * is provided by the caller, so we know it's alive
1147                  * and kicking, and don't take an extra reference.
1148                  */
1149                 if (css == &root->css || css_tryget(css)) {
1150                         memcg = mem_cgroup_from_css(css);
1151                         break;
1152                 }
1153         }
1154
1155         if (reclaim) {
1156                 /*
1157                  * The position could have already been updated by a competing
1158                  * thread, so check that the value hasn't changed since we read
1159                  * it to avoid reclaiming from the same cgroup twice.
1160                  */
1161                 (void)cmpxchg(&iter->position, pos, memcg);
1162
1163                 if (pos)
1164                         css_put(&pos->css);
1165
1166                 if (!memcg)
1167                         iter->generation++;
1168         }
1169
1170 out_unlock:
1171         rcu_read_unlock();
1172         if (prev && prev != root)
1173                 css_put(&prev->css);
1174
1175         return memcg;
1176 }
1177
1178 /**
1179  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180  * @root: hierarchy root
1181  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182  */
1183 void mem_cgroup_iter_break(struct mem_cgroup *root,
1184                            struct mem_cgroup *prev)
1185 {
1186         if (!root)
1187                 root = root_mem_cgroup;
1188         if (prev && prev != root)
1189                 css_put(&prev->css);
1190 }
1191
1192 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1193                                         struct mem_cgroup *dead_memcg)
1194 {
1195         struct mem_cgroup_reclaim_iter *iter;
1196         struct mem_cgroup_per_node *mz;
1197         int nid;
1198
1199         for_each_node(nid) {
1200                 mz = from->nodeinfo[nid];
1201                 iter = &mz->iter;
1202                 cmpxchg(&iter->position, dead_memcg, NULL);
1203         }
1204 }
1205
1206 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1207 {
1208         struct mem_cgroup *memcg = dead_memcg;
1209         struct mem_cgroup *last;
1210
1211         do {
1212                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1213                 last = memcg;
1214         } while ((memcg = parent_mem_cgroup(memcg)));
1215
1216         /*
1217          * When cgroup1 non-hierarchy mode is used,
1218          * parent_mem_cgroup() does not walk all the way up to the
1219          * cgroup root (root_mem_cgroup). So we have to handle
1220          * dead_memcg from cgroup root separately.
1221          */
1222         if (last != root_mem_cgroup)
1223                 __invalidate_reclaim_iterators(root_mem_cgroup,
1224                                                 dead_memcg);
1225 }
1226
1227 /**
1228  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1229  * @memcg: hierarchy root
1230  * @fn: function to call for each task
1231  * @arg: argument passed to @fn
1232  *
1233  * This function iterates over tasks attached to @memcg or to any of its
1234  * descendants and calls @fn for each task. If @fn returns a non-zero
1235  * value, the function breaks the iteration loop and returns the value.
1236  * Otherwise, it will iterate over all tasks and return 0.
1237  *
1238  * This function must not be called for the root memory cgroup.
1239  */
1240 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1241                           int (*fn)(struct task_struct *, void *), void *arg)
1242 {
1243         struct mem_cgroup *iter;
1244         int ret = 0;
1245
1246         BUG_ON(memcg == root_mem_cgroup);
1247
1248         for_each_mem_cgroup_tree(iter, memcg) {
1249                 struct css_task_iter it;
1250                 struct task_struct *task;
1251
1252                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1253                 while (!ret && (task = css_task_iter_next(&it)))
1254                         ret = fn(task, arg);
1255                 css_task_iter_end(&it);
1256                 if (ret) {
1257                         mem_cgroup_iter_break(memcg, iter);
1258                         break;
1259                 }
1260         }
1261         return ret;
1262 }
1263
1264 #ifdef CONFIG_DEBUG_VM
1265 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1266 {
1267         struct mem_cgroup *memcg;
1268
1269         if (mem_cgroup_disabled())
1270                 return;
1271
1272         memcg = folio_memcg(folio);
1273
1274         if (!memcg)
1275                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1276         else
1277                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1278 }
1279 #endif
1280
1281 /**
1282  * folio_lruvec_lock - Lock the lruvec for a folio.
1283  * @folio: Pointer to the folio.
1284  *
1285  * These functions are safe to use under any of the following conditions:
1286  * - folio locked
1287  * - folio_test_lru false
1288  * - folio_memcg_lock()
1289  * - folio frozen (refcount of 0)
1290  *
1291  * Return: The lruvec this folio is on with its lock held.
1292  */
1293 struct lruvec *folio_lruvec_lock(struct folio *folio)
1294 {
1295         struct lruvec *lruvec = folio_lruvec(folio);
1296
1297         spin_lock(&lruvec->lru_lock);
1298         lruvec_memcg_debug(lruvec, folio);
1299
1300         return lruvec;
1301 }
1302
1303 /**
1304  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1305  * @folio: Pointer to the folio.
1306  *
1307  * These functions are safe to use under any of the following conditions:
1308  * - folio locked
1309  * - folio_test_lru false
1310  * - folio_memcg_lock()
1311  * - folio frozen (refcount of 0)
1312  *
1313  * Return: The lruvec this folio is on with its lock held and interrupts
1314  * disabled.
1315  */
1316 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1317 {
1318         struct lruvec *lruvec = folio_lruvec(folio);
1319
1320         spin_lock_irq(&lruvec->lru_lock);
1321         lruvec_memcg_debug(lruvec, folio);
1322
1323         return lruvec;
1324 }
1325
1326 /**
1327  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1328  * @folio: Pointer to the folio.
1329  * @flags: Pointer to irqsave flags.
1330  *
1331  * These functions are safe to use under any of the following conditions:
1332  * - folio locked
1333  * - folio_test_lru false
1334  * - folio_memcg_lock()
1335  * - folio frozen (refcount of 0)
1336  *
1337  * Return: The lruvec this folio is on with its lock held and interrupts
1338  * disabled.
1339  */
1340 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1341                 unsigned long *flags)
1342 {
1343         struct lruvec *lruvec = folio_lruvec(folio);
1344
1345         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1346         lruvec_memcg_debug(lruvec, folio);
1347
1348         return lruvec;
1349 }
1350
1351 /**
1352  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1353  * @lruvec: mem_cgroup per zone lru vector
1354  * @lru: index of lru list the page is sitting on
1355  * @zid: zone id of the accounted pages
1356  * @nr_pages: positive when adding or negative when removing
1357  *
1358  * This function must be called under lru_lock, just before a page is added
1359  * to or just after a page is removed from an lru list.
1360  */
1361 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1362                                 int zid, int nr_pages)
1363 {
1364         struct mem_cgroup_per_node *mz;
1365         unsigned long *lru_size;
1366         long size;
1367
1368         if (mem_cgroup_disabled())
1369                 return;
1370
1371         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1372         lru_size = &mz->lru_zone_size[zid][lru];
1373
1374         if (nr_pages < 0)
1375                 *lru_size += nr_pages;
1376
1377         size = *lru_size;
1378         if (WARN_ONCE(size < 0,
1379                 "%s(%p, %d, %d): lru_size %ld\n",
1380                 __func__, lruvec, lru, nr_pages, size)) {
1381                 VM_BUG_ON(1);
1382                 *lru_size = 0;
1383         }
1384
1385         if (nr_pages > 0)
1386                 *lru_size += nr_pages;
1387 }
1388
1389 /**
1390  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1391  * @memcg: the memory cgroup
1392  *
1393  * Returns the maximum amount of memory @mem can be charged with, in
1394  * pages.
1395  */
1396 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1397 {
1398         unsigned long margin = 0;
1399         unsigned long count;
1400         unsigned long limit;
1401
1402         count = page_counter_read(&memcg->memory);
1403         limit = READ_ONCE(memcg->memory.max);
1404         if (count < limit)
1405                 margin = limit - count;
1406
1407         if (do_memsw_account()) {
1408                 count = page_counter_read(&memcg->memsw);
1409                 limit = READ_ONCE(memcg->memsw.max);
1410                 if (count < limit)
1411                         margin = min(margin, limit - count);
1412                 else
1413                         margin = 0;
1414         }
1415
1416         return margin;
1417 }
1418
1419 /*
1420  * A routine for checking "mem" is under move_account() or not.
1421  *
1422  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1423  * moving cgroups. This is for waiting at high-memory pressure
1424  * caused by "move".
1425  */
1426 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1427 {
1428         struct mem_cgroup *from;
1429         struct mem_cgroup *to;
1430         bool ret = false;
1431         /*
1432          * Unlike task_move routines, we access mc.to, mc.from not under
1433          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1434          */
1435         spin_lock(&mc.lock);
1436         from = mc.from;
1437         to = mc.to;
1438         if (!from)
1439                 goto unlock;
1440
1441         ret = mem_cgroup_is_descendant(from, memcg) ||
1442                 mem_cgroup_is_descendant(to, memcg);
1443 unlock:
1444         spin_unlock(&mc.lock);
1445         return ret;
1446 }
1447
1448 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1449 {
1450         if (mc.moving_task && current != mc.moving_task) {
1451                 if (mem_cgroup_under_move(memcg)) {
1452                         DEFINE_WAIT(wait);
1453                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1454                         /* moving charge context might have finished. */
1455                         if (mc.moving_task)
1456                                 schedule();
1457                         finish_wait(&mc.waitq, &wait);
1458                         return true;
1459                 }
1460         }
1461         return false;
1462 }
1463
1464 struct memory_stat {
1465         const char *name;
1466         unsigned int idx;
1467 };
1468
1469 static const struct memory_stat memory_stats[] = {
1470         { "anon",                       NR_ANON_MAPPED                  },
1471         { "file",                       NR_FILE_PAGES                   },
1472         { "kernel",                     MEMCG_KMEM                      },
1473         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1474         { "pagetables",                 NR_PAGETABLE                    },
1475         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1476         { "percpu",                     MEMCG_PERCPU_B                  },
1477         { "sock",                       MEMCG_SOCK                      },
1478         { "vmalloc",                    MEMCG_VMALLOC                   },
1479         { "shmem",                      NR_SHMEM                        },
1480 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1481         { "zswap",                      MEMCG_ZSWAP_B                   },
1482         { "zswapped",                   MEMCG_ZSWAPPED                  },
1483 #endif
1484         { "file_mapped",                NR_FILE_MAPPED                  },
1485         { "file_dirty",                 NR_FILE_DIRTY                   },
1486         { "file_writeback",             NR_WRITEBACK                    },
1487 #ifdef CONFIG_SWAP
1488         { "swapcached",                 NR_SWAPCACHE                    },
1489 #endif
1490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1491         { "anon_thp",                   NR_ANON_THPS                    },
1492         { "file_thp",                   NR_FILE_THPS                    },
1493         { "shmem_thp",                  NR_SHMEM_THPS                   },
1494 #endif
1495         { "inactive_anon",              NR_INACTIVE_ANON                },
1496         { "active_anon",                NR_ACTIVE_ANON                  },
1497         { "inactive_file",              NR_INACTIVE_FILE                },
1498         { "active_file",                NR_ACTIVE_FILE                  },
1499         { "unevictable",                NR_UNEVICTABLE                  },
1500         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1501         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1502
1503         /* The memory events */
1504         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1505         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1506         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1507         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1508         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1509         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1510         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1511 };
1512
1513 /* Translate stat items to the correct unit for memory.stat output */
1514 static int memcg_page_state_unit(int item)
1515 {
1516         switch (item) {
1517         case MEMCG_PERCPU_B:
1518         case MEMCG_ZSWAP_B:
1519         case NR_SLAB_RECLAIMABLE_B:
1520         case NR_SLAB_UNRECLAIMABLE_B:
1521         case WORKINGSET_REFAULT_ANON:
1522         case WORKINGSET_REFAULT_FILE:
1523         case WORKINGSET_ACTIVATE_ANON:
1524         case WORKINGSET_ACTIVATE_FILE:
1525         case WORKINGSET_RESTORE_ANON:
1526         case WORKINGSET_RESTORE_FILE:
1527         case WORKINGSET_NODERECLAIM:
1528                 return 1;
1529         case NR_KERNEL_STACK_KB:
1530                 return SZ_1K;
1531         default:
1532                 return PAGE_SIZE;
1533         }
1534 }
1535
1536 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1537                                                     int item)
1538 {
1539         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1540 }
1541
1542 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1543 {
1544         struct seq_buf s;
1545         int i;
1546
1547         seq_buf_init(&s, buf, bufsize);
1548
1549         /*
1550          * Provide statistics on the state of the memory subsystem as
1551          * well as cumulative event counters that show past behavior.
1552          *
1553          * This list is ordered following a combination of these gradients:
1554          * 1) generic big picture -> specifics and details
1555          * 2) reflecting userspace activity -> reflecting kernel heuristics
1556          *
1557          * Current memory state:
1558          */
1559         mem_cgroup_flush_stats();
1560
1561         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1562                 u64 size;
1563
1564                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1565                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1566
1567                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1568                         size += memcg_page_state_output(memcg,
1569                                                         NR_SLAB_RECLAIMABLE_B);
1570                         seq_buf_printf(&s, "slab %llu\n", size);
1571                 }
1572         }
1573
1574         /* Accumulated memory events */
1575         seq_buf_printf(&s, "pgscan %lu\n",
1576                        memcg_events(memcg, PGSCAN_KSWAPD) +
1577                        memcg_events(memcg, PGSCAN_DIRECT));
1578         seq_buf_printf(&s, "pgsteal %lu\n",
1579                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1580                        memcg_events(memcg, PGSTEAL_DIRECT));
1581
1582         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1583                 if (memcg_vm_event_stat[i] == PGPGIN ||
1584                     memcg_vm_event_stat[i] == PGPGOUT)
1585                         continue;
1586
1587                 seq_buf_printf(&s, "%s %lu\n",
1588                                vm_event_name(memcg_vm_event_stat[i]),
1589                                memcg_events(memcg, memcg_vm_event_stat[i]));
1590         }
1591
1592         /* The above should easily fit into one page */
1593         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1594 }
1595
1596 #define K(x) ((x) << (PAGE_SHIFT-10))
1597 /**
1598  * mem_cgroup_print_oom_context: Print OOM information relevant to
1599  * memory controller.
1600  * @memcg: The memory cgroup that went over limit
1601  * @p: Task that is going to be killed
1602  *
1603  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1604  * enabled
1605  */
1606 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1607 {
1608         rcu_read_lock();
1609
1610         if (memcg) {
1611                 pr_cont(",oom_memcg=");
1612                 pr_cont_cgroup_path(memcg->css.cgroup);
1613         } else
1614                 pr_cont(",global_oom");
1615         if (p) {
1616                 pr_cont(",task_memcg=");
1617                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1618         }
1619         rcu_read_unlock();
1620 }
1621
1622 /**
1623  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1624  * memory controller.
1625  * @memcg: The memory cgroup that went over limit
1626  */
1627 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1628 {
1629         /* Use static buffer, for the caller is holding oom_lock. */
1630         static char buf[PAGE_SIZE];
1631
1632         lockdep_assert_held(&oom_lock);
1633
1634         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1635                 K((u64)page_counter_read(&memcg->memory)),
1636                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1637         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1638                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1639                         K((u64)page_counter_read(&memcg->swap)),
1640                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1641         else {
1642                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643                         K((u64)page_counter_read(&memcg->memsw)),
1644                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1645                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1646                         K((u64)page_counter_read(&memcg->kmem)),
1647                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1648         }
1649
1650         pr_info("Memory cgroup stats for ");
1651         pr_cont_cgroup_path(memcg->css.cgroup);
1652         pr_cont(":");
1653         memory_stat_format(memcg, buf, sizeof(buf));
1654         pr_info("%s", buf);
1655 }
1656
1657 /*
1658  * Return the memory (and swap, if configured) limit for a memcg.
1659  */
1660 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1661 {
1662         unsigned long max = READ_ONCE(memcg->memory.max);
1663
1664         if (do_memsw_account()) {
1665                 if (mem_cgroup_swappiness(memcg)) {
1666                         /* Calculate swap excess capacity from memsw limit */
1667                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1668
1669                         max += min(swap, (unsigned long)total_swap_pages);
1670                 }
1671         } else {
1672                 if (mem_cgroup_swappiness(memcg))
1673                         max += min(READ_ONCE(memcg->swap.max),
1674                                    (unsigned long)total_swap_pages);
1675         }
1676         return max;
1677 }
1678
1679 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1680 {
1681         return page_counter_read(&memcg->memory);
1682 }
1683
1684 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1685                                      int order)
1686 {
1687         struct oom_control oc = {
1688                 .zonelist = NULL,
1689                 .nodemask = NULL,
1690                 .memcg = memcg,
1691                 .gfp_mask = gfp_mask,
1692                 .order = order,
1693         };
1694         bool ret = true;
1695
1696         if (mutex_lock_killable(&oom_lock))
1697                 return true;
1698
1699         if (mem_cgroup_margin(memcg) >= (1 << order))
1700                 goto unlock;
1701
1702         /*
1703          * A few threads which were not waiting at mutex_lock_killable() can
1704          * fail to bail out. Therefore, check again after holding oom_lock.
1705          */
1706         ret = task_is_dying() || out_of_memory(&oc);
1707
1708 unlock:
1709         mutex_unlock(&oom_lock);
1710         return ret;
1711 }
1712
1713 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714                                    pg_data_t *pgdat,
1715                                    gfp_t gfp_mask,
1716                                    unsigned long *total_scanned)
1717 {
1718         struct mem_cgroup *victim = NULL;
1719         int total = 0;
1720         int loop = 0;
1721         unsigned long excess;
1722         unsigned long nr_scanned;
1723         struct mem_cgroup_reclaim_cookie reclaim = {
1724                 .pgdat = pgdat,
1725         };
1726
1727         excess = soft_limit_excess(root_memcg);
1728
1729         while (1) {
1730                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1731                 if (!victim) {
1732                         loop++;
1733                         if (loop >= 2) {
1734                                 /*
1735                                  * If we have not been able to reclaim
1736                                  * anything, it might because there are
1737                                  * no reclaimable pages under this hierarchy
1738                                  */
1739                                 if (!total)
1740                                         break;
1741                                 /*
1742                                  * We want to do more targeted reclaim.
1743                                  * excess >> 2 is not to excessive so as to
1744                                  * reclaim too much, nor too less that we keep
1745                                  * coming back to reclaim from this cgroup
1746                                  */
1747                                 if (total >= (excess >> 2) ||
1748                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1749                                         break;
1750                         }
1751                         continue;
1752                 }
1753                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1754                                         pgdat, &nr_scanned);
1755                 *total_scanned += nr_scanned;
1756                 if (!soft_limit_excess(root_memcg))
1757                         break;
1758         }
1759         mem_cgroup_iter_break(root_memcg, victim);
1760         return total;
1761 }
1762
1763 #ifdef CONFIG_LOCKDEP
1764 static struct lockdep_map memcg_oom_lock_dep_map = {
1765         .name = "memcg_oom_lock",
1766 };
1767 #endif
1768
1769 static DEFINE_SPINLOCK(memcg_oom_lock);
1770
1771 /*
1772  * Check OOM-Killer is already running under our hierarchy.
1773  * If someone is running, return false.
1774  */
1775 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1776 {
1777         struct mem_cgroup *iter, *failed = NULL;
1778
1779         spin_lock(&memcg_oom_lock);
1780
1781         for_each_mem_cgroup_tree(iter, memcg) {
1782                 if (iter->oom_lock) {
1783                         /*
1784                          * this subtree of our hierarchy is already locked
1785                          * so we cannot give a lock.
1786                          */
1787                         failed = iter;
1788                         mem_cgroup_iter_break(memcg, iter);
1789                         break;
1790                 } else
1791                         iter->oom_lock = true;
1792         }
1793
1794         if (failed) {
1795                 /*
1796                  * OK, we failed to lock the whole subtree so we have
1797                  * to clean up what we set up to the failing subtree
1798                  */
1799                 for_each_mem_cgroup_tree(iter, memcg) {
1800                         if (iter == failed) {
1801                                 mem_cgroup_iter_break(memcg, iter);
1802                                 break;
1803                         }
1804                         iter->oom_lock = false;
1805                 }
1806         } else
1807                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1808
1809         spin_unlock(&memcg_oom_lock);
1810
1811         return !failed;
1812 }
1813
1814 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1815 {
1816         struct mem_cgroup *iter;
1817
1818         spin_lock(&memcg_oom_lock);
1819         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1820         for_each_mem_cgroup_tree(iter, memcg)
1821                 iter->oom_lock = false;
1822         spin_unlock(&memcg_oom_lock);
1823 }
1824
1825 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1826 {
1827         struct mem_cgroup *iter;
1828
1829         spin_lock(&memcg_oom_lock);
1830         for_each_mem_cgroup_tree(iter, memcg)
1831                 iter->under_oom++;
1832         spin_unlock(&memcg_oom_lock);
1833 }
1834
1835 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1836 {
1837         struct mem_cgroup *iter;
1838
1839         /*
1840          * Be careful about under_oom underflows because a child memcg
1841          * could have been added after mem_cgroup_mark_under_oom.
1842          */
1843         spin_lock(&memcg_oom_lock);
1844         for_each_mem_cgroup_tree(iter, memcg)
1845                 if (iter->under_oom > 0)
1846                         iter->under_oom--;
1847         spin_unlock(&memcg_oom_lock);
1848 }
1849
1850 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1851
1852 struct oom_wait_info {
1853         struct mem_cgroup *memcg;
1854         wait_queue_entry_t      wait;
1855 };
1856
1857 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1858         unsigned mode, int sync, void *arg)
1859 {
1860         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1861         struct mem_cgroup *oom_wait_memcg;
1862         struct oom_wait_info *oom_wait_info;
1863
1864         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1865         oom_wait_memcg = oom_wait_info->memcg;
1866
1867         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1868             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1869                 return 0;
1870         return autoremove_wake_function(wait, mode, sync, arg);
1871 }
1872
1873 static void memcg_oom_recover(struct mem_cgroup *memcg)
1874 {
1875         /*
1876          * For the following lockless ->under_oom test, the only required
1877          * guarantee is that it must see the state asserted by an OOM when
1878          * this function is called as a result of userland actions
1879          * triggered by the notification of the OOM.  This is trivially
1880          * achieved by invoking mem_cgroup_mark_under_oom() before
1881          * triggering notification.
1882          */
1883         if (memcg && memcg->under_oom)
1884                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1885 }
1886
1887 /*
1888  * Returns true if successfully killed one or more processes. Though in some
1889  * corner cases it can return true even without killing any process.
1890  */
1891 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1892 {
1893         bool locked, ret;
1894
1895         if (order > PAGE_ALLOC_COSTLY_ORDER)
1896                 return false;
1897
1898         memcg_memory_event(memcg, MEMCG_OOM);
1899
1900         /*
1901          * We are in the middle of the charge context here, so we
1902          * don't want to block when potentially sitting on a callstack
1903          * that holds all kinds of filesystem and mm locks.
1904          *
1905          * cgroup1 allows disabling the OOM killer and waiting for outside
1906          * handling until the charge can succeed; remember the context and put
1907          * the task to sleep at the end of the page fault when all locks are
1908          * released.
1909          *
1910          * On the other hand, in-kernel OOM killer allows for an async victim
1911          * memory reclaim (oom_reaper) and that means that we are not solely
1912          * relying on the oom victim to make a forward progress and we can
1913          * invoke the oom killer here.
1914          *
1915          * Please note that mem_cgroup_out_of_memory might fail to find a
1916          * victim and then we have to bail out from the charge path.
1917          */
1918         if (memcg->oom_kill_disable) {
1919                 if (current->in_user_fault) {
1920                         css_get(&memcg->css);
1921                         current->memcg_in_oom = memcg;
1922                         current->memcg_oom_gfp_mask = mask;
1923                         current->memcg_oom_order = order;
1924                 }
1925                 return false;
1926         }
1927
1928         mem_cgroup_mark_under_oom(memcg);
1929
1930         locked = mem_cgroup_oom_trylock(memcg);
1931
1932         if (locked)
1933                 mem_cgroup_oom_notify(memcg);
1934
1935         mem_cgroup_unmark_under_oom(memcg);
1936         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1937
1938         if (locked)
1939                 mem_cgroup_oom_unlock(memcg);
1940
1941         return ret;
1942 }
1943
1944 /**
1945  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1946  * @handle: actually kill/wait or just clean up the OOM state
1947  *
1948  * This has to be called at the end of a page fault if the memcg OOM
1949  * handler was enabled.
1950  *
1951  * Memcg supports userspace OOM handling where failed allocations must
1952  * sleep on a waitqueue until the userspace task resolves the
1953  * situation.  Sleeping directly in the charge context with all kinds
1954  * of locks held is not a good idea, instead we remember an OOM state
1955  * in the task and mem_cgroup_oom_synchronize() has to be called at
1956  * the end of the page fault to complete the OOM handling.
1957  *
1958  * Returns %true if an ongoing memcg OOM situation was detected and
1959  * completed, %false otherwise.
1960  */
1961 bool mem_cgroup_oom_synchronize(bool handle)
1962 {
1963         struct mem_cgroup *memcg = current->memcg_in_oom;
1964         struct oom_wait_info owait;
1965         bool locked;
1966
1967         /* OOM is global, do not handle */
1968         if (!memcg)
1969                 return false;
1970
1971         if (!handle)
1972                 goto cleanup;
1973
1974         owait.memcg = memcg;
1975         owait.wait.flags = 0;
1976         owait.wait.func = memcg_oom_wake_function;
1977         owait.wait.private = current;
1978         INIT_LIST_HEAD(&owait.wait.entry);
1979
1980         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1981         mem_cgroup_mark_under_oom(memcg);
1982
1983         locked = mem_cgroup_oom_trylock(memcg);
1984
1985         if (locked)
1986                 mem_cgroup_oom_notify(memcg);
1987
1988         if (locked && !memcg->oom_kill_disable) {
1989                 mem_cgroup_unmark_under_oom(memcg);
1990                 finish_wait(&memcg_oom_waitq, &owait.wait);
1991                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1992                                          current->memcg_oom_order);
1993         } else {
1994                 schedule();
1995                 mem_cgroup_unmark_under_oom(memcg);
1996                 finish_wait(&memcg_oom_waitq, &owait.wait);
1997         }
1998
1999         if (locked) {
2000                 mem_cgroup_oom_unlock(memcg);
2001                 /*
2002                  * There is no guarantee that an OOM-lock contender
2003                  * sees the wakeups triggered by the OOM kill
2004                  * uncharges.  Wake any sleepers explicitly.
2005                  */
2006                 memcg_oom_recover(memcg);
2007         }
2008 cleanup:
2009         current->memcg_in_oom = NULL;
2010         css_put(&memcg->css);
2011         return true;
2012 }
2013
2014 /**
2015  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2016  * @victim: task to be killed by the OOM killer
2017  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2018  *
2019  * Returns a pointer to a memory cgroup, which has to be cleaned up
2020  * by killing all belonging OOM-killable tasks.
2021  *
2022  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2023  */
2024 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2025                                             struct mem_cgroup *oom_domain)
2026 {
2027         struct mem_cgroup *oom_group = NULL;
2028         struct mem_cgroup *memcg;
2029
2030         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2031                 return NULL;
2032
2033         if (!oom_domain)
2034                 oom_domain = root_mem_cgroup;
2035
2036         rcu_read_lock();
2037
2038         memcg = mem_cgroup_from_task(victim);
2039         if (memcg == root_mem_cgroup)
2040                 goto out;
2041
2042         /*
2043          * If the victim task has been asynchronously moved to a different
2044          * memory cgroup, we might end up killing tasks outside oom_domain.
2045          * In this case it's better to ignore memory.group.oom.
2046          */
2047         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2048                 goto out;
2049
2050         /*
2051          * Traverse the memory cgroup hierarchy from the victim task's
2052          * cgroup up to the OOMing cgroup (or root) to find the
2053          * highest-level memory cgroup with oom.group set.
2054          */
2055         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2056                 if (memcg->oom_group)
2057                         oom_group = memcg;
2058
2059                 if (memcg == oom_domain)
2060                         break;
2061         }
2062
2063         if (oom_group)
2064                 css_get(&oom_group->css);
2065 out:
2066         rcu_read_unlock();
2067
2068         return oom_group;
2069 }
2070
2071 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2072 {
2073         pr_info("Tasks in ");
2074         pr_cont_cgroup_path(memcg->css.cgroup);
2075         pr_cont(" are going to be killed due to memory.oom.group set\n");
2076 }
2077
2078 /**
2079  * folio_memcg_lock - Bind a folio to its memcg.
2080  * @folio: The folio.
2081  *
2082  * This function prevents unlocked LRU folios from being moved to
2083  * another cgroup.
2084  *
2085  * It ensures lifetime of the bound memcg.  The caller is responsible
2086  * for the lifetime of the folio.
2087  */
2088 void folio_memcg_lock(struct folio *folio)
2089 {
2090         struct mem_cgroup *memcg;
2091         unsigned long flags;
2092
2093         /*
2094          * The RCU lock is held throughout the transaction.  The fast
2095          * path can get away without acquiring the memcg->move_lock
2096          * because page moving starts with an RCU grace period.
2097          */
2098         rcu_read_lock();
2099
2100         if (mem_cgroup_disabled())
2101                 return;
2102 again:
2103         memcg = folio_memcg(folio);
2104         if (unlikely(!memcg))
2105                 return;
2106
2107 #ifdef CONFIG_PROVE_LOCKING
2108         local_irq_save(flags);
2109         might_lock(&memcg->move_lock);
2110         local_irq_restore(flags);
2111 #endif
2112
2113         if (atomic_read(&memcg->moving_account) <= 0)
2114                 return;
2115
2116         spin_lock_irqsave(&memcg->move_lock, flags);
2117         if (memcg != folio_memcg(folio)) {
2118                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2119                 goto again;
2120         }
2121
2122         /*
2123          * When charge migration first begins, we can have multiple
2124          * critical sections holding the fast-path RCU lock and one
2125          * holding the slowpath move_lock. Track the task who has the
2126          * move_lock for unlock_page_memcg().
2127          */
2128         memcg->move_lock_task = current;
2129         memcg->move_lock_flags = flags;
2130 }
2131
2132 void lock_page_memcg(struct page *page)
2133 {
2134         folio_memcg_lock(page_folio(page));
2135 }
2136
2137 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2138 {
2139         if (memcg && memcg->move_lock_task == current) {
2140                 unsigned long flags = memcg->move_lock_flags;
2141
2142                 memcg->move_lock_task = NULL;
2143                 memcg->move_lock_flags = 0;
2144
2145                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2146         }
2147
2148         rcu_read_unlock();
2149 }
2150
2151 /**
2152  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2153  * @folio: The folio.
2154  *
2155  * This releases the binding created by folio_memcg_lock().  This does
2156  * not change the accounting of this folio to its memcg, but it does
2157  * permit others to change it.
2158  */
2159 void folio_memcg_unlock(struct folio *folio)
2160 {
2161         __folio_memcg_unlock(folio_memcg(folio));
2162 }
2163
2164 void unlock_page_memcg(struct page *page)
2165 {
2166         folio_memcg_unlock(page_folio(page));
2167 }
2168
2169 struct memcg_stock_pcp {
2170         local_lock_t stock_lock;
2171         struct mem_cgroup *cached; /* this never be root cgroup */
2172         unsigned int nr_pages;
2173
2174 #ifdef CONFIG_MEMCG_KMEM
2175         struct obj_cgroup *cached_objcg;
2176         struct pglist_data *cached_pgdat;
2177         unsigned int nr_bytes;
2178         int nr_slab_reclaimable_b;
2179         int nr_slab_unreclaimable_b;
2180 #endif
2181
2182         struct work_struct work;
2183         unsigned long flags;
2184 #define FLUSHING_CACHED_CHARGE  0
2185 };
2186 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2187         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2188 };
2189 static DEFINE_MUTEX(percpu_charge_mutex);
2190
2191 #ifdef CONFIG_MEMCG_KMEM
2192 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2193 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2194                                      struct mem_cgroup *root_memcg);
2195 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2196
2197 #else
2198 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2199 {
2200         return NULL;
2201 }
2202 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2203                                      struct mem_cgroup *root_memcg)
2204 {
2205         return false;
2206 }
2207 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2208 {
2209 }
2210 #endif
2211
2212 /**
2213  * consume_stock: Try to consume stocked charge on this cpu.
2214  * @memcg: memcg to consume from.
2215  * @nr_pages: how many pages to charge.
2216  *
2217  * The charges will only happen if @memcg matches the current cpu's memcg
2218  * stock, and at least @nr_pages are available in that stock.  Failure to
2219  * service an allocation will refill the stock.
2220  *
2221  * returns true if successful, false otherwise.
2222  */
2223 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2224 {
2225         struct memcg_stock_pcp *stock;
2226         unsigned long flags;
2227         bool ret = false;
2228
2229         if (nr_pages > MEMCG_CHARGE_BATCH)
2230                 return ret;
2231
2232         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2233
2234         stock = this_cpu_ptr(&memcg_stock);
2235         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2236                 stock->nr_pages -= nr_pages;
2237                 ret = true;
2238         }
2239
2240         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2241
2242         return ret;
2243 }
2244
2245 /*
2246  * Returns stocks cached in percpu and reset cached information.
2247  */
2248 static void drain_stock(struct memcg_stock_pcp *stock)
2249 {
2250         struct mem_cgroup *old = stock->cached;
2251
2252         if (!old)
2253                 return;
2254
2255         if (stock->nr_pages) {
2256                 page_counter_uncharge(&old->memory, stock->nr_pages);
2257                 if (do_memsw_account())
2258                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2259                 stock->nr_pages = 0;
2260         }
2261
2262         css_put(&old->css);
2263         stock->cached = NULL;
2264 }
2265
2266 static void drain_local_stock(struct work_struct *dummy)
2267 {
2268         struct memcg_stock_pcp *stock;
2269         struct obj_cgroup *old = NULL;
2270         unsigned long flags;
2271
2272         /*
2273          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2274          * drain_stock races is that we always operate on local CPU stock
2275          * here with IRQ disabled
2276          */
2277         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2278
2279         stock = this_cpu_ptr(&memcg_stock);
2280         old = drain_obj_stock(stock);
2281         drain_stock(stock);
2282         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2283
2284         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2285         if (old)
2286                 obj_cgroup_put(old);
2287 }
2288
2289 /*
2290  * Cache charges(val) to local per_cpu area.
2291  * This will be consumed by consume_stock() function, later.
2292  */
2293 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2294 {
2295         struct memcg_stock_pcp *stock;
2296
2297         stock = this_cpu_ptr(&memcg_stock);
2298         if (stock->cached != memcg) { /* reset if necessary */
2299                 drain_stock(stock);
2300                 css_get(&memcg->css);
2301                 stock->cached = memcg;
2302         }
2303         stock->nr_pages += nr_pages;
2304
2305         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2306                 drain_stock(stock);
2307 }
2308
2309 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2310 {
2311         unsigned long flags;
2312
2313         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2314         __refill_stock(memcg, nr_pages);
2315         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2316 }
2317
2318 /*
2319  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2320  * of the hierarchy under it.
2321  */
2322 static void drain_all_stock(struct mem_cgroup *root_memcg)
2323 {
2324         int cpu, curcpu;
2325
2326         /* If someone's already draining, avoid adding running more workers. */
2327         if (!mutex_trylock(&percpu_charge_mutex))
2328                 return;
2329         /*
2330          * Notify other cpus that system-wide "drain" is running
2331          * We do not care about races with the cpu hotplug because cpu down
2332          * as well as workers from this path always operate on the local
2333          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2334          */
2335         migrate_disable();
2336         curcpu = smp_processor_id();
2337         for_each_online_cpu(cpu) {
2338                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2339                 struct mem_cgroup *memcg;
2340                 bool flush = false;
2341
2342                 rcu_read_lock();
2343                 memcg = stock->cached;
2344                 if (memcg && stock->nr_pages &&
2345                     mem_cgroup_is_descendant(memcg, root_memcg))
2346                         flush = true;
2347                 else if (obj_stock_flush_required(stock, root_memcg))
2348                         flush = true;
2349                 rcu_read_unlock();
2350
2351                 if (flush &&
2352                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2353                         if (cpu == curcpu)
2354                                 drain_local_stock(&stock->work);
2355                         else
2356                                 schedule_work_on(cpu, &stock->work);
2357                 }
2358         }
2359         migrate_enable();
2360         mutex_unlock(&percpu_charge_mutex);
2361 }
2362
2363 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2364 {
2365         struct memcg_stock_pcp *stock;
2366
2367         stock = &per_cpu(memcg_stock, cpu);
2368         drain_stock(stock);
2369
2370         return 0;
2371 }
2372
2373 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2374                                   unsigned int nr_pages,
2375                                   gfp_t gfp_mask)
2376 {
2377         unsigned long nr_reclaimed = 0;
2378
2379         do {
2380                 unsigned long pflags;
2381
2382                 if (page_counter_read(&memcg->memory) <=
2383                     READ_ONCE(memcg->memory.high))
2384                         continue;
2385
2386                 memcg_memory_event(memcg, MEMCG_HIGH);
2387
2388                 psi_memstall_enter(&pflags);
2389                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2390                                                         gfp_mask,
2391                                                         MEMCG_RECLAIM_MAY_SWAP);
2392                 psi_memstall_leave(&pflags);
2393         } while ((memcg = parent_mem_cgroup(memcg)) &&
2394                  !mem_cgroup_is_root(memcg));
2395
2396         return nr_reclaimed;
2397 }
2398
2399 static void high_work_func(struct work_struct *work)
2400 {
2401         struct mem_cgroup *memcg;
2402
2403         memcg = container_of(work, struct mem_cgroup, high_work);
2404         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2405 }
2406
2407 /*
2408  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2409  * enough to still cause a significant slowdown in most cases, while still
2410  * allowing diagnostics and tracing to proceed without becoming stuck.
2411  */
2412 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2413
2414 /*
2415  * When calculating the delay, we use these either side of the exponentiation to
2416  * maintain precision and scale to a reasonable number of jiffies (see the table
2417  * below.
2418  *
2419  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2420  *   overage ratio to a delay.
2421  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2422  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2423  *   to produce a reasonable delay curve.
2424  *
2425  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2426  * reasonable delay curve compared to precision-adjusted overage, not
2427  * penalising heavily at first, but still making sure that growth beyond the
2428  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2429  * example, with a high of 100 megabytes:
2430  *
2431  *  +-------+------------------------+
2432  *  | usage | time to allocate in ms |
2433  *  +-------+------------------------+
2434  *  | 100M  |                      0 |
2435  *  | 101M  |                      6 |
2436  *  | 102M  |                     25 |
2437  *  | 103M  |                     57 |
2438  *  | 104M  |                    102 |
2439  *  | 105M  |                    159 |
2440  *  | 106M  |                    230 |
2441  *  | 107M  |                    313 |
2442  *  | 108M  |                    409 |
2443  *  | 109M  |                    518 |
2444  *  | 110M  |                    639 |
2445  *  | 111M  |                    774 |
2446  *  | 112M  |                    921 |
2447  *  | 113M  |                   1081 |
2448  *  | 114M  |                   1254 |
2449  *  | 115M  |                   1439 |
2450  *  | 116M  |                   1638 |
2451  *  | 117M  |                   1849 |
2452  *  | 118M  |                   2000 |
2453  *  | 119M  |                   2000 |
2454  *  | 120M  |                   2000 |
2455  *  +-------+------------------------+
2456  */
2457  #define MEMCG_DELAY_PRECISION_SHIFT 20
2458  #define MEMCG_DELAY_SCALING_SHIFT 14
2459
2460 static u64 calculate_overage(unsigned long usage, unsigned long high)
2461 {
2462         u64 overage;
2463
2464         if (usage <= high)
2465                 return 0;
2466
2467         /*
2468          * Prevent division by 0 in overage calculation by acting as if
2469          * it was a threshold of 1 page
2470          */
2471         high = max(high, 1UL);
2472
2473         overage = usage - high;
2474         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2475         return div64_u64(overage, high);
2476 }
2477
2478 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2479 {
2480         u64 overage, max_overage = 0;
2481
2482         do {
2483                 overage = calculate_overage(page_counter_read(&memcg->memory),
2484                                             READ_ONCE(memcg->memory.high));
2485                 max_overage = max(overage, max_overage);
2486         } while ((memcg = parent_mem_cgroup(memcg)) &&
2487                  !mem_cgroup_is_root(memcg));
2488
2489         return max_overage;
2490 }
2491
2492 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2493 {
2494         u64 overage, max_overage = 0;
2495
2496         do {
2497                 overage = calculate_overage(page_counter_read(&memcg->swap),
2498                                             READ_ONCE(memcg->swap.high));
2499                 if (overage)
2500                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2501                 max_overage = max(overage, max_overage);
2502         } while ((memcg = parent_mem_cgroup(memcg)) &&
2503                  !mem_cgroup_is_root(memcg));
2504
2505         return max_overage;
2506 }
2507
2508 /*
2509  * Get the number of jiffies that we should penalise a mischievous cgroup which
2510  * is exceeding its memory.high by checking both it and its ancestors.
2511  */
2512 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2513                                           unsigned int nr_pages,
2514                                           u64 max_overage)
2515 {
2516         unsigned long penalty_jiffies;
2517
2518         if (!max_overage)
2519                 return 0;
2520
2521         /*
2522          * We use overage compared to memory.high to calculate the number of
2523          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2524          * fairly lenient on small overages, and increasingly harsh when the
2525          * memcg in question makes it clear that it has no intention of stopping
2526          * its crazy behaviour, so we exponentially increase the delay based on
2527          * overage amount.
2528          */
2529         penalty_jiffies = max_overage * max_overage * HZ;
2530         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2531         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2532
2533         /*
2534          * Factor in the task's own contribution to the overage, such that four
2535          * N-sized allocations are throttled approximately the same as one
2536          * 4N-sized allocation.
2537          *
2538          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2539          * larger the current charge patch is than that.
2540          */
2541         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2542 }
2543
2544 /*
2545  * Scheduled by try_charge() to be executed from the userland return path
2546  * and reclaims memory over the high limit.
2547  */
2548 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2549 {
2550         unsigned long penalty_jiffies;
2551         unsigned long pflags;
2552         unsigned long nr_reclaimed;
2553         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2554         int nr_retries = MAX_RECLAIM_RETRIES;
2555         struct mem_cgroup *memcg;
2556         bool in_retry = false;
2557
2558         if (likely(!nr_pages))
2559                 return;
2560
2561         memcg = get_mem_cgroup_from_mm(current->mm);
2562         current->memcg_nr_pages_over_high = 0;
2563
2564 retry_reclaim:
2565         /*
2566          * The allocating task should reclaim at least the batch size, but for
2567          * subsequent retries we only want to do what's necessary to prevent oom
2568          * or breaching resource isolation.
2569          *
2570          * This is distinct from memory.max or page allocator behaviour because
2571          * memory.high is currently batched, whereas memory.max and the page
2572          * allocator run every time an allocation is made.
2573          */
2574         nr_reclaimed = reclaim_high(memcg,
2575                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2576                                     gfp_mask);
2577
2578         /*
2579          * memory.high is breached and reclaim is unable to keep up. Throttle
2580          * allocators proactively to slow down excessive growth.
2581          */
2582         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2583                                                mem_find_max_overage(memcg));
2584
2585         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2586                                                 swap_find_max_overage(memcg));
2587
2588         /*
2589          * Clamp the max delay per usermode return so as to still keep the
2590          * application moving forwards and also permit diagnostics, albeit
2591          * extremely slowly.
2592          */
2593         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2594
2595         /*
2596          * Don't sleep if the amount of jiffies this memcg owes us is so low
2597          * that it's not even worth doing, in an attempt to be nice to those who
2598          * go only a small amount over their memory.high value and maybe haven't
2599          * been aggressively reclaimed enough yet.
2600          */
2601         if (penalty_jiffies <= HZ / 100)
2602                 goto out;
2603
2604         /*
2605          * If reclaim is making forward progress but we're still over
2606          * memory.high, we want to encourage that rather than doing allocator
2607          * throttling.
2608          */
2609         if (nr_reclaimed || nr_retries--) {
2610                 in_retry = true;
2611                 goto retry_reclaim;
2612         }
2613
2614         /*
2615          * If we exit early, we're guaranteed to die (since
2616          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2617          * need to account for any ill-begotten jiffies to pay them off later.
2618          */
2619         psi_memstall_enter(&pflags);
2620         schedule_timeout_killable(penalty_jiffies);
2621         psi_memstall_leave(&pflags);
2622
2623 out:
2624         css_put(&memcg->css);
2625 }
2626
2627 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2628                         unsigned int nr_pages)
2629 {
2630         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2631         int nr_retries = MAX_RECLAIM_RETRIES;
2632         struct mem_cgroup *mem_over_limit;
2633         struct page_counter *counter;
2634         unsigned long nr_reclaimed;
2635         bool passed_oom = false;
2636         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2637         bool drained = false;
2638         bool raised_max_event = false;
2639         unsigned long pflags;
2640
2641 retry:
2642         if (consume_stock(memcg, nr_pages))
2643                 return 0;
2644
2645         if (!do_memsw_account() ||
2646             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2647                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2648                         goto done_restock;
2649                 if (do_memsw_account())
2650                         page_counter_uncharge(&memcg->memsw, batch);
2651                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2652         } else {
2653                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2654                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2655         }
2656
2657         if (batch > nr_pages) {
2658                 batch = nr_pages;
2659                 goto retry;
2660         }
2661
2662         /*
2663          * Prevent unbounded recursion when reclaim operations need to
2664          * allocate memory. This might exceed the limits temporarily,
2665          * but we prefer facilitating memory reclaim and getting back
2666          * under the limit over triggering OOM kills in these cases.
2667          */
2668         if (unlikely(current->flags & PF_MEMALLOC))
2669                 goto force;
2670
2671         if (unlikely(task_in_memcg_oom(current)))
2672                 goto nomem;
2673
2674         if (!gfpflags_allow_blocking(gfp_mask))
2675                 goto nomem;
2676
2677         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2678         raised_max_event = true;
2679
2680         psi_memstall_enter(&pflags);
2681         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2682                                                     gfp_mask, reclaim_options);
2683         psi_memstall_leave(&pflags);
2684
2685         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2686                 goto retry;
2687
2688         if (!drained) {
2689                 drain_all_stock(mem_over_limit);
2690                 drained = true;
2691                 goto retry;
2692         }
2693
2694         if (gfp_mask & __GFP_NORETRY)
2695                 goto nomem;
2696         /*
2697          * Even though the limit is exceeded at this point, reclaim
2698          * may have been able to free some pages.  Retry the charge
2699          * before killing the task.
2700          *
2701          * Only for regular pages, though: huge pages are rather
2702          * unlikely to succeed so close to the limit, and we fall back
2703          * to regular pages anyway in case of failure.
2704          */
2705         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2706                 goto retry;
2707         /*
2708          * At task move, charge accounts can be doubly counted. So, it's
2709          * better to wait until the end of task_move if something is going on.
2710          */
2711         if (mem_cgroup_wait_acct_move(mem_over_limit))
2712                 goto retry;
2713
2714         if (nr_retries--)
2715                 goto retry;
2716
2717         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2718                 goto nomem;
2719
2720         /* Avoid endless loop for tasks bypassed by the oom killer */
2721         if (passed_oom && task_is_dying())
2722                 goto nomem;
2723
2724         /*
2725          * keep retrying as long as the memcg oom killer is able to make
2726          * a forward progress or bypass the charge if the oom killer
2727          * couldn't make any progress.
2728          */
2729         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2730                            get_order(nr_pages * PAGE_SIZE))) {
2731                 passed_oom = true;
2732                 nr_retries = MAX_RECLAIM_RETRIES;
2733                 goto retry;
2734         }
2735 nomem:
2736         /*
2737          * Memcg doesn't have a dedicated reserve for atomic
2738          * allocations. But like the global atomic pool, we need to
2739          * put the burden of reclaim on regular allocation requests
2740          * and let these go through as privileged allocations.
2741          */
2742         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2743                 return -ENOMEM;
2744 force:
2745         /*
2746          * If the allocation has to be enforced, don't forget to raise
2747          * a MEMCG_MAX event.
2748          */
2749         if (!raised_max_event)
2750                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2751
2752         /*
2753          * The allocation either can't fail or will lead to more memory
2754          * being freed very soon.  Allow memory usage go over the limit
2755          * temporarily by force charging it.
2756          */
2757         page_counter_charge(&memcg->memory, nr_pages);
2758         if (do_memsw_account())
2759                 page_counter_charge(&memcg->memsw, nr_pages);
2760
2761         return 0;
2762
2763 done_restock:
2764         if (batch > nr_pages)
2765                 refill_stock(memcg, batch - nr_pages);
2766
2767         /*
2768          * If the hierarchy is above the normal consumption range, schedule
2769          * reclaim on returning to userland.  We can perform reclaim here
2770          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2771          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2772          * not recorded as it most likely matches current's and won't
2773          * change in the meantime.  As high limit is checked again before
2774          * reclaim, the cost of mismatch is negligible.
2775          */
2776         do {
2777                 bool mem_high, swap_high;
2778
2779                 mem_high = page_counter_read(&memcg->memory) >
2780                         READ_ONCE(memcg->memory.high);
2781                 swap_high = page_counter_read(&memcg->swap) >
2782                         READ_ONCE(memcg->swap.high);
2783
2784                 /* Don't bother a random interrupted task */
2785                 if (!in_task()) {
2786                         if (mem_high) {
2787                                 schedule_work(&memcg->high_work);
2788                                 break;
2789                         }
2790                         continue;
2791                 }
2792
2793                 if (mem_high || swap_high) {
2794                         /*
2795                          * The allocating tasks in this cgroup will need to do
2796                          * reclaim or be throttled to prevent further growth
2797                          * of the memory or swap footprints.
2798                          *
2799                          * Target some best-effort fairness between the tasks,
2800                          * and distribute reclaim work and delay penalties
2801                          * based on how much each task is actually allocating.
2802                          */
2803                         current->memcg_nr_pages_over_high += batch;
2804                         set_notify_resume(current);
2805                         break;
2806                 }
2807         } while ((memcg = parent_mem_cgroup(memcg)));
2808
2809         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2810             !(current->flags & PF_MEMALLOC) &&
2811             gfpflags_allow_blocking(gfp_mask)) {
2812                 mem_cgroup_handle_over_high(gfp_mask);
2813         }
2814         return 0;
2815 }
2816
2817 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2818                              unsigned int nr_pages)
2819 {
2820         if (mem_cgroup_is_root(memcg))
2821                 return 0;
2822
2823         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2824 }
2825
2826 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2827 {
2828         if (mem_cgroup_is_root(memcg))
2829                 return;
2830
2831         page_counter_uncharge(&memcg->memory, nr_pages);
2832         if (do_memsw_account())
2833                 page_counter_uncharge(&memcg->memsw, nr_pages);
2834 }
2835
2836 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2837 {
2838         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2839         /*
2840          * Any of the following ensures page's memcg stability:
2841          *
2842          * - the page lock
2843          * - LRU isolation
2844          * - lock_page_memcg()
2845          * - exclusive reference
2846          * - mem_cgroup_trylock_pages()
2847          */
2848         folio->memcg_data = (unsigned long)memcg;
2849 }
2850
2851 #ifdef CONFIG_MEMCG_KMEM
2852 /*
2853  * The allocated objcg pointers array is not accounted directly.
2854  * Moreover, it should not come from DMA buffer and is not readily
2855  * reclaimable. So those GFP bits should be masked off.
2856  */
2857 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | \
2858                                  __GFP_ACCOUNT | __GFP_NOFAIL)
2859
2860 /*
2861  * mod_objcg_mlstate() may be called with irq enabled, so
2862  * mod_memcg_lruvec_state() should be used.
2863  */
2864 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2865                                      struct pglist_data *pgdat,
2866                                      enum node_stat_item idx, int nr)
2867 {
2868         struct mem_cgroup *memcg;
2869         struct lruvec *lruvec;
2870
2871         rcu_read_lock();
2872         memcg = obj_cgroup_memcg(objcg);
2873         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2874         mod_memcg_lruvec_state(lruvec, idx, nr);
2875         rcu_read_unlock();
2876 }
2877
2878 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2879                                  gfp_t gfp, bool new_slab)
2880 {
2881         unsigned int objects = objs_per_slab(s, slab);
2882         unsigned long memcg_data;
2883         void *vec;
2884
2885         gfp &= ~OBJCGS_CLEAR_MASK;
2886         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2887                            slab_nid(slab));
2888         if (!vec)
2889                 return -ENOMEM;
2890
2891         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2892         if (new_slab) {
2893                 /*
2894                  * If the slab is brand new and nobody can yet access its
2895                  * memcg_data, no synchronization is required and memcg_data can
2896                  * be simply assigned.
2897                  */
2898                 slab->memcg_data = memcg_data;
2899         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2900                 /*
2901                  * If the slab is already in use, somebody can allocate and
2902                  * assign obj_cgroups in parallel. In this case the existing
2903                  * objcg vector should be reused.
2904                  */
2905                 kfree(vec);
2906                 return 0;
2907         }
2908
2909         kmemleak_not_leak(vec);
2910         return 0;
2911 }
2912
2913 static __always_inline
2914 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2915 {
2916         /*
2917          * Slab objects are accounted individually, not per-page.
2918          * Memcg membership data for each individual object is saved in
2919          * slab->memcg_data.
2920          */
2921         if (folio_test_slab(folio)) {
2922                 struct obj_cgroup **objcgs;
2923                 struct slab *slab;
2924                 unsigned int off;
2925
2926                 slab = folio_slab(folio);
2927                 objcgs = slab_objcgs(slab);
2928                 if (!objcgs)
2929                         return NULL;
2930
2931                 off = obj_to_index(slab->slab_cache, slab, p);
2932                 if (objcgs[off])
2933                         return obj_cgroup_memcg(objcgs[off]);
2934
2935                 return NULL;
2936         }
2937
2938         /*
2939          * page_memcg_check() is used here, because in theory we can encounter
2940          * a folio where the slab flag has been cleared already, but
2941          * slab->memcg_data has not been freed yet
2942          * page_memcg_check(page) will guarantee that a proper memory
2943          * cgroup pointer or NULL will be returned.
2944          */
2945         return page_memcg_check(folio_page(folio, 0));
2946 }
2947
2948 /*
2949  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2950  *
2951  * A passed kernel object can be a slab object, vmalloc object or a generic
2952  * kernel page, so different mechanisms for getting the memory cgroup pointer
2953  * should be used.
2954  *
2955  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2956  * can not know for sure how the kernel object is implemented.
2957  * mem_cgroup_from_obj() can be safely used in such cases.
2958  *
2959  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2960  * cgroup_mutex, etc.
2961  */
2962 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2963 {
2964         struct folio *folio;
2965
2966         if (mem_cgroup_disabled())
2967                 return NULL;
2968
2969         if (unlikely(is_vmalloc_addr(p)))
2970                 folio = page_folio(vmalloc_to_page(p));
2971         else
2972                 folio = virt_to_folio(p);
2973
2974         return mem_cgroup_from_obj_folio(folio, p);
2975 }
2976
2977 /*
2978  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2979  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2980  * allocated using vmalloc().
2981  *
2982  * A passed kernel object must be a slab object or a generic kernel page.
2983  *
2984  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2985  * cgroup_mutex, etc.
2986  */
2987 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2988 {
2989         if (mem_cgroup_disabled())
2990                 return NULL;
2991
2992         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2993 }
2994
2995 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2996 {
2997         struct obj_cgroup *objcg = NULL;
2998
2999         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3000                 objcg = rcu_dereference(memcg->objcg);
3001                 if (objcg && obj_cgroup_tryget(objcg))
3002                         break;
3003                 objcg = NULL;
3004         }
3005         return objcg;
3006 }
3007
3008 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3009 {
3010         struct obj_cgroup *objcg = NULL;
3011         struct mem_cgroup *memcg;
3012
3013         if (memcg_kmem_bypass())
3014                 return NULL;
3015
3016         rcu_read_lock();
3017         if (unlikely(active_memcg()))
3018                 memcg = active_memcg();
3019         else
3020                 memcg = mem_cgroup_from_task(current);
3021         objcg = __get_obj_cgroup_from_memcg(memcg);
3022         rcu_read_unlock();
3023         return objcg;
3024 }
3025
3026 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3027 {
3028         struct obj_cgroup *objcg;
3029
3030         if (!memcg_kmem_enabled())
3031                 return NULL;
3032
3033         if (PageMemcgKmem(page)) {
3034                 objcg = __folio_objcg(page_folio(page));
3035                 obj_cgroup_get(objcg);
3036         } else {
3037                 struct mem_cgroup *memcg;
3038
3039                 rcu_read_lock();
3040                 memcg = __folio_memcg(page_folio(page));
3041                 if (memcg)
3042                         objcg = __get_obj_cgroup_from_memcg(memcg);
3043                 else
3044                         objcg = NULL;
3045                 rcu_read_unlock();
3046         }
3047         return objcg;
3048 }
3049
3050 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3051 {
3052         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3053         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3054                 if (nr_pages > 0)
3055                         page_counter_charge(&memcg->kmem, nr_pages);
3056                 else
3057                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3058         }
3059 }
3060
3061
3062 /*
3063  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3064  * @objcg: object cgroup to uncharge
3065  * @nr_pages: number of pages to uncharge
3066  */
3067 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3068                                       unsigned int nr_pages)
3069 {
3070         struct mem_cgroup *memcg;
3071
3072         memcg = get_mem_cgroup_from_objcg(objcg);
3073
3074         memcg_account_kmem(memcg, -nr_pages);
3075         refill_stock(memcg, nr_pages);
3076
3077         css_put(&memcg->css);
3078 }
3079
3080 /*
3081  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3082  * @objcg: object cgroup to charge
3083  * @gfp: reclaim mode
3084  * @nr_pages: number of pages to charge
3085  *
3086  * Returns 0 on success, an error code on failure.
3087  */
3088 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3089                                    unsigned int nr_pages)
3090 {
3091         struct mem_cgroup *memcg;
3092         int ret;
3093
3094         memcg = get_mem_cgroup_from_objcg(objcg);
3095
3096         ret = try_charge_memcg(memcg, gfp, nr_pages);
3097         if (ret)
3098                 goto out;
3099
3100         memcg_account_kmem(memcg, nr_pages);
3101 out:
3102         css_put(&memcg->css);
3103
3104         return ret;
3105 }
3106
3107 /**
3108  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3109  * @page: page to charge
3110  * @gfp: reclaim mode
3111  * @order: allocation order
3112  *
3113  * Returns 0 on success, an error code on failure.
3114  */
3115 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3116 {
3117         struct obj_cgroup *objcg;
3118         int ret = 0;
3119
3120         objcg = get_obj_cgroup_from_current();
3121         if (objcg) {
3122                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3123                 if (!ret) {
3124                         page->memcg_data = (unsigned long)objcg |
3125                                 MEMCG_DATA_KMEM;
3126                         return 0;
3127                 }
3128                 obj_cgroup_put(objcg);
3129         }
3130         return ret;
3131 }
3132
3133 /**
3134  * __memcg_kmem_uncharge_page: uncharge a kmem page
3135  * @page: page to uncharge
3136  * @order: allocation order
3137  */
3138 void __memcg_kmem_uncharge_page(struct page *page, int order)
3139 {
3140         struct folio *folio = page_folio(page);
3141         struct obj_cgroup *objcg;
3142         unsigned int nr_pages = 1 << order;
3143
3144         if (!folio_memcg_kmem(folio))
3145                 return;
3146
3147         objcg = __folio_objcg(folio);
3148         obj_cgroup_uncharge_pages(objcg, nr_pages);
3149         folio->memcg_data = 0;
3150         obj_cgroup_put(objcg);
3151 }
3152
3153 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3154                      enum node_stat_item idx, int nr)
3155 {
3156         struct memcg_stock_pcp *stock;
3157         struct obj_cgroup *old = NULL;
3158         unsigned long flags;
3159         int *bytes;
3160
3161         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3162         stock = this_cpu_ptr(&memcg_stock);
3163
3164         /*
3165          * Save vmstat data in stock and skip vmstat array update unless
3166          * accumulating over a page of vmstat data or when pgdat or idx
3167          * changes.
3168          */
3169         if (READ_ONCE(stock->cached_objcg) != objcg) {
3170                 old = drain_obj_stock(stock);
3171                 obj_cgroup_get(objcg);
3172                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3173                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3174                 WRITE_ONCE(stock->cached_objcg, objcg);
3175                 stock->cached_pgdat = pgdat;
3176         } else if (stock->cached_pgdat != pgdat) {
3177                 /* Flush the existing cached vmstat data */
3178                 struct pglist_data *oldpg = stock->cached_pgdat;
3179
3180                 if (stock->nr_slab_reclaimable_b) {
3181                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3182                                           stock->nr_slab_reclaimable_b);
3183                         stock->nr_slab_reclaimable_b = 0;
3184                 }
3185                 if (stock->nr_slab_unreclaimable_b) {
3186                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3187                                           stock->nr_slab_unreclaimable_b);
3188                         stock->nr_slab_unreclaimable_b = 0;
3189                 }
3190                 stock->cached_pgdat = pgdat;
3191         }
3192
3193         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3194                                                : &stock->nr_slab_unreclaimable_b;
3195         /*
3196          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3197          * cached locally at least once before pushing it out.
3198          */
3199         if (!*bytes) {
3200                 *bytes = nr;
3201                 nr = 0;
3202         } else {
3203                 *bytes += nr;
3204                 if (abs(*bytes) > PAGE_SIZE) {
3205                         nr = *bytes;
3206                         *bytes = 0;
3207                 } else {
3208                         nr = 0;
3209                 }
3210         }
3211         if (nr)
3212                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3213
3214         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3215         if (old)
3216                 obj_cgroup_put(old);
3217 }
3218
3219 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3220 {
3221         struct memcg_stock_pcp *stock;
3222         unsigned long flags;
3223         bool ret = false;
3224
3225         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3226
3227         stock = this_cpu_ptr(&memcg_stock);
3228         if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3229                 stock->nr_bytes -= nr_bytes;
3230                 ret = true;
3231         }
3232
3233         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3234
3235         return ret;
3236 }
3237
3238 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3239 {
3240         struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3241
3242         if (!old)
3243                 return NULL;
3244
3245         if (stock->nr_bytes) {
3246                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3247                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3248
3249                 if (nr_pages) {
3250                         struct mem_cgroup *memcg;
3251
3252                         memcg = get_mem_cgroup_from_objcg(old);
3253
3254                         memcg_account_kmem(memcg, -nr_pages);
3255                         __refill_stock(memcg, nr_pages);
3256
3257                         css_put(&memcg->css);
3258                 }
3259
3260                 /*
3261                  * The leftover is flushed to the centralized per-memcg value.
3262                  * On the next attempt to refill obj stock it will be moved
3263                  * to a per-cpu stock (probably, on an other CPU), see
3264                  * refill_obj_stock().
3265                  *
3266                  * How often it's flushed is a trade-off between the memory
3267                  * limit enforcement accuracy and potential CPU contention,
3268                  * so it might be changed in the future.
3269                  */
3270                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3271                 stock->nr_bytes = 0;
3272         }
3273
3274         /*
3275          * Flush the vmstat data in current stock
3276          */
3277         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3278                 if (stock->nr_slab_reclaimable_b) {
3279                         mod_objcg_mlstate(old, stock->cached_pgdat,
3280                                           NR_SLAB_RECLAIMABLE_B,
3281                                           stock->nr_slab_reclaimable_b);
3282                         stock->nr_slab_reclaimable_b = 0;
3283                 }
3284                 if (stock->nr_slab_unreclaimable_b) {
3285                         mod_objcg_mlstate(old, stock->cached_pgdat,
3286                                           NR_SLAB_UNRECLAIMABLE_B,
3287                                           stock->nr_slab_unreclaimable_b);
3288                         stock->nr_slab_unreclaimable_b = 0;
3289                 }
3290                 stock->cached_pgdat = NULL;
3291         }
3292
3293         WRITE_ONCE(stock->cached_objcg, NULL);
3294         /*
3295          * The `old' objects needs to be released by the caller via
3296          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3297          */
3298         return old;
3299 }
3300
3301 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3302                                      struct mem_cgroup *root_memcg)
3303 {
3304         struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3305         struct mem_cgroup *memcg;
3306
3307         if (objcg) {
3308                 memcg = obj_cgroup_memcg(objcg);
3309                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3310                         return true;
3311         }
3312
3313         return false;
3314 }
3315
3316 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3317                              bool allow_uncharge)
3318 {
3319         struct memcg_stock_pcp *stock;
3320         struct obj_cgroup *old = NULL;
3321         unsigned long flags;
3322         unsigned int nr_pages = 0;
3323
3324         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3325
3326         stock = this_cpu_ptr(&memcg_stock);
3327         if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3328                 old = drain_obj_stock(stock);
3329                 obj_cgroup_get(objcg);
3330                 WRITE_ONCE(stock->cached_objcg, objcg);
3331                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3332                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3333                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3334         }
3335         stock->nr_bytes += nr_bytes;
3336
3337         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3338                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3339                 stock->nr_bytes &= (PAGE_SIZE - 1);
3340         }
3341
3342         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3343         if (old)
3344                 obj_cgroup_put(old);
3345
3346         if (nr_pages)
3347                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3348 }
3349
3350 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3351 {
3352         unsigned int nr_pages, nr_bytes;
3353         int ret;
3354
3355         if (consume_obj_stock(objcg, size))
3356                 return 0;
3357
3358         /*
3359          * In theory, objcg->nr_charged_bytes can have enough
3360          * pre-charged bytes to satisfy the allocation. However,
3361          * flushing objcg->nr_charged_bytes requires two atomic
3362          * operations, and objcg->nr_charged_bytes can't be big.
3363          * The shared objcg->nr_charged_bytes can also become a
3364          * performance bottleneck if all tasks of the same memcg are
3365          * trying to update it. So it's better to ignore it and try
3366          * grab some new pages. The stock's nr_bytes will be flushed to
3367          * objcg->nr_charged_bytes later on when objcg changes.
3368          *
3369          * The stock's nr_bytes may contain enough pre-charged bytes
3370          * to allow one less page from being charged, but we can't rely
3371          * on the pre-charged bytes not being changed outside of
3372          * consume_obj_stock() or refill_obj_stock(). So ignore those
3373          * pre-charged bytes as well when charging pages. To avoid a
3374          * page uncharge right after a page charge, we set the
3375          * allow_uncharge flag to false when calling refill_obj_stock()
3376          * to temporarily allow the pre-charged bytes to exceed the page
3377          * size limit. The maximum reachable value of the pre-charged
3378          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3379          * race.
3380          */
3381         nr_pages = size >> PAGE_SHIFT;
3382         nr_bytes = size & (PAGE_SIZE - 1);
3383
3384         if (nr_bytes)
3385                 nr_pages += 1;
3386
3387         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3388         if (!ret && nr_bytes)
3389                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3390
3391         return ret;
3392 }
3393
3394 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3395 {
3396         refill_obj_stock(objcg, size, true);
3397 }
3398
3399 #endif /* CONFIG_MEMCG_KMEM */
3400
3401 /*
3402  * Because page_memcg(head) is not set on tails, set it now.
3403  */
3404 void split_page_memcg(struct page *head, unsigned int nr)
3405 {
3406         struct folio *folio = page_folio(head);
3407         struct mem_cgroup *memcg = folio_memcg(folio);
3408         int i;
3409
3410         if (mem_cgroup_disabled() || !memcg)
3411                 return;
3412
3413         for (i = 1; i < nr; i++)
3414                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3415
3416         if (folio_memcg_kmem(folio))
3417                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3418         else
3419                 css_get_many(&memcg->css, nr - 1);
3420 }
3421
3422 #ifdef CONFIG_SWAP
3423 /**
3424  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3425  * @entry: swap entry to be moved
3426  * @from:  mem_cgroup which the entry is moved from
3427  * @to:  mem_cgroup which the entry is moved to
3428  *
3429  * It succeeds only when the swap_cgroup's record for this entry is the same
3430  * as the mem_cgroup's id of @from.
3431  *
3432  * Returns 0 on success, -EINVAL on failure.
3433  *
3434  * The caller must have charged to @to, IOW, called page_counter_charge() about
3435  * both res and memsw, and called css_get().
3436  */
3437 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3438                                 struct mem_cgroup *from, struct mem_cgroup *to)
3439 {
3440         unsigned short old_id, new_id;
3441
3442         old_id = mem_cgroup_id(from);
3443         new_id = mem_cgroup_id(to);
3444
3445         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3446                 mod_memcg_state(from, MEMCG_SWAP, -1);
3447                 mod_memcg_state(to, MEMCG_SWAP, 1);
3448                 return 0;
3449         }
3450         return -EINVAL;
3451 }
3452 #else
3453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3454                                 struct mem_cgroup *from, struct mem_cgroup *to)
3455 {
3456         return -EINVAL;
3457 }
3458 #endif
3459
3460 static DEFINE_MUTEX(memcg_max_mutex);
3461
3462 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3463                                  unsigned long max, bool memsw)
3464 {
3465         bool enlarge = false;
3466         bool drained = false;
3467         int ret;
3468         bool limits_invariant;
3469         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3470
3471         do {
3472                 if (signal_pending(current)) {
3473                         ret = -EINTR;
3474                         break;
3475                 }
3476
3477                 mutex_lock(&memcg_max_mutex);
3478                 /*
3479                  * Make sure that the new limit (memsw or memory limit) doesn't
3480                  * break our basic invariant rule memory.max <= memsw.max.
3481                  */
3482                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3483                                            max <= memcg->memsw.max;
3484                 if (!limits_invariant) {
3485                         mutex_unlock(&memcg_max_mutex);
3486                         ret = -EINVAL;
3487                         break;
3488                 }
3489                 if (max > counter->max)
3490                         enlarge = true;
3491                 ret = page_counter_set_max(counter, max);
3492                 mutex_unlock(&memcg_max_mutex);
3493
3494                 if (!ret)
3495                         break;
3496
3497                 if (!drained) {
3498                         drain_all_stock(memcg);
3499                         drained = true;
3500                         continue;
3501                 }
3502
3503                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3504                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3505                         ret = -EBUSY;
3506                         break;
3507                 }
3508         } while (true);
3509
3510         if (!ret && enlarge)
3511                 memcg_oom_recover(memcg);
3512
3513         return ret;
3514 }
3515
3516 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3517                                             gfp_t gfp_mask,
3518                                             unsigned long *total_scanned)
3519 {
3520         unsigned long nr_reclaimed = 0;
3521         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3522         unsigned long reclaimed;
3523         int loop = 0;
3524         struct mem_cgroup_tree_per_node *mctz;
3525         unsigned long excess;
3526
3527         if (order > 0)
3528                 return 0;
3529
3530         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3531
3532         /*
3533          * Do not even bother to check the largest node if the root
3534          * is empty. Do it lockless to prevent lock bouncing. Races
3535          * are acceptable as soft limit is best effort anyway.
3536          */
3537         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3538                 return 0;
3539
3540         /*
3541          * This loop can run a while, specially if mem_cgroup's continuously
3542          * keep exceeding their soft limit and putting the system under
3543          * pressure
3544          */
3545         do {
3546                 if (next_mz)
3547                         mz = next_mz;
3548                 else
3549                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3550                 if (!mz)
3551                         break;
3552
3553                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3554                                                     gfp_mask, total_scanned);
3555                 nr_reclaimed += reclaimed;
3556                 spin_lock_irq(&mctz->lock);
3557
3558                 /*
3559                  * If we failed to reclaim anything from this memory cgroup
3560                  * it is time to move on to the next cgroup
3561                  */
3562                 next_mz = NULL;
3563                 if (!reclaimed)
3564                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3565
3566                 excess = soft_limit_excess(mz->memcg);
3567                 /*
3568                  * One school of thought says that we should not add
3569                  * back the node to the tree if reclaim returns 0.
3570                  * But our reclaim could return 0, simply because due
3571                  * to priority we are exposing a smaller subset of
3572                  * memory to reclaim from. Consider this as a longer
3573                  * term TODO.
3574                  */
3575                 /* If excess == 0, no tree ops */
3576                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3577                 spin_unlock_irq(&mctz->lock);
3578                 css_put(&mz->memcg->css);
3579                 loop++;
3580                 /*
3581                  * Could not reclaim anything and there are no more
3582                  * mem cgroups to try or we seem to be looping without
3583                  * reclaiming anything.
3584                  */
3585                 if (!nr_reclaimed &&
3586                         (next_mz == NULL ||
3587                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3588                         break;
3589         } while (!nr_reclaimed);
3590         if (next_mz)
3591                 css_put(&next_mz->memcg->css);
3592         return nr_reclaimed;
3593 }
3594
3595 /*
3596  * Reclaims as many pages from the given memcg as possible.
3597  *
3598  * Caller is responsible for holding css reference for memcg.
3599  */
3600 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3601 {
3602         int nr_retries = MAX_RECLAIM_RETRIES;
3603
3604         /* we call try-to-free pages for make this cgroup empty */
3605         lru_add_drain_all();
3606
3607         drain_all_stock(memcg);
3608
3609         /* try to free all pages in this cgroup */
3610         while (nr_retries && page_counter_read(&memcg->memory)) {
3611                 if (signal_pending(current))
3612                         return -EINTR;
3613
3614                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3615                                                   MEMCG_RECLAIM_MAY_SWAP))
3616                         nr_retries--;
3617         }
3618
3619         return 0;
3620 }
3621
3622 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3623                                             char *buf, size_t nbytes,
3624                                             loff_t off)
3625 {
3626         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3627
3628         if (mem_cgroup_is_root(memcg))
3629                 return -EINVAL;
3630         return mem_cgroup_force_empty(memcg) ?: nbytes;
3631 }
3632
3633 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3634                                      struct cftype *cft)
3635 {
3636         return 1;
3637 }
3638
3639 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3640                                       struct cftype *cft, u64 val)
3641 {
3642         if (val == 1)
3643                 return 0;
3644
3645         pr_warn_once("Non-hierarchical mode is deprecated. "
3646                      "Please report your usecase to linux-mm@kvack.org if you "
3647                      "depend on this functionality.\n");
3648
3649         return -EINVAL;
3650 }
3651
3652 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3653 {
3654         unsigned long val;
3655
3656         if (mem_cgroup_is_root(memcg)) {
3657                 mem_cgroup_flush_stats();
3658                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3659                         memcg_page_state(memcg, NR_ANON_MAPPED);
3660                 if (swap)
3661                         val += memcg_page_state(memcg, MEMCG_SWAP);
3662         } else {
3663                 if (!swap)
3664                         val = page_counter_read(&memcg->memory);
3665                 else
3666                         val = page_counter_read(&memcg->memsw);
3667         }
3668         return val;
3669 }
3670
3671 enum {
3672         RES_USAGE,
3673         RES_LIMIT,
3674         RES_MAX_USAGE,
3675         RES_FAILCNT,
3676         RES_SOFT_LIMIT,
3677 };
3678
3679 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3680                                struct cftype *cft)
3681 {
3682         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3683         struct page_counter *counter;
3684
3685         switch (MEMFILE_TYPE(cft->private)) {
3686         case _MEM:
3687                 counter = &memcg->memory;
3688                 break;
3689         case _MEMSWAP:
3690                 counter = &memcg->memsw;
3691                 break;
3692         case _KMEM:
3693                 counter = &memcg->kmem;
3694                 break;
3695         case _TCP:
3696                 counter = &memcg->tcpmem;
3697                 break;
3698         default:
3699                 BUG();
3700         }
3701
3702         switch (MEMFILE_ATTR(cft->private)) {
3703         case RES_USAGE:
3704                 if (counter == &memcg->memory)
3705                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3706                 if (counter == &memcg->memsw)
3707                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3708                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3709         case RES_LIMIT:
3710                 return (u64)counter->max * PAGE_SIZE;
3711         case RES_MAX_USAGE:
3712                 return (u64)counter->watermark * PAGE_SIZE;
3713         case RES_FAILCNT:
3714                 return counter->failcnt;
3715         case RES_SOFT_LIMIT:
3716                 return (u64)memcg->soft_limit * PAGE_SIZE;
3717         default:
3718                 BUG();
3719         }
3720 }
3721
3722 #ifdef CONFIG_MEMCG_KMEM
3723 static int memcg_online_kmem(struct mem_cgroup *memcg)
3724 {
3725         struct obj_cgroup *objcg;
3726
3727         if (mem_cgroup_kmem_disabled())
3728                 return 0;
3729
3730         if (unlikely(mem_cgroup_is_root(memcg)))
3731                 return 0;
3732
3733         objcg = obj_cgroup_alloc();
3734         if (!objcg)
3735                 return -ENOMEM;
3736
3737         objcg->memcg = memcg;
3738         rcu_assign_pointer(memcg->objcg, objcg);
3739
3740         static_branch_enable(&memcg_kmem_enabled_key);
3741
3742         memcg->kmemcg_id = memcg->id.id;
3743
3744         return 0;
3745 }
3746
3747 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3748 {
3749         struct mem_cgroup *parent;
3750
3751         if (mem_cgroup_kmem_disabled())
3752                 return;
3753
3754         if (unlikely(mem_cgroup_is_root(memcg)))
3755                 return;
3756
3757         parent = parent_mem_cgroup(memcg);
3758         if (!parent)
3759                 parent = root_mem_cgroup;
3760
3761         memcg_reparent_objcgs(memcg, parent);
3762
3763         /*
3764          * After we have finished memcg_reparent_objcgs(), all list_lrus
3765          * corresponding to this cgroup are guaranteed to remain empty.
3766          * The ordering is imposed by list_lru_node->lock taken by
3767          * memcg_reparent_list_lrus().
3768          */
3769         memcg_reparent_list_lrus(memcg, parent);
3770 }
3771 #else
3772 static int memcg_online_kmem(struct mem_cgroup *memcg)
3773 {
3774         return 0;
3775 }
3776 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3777 {
3778 }
3779 #endif /* CONFIG_MEMCG_KMEM */
3780
3781 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3782 {
3783         int ret;
3784
3785         mutex_lock(&memcg_max_mutex);
3786
3787         ret = page_counter_set_max(&memcg->tcpmem, max);
3788         if (ret)
3789                 goto out;
3790
3791         if (!memcg->tcpmem_active) {
3792                 /*
3793                  * The active flag needs to be written after the static_key
3794                  * update. This is what guarantees that the socket activation
3795                  * function is the last one to run. See mem_cgroup_sk_alloc()
3796                  * for details, and note that we don't mark any socket as
3797                  * belonging to this memcg until that flag is up.
3798                  *
3799                  * We need to do this, because static_keys will span multiple
3800                  * sites, but we can't control their order. If we mark a socket
3801                  * as accounted, but the accounting functions are not patched in
3802                  * yet, we'll lose accounting.
3803                  *
3804                  * We never race with the readers in mem_cgroup_sk_alloc(),
3805                  * because when this value change, the code to process it is not
3806                  * patched in yet.
3807                  */
3808                 static_branch_inc(&memcg_sockets_enabled_key);
3809                 memcg->tcpmem_active = true;
3810         }
3811 out:
3812         mutex_unlock(&memcg_max_mutex);
3813         return ret;
3814 }
3815
3816 /*
3817  * The user of this function is...
3818  * RES_LIMIT.
3819  */
3820 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3821                                 char *buf, size_t nbytes, loff_t off)
3822 {
3823         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3824         unsigned long nr_pages;
3825         int ret;
3826
3827         buf = strstrip(buf);
3828         ret = page_counter_memparse(buf, "-1", &nr_pages);
3829         if (ret)
3830                 return ret;
3831
3832         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3833         case RES_LIMIT:
3834                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3835                         ret = -EINVAL;
3836                         break;
3837                 }
3838                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3839                 case _MEM:
3840                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3841                         break;
3842                 case _MEMSWAP:
3843                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3844                         break;
3845                 case _KMEM:
3846                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3847                                      "Writing any value to this file has no effect. "
3848                                      "Please report your usecase to linux-mm@kvack.org if you "
3849                                      "depend on this functionality.\n");
3850                         ret = 0;
3851                         break;
3852                 case _TCP:
3853                         ret = memcg_update_tcp_max(memcg, nr_pages);
3854                         break;
3855                 }
3856                 break;
3857         case RES_SOFT_LIMIT:
3858                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3859                         ret = -EOPNOTSUPP;
3860                 } else {
3861                         memcg->soft_limit = nr_pages;
3862                         ret = 0;
3863                 }
3864                 break;
3865         }
3866         return ret ?: nbytes;
3867 }
3868
3869 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3870                                 size_t nbytes, loff_t off)
3871 {
3872         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3873         struct page_counter *counter;
3874
3875         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3876         case _MEM:
3877                 counter = &memcg->memory;
3878                 break;
3879         case _MEMSWAP:
3880                 counter = &memcg->memsw;
3881                 break;
3882         case _KMEM:
3883                 counter = &memcg->kmem;
3884                 break;
3885         case _TCP:
3886                 counter = &memcg->tcpmem;
3887                 break;
3888         default:
3889                 BUG();
3890         }
3891
3892         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3893         case RES_MAX_USAGE:
3894                 page_counter_reset_watermark(counter);
3895                 break;
3896         case RES_FAILCNT:
3897                 counter->failcnt = 0;
3898                 break;
3899         default:
3900                 BUG();
3901         }
3902
3903         return nbytes;
3904 }
3905
3906 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3907                                         struct cftype *cft)
3908 {
3909         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3910 }
3911
3912 #ifdef CONFIG_MMU
3913 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3914                                         struct cftype *cft, u64 val)
3915 {
3916         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3917
3918         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3919                      "Please report your usecase to linux-mm@kvack.org if you "
3920                      "depend on this functionality.\n");
3921
3922         if (val & ~MOVE_MASK)
3923                 return -EINVAL;
3924
3925         /*
3926          * No kind of locking is needed in here, because ->can_attach() will
3927          * check this value once in the beginning of the process, and then carry
3928          * on with stale data. This means that changes to this value will only
3929          * affect task migrations starting after the change.
3930          */
3931         memcg->move_charge_at_immigrate = val;
3932         return 0;
3933 }
3934 #else
3935 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3936                                         struct cftype *cft, u64 val)
3937 {
3938         return -ENOSYS;
3939 }
3940 #endif
3941
3942 #ifdef CONFIG_NUMA
3943
3944 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3945 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3946 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3947
3948 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3949                                 int nid, unsigned int lru_mask, bool tree)
3950 {
3951         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3952         unsigned long nr = 0;
3953         enum lru_list lru;
3954
3955         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3956
3957         for_each_lru(lru) {
3958                 if (!(BIT(lru) & lru_mask))
3959                         continue;
3960                 if (tree)
3961                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3962                 else
3963                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3964         }
3965         return nr;
3966 }
3967
3968 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3969                                              unsigned int lru_mask,
3970                                              bool tree)
3971 {
3972         unsigned long nr = 0;
3973         enum lru_list lru;
3974
3975         for_each_lru(lru) {
3976                 if (!(BIT(lru) & lru_mask))
3977                         continue;
3978                 if (tree)
3979                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3980                 else
3981                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3982         }
3983         return nr;
3984 }
3985
3986 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3987 {
3988         struct numa_stat {
3989                 const char *name;
3990                 unsigned int lru_mask;
3991         };
3992
3993         static const struct numa_stat stats[] = {
3994                 { "total", LRU_ALL },
3995                 { "file", LRU_ALL_FILE },
3996                 { "anon", LRU_ALL_ANON },
3997                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3998         };
3999         const struct numa_stat *stat;
4000         int nid;
4001         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4002
4003         mem_cgroup_flush_stats();
4004
4005         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4006                 seq_printf(m, "%s=%lu", stat->name,
4007                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4008                                                    false));
4009                 for_each_node_state(nid, N_MEMORY)
4010                         seq_printf(m, " N%d=%lu", nid,
4011                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4012                                                         stat->lru_mask, false));
4013                 seq_putc(m, '\n');
4014         }
4015
4016         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4017
4018                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4019                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4020                                                    true));
4021                 for_each_node_state(nid, N_MEMORY)
4022                         seq_printf(m, " N%d=%lu", nid,
4023                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4024                                                         stat->lru_mask, true));
4025                 seq_putc(m, '\n');
4026         }
4027
4028         return 0;
4029 }
4030 #endif /* CONFIG_NUMA */
4031
4032 static const unsigned int memcg1_stats[] = {
4033         NR_FILE_PAGES,
4034         NR_ANON_MAPPED,
4035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4036         NR_ANON_THPS,
4037 #endif
4038         NR_SHMEM,
4039         NR_FILE_MAPPED,
4040         NR_FILE_DIRTY,
4041         NR_WRITEBACK,
4042         WORKINGSET_REFAULT_ANON,
4043         WORKINGSET_REFAULT_FILE,
4044         MEMCG_SWAP,
4045 };
4046
4047 static const char *const memcg1_stat_names[] = {
4048         "cache",
4049         "rss",
4050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4051         "rss_huge",
4052 #endif
4053         "shmem",
4054         "mapped_file",
4055         "dirty",
4056         "writeback",
4057         "workingset_refault_anon",
4058         "workingset_refault_file",
4059         "swap",
4060 };
4061
4062 /* Universal VM events cgroup1 shows, original sort order */
4063 static const unsigned int memcg1_events[] = {
4064         PGPGIN,
4065         PGPGOUT,
4066         PGFAULT,
4067         PGMAJFAULT,
4068 };
4069
4070 static int memcg_stat_show(struct seq_file *m, void *v)
4071 {
4072         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4073         unsigned long memory, memsw;
4074         struct mem_cgroup *mi;
4075         unsigned int i;
4076
4077         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4078
4079         mem_cgroup_flush_stats();
4080
4081         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4082                 unsigned long nr;
4083
4084                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4085                         continue;
4086                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4087                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4088                            nr * memcg_page_state_unit(memcg1_stats[i]));
4089         }
4090
4091         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4092                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4093                            memcg_events_local(memcg, memcg1_events[i]));
4094
4095         for (i = 0; i < NR_LRU_LISTS; i++)
4096                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4097                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4098                            PAGE_SIZE);
4099
4100         /* Hierarchical information */
4101         memory = memsw = PAGE_COUNTER_MAX;
4102         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4103                 memory = min(memory, READ_ONCE(mi->memory.max));
4104                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4105         }
4106         seq_printf(m, "hierarchical_memory_limit %llu\n",
4107                    (u64)memory * PAGE_SIZE);
4108         if (do_memsw_account())
4109                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4110                            (u64)memsw * PAGE_SIZE);
4111
4112         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4113                 unsigned long nr;
4114
4115                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4116                         continue;
4117                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4118                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4119                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4120         }
4121
4122         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4123                 seq_printf(m, "total_%s %llu\n",
4124                            vm_event_name(memcg1_events[i]),
4125                            (u64)memcg_events(memcg, memcg1_events[i]));
4126
4127         for (i = 0; i < NR_LRU_LISTS; i++)
4128                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4129                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4130                            PAGE_SIZE);
4131
4132 #ifdef CONFIG_DEBUG_VM
4133         {
4134                 pg_data_t *pgdat;
4135                 struct mem_cgroup_per_node *mz;
4136                 unsigned long anon_cost = 0;
4137                 unsigned long file_cost = 0;
4138
4139                 for_each_online_pgdat(pgdat) {
4140                         mz = memcg->nodeinfo[pgdat->node_id];
4141
4142                         anon_cost += mz->lruvec.anon_cost;
4143                         file_cost += mz->lruvec.file_cost;
4144                 }
4145                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4146                 seq_printf(m, "file_cost %lu\n", file_cost);
4147         }
4148 #endif
4149
4150         return 0;
4151 }
4152
4153 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4154                                       struct cftype *cft)
4155 {
4156         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4157
4158         return mem_cgroup_swappiness(memcg);
4159 }
4160
4161 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4162                                        struct cftype *cft, u64 val)
4163 {
4164         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4165
4166         if (val > 200)
4167                 return -EINVAL;
4168
4169         if (!mem_cgroup_is_root(memcg))
4170                 memcg->swappiness = val;
4171         else
4172                 vm_swappiness = val;
4173
4174         return 0;
4175 }
4176
4177 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4178 {
4179         struct mem_cgroup_threshold_ary *t;
4180         unsigned long usage;
4181         int i;
4182
4183         rcu_read_lock();
4184         if (!swap)
4185                 t = rcu_dereference(memcg->thresholds.primary);
4186         else
4187                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4188
4189         if (!t)
4190                 goto unlock;
4191
4192         usage = mem_cgroup_usage(memcg, swap);
4193
4194         /*
4195          * current_threshold points to threshold just below or equal to usage.
4196          * If it's not true, a threshold was crossed after last
4197          * call of __mem_cgroup_threshold().
4198          */
4199         i = t->current_threshold;
4200
4201         /*
4202          * Iterate backward over array of thresholds starting from
4203          * current_threshold and check if a threshold is crossed.
4204          * If none of thresholds below usage is crossed, we read
4205          * only one element of the array here.
4206          */
4207         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4208                 eventfd_signal(t->entries[i].eventfd, 1);
4209
4210         /* i = current_threshold + 1 */
4211         i++;
4212
4213         /*
4214          * Iterate forward over array of thresholds starting from
4215          * current_threshold+1 and check if a threshold is crossed.
4216          * If none of thresholds above usage is crossed, we read
4217          * only one element of the array here.
4218          */
4219         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4220                 eventfd_signal(t->entries[i].eventfd, 1);
4221
4222         /* Update current_threshold */
4223         t->current_threshold = i - 1;
4224 unlock:
4225         rcu_read_unlock();
4226 }
4227
4228 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4229 {
4230         while (memcg) {
4231                 __mem_cgroup_threshold(memcg, false);
4232                 if (do_memsw_account())
4233                         __mem_cgroup_threshold(memcg, true);
4234
4235                 memcg = parent_mem_cgroup(memcg);
4236         }
4237 }
4238
4239 static int compare_thresholds(const void *a, const void *b)
4240 {
4241         const struct mem_cgroup_threshold *_a = a;
4242         const struct mem_cgroup_threshold *_b = b;
4243
4244         if (_a->threshold > _b->threshold)
4245                 return 1;
4246
4247         if (_a->threshold < _b->threshold)
4248                 return -1;
4249
4250         return 0;
4251 }
4252
4253 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4254 {
4255         struct mem_cgroup_eventfd_list *ev;
4256
4257         spin_lock(&memcg_oom_lock);
4258
4259         list_for_each_entry(ev, &memcg->oom_notify, list)
4260                 eventfd_signal(ev->eventfd, 1);
4261
4262         spin_unlock(&memcg_oom_lock);
4263         return 0;
4264 }
4265
4266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4267 {
4268         struct mem_cgroup *iter;
4269
4270         for_each_mem_cgroup_tree(iter, memcg)
4271                 mem_cgroup_oom_notify_cb(iter);
4272 }
4273
4274 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4275         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4276 {
4277         struct mem_cgroup_thresholds *thresholds;
4278         struct mem_cgroup_threshold_ary *new;
4279         unsigned long threshold;
4280         unsigned long usage;
4281         int i, size, ret;
4282
4283         ret = page_counter_memparse(args, "-1", &threshold);
4284         if (ret)
4285                 return ret;
4286
4287         mutex_lock(&memcg->thresholds_lock);
4288
4289         if (type == _MEM) {
4290                 thresholds = &memcg->thresholds;
4291                 usage = mem_cgroup_usage(memcg, false);
4292         } else if (type == _MEMSWAP) {
4293                 thresholds = &memcg->memsw_thresholds;
4294                 usage = mem_cgroup_usage(memcg, true);
4295         } else
4296                 BUG();
4297
4298         /* Check if a threshold crossed before adding a new one */
4299         if (thresholds->primary)
4300                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4301
4302         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4303
4304         /* Allocate memory for new array of thresholds */
4305         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4306         if (!new) {
4307                 ret = -ENOMEM;
4308                 goto unlock;
4309         }
4310         new->size = size;
4311
4312         /* Copy thresholds (if any) to new array */
4313         if (thresholds->primary)
4314                 memcpy(new->entries, thresholds->primary->entries,
4315                        flex_array_size(new, entries, size - 1));
4316
4317         /* Add new threshold */
4318         new->entries[size - 1].eventfd = eventfd;
4319         new->entries[size - 1].threshold = threshold;
4320
4321         /* Sort thresholds. Registering of new threshold isn't time-critical */
4322         sort(new->entries, size, sizeof(*new->entries),
4323                         compare_thresholds, NULL);
4324
4325         /* Find current threshold */
4326         new->current_threshold = -1;
4327         for (i = 0; i < size; i++) {
4328                 if (new->entries[i].threshold <= usage) {
4329                         /*
4330                          * new->current_threshold will not be used until
4331                          * rcu_assign_pointer(), so it's safe to increment
4332                          * it here.
4333                          */
4334                         ++new->current_threshold;
4335                 } else
4336                         break;
4337         }
4338
4339         /* Free old spare buffer and save old primary buffer as spare */
4340         kfree(thresholds->spare);
4341         thresholds->spare = thresholds->primary;
4342
4343         rcu_assign_pointer(thresholds->primary, new);
4344
4345         /* To be sure that nobody uses thresholds */
4346         synchronize_rcu();
4347
4348 unlock:
4349         mutex_unlock(&memcg->thresholds_lock);
4350
4351         return ret;
4352 }
4353
4354 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4355         struct eventfd_ctx *eventfd, const char *args)
4356 {
4357         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4358 }
4359
4360 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4361         struct eventfd_ctx *eventfd, const char *args)
4362 {
4363         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4364 }
4365
4366 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4367         struct eventfd_ctx *eventfd, enum res_type type)
4368 {
4369         struct mem_cgroup_thresholds *thresholds;
4370         struct mem_cgroup_threshold_ary *new;
4371         unsigned long usage;
4372         int i, j, size, entries;
4373
4374         mutex_lock(&memcg->thresholds_lock);
4375
4376         if (type == _MEM) {
4377                 thresholds = &memcg->thresholds;
4378                 usage = mem_cgroup_usage(memcg, false);
4379         } else if (type == _MEMSWAP) {
4380                 thresholds = &memcg->memsw_thresholds;
4381                 usage = mem_cgroup_usage(memcg, true);
4382         } else
4383                 BUG();
4384
4385         if (!thresholds->primary)
4386                 goto unlock;
4387
4388         /* Check if a threshold crossed before removing */
4389         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4390
4391         /* Calculate new number of threshold */
4392         size = entries = 0;
4393         for (i = 0; i < thresholds->primary->size; i++) {
4394                 if (thresholds->primary->entries[i].eventfd != eventfd)
4395                         size++;
4396                 else
4397                         entries++;
4398         }
4399
4400         new = thresholds->spare;
4401
4402         /* If no items related to eventfd have been cleared, nothing to do */
4403         if (!entries)
4404                 goto unlock;
4405
4406         /* Set thresholds array to NULL if we don't have thresholds */
4407         if (!size) {
4408                 kfree(new);
4409                 new = NULL;
4410                 goto swap_buffers;
4411         }
4412
4413         new->size = size;
4414
4415         /* Copy thresholds and find current threshold */
4416         new->current_threshold = -1;
4417         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4418                 if (thresholds->primary->entries[i].eventfd == eventfd)
4419                         continue;
4420
4421                 new->entries[j] = thresholds->primary->entries[i];
4422                 if (new->entries[j].threshold <= usage) {
4423                         /*
4424                          * new->current_threshold will not be used
4425                          * until rcu_assign_pointer(), so it's safe to increment
4426                          * it here.
4427                          */
4428                         ++new->current_threshold;
4429                 }
4430                 j++;
4431         }
4432
4433 swap_buffers:
4434         /* Swap primary and spare array */
4435         thresholds->spare = thresholds->primary;
4436
4437         rcu_assign_pointer(thresholds->primary, new);
4438
4439         /* To be sure that nobody uses thresholds */
4440         synchronize_rcu();
4441
4442         /* If all events are unregistered, free the spare array */
4443         if (!new) {
4444                 kfree(thresholds->spare);
4445                 thresholds->spare = NULL;
4446         }
4447 unlock:
4448         mutex_unlock(&memcg->thresholds_lock);
4449 }
4450
4451 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4452         struct eventfd_ctx *eventfd)
4453 {
4454         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4455 }
4456
4457 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4458         struct eventfd_ctx *eventfd)
4459 {
4460         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4461 }
4462
4463 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4464         struct eventfd_ctx *eventfd, const char *args)
4465 {
4466         struct mem_cgroup_eventfd_list *event;
4467
4468         event = kmalloc(sizeof(*event), GFP_KERNEL);
4469         if (!event)
4470                 return -ENOMEM;
4471
4472         spin_lock(&memcg_oom_lock);
4473
4474         event->eventfd = eventfd;
4475         list_add(&event->list, &memcg->oom_notify);
4476
4477         /* already in OOM ? */
4478         if (memcg->under_oom)
4479                 eventfd_signal(eventfd, 1);
4480         spin_unlock(&memcg_oom_lock);
4481
4482         return 0;
4483 }
4484
4485 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4486         struct eventfd_ctx *eventfd)
4487 {
4488         struct mem_cgroup_eventfd_list *ev, *tmp;
4489
4490         spin_lock(&memcg_oom_lock);
4491
4492         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4493                 if (ev->eventfd == eventfd) {
4494                         list_del(&ev->list);
4495                         kfree(ev);
4496                 }
4497         }
4498
4499         spin_unlock(&memcg_oom_lock);
4500 }
4501
4502 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4503 {
4504         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4505
4506         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4507         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4508         seq_printf(sf, "oom_kill %lu\n",
4509                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4510         return 0;
4511 }
4512
4513 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4514         struct cftype *cft, u64 val)
4515 {
4516         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4517
4518         /* cannot set to root cgroup and only 0 and 1 are allowed */
4519         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4520                 return -EINVAL;
4521
4522         memcg->oom_kill_disable = val;
4523         if (!val)
4524                 memcg_oom_recover(memcg);
4525
4526         return 0;
4527 }
4528
4529 #ifdef CONFIG_CGROUP_WRITEBACK
4530
4531 #include <trace/events/writeback.h>
4532
4533 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4534 {
4535         return wb_domain_init(&memcg->cgwb_domain, gfp);
4536 }
4537
4538 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4539 {
4540         wb_domain_exit(&memcg->cgwb_domain);
4541 }
4542
4543 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4544 {
4545         wb_domain_size_changed(&memcg->cgwb_domain);
4546 }
4547
4548 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4549 {
4550         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4551
4552         if (!memcg->css.parent)
4553                 return NULL;
4554
4555         return &memcg->cgwb_domain;
4556 }
4557
4558 /**
4559  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4560  * @wb: bdi_writeback in question
4561  * @pfilepages: out parameter for number of file pages
4562  * @pheadroom: out parameter for number of allocatable pages according to memcg
4563  * @pdirty: out parameter for number of dirty pages
4564  * @pwriteback: out parameter for number of pages under writeback
4565  *
4566  * Determine the numbers of file, headroom, dirty, and writeback pages in
4567  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4568  * is a bit more involved.
4569  *
4570  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4571  * headroom is calculated as the lowest headroom of itself and the
4572  * ancestors.  Note that this doesn't consider the actual amount of
4573  * available memory in the system.  The caller should further cap
4574  * *@pheadroom accordingly.
4575  */
4576 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4577                          unsigned long *pheadroom, unsigned long *pdirty,
4578                          unsigned long *pwriteback)
4579 {
4580         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4581         struct mem_cgroup *parent;
4582
4583         mem_cgroup_flush_stats();
4584
4585         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4586         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4587         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4588                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4589
4590         *pheadroom = PAGE_COUNTER_MAX;
4591         while ((parent = parent_mem_cgroup(memcg))) {
4592                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4593                                             READ_ONCE(memcg->memory.high));
4594                 unsigned long used = page_counter_read(&memcg->memory);
4595
4596                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4597                 memcg = parent;
4598         }
4599 }
4600
4601 /*
4602  * Foreign dirty flushing
4603  *
4604  * There's an inherent mismatch between memcg and writeback.  The former
4605  * tracks ownership per-page while the latter per-inode.  This was a
4606  * deliberate design decision because honoring per-page ownership in the
4607  * writeback path is complicated, may lead to higher CPU and IO overheads
4608  * and deemed unnecessary given that write-sharing an inode across
4609  * different cgroups isn't a common use-case.
4610  *
4611  * Combined with inode majority-writer ownership switching, this works well
4612  * enough in most cases but there are some pathological cases.  For
4613  * example, let's say there are two cgroups A and B which keep writing to
4614  * different but confined parts of the same inode.  B owns the inode and
4615  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4616  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4617  * triggering background writeback.  A will be slowed down without a way to
4618  * make writeback of the dirty pages happen.
4619  *
4620  * Conditions like the above can lead to a cgroup getting repeatedly and
4621  * severely throttled after making some progress after each
4622  * dirty_expire_interval while the underlying IO device is almost
4623  * completely idle.
4624  *
4625  * Solving this problem completely requires matching the ownership tracking
4626  * granularities between memcg and writeback in either direction.  However,
4627  * the more egregious behaviors can be avoided by simply remembering the
4628  * most recent foreign dirtying events and initiating remote flushes on
4629  * them when local writeback isn't enough to keep the memory clean enough.
4630  *
4631  * The following two functions implement such mechanism.  When a foreign
4632  * page - a page whose memcg and writeback ownerships don't match - is
4633  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4634  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4635  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4636  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4637  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4638  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4639  * limited to MEMCG_CGWB_FRN_CNT.
4640  *
4641  * The mechanism only remembers IDs and doesn't hold any object references.
4642  * As being wrong occasionally doesn't matter, updates and accesses to the
4643  * records are lockless and racy.
4644  */
4645 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4646                                              struct bdi_writeback *wb)
4647 {
4648         struct mem_cgroup *memcg = folio_memcg(folio);
4649         struct memcg_cgwb_frn *frn;
4650         u64 now = get_jiffies_64();
4651         u64 oldest_at = now;
4652         int oldest = -1;
4653         int i;
4654
4655         trace_track_foreign_dirty(folio, wb);
4656
4657         /*
4658          * Pick the slot to use.  If there is already a slot for @wb, keep
4659          * using it.  If not replace the oldest one which isn't being
4660          * written out.
4661          */
4662         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4663                 frn = &memcg->cgwb_frn[i];
4664                 if (frn->bdi_id == wb->bdi->id &&
4665                     frn->memcg_id == wb->memcg_css->id)
4666                         break;
4667                 if (time_before64(frn->at, oldest_at) &&
4668                     atomic_read(&frn->done.cnt) == 1) {
4669                         oldest = i;
4670                         oldest_at = frn->at;
4671                 }
4672         }
4673
4674         if (i < MEMCG_CGWB_FRN_CNT) {
4675                 /*
4676                  * Re-using an existing one.  Update timestamp lazily to
4677                  * avoid making the cacheline hot.  We want them to be
4678                  * reasonably up-to-date and significantly shorter than
4679                  * dirty_expire_interval as that's what expires the record.
4680                  * Use the shorter of 1s and dirty_expire_interval / 8.
4681                  */
4682                 unsigned long update_intv =
4683                         min_t(unsigned long, HZ,
4684                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4685
4686                 if (time_before64(frn->at, now - update_intv))
4687                         frn->at = now;
4688         } else if (oldest >= 0) {
4689                 /* replace the oldest free one */
4690                 frn = &memcg->cgwb_frn[oldest];
4691                 frn->bdi_id = wb->bdi->id;
4692                 frn->memcg_id = wb->memcg_css->id;
4693                 frn->at = now;
4694         }
4695 }
4696
4697 /* issue foreign writeback flushes for recorded foreign dirtying events */
4698 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4699 {
4700         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4701         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4702         u64 now = jiffies_64;
4703         int i;
4704
4705         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4706                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4707
4708                 /*
4709                  * If the record is older than dirty_expire_interval,
4710                  * writeback on it has already started.  No need to kick it
4711                  * off again.  Also, don't start a new one if there's
4712                  * already one in flight.
4713                  */
4714                 if (time_after64(frn->at, now - intv) &&
4715                     atomic_read(&frn->done.cnt) == 1) {
4716                         frn->at = 0;
4717                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4718                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4719                                                WB_REASON_FOREIGN_FLUSH,
4720                                                &frn->done);
4721                 }
4722         }
4723 }
4724
4725 #else   /* CONFIG_CGROUP_WRITEBACK */
4726
4727 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4728 {
4729         return 0;
4730 }
4731
4732 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4733 {
4734 }
4735
4736 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4737 {
4738 }
4739
4740 #endif  /* CONFIG_CGROUP_WRITEBACK */
4741
4742 /*
4743  * DO NOT USE IN NEW FILES.
4744  *
4745  * "cgroup.event_control" implementation.
4746  *
4747  * This is way over-engineered.  It tries to support fully configurable
4748  * events for each user.  Such level of flexibility is completely
4749  * unnecessary especially in the light of the planned unified hierarchy.
4750  *
4751  * Please deprecate this and replace with something simpler if at all
4752  * possible.
4753  */
4754
4755 /*
4756  * Unregister event and free resources.
4757  *
4758  * Gets called from workqueue.
4759  */
4760 static void memcg_event_remove(struct work_struct *work)
4761 {
4762         struct mem_cgroup_event *event =
4763                 container_of(work, struct mem_cgroup_event, remove);
4764         struct mem_cgroup *memcg = event->memcg;
4765
4766         remove_wait_queue(event->wqh, &event->wait);
4767
4768         event->unregister_event(memcg, event->eventfd);
4769
4770         /* Notify userspace the event is going away. */
4771         eventfd_signal(event->eventfd, 1);
4772
4773         eventfd_ctx_put(event->eventfd);
4774         kfree(event);
4775         css_put(&memcg->css);
4776 }
4777
4778 /*
4779  * Gets called on EPOLLHUP on eventfd when user closes it.
4780  *
4781  * Called with wqh->lock held and interrupts disabled.
4782  */
4783 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4784                             int sync, void *key)
4785 {
4786         struct mem_cgroup_event *event =
4787                 container_of(wait, struct mem_cgroup_event, wait);
4788         struct mem_cgroup *memcg = event->memcg;
4789         __poll_t flags = key_to_poll(key);
4790
4791         if (flags & EPOLLHUP) {
4792                 /*
4793                  * If the event has been detached at cgroup removal, we
4794                  * can simply return knowing the other side will cleanup
4795                  * for us.
4796                  *
4797                  * We can't race against event freeing since the other
4798                  * side will require wqh->lock via remove_wait_queue(),
4799                  * which we hold.
4800                  */
4801                 spin_lock(&memcg->event_list_lock);
4802                 if (!list_empty(&event->list)) {
4803                         list_del_init(&event->list);
4804                         /*
4805                          * We are in atomic context, but cgroup_event_remove()
4806                          * may sleep, so we have to call it in workqueue.
4807                          */
4808                         schedule_work(&event->remove);
4809                 }
4810                 spin_unlock(&memcg->event_list_lock);
4811         }
4812
4813         return 0;
4814 }
4815
4816 static void memcg_event_ptable_queue_proc(struct file *file,
4817                 wait_queue_head_t *wqh, poll_table *pt)
4818 {
4819         struct mem_cgroup_event *event =
4820                 container_of(pt, struct mem_cgroup_event, pt);
4821
4822         event->wqh = wqh;
4823         add_wait_queue(wqh, &event->wait);
4824 }
4825
4826 /*
4827  * DO NOT USE IN NEW FILES.
4828  *
4829  * Parse input and register new cgroup event handler.
4830  *
4831  * Input must be in format '<event_fd> <control_fd> <args>'.
4832  * Interpretation of args is defined by control file implementation.
4833  */
4834 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4835                                          char *buf, size_t nbytes, loff_t off)
4836 {
4837         struct cgroup_subsys_state *css = of_css(of);
4838         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4839         struct mem_cgroup_event *event;
4840         struct cgroup_subsys_state *cfile_css;
4841         unsigned int efd, cfd;
4842         struct fd efile;
4843         struct fd cfile;
4844         struct dentry *cdentry;
4845         const char *name;
4846         char *endp;
4847         int ret;
4848
4849         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4850                 return -EOPNOTSUPP;
4851
4852         buf = strstrip(buf);
4853
4854         efd = simple_strtoul(buf, &endp, 10);
4855         if (*endp != ' ')
4856                 return -EINVAL;
4857         buf = endp + 1;
4858
4859         cfd = simple_strtoul(buf, &endp, 10);
4860         if ((*endp != ' ') && (*endp != '\0'))
4861                 return -EINVAL;
4862         buf = endp + 1;
4863
4864         event = kzalloc(sizeof(*event), GFP_KERNEL);
4865         if (!event)
4866                 return -ENOMEM;
4867
4868         event->memcg = memcg;
4869         INIT_LIST_HEAD(&event->list);
4870         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4871         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4872         INIT_WORK(&event->remove, memcg_event_remove);
4873
4874         efile = fdget(efd);
4875         if (!efile.file) {
4876                 ret = -EBADF;
4877                 goto out_kfree;
4878         }
4879
4880         event->eventfd = eventfd_ctx_fileget(efile.file);
4881         if (IS_ERR(event->eventfd)) {
4882                 ret = PTR_ERR(event->eventfd);
4883                 goto out_put_efile;
4884         }
4885
4886         cfile = fdget(cfd);
4887         if (!cfile.file) {
4888                 ret = -EBADF;
4889                 goto out_put_eventfd;
4890         }
4891
4892         /* the process need read permission on control file */
4893         /* AV: shouldn't we check that it's been opened for read instead? */
4894         ret = file_permission(cfile.file, MAY_READ);
4895         if (ret < 0)
4896                 goto out_put_cfile;
4897
4898         /*
4899          * The control file must be a regular cgroup1 file. As a regular cgroup
4900          * file can't be renamed, it's safe to access its name afterwards.
4901          */
4902         cdentry = cfile.file->f_path.dentry;
4903         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4904                 ret = -EINVAL;
4905                 goto out_put_cfile;
4906         }
4907
4908         /*
4909          * Determine the event callbacks and set them in @event.  This used
4910          * to be done via struct cftype but cgroup core no longer knows
4911          * about these events.  The following is crude but the whole thing
4912          * is for compatibility anyway.
4913          *
4914          * DO NOT ADD NEW FILES.
4915          */
4916         name = cdentry->d_name.name;
4917
4918         if (!strcmp(name, "memory.usage_in_bytes")) {
4919                 event->register_event = mem_cgroup_usage_register_event;
4920                 event->unregister_event = mem_cgroup_usage_unregister_event;
4921         } else if (!strcmp(name, "memory.oom_control")) {
4922                 event->register_event = mem_cgroup_oom_register_event;
4923                 event->unregister_event = mem_cgroup_oom_unregister_event;
4924         } else if (!strcmp(name, "memory.pressure_level")) {
4925                 event->register_event = vmpressure_register_event;
4926                 event->unregister_event = vmpressure_unregister_event;
4927         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4928                 event->register_event = memsw_cgroup_usage_register_event;
4929                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4930         } else {
4931                 ret = -EINVAL;
4932                 goto out_put_cfile;
4933         }
4934
4935         /*
4936          * Verify @cfile should belong to @css.  Also, remaining events are
4937          * automatically removed on cgroup destruction but the removal is
4938          * asynchronous, so take an extra ref on @css.
4939          */
4940         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4941                                                &memory_cgrp_subsys);
4942         ret = -EINVAL;
4943         if (IS_ERR(cfile_css))
4944                 goto out_put_cfile;
4945         if (cfile_css != css) {
4946                 css_put(cfile_css);
4947                 goto out_put_cfile;
4948         }
4949
4950         ret = event->register_event(memcg, event->eventfd, buf);
4951         if (ret)
4952                 goto out_put_css;
4953
4954         vfs_poll(efile.file, &event->pt);
4955
4956         spin_lock_irq(&memcg->event_list_lock);
4957         list_add(&event->list, &memcg->event_list);
4958         spin_unlock_irq(&memcg->event_list_lock);
4959
4960         fdput(cfile);
4961         fdput(efile);
4962
4963         return nbytes;
4964
4965 out_put_css:
4966         css_put(css);
4967 out_put_cfile:
4968         fdput(cfile);
4969 out_put_eventfd:
4970         eventfd_ctx_put(event->eventfd);
4971 out_put_efile:
4972         fdput(efile);
4973 out_kfree:
4974         kfree(event);
4975
4976         return ret;
4977 }
4978
4979 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4980 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4981 {
4982         /*
4983          * Deprecated.
4984          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4985          */
4986         return 0;
4987 }
4988 #endif
4989
4990 static struct cftype mem_cgroup_legacy_files[] = {
4991         {
4992                 .name = "usage_in_bytes",
4993                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4994                 .read_u64 = mem_cgroup_read_u64,
4995         },
4996         {
4997                 .name = "max_usage_in_bytes",
4998                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4999                 .write = mem_cgroup_reset,
5000                 .read_u64 = mem_cgroup_read_u64,
5001         },
5002         {
5003                 .name = "limit_in_bytes",
5004                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5005                 .write = mem_cgroup_write,
5006                 .read_u64 = mem_cgroup_read_u64,
5007         },
5008         {
5009                 .name = "soft_limit_in_bytes",
5010                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5011                 .write = mem_cgroup_write,
5012                 .read_u64 = mem_cgroup_read_u64,
5013         },
5014         {
5015                 .name = "failcnt",
5016                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5017                 .write = mem_cgroup_reset,
5018                 .read_u64 = mem_cgroup_read_u64,
5019         },
5020         {
5021                 .name = "stat",
5022                 .seq_show = memcg_stat_show,
5023         },
5024         {
5025                 .name = "force_empty",
5026                 .write = mem_cgroup_force_empty_write,
5027         },
5028         {
5029                 .name = "use_hierarchy",
5030                 .write_u64 = mem_cgroup_hierarchy_write,
5031                 .read_u64 = mem_cgroup_hierarchy_read,
5032         },
5033         {
5034                 .name = "cgroup.event_control",         /* XXX: for compat */
5035                 .write = memcg_write_event_control,
5036                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5037         },
5038         {
5039                 .name = "swappiness",
5040                 .read_u64 = mem_cgroup_swappiness_read,
5041                 .write_u64 = mem_cgroup_swappiness_write,
5042         },
5043         {
5044                 .name = "move_charge_at_immigrate",
5045                 .read_u64 = mem_cgroup_move_charge_read,
5046                 .write_u64 = mem_cgroup_move_charge_write,
5047         },
5048         {
5049                 .name = "oom_control",
5050                 .seq_show = mem_cgroup_oom_control_read,
5051                 .write_u64 = mem_cgroup_oom_control_write,
5052         },
5053         {
5054                 .name = "pressure_level",
5055         },
5056 #ifdef CONFIG_NUMA
5057         {
5058                 .name = "numa_stat",
5059                 .seq_show = memcg_numa_stat_show,
5060         },
5061 #endif
5062         {
5063                 .name = "kmem.limit_in_bytes",
5064                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5065                 .write = mem_cgroup_write,
5066                 .read_u64 = mem_cgroup_read_u64,
5067         },
5068         {
5069                 .name = "kmem.usage_in_bytes",
5070                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5071                 .read_u64 = mem_cgroup_read_u64,
5072         },
5073         {
5074                 .name = "kmem.failcnt",
5075                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5076                 .write = mem_cgroup_reset,
5077                 .read_u64 = mem_cgroup_read_u64,
5078         },
5079         {
5080                 .name = "kmem.max_usage_in_bytes",
5081                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5082                 .write = mem_cgroup_reset,
5083                 .read_u64 = mem_cgroup_read_u64,
5084         },
5085 #if defined(CONFIG_MEMCG_KMEM) && \
5086         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5087         {
5088                 .name = "kmem.slabinfo",
5089                 .seq_show = mem_cgroup_slab_show,
5090         },
5091 #endif
5092         {
5093                 .name = "kmem.tcp.limit_in_bytes",
5094                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5095                 .write = mem_cgroup_write,
5096                 .read_u64 = mem_cgroup_read_u64,
5097         },
5098         {
5099                 .name = "kmem.tcp.usage_in_bytes",
5100                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5101                 .read_u64 = mem_cgroup_read_u64,
5102         },
5103         {
5104                 .name = "kmem.tcp.failcnt",
5105                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5106                 .write = mem_cgroup_reset,
5107                 .read_u64 = mem_cgroup_read_u64,
5108         },
5109         {
5110                 .name = "kmem.tcp.max_usage_in_bytes",
5111                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5112                 .write = mem_cgroup_reset,
5113                 .read_u64 = mem_cgroup_read_u64,
5114         },
5115         { },    /* terminate */
5116 };
5117
5118 /*
5119  * Private memory cgroup IDR
5120  *
5121  * Swap-out records and page cache shadow entries need to store memcg
5122  * references in constrained space, so we maintain an ID space that is
5123  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5124  * memory-controlled cgroups to 64k.
5125  *
5126  * However, there usually are many references to the offline CSS after
5127  * the cgroup has been destroyed, such as page cache or reclaimable
5128  * slab objects, that don't need to hang on to the ID. We want to keep
5129  * those dead CSS from occupying IDs, or we might quickly exhaust the
5130  * relatively small ID space and prevent the creation of new cgroups
5131  * even when there are much fewer than 64k cgroups - possibly none.
5132  *
5133  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5134  * be freed and recycled when it's no longer needed, which is usually
5135  * when the CSS is offlined.
5136  *
5137  * The only exception to that are records of swapped out tmpfs/shmem
5138  * pages that need to be attributed to live ancestors on swapin. But
5139  * those references are manageable from userspace.
5140  */
5141
5142 static DEFINE_IDR(mem_cgroup_idr);
5143
5144 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5145 {
5146         if (memcg->id.id > 0) {
5147                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5148                 memcg->id.id = 0;
5149         }
5150 }
5151
5152 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5153                                                   unsigned int n)
5154 {
5155         refcount_add(n, &memcg->id.ref);
5156 }
5157
5158 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5159 {
5160         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5161                 mem_cgroup_id_remove(memcg);
5162
5163                 /* Memcg ID pins CSS */
5164                 css_put(&memcg->css);
5165         }
5166 }
5167
5168 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5169 {
5170         mem_cgroup_id_put_many(memcg, 1);
5171 }
5172
5173 /**
5174  * mem_cgroup_from_id - look up a memcg from a memcg id
5175  * @id: the memcg id to look up
5176  *
5177  * Caller must hold rcu_read_lock().
5178  */
5179 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5180 {
5181         WARN_ON_ONCE(!rcu_read_lock_held());
5182         return idr_find(&mem_cgroup_idr, id);
5183 }
5184
5185 #ifdef CONFIG_SHRINKER_DEBUG
5186 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5187 {
5188         struct cgroup *cgrp;
5189         struct cgroup_subsys_state *css;
5190         struct mem_cgroup *memcg;
5191
5192         cgrp = cgroup_get_from_id(ino);
5193         if (IS_ERR(cgrp))
5194                 return ERR_CAST(cgrp);
5195
5196         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5197         if (css)
5198                 memcg = container_of(css, struct mem_cgroup, css);
5199         else
5200                 memcg = ERR_PTR(-ENOENT);
5201
5202         cgroup_put(cgrp);
5203
5204         return memcg;
5205 }
5206 #endif
5207
5208 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5209 {
5210         struct mem_cgroup_per_node *pn;
5211
5212         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5213         if (!pn)
5214                 return 1;
5215
5216         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5217                                                    GFP_KERNEL_ACCOUNT);
5218         if (!pn->lruvec_stats_percpu) {
5219                 kfree(pn);
5220                 return 1;
5221         }
5222
5223         lruvec_init(&pn->lruvec);
5224         pn->memcg = memcg;
5225
5226         memcg->nodeinfo[node] = pn;
5227         return 0;
5228 }
5229
5230 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5231 {
5232         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5233
5234         if (!pn)
5235                 return;
5236
5237         free_percpu(pn->lruvec_stats_percpu);
5238         kfree(pn);
5239 }
5240
5241 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5242 {
5243         int node;
5244
5245         for_each_node(node)
5246                 free_mem_cgroup_per_node_info(memcg, node);
5247         kfree(memcg->vmstats);
5248         free_percpu(memcg->vmstats_percpu);
5249         kfree(memcg);
5250 }
5251
5252 static void mem_cgroup_free(struct mem_cgroup *memcg)
5253 {
5254         lru_gen_exit_memcg(memcg);
5255         memcg_wb_domain_exit(memcg);
5256         __mem_cgroup_free(memcg);
5257 }
5258
5259 static struct mem_cgroup *mem_cgroup_alloc(void)
5260 {
5261         struct mem_cgroup *memcg;
5262         int node;
5263         int __maybe_unused i;
5264         long error = -ENOMEM;
5265
5266         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5267         if (!memcg)
5268                 return ERR_PTR(error);
5269
5270         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5271                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5272         if (memcg->id.id < 0) {
5273                 error = memcg->id.id;
5274                 goto fail;
5275         }
5276
5277         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5278         if (!memcg->vmstats)
5279                 goto fail;
5280
5281         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5282                                                  GFP_KERNEL_ACCOUNT);
5283         if (!memcg->vmstats_percpu)
5284                 goto fail;
5285
5286         for_each_node(node)
5287                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5288                         goto fail;
5289
5290         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5291                 goto fail;
5292
5293         INIT_WORK(&memcg->high_work, high_work_func);
5294         INIT_LIST_HEAD(&memcg->oom_notify);
5295         mutex_init(&memcg->thresholds_lock);
5296         spin_lock_init(&memcg->move_lock);
5297         vmpressure_init(&memcg->vmpressure);
5298         INIT_LIST_HEAD(&memcg->event_list);
5299         spin_lock_init(&memcg->event_list_lock);
5300         memcg->socket_pressure = jiffies;
5301 #ifdef CONFIG_MEMCG_KMEM
5302         memcg->kmemcg_id = -1;
5303         INIT_LIST_HEAD(&memcg->objcg_list);
5304 #endif
5305 #ifdef CONFIG_CGROUP_WRITEBACK
5306         INIT_LIST_HEAD(&memcg->cgwb_list);
5307         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5308                 memcg->cgwb_frn[i].done =
5309                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5310 #endif
5311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5312         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5313         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5314         memcg->deferred_split_queue.split_queue_len = 0;
5315 #endif
5316         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5317         lru_gen_init_memcg(memcg);
5318         return memcg;
5319 fail:
5320         mem_cgroup_id_remove(memcg);
5321         __mem_cgroup_free(memcg);
5322         return ERR_PTR(error);
5323 }
5324
5325 static struct cgroup_subsys_state * __ref
5326 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5327 {
5328         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5329         struct mem_cgroup *memcg, *old_memcg;
5330
5331         old_memcg = set_active_memcg(parent);
5332         memcg = mem_cgroup_alloc();
5333         set_active_memcg(old_memcg);
5334         if (IS_ERR(memcg))
5335                 return ERR_CAST(memcg);
5336
5337         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5338         memcg->soft_limit = PAGE_COUNTER_MAX;
5339 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5340         memcg->zswap_max = PAGE_COUNTER_MAX;
5341 #endif
5342         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5343         if (parent) {
5344                 memcg->swappiness = mem_cgroup_swappiness(parent);
5345                 memcg->oom_kill_disable = parent->oom_kill_disable;
5346
5347                 page_counter_init(&memcg->memory, &parent->memory);
5348                 page_counter_init(&memcg->swap, &parent->swap);
5349                 page_counter_init(&memcg->kmem, &parent->kmem);
5350                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5351         } else {
5352                 init_memcg_events();
5353                 page_counter_init(&memcg->memory, NULL);
5354                 page_counter_init(&memcg->swap, NULL);
5355                 page_counter_init(&memcg->kmem, NULL);
5356                 page_counter_init(&memcg->tcpmem, NULL);
5357
5358                 root_mem_cgroup = memcg;
5359                 return &memcg->css;
5360         }
5361
5362         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5363                 static_branch_inc(&memcg_sockets_enabled_key);
5364
5365         return &memcg->css;
5366 }
5367
5368 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5369 {
5370         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5371
5372         if (memcg_online_kmem(memcg))
5373                 goto remove_id;
5374
5375         /*
5376          * A memcg must be visible for expand_shrinker_info()
5377          * by the time the maps are allocated. So, we allocate maps
5378          * here, when for_each_mem_cgroup() can't skip it.
5379          */
5380         if (alloc_shrinker_info(memcg))
5381                 goto offline_kmem;
5382
5383         /* Online state pins memcg ID, memcg ID pins CSS */
5384         refcount_set(&memcg->id.ref, 1);
5385         css_get(css);
5386
5387         if (unlikely(mem_cgroup_is_root(memcg)))
5388                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5389                                    2UL*HZ);
5390         return 0;
5391 offline_kmem:
5392         memcg_offline_kmem(memcg);
5393 remove_id:
5394         mem_cgroup_id_remove(memcg);
5395         return -ENOMEM;
5396 }
5397
5398 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5399 {
5400         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5401         struct mem_cgroup_event *event, *tmp;
5402
5403         /*
5404          * Unregister events and notify userspace.
5405          * Notify userspace about cgroup removing only after rmdir of cgroup
5406          * directory to avoid race between userspace and kernelspace.
5407          */
5408         spin_lock_irq(&memcg->event_list_lock);
5409         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5410                 list_del_init(&event->list);
5411                 schedule_work(&event->remove);
5412         }
5413         spin_unlock_irq(&memcg->event_list_lock);
5414
5415         page_counter_set_min(&memcg->memory, 0);
5416         page_counter_set_low(&memcg->memory, 0);
5417
5418         memcg_offline_kmem(memcg);
5419         reparent_shrinker_deferred(memcg);
5420         wb_memcg_offline(memcg);
5421
5422         drain_all_stock(memcg);
5423
5424         mem_cgroup_id_put(memcg);
5425 }
5426
5427 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5428 {
5429         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5430
5431         invalidate_reclaim_iterators(memcg);
5432 }
5433
5434 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5435 {
5436         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5437         int __maybe_unused i;
5438
5439 #ifdef CONFIG_CGROUP_WRITEBACK
5440         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5441                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5442 #endif
5443         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5444                 static_branch_dec(&memcg_sockets_enabled_key);
5445
5446         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5447                 static_branch_dec(&memcg_sockets_enabled_key);
5448
5449         vmpressure_cleanup(&memcg->vmpressure);
5450         cancel_work_sync(&memcg->high_work);
5451         mem_cgroup_remove_from_trees(memcg);
5452         free_shrinker_info(memcg);
5453         mem_cgroup_free(memcg);
5454 }
5455
5456 /**
5457  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5458  * @css: the target css
5459  *
5460  * Reset the states of the mem_cgroup associated with @css.  This is
5461  * invoked when the userland requests disabling on the default hierarchy
5462  * but the memcg is pinned through dependency.  The memcg should stop
5463  * applying policies and should revert to the vanilla state as it may be
5464  * made visible again.
5465  *
5466  * The current implementation only resets the essential configurations.
5467  * This needs to be expanded to cover all the visible parts.
5468  */
5469 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5470 {
5471         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5472
5473         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5474         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5475         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5476         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5477         page_counter_set_min(&memcg->memory, 0);
5478         page_counter_set_low(&memcg->memory, 0);
5479         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5480         memcg->soft_limit = PAGE_COUNTER_MAX;
5481         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5482         memcg_wb_domain_size_changed(memcg);
5483 }
5484
5485 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5486 {
5487         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5488         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5489         struct memcg_vmstats_percpu *statc;
5490         long delta, v;
5491         int i, nid;
5492
5493         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5494
5495         for (i = 0; i < MEMCG_NR_STAT; i++) {
5496                 /*
5497                  * Collect the aggregated propagation counts of groups
5498                  * below us. We're in a per-cpu loop here and this is
5499                  * a global counter, so the first cycle will get them.
5500                  */
5501                 delta = memcg->vmstats->state_pending[i];
5502                 if (delta)
5503                         memcg->vmstats->state_pending[i] = 0;
5504
5505                 /* Add CPU changes on this level since the last flush */
5506                 v = READ_ONCE(statc->state[i]);
5507                 if (v != statc->state_prev[i]) {
5508                         delta += v - statc->state_prev[i];
5509                         statc->state_prev[i] = v;
5510                 }
5511
5512                 if (!delta)
5513                         continue;
5514
5515                 /* Aggregate counts on this level and propagate upwards */
5516                 memcg->vmstats->state[i] += delta;
5517                 if (parent)
5518                         parent->vmstats->state_pending[i] += delta;
5519         }
5520
5521         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5522                 delta = memcg->vmstats->events_pending[i];
5523                 if (delta)
5524                         memcg->vmstats->events_pending[i] = 0;
5525
5526                 v = READ_ONCE(statc->events[i]);
5527                 if (v != statc->events_prev[i]) {
5528                         delta += v - statc->events_prev[i];
5529                         statc->events_prev[i] = v;
5530                 }
5531
5532                 if (!delta)
5533                         continue;
5534
5535                 memcg->vmstats->events[i] += delta;
5536                 if (parent)
5537                         parent->vmstats->events_pending[i] += delta;
5538         }
5539
5540         for_each_node_state(nid, N_MEMORY) {
5541                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5542                 struct mem_cgroup_per_node *ppn = NULL;
5543                 struct lruvec_stats_percpu *lstatc;
5544
5545                 if (parent)
5546                         ppn = parent->nodeinfo[nid];
5547
5548                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5549
5550                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5551                         delta = pn->lruvec_stats.state_pending[i];
5552                         if (delta)
5553                                 pn->lruvec_stats.state_pending[i] = 0;
5554
5555                         v = READ_ONCE(lstatc->state[i]);
5556                         if (v != lstatc->state_prev[i]) {
5557                                 delta += v - lstatc->state_prev[i];
5558                                 lstatc->state_prev[i] = v;
5559                         }
5560
5561                         if (!delta)
5562                                 continue;
5563
5564                         pn->lruvec_stats.state[i] += delta;
5565                         if (ppn)
5566                                 ppn->lruvec_stats.state_pending[i] += delta;
5567                 }
5568         }
5569 }
5570
5571 #ifdef CONFIG_MMU
5572 /* Handlers for move charge at task migration. */
5573 static int mem_cgroup_do_precharge(unsigned long count)
5574 {
5575         int ret;
5576
5577         /* Try a single bulk charge without reclaim first, kswapd may wake */
5578         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5579         if (!ret) {
5580                 mc.precharge += count;
5581                 return ret;
5582         }
5583
5584         /* Try charges one by one with reclaim, but do not retry */
5585         while (count--) {
5586                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5587                 if (ret)
5588                         return ret;
5589                 mc.precharge++;
5590                 cond_resched();
5591         }
5592         return 0;
5593 }
5594
5595 union mc_target {
5596         struct page     *page;
5597         swp_entry_t     ent;
5598 };
5599
5600 enum mc_target_type {
5601         MC_TARGET_NONE = 0,
5602         MC_TARGET_PAGE,
5603         MC_TARGET_SWAP,
5604         MC_TARGET_DEVICE,
5605 };
5606
5607 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5608                                                 unsigned long addr, pte_t ptent)
5609 {
5610         struct page *page = vm_normal_page(vma, addr, ptent);
5611
5612         if (!page || !page_mapped(page))
5613                 return NULL;
5614         if (PageAnon(page)) {
5615                 if (!(mc.flags & MOVE_ANON))
5616                         return NULL;
5617         } else {
5618                 if (!(mc.flags & MOVE_FILE))
5619                         return NULL;
5620         }
5621         if (!get_page_unless_zero(page))
5622                 return NULL;
5623
5624         return page;
5625 }
5626
5627 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5628 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5629                         pte_t ptent, swp_entry_t *entry)
5630 {
5631         struct page *page = NULL;
5632         swp_entry_t ent = pte_to_swp_entry(ptent);
5633
5634         if (!(mc.flags & MOVE_ANON))
5635                 return NULL;
5636
5637         /*
5638          * Handle device private pages that are not accessible by the CPU, but
5639          * stored as special swap entries in the page table.
5640          */
5641         if (is_device_private_entry(ent)) {
5642                 page = pfn_swap_entry_to_page(ent);
5643                 if (!get_page_unless_zero(page))
5644                         return NULL;
5645                 return page;
5646         }
5647
5648         if (non_swap_entry(ent))
5649                 return NULL;
5650
5651         /*
5652          * Because swap_cache_get_folio() updates some statistics counter,
5653          * we call find_get_page() with swapper_space directly.
5654          */
5655         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5656         entry->val = ent.val;
5657
5658         return page;
5659 }
5660 #else
5661 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5662                         pte_t ptent, swp_entry_t *entry)
5663 {
5664         return NULL;
5665 }
5666 #endif
5667
5668 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5669                         unsigned long addr, pte_t ptent)
5670 {
5671         if (!vma->vm_file) /* anonymous vma */
5672                 return NULL;
5673         if (!(mc.flags & MOVE_FILE))
5674                 return NULL;
5675
5676         /* page is moved even if it's not RSS of this task(page-faulted). */
5677         /* shmem/tmpfs may report page out on swap: account for that too. */
5678         return find_get_incore_page(vma->vm_file->f_mapping,
5679                         linear_page_index(vma, addr));
5680 }
5681
5682 /**
5683  * mem_cgroup_move_account - move account of the page
5684  * @page: the page
5685  * @compound: charge the page as compound or small page
5686  * @from: mem_cgroup which the page is moved from.
5687  * @to: mem_cgroup which the page is moved to. @from != @to.
5688  *
5689  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5690  *
5691  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5692  * from old cgroup.
5693  */
5694 static int mem_cgroup_move_account(struct page *page,
5695                                    bool compound,
5696                                    struct mem_cgroup *from,
5697                                    struct mem_cgroup *to)
5698 {
5699         struct folio *folio = page_folio(page);
5700         struct lruvec *from_vec, *to_vec;
5701         struct pglist_data *pgdat;
5702         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5703         int nid, ret;
5704
5705         VM_BUG_ON(from == to);
5706         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5707         VM_BUG_ON(compound && !folio_test_large(folio));
5708
5709         /*
5710          * Prevent mem_cgroup_migrate() from looking at
5711          * page's memory cgroup of its source page while we change it.
5712          */
5713         ret = -EBUSY;
5714         if (!folio_trylock(folio))
5715                 goto out;
5716
5717         ret = -EINVAL;
5718         if (folio_memcg(folio) != from)
5719                 goto out_unlock;
5720
5721         pgdat = folio_pgdat(folio);
5722         from_vec = mem_cgroup_lruvec(from, pgdat);
5723         to_vec = mem_cgroup_lruvec(to, pgdat);
5724
5725         folio_memcg_lock(folio);
5726
5727         if (folio_test_anon(folio)) {
5728                 if (folio_mapped(folio)) {
5729                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5730                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5731                         if (folio_test_transhuge(folio)) {
5732                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5733                                                    -nr_pages);
5734                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5735                                                    nr_pages);
5736                         }
5737                 }
5738         } else {
5739                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5740                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5741
5742                 if (folio_test_swapbacked(folio)) {
5743                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5744                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5745                 }
5746
5747                 if (folio_mapped(folio)) {
5748                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5749                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5750                 }
5751
5752                 if (folio_test_dirty(folio)) {
5753                         struct address_space *mapping = folio_mapping(folio);
5754
5755                         if (mapping_can_writeback(mapping)) {
5756                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5757                                                    -nr_pages);
5758                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5759                                                    nr_pages);
5760                         }
5761                 }
5762         }
5763
5764         if (folio_test_writeback(folio)) {
5765                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5766                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5767         }
5768
5769         /*
5770          * All state has been migrated, let's switch to the new memcg.
5771          *
5772          * It is safe to change page's memcg here because the page
5773          * is referenced, charged, isolated, and locked: we can't race
5774          * with (un)charging, migration, LRU putback, or anything else
5775          * that would rely on a stable page's memory cgroup.
5776          *
5777          * Note that lock_page_memcg is a memcg lock, not a page lock,
5778          * to save space. As soon as we switch page's memory cgroup to a
5779          * new memcg that isn't locked, the above state can change
5780          * concurrently again. Make sure we're truly done with it.
5781          */
5782         smp_mb();
5783
5784         css_get(&to->css);
5785         css_put(&from->css);
5786
5787         folio->memcg_data = (unsigned long)to;
5788
5789         __folio_memcg_unlock(from);
5790
5791         ret = 0;
5792         nid = folio_nid(folio);
5793
5794         local_irq_disable();
5795         mem_cgroup_charge_statistics(to, nr_pages);
5796         memcg_check_events(to, nid);
5797         mem_cgroup_charge_statistics(from, -nr_pages);
5798         memcg_check_events(from, nid);
5799         local_irq_enable();
5800 out_unlock:
5801         folio_unlock(folio);
5802 out:
5803         return ret;
5804 }
5805
5806 /**
5807  * get_mctgt_type - get target type of moving charge
5808  * @vma: the vma the pte to be checked belongs
5809  * @addr: the address corresponding to the pte to be checked
5810  * @ptent: the pte to be checked
5811  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5812  *
5813  * Returns
5814  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5815  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5816  *     move charge. if @target is not NULL, the page is stored in target->page
5817  *     with extra refcnt got(Callers should handle it).
5818  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5819  *     target for charge migration. if @target is not NULL, the entry is stored
5820  *     in target->ent.
5821  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5822  *   thus not on the lru.
5823  *     For now we such page is charge like a regular page would be as for all
5824  *     intent and purposes it is just special memory taking the place of a
5825  *     regular page.
5826  *
5827  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5828  *
5829  * Called with pte lock held.
5830  */
5831
5832 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5833                 unsigned long addr, pte_t ptent, union mc_target *target)
5834 {
5835         struct page *page = NULL;
5836         enum mc_target_type ret = MC_TARGET_NONE;
5837         swp_entry_t ent = { .val = 0 };
5838
5839         if (pte_present(ptent))
5840                 page = mc_handle_present_pte(vma, addr, ptent);
5841         else if (pte_none_mostly(ptent))
5842                 /*
5843                  * PTE markers should be treated as a none pte here, separated
5844                  * from other swap handling below.
5845                  */
5846                 page = mc_handle_file_pte(vma, addr, ptent);
5847         else if (is_swap_pte(ptent))
5848                 page = mc_handle_swap_pte(vma, ptent, &ent);
5849
5850         if (!page && !ent.val)
5851                 return ret;
5852         if (page) {
5853                 /*
5854                  * Do only loose check w/o serialization.
5855                  * mem_cgroup_move_account() checks the page is valid or
5856                  * not under LRU exclusion.
5857                  */
5858                 if (page_memcg(page) == mc.from) {
5859                         ret = MC_TARGET_PAGE;
5860                         if (is_device_private_page(page) ||
5861                             is_device_coherent_page(page))
5862                                 ret = MC_TARGET_DEVICE;
5863                         if (target)
5864                                 target->page = page;
5865                 }
5866                 if (!ret || !target)
5867                         put_page(page);
5868         }
5869         /*
5870          * There is a swap entry and a page doesn't exist or isn't charged.
5871          * But we cannot move a tail-page in a THP.
5872          */
5873         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5874             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5875                 ret = MC_TARGET_SWAP;
5876                 if (target)
5877                         target->ent = ent;
5878         }
5879         return ret;
5880 }
5881
5882 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5883 /*
5884  * We don't consider PMD mapped swapping or file mapped pages because THP does
5885  * not support them for now.
5886  * Caller should make sure that pmd_trans_huge(pmd) is true.
5887  */
5888 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5889                 unsigned long addr, pmd_t pmd, union mc_target *target)
5890 {
5891         struct page *page = NULL;
5892         enum mc_target_type ret = MC_TARGET_NONE;
5893
5894         if (unlikely(is_swap_pmd(pmd))) {
5895                 VM_BUG_ON(thp_migration_supported() &&
5896                                   !is_pmd_migration_entry(pmd));
5897                 return ret;
5898         }
5899         page = pmd_page(pmd);
5900         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5901         if (!(mc.flags & MOVE_ANON))
5902                 return ret;
5903         if (page_memcg(page) == mc.from) {
5904                 ret = MC_TARGET_PAGE;
5905                 if (target) {
5906                         get_page(page);
5907                         target->page = page;
5908                 }
5909         }
5910         return ret;
5911 }
5912 #else
5913 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5914                 unsigned long addr, pmd_t pmd, union mc_target *target)
5915 {
5916         return MC_TARGET_NONE;
5917 }
5918 #endif
5919
5920 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5921                                         unsigned long addr, unsigned long end,
5922                                         struct mm_walk *walk)
5923 {
5924         struct vm_area_struct *vma = walk->vma;
5925         pte_t *pte;
5926         spinlock_t *ptl;
5927
5928         ptl = pmd_trans_huge_lock(pmd, vma);
5929         if (ptl) {
5930                 /*
5931                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5932                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5933                  * this might change.
5934                  */
5935                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5936                         mc.precharge += HPAGE_PMD_NR;
5937                 spin_unlock(ptl);
5938                 return 0;
5939         }
5940
5941         if (pmd_trans_unstable(pmd))
5942                 return 0;
5943         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5944         for (; addr != end; pte++, addr += PAGE_SIZE)
5945                 if (get_mctgt_type(vma, addr, *pte, NULL))
5946                         mc.precharge++; /* increment precharge temporarily */
5947         pte_unmap_unlock(pte - 1, ptl);
5948         cond_resched();
5949
5950         return 0;
5951 }
5952
5953 static const struct mm_walk_ops precharge_walk_ops = {
5954         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5955 };
5956
5957 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5958 {
5959         unsigned long precharge;
5960
5961         mmap_read_lock(mm);
5962         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
5963         mmap_read_unlock(mm);
5964
5965         precharge = mc.precharge;
5966         mc.precharge = 0;
5967
5968         return precharge;
5969 }
5970
5971 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5972 {
5973         unsigned long precharge = mem_cgroup_count_precharge(mm);
5974
5975         VM_BUG_ON(mc.moving_task);
5976         mc.moving_task = current;
5977         return mem_cgroup_do_precharge(precharge);
5978 }
5979
5980 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5981 static void __mem_cgroup_clear_mc(void)
5982 {
5983         struct mem_cgroup *from = mc.from;
5984         struct mem_cgroup *to = mc.to;
5985
5986         /* we must uncharge all the leftover precharges from mc.to */
5987         if (mc.precharge) {
5988                 cancel_charge(mc.to, mc.precharge);
5989                 mc.precharge = 0;
5990         }
5991         /*
5992          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5993          * we must uncharge here.
5994          */
5995         if (mc.moved_charge) {
5996                 cancel_charge(mc.from, mc.moved_charge);
5997                 mc.moved_charge = 0;
5998         }
5999         /* we must fixup refcnts and charges */
6000         if (mc.moved_swap) {
6001                 /* uncharge swap account from the old cgroup */
6002                 if (!mem_cgroup_is_root(mc.from))
6003                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6004
6005                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6006
6007                 /*
6008                  * we charged both to->memory and to->memsw, so we
6009                  * should uncharge to->memory.
6010                  */
6011                 if (!mem_cgroup_is_root(mc.to))
6012                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6013
6014                 mc.moved_swap = 0;
6015         }
6016         memcg_oom_recover(from);
6017         memcg_oom_recover(to);
6018         wake_up_all(&mc.waitq);
6019 }
6020
6021 static void mem_cgroup_clear_mc(void)
6022 {
6023         struct mm_struct *mm = mc.mm;
6024
6025         /*
6026          * we must clear moving_task before waking up waiters at the end of
6027          * task migration.
6028          */
6029         mc.moving_task = NULL;
6030         __mem_cgroup_clear_mc();
6031         spin_lock(&mc.lock);
6032         mc.from = NULL;
6033         mc.to = NULL;
6034         mc.mm = NULL;
6035         spin_unlock(&mc.lock);
6036
6037         mmput(mm);
6038 }
6039
6040 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6041 {
6042         struct cgroup_subsys_state *css;
6043         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6044         struct mem_cgroup *from;
6045         struct task_struct *leader, *p;
6046         struct mm_struct *mm;
6047         unsigned long move_flags;
6048         int ret = 0;
6049
6050         /* charge immigration isn't supported on the default hierarchy */
6051         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052                 return 0;
6053
6054         /*
6055          * Multi-process migrations only happen on the default hierarchy
6056          * where charge immigration is not used.  Perform charge
6057          * immigration if @tset contains a leader and whine if there are
6058          * multiple.
6059          */
6060         p = NULL;
6061         cgroup_taskset_for_each_leader(leader, css, tset) {
6062                 WARN_ON_ONCE(p);
6063                 p = leader;
6064                 memcg = mem_cgroup_from_css(css);
6065         }
6066         if (!p)
6067                 return 0;
6068
6069         /*
6070          * We are now committed to this value whatever it is. Changes in this
6071          * tunable will only affect upcoming migrations, not the current one.
6072          * So we need to save it, and keep it going.
6073          */
6074         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6075         if (!move_flags)
6076                 return 0;
6077
6078         from = mem_cgroup_from_task(p);
6079
6080         VM_BUG_ON(from == memcg);
6081
6082         mm = get_task_mm(p);
6083         if (!mm)
6084                 return 0;
6085         /* We move charges only when we move a owner of the mm */
6086         if (mm->owner == p) {
6087                 VM_BUG_ON(mc.from);
6088                 VM_BUG_ON(mc.to);
6089                 VM_BUG_ON(mc.precharge);
6090                 VM_BUG_ON(mc.moved_charge);
6091                 VM_BUG_ON(mc.moved_swap);
6092
6093                 spin_lock(&mc.lock);
6094                 mc.mm = mm;
6095                 mc.from = from;
6096                 mc.to = memcg;
6097                 mc.flags = move_flags;
6098                 spin_unlock(&mc.lock);
6099                 /* We set mc.moving_task later */
6100
6101                 ret = mem_cgroup_precharge_mc(mm);
6102                 if (ret)
6103                         mem_cgroup_clear_mc();
6104         } else {
6105                 mmput(mm);
6106         }
6107         return ret;
6108 }
6109
6110 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6111 {
6112         if (mc.to)
6113                 mem_cgroup_clear_mc();
6114 }
6115
6116 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6117                                 unsigned long addr, unsigned long end,
6118                                 struct mm_walk *walk)
6119 {
6120         int ret = 0;
6121         struct vm_area_struct *vma = walk->vma;
6122         pte_t *pte;
6123         spinlock_t *ptl;
6124         enum mc_target_type target_type;
6125         union mc_target target;
6126         struct page *page;
6127
6128         ptl = pmd_trans_huge_lock(pmd, vma);
6129         if (ptl) {
6130                 if (mc.precharge < HPAGE_PMD_NR) {
6131                         spin_unlock(ptl);
6132                         return 0;
6133                 }
6134                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6135                 if (target_type == MC_TARGET_PAGE) {
6136                         page = target.page;
6137                         if (!isolate_lru_page(page)) {
6138                                 if (!mem_cgroup_move_account(page, true,
6139                                                              mc.from, mc.to)) {
6140                                         mc.precharge -= HPAGE_PMD_NR;
6141                                         mc.moved_charge += HPAGE_PMD_NR;
6142                                 }
6143                                 putback_lru_page(page);
6144                         }
6145                         put_page(page);
6146                 } else if (target_type == MC_TARGET_DEVICE) {
6147                         page = target.page;
6148                         if (!mem_cgroup_move_account(page, true,
6149                                                      mc.from, mc.to)) {
6150                                 mc.precharge -= HPAGE_PMD_NR;
6151                                 mc.moved_charge += HPAGE_PMD_NR;
6152                         }
6153                         put_page(page);
6154                 }
6155                 spin_unlock(ptl);
6156                 return 0;
6157         }
6158
6159         if (pmd_trans_unstable(pmd))
6160                 return 0;
6161 retry:
6162         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6163         for (; addr != end; addr += PAGE_SIZE) {
6164                 pte_t ptent = *(pte++);
6165                 bool device = false;
6166                 swp_entry_t ent;
6167
6168                 if (!mc.precharge)
6169                         break;
6170
6171                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6172                 case MC_TARGET_DEVICE:
6173                         device = true;
6174                         fallthrough;
6175                 case MC_TARGET_PAGE:
6176                         page = target.page;
6177                         /*
6178                          * We can have a part of the split pmd here. Moving it
6179                          * can be done but it would be too convoluted so simply
6180                          * ignore such a partial THP and keep it in original
6181                          * memcg. There should be somebody mapping the head.
6182                          */
6183                         if (PageTransCompound(page))
6184                                 goto put;
6185                         if (!device && isolate_lru_page(page))
6186                                 goto put;
6187                         if (!mem_cgroup_move_account(page, false,
6188                                                 mc.from, mc.to)) {
6189                                 mc.precharge--;
6190                                 /* we uncharge from mc.from later. */
6191                                 mc.moved_charge++;
6192                         }
6193                         if (!device)
6194                                 putback_lru_page(page);
6195 put:                    /* get_mctgt_type() gets the page */
6196                         put_page(page);
6197                         break;
6198                 case MC_TARGET_SWAP:
6199                         ent = target.ent;
6200                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6201                                 mc.precharge--;
6202                                 mem_cgroup_id_get_many(mc.to, 1);
6203                                 /* we fixup other refcnts and charges later. */
6204                                 mc.moved_swap++;
6205                         }
6206                         break;
6207                 default:
6208                         break;
6209                 }
6210         }
6211         pte_unmap_unlock(pte - 1, ptl);
6212         cond_resched();
6213
6214         if (addr != end) {
6215                 /*
6216                  * We have consumed all precharges we got in can_attach().
6217                  * We try charge one by one, but don't do any additional
6218                  * charges to mc.to if we have failed in charge once in attach()
6219                  * phase.
6220                  */
6221                 ret = mem_cgroup_do_precharge(1);
6222                 if (!ret)
6223                         goto retry;
6224         }
6225
6226         return ret;
6227 }
6228
6229 static const struct mm_walk_ops charge_walk_ops = {
6230         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6231 };
6232
6233 static void mem_cgroup_move_charge(void)
6234 {
6235         lru_add_drain_all();
6236         /*
6237          * Signal lock_page_memcg() to take the memcg's move_lock
6238          * while we're moving its pages to another memcg. Then wait
6239          * for already started RCU-only updates to finish.
6240          */
6241         atomic_inc(&mc.from->moving_account);
6242         synchronize_rcu();
6243 retry:
6244         if (unlikely(!mmap_read_trylock(mc.mm))) {
6245                 /*
6246                  * Someone who are holding the mmap_lock might be waiting in
6247                  * waitq. So we cancel all extra charges, wake up all waiters,
6248                  * and retry. Because we cancel precharges, we might not be able
6249                  * to move enough charges, but moving charge is a best-effort
6250                  * feature anyway, so it wouldn't be a big problem.
6251                  */
6252                 __mem_cgroup_clear_mc();
6253                 cond_resched();
6254                 goto retry;
6255         }
6256         /*
6257          * When we have consumed all precharges and failed in doing
6258          * additional charge, the page walk just aborts.
6259          */
6260         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6261         mmap_read_unlock(mc.mm);
6262         atomic_dec(&mc.from->moving_account);
6263 }
6264
6265 static void mem_cgroup_move_task(void)
6266 {
6267         if (mc.to) {
6268                 mem_cgroup_move_charge();
6269                 mem_cgroup_clear_mc();
6270         }
6271 }
6272 #else   /* !CONFIG_MMU */
6273 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6274 {
6275         return 0;
6276 }
6277 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6278 {
6279 }
6280 static void mem_cgroup_move_task(void)
6281 {
6282 }
6283 #endif
6284
6285 #ifdef CONFIG_LRU_GEN
6286 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6287 {
6288         struct task_struct *task;
6289         struct cgroup_subsys_state *css;
6290
6291         /* find the first leader if there is any */
6292         cgroup_taskset_for_each_leader(task, css, tset)
6293                 break;
6294
6295         if (!task)
6296                 return;
6297
6298         task_lock(task);
6299         if (task->mm && READ_ONCE(task->mm->owner) == task)
6300                 lru_gen_migrate_mm(task->mm);
6301         task_unlock(task);
6302 }
6303 #else
6304 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6305 {
6306 }
6307 #endif /* CONFIG_LRU_GEN */
6308
6309 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6310 {
6311         if (value == PAGE_COUNTER_MAX)
6312                 seq_puts(m, "max\n");
6313         else
6314                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6315
6316         return 0;
6317 }
6318
6319 static u64 memory_current_read(struct cgroup_subsys_state *css,
6320                                struct cftype *cft)
6321 {
6322         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6323
6324         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6325 }
6326
6327 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6328                             struct cftype *cft)
6329 {
6330         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6331
6332         return (u64)memcg->memory.watermark * PAGE_SIZE;
6333 }
6334
6335 static int memory_min_show(struct seq_file *m, void *v)
6336 {
6337         return seq_puts_memcg_tunable(m,
6338                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6339 }
6340
6341 static ssize_t memory_min_write(struct kernfs_open_file *of,
6342                                 char *buf, size_t nbytes, loff_t off)
6343 {
6344         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6345         unsigned long min;
6346         int err;
6347
6348         buf = strstrip(buf);
6349         err = page_counter_memparse(buf, "max", &min);
6350         if (err)
6351                 return err;
6352
6353         page_counter_set_min(&memcg->memory, min);
6354
6355         return nbytes;
6356 }
6357
6358 static int memory_low_show(struct seq_file *m, void *v)
6359 {
6360         return seq_puts_memcg_tunable(m,
6361                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6362 }
6363
6364 static ssize_t memory_low_write(struct kernfs_open_file *of,
6365                                 char *buf, size_t nbytes, loff_t off)
6366 {
6367         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6368         unsigned long low;
6369         int err;
6370
6371         buf = strstrip(buf);
6372         err = page_counter_memparse(buf, "max", &low);
6373         if (err)
6374                 return err;
6375
6376         page_counter_set_low(&memcg->memory, low);
6377
6378         return nbytes;
6379 }
6380
6381 static int memory_high_show(struct seq_file *m, void *v)
6382 {
6383         return seq_puts_memcg_tunable(m,
6384                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6385 }
6386
6387 static ssize_t memory_high_write(struct kernfs_open_file *of,
6388                                  char *buf, size_t nbytes, loff_t off)
6389 {
6390         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6391         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6392         bool drained = false;
6393         unsigned long high;
6394         int err;
6395
6396         buf = strstrip(buf);
6397         err = page_counter_memparse(buf, "max", &high);
6398         if (err)
6399                 return err;
6400
6401         page_counter_set_high(&memcg->memory, high);
6402
6403         for (;;) {
6404                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6405                 unsigned long reclaimed;
6406
6407                 if (nr_pages <= high)
6408                         break;
6409
6410                 if (signal_pending(current))
6411                         break;
6412
6413                 if (!drained) {
6414                         drain_all_stock(memcg);
6415                         drained = true;
6416                         continue;
6417                 }
6418
6419                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6420                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6421
6422                 if (!reclaimed && !nr_retries--)
6423                         break;
6424         }
6425
6426         memcg_wb_domain_size_changed(memcg);
6427         return nbytes;
6428 }
6429
6430 static int memory_max_show(struct seq_file *m, void *v)
6431 {
6432         return seq_puts_memcg_tunable(m,
6433                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6434 }
6435
6436 static ssize_t memory_max_write(struct kernfs_open_file *of,
6437                                 char *buf, size_t nbytes, loff_t off)
6438 {
6439         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6440         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6441         bool drained = false;
6442         unsigned long max;
6443         int err;
6444
6445         buf = strstrip(buf);
6446         err = page_counter_memparse(buf, "max", &max);
6447         if (err)
6448                 return err;
6449
6450         xchg(&memcg->memory.max, max);
6451
6452         for (;;) {
6453                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6454
6455                 if (nr_pages <= max)
6456                         break;
6457
6458                 if (signal_pending(current))
6459                         break;
6460
6461                 if (!drained) {
6462                         drain_all_stock(memcg);
6463                         drained = true;
6464                         continue;
6465                 }
6466
6467                 if (nr_reclaims) {
6468                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6469                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6470                                 nr_reclaims--;
6471                         continue;
6472                 }
6473
6474                 memcg_memory_event(memcg, MEMCG_OOM);
6475                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6476                         break;
6477         }
6478
6479         memcg_wb_domain_size_changed(memcg);
6480         return nbytes;
6481 }
6482
6483 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6484 {
6485         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6486         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6487         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6488         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6489         seq_printf(m, "oom_kill %lu\n",
6490                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6491         seq_printf(m, "oom_group_kill %lu\n",
6492                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6493 }
6494
6495 static int memory_events_show(struct seq_file *m, void *v)
6496 {
6497         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6498
6499         __memory_events_show(m, memcg->memory_events);
6500         return 0;
6501 }
6502
6503 static int memory_events_local_show(struct seq_file *m, void *v)
6504 {
6505         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6506
6507         __memory_events_show(m, memcg->memory_events_local);
6508         return 0;
6509 }
6510
6511 static int memory_stat_show(struct seq_file *m, void *v)
6512 {
6513         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6514         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6515
6516         if (!buf)
6517                 return -ENOMEM;
6518         memory_stat_format(memcg, buf, PAGE_SIZE);
6519         seq_puts(m, buf);
6520         kfree(buf);
6521         return 0;
6522 }
6523
6524 #ifdef CONFIG_NUMA
6525 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6526                                                      int item)
6527 {
6528         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6529 }
6530
6531 static int memory_numa_stat_show(struct seq_file *m, void *v)
6532 {
6533         int i;
6534         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6535
6536         mem_cgroup_flush_stats();
6537
6538         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6539                 int nid;
6540
6541                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6542                         continue;
6543
6544                 seq_printf(m, "%s", memory_stats[i].name);
6545                 for_each_node_state(nid, N_MEMORY) {
6546                         u64 size;
6547                         struct lruvec *lruvec;
6548
6549                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6550                         size = lruvec_page_state_output(lruvec,
6551                                                         memory_stats[i].idx);
6552                         seq_printf(m, " N%d=%llu", nid, size);
6553                 }
6554                 seq_putc(m, '\n');
6555         }
6556
6557         return 0;
6558 }
6559 #endif
6560
6561 static int memory_oom_group_show(struct seq_file *m, void *v)
6562 {
6563         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6564
6565         seq_printf(m, "%d\n", memcg->oom_group);
6566
6567         return 0;
6568 }
6569
6570 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6571                                       char *buf, size_t nbytes, loff_t off)
6572 {
6573         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6574         int ret, oom_group;
6575
6576         buf = strstrip(buf);
6577         if (!buf)
6578                 return -EINVAL;
6579
6580         ret = kstrtoint(buf, 0, &oom_group);
6581         if (ret)
6582                 return ret;
6583
6584         if (oom_group != 0 && oom_group != 1)
6585                 return -EINVAL;
6586
6587         memcg->oom_group = oom_group;
6588
6589         return nbytes;
6590 }
6591
6592 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6593                               size_t nbytes, loff_t off)
6594 {
6595         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6596         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6597         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6598         unsigned int reclaim_options;
6599         int err;
6600
6601         buf = strstrip(buf);
6602         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6603         if (err)
6604                 return err;
6605
6606         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6607         while (nr_reclaimed < nr_to_reclaim) {
6608                 unsigned long reclaimed;
6609
6610                 if (signal_pending(current))
6611                         return -EINTR;
6612
6613                 /*
6614                  * This is the final attempt, drain percpu lru caches in the
6615                  * hope of introducing more evictable pages for
6616                  * try_to_free_mem_cgroup_pages().
6617                  */
6618                 if (!nr_retries)
6619                         lru_add_drain_all();
6620
6621                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6622                                                 nr_to_reclaim - nr_reclaimed,
6623                                                 GFP_KERNEL, reclaim_options);
6624
6625                 if (!reclaimed && !nr_retries--)
6626                         return -EAGAIN;
6627
6628                 nr_reclaimed += reclaimed;
6629         }
6630
6631         return nbytes;
6632 }
6633
6634 static struct cftype memory_files[] = {
6635         {
6636                 .name = "current",
6637                 .flags = CFTYPE_NOT_ON_ROOT,
6638                 .read_u64 = memory_current_read,
6639         },
6640         {
6641                 .name = "peak",
6642                 .flags = CFTYPE_NOT_ON_ROOT,
6643                 .read_u64 = memory_peak_read,
6644         },
6645         {
6646                 .name = "min",
6647                 .flags = CFTYPE_NOT_ON_ROOT,
6648                 .seq_show = memory_min_show,
6649                 .write = memory_min_write,
6650         },
6651         {
6652                 .name = "low",
6653                 .flags = CFTYPE_NOT_ON_ROOT,
6654                 .seq_show = memory_low_show,
6655                 .write = memory_low_write,
6656         },
6657         {
6658                 .name = "high",
6659                 .flags = CFTYPE_NOT_ON_ROOT,
6660                 .seq_show = memory_high_show,
6661                 .write = memory_high_write,
6662         },
6663         {
6664                 .name = "max",
6665                 .flags = CFTYPE_NOT_ON_ROOT,
6666                 .seq_show = memory_max_show,
6667                 .write = memory_max_write,
6668         },
6669         {
6670                 .name = "events",
6671                 .flags = CFTYPE_NOT_ON_ROOT,
6672                 .file_offset = offsetof(struct mem_cgroup, events_file),
6673                 .seq_show = memory_events_show,
6674         },
6675         {
6676                 .name = "events.local",
6677                 .flags = CFTYPE_NOT_ON_ROOT,
6678                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6679                 .seq_show = memory_events_local_show,
6680         },
6681         {
6682                 .name = "stat",
6683                 .seq_show = memory_stat_show,
6684         },
6685 #ifdef CONFIG_NUMA
6686         {
6687                 .name = "numa_stat",
6688                 .seq_show = memory_numa_stat_show,
6689         },
6690 #endif
6691         {
6692                 .name = "oom.group",
6693                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6694                 .seq_show = memory_oom_group_show,
6695                 .write = memory_oom_group_write,
6696         },
6697         {
6698                 .name = "reclaim",
6699                 .flags = CFTYPE_NS_DELEGATABLE,
6700                 .write = memory_reclaim,
6701         },
6702         { }     /* terminate */
6703 };
6704
6705 struct cgroup_subsys memory_cgrp_subsys = {
6706         .css_alloc = mem_cgroup_css_alloc,
6707         .css_online = mem_cgroup_css_online,
6708         .css_offline = mem_cgroup_css_offline,
6709         .css_released = mem_cgroup_css_released,
6710         .css_free = mem_cgroup_css_free,
6711         .css_reset = mem_cgroup_css_reset,
6712         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6713         .can_attach = mem_cgroup_can_attach,
6714         .attach = mem_cgroup_attach,
6715         .cancel_attach = mem_cgroup_cancel_attach,
6716         .post_attach = mem_cgroup_move_task,
6717         .dfl_cftypes = memory_files,
6718         .legacy_cftypes = mem_cgroup_legacy_files,
6719         .early_init = 0,
6720 };
6721
6722 /*
6723  * This function calculates an individual cgroup's effective
6724  * protection which is derived from its own memory.min/low, its
6725  * parent's and siblings' settings, as well as the actual memory
6726  * distribution in the tree.
6727  *
6728  * The following rules apply to the effective protection values:
6729  *
6730  * 1. At the first level of reclaim, effective protection is equal to
6731  *    the declared protection in memory.min and memory.low.
6732  *
6733  * 2. To enable safe delegation of the protection configuration, at
6734  *    subsequent levels the effective protection is capped to the
6735  *    parent's effective protection.
6736  *
6737  * 3. To make complex and dynamic subtrees easier to configure, the
6738  *    user is allowed to overcommit the declared protection at a given
6739  *    level. If that is the case, the parent's effective protection is
6740  *    distributed to the children in proportion to how much protection
6741  *    they have declared and how much of it they are utilizing.
6742  *
6743  *    This makes distribution proportional, but also work-conserving:
6744  *    if one cgroup claims much more protection than it uses memory,
6745  *    the unused remainder is available to its siblings.
6746  *
6747  * 4. Conversely, when the declared protection is undercommitted at a
6748  *    given level, the distribution of the larger parental protection
6749  *    budget is NOT proportional. A cgroup's protection from a sibling
6750  *    is capped to its own memory.min/low setting.
6751  *
6752  * 5. However, to allow protecting recursive subtrees from each other
6753  *    without having to declare each individual cgroup's fixed share
6754  *    of the ancestor's claim to protection, any unutilized -
6755  *    "floating" - protection from up the tree is distributed in
6756  *    proportion to each cgroup's *usage*. This makes the protection
6757  *    neutral wrt sibling cgroups and lets them compete freely over
6758  *    the shared parental protection budget, but it protects the
6759  *    subtree as a whole from neighboring subtrees.
6760  *
6761  * Note that 4. and 5. are not in conflict: 4. is about protecting
6762  * against immediate siblings whereas 5. is about protecting against
6763  * neighboring subtrees.
6764  */
6765 static unsigned long effective_protection(unsigned long usage,
6766                                           unsigned long parent_usage,
6767                                           unsigned long setting,
6768                                           unsigned long parent_effective,
6769                                           unsigned long siblings_protected)
6770 {
6771         unsigned long protected;
6772         unsigned long ep;
6773
6774         protected = min(usage, setting);
6775         /*
6776          * If all cgroups at this level combined claim and use more
6777          * protection then what the parent affords them, distribute
6778          * shares in proportion to utilization.
6779          *
6780          * We are using actual utilization rather than the statically
6781          * claimed protection in order to be work-conserving: claimed
6782          * but unused protection is available to siblings that would
6783          * otherwise get a smaller chunk than what they claimed.
6784          */
6785         if (siblings_protected > parent_effective)
6786                 return protected * parent_effective / siblings_protected;
6787
6788         /*
6789          * Ok, utilized protection of all children is within what the
6790          * parent affords them, so we know whatever this child claims
6791          * and utilizes is effectively protected.
6792          *
6793          * If there is unprotected usage beyond this value, reclaim
6794          * will apply pressure in proportion to that amount.
6795          *
6796          * If there is unutilized protection, the cgroup will be fully
6797          * shielded from reclaim, but we do return a smaller value for
6798          * protection than what the group could enjoy in theory. This
6799          * is okay. With the overcommit distribution above, effective
6800          * protection is always dependent on how memory is actually
6801          * consumed among the siblings anyway.
6802          */
6803         ep = protected;
6804
6805         /*
6806          * If the children aren't claiming (all of) the protection
6807          * afforded to them by the parent, distribute the remainder in
6808          * proportion to the (unprotected) memory of each cgroup. That
6809          * way, cgroups that aren't explicitly prioritized wrt each
6810          * other compete freely over the allowance, but they are
6811          * collectively protected from neighboring trees.
6812          *
6813          * We're using unprotected memory for the weight so that if
6814          * some cgroups DO claim explicit protection, we don't protect
6815          * the same bytes twice.
6816          *
6817          * Check both usage and parent_usage against the respective
6818          * protected values. One should imply the other, but they
6819          * aren't read atomically - make sure the division is sane.
6820          */
6821         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6822                 return ep;
6823         if (parent_effective > siblings_protected &&
6824             parent_usage > siblings_protected &&
6825             usage > protected) {
6826                 unsigned long unclaimed;
6827
6828                 unclaimed = parent_effective - siblings_protected;
6829                 unclaimed *= usage - protected;
6830                 unclaimed /= parent_usage - siblings_protected;
6831
6832                 ep += unclaimed;
6833         }
6834
6835         return ep;
6836 }
6837
6838 /**
6839  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6840  * @root: the top ancestor of the sub-tree being checked
6841  * @memcg: the memory cgroup to check
6842  *
6843  * WARNING: This function is not stateless! It can only be used as part
6844  *          of a top-down tree iteration, not for isolated queries.
6845  */
6846 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6847                                      struct mem_cgroup *memcg)
6848 {
6849         unsigned long usage, parent_usage;
6850         struct mem_cgroup *parent;
6851
6852         if (mem_cgroup_disabled())
6853                 return;
6854
6855         if (!root)
6856                 root = root_mem_cgroup;
6857
6858         /*
6859          * Effective values of the reclaim targets are ignored so they
6860          * can be stale. Have a look at mem_cgroup_protection for more
6861          * details.
6862          * TODO: calculation should be more robust so that we do not need
6863          * that special casing.
6864          */
6865         if (memcg == root)
6866                 return;
6867
6868         usage = page_counter_read(&memcg->memory);
6869         if (!usage)
6870                 return;
6871
6872         parent = parent_mem_cgroup(memcg);
6873
6874         if (parent == root) {
6875                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6876                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6877                 return;
6878         }
6879
6880         parent_usage = page_counter_read(&parent->memory);
6881
6882         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6883                         READ_ONCE(memcg->memory.min),
6884                         READ_ONCE(parent->memory.emin),
6885                         atomic_long_read(&parent->memory.children_min_usage)));
6886
6887         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6888                         READ_ONCE(memcg->memory.low),
6889                         READ_ONCE(parent->memory.elow),
6890                         atomic_long_read(&parent->memory.children_low_usage)));
6891 }
6892
6893 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6894                         gfp_t gfp)
6895 {
6896         long nr_pages = folio_nr_pages(folio);
6897         int ret;
6898
6899         ret = try_charge(memcg, gfp, nr_pages);
6900         if (ret)
6901                 goto out;
6902
6903         css_get(&memcg->css);
6904         commit_charge(folio, memcg);
6905
6906         local_irq_disable();
6907         mem_cgroup_charge_statistics(memcg, nr_pages);
6908         memcg_check_events(memcg, folio_nid(folio));
6909         local_irq_enable();
6910 out:
6911         return ret;
6912 }
6913
6914 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6915 {
6916         struct mem_cgroup *memcg;
6917         int ret;
6918
6919         memcg = get_mem_cgroup_from_mm(mm);
6920         ret = charge_memcg(folio, memcg, gfp);
6921         css_put(&memcg->css);
6922
6923         return ret;
6924 }
6925
6926 /**
6927  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6928  * @folio: folio to charge.
6929  * @mm: mm context of the victim
6930  * @gfp: reclaim mode
6931  * @entry: swap entry for which the folio is allocated
6932  *
6933  * This function charges a folio allocated for swapin. Please call this before
6934  * adding the folio to the swapcache.
6935  *
6936  * Returns 0 on success. Otherwise, an error code is returned.
6937  */
6938 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
6939                                   gfp_t gfp, swp_entry_t entry)
6940 {
6941         struct mem_cgroup *memcg;
6942         unsigned short id;
6943         int ret;
6944
6945         if (mem_cgroup_disabled())
6946                 return 0;
6947
6948         id = lookup_swap_cgroup_id(entry);
6949         rcu_read_lock();
6950         memcg = mem_cgroup_from_id(id);
6951         if (!memcg || !css_tryget_online(&memcg->css))
6952                 memcg = get_mem_cgroup_from_mm(mm);
6953         rcu_read_unlock();
6954
6955         ret = charge_memcg(folio, memcg, gfp);
6956
6957         css_put(&memcg->css);
6958         return ret;
6959 }
6960
6961 /*
6962  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6963  * @entry: swap entry for which the page is charged
6964  *
6965  * Call this function after successfully adding the charged page to swapcache.
6966  *
6967  * Note: This function assumes the page for which swap slot is being uncharged
6968  * is order 0 page.
6969  */
6970 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6971 {
6972         /*
6973          * Cgroup1's unified memory+swap counter has been charged with the
6974          * new swapcache page, finish the transfer by uncharging the swap
6975          * slot. The swap slot would also get uncharged when it dies, but
6976          * it can stick around indefinitely and we'd count the page twice
6977          * the entire time.
6978          *
6979          * Cgroup2 has separate resource counters for memory and swap,
6980          * so this is a non-issue here. Memory and swap charge lifetimes
6981          * correspond 1:1 to page and swap slot lifetimes: we charge the
6982          * page to memory here, and uncharge swap when the slot is freed.
6983          */
6984         if (!mem_cgroup_disabled() && do_memsw_account()) {
6985                 /*
6986                  * The swap entry might not get freed for a long time,
6987                  * let's not wait for it.  The page already received a
6988                  * memory+swap charge, drop the swap entry duplicate.
6989                  */
6990                 mem_cgroup_uncharge_swap(entry, 1);
6991         }
6992 }
6993
6994 struct uncharge_gather {
6995         struct mem_cgroup *memcg;
6996         unsigned long nr_memory;
6997         unsigned long pgpgout;
6998         unsigned long nr_kmem;
6999         int nid;
7000 };
7001
7002 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7003 {
7004         memset(ug, 0, sizeof(*ug));
7005 }
7006
7007 static void uncharge_batch(const struct uncharge_gather *ug)
7008 {
7009         unsigned long flags;
7010
7011         if (ug->nr_memory) {
7012                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7013                 if (do_memsw_account())
7014                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7015                 if (ug->nr_kmem)
7016                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7017                 memcg_oom_recover(ug->memcg);
7018         }
7019
7020         local_irq_save(flags);
7021         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7022         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7023         memcg_check_events(ug->memcg, ug->nid);
7024         local_irq_restore(flags);
7025
7026         /* drop reference from uncharge_folio */
7027         css_put(&ug->memcg->css);
7028 }
7029
7030 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7031 {
7032         long nr_pages;
7033         struct mem_cgroup *memcg;
7034         struct obj_cgroup *objcg;
7035
7036         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7037
7038         /*
7039          * Nobody should be changing or seriously looking at
7040          * folio memcg or objcg at this point, we have fully
7041          * exclusive access to the folio.
7042          */
7043         if (folio_memcg_kmem(folio)) {
7044                 objcg = __folio_objcg(folio);
7045                 /*
7046                  * This get matches the put at the end of the function and
7047                  * kmem pages do not hold memcg references anymore.
7048                  */
7049                 memcg = get_mem_cgroup_from_objcg(objcg);
7050         } else {
7051                 memcg = __folio_memcg(folio);
7052         }
7053
7054         if (!memcg)
7055                 return;
7056
7057         if (ug->memcg != memcg) {
7058                 if (ug->memcg) {
7059                         uncharge_batch(ug);
7060                         uncharge_gather_clear(ug);
7061                 }
7062                 ug->memcg = memcg;
7063                 ug->nid = folio_nid(folio);
7064
7065                 /* pairs with css_put in uncharge_batch */
7066                 css_get(&memcg->css);
7067         }
7068
7069         nr_pages = folio_nr_pages(folio);
7070
7071         if (folio_memcg_kmem(folio)) {
7072                 ug->nr_memory += nr_pages;
7073                 ug->nr_kmem += nr_pages;
7074
7075                 folio->memcg_data = 0;
7076                 obj_cgroup_put(objcg);
7077         } else {
7078                 /* LRU pages aren't accounted at the root level */
7079                 if (!mem_cgroup_is_root(memcg))
7080                         ug->nr_memory += nr_pages;
7081                 ug->pgpgout++;
7082
7083                 folio->memcg_data = 0;
7084         }
7085
7086         css_put(&memcg->css);
7087 }
7088
7089 void __mem_cgroup_uncharge(struct folio *folio)
7090 {
7091         struct uncharge_gather ug;
7092
7093         /* Don't touch folio->lru of any random page, pre-check: */
7094         if (!folio_memcg(folio))
7095                 return;
7096
7097         uncharge_gather_clear(&ug);
7098         uncharge_folio(folio, &ug);
7099         uncharge_batch(&ug);
7100 }
7101
7102 /**
7103  * __mem_cgroup_uncharge_list - uncharge a list of page
7104  * @page_list: list of pages to uncharge
7105  *
7106  * Uncharge a list of pages previously charged with
7107  * __mem_cgroup_charge().
7108  */
7109 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7110 {
7111         struct uncharge_gather ug;
7112         struct folio *folio;
7113
7114         uncharge_gather_clear(&ug);
7115         list_for_each_entry(folio, page_list, lru)
7116                 uncharge_folio(folio, &ug);
7117         if (ug.memcg)
7118                 uncharge_batch(&ug);
7119 }
7120
7121 /**
7122  * mem_cgroup_migrate - Charge a folio's replacement.
7123  * @old: Currently circulating folio.
7124  * @new: Replacement folio.
7125  *
7126  * Charge @new as a replacement folio for @old. @old will
7127  * be uncharged upon free.
7128  *
7129  * Both folios must be locked, @new->mapping must be set up.
7130  */
7131 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7132 {
7133         struct mem_cgroup *memcg;
7134         long nr_pages = folio_nr_pages(new);
7135         unsigned long flags;
7136
7137         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7138         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7139         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7140         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7141
7142         if (mem_cgroup_disabled())
7143                 return;
7144
7145         /* Page cache replacement: new folio already charged? */
7146         if (folio_memcg(new))
7147                 return;
7148
7149         memcg = folio_memcg(old);
7150         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7151         if (!memcg)
7152                 return;
7153
7154         /* Force-charge the new page. The old one will be freed soon */
7155         if (!mem_cgroup_is_root(memcg)) {
7156                 page_counter_charge(&memcg->memory, nr_pages);
7157                 if (do_memsw_account())
7158                         page_counter_charge(&memcg->memsw, nr_pages);
7159         }
7160
7161         css_get(&memcg->css);
7162         commit_charge(new, memcg);
7163
7164         local_irq_save(flags);
7165         mem_cgroup_charge_statistics(memcg, nr_pages);
7166         memcg_check_events(memcg, folio_nid(new));
7167         local_irq_restore(flags);
7168 }
7169
7170 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7171 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7172
7173 void mem_cgroup_sk_alloc(struct sock *sk)
7174 {
7175         struct mem_cgroup *memcg;
7176
7177         if (!mem_cgroup_sockets_enabled)
7178                 return;
7179
7180         /* Do not associate the sock with unrelated interrupted task's memcg. */
7181         if (!in_task())
7182                 return;
7183
7184         rcu_read_lock();
7185         memcg = mem_cgroup_from_task(current);
7186         if (memcg == root_mem_cgroup)
7187                 goto out;
7188         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7189                 goto out;
7190         if (css_tryget(&memcg->css))
7191                 sk->sk_memcg = memcg;
7192 out:
7193         rcu_read_unlock();
7194 }
7195
7196 void mem_cgroup_sk_free(struct sock *sk)
7197 {
7198         if (sk->sk_memcg)
7199                 css_put(&sk->sk_memcg->css);
7200 }
7201
7202 /**
7203  * mem_cgroup_charge_skmem - charge socket memory
7204  * @memcg: memcg to charge
7205  * @nr_pages: number of pages to charge
7206  * @gfp_mask: reclaim mode
7207  *
7208  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7209  * @memcg's configured limit, %false if it doesn't.
7210  */
7211 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7212                              gfp_t gfp_mask)
7213 {
7214         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7215                 struct page_counter *fail;
7216
7217                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7218                         memcg->tcpmem_pressure = 0;
7219                         return true;
7220                 }
7221                 memcg->tcpmem_pressure = 1;
7222                 if (gfp_mask & __GFP_NOFAIL) {
7223                         page_counter_charge(&memcg->tcpmem, nr_pages);
7224                         return true;
7225                 }
7226                 return false;
7227         }
7228
7229         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7230                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7231                 return true;
7232         }
7233
7234         return false;
7235 }
7236
7237 /**
7238  * mem_cgroup_uncharge_skmem - uncharge socket memory
7239  * @memcg: memcg to uncharge
7240  * @nr_pages: number of pages to uncharge
7241  */
7242 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7243 {
7244         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7245                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7246                 return;
7247         }
7248
7249         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7250
7251         refill_stock(memcg, nr_pages);
7252 }
7253
7254 static int __init cgroup_memory(char *s)
7255 {
7256         char *token;
7257
7258         while ((token = strsep(&s, ",")) != NULL) {
7259                 if (!*token)
7260                         continue;
7261                 if (!strcmp(token, "nosocket"))
7262                         cgroup_memory_nosocket = true;
7263                 if (!strcmp(token, "nokmem"))
7264                         cgroup_memory_nokmem = true;
7265         }
7266         return 1;
7267 }
7268 __setup("cgroup.memory=", cgroup_memory);
7269
7270 /*
7271  * subsys_initcall() for memory controller.
7272  *
7273  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7274  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7275  * basically everything that doesn't depend on a specific mem_cgroup structure
7276  * should be initialized from here.
7277  */
7278 static int __init mem_cgroup_init(void)
7279 {
7280         int cpu, node;
7281
7282         /*
7283          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7284          * used for per-memcg-per-cpu caching of per-node statistics. In order
7285          * to work fine, we should make sure that the overfill threshold can't
7286          * exceed S32_MAX / PAGE_SIZE.
7287          */
7288         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7289
7290         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7291                                   memcg_hotplug_cpu_dead);
7292
7293         for_each_possible_cpu(cpu)
7294                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7295                           drain_local_stock);
7296
7297         for_each_node(node) {
7298                 struct mem_cgroup_tree_per_node *rtpn;
7299
7300                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7301                                     node_online(node) ? node : NUMA_NO_NODE);
7302
7303                 rtpn->rb_root = RB_ROOT;
7304                 rtpn->rb_rightmost = NULL;
7305                 spin_lock_init(&rtpn->lock);
7306                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7307         }
7308
7309         return 0;
7310 }
7311 subsys_initcall(mem_cgroup_init);
7312
7313 #ifdef CONFIG_SWAP
7314 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7315 {
7316         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7317                 /*
7318                  * The root cgroup cannot be destroyed, so it's refcount must
7319                  * always be >= 1.
7320                  */
7321                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7322                         VM_BUG_ON(1);
7323                         break;
7324                 }
7325                 memcg = parent_mem_cgroup(memcg);
7326                 if (!memcg)
7327                         memcg = root_mem_cgroup;
7328         }
7329         return memcg;
7330 }
7331
7332 /**
7333  * mem_cgroup_swapout - transfer a memsw charge to swap
7334  * @folio: folio whose memsw charge to transfer
7335  * @entry: swap entry to move the charge to
7336  *
7337  * Transfer the memsw charge of @folio to @entry.
7338  */
7339 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7340 {
7341         struct mem_cgroup *memcg, *swap_memcg;
7342         unsigned int nr_entries;
7343         unsigned short oldid;
7344
7345         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7346         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7347
7348         if (mem_cgroup_disabled())
7349                 return;
7350
7351         if (!do_memsw_account())
7352                 return;
7353
7354         memcg = folio_memcg(folio);
7355
7356         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7357         if (!memcg)
7358                 return;
7359
7360         /*
7361          * In case the memcg owning these pages has been offlined and doesn't
7362          * have an ID allocated to it anymore, charge the closest online
7363          * ancestor for the swap instead and transfer the memory+swap charge.
7364          */
7365         swap_memcg = mem_cgroup_id_get_online(memcg);
7366         nr_entries = folio_nr_pages(folio);
7367         /* Get references for the tail pages, too */
7368         if (nr_entries > 1)
7369                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7370         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7371                                    nr_entries);
7372         VM_BUG_ON_FOLIO(oldid, folio);
7373         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7374
7375         folio->memcg_data = 0;
7376
7377         if (!mem_cgroup_is_root(memcg))
7378                 page_counter_uncharge(&memcg->memory, nr_entries);
7379
7380         if (memcg != swap_memcg) {
7381                 if (!mem_cgroup_is_root(swap_memcg))
7382                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7383                 page_counter_uncharge(&memcg->memsw, nr_entries);
7384         }
7385
7386         /*
7387          * Interrupts should be disabled here because the caller holds the
7388          * i_pages lock which is taken with interrupts-off. It is
7389          * important here to have the interrupts disabled because it is the
7390          * only synchronisation we have for updating the per-CPU variables.
7391          */
7392         memcg_stats_lock();
7393         mem_cgroup_charge_statistics(memcg, -nr_entries);
7394         memcg_stats_unlock();
7395         memcg_check_events(memcg, folio_nid(folio));
7396
7397         css_put(&memcg->css);
7398 }
7399
7400 /**
7401  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7402  * @folio: folio being added to swap
7403  * @entry: swap entry to charge
7404  *
7405  * Try to charge @folio's memcg for the swap space at @entry.
7406  *
7407  * Returns 0 on success, -ENOMEM on failure.
7408  */
7409 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7410 {
7411         unsigned int nr_pages = folio_nr_pages(folio);
7412         struct page_counter *counter;
7413         struct mem_cgroup *memcg;
7414         unsigned short oldid;
7415
7416         if (do_memsw_account())
7417                 return 0;
7418
7419         memcg = folio_memcg(folio);
7420
7421         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7422         if (!memcg)
7423                 return 0;
7424
7425         if (!entry.val) {
7426                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7427                 return 0;
7428         }
7429
7430         memcg = mem_cgroup_id_get_online(memcg);
7431
7432         if (!mem_cgroup_is_root(memcg) &&
7433             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7434                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7435                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7436                 mem_cgroup_id_put(memcg);
7437                 return -ENOMEM;
7438         }
7439
7440         /* Get references for the tail pages, too */
7441         if (nr_pages > 1)
7442                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7443         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7444         VM_BUG_ON_FOLIO(oldid, folio);
7445         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7446
7447         return 0;
7448 }
7449
7450 /**
7451  * __mem_cgroup_uncharge_swap - uncharge swap space
7452  * @entry: swap entry to uncharge
7453  * @nr_pages: the amount of swap space to uncharge
7454  */
7455 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7456 {
7457         struct mem_cgroup *memcg;
7458         unsigned short id;
7459
7460         if (mem_cgroup_disabled())
7461                 return;
7462
7463         id = swap_cgroup_record(entry, 0, nr_pages);
7464         rcu_read_lock();
7465         memcg = mem_cgroup_from_id(id);
7466         if (memcg) {
7467                 if (!mem_cgroup_is_root(memcg)) {
7468                         if (do_memsw_account())
7469                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7470                         else
7471                                 page_counter_uncharge(&memcg->swap, nr_pages);
7472                 }
7473                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7474                 mem_cgroup_id_put_many(memcg, nr_pages);
7475         }
7476         rcu_read_unlock();
7477 }
7478
7479 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7480 {
7481         long nr_swap_pages = get_nr_swap_pages();
7482
7483         if (mem_cgroup_disabled() || do_memsw_account())
7484                 return nr_swap_pages;
7485         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7486                 nr_swap_pages = min_t(long, nr_swap_pages,
7487                                       READ_ONCE(memcg->swap.max) -
7488                                       page_counter_read(&memcg->swap));
7489         return nr_swap_pages;
7490 }
7491
7492 bool mem_cgroup_swap_full(struct folio *folio)
7493 {
7494         struct mem_cgroup *memcg;
7495
7496         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7497
7498         if (vm_swap_full())
7499                 return true;
7500         if (do_memsw_account())
7501                 return false;
7502
7503         memcg = folio_memcg(folio);
7504         if (!memcg)
7505                 return false;
7506
7507         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7508                 unsigned long usage = page_counter_read(&memcg->swap);
7509
7510                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7511                     usage * 2 >= READ_ONCE(memcg->swap.max))
7512                         return true;
7513         }
7514
7515         return false;
7516 }
7517
7518 static int __init setup_swap_account(char *s)
7519 {
7520         pr_warn_once("The swapaccount= commandline option is deprecated. "
7521                      "Please report your usecase to linux-mm@kvack.org if you "
7522                      "depend on this functionality.\n");
7523         return 1;
7524 }
7525 __setup("swapaccount=", setup_swap_account);
7526
7527 static u64 swap_current_read(struct cgroup_subsys_state *css,
7528                              struct cftype *cft)
7529 {
7530         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7531
7532         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7533 }
7534
7535 static int swap_high_show(struct seq_file *m, void *v)
7536 {
7537         return seq_puts_memcg_tunable(m,
7538                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7539 }
7540
7541 static ssize_t swap_high_write(struct kernfs_open_file *of,
7542                                char *buf, size_t nbytes, loff_t off)
7543 {
7544         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7545         unsigned long high;
7546         int err;
7547
7548         buf = strstrip(buf);
7549         err = page_counter_memparse(buf, "max", &high);
7550         if (err)
7551                 return err;
7552
7553         page_counter_set_high(&memcg->swap, high);
7554
7555         return nbytes;
7556 }
7557
7558 static int swap_max_show(struct seq_file *m, void *v)
7559 {
7560         return seq_puts_memcg_tunable(m,
7561                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7562 }
7563
7564 static ssize_t swap_max_write(struct kernfs_open_file *of,
7565                               char *buf, size_t nbytes, loff_t off)
7566 {
7567         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7568         unsigned long max;
7569         int err;
7570
7571         buf = strstrip(buf);
7572         err = page_counter_memparse(buf, "max", &max);
7573         if (err)
7574                 return err;
7575
7576         xchg(&memcg->swap.max, max);
7577
7578         return nbytes;
7579 }
7580
7581 static int swap_events_show(struct seq_file *m, void *v)
7582 {
7583         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7584
7585         seq_printf(m, "high %lu\n",
7586                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7587         seq_printf(m, "max %lu\n",
7588                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7589         seq_printf(m, "fail %lu\n",
7590                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7591
7592         return 0;
7593 }
7594
7595 static struct cftype swap_files[] = {
7596         {
7597                 .name = "swap.current",
7598                 .flags = CFTYPE_NOT_ON_ROOT,
7599                 .read_u64 = swap_current_read,
7600         },
7601         {
7602                 .name = "swap.high",
7603                 .flags = CFTYPE_NOT_ON_ROOT,
7604                 .seq_show = swap_high_show,
7605                 .write = swap_high_write,
7606         },
7607         {
7608                 .name = "swap.max",
7609                 .flags = CFTYPE_NOT_ON_ROOT,
7610                 .seq_show = swap_max_show,
7611                 .write = swap_max_write,
7612         },
7613         {
7614                 .name = "swap.events",
7615                 .flags = CFTYPE_NOT_ON_ROOT,
7616                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7617                 .seq_show = swap_events_show,
7618         },
7619         { }     /* terminate */
7620 };
7621
7622 static struct cftype memsw_files[] = {
7623         {
7624                 .name = "memsw.usage_in_bytes",
7625                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7626                 .read_u64 = mem_cgroup_read_u64,
7627         },
7628         {
7629                 .name = "memsw.max_usage_in_bytes",
7630                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7631                 .write = mem_cgroup_reset,
7632                 .read_u64 = mem_cgroup_read_u64,
7633         },
7634         {
7635                 .name = "memsw.limit_in_bytes",
7636                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7637                 .write = mem_cgroup_write,
7638                 .read_u64 = mem_cgroup_read_u64,
7639         },
7640         {
7641                 .name = "memsw.failcnt",
7642                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7643                 .write = mem_cgroup_reset,
7644                 .read_u64 = mem_cgroup_read_u64,
7645         },
7646         { },    /* terminate */
7647 };
7648
7649 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7650 /**
7651  * obj_cgroup_may_zswap - check if this cgroup can zswap
7652  * @objcg: the object cgroup
7653  *
7654  * Check if the hierarchical zswap limit has been reached.
7655  *
7656  * This doesn't check for specific headroom, and it is not atomic
7657  * either. But with zswap, the size of the allocation is only known
7658  * once compression has occured, and this optimistic pre-check avoids
7659  * spending cycles on compression when there is already no room left
7660  * or zswap is disabled altogether somewhere in the hierarchy.
7661  */
7662 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7663 {
7664         struct mem_cgroup *memcg, *original_memcg;
7665         bool ret = true;
7666
7667         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7668                 return true;
7669
7670         original_memcg = get_mem_cgroup_from_objcg(objcg);
7671         for (memcg = original_memcg; memcg != root_mem_cgroup;
7672              memcg = parent_mem_cgroup(memcg)) {
7673                 unsigned long max = READ_ONCE(memcg->zswap_max);
7674                 unsigned long pages;
7675
7676                 if (max == PAGE_COUNTER_MAX)
7677                         continue;
7678                 if (max == 0) {
7679                         ret = false;
7680                         break;
7681                 }
7682
7683                 cgroup_rstat_flush(memcg->css.cgroup);
7684                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7685                 if (pages < max)
7686                         continue;
7687                 ret = false;
7688                 break;
7689         }
7690         mem_cgroup_put(original_memcg);
7691         return ret;
7692 }
7693
7694 /**
7695  * obj_cgroup_charge_zswap - charge compression backend memory
7696  * @objcg: the object cgroup
7697  * @size: size of compressed object
7698  *
7699  * This forces the charge after obj_cgroup_may_swap() allowed
7700  * compression and storage in zwap for this cgroup to go ahead.
7701  */
7702 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7703 {
7704         struct mem_cgroup *memcg;
7705
7706         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7707                 return;
7708
7709         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7710
7711         /* PF_MEMALLOC context, charging must succeed */
7712         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7713                 VM_WARN_ON_ONCE(1);
7714
7715         rcu_read_lock();
7716         memcg = obj_cgroup_memcg(objcg);
7717         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7718         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7719         rcu_read_unlock();
7720 }
7721
7722 /**
7723  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7724  * @objcg: the object cgroup
7725  * @size: size of compressed object
7726  *
7727  * Uncharges zswap memory on page in.
7728  */
7729 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7730 {
7731         struct mem_cgroup *memcg;
7732
7733         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7734                 return;
7735
7736         obj_cgroup_uncharge(objcg, size);
7737
7738         rcu_read_lock();
7739         memcg = obj_cgroup_memcg(objcg);
7740         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7741         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7742         rcu_read_unlock();
7743 }
7744
7745 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7746                               struct cftype *cft)
7747 {
7748         cgroup_rstat_flush(css->cgroup);
7749         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7750 }
7751
7752 static int zswap_max_show(struct seq_file *m, void *v)
7753 {
7754         return seq_puts_memcg_tunable(m,
7755                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7756 }
7757
7758 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7759                                char *buf, size_t nbytes, loff_t off)
7760 {
7761         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7762         unsigned long max;
7763         int err;
7764
7765         buf = strstrip(buf);
7766         err = page_counter_memparse(buf, "max", &max);
7767         if (err)
7768                 return err;
7769
7770         xchg(&memcg->zswap_max, max);
7771
7772         return nbytes;
7773 }
7774
7775 static struct cftype zswap_files[] = {
7776         {
7777                 .name = "zswap.current",
7778                 .flags = CFTYPE_NOT_ON_ROOT,
7779                 .read_u64 = zswap_current_read,
7780         },
7781         {
7782                 .name = "zswap.max",
7783                 .flags = CFTYPE_NOT_ON_ROOT,
7784                 .seq_show = zswap_max_show,
7785                 .write = zswap_max_write,
7786         },
7787         { }     /* terminate */
7788 };
7789 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7790
7791 static int __init mem_cgroup_swap_init(void)
7792 {
7793         if (mem_cgroup_disabled())
7794                 return 0;
7795
7796         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7797         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7798 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7799         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7800 #endif
7801         return 0;
7802 }
7803 subsys_initcall(mem_cgroup_swap_init);
7804
7805 #endif /* CONFIG_SWAP */