memcg: remove memcg->reclaim_param_lock
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90         /*
91          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92          */
93         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
94         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
95         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
97         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
98         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100         /* incremented at every  pagein/pageout */
101         MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
103
104         MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108         s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115         /*
116          * spin_lock to protect the per cgroup LRU
117          */
118         struct list_head        lists[NR_LRU_LISTS];
119         unsigned long           count[NR_LRU_LISTS];
120
121         struct zone_reclaim_stat reclaim_stat;
122         struct rb_node          tree_node;      /* RB tree node */
123         unsigned long long      usage_in_excess;/* Set to the value by which */
124                                                 /* the soft limit is exceeded*/
125         bool                    on_tree;
126         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
127                                                 /* use container_of        */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144
145 struct mem_cgroup_tree_per_zone {
146         struct rb_root rb_root;
147         spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161         struct eventfd_ctx *eventfd;
162         u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167         /* An array index points to threshold just below usage. */
168         int current_threshold;
169         /* Size of entries[] */
170         unsigned int size;
171         /* Array of thresholds */
172         struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176         /* Primary thresholds array */
177         struct mem_cgroup_threshold_ary *primary;
178         /*
179          * Spare threshold array.
180          * This is needed to make mem_cgroup_unregister_event() "never fail".
181          * It must be able to store at least primary->size - 1 entries.
182          */
183         struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188         struct list_head list;
189         struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207         struct cgroup_subsys_state css;
208         /*
209          * the counter to account for memory usage
210          */
211         struct res_counter res;
212         /*
213          * the counter to account for mem+swap usage.
214          */
215         struct res_counter memsw;
216         /*
217          * Per cgroup active and inactive list, similar to the
218          * per zone LRU lists.
219          */
220         struct mem_cgroup_lru_info info;
221         /*
222          * While reclaiming in a hierarchy, we cache the last child we
223          * reclaimed from.
224          */
225         int last_scanned_child;
226         /*
227          * Should the accounting and control be hierarchical, per subtree?
228          */
229         bool use_hierarchy;
230         atomic_t        oom_lock;
231         atomic_t        refcnt;
232
233         unsigned int    swappiness;
234         /* OOM-Killer disable */
235         int             oom_kill_disable;
236
237         /* set when res.limit == memsw.limit */
238         bool            memsw_is_minimum;
239
240         /* protect arrays of thresholds */
241         struct mutex thresholds_lock;
242
243         /* thresholds for memory usage. RCU-protected */
244         struct mem_cgroup_thresholds thresholds;
245
246         /* thresholds for mem+swap usage. RCU-protected */
247         struct mem_cgroup_thresholds memsw_thresholds;
248
249         /* For oom notifier event fd */
250         struct list_head oom_notify;
251
252         /*
253          * Should we move charges of a task when a task is moved into this
254          * mem_cgroup ? And what type of charges should we move ?
255          */
256         unsigned long   move_charge_at_immigrate;
257         /*
258          * percpu counter.
259          */
260         struct mem_cgroup_stat_cpu *stat;
261         /*
262          * used when a cpu is offlined or other synchronizations
263          * See mem_cgroup_read_stat().
264          */
265         struct mem_cgroup_stat_cpu nocpu_base;
266         spinlock_t pcp_counter_lock;
267 };
268
269 /* Stuffs for move charges at task migration. */
270 /*
271  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
272  * left-shifted bitmap of these types.
273  */
274 enum move_type {
275         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
276         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
277         NR_MOVE_TYPE,
278 };
279
280 /* "mc" and its members are protected by cgroup_mutex */
281 static struct move_charge_struct {
282         spinlock_t        lock; /* for from, to */
283         struct mem_cgroup *from;
284         struct mem_cgroup *to;
285         unsigned long precharge;
286         unsigned long moved_charge;
287         unsigned long moved_swap;
288         struct task_struct *moving_task;        /* a task moving charges */
289         wait_queue_head_t waitq;                /* a waitq for other context */
290 } mc = {
291         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
292         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
293 };
294
295 static bool move_anon(void)
296 {
297         return test_bit(MOVE_CHARGE_TYPE_ANON,
298                                         &mc.to->move_charge_at_immigrate);
299 }
300
301 static bool move_file(void)
302 {
303         return test_bit(MOVE_CHARGE_TYPE_FILE,
304                                         &mc.to->move_charge_at_immigrate);
305 }
306
307 /*
308  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
309  * limit reclaim to prevent infinite loops, if they ever occur.
310  */
311 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
312 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
313
314 enum charge_type {
315         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
316         MEM_CGROUP_CHARGE_TYPE_MAPPED,
317         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
318         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
319         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
320         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
321         NR_CHARGE_TYPE,
322 };
323
324 /* for encoding cft->private value on file */
325 #define _MEM                    (0)
326 #define _MEMSWAP                (1)
327 #define _OOM_TYPE               (2)
328 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
329 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
330 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
331 /* Used for OOM nofiier */
332 #define OOM_CONTROL             (0)
333
334 /*
335  * Reclaim flags for mem_cgroup_hierarchical_reclaim
336  */
337 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
338 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
339 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
340 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
341 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
342 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
343
344 static void mem_cgroup_get(struct mem_cgroup *mem);
345 static void mem_cgroup_put(struct mem_cgroup *mem);
346 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
347 static void drain_all_stock_async(void);
348
349 static struct mem_cgroup_per_zone *
350 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
351 {
352         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
353 }
354
355 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
356 {
357         return &mem->css;
358 }
359
360 static struct mem_cgroup_per_zone *
361 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
362 {
363         int nid = page_to_nid(page);
364         int zid = page_zonenum(page);
365
366         return mem_cgroup_zoneinfo(mem, nid, zid);
367 }
368
369 static struct mem_cgroup_tree_per_zone *
370 soft_limit_tree_node_zone(int nid, int zid)
371 {
372         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
373 }
374
375 static struct mem_cgroup_tree_per_zone *
376 soft_limit_tree_from_page(struct page *page)
377 {
378         int nid = page_to_nid(page);
379         int zid = page_zonenum(page);
380
381         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
382 }
383
384 static void
385 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
386                                 struct mem_cgroup_per_zone *mz,
387                                 struct mem_cgroup_tree_per_zone *mctz,
388                                 unsigned long long new_usage_in_excess)
389 {
390         struct rb_node **p = &mctz->rb_root.rb_node;
391         struct rb_node *parent = NULL;
392         struct mem_cgroup_per_zone *mz_node;
393
394         if (mz->on_tree)
395                 return;
396
397         mz->usage_in_excess = new_usage_in_excess;
398         if (!mz->usage_in_excess)
399                 return;
400         while (*p) {
401                 parent = *p;
402                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
403                                         tree_node);
404                 if (mz->usage_in_excess < mz_node->usage_in_excess)
405                         p = &(*p)->rb_left;
406                 /*
407                  * We can't avoid mem cgroups that are over their soft
408                  * limit by the same amount
409                  */
410                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
411                         p = &(*p)->rb_right;
412         }
413         rb_link_node(&mz->tree_node, parent, p);
414         rb_insert_color(&mz->tree_node, &mctz->rb_root);
415         mz->on_tree = true;
416 }
417
418 static void
419 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
420                                 struct mem_cgroup_per_zone *mz,
421                                 struct mem_cgroup_tree_per_zone *mctz)
422 {
423         if (!mz->on_tree)
424                 return;
425         rb_erase(&mz->tree_node, &mctz->rb_root);
426         mz->on_tree = false;
427 }
428
429 static void
430 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
431                                 struct mem_cgroup_per_zone *mz,
432                                 struct mem_cgroup_tree_per_zone *mctz)
433 {
434         spin_lock(&mctz->lock);
435         __mem_cgroup_remove_exceeded(mem, mz, mctz);
436         spin_unlock(&mctz->lock);
437 }
438
439
440 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
441 {
442         unsigned long long excess;
443         struct mem_cgroup_per_zone *mz;
444         struct mem_cgroup_tree_per_zone *mctz;
445         int nid = page_to_nid(page);
446         int zid = page_zonenum(page);
447         mctz = soft_limit_tree_from_page(page);
448
449         /*
450          * Necessary to update all ancestors when hierarchy is used.
451          * because their event counter is not touched.
452          */
453         for (; mem; mem = parent_mem_cgroup(mem)) {
454                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
455                 excess = res_counter_soft_limit_excess(&mem->res);
456                 /*
457                  * We have to update the tree if mz is on RB-tree or
458                  * mem is over its softlimit.
459                  */
460                 if (excess || mz->on_tree) {
461                         spin_lock(&mctz->lock);
462                         /* if on-tree, remove it */
463                         if (mz->on_tree)
464                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
465                         /*
466                          * Insert again. mz->usage_in_excess will be updated.
467                          * If excess is 0, no tree ops.
468                          */
469                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
470                         spin_unlock(&mctz->lock);
471                 }
472         }
473 }
474
475 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
476 {
477         int node, zone;
478         struct mem_cgroup_per_zone *mz;
479         struct mem_cgroup_tree_per_zone *mctz;
480
481         for_each_node_state(node, N_POSSIBLE) {
482                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
483                         mz = mem_cgroup_zoneinfo(mem, node, zone);
484                         mctz = soft_limit_tree_node_zone(node, zone);
485                         mem_cgroup_remove_exceeded(mem, mz, mctz);
486                 }
487         }
488 }
489
490 static struct mem_cgroup_per_zone *
491 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
492 {
493         struct rb_node *rightmost = NULL;
494         struct mem_cgroup_per_zone *mz;
495
496 retry:
497         mz = NULL;
498         rightmost = rb_last(&mctz->rb_root);
499         if (!rightmost)
500                 goto done;              /* Nothing to reclaim from */
501
502         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
503         /*
504          * Remove the node now but someone else can add it back,
505          * we will to add it back at the end of reclaim to its correct
506          * position in the tree.
507          */
508         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
509         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
510                 !css_tryget(&mz->mem->css))
511                 goto retry;
512 done:
513         return mz;
514 }
515
516 static struct mem_cgroup_per_zone *
517 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
518 {
519         struct mem_cgroup_per_zone *mz;
520
521         spin_lock(&mctz->lock);
522         mz = __mem_cgroup_largest_soft_limit_node(mctz);
523         spin_unlock(&mctz->lock);
524         return mz;
525 }
526
527 /*
528  * Implementation Note: reading percpu statistics for memcg.
529  *
530  * Both of vmstat[] and percpu_counter has threshold and do periodic
531  * synchronization to implement "quick" read. There are trade-off between
532  * reading cost and precision of value. Then, we may have a chance to implement
533  * a periodic synchronizion of counter in memcg's counter.
534  *
535  * But this _read() function is used for user interface now. The user accounts
536  * memory usage by memory cgroup and he _always_ requires exact value because
537  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
538  * have to visit all online cpus and make sum. So, for now, unnecessary
539  * synchronization is not implemented. (just implemented for cpu hotplug)
540  *
541  * If there are kernel internal actions which can make use of some not-exact
542  * value, and reading all cpu value can be performance bottleneck in some
543  * common workload, threashold and synchonization as vmstat[] should be
544  * implemented.
545  */
546 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
547                 enum mem_cgroup_stat_index idx)
548 {
549         int cpu;
550         s64 val = 0;
551
552         get_online_cpus();
553         for_each_online_cpu(cpu)
554                 val += per_cpu(mem->stat->count[idx], cpu);
555 #ifdef CONFIG_HOTPLUG_CPU
556         spin_lock(&mem->pcp_counter_lock);
557         val += mem->nocpu_base.count[idx];
558         spin_unlock(&mem->pcp_counter_lock);
559 #endif
560         put_online_cpus();
561         return val;
562 }
563
564 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
565 {
566         s64 ret;
567
568         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
569         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
570         return ret;
571 }
572
573 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
574                                          bool charge)
575 {
576         int val = (charge) ? 1 : -1;
577         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
578 }
579
580 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
581                                          bool file, int nr_pages)
582 {
583         preempt_disable();
584
585         if (file)
586                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
587         else
588                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
589
590         /* pagein of a big page is an event. So, ignore page size */
591         if (nr_pages > 0)
592                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
593         else {
594                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
595                 nr_pages = -nr_pages; /* for event */
596         }
597
598         __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
599
600         preempt_enable();
601 }
602
603 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
604                                         enum lru_list idx)
605 {
606         int nid, zid;
607         struct mem_cgroup_per_zone *mz;
608         u64 total = 0;
609
610         for_each_online_node(nid)
611                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
612                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
613                         total += MEM_CGROUP_ZSTAT(mz, idx);
614                 }
615         return total;
616 }
617
618 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
619 {
620         s64 val;
621
622         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
623
624         return !(val & ((1 << event_mask_shift) - 1));
625 }
626
627 /*
628  * Check events in order.
629  *
630  */
631 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
632 {
633         /* threshold event is triggered in finer grain than soft limit */
634         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
635                 mem_cgroup_threshold(mem);
636                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
637                         mem_cgroup_update_tree(mem, page);
638         }
639 }
640
641 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
642 {
643         return container_of(cgroup_subsys_state(cont,
644                                 mem_cgroup_subsys_id), struct mem_cgroup,
645                                 css);
646 }
647
648 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
649 {
650         /*
651          * mm_update_next_owner() may clear mm->owner to NULL
652          * if it races with swapoff, page migration, etc.
653          * So this can be called with p == NULL.
654          */
655         if (unlikely(!p))
656                 return NULL;
657
658         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
659                                 struct mem_cgroup, css);
660 }
661
662 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
663 {
664         struct mem_cgroup *mem = NULL;
665
666         if (!mm)
667                 return NULL;
668         /*
669          * Because we have no locks, mm->owner's may be being moved to other
670          * cgroup. We use css_tryget() here even if this looks
671          * pessimistic (rather than adding locks here).
672          */
673         rcu_read_lock();
674         do {
675                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
676                 if (unlikely(!mem))
677                         break;
678         } while (!css_tryget(&mem->css));
679         rcu_read_unlock();
680         return mem;
681 }
682
683 /* The caller has to guarantee "mem" exists before calling this */
684 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
685 {
686         struct cgroup_subsys_state *css;
687         int found;
688
689         if (!mem) /* ROOT cgroup has the smallest ID */
690                 return root_mem_cgroup; /*css_put/get against root is ignored*/
691         if (!mem->use_hierarchy) {
692                 if (css_tryget(&mem->css))
693                         return mem;
694                 return NULL;
695         }
696         rcu_read_lock();
697         /*
698          * searching a memory cgroup which has the smallest ID under given
699          * ROOT cgroup. (ID >= 1)
700          */
701         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
702         if (css && css_tryget(css))
703                 mem = container_of(css, struct mem_cgroup, css);
704         else
705                 mem = NULL;
706         rcu_read_unlock();
707         return mem;
708 }
709
710 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
711                                         struct mem_cgroup *root,
712                                         bool cond)
713 {
714         int nextid = css_id(&iter->css) + 1;
715         int found;
716         int hierarchy_used;
717         struct cgroup_subsys_state *css;
718
719         hierarchy_used = iter->use_hierarchy;
720
721         css_put(&iter->css);
722         /* If no ROOT, walk all, ignore hierarchy */
723         if (!cond || (root && !hierarchy_used))
724                 return NULL;
725
726         if (!root)
727                 root = root_mem_cgroup;
728
729         do {
730                 iter = NULL;
731                 rcu_read_lock();
732
733                 css = css_get_next(&mem_cgroup_subsys, nextid,
734                                 &root->css, &found);
735                 if (css && css_tryget(css))
736                         iter = container_of(css, struct mem_cgroup, css);
737                 rcu_read_unlock();
738                 /* If css is NULL, no more cgroups will be found */
739                 nextid = found + 1;
740         } while (css && !iter);
741
742         return iter;
743 }
744 /*
745  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
746  * be careful that "break" loop is not allowed. We have reference count.
747  * Instead of that modify "cond" to be false and "continue" to exit the loop.
748  */
749 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
750         for (iter = mem_cgroup_start_loop(root);\
751              iter != NULL;\
752              iter = mem_cgroup_get_next(iter, root, cond))
753
754 #define for_each_mem_cgroup_tree(iter, root) \
755         for_each_mem_cgroup_tree_cond(iter, root, true)
756
757 #define for_each_mem_cgroup_all(iter) \
758         for_each_mem_cgroup_tree_cond(iter, NULL, true)
759
760
761 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
762 {
763         return (mem == root_mem_cgroup);
764 }
765
766 /*
767  * Following LRU functions are allowed to be used without PCG_LOCK.
768  * Operations are called by routine of global LRU independently from memcg.
769  * What we have to take care of here is validness of pc->mem_cgroup.
770  *
771  * Changes to pc->mem_cgroup happens when
772  * 1. charge
773  * 2. moving account
774  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
775  * It is added to LRU before charge.
776  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
777  * When moving account, the page is not on LRU. It's isolated.
778  */
779
780 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
781 {
782         struct page_cgroup *pc;
783         struct mem_cgroup_per_zone *mz;
784
785         if (mem_cgroup_disabled())
786                 return;
787         pc = lookup_page_cgroup(page);
788         /* can happen while we handle swapcache. */
789         if (!TestClearPageCgroupAcctLRU(pc))
790                 return;
791         VM_BUG_ON(!pc->mem_cgroup);
792         /*
793          * We don't check PCG_USED bit. It's cleared when the "page" is finally
794          * removed from global LRU.
795          */
796         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
797         /* huge page split is done under lru_lock. so, we have no races. */
798         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
799         if (mem_cgroup_is_root(pc->mem_cgroup))
800                 return;
801         VM_BUG_ON(list_empty(&pc->lru));
802         list_del_init(&pc->lru);
803 }
804
805 void mem_cgroup_del_lru(struct page *page)
806 {
807         mem_cgroup_del_lru_list(page, page_lru(page));
808 }
809
810 /*
811  * Writeback is about to end against a page which has been marked for immediate
812  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
813  * inactive list.
814  */
815 void mem_cgroup_rotate_reclaimable_page(struct page *page)
816 {
817         struct mem_cgroup_per_zone *mz;
818         struct page_cgroup *pc;
819         enum lru_list lru = page_lru(page);
820
821         if (mem_cgroup_disabled())
822                 return;
823
824         pc = lookup_page_cgroup(page);
825         /* unused or root page is not rotated. */
826         if (!PageCgroupUsed(pc))
827                 return;
828         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
829         smp_rmb();
830         if (mem_cgroup_is_root(pc->mem_cgroup))
831                 return;
832         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
833         list_move_tail(&pc->lru, &mz->lists[lru]);
834 }
835
836 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
837 {
838         struct mem_cgroup_per_zone *mz;
839         struct page_cgroup *pc;
840
841         if (mem_cgroup_disabled())
842                 return;
843
844         pc = lookup_page_cgroup(page);
845         /* unused or root page is not rotated. */
846         if (!PageCgroupUsed(pc))
847                 return;
848         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
849         smp_rmb();
850         if (mem_cgroup_is_root(pc->mem_cgroup))
851                 return;
852         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
853         list_move(&pc->lru, &mz->lists[lru]);
854 }
855
856 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
857 {
858         struct page_cgroup *pc;
859         struct mem_cgroup_per_zone *mz;
860
861         if (mem_cgroup_disabled())
862                 return;
863         pc = lookup_page_cgroup(page);
864         VM_BUG_ON(PageCgroupAcctLRU(pc));
865         if (!PageCgroupUsed(pc))
866                 return;
867         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
868         smp_rmb();
869         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
870         /* huge page split is done under lru_lock. so, we have no races. */
871         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
872         SetPageCgroupAcctLRU(pc);
873         if (mem_cgroup_is_root(pc->mem_cgroup))
874                 return;
875         list_add(&pc->lru, &mz->lists[lru]);
876 }
877
878 /*
879  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880  * lru because the page may.be reused after it's fully uncharged (because of
881  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882  * it again. This function is only used to charge SwapCache. It's done under
883  * lock_page and expected that zone->lru_lock is never held.
884  */
885 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
886 {
887         unsigned long flags;
888         struct zone *zone = page_zone(page);
889         struct page_cgroup *pc = lookup_page_cgroup(page);
890
891         spin_lock_irqsave(&zone->lru_lock, flags);
892         /*
893          * Forget old LRU when this page_cgroup is *not* used. This Used bit
894          * is guarded by lock_page() because the page is SwapCache.
895          */
896         if (!PageCgroupUsed(pc))
897                 mem_cgroup_del_lru_list(page, page_lru(page));
898         spin_unlock_irqrestore(&zone->lru_lock, flags);
899 }
900
901 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902 {
903         unsigned long flags;
904         struct zone *zone = page_zone(page);
905         struct page_cgroup *pc = lookup_page_cgroup(page);
906
907         spin_lock_irqsave(&zone->lru_lock, flags);
908         /* link when the page is linked to LRU but page_cgroup isn't */
909         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910                 mem_cgroup_add_lru_list(page, page_lru(page));
911         spin_unlock_irqrestore(&zone->lru_lock, flags);
912 }
913
914
915 void mem_cgroup_move_lists(struct page *page,
916                            enum lru_list from, enum lru_list to)
917 {
918         if (mem_cgroup_disabled())
919                 return;
920         mem_cgroup_del_lru_list(page, from);
921         mem_cgroup_add_lru_list(page, to);
922 }
923
924 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925 {
926         int ret;
927         struct mem_cgroup *curr = NULL;
928         struct task_struct *p;
929
930         p = find_lock_task_mm(task);
931         if (!p)
932                 return 0;
933         curr = try_get_mem_cgroup_from_mm(p->mm);
934         task_unlock(p);
935         if (!curr)
936                 return 0;
937         /*
938          * We should check use_hierarchy of "mem" not "curr". Because checking
939          * use_hierarchy of "curr" here make this function true if hierarchy is
940          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941          * hierarchy(even if use_hierarchy is disabled in "mem").
942          */
943         if (mem->use_hierarchy)
944                 ret = css_is_ancestor(&curr->css, &mem->css);
945         else
946                 ret = (curr == mem);
947         css_put(&curr->css);
948         return ret;
949 }
950
951 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952 {
953         unsigned long active;
954         unsigned long inactive;
955         unsigned long gb;
956         unsigned long inactive_ratio;
957
958         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960
961         gb = (inactive + active) >> (30 - PAGE_SHIFT);
962         if (gb)
963                 inactive_ratio = int_sqrt(10 * gb);
964         else
965                 inactive_ratio = 1;
966
967         if (present_pages) {
968                 present_pages[0] = inactive;
969                 present_pages[1] = active;
970         }
971
972         return inactive_ratio;
973 }
974
975 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976 {
977         unsigned long active;
978         unsigned long inactive;
979         unsigned long present_pages[2];
980         unsigned long inactive_ratio;
981
982         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983
984         inactive = present_pages[0];
985         active = present_pages[1];
986
987         if (inactive * inactive_ratio < active)
988                 return 1;
989
990         return 0;
991 }
992
993 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994 {
995         unsigned long active;
996         unsigned long inactive;
997
998         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000
1001         return (active > inactive);
1002 }
1003
1004 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005                                        struct zone *zone,
1006                                        enum lru_list lru)
1007 {
1008         int nid = zone_to_nid(zone);
1009         int zid = zone_idx(zone);
1010         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011
1012         return MEM_CGROUP_ZSTAT(mz, lru);
1013 }
1014
1015 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016                                                       struct zone *zone)
1017 {
1018         int nid = zone_to_nid(zone);
1019         int zid = zone_idx(zone);
1020         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022         return &mz->reclaim_stat;
1023 }
1024
1025 struct zone_reclaim_stat *
1026 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027 {
1028         struct page_cgroup *pc;
1029         struct mem_cgroup_per_zone *mz;
1030
1031         if (mem_cgroup_disabled())
1032                 return NULL;
1033
1034         pc = lookup_page_cgroup(page);
1035         if (!PageCgroupUsed(pc))
1036                 return NULL;
1037         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1038         smp_rmb();
1039         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1040         return &mz->reclaim_stat;
1041 }
1042
1043 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1044                                         struct list_head *dst,
1045                                         unsigned long *scanned, int order,
1046                                         int mode, struct zone *z,
1047                                         struct mem_cgroup *mem_cont,
1048                                         int active, int file)
1049 {
1050         unsigned long nr_taken = 0;
1051         struct page *page;
1052         unsigned long scan;
1053         LIST_HEAD(pc_list);
1054         struct list_head *src;
1055         struct page_cgroup *pc, *tmp;
1056         int nid = zone_to_nid(z);
1057         int zid = zone_idx(z);
1058         struct mem_cgroup_per_zone *mz;
1059         int lru = LRU_FILE * file + active;
1060         int ret;
1061
1062         BUG_ON(!mem_cont);
1063         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1064         src = &mz->lists[lru];
1065
1066         scan = 0;
1067         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1068                 if (scan >= nr_to_scan)
1069                         break;
1070
1071                 if (unlikely(!PageCgroupUsed(pc)))
1072                         continue;
1073
1074                 page = lookup_cgroup_page(pc);
1075
1076                 if (unlikely(!PageLRU(page)))
1077                         continue;
1078
1079                 scan++;
1080                 ret = __isolate_lru_page(page, mode, file);
1081                 switch (ret) {
1082                 case 0:
1083                         list_move(&page->lru, dst);
1084                         mem_cgroup_del_lru(page);
1085                         nr_taken += hpage_nr_pages(page);
1086                         break;
1087                 case -EBUSY:
1088                         /* we don't affect global LRU but rotate in our LRU */
1089                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1090                         break;
1091                 default:
1092                         break;
1093                 }
1094         }
1095
1096         *scanned = scan;
1097
1098         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1099                                       0, 0, 0, mode);
1100
1101         return nr_taken;
1102 }
1103
1104 #define mem_cgroup_from_res_counter(counter, member)    \
1105         container_of(counter, struct mem_cgroup, member)
1106
1107 /**
1108  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1109  * @mem: the memory cgroup
1110  *
1111  * Returns the maximum amount of memory @mem can be charged with, in
1112  * bytes.
1113  */
1114 static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1115 {
1116         unsigned long long margin;
1117
1118         margin = res_counter_margin(&mem->res);
1119         if (do_swap_account)
1120                 margin = min(margin, res_counter_margin(&mem->memsw));
1121         return margin;
1122 }
1123
1124 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125 {
1126         struct cgroup *cgrp = memcg->css.cgroup;
1127
1128         /* root ? */
1129         if (cgrp->parent == NULL)
1130                 return vm_swappiness;
1131
1132         return memcg->swappiness;
1133 }
1134
1135 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1136 {
1137         int cpu;
1138
1139         get_online_cpus();
1140         spin_lock(&mem->pcp_counter_lock);
1141         for_each_online_cpu(cpu)
1142                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1143         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1144         spin_unlock(&mem->pcp_counter_lock);
1145         put_online_cpus();
1146
1147         synchronize_rcu();
1148 }
1149
1150 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1151 {
1152         int cpu;
1153
1154         if (!mem)
1155                 return;
1156         get_online_cpus();
1157         spin_lock(&mem->pcp_counter_lock);
1158         for_each_online_cpu(cpu)
1159                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1160         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1161         spin_unlock(&mem->pcp_counter_lock);
1162         put_online_cpus();
1163 }
1164 /*
1165  * 2 routines for checking "mem" is under move_account() or not.
1166  *
1167  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1168  *                        for avoiding race in accounting. If true,
1169  *                        pc->mem_cgroup may be overwritten.
1170  *
1171  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1172  *                        under hierarchy of moving cgroups. This is for
1173  *                        waiting at hith-memory prressure caused by "move".
1174  */
1175
1176 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1177 {
1178         VM_BUG_ON(!rcu_read_lock_held());
1179         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1180 }
1181
1182 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1183 {
1184         struct mem_cgroup *from;
1185         struct mem_cgroup *to;
1186         bool ret = false;
1187         /*
1188          * Unlike task_move routines, we access mc.to, mc.from not under
1189          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1190          */
1191         spin_lock(&mc.lock);
1192         from = mc.from;
1193         to = mc.to;
1194         if (!from)
1195                 goto unlock;
1196         if (from == mem || to == mem
1197             || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1198             || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1199                 ret = true;
1200 unlock:
1201         spin_unlock(&mc.lock);
1202         return ret;
1203 }
1204
1205 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1206 {
1207         if (mc.moving_task && current != mc.moving_task) {
1208                 if (mem_cgroup_under_move(mem)) {
1209                         DEFINE_WAIT(wait);
1210                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1211                         /* moving charge context might have finished. */
1212                         if (mc.moving_task)
1213                                 schedule();
1214                         finish_wait(&mc.waitq, &wait);
1215                         return true;
1216                 }
1217         }
1218         return false;
1219 }
1220
1221 /**
1222  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1223  * @memcg: The memory cgroup that went over limit
1224  * @p: Task that is going to be killed
1225  *
1226  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1227  * enabled
1228  */
1229 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1230 {
1231         struct cgroup *task_cgrp;
1232         struct cgroup *mem_cgrp;
1233         /*
1234          * Need a buffer in BSS, can't rely on allocations. The code relies
1235          * on the assumption that OOM is serialized for memory controller.
1236          * If this assumption is broken, revisit this code.
1237          */
1238         static char memcg_name[PATH_MAX];
1239         int ret;
1240
1241         if (!memcg || !p)
1242                 return;
1243
1244
1245         rcu_read_lock();
1246
1247         mem_cgrp = memcg->css.cgroup;
1248         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1249
1250         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1251         if (ret < 0) {
1252                 /*
1253                  * Unfortunately, we are unable to convert to a useful name
1254                  * But we'll still print out the usage information
1255                  */
1256                 rcu_read_unlock();
1257                 goto done;
1258         }
1259         rcu_read_unlock();
1260
1261         printk(KERN_INFO "Task in %s killed", memcg_name);
1262
1263         rcu_read_lock();
1264         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1265         if (ret < 0) {
1266                 rcu_read_unlock();
1267                 goto done;
1268         }
1269         rcu_read_unlock();
1270
1271         /*
1272          * Continues from above, so we don't need an KERN_ level
1273          */
1274         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1275 done:
1276
1277         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1278                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1279                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1280                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1281         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1282                 "failcnt %llu\n",
1283                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1284                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1285                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1286 }
1287
1288 /*
1289  * This function returns the number of memcg under hierarchy tree. Returns
1290  * 1(self count) if no children.
1291  */
1292 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1293 {
1294         int num = 0;
1295         struct mem_cgroup *iter;
1296
1297         for_each_mem_cgroup_tree(iter, mem)
1298                 num++;
1299         return num;
1300 }
1301
1302 /*
1303  * Return the memory (and swap, if configured) limit for a memcg.
1304  */
1305 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1306 {
1307         u64 limit;
1308         u64 memsw;
1309
1310         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1311         limit += total_swap_pages << PAGE_SHIFT;
1312
1313         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1314         /*
1315          * If memsw is finite and limits the amount of swap space available
1316          * to this memcg, return that limit.
1317          */
1318         return min(limit, memsw);
1319 }
1320
1321 /*
1322  * Visit the first child (need not be the first child as per the ordering
1323  * of the cgroup list, since we track last_scanned_child) of @mem and use
1324  * that to reclaim free pages from.
1325  */
1326 static struct mem_cgroup *
1327 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1328 {
1329         struct mem_cgroup *ret = NULL;
1330         struct cgroup_subsys_state *css;
1331         int nextid, found;
1332
1333         if (!root_mem->use_hierarchy) {
1334                 css_get(&root_mem->css);
1335                 ret = root_mem;
1336         }
1337
1338         while (!ret) {
1339                 rcu_read_lock();
1340                 nextid = root_mem->last_scanned_child + 1;
1341                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1342                                    &found);
1343                 if (css && css_tryget(css))
1344                         ret = container_of(css, struct mem_cgroup, css);
1345
1346                 rcu_read_unlock();
1347                 /* Updates scanning parameter */
1348                 if (!css) {
1349                         /* this means start scan from ID:1 */
1350                         root_mem->last_scanned_child = 0;
1351                 } else
1352                         root_mem->last_scanned_child = found;
1353         }
1354
1355         return ret;
1356 }
1357
1358 /*
1359  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1360  * we reclaimed from, so that we don't end up penalizing one child extensively
1361  * based on its position in the children list.
1362  *
1363  * root_mem is the original ancestor that we've been reclaim from.
1364  *
1365  * We give up and return to the caller when we visit root_mem twice.
1366  * (other groups can be removed while we're walking....)
1367  *
1368  * If shrink==true, for avoiding to free too much, this returns immedieately.
1369  */
1370 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1371                                                 struct zone *zone,
1372                                                 gfp_t gfp_mask,
1373                                                 unsigned long reclaim_options)
1374 {
1375         struct mem_cgroup *victim;
1376         int ret, total = 0;
1377         int loop = 0;
1378         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1379         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1380         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1381         unsigned long excess;
1382
1383         excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1384
1385         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1386         if (root_mem->memsw_is_minimum)
1387                 noswap = true;
1388
1389         while (1) {
1390                 victim = mem_cgroup_select_victim(root_mem);
1391                 if (victim == root_mem) {
1392                         loop++;
1393                         if (loop >= 1)
1394                                 drain_all_stock_async();
1395                         if (loop >= 2) {
1396                                 /*
1397                                  * If we have not been able to reclaim
1398                                  * anything, it might because there are
1399                                  * no reclaimable pages under this hierarchy
1400                                  */
1401                                 if (!check_soft || !total) {
1402                                         css_put(&victim->css);
1403                                         break;
1404                                 }
1405                                 /*
1406                                  * We want to do more targetted reclaim.
1407                                  * excess >> 2 is not to excessive so as to
1408                                  * reclaim too much, nor too less that we keep
1409                                  * coming back to reclaim from this cgroup
1410                                  */
1411                                 if (total >= (excess >> 2) ||
1412                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1413                                         css_put(&victim->css);
1414                                         break;
1415                                 }
1416                         }
1417                 }
1418                 if (!mem_cgroup_local_usage(victim)) {
1419                         /* this cgroup's local usage == 0 */
1420                         css_put(&victim->css);
1421                         continue;
1422                 }
1423                 /* we use swappiness of local cgroup */
1424                 if (check_soft)
1425                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1426                                 noswap, get_swappiness(victim), zone);
1427                 else
1428                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1429                                                 noswap, get_swappiness(victim));
1430                 css_put(&victim->css);
1431                 /*
1432                  * At shrinking usage, we can't check we should stop here or
1433                  * reclaim more. It's depends on callers. last_scanned_child
1434                  * will work enough for keeping fairness under tree.
1435                  */
1436                 if (shrink)
1437                         return ret;
1438                 total += ret;
1439                 if (check_soft) {
1440                         if (!res_counter_soft_limit_excess(&root_mem->res))
1441                                 return total;
1442                 } else if (mem_cgroup_margin(root_mem))
1443                         return 1 + total;
1444         }
1445         return total;
1446 }
1447
1448 /*
1449  * Check OOM-Killer is already running under our hierarchy.
1450  * If someone is running, return false.
1451  */
1452 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1453 {
1454         int x, lock_count = 0;
1455         struct mem_cgroup *iter;
1456
1457         for_each_mem_cgroup_tree(iter, mem) {
1458                 x = atomic_inc_return(&iter->oom_lock);
1459                 lock_count = max(x, lock_count);
1460         }
1461
1462         if (lock_count == 1)
1463                 return true;
1464         return false;
1465 }
1466
1467 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1468 {
1469         struct mem_cgroup *iter;
1470
1471         /*
1472          * When a new child is created while the hierarchy is under oom,
1473          * mem_cgroup_oom_lock() may not be called. We have to use
1474          * atomic_add_unless() here.
1475          */
1476         for_each_mem_cgroup_tree(iter, mem)
1477                 atomic_add_unless(&iter->oom_lock, -1, 0);
1478         return 0;
1479 }
1480
1481
1482 static DEFINE_MUTEX(memcg_oom_mutex);
1483 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1484
1485 struct oom_wait_info {
1486         struct mem_cgroup *mem;
1487         wait_queue_t    wait;
1488 };
1489
1490 static int memcg_oom_wake_function(wait_queue_t *wait,
1491         unsigned mode, int sync, void *arg)
1492 {
1493         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1494         struct oom_wait_info *oom_wait_info;
1495
1496         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1497
1498         if (oom_wait_info->mem == wake_mem)
1499                 goto wakeup;
1500         /* if no hierarchy, no match */
1501         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1502                 return 0;
1503         /*
1504          * Both of oom_wait_info->mem and wake_mem are stable under us.
1505          * Then we can use css_is_ancestor without taking care of RCU.
1506          */
1507         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1508             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1509                 return 0;
1510
1511 wakeup:
1512         return autoremove_wake_function(wait, mode, sync, arg);
1513 }
1514
1515 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1516 {
1517         /* for filtering, pass "mem" as argument. */
1518         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1519 }
1520
1521 static void memcg_oom_recover(struct mem_cgroup *mem)
1522 {
1523         if (mem && atomic_read(&mem->oom_lock))
1524                 memcg_wakeup_oom(mem);
1525 }
1526
1527 /*
1528  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1529  */
1530 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1531 {
1532         struct oom_wait_info owait;
1533         bool locked, need_to_kill;
1534
1535         owait.mem = mem;
1536         owait.wait.flags = 0;
1537         owait.wait.func = memcg_oom_wake_function;
1538         owait.wait.private = current;
1539         INIT_LIST_HEAD(&owait.wait.task_list);
1540         need_to_kill = true;
1541         /* At first, try to OOM lock hierarchy under mem.*/
1542         mutex_lock(&memcg_oom_mutex);
1543         locked = mem_cgroup_oom_lock(mem);
1544         /*
1545          * Even if signal_pending(), we can't quit charge() loop without
1546          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1547          * under OOM is always welcomed, use TASK_KILLABLE here.
1548          */
1549         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1550         if (!locked || mem->oom_kill_disable)
1551                 need_to_kill = false;
1552         if (locked)
1553                 mem_cgroup_oom_notify(mem);
1554         mutex_unlock(&memcg_oom_mutex);
1555
1556         if (need_to_kill) {
1557                 finish_wait(&memcg_oom_waitq, &owait.wait);
1558                 mem_cgroup_out_of_memory(mem, mask);
1559         } else {
1560                 schedule();
1561                 finish_wait(&memcg_oom_waitq, &owait.wait);
1562         }
1563         mutex_lock(&memcg_oom_mutex);
1564         mem_cgroup_oom_unlock(mem);
1565         memcg_wakeup_oom(mem);
1566         mutex_unlock(&memcg_oom_mutex);
1567
1568         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1569                 return false;
1570         /* Give chance to dying process */
1571         schedule_timeout(1);
1572         return true;
1573 }
1574
1575 /*
1576  * Currently used to update mapped file statistics, but the routine can be
1577  * generalized to update other statistics as well.
1578  *
1579  * Notes: Race condition
1580  *
1581  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1582  * it tends to be costly. But considering some conditions, we doesn't need
1583  * to do so _always_.
1584  *
1585  * Considering "charge", lock_page_cgroup() is not required because all
1586  * file-stat operations happen after a page is attached to radix-tree. There
1587  * are no race with "charge".
1588  *
1589  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1590  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1591  * if there are race with "uncharge". Statistics itself is properly handled
1592  * by flags.
1593  *
1594  * Considering "move", this is an only case we see a race. To make the race
1595  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1596  * possibility of race condition. If there is, we take a lock.
1597  */
1598
1599 void mem_cgroup_update_page_stat(struct page *page,
1600                                  enum mem_cgroup_page_stat_item idx, int val)
1601 {
1602         struct mem_cgroup *mem;
1603         struct page_cgroup *pc = lookup_page_cgroup(page);
1604         bool need_unlock = false;
1605         unsigned long uninitialized_var(flags);
1606
1607         if (unlikely(!pc))
1608                 return;
1609
1610         rcu_read_lock();
1611         mem = pc->mem_cgroup;
1612         if (unlikely(!mem || !PageCgroupUsed(pc)))
1613                 goto out;
1614         /* pc->mem_cgroup is unstable ? */
1615         if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1616                 /* take a lock against to access pc->mem_cgroup */
1617                 move_lock_page_cgroup(pc, &flags);
1618                 need_unlock = true;
1619                 mem = pc->mem_cgroup;
1620                 if (!mem || !PageCgroupUsed(pc))
1621                         goto out;
1622         }
1623
1624         switch (idx) {
1625         case MEMCG_NR_FILE_MAPPED:
1626                 if (val > 0)
1627                         SetPageCgroupFileMapped(pc);
1628                 else if (!page_mapped(page))
1629                         ClearPageCgroupFileMapped(pc);
1630                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1631                 break;
1632         default:
1633                 BUG();
1634         }
1635
1636         this_cpu_add(mem->stat->count[idx], val);
1637
1638 out:
1639         if (unlikely(need_unlock))
1640                 move_unlock_page_cgroup(pc, &flags);
1641         rcu_read_unlock();
1642         return;
1643 }
1644 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1645
1646 /*
1647  * size of first charge trial. "32" comes from vmscan.c's magic value.
1648  * TODO: maybe necessary to use big numbers in big irons.
1649  */
1650 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1651 struct memcg_stock_pcp {
1652         struct mem_cgroup *cached; /* this never be root cgroup */
1653         int charge;
1654         struct work_struct work;
1655 };
1656 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1657 static atomic_t memcg_drain_count;
1658
1659 /*
1660  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1661  * from local stock and true is returned. If the stock is 0 or charges from a
1662  * cgroup which is not current target, returns false. This stock will be
1663  * refilled.
1664  */
1665 static bool consume_stock(struct mem_cgroup *mem)
1666 {
1667         struct memcg_stock_pcp *stock;
1668         bool ret = true;
1669
1670         stock = &get_cpu_var(memcg_stock);
1671         if (mem == stock->cached && stock->charge)
1672                 stock->charge -= PAGE_SIZE;
1673         else /* need to call res_counter_charge */
1674                 ret = false;
1675         put_cpu_var(memcg_stock);
1676         return ret;
1677 }
1678
1679 /*
1680  * Returns stocks cached in percpu to res_counter and reset cached information.
1681  */
1682 static void drain_stock(struct memcg_stock_pcp *stock)
1683 {
1684         struct mem_cgroup *old = stock->cached;
1685
1686         if (stock->charge) {
1687                 res_counter_uncharge(&old->res, stock->charge);
1688                 if (do_swap_account)
1689                         res_counter_uncharge(&old->memsw, stock->charge);
1690         }
1691         stock->cached = NULL;
1692         stock->charge = 0;
1693 }
1694
1695 /*
1696  * This must be called under preempt disabled or must be called by
1697  * a thread which is pinned to local cpu.
1698  */
1699 static void drain_local_stock(struct work_struct *dummy)
1700 {
1701         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1702         drain_stock(stock);
1703 }
1704
1705 /*
1706  * Cache charges(val) which is from res_counter, to local per_cpu area.
1707  * This will be consumed by consume_stock() function, later.
1708  */
1709 static void refill_stock(struct mem_cgroup *mem, int val)
1710 {
1711         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1712
1713         if (stock->cached != mem) { /* reset if necessary */
1714                 drain_stock(stock);
1715                 stock->cached = mem;
1716         }
1717         stock->charge += val;
1718         put_cpu_var(memcg_stock);
1719 }
1720
1721 /*
1722  * Tries to drain stocked charges in other cpus. This function is asynchronous
1723  * and just put a work per cpu for draining localy on each cpu. Caller can
1724  * expects some charges will be back to res_counter later but cannot wait for
1725  * it.
1726  */
1727 static void drain_all_stock_async(void)
1728 {
1729         int cpu;
1730         /* This function is for scheduling "drain" in asynchronous way.
1731          * The result of "drain" is not directly handled by callers. Then,
1732          * if someone is calling drain, we don't have to call drain more.
1733          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1734          * there is a race. We just do loose check here.
1735          */
1736         if (atomic_read(&memcg_drain_count))
1737                 return;
1738         /* Notify other cpus that system-wide "drain" is running */
1739         atomic_inc(&memcg_drain_count);
1740         get_online_cpus();
1741         for_each_online_cpu(cpu) {
1742                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1743                 schedule_work_on(cpu, &stock->work);
1744         }
1745         put_online_cpus();
1746         atomic_dec(&memcg_drain_count);
1747         /* We don't wait for flush_work */
1748 }
1749
1750 /* This is a synchronous drain interface. */
1751 static void drain_all_stock_sync(void)
1752 {
1753         /* called when force_empty is called */
1754         atomic_inc(&memcg_drain_count);
1755         schedule_on_each_cpu(drain_local_stock);
1756         atomic_dec(&memcg_drain_count);
1757 }
1758
1759 /*
1760  * This function drains percpu counter value from DEAD cpu and
1761  * move it to local cpu. Note that this function can be preempted.
1762  */
1763 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1764 {
1765         int i;
1766
1767         spin_lock(&mem->pcp_counter_lock);
1768         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1769                 s64 x = per_cpu(mem->stat->count[i], cpu);
1770
1771                 per_cpu(mem->stat->count[i], cpu) = 0;
1772                 mem->nocpu_base.count[i] += x;
1773         }
1774         /* need to clear ON_MOVE value, works as a kind of lock. */
1775         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1776         spin_unlock(&mem->pcp_counter_lock);
1777 }
1778
1779 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1780 {
1781         int idx = MEM_CGROUP_ON_MOVE;
1782
1783         spin_lock(&mem->pcp_counter_lock);
1784         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1785         spin_unlock(&mem->pcp_counter_lock);
1786 }
1787
1788 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1789                                         unsigned long action,
1790                                         void *hcpu)
1791 {
1792         int cpu = (unsigned long)hcpu;
1793         struct memcg_stock_pcp *stock;
1794         struct mem_cgroup *iter;
1795
1796         if ((action == CPU_ONLINE)) {
1797                 for_each_mem_cgroup_all(iter)
1798                         synchronize_mem_cgroup_on_move(iter, cpu);
1799                 return NOTIFY_OK;
1800         }
1801
1802         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1803                 return NOTIFY_OK;
1804
1805         for_each_mem_cgroup_all(iter)
1806                 mem_cgroup_drain_pcp_counter(iter, cpu);
1807
1808         stock = &per_cpu(memcg_stock, cpu);
1809         drain_stock(stock);
1810         return NOTIFY_OK;
1811 }
1812
1813
1814 /* See __mem_cgroup_try_charge() for details */
1815 enum {
1816         CHARGE_OK,              /* success */
1817         CHARGE_RETRY,           /* need to retry but retry is not bad */
1818         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
1819         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
1820         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
1821 };
1822
1823 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1824                                 int csize, bool oom_check)
1825 {
1826         struct mem_cgroup *mem_over_limit;
1827         struct res_counter *fail_res;
1828         unsigned long flags = 0;
1829         int ret;
1830
1831         ret = res_counter_charge(&mem->res, csize, &fail_res);
1832
1833         if (likely(!ret)) {
1834                 if (!do_swap_account)
1835                         return CHARGE_OK;
1836                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1837                 if (likely(!ret))
1838                         return CHARGE_OK;
1839
1840                 res_counter_uncharge(&mem->res, csize);
1841                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1842                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1843         } else
1844                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1845         /*
1846          * csize can be either a huge page (HPAGE_SIZE), a batch of
1847          * regular pages (CHARGE_SIZE), or a single regular page
1848          * (PAGE_SIZE).
1849          *
1850          * Never reclaim on behalf of optional batching, retry with a
1851          * single page instead.
1852          */
1853         if (csize == CHARGE_SIZE)
1854                 return CHARGE_RETRY;
1855
1856         if (!(gfp_mask & __GFP_WAIT))
1857                 return CHARGE_WOULDBLOCK;
1858
1859         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1860                                               gfp_mask, flags);
1861         if (mem_cgroup_margin(mem_over_limit) >= csize)
1862                 return CHARGE_RETRY;
1863         /*
1864          * Even though the limit is exceeded at this point, reclaim
1865          * may have been able to free some pages.  Retry the charge
1866          * before killing the task.
1867          *
1868          * Only for regular pages, though: huge pages are rather
1869          * unlikely to succeed so close to the limit, and we fall back
1870          * to regular pages anyway in case of failure.
1871          */
1872         if (csize == PAGE_SIZE && ret)
1873                 return CHARGE_RETRY;
1874
1875         /*
1876          * At task move, charge accounts can be doubly counted. So, it's
1877          * better to wait until the end of task_move if something is going on.
1878          */
1879         if (mem_cgroup_wait_acct_move(mem_over_limit))
1880                 return CHARGE_RETRY;
1881
1882         /* If we don't need to call oom-killer at el, return immediately */
1883         if (!oom_check)
1884                 return CHARGE_NOMEM;
1885         /* check OOM */
1886         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1887                 return CHARGE_OOM_DIE;
1888
1889         return CHARGE_RETRY;
1890 }
1891
1892 /*
1893  * Unlike exported interface, "oom" parameter is added. if oom==true,
1894  * oom-killer can be invoked.
1895  */
1896 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1897                                    gfp_t gfp_mask,
1898                                    struct mem_cgroup **memcg, bool oom,
1899                                    int page_size)
1900 {
1901         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1902         struct mem_cgroup *mem = NULL;
1903         int ret;
1904         int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1905
1906         /*
1907          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1908          * in system level. So, allow to go ahead dying process in addition to
1909          * MEMDIE process.
1910          */
1911         if (unlikely(test_thread_flag(TIF_MEMDIE)
1912                      || fatal_signal_pending(current)))
1913                 goto bypass;
1914
1915         /*
1916          * We always charge the cgroup the mm_struct belongs to.
1917          * The mm_struct's mem_cgroup changes on task migration if the
1918          * thread group leader migrates. It's possible that mm is not
1919          * set, if so charge the init_mm (happens for pagecache usage).
1920          */
1921         if (!*memcg && !mm)
1922                 goto bypass;
1923 again:
1924         if (*memcg) { /* css should be a valid one */
1925                 mem = *memcg;
1926                 VM_BUG_ON(css_is_removed(&mem->css));
1927                 if (mem_cgroup_is_root(mem))
1928                         goto done;
1929                 if (page_size == PAGE_SIZE && consume_stock(mem))
1930                         goto done;
1931                 css_get(&mem->css);
1932         } else {
1933                 struct task_struct *p;
1934
1935                 rcu_read_lock();
1936                 p = rcu_dereference(mm->owner);
1937                 /*
1938                  * Because we don't have task_lock(), "p" can exit.
1939                  * In that case, "mem" can point to root or p can be NULL with
1940                  * race with swapoff. Then, we have small risk of mis-accouning.
1941                  * But such kind of mis-account by race always happens because
1942                  * we don't have cgroup_mutex(). It's overkill and we allo that
1943                  * small race, here.
1944                  * (*) swapoff at el will charge against mm-struct not against
1945                  * task-struct. So, mm->owner can be NULL.
1946                  */
1947                 mem = mem_cgroup_from_task(p);
1948                 if (!mem || mem_cgroup_is_root(mem)) {
1949                         rcu_read_unlock();
1950                         goto done;
1951                 }
1952                 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1953                         /*
1954                          * It seems dagerous to access memcg without css_get().
1955                          * But considering how consume_stok works, it's not
1956                          * necessary. If consume_stock success, some charges
1957                          * from this memcg are cached on this cpu. So, we
1958                          * don't need to call css_get()/css_tryget() before
1959                          * calling consume_stock().
1960                          */
1961                         rcu_read_unlock();
1962                         goto done;
1963                 }
1964                 /* after here, we may be blocked. we need to get refcnt */
1965                 if (!css_tryget(&mem->css)) {
1966                         rcu_read_unlock();
1967                         goto again;
1968                 }
1969                 rcu_read_unlock();
1970         }
1971
1972         do {
1973                 bool oom_check;
1974
1975                 /* If killed, bypass charge */
1976                 if (fatal_signal_pending(current)) {
1977                         css_put(&mem->css);
1978                         goto bypass;
1979                 }
1980
1981                 oom_check = false;
1982                 if (oom && !nr_oom_retries) {
1983                         oom_check = true;
1984                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1985                 }
1986
1987                 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1988
1989                 switch (ret) {
1990                 case CHARGE_OK:
1991                         break;
1992                 case CHARGE_RETRY: /* not in OOM situation but retry */
1993                         csize = page_size;
1994                         css_put(&mem->css);
1995                         mem = NULL;
1996                         goto again;
1997                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1998                         css_put(&mem->css);
1999                         goto nomem;
2000                 case CHARGE_NOMEM: /* OOM routine works */
2001                         if (!oom) {
2002                                 css_put(&mem->css);
2003                                 goto nomem;
2004                         }
2005                         /* If oom, we never return -ENOMEM */
2006                         nr_oom_retries--;
2007                         break;
2008                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2009                         css_put(&mem->css);
2010                         goto bypass;
2011                 }
2012         } while (ret != CHARGE_OK);
2013
2014         if (csize > page_size)
2015                 refill_stock(mem, csize - page_size);
2016         css_put(&mem->css);
2017 done:
2018         *memcg = mem;
2019         return 0;
2020 nomem:
2021         *memcg = NULL;
2022         return -ENOMEM;
2023 bypass:
2024         *memcg = NULL;
2025         return 0;
2026 }
2027
2028 /*
2029  * Somemtimes we have to undo a charge we got by try_charge().
2030  * This function is for that and do uncharge, put css's refcnt.
2031  * gotten by try_charge().
2032  */
2033 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2034                                                         unsigned long count)
2035 {
2036         if (!mem_cgroup_is_root(mem)) {
2037                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2038                 if (do_swap_account)
2039                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2040         }
2041 }
2042
2043 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2044                                      int page_size)
2045 {
2046         __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2047 }
2048
2049 /*
2050  * A helper function to get mem_cgroup from ID. must be called under
2051  * rcu_read_lock(). The caller must check css_is_removed() or some if
2052  * it's concern. (dropping refcnt from swap can be called against removed
2053  * memcg.)
2054  */
2055 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2056 {
2057         struct cgroup_subsys_state *css;
2058
2059         /* ID 0 is unused ID */
2060         if (!id)
2061                 return NULL;
2062         css = css_lookup(&mem_cgroup_subsys, id);
2063         if (!css)
2064                 return NULL;
2065         return container_of(css, struct mem_cgroup, css);
2066 }
2067
2068 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2069 {
2070         struct mem_cgroup *mem = NULL;
2071         struct page_cgroup *pc;
2072         unsigned short id;
2073         swp_entry_t ent;
2074
2075         VM_BUG_ON(!PageLocked(page));
2076
2077         pc = lookup_page_cgroup(page);
2078         lock_page_cgroup(pc);
2079         if (PageCgroupUsed(pc)) {
2080                 mem = pc->mem_cgroup;
2081                 if (mem && !css_tryget(&mem->css))
2082                         mem = NULL;
2083         } else if (PageSwapCache(page)) {
2084                 ent.val = page_private(page);
2085                 id = lookup_swap_cgroup(ent);
2086                 rcu_read_lock();
2087                 mem = mem_cgroup_lookup(id);
2088                 if (mem && !css_tryget(&mem->css))
2089                         mem = NULL;
2090                 rcu_read_unlock();
2091         }
2092         unlock_page_cgroup(pc);
2093         return mem;
2094 }
2095
2096 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2097                                        struct page *page,
2098                                        struct page_cgroup *pc,
2099                                        enum charge_type ctype,
2100                                        int page_size)
2101 {
2102         int nr_pages = page_size >> PAGE_SHIFT;
2103
2104         lock_page_cgroup(pc);
2105         if (unlikely(PageCgroupUsed(pc))) {
2106                 unlock_page_cgroup(pc);
2107                 mem_cgroup_cancel_charge(mem, page_size);
2108                 return;
2109         }
2110         /*
2111          * we don't need page_cgroup_lock about tail pages, becase they are not
2112          * accessed by any other context at this point.
2113          */
2114         pc->mem_cgroup = mem;
2115         /*
2116          * We access a page_cgroup asynchronously without lock_page_cgroup().
2117          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2118          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2119          * before USED bit, we need memory barrier here.
2120          * See mem_cgroup_add_lru_list(), etc.
2121          */
2122         smp_wmb();
2123         switch (ctype) {
2124         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2125         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2126                 SetPageCgroupCache(pc);
2127                 SetPageCgroupUsed(pc);
2128                 break;
2129         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2130                 ClearPageCgroupCache(pc);
2131                 SetPageCgroupUsed(pc);
2132                 break;
2133         default:
2134                 break;
2135         }
2136
2137         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2138         unlock_page_cgroup(pc);
2139         /*
2140          * "charge_statistics" updated event counter. Then, check it.
2141          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2142          * if they exceeds softlimit.
2143          */
2144         memcg_check_events(mem, page);
2145 }
2146
2147 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2148
2149 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2150                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2151 /*
2152  * Because tail pages are not marked as "used", set it. We're under
2153  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2154  */
2155 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2156 {
2157         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2158         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2159         unsigned long flags;
2160
2161         if (mem_cgroup_disabled())
2162                 return;
2163         /*
2164          * We have no races with charge/uncharge but will have races with
2165          * page state accounting.
2166          */
2167         move_lock_page_cgroup(head_pc, &flags);
2168
2169         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2170         smp_wmb(); /* see __commit_charge() */
2171         if (PageCgroupAcctLRU(head_pc)) {
2172                 enum lru_list lru;
2173                 struct mem_cgroup_per_zone *mz;
2174
2175                 /*
2176                  * LRU flags cannot be copied because we need to add tail
2177                  *.page to LRU by generic call and our hook will be called.
2178                  * We hold lru_lock, then, reduce counter directly.
2179                  */
2180                 lru = page_lru(head);
2181                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2182                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2183         }
2184         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2185         move_unlock_page_cgroup(head_pc, &flags);
2186 }
2187 #endif
2188
2189 /**
2190  * mem_cgroup_move_account - move account of the page
2191  * @page: the page
2192  * @pc: page_cgroup of the page.
2193  * @from: mem_cgroup which the page is moved from.
2194  * @to: mem_cgroup which the page is moved to. @from != @to.
2195  * @uncharge: whether we should call uncharge and css_put against @from.
2196  * @charge_size: number of bytes to charge (regular or huge page)
2197  *
2198  * The caller must confirm following.
2199  * - page is not on LRU (isolate_page() is useful.)
2200  * - compound_lock is held when charge_size > PAGE_SIZE
2201  *
2202  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2203  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2204  * true, this function does "uncharge" from old cgroup, but it doesn't if
2205  * @uncharge is false, so a caller should do "uncharge".
2206  */
2207 static int mem_cgroup_move_account(struct page *page, struct page_cgroup *pc,
2208                                    struct mem_cgroup *from, struct mem_cgroup *to,
2209                                    bool uncharge, int charge_size)
2210 {
2211         int nr_pages = charge_size >> PAGE_SHIFT;
2212         unsigned long flags;
2213         int ret;
2214
2215         VM_BUG_ON(from == to);
2216         VM_BUG_ON(PageLRU(page));
2217         /*
2218          * The page is isolated from LRU. So, collapse function
2219          * will not handle this page. But page splitting can happen.
2220          * Do this check under compound_page_lock(). The caller should
2221          * hold it.
2222          */
2223         ret = -EBUSY;
2224         if (charge_size > PAGE_SIZE && !PageTransHuge(page))
2225                 goto out;
2226
2227         lock_page_cgroup(pc);
2228
2229         ret = -EINVAL;
2230         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2231                 goto unlock;
2232
2233         move_lock_page_cgroup(pc, &flags);
2234
2235         if (PageCgroupFileMapped(pc)) {
2236                 /* Update mapped_file data for mem_cgroup */
2237                 preempt_disable();
2238                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2239                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2240                 preempt_enable();
2241         }
2242         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2243         if (uncharge)
2244                 /* This is not "cancel", but cancel_charge does all we need. */
2245                 mem_cgroup_cancel_charge(from, charge_size);
2246
2247         /* caller should have done css_get */
2248         pc->mem_cgroup = to;
2249         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2250         /*
2251          * We charges against "to" which may not have any tasks. Then, "to"
2252          * can be under rmdir(). But in current implementation, caller of
2253          * this function is just force_empty() and move charge, so it's
2254          * garanteed that "to" is never removed. So, we don't check rmdir
2255          * status here.
2256          */
2257         move_unlock_page_cgroup(pc, &flags);
2258         ret = 0;
2259 unlock:
2260         unlock_page_cgroup(pc);
2261         /*
2262          * check events
2263          */
2264         memcg_check_events(to, page);
2265         memcg_check_events(from, page);
2266 out:
2267         return ret;
2268 }
2269
2270 /*
2271  * move charges to its parent.
2272  */
2273
2274 static int mem_cgroup_move_parent(struct page *page,
2275                                   struct page_cgroup *pc,
2276                                   struct mem_cgroup *child,
2277                                   gfp_t gfp_mask)
2278 {
2279         struct cgroup *cg = child->css.cgroup;
2280         struct cgroup *pcg = cg->parent;
2281         struct mem_cgroup *parent;
2282         int page_size = PAGE_SIZE;
2283         unsigned long flags;
2284         int ret;
2285
2286         /* Is ROOT ? */
2287         if (!pcg)
2288                 return -EINVAL;
2289
2290         ret = -EBUSY;
2291         if (!get_page_unless_zero(page))
2292                 goto out;
2293         if (isolate_lru_page(page))
2294                 goto put;
2295
2296         if (PageTransHuge(page))
2297                 page_size = HPAGE_SIZE;
2298
2299         parent = mem_cgroup_from_cont(pcg);
2300         ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2301                                 &parent, false, page_size);
2302         if (ret || !parent)
2303                 goto put_back;
2304
2305         if (page_size > PAGE_SIZE)
2306                 flags = compound_lock_irqsave(page);
2307
2308         ret = mem_cgroup_move_account(page, pc, child, parent, true, page_size);
2309         if (ret)
2310                 mem_cgroup_cancel_charge(parent, page_size);
2311
2312         if (page_size > PAGE_SIZE)
2313                 compound_unlock_irqrestore(page, flags);
2314 put_back:
2315         putback_lru_page(page);
2316 put:
2317         put_page(page);
2318 out:
2319         return ret;
2320 }
2321
2322 /*
2323  * Charge the memory controller for page usage.
2324  * Return
2325  * 0 if the charge was successful
2326  * < 0 if the cgroup is over its limit
2327  */
2328 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2329                                 gfp_t gfp_mask, enum charge_type ctype)
2330 {
2331         struct mem_cgroup *mem = NULL;
2332         int page_size = PAGE_SIZE;
2333         struct page_cgroup *pc;
2334         bool oom = true;
2335         int ret;
2336
2337         if (PageTransHuge(page)) {
2338                 page_size <<= compound_order(page);
2339                 VM_BUG_ON(!PageTransHuge(page));
2340                 /*
2341                  * Never OOM-kill a process for a huge page.  The
2342                  * fault handler will fall back to regular pages.
2343                  */
2344                 oom = false;
2345         }
2346
2347         pc = lookup_page_cgroup(page);
2348         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2349
2350         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2351         if (ret || !mem)
2352                 return ret;
2353
2354         __mem_cgroup_commit_charge(mem, page, pc, ctype, page_size);
2355         return 0;
2356 }
2357
2358 int mem_cgroup_newpage_charge(struct page *page,
2359                               struct mm_struct *mm, gfp_t gfp_mask)
2360 {
2361         if (mem_cgroup_disabled())
2362                 return 0;
2363         /*
2364          * If already mapped, we don't have to account.
2365          * If page cache, page->mapping has address_space.
2366          * But page->mapping may have out-of-use anon_vma pointer,
2367          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2368          * is NULL.
2369          */
2370         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2371                 return 0;
2372         if (unlikely(!mm))
2373                 mm = &init_mm;
2374         return mem_cgroup_charge_common(page, mm, gfp_mask,
2375                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2376 }
2377
2378 static void
2379 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2380                                         enum charge_type ctype);
2381
2382 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2383                                 gfp_t gfp_mask)
2384 {
2385         int ret;
2386
2387         if (mem_cgroup_disabled())
2388                 return 0;
2389         if (PageCompound(page))
2390                 return 0;
2391         /*
2392          * Corner case handling. This is called from add_to_page_cache()
2393          * in usual. But some FS (shmem) precharges this page before calling it
2394          * and call add_to_page_cache() with GFP_NOWAIT.
2395          *
2396          * For GFP_NOWAIT case, the page may be pre-charged before calling
2397          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2398          * charge twice. (It works but has to pay a bit larger cost.)
2399          * And when the page is SwapCache, it should take swap information
2400          * into account. This is under lock_page() now.
2401          */
2402         if (!(gfp_mask & __GFP_WAIT)) {
2403                 struct page_cgroup *pc;
2404
2405                 pc = lookup_page_cgroup(page);
2406                 if (!pc)
2407                         return 0;
2408                 lock_page_cgroup(pc);
2409                 if (PageCgroupUsed(pc)) {
2410                         unlock_page_cgroup(pc);
2411                         return 0;
2412                 }
2413                 unlock_page_cgroup(pc);
2414         }
2415
2416         if (unlikely(!mm))
2417                 mm = &init_mm;
2418
2419         if (page_is_file_cache(page))
2420                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2421                                 MEM_CGROUP_CHARGE_TYPE_CACHE);
2422
2423         /* shmem */
2424         if (PageSwapCache(page)) {
2425                 struct mem_cgroup *mem;
2426
2427                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2428                 if (!ret)
2429                         __mem_cgroup_commit_charge_swapin(page, mem,
2430                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2431         } else
2432                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2433                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2434
2435         return ret;
2436 }
2437
2438 /*
2439  * While swap-in, try_charge -> commit or cancel, the page is locked.
2440  * And when try_charge() successfully returns, one refcnt to memcg without
2441  * struct page_cgroup is acquired. This refcnt will be consumed by
2442  * "commit()" or removed by "cancel()"
2443  */
2444 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2445                                  struct page *page,
2446                                  gfp_t mask, struct mem_cgroup **ptr)
2447 {
2448         struct mem_cgroup *mem;
2449         int ret;
2450
2451         *ptr = NULL;
2452
2453         if (mem_cgroup_disabled())
2454                 return 0;
2455
2456         if (!do_swap_account)
2457                 goto charge_cur_mm;
2458         /*
2459          * A racing thread's fault, or swapoff, may have already updated
2460          * the pte, and even removed page from swap cache: in those cases
2461          * do_swap_page()'s pte_same() test will fail; but there's also a
2462          * KSM case which does need to charge the page.
2463          */
2464         if (!PageSwapCache(page))
2465                 goto charge_cur_mm;
2466         mem = try_get_mem_cgroup_from_page(page);
2467         if (!mem)
2468                 goto charge_cur_mm;
2469         *ptr = mem;
2470         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2471         css_put(&mem->css);
2472         return ret;
2473 charge_cur_mm:
2474         if (unlikely(!mm))
2475                 mm = &init_mm;
2476         return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2477 }
2478
2479 static void
2480 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2481                                         enum charge_type ctype)
2482 {
2483         struct page_cgroup *pc;
2484
2485         if (mem_cgroup_disabled())
2486                 return;
2487         if (!ptr)
2488                 return;
2489         cgroup_exclude_rmdir(&ptr->css);
2490         pc = lookup_page_cgroup(page);
2491         mem_cgroup_lru_del_before_commit_swapcache(page);
2492         __mem_cgroup_commit_charge(ptr, page, pc, ctype, PAGE_SIZE);
2493         mem_cgroup_lru_add_after_commit_swapcache(page);
2494         /*
2495          * Now swap is on-memory. This means this page may be
2496          * counted both as mem and swap....double count.
2497          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2498          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2499          * may call delete_from_swap_cache() before reach here.
2500          */
2501         if (do_swap_account && PageSwapCache(page)) {
2502                 swp_entry_t ent = {.val = page_private(page)};
2503                 unsigned short id;
2504                 struct mem_cgroup *memcg;
2505
2506                 id = swap_cgroup_record(ent, 0);
2507                 rcu_read_lock();
2508                 memcg = mem_cgroup_lookup(id);
2509                 if (memcg) {
2510                         /*
2511                          * This recorded memcg can be obsolete one. So, avoid
2512                          * calling css_tryget
2513                          */
2514                         if (!mem_cgroup_is_root(memcg))
2515                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2516                         mem_cgroup_swap_statistics(memcg, false);
2517                         mem_cgroup_put(memcg);
2518                 }
2519                 rcu_read_unlock();
2520         }
2521         /*
2522          * At swapin, we may charge account against cgroup which has no tasks.
2523          * So, rmdir()->pre_destroy() can be called while we do this charge.
2524          * In that case, we need to call pre_destroy() again. check it here.
2525          */
2526         cgroup_release_and_wakeup_rmdir(&ptr->css);
2527 }
2528
2529 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2530 {
2531         __mem_cgroup_commit_charge_swapin(page, ptr,
2532                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2533 }
2534
2535 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2536 {
2537         if (mem_cgroup_disabled())
2538                 return;
2539         if (!mem)
2540                 return;
2541         mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2542 }
2543
2544 static void
2545 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2546               int page_size)
2547 {
2548         struct memcg_batch_info *batch = NULL;
2549         bool uncharge_memsw = true;
2550         /* If swapout, usage of swap doesn't decrease */
2551         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2552                 uncharge_memsw = false;
2553
2554         batch = &current->memcg_batch;
2555         /*
2556          * In usual, we do css_get() when we remember memcg pointer.
2557          * But in this case, we keep res->usage until end of a series of
2558          * uncharges. Then, it's ok to ignore memcg's refcnt.
2559          */
2560         if (!batch->memcg)
2561                 batch->memcg = mem;
2562         /*
2563          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2564          * In those cases, all pages freed continously can be expected to be in
2565          * the same cgroup and we have chance to coalesce uncharges.
2566          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2567          * because we want to do uncharge as soon as possible.
2568          */
2569
2570         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2571                 goto direct_uncharge;
2572
2573         if (page_size != PAGE_SIZE)
2574                 goto direct_uncharge;
2575
2576         /*
2577          * In typical case, batch->memcg == mem. This means we can
2578          * merge a series of uncharges to an uncharge of res_counter.
2579          * If not, we uncharge res_counter ony by one.
2580          */
2581         if (batch->memcg != mem)
2582                 goto direct_uncharge;
2583         /* remember freed charge and uncharge it later */
2584         batch->bytes += PAGE_SIZE;
2585         if (uncharge_memsw)
2586                 batch->memsw_bytes += PAGE_SIZE;
2587         return;
2588 direct_uncharge:
2589         res_counter_uncharge(&mem->res, page_size);
2590         if (uncharge_memsw)
2591                 res_counter_uncharge(&mem->memsw, page_size);
2592         if (unlikely(batch->memcg != mem))
2593                 memcg_oom_recover(mem);
2594         return;
2595 }
2596
2597 /*
2598  * uncharge if !page_mapped(page)
2599  */
2600 static struct mem_cgroup *
2601 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2602 {
2603         int count;
2604         struct page_cgroup *pc;
2605         struct mem_cgroup *mem = NULL;
2606         int page_size = PAGE_SIZE;
2607
2608         if (mem_cgroup_disabled())
2609                 return NULL;
2610
2611         if (PageSwapCache(page))
2612                 return NULL;
2613
2614         if (PageTransHuge(page)) {
2615                 page_size <<= compound_order(page);
2616                 VM_BUG_ON(!PageTransHuge(page));
2617         }
2618
2619         count = page_size >> PAGE_SHIFT;
2620         /*
2621          * Check if our page_cgroup is valid
2622          */
2623         pc = lookup_page_cgroup(page);
2624         if (unlikely(!pc || !PageCgroupUsed(pc)))
2625                 return NULL;
2626
2627         lock_page_cgroup(pc);
2628
2629         mem = pc->mem_cgroup;
2630
2631         if (!PageCgroupUsed(pc))
2632                 goto unlock_out;
2633
2634         switch (ctype) {
2635         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2636         case MEM_CGROUP_CHARGE_TYPE_DROP:
2637                 /* See mem_cgroup_prepare_migration() */
2638                 if (page_mapped(page) || PageCgroupMigration(pc))
2639                         goto unlock_out;
2640                 break;
2641         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2642                 if (!PageAnon(page)) {  /* Shared memory */
2643                         if (page->mapping && !page_is_file_cache(page))
2644                                 goto unlock_out;
2645                 } else if (page_mapped(page)) /* Anon */
2646                                 goto unlock_out;
2647                 break;
2648         default:
2649                 break;
2650         }
2651
2652         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2653
2654         ClearPageCgroupUsed(pc);
2655         /*
2656          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2657          * freed from LRU. This is safe because uncharged page is expected not
2658          * to be reused (freed soon). Exception is SwapCache, it's handled by
2659          * special functions.
2660          */
2661
2662         unlock_page_cgroup(pc);
2663         /*
2664          * even after unlock, we have mem->res.usage here and this memcg
2665          * will never be freed.
2666          */
2667         memcg_check_events(mem, page);
2668         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2669                 mem_cgroup_swap_statistics(mem, true);
2670                 mem_cgroup_get(mem);
2671         }
2672         if (!mem_cgroup_is_root(mem))
2673                 __do_uncharge(mem, ctype, page_size);
2674
2675         return mem;
2676
2677 unlock_out:
2678         unlock_page_cgroup(pc);
2679         return NULL;
2680 }
2681
2682 void mem_cgroup_uncharge_page(struct page *page)
2683 {
2684         /* early check. */
2685         if (page_mapped(page))
2686                 return;
2687         if (page->mapping && !PageAnon(page))
2688                 return;
2689         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2690 }
2691
2692 void mem_cgroup_uncharge_cache_page(struct page *page)
2693 {
2694         VM_BUG_ON(page_mapped(page));
2695         VM_BUG_ON(page->mapping);
2696         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2697 }
2698
2699 /*
2700  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2701  * In that cases, pages are freed continuously and we can expect pages
2702  * are in the same memcg. All these calls itself limits the number of
2703  * pages freed at once, then uncharge_start/end() is called properly.
2704  * This may be called prural(2) times in a context,
2705  */
2706
2707 void mem_cgroup_uncharge_start(void)
2708 {
2709         current->memcg_batch.do_batch++;
2710         /* We can do nest. */
2711         if (current->memcg_batch.do_batch == 1) {
2712                 current->memcg_batch.memcg = NULL;
2713                 current->memcg_batch.bytes = 0;
2714                 current->memcg_batch.memsw_bytes = 0;
2715         }
2716 }
2717
2718 void mem_cgroup_uncharge_end(void)
2719 {
2720         struct memcg_batch_info *batch = &current->memcg_batch;
2721
2722         if (!batch->do_batch)
2723                 return;
2724
2725         batch->do_batch--;
2726         if (batch->do_batch) /* If stacked, do nothing. */
2727                 return;
2728
2729         if (!batch->memcg)
2730                 return;
2731         /*
2732          * This "batch->memcg" is valid without any css_get/put etc...
2733          * bacause we hide charges behind us.
2734          */
2735         if (batch->bytes)
2736                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2737         if (batch->memsw_bytes)
2738                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2739         memcg_oom_recover(batch->memcg);
2740         /* forget this pointer (for sanity check) */
2741         batch->memcg = NULL;
2742 }
2743
2744 #ifdef CONFIG_SWAP
2745 /*
2746  * called after __delete_from_swap_cache() and drop "page" account.
2747  * memcg information is recorded to swap_cgroup of "ent"
2748  */
2749 void
2750 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2751 {
2752         struct mem_cgroup *memcg;
2753         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2754
2755         if (!swapout) /* this was a swap cache but the swap is unused ! */
2756                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2757
2758         memcg = __mem_cgroup_uncharge_common(page, ctype);
2759
2760         /*
2761          * record memcg information,  if swapout && memcg != NULL,
2762          * mem_cgroup_get() was called in uncharge().
2763          */
2764         if (do_swap_account && swapout && memcg)
2765                 swap_cgroup_record(ent, css_id(&memcg->css));
2766 }
2767 #endif
2768
2769 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2770 /*
2771  * called from swap_entry_free(). remove record in swap_cgroup and
2772  * uncharge "memsw" account.
2773  */
2774 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2775 {
2776         struct mem_cgroup *memcg;
2777         unsigned short id;
2778
2779         if (!do_swap_account)
2780                 return;
2781
2782         id = swap_cgroup_record(ent, 0);
2783         rcu_read_lock();
2784         memcg = mem_cgroup_lookup(id);
2785         if (memcg) {
2786                 /*
2787                  * We uncharge this because swap is freed.
2788                  * This memcg can be obsolete one. We avoid calling css_tryget
2789                  */
2790                 if (!mem_cgroup_is_root(memcg))
2791                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2792                 mem_cgroup_swap_statistics(memcg, false);
2793                 mem_cgroup_put(memcg);
2794         }
2795         rcu_read_unlock();
2796 }
2797
2798 /**
2799  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2800  * @entry: swap entry to be moved
2801  * @from:  mem_cgroup which the entry is moved from
2802  * @to:  mem_cgroup which the entry is moved to
2803  * @need_fixup: whether we should fixup res_counters and refcounts.
2804  *
2805  * It succeeds only when the swap_cgroup's record for this entry is the same
2806  * as the mem_cgroup's id of @from.
2807  *
2808  * Returns 0 on success, -EINVAL on failure.
2809  *
2810  * The caller must have charged to @to, IOW, called res_counter_charge() about
2811  * both res and memsw, and called css_get().
2812  */
2813 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2814                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2815 {
2816         unsigned short old_id, new_id;
2817
2818         old_id = css_id(&from->css);
2819         new_id = css_id(&to->css);
2820
2821         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2822                 mem_cgroup_swap_statistics(from, false);
2823                 mem_cgroup_swap_statistics(to, true);
2824                 /*
2825                  * This function is only called from task migration context now.
2826                  * It postpones res_counter and refcount handling till the end
2827                  * of task migration(mem_cgroup_clear_mc()) for performance
2828                  * improvement. But we cannot postpone mem_cgroup_get(to)
2829                  * because if the process that has been moved to @to does
2830                  * swap-in, the refcount of @to might be decreased to 0.
2831                  */
2832                 mem_cgroup_get(to);
2833                 if (need_fixup) {
2834                         if (!mem_cgroup_is_root(from))
2835                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2836                         mem_cgroup_put(from);
2837                         /*
2838                          * we charged both to->res and to->memsw, so we should
2839                          * uncharge to->res.
2840                          */
2841                         if (!mem_cgroup_is_root(to))
2842                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2843                 }
2844                 return 0;
2845         }
2846         return -EINVAL;
2847 }
2848 #else
2849 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2850                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2851 {
2852         return -EINVAL;
2853 }
2854 #endif
2855
2856 /*
2857  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2858  * page belongs to.
2859  */
2860 int mem_cgroup_prepare_migration(struct page *page,
2861         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2862 {
2863         struct page_cgroup *pc;
2864         struct mem_cgroup *mem = NULL;
2865         enum charge_type ctype;
2866         int ret = 0;
2867
2868         *ptr = NULL;
2869
2870         VM_BUG_ON(PageTransHuge(page));
2871         if (mem_cgroup_disabled())
2872                 return 0;
2873
2874         pc = lookup_page_cgroup(page);
2875         lock_page_cgroup(pc);
2876         if (PageCgroupUsed(pc)) {
2877                 mem = pc->mem_cgroup;
2878                 css_get(&mem->css);
2879                 /*
2880                  * At migrating an anonymous page, its mapcount goes down
2881                  * to 0 and uncharge() will be called. But, even if it's fully
2882                  * unmapped, migration may fail and this page has to be
2883                  * charged again. We set MIGRATION flag here and delay uncharge
2884                  * until end_migration() is called
2885                  *
2886                  * Corner Case Thinking
2887                  * A)
2888                  * When the old page was mapped as Anon and it's unmap-and-freed
2889                  * while migration was ongoing.
2890                  * If unmap finds the old page, uncharge() of it will be delayed
2891                  * until end_migration(). If unmap finds a new page, it's
2892                  * uncharged when it make mapcount to be 1->0. If unmap code
2893                  * finds swap_migration_entry, the new page will not be mapped
2894                  * and end_migration() will find it(mapcount==0).
2895                  *
2896                  * B)
2897                  * When the old page was mapped but migraion fails, the kernel
2898                  * remaps it. A charge for it is kept by MIGRATION flag even
2899                  * if mapcount goes down to 0. We can do remap successfully
2900                  * without charging it again.
2901                  *
2902                  * C)
2903                  * The "old" page is under lock_page() until the end of
2904                  * migration, so, the old page itself will not be swapped-out.
2905                  * If the new page is swapped out before end_migraton, our
2906                  * hook to usual swap-out path will catch the event.
2907                  */
2908                 if (PageAnon(page))
2909                         SetPageCgroupMigration(pc);
2910         }
2911         unlock_page_cgroup(pc);
2912         /*
2913          * If the page is not charged at this point,
2914          * we return here.
2915          */
2916         if (!mem)
2917                 return 0;
2918
2919         *ptr = mem;
2920         ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2921         css_put(&mem->css);/* drop extra refcnt */
2922         if (ret || *ptr == NULL) {
2923                 if (PageAnon(page)) {
2924                         lock_page_cgroup(pc);
2925                         ClearPageCgroupMigration(pc);
2926                         unlock_page_cgroup(pc);
2927                         /*
2928                          * The old page may be fully unmapped while we kept it.
2929                          */
2930                         mem_cgroup_uncharge_page(page);
2931                 }
2932                 return -ENOMEM;
2933         }
2934         /*
2935          * We charge new page before it's used/mapped. So, even if unlock_page()
2936          * is called before end_migration, we can catch all events on this new
2937          * page. In the case new page is migrated but not remapped, new page's
2938          * mapcount will be finally 0 and we call uncharge in end_migration().
2939          */
2940         pc = lookup_page_cgroup(newpage);
2941         if (PageAnon(page))
2942                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2943         else if (page_is_file_cache(page))
2944                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2945         else
2946                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2947         __mem_cgroup_commit_charge(mem, page, pc, ctype, PAGE_SIZE);
2948         return ret;
2949 }
2950
2951 /* remove redundant charge if migration failed*/
2952 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2953         struct page *oldpage, struct page *newpage, bool migration_ok)
2954 {
2955         struct page *used, *unused;
2956         struct page_cgroup *pc;
2957
2958         if (!mem)
2959                 return;
2960         /* blocks rmdir() */
2961         cgroup_exclude_rmdir(&mem->css);
2962         if (!migration_ok) {
2963                 used = oldpage;
2964                 unused = newpage;
2965         } else {
2966                 used = newpage;
2967                 unused = oldpage;
2968         }
2969         /*
2970          * We disallowed uncharge of pages under migration because mapcount
2971          * of the page goes down to zero, temporarly.
2972          * Clear the flag and check the page should be charged.
2973          */
2974         pc = lookup_page_cgroup(oldpage);
2975         lock_page_cgroup(pc);
2976         ClearPageCgroupMigration(pc);
2977         unlock_page_cgroup(pc);
2978
2979         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2980
2981         /*
2982          * If a page is a file cache, radix-tree replacement is very atomic
2983          * and we can skip this check. When it was an Anon page, its mapcount
2984          * goes down to 0. But because we added MIGRATION flage, it's not
2985          * uncharged yet. There are several case but page->mapcount check
2986          * and USED bit check in mem_cgroup_uncharge_page() will do enough
2987          * check. (see prepare_charge() also)
2988          */
2989         if (PageAnon(used))
2990                 mem_cgroup_uncharge_page(used);
2991         /*
2992          * At migration, we may charge account against cgroup which has no
2993          * tasks.
2994          * So, rmdir()->pre_destroy() can be called while we do this charge.
2995          * In that case, we need to call pre_destroy() again. check it here.
2996          */
2997         cgroup_release_and_wakeup_rmdir(&mem->css);
2998 }
2999
3000 /*
3001  * A call to try to shrink memory usage on charge failure at shmem's swapin.
3002  * Calling hierarchical_reclaim is not enough because we should update
3003  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3004  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3005  * not from the memcg which this page would be charged to.
3006  * try_charge_swapin does all of these works properly.
3007  */
3008 int mem_cgroup_shmem_charge_fallback(struct page *page,
3009                             struct mm_struct *mm,
3010                             gfp_t gfp_mask)
3011 {
3012         struct mem_cgroup *mem;
3013         int ret;
3014
3015         if (mem_cgroup_disabled())
3016                 return 0;
3017
3018         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3019         if (!ret)
3020                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3021
3022         return ret;
3023 }
3024
3025 #ifdef CONFIG_DEBUG_VM
3026 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3027 {
3028         struct page_cgroup *pc;
3029
3030         pc = lookup_page_cgroup(page);
3031         if (likely(pc) && PageCgroupUsed(pc))
3032                 return pc;
3033         return NULL;
3034 }
3035
3036 bool mem_cgroup_bad_page_check(struct page *page)
3037 {
3038         if (mem_cgroup_disabled())
3039                 return false;
3040
3041         return lookup_page_cgroup_used(page) != NULL;
3042 }
3043
3044 void mem_cgroup_print_bad_page(struct page *page)
3045 {
3046         struct page_cgroup *pc;
3047
3048         pc = lookup_page_cgroup_used(page);
3049         if (pc) {
3050                 int ret = -1;
3051                 char *path;
3052
3053                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3054                        pc, pc->flags, pc->mem_cgroup);
3055
3056                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3057                 if (path) {
3058                         rcu_read_lock();
3059                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3060                                                         path, PATH_MAX);
3061                         rcu_read_unlock();
3062                 }
3063
3064                 printk(KERN_CONT "(%s)\n",
3065                                 (ret < 0) ? "cannot get the path" : path);
3066                 kfree(path);
3067         }
3068 }
3069 #endif
3070
3071 static DEFINE_MUTEX(set_limit_mutex);
3072
3073 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3074                                 unsigned long long val)
3075 {
3076         int retry_count;
3077         u64 memswlimit, memlimit;
3078         int ret = 0;
3079         int children = mem_cgroup_count_children(memcg);
3080         u64 curusage, oldusage;
3081         int enlarge;
3082
3083         /*
3084          * For keeping hierarchical_reclaim simple, how long we should retry
3085          * is depends on callers. We set our retry-count to be function
3086          * of # of children which we should visit in this loop.
3087          */
3088         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3089
3090         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3091
3092         enlarge = 0;
3093         while (retry_count) {
3094                 if (signal_pending(current)) {
3095                         ret = -EINTR;
3096                         break;
3097                 }
3098                 /*
3099                  * Rather than hide all in some function, I do this in
3100                  * open coded manner. You see what this really does.
3101                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3102                  */
3103                 mutex_lock(&set_limit_mutex);
3104                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3105                 if (memswlimit < val) {
3106                         ret = -EINVAL;
3107                         mutex_unlock(&set_limit_mutex);
3108                         break;
3109                 }
3110
3111                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3112                 if (memlimit < val)
3113                         enlarge = 1;
3114
3115                 ret = res_counter_set_limit(&memcg->res, val);
3116                 if (!ret) {
3117                         if (memswlimit == val)
3118                                 memcg->memsw_is_minimum = true;
3119                         else
3120                                 memcg->memsw_is_minimum = false;
3121                 }
3122                 mutex_unlock(&set_limit_mutex);
3123
3124                 if (!ret)
3125                         break;
3126
3127                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3128                                                 MEM_CGROUP_RECLAIM_SHRINK);
3129                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3130                 /* Usage is reduced ? */
3131                 if (curusage >= oldusage)
3132                         retry_count--;
3133                 else
3134                         oldusage = curusage;
3135         }
3136         if (!ret && enlarge)
3137                 memcg_oom_recover(memcg);
3138
3139         return ret;
3140 }
3141
3142 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3143                                         unsigned long long val)
3144 {
3145         int retry_count;
3146         u64 memlimit, memswlimit, oldusage, curusage;
3147         int children = mem_cgroup_count_children(memcg);
3148         int ret = -EBUSY;
3149         int enlarge = 0;
3150
3151         /* see mem_cgroup_resize_res_limit */
3152         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3153         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3154         while (retry_count) {
3155                 if (signal_pending(current)) {
3156                         ret = -EINTR;
3157                         break;
3158                 }
3159                 /*
3160                  * Rather than hide all in some function, I do this in
3161                  * open coded manner. You see what this really does.
3162                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3163                  */
3164                 mutex_lock(&set_limit_mutex);
3165                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3166                 if (memlimit > val) {
3167                         ret = -EINVAL;
3168                         mutex_unlock(&set_limit_mutex);
3169                         break;
3170                 }
3171                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3172                 if (memswlimit < val)
3173                         enlarge = 1;
3174                 ret = res_counter_set_limit(&memcg->memsw, val);
3175                 if (!ret) {
3176                         if (memlimit == val)
3177                                 memcg->memsw_is_minimum = true;
3178                         else
3179                                 memcg->memsw_is_minimum = false;
3180                 }
3181                 mutex_unlock(&set_limit_mutex);
3182
3183                 if (!ret)
3184                         break;
3185
3186                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3187                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3188                                                 MEM_CGROUP_RECLAIM_SHRINK);
3189                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3190                 /* Usage is reduced ? */
3191                 if (curusage >= oldusage)
3192                         retry_count--;
3193                 else
3194                         oldusage = curusage;
3195         }
3196         if (!ret && enlarge)
3197                 memcg_oom_recover(memcg);
3198         return ret;
3199 }
3200
3201 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3202                                             gfp_t gfp_mask)
3203 {
3204         unsigned long nr_reclaimed = 0;
3205         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3206         unsigned long reclaimed;
3207         int loop = 0;
3208         struct mem_cgroup_tree_per_zone *mctz;
3209         unsigned long long excess;
3210
3211         if (order > 0)
3212                 return 0;
3213
3214         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3215         /*
3216          * This loop can run a while, specially if mem_cgroup's continuously
3217          * keep exceeding their soft limit and putting the system under
3218          * pressure
3219          */
3220         do {
3221                 if (next_mz)
3222                         mz = next_mz;
3223                 else
3224                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3225                 if (!mz)
3226                         break;
3227
3228                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3229                                                 gfp_mask,
3230                                                 MEM_CGROUP_RECLAIM_SOFT);
3231                 nr_reclaimed += reclaimed;
3232                 spin_lock(&mctz->lock);
3233
3234                 /*
3235                  * If we failed to reclaim anything from this memory cgroup
3236                  * it is time to move on to the next cgroup
3237                  */
3238                 next_mz = NULL;
3239                 if (!reclaimed) {
3240                         do {
3241                                 /*
3242                                  * Loop until we find yet another one.
3243                                  *
3244                                  * By the time we get the soft_limit lock
3245                                  * again, someone might have aded the
3246                                  * group back on the RB tree. Iterate to
3247                                  * make sure we get a different mem.
3248                                  * mem_cgroup_largest_soft_limit_node returns
3249                                  * NULL if no other cgroup is present on
3250                                  * the tree
3251                                  */
3252                                 next_mz =
3253                                 __mem_cgroup_largest_soft_limit_node(mctz);
3254                                 if (next_mz == mz) {
3255                                         css_put(&next_mz->mem->css);
3256                                         next_mz = NULL;
3257                                 } else /* next_mz == NULL or other memcg */
3258                                         break;
3259                         } while (1);
3260                 }
3261                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3262                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3263                 /*
3264                  * One school of thought says that we should not add
3265                  * back the node to the tree if reclaim returns 0.
3266                  * But our reclaim could return 0, simply because due
3267                  * to priority we are exposing a smaller subset of
3268                  * memory to reclaim from. Consider this as a longer
3269                  * term TODO.
3270                  */
3271                 /* If excess == 0, no tree ops */
3272                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3273                 spin_unlock(&mctz->lock);
3274                 css_put(&mz->mem->css);
3275                 loop++;
3276                 /*
3277                  * Could not reclaim anything and there are no more
3278                  * mem cgroups to try or we seem to be looping without
3279                  * reclaiming anything.
3280                  */
3281                 if (!nr_reclaimed &&
3282                         (next_mz == NULL ||
3283                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3284                         break;
3285         } while (!nr_reclaimed);
3286         if (next_mz)
3287                 css_put(&next_mz->mem->css);
3288         return nr_reclaimed;
3289 }
3290
3291 /*
3292  * This routine traverse page_cgroup in given list and drop them all.
3293  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3294  */
3295 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3296                                 int node, int zid, enum lru_list lru)
3297 {
3298         struct zone *zone;
3299         struct mem_cgroup_per_zone *mz;
3300         struct page_cgroup *pc, *busy;
3301         unsigned long flags, loop;
3302         struct list_head *list;
3303         int ret = 0;
3304
3305         zone = &NODE_DATA(node)->node_zones[zid];
3306         mz = mem_cgroup_zoneinfo(mem, node, zid);
3307         list = &mz->lists[lru];
3308
3309         loop = MEM_CGROUP_ZSTAT(mz, lru);
3310         /* give some margin against EBUSY etc...*/
3311         loop += 256;
3312         busy = NULL;
3313         while (loop--) {
3314                 struct page *page;
3315
3316                 ret = 0;
3317                 spin_lock_irqsave(&zone->lru_lock, flags);
3318                 if (list_empty(list)) {
3319                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3320                         break;
3321                 }
3322                 pc = list_entry(list->prev, struct page_cgroup, lru);
3323                 if (busy == pc) {
3324                         list_move(&pc->lru, list);
3325                         busy = NULL;
3326                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3327                         continue;
3328                 }
3329                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3330
3331                 page = lookup_cgroup_page(pc);
3332
3333                 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3334                 if (ret == -ENOMEM)
3335                         break;
3336
3337                 if (ret == -EBUSY || ret == -EINVAL) {
3338                         /* found lock contention or "pc" is obsolete. */
3339                         busy = pc;
3340                         cond_resched();
3341                 } else
3342                         busy = NULL;
3343         }
3344
3345         if (!ret && !list_empty(list))
3346                 return -EBUSY;
3347         return ret;
3348 }
3349
3350 /*
3351  * make mem_cgroup's charge to be 0 if there is no task.
3352  * This enables deleting this mem_cgroup.
3353  */
3354 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3355 {
3356         int ret;
3357         int node, zid, shrink;
3358         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3359         struct cgroup *cgrp = mem->css.cgroup;
3360
3361         css_get(&mem->css);
3362
3363         shrink = 0;
3364         /* should free all ? */
3365         if (free_all)
3366                 goto try_to_free;
3367 move_account:
3368         do {
3369                 ret = -EBUSY;
3370                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3371                         goto out;
3372                 ret = -EINTR;
3373                 if (signal_pending(current))
3374                         goto out;
3375                 /* This is for making all *used* pages to be on LRU. */
3376                 lru_add_drain_all();
3377                 drain_all_stock_sync();
3378                 ret = 0;
3379                 mem_cgroup_start_move(mem);
3380                 for_each_node_state(node, N_HIGH_MEMORY) {
3381                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3382                                 enum lru_list l;
3383                                 for_each_lru(l) {
3384                                         ret = mem_cgroup_force_empty_list(mem,
3385                                                         node, zid, l);
3386                                         if (ret)
3387                                                 break;
3388                                 }
3389                         }
3390                         if (ret)
3391                                 break;
3392                 }
3393                 mem_cgroup_end_move(mem);
3394                 memcg_oom_recover(mem);
3395                 /* it seems parent cgroup doesn't have enough mem */
3396                 if (ret == -ENOMEM)
3397                         goto try_to_free;
3398                 cond_resched();
3399         /* "ret" should also be checked to ensure all lists are empty. */
3400         } while (mem->res.usage > 0 || ret);
3401 out:
3402         css_put(&mem->css);
3403         return ret;
3404
3405 try_to_free:
3406         /* returns EBUSY if there is a task or if we come here twice. */
3407         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3408                 ret = -EBUSY;
3409                 goto out;
3410         }
3411         /* we call try-to-free pages for make this cgroup empty */
3412         lru_add_drain_all();
3413         /* try to free all pages in this cgroup */
3414         shrink = 1;
3415         while (nr_retries && mem->res.usage > 0) {
3416                 int progress;
3417
3418                 if (signal_pending(current)) {
3419                         ret = -EINTR;
3420                         goto out;
3421                 }
3422                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3423                                                 false, get_swappiness(mem));
3424                 if (!progress) {
3425                         nr_retries--;
3426                         /* maybe some writeback is necessary */
3427                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3428                 }
3429
3430         }
3431         lru_add_drain();
3432         /* try move_account...there may be some *locked* pages. */
3433         goto move_account;
3434 }
3435
3436 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3437 {
3438         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3439 }
3440
3441
3442 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3443 {
3444         return mem_cgroup_from_cont(cont)->use_hierarchy;
3445 }
3446
3447 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3448                                         u64 val)
3449 {
3450         int retval = 0;
3451         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3452         struct cgroup *parent = cont->parent;
3453         struct mem_cgroup *parent_mem = NULL;
3454
3455         if (parent)
3456                 parent_mem = mem_cgroup_from_cont(parent);
3457
3458         cgroup_lock();
3459         /*
3460          * If parent's use_hierarchy is set, we can't make any modifications
3461          * in the child subtrees. If it is unset, then the change can
3462          * occur, provided the current cgroup has no children.
3463          *
3464          * For the root cgroup, parent_mem is NULL, we allow value to be
3465          * set if there are no children.
3466          */
3467         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3468                                 (val == 1 || val == 0)) {
3469                 if (list_empty(&cont->children))
3470                         mem->use_hierarchy = val;
3471                 else
3472                         retval = -EBUSY;
3473         } else
3474                 retval = -EINVAL;
3475         cgroup_unlock();
3476
3477         return retval;
3478 }
3479
3480
3481 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3482                                 enum mem_cgroup_stat_index idx)
3483 {
3484         struct mem_cgroup *iter;
3485         s64 val = 0;
3486
3487         /* each per cpu's value can be minus.Then, use s64 */
3488         for_each_mem_cgroup_tree(iter, mem)
3489                 val += mem_cgroup_read_stat(iter, idx);
3490
3491         if (val < 0) /* race ? */
3492                 val = 0;
3493         return val;
3494 }
3495
3496 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3497 {
3498         u64 val;
3499
3500         if (!mem_cgroup_is_root(mem)) {
3501                 if (!swap)
3502                         return res_counter_read_u64(&mem->res, RES_USAGE);
3503                 else
3504                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3505         }
3506
3507         val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3508         val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3509
3510         if (swap)
3511                 val += mem_cgroup_get_recursive_idx_stat(mem,
3512                                 MEM_CGROUP_STAT_SWAPOUT);
3513
3514         return val << PAGE_SHIFT;
3515 }
3516
3517 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3518 {
3519         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3520         u64 val;
3521         int type, name;
3522
3523         type = MEMFILE_TYPE(cft->private);
3524         name = MEMFILE_ATTR(cft->private);
3525         switch (type) {
3526         case _MEM:
3527                 if (name == RES_USAGE)
3528                         val = mem_cgroup_usage(mem, false);
3529                 else
3530                         val = res_counter_read_u64(&mem->res, name);
3531                 break;
3532         case _MEMSWAP:
3533                 if (name == RES_USAGE)
3534                         val = mem_cgroup_usage(mem, true);
3535                 else
3536                         val = res_counter_read_u64(&mem->memsw, name);
3537                 break;
3538         default:
3539                 BUG();
3540                 break;
3541         }
3542         return val;
3543 }
3544 /*
3545  * The user of this function is...
3546  * RES_LIMIT.
3547  */
3548 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3549                             const char *buffer)
3550 {
3551         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3552         int type, name;
3553         unsigned long long val;
3554         int ret;
3555
3556         type = MEMFILE_TYPE(cft->private);
3557         name = MEMFILE_ATTR(cft->private);
3558         switch (name) {
3559         case RES_LIMIT:
3560                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3561                         ret = -EINVAL;
3562                         break;
3563                 }
3564                 /* This function does all necessary parse...reuse it */
3565                 ret = res_counter_memparse_write_strategy(buffer, &val);
3566                 if (ret)
3567                         break;
3568                 if (type == _MEM)
3569                         ret = mem_cgroup_resize_limit(memcg, val);
3570                 else
3571                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3572                 break;
3573         case RES_SOFT_LIMIT:
3574                 ret = res_counter_memparse_write_strategy(buffer, &val);
3575                 if (ret)
3576                         break;
3577                 /*
3578                  * For memsw, soft limits are hard to implement in terms
3579                  * of semantics, for now, we support soft limits for
3580                  * control without swap
3581                  */
3582                 if (type == _MEM)
3583                         ret = res_counter_set_soft_limit(&memcg->res, val);
3584                 else
3585                         ret = -EINVAL;
3586                 break;
3587         default:
3588                 ret = -EINVAL; /* should be BUG() ? */
3589                 break;
3590         }
3591         return ret;
3592 }
3593
3594 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3595                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3596 {
3597         struct cgroup *cgroup;
3598         unsigned long long min_limit, min_memsw_limit, tmp;
3599
3600         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3601         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3602         cgroup = memcg->css.cgroup;
3603         if (!memcg->use_hierarchy)
3604                 goto out;
3605
3606         while (cgroup->parent) {
3607                 cgroup = cgroup->parent;
3608                 memcg = mem_cgroup_from_cont(cgroup);
3609                 if (!memcg->use_hierarchy)
3610                         break;
3611                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3612                 min_limit = min(min_limit, tmp);
3613                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3614                 min_memsw_limit = min(min_memsw_limit, tmp);
3615         }
3616 out:
3617         *mem_limit = min_limit;
3618         *memsw_limit = min_memsw_limit;
3619         return;
3620 }
3621
3622 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3623 {
3624         struct mem_cgroup *mem;
3625         int type, name;
3626
3627         mem = mem_cgroup_from_cont(cont);
3628         type = MEMFILE_TYPE(event);
3629         name = MEMFILE_ATTR(event);
3630         switch (name) {
3631         case RES_MAX_USAGE:
3632                 if (type == _MEM)
3633                         res_counter_reset_max(&mem->res);
3634                 else
3635                         res_counter_reset_max(&mem->memsw);
3636                 break;
3637         case RES_FAILCNT:
3638                 if (type == _MEM)
3639                         res_counter_reset_failcnt(&mem->res);
3640                 else
3641                         res_counter_reset_failcnt(&mem->memsw);
3642                 break;
3643         }
3644
3645         return 0;
3646 }
3647
3648 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3649                                         struct cftype *cft)
3650 {
3651         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3652 }
3653
3654 #ifdef CONFIG_MMU
3655 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3656                                         struct cftype *cft, u64 val)
3657 {
3658         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3659
3660         if (val >= (1 << NR_MOVE_TYPE))
3661                 return -EINVAL;
3662         /*
3663          * We check this value several times in both in can_attach() and
3664          * attach(), so we need cgroup lock to prevent this value from being
3665          * inconsistent.
3666          */
3667         cgroup_lock();
3668         mem->move_charge_at_immigrate = val;
3669         cgroup_unlock();
3670
3671         return 0;
3672 }
3673 #else
3674 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3675                                         struct cftype *cft, u64 val)
3676 {
3677         return -ENOSYS;
3678 }
3679 #endif
3680
3681
3682 /* For read statistics */
3683 enum {
3684         MCS_CACHE,
3685         MCS_RSS,
3686         MCS_FILE_MAPPED,
3687         MCS_PGPGIN,
3688         MCS_PGPGOUT,
3689         MCS_SWAP,
3690         MCS_INACTIVE_ANON,
3691         MCS_ACTIVE_ANON,
3692         MCS_INACTIVE_FILE,
3693         MCS_ACTIVE_FILE,
3694         MCS_UNEVICTABLE,
3695         NR_MCS_STAT,
3696 };
3697
3698 struct mcs_total_stat {
3699         s64 stat[NR_MCS_STAT];
3700 };
3701
3702 struct {
3703         char *local_name;
3704         char *total_name;
3705 } memcg_stat_strings[NR_MCS_STAT] = {
3706         {"cache", "total_cache"},
3707         {"rss", "total_rss"},
3708         {"mapped_file", "total_mapped_file"},
3709         {"pgpgin", "total_pgpgin"},
3710         {"pgpgout", "total_pgpgout"},
3711         {"swap", "total_swap"},
3712         {"inactive_anon", "total_inactive_anon"},
3713         {"active_anon", "total_active_anon"},
3714         {"inactive_file", "total_inactive_file"},
3715         {"active_file", "total_active_file"},
3716         {"unevictable", "total_unevictable"}
3717 };
3718
3719
3720 static void
3721 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3722 {
3723         s64 val;
3724
3725         /* per cpu stat */
3726         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3727         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3728         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3729         s->stat[MCS_RSS] += val * PAGE_SIZE;
3730         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3731         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3732         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3733         s->stat[MCS_PGPGIN] += val;
3734         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3735         s->stat[MCS_PGPGOUT] += val;
3736         if (do_swap_account) {
3737                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3738                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3739         }
3740
3741         /* per zone stat */
3742         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3743         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3744         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3745         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3746         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3747         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3748         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3749         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3750         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3751         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3752 }
3753
3754 static void
3755 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3756 {
3757         struct mem_cgroup *iter;
3758
3759         for_each_mem_cgroup_tree(iter, mem)
3760                 mem_cgroup_get_local_stat(iter, s);
3761 }
3762
3763 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3764                                  struct cgroup_map_cb *cb)
3765 {
3766         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3767         struct mcs_total_stat mystat;
3768         int i;
3769
3770         memset(&mystat, 0, sizeof(mystat));
3771         mem_cgroup_get_local_stat(mem_cont, &mystat);
3772
3773         for (i = 0; i < NR_MCS_STAT; i++) {
3774                 if (i == MCS_SWAP && !do_swap_account)
3775                         continue;
3776                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3777         }
3778
3779         /* Hierarchical information */
3780         {
3781                 unsigned long long limit, memsw_limit;
3782                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3783                 cb->fill(cb, "hierarchical_memory_limit", limit);
3784                 if (do_swap_account)
3785                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3786         }
3787
3788         memset(&mystat, 0, sizeof(mystat));
3789         mem_cgroup_get_total_stat(mem_cont, &mystat);
3790         for (i = 0; i < NR_MCS_STAT; i++) {
3791                 if (i == MCS_SWAP && !do_swap_account)
3792                         continue;
3793                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3794         }
3795
3796 #ifdef CONFIG_DEBUG_VM
3797         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3798
3799         {
3800                 int nid, zid;
3801                 struct mem_cgroup_per_zone *mz;
3802                 unsigned long recent_rotated[2] = {0, 0};
3803                 unsigned long recent_scanned[2] = {0, 0};
3804
3805                 for_each_online_node(nid)
3806                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3807                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3808
3809                                 recent_rotated[0] +=
3810                                         mz->reclaim_stat.recent_rotated[0];
3811                                 recent_rotated[1] +=
3812                                         mz->reclaim_stat.recent_rotated[1];
3813                                 recent_scanned[0] +=
3814                                         mz->reclaim_stat.recent_scanned[0];
3815                                 recent_scanned[1] +=
3816                                         mz->reclaim_stat.recent_scanned[1];
3817                         }
3818                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3819                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3820                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3821                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3822         }
3823 #endif
3824
3825         return 0;
3826 }
3827
3828 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3829 {
3830         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3831
3832         return get_swappiness(memcg);
3833 }
3834
3835 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3836                                        u64 val)
3837 {
3838         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3839         struct mem_cgroup *parent;
3840
3841         if (val > 100)
3842                 return -EINVAL;
3843
3844         if (cgrp->parent == NULL)
3845                 return -EINVAL;
3846
3847         parent = mem_cgroup_from_cont(cgrp->parent);
3848
3849         cgroup_lock();
3850
3851         /* If under hierarchy, only empty-root can set this value */
3852         if ((parent->use_hierarchy) ||
3853             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3854                 cgroup_unlock();
3855                 return -EINVAL;
3856         }
3857
3858         memcg->swappiness = val;
3859
3860         cgroup_unlock();
3861
3862         return 0;
3863 }
3864
3865 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3866 {
3867         struct mem_cgroup_threshold_ary *t;
3868         u64 usage;
3869         int i;
3870
3871         rcu_read_lock();
3872         if (!swap)
3873                 t = rcu_dereference(memcg->thresholds.primary);
3874         else
3875                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3876
3877         if (!t)
3878                 goto unlock;
3879
3880         usage = mem_cgroup_usage(memcg, swap);
3881
3882         /*
3883          * current_threshold points to threshold just below usage.
3884          * If it's not true, a threshold was crossed after last
3885          * call of __mem_cgroup_threshold().
3886          */
3887         i = t->current_threshold;
3888
3889         /*
3890          * Iterate backward over array of thresholds starting from
3891          * current_threshold and check if a threshold is crossed.
3892          * If none of thresholds below usage is crossed, we read
3893          * only one element of the array here.
3894          */
3895         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3896                 eventfd_signal(t->entries[i].eventfd, 1);
3897
3898         /* i = current_threshold + 1 */
3899         i++;
3900
3901         /*
3902          * Iterate forward over array of thresholds starting from
3903          * current_threshold+1 and check if a threshold is crossed.
3904          * If none of thresholds above usage is crossed, we read
3905          * only one element of the array here.
3906          */
3907         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3908                 eventfd_signal(t->entries[i].eventfd, 1);
3909
3910         /* Update current_threshold */
3911         t->current_threshold = i - 1;
3912 unlock:
3913         rcu_read_unlock();
3914 }
3915
3916 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3917 {
3918         while (memcg) {
3919                 __mem_cgroup_threshold(memcg, false);
3920                 if (do_swap_account)
3921                         __mem_cgroup_threshold(memcg, true);
3922
3923                 memcg = parent_mem_cgroup(memcg);
3924         }
3925 }
3926
3927 static int compare_thresholds(const void *a, const void *b)
3928 {
3929         const struct mem_cgroup_threshold *_a = a;
3930         const struct mem_cgroup_threshold *_b = b;
3931
3932         return _a->threshold - _b->threshold;
3933 }
3934
3935 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3936 {
3937         struct mem_cgroup_eventfd_list *ev;
3938
3939         list_for_each_entry(ev, &mem->oom_notify, list)
3940                 eventfd_signal(ev->eventfd, 1);
3941         return 0;
3942 }
3943
3944 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3945 {
3946         struct mem_cgroup *iter;
3947
3948         for_each_mem_cgroup_tree(iter, mem)
3949                 mem_cgroup_oom_notify_cb(iter);
3950 }
3951
3952 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3953         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3954 {
3955         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3956         struct mem_cgroup_thresholds *thresholds;
3957         struct mem_cgroup_threshold_ary *new;
3958         int type = MEMFILE_TYPE(cft->private);
3959         u64 threshold, usage;
3960         int i, size, ret;
3961
3962         ret = res_counter_memparse_write_strategy(args, &threshold);
3963         if (ret)
3964                 return ret;
3965
3966         mutex_lock(&memcg->thresholds_lock);
3967
3968         if (type == _MEM)
3969                 thresholds = &memcg->thresholds;
3970         else if (type == _MEMSWAP)
3971                 thresholds = &memcg->memsw_thresholds;
3972         else
3973                 BUG();
3974
3975         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3976
3977         /* Check if a threshold crossed before adding a new one */
3978         if (thresholds->primary)
3979                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3980
3981         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3982
3983         /* Allocate memory for new array of thresholds */
3984         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3985                         GFP_KERNEL);
3986         if (!new) {
3987                 ret = -ENOMEM;
3988                 goto unlock;
3989         }
3990         new->size = size;
3991
3992         /* Copy thresholds (if any) to new array */
3993         if (thresholds->primary) {
3994                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3995                                 sizeof(struct mem_cgroup_threshold));
3996         }
3997
3998         /* Add new threshold */
3999         new->entries[size - 1].eventfd = eventfd;
4000         new->entries[size - 1].threshold = threshold;
4001
4002         /* Sort thresholds. Registering of new threshold isn't time-critical */
4003         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4004                         compare_thresholds, NULL);
4005
4006         /* Find current threshold */
4007         new->current_threshold = -1;
4008         for (i = 0; i < size; i++) {
4009                 if (new->entries[i].threshold < usage) {
4010                         /*
4011                          * new->current_threshold will not be used until
4012                          * rcu_assign_pointer(), so it's safe to increment
4013                          * it here.
4014                          */
4015                         ++new->current_threshold;
4016                 }
4017         }
4018
4019         /* Free old spare buffer and save old primary buffer as spare */
4020         kfree(thresholds->spare);
4021         thresholds->spare = thresholds->primary;
4022
4023         rcu_assign_pointer(thresholds->primary, new);
4024
4025         /* To be sure that nobody uses thresholds */
4026         synchronize_rcu();
4027
4028 unlock:
4029         mutex_unlock(&memcg->thresholds_lock);
4030
4031         return ret;
4032 }
4033
4034 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4035         struct cftype *cft, struct eventfd_ctx *eventfd)
4036 {
4037         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4038         struct mem_cgroup_thresholds *thresholds;
4039         struct mem_cgroup_threshold_ary *new;
4040         int type = MEMFILE_TYPE(cft->private);
4041         u64 usage;
4042         int i, j, size;
4043
4044         mutex_lock(&memcg->thresholds_lock);
4045         if (type == _MEM)
4046                 thresholds = &memcg->thresholds;
4047         else if (type == _MEMSWAP)
4048                 thresholds = &memcg->memsw_thresholds;
4049         else
4050                 BUG();
4051
4052         /*
4053          * Something went wrong if we trying to unregister a threshold
4054          * if we don't have thresholds
4055          */
4056         BUG_ON(!thresholds);
4057
4058         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4059
4060         /* Check if a threshold crossed before removing */
4061         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4062
4063         /* Calculate new number of threshold */
4064         size = 0;
4065         for (i = 0; i < thresholds->primary->size; i++) {
4066                 if (thresholds->primary->entries[i].eventfd != eventfd)
4067                         size++;
4068         }
4069
4070         new = thresholds->spare;
4071
4072         /* Set thresholds array to NULL if we don't have thresholds */
4073         if (!size) {
4074                 kfree(new);
4075                 new = NULL;
4076                 goto swap_buffers;
4077         }
4078
4079         new->size = size;
4080
4081         /* Copy thresholds and find current threshold */
4082         new->current_threshold = -1;
4083         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4084                 if (thresholds->primary->entries[i].eventfd == eventfd)
4085                         continue;
4086
4087                 new->entries[j] = thresholds->primary->entries[i];
4088                 if (new->entries[j].threshold < usage) {
4089                         /*
4090                          * new->current_threshold will not be used
4091                          * until rcu_assign_pointer(), so it's safe to increment
4092                          * it here.
4093                          */
4094                         ++new->current_threshold;
4095                 }
4096                 j++;
4097         }
4098
4099 swap_buffers:
4100         /* Swap primary and spare array */
4101         thresholds->spare = thresholds->primary;
4102         rcu_assign_pointer(thresholds->primary, new);
4103
4104         /* To be sure that nobody uses thresholds */
4105         synchronize_rcu();
4106
4107         mutex_unlock(&memcg->thresholds_lock);
4108 }
4109
4110 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4111         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4112 {
4113         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4114         struct mem_cgroup_eventfd_list *event;
4115         int type = MEMFILE_TYPE(cft->private);
4116
4117         BUG_ON(type != _OOM_TYPE);
4118         event = kmalloc(sizeof(*event), GFP_KERNEL);
4119         if (!event)
4120                 return -ENOMEM;
4121
4122         mutex_lock(&memcg_oom_mutex);
4123
4124         event->eventfd = eventfd;
4125         list_add(&event->list, &memcg->oom_notify);
4126
4127         /* already in OOM ? */
4128         if (atomic_read(&memcg->oom_lock))
4129                 eventfd_signal(eventfd, 1);
4130         mutex_unlock(&memcg_oom_mutex);
4131
4132         return 0;
4133 }
4134
4135 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4136         struct cftype *cft, struct eventfd_ctx *eventfd)
4137 {
4138         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4139         struct mem_cgroup_eventfd_list *ev, *tmp;
4140         int type = MEMFILE_TYPE(cft->private);
4141
4142         BUG_ON(type != _OOM_TYPE);
4143
4144         mutex_lock(&memcg_oom_mutex);
4145
4146         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4147                 if (ev->eventfd == eventfd) {
4148                         list_del(&ev->list);
4149                         kfree(ev);
4150                 }
4151         }
4152
4153         mutex_unlock(&memcg_oom_mutex);
4154 }
4155
4156 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4157         struct cftype *cft,  struct cgroup_map_cb *cb)
4158 {
4159         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4160
4161         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4162
4163         if (atomic_read(&mem->oom_lock))
4164                 cb->fill(cb, "under_oom", 1);
4165         else
4166                 cb->fill(cb, "under_oom", 0);
4167         return 0;
4168 }
4169
4170 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4171         struct cftype *cft, u64 val)
4172 {
4173         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4174         struct mem_cgroup *parent;
4175
4176         /* cannot set to root cgroup and only 0 and 1 are allowed */
4177         if (!cgrp->parent || !((val == 0) || (val == 1)))
4178                 return -EINVAL;
4179
4180         parent = mem_cgroup_from_cont(cgrp->parent);
4181
4182         cgroup_lock();
4183         /* oom-kill-disable is a flag for subhierarchy. */
4184         if ((parent->use_hierarchy) ||
4185             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4186                 cgroup_unlock();
4187                 return -EINVAL;
4188         }
4189         mem->oom_kill_disable = val;
4190         if (!val)
4191                 memcg_oom_recover(mem);
4192         cgroup_unlock();
4193         return 0;
4194 }
4195
4196 static struct cftype mem_cgroup_files[] = {
4197         {
4198                 .name = "usage_in_bytes",
4199                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4200                 .read_u64 = mem_cgroup_read,
4201                 .register_event = mem_cgroup_usage_register_event,
4202                 .unregister_event = mem_cgroup_usage_unregister_event,
4203         },
4204         {
4205                 .name = "max_usage_in_bytes",
4206                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4207                 .trigger = mem_cgroup_reset,
4208                 .read_u64 = mem_cgroup_read,
4209         },
4210         {
4211                 .name = "limit_in_bytes",
4212                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4213                 .write_string = mem_cgroup_write,
4214                 .read_u64 = mem_cgroup_read,
4215         },
4216         {
4217                 .name = "soft_limit_in_bytes",
4218                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4219                 .write_string = mem_cgroup_write,
4220                 .read_u64 = mem_cgroup_read,
4221         },
4222         {
4223                 .name = "failcnt",
4224                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4225                 .trigger = mem_cgroup_reset,
4226                 .read_u64 = mem_cgroup_read,
4227         },
4228         {
4229                 .name = "stat",
4230                 .read_map = mem_control_stat_show,
4231         },
4232         {
4233                 .name = "force_empty",
4234                 .trigger = mem_cgroup_force_empty_write,
4235         },
4236         {
4237                 .name = "use_hierarchy",
4238                 .write_u64 = mem_cgroup_hierarchy_write,
4239                 .read_u64 = mem_cgroup_hierarchy_read,
4240         },
4241         {
4242                 .name = "swappiness",
4243                 .read_u64 = mem_cgroup_swappiness_read,
4244                 .write_u64 = mem_cgroup_swappiness_write,
4245         },
4246         {
4247                 .name = "move_charge_at_immigrate",
4248                 .read_u64 = mem_cgroup_move_charge_read,
4249                 .write_u64 = mem_cgroup_move_charge_write,
4250         },
4251         {
4252                 .name = "oom_control",
4253                 .read_map = mem_cgroup_oom_control_read,
4254                 .write_u64 = mem_cgroup_oom_control_write,
4255                 .register_event = mem_cgroup_oom_register_event,
4256                 .unregister_event = mem_cgroup_oom_unregister_event,
4257                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4258         },
4259 };
4260
4261 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4262 static struct cftype memsw_cgroup_files[] = {
4263         {
4264                 .name = "memsw.usage_in_bytes",
4265                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4266                 .read_u64 = mem_cgroup_read,
4267                 .register_event = mem_cgroup_usage_register_event,
4268                 .unregister_event = mem_cgroup_usage_unregister_event,
4269         },
4270         {
4271                 .name = "memsw.max_usage_in_bytes",
4272                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4273                 .trigger = mem_cgroup_reset,
4274                 .read_u64 = mem_cgroup_read,
4275         },
4276         {
4277                 .name = "memsw.limit_in_bytes",
4278                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4279                 .write_string = mem_cgroup_write,
4280                 .read_u64 = mem_cgroup_read,
4281         },
4282         {
4283                 .name = "memsw.failcnt",
4284                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4285                 .trigger = mem_cgroup_reset,
4286                 .read_u64 = mem_cgroup_read,
4287         },
4288 };
4289
4290 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4291 {
4292         if (!do_swap_account)
4293                 return 0;
4294         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4295                                 ARRAY_SIZE(memsw_cgroup_files));
4296 };
4297 #else
4298 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4299 {
4300         return 0;
4301 }
4302 #endif
4303
4304 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4305 {
4306         struct mem_cgroup_per_node *pn;
4307         struct mem_cgroup_per_zone *mz;
4308         enum lru_list l;
4309         int zone, tmp = node;
4310         /*
4311          * This routine is called against possible nodes.
4312          * But it's BUG to call kmalloc() against offline node.
4313          *
4314          * TODO: this routine can waste much memory for nodes which will
4315          *       never be onlined. It's better to use memory hotplug callback
4316          *       function.
4317          */
4318         if (!node_state(node, N_NORMAL_MEMORY))
4319                 tmp = -1;
4320         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4321         if (!pn)
4322                 return 1;
4323
4324         mem->info.nodeinfo[node] = pn;
4325         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4326                 mz = &pn->zoneinfo[zone];
4327                 for_each_lru(l)
4328                         INIT_LIST_HEAD(&mz->lists[l]);
4329                 mz->usage_in_excess = 0;
4330                 mz->on_tree = false;
4331                 mz->mem = mem;
4332         }
4333         return 0;
4334 }
4335
4336 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4337 {
4338         kfree(mem->info.nodeinfo[node]);
4339 }
4340
4341 static struct mem_cgroup *mem_cgroup_alloc(void)
4342 {
4343         struct mem_cgroup *mem;
4344         int size = sizeof(struct mem_cgroup);
4345
4346         /* Can be very big if MAX_NUMNODES is very big */
4347         if (size < PAGE_SIZE)
4348                 mem = kzalloc(size, GFP_KERNEL);
4349         else
4350                 mem = vzalloc(size);
4351
4352         if (!mem)
4353                 return NULL;
4354
4355         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4356         if (!mem->stat)
4357                 goto out_free;
4358         spin_lock_init(&mem->pcp_counter_lock);
4359         return mem;
4360
4361 out_free:
4362         if (size < PAGE_SIZE)
4363                 kfree(mem);
4364         else
4365                 vfree(mem);
4366         return NULL;
4367 }
4368
4369 /*
4370  * At destroying mem_cgroup, references from swap_cgroup can remain.
4371  * (scanning all at force_empty is too costly...)
4372  *
4373  * Instead of clearing all references at force_empty, we remember
4374  * the number of reference from swap_cgroup and free mem_cgroup when
4375  * it goes down to 0.
4376  *
4377  * Removal of cgroup itself succeeds regardless of refs from swap.
4378  */
4379
4380 static void __mem_cgroup_free(struct mem_cgroup *mem)
4381 {
4382         int node;
4383
4384         mem_cgroup_remove_from_trees(mem);
4385         free_css_id(&mem_cgroup_subsys, &mem->css);
4386
4387         for_each_node_state(node, N_POSSIBLE)
4388                 free_mem_cgroup_per_zone_info(mem, node);
4389
4390         free_percpu(mem->stat);
4391         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4392                 kfree(mem);
4393         else
4394                 vfree(mem);
4395 }
4396
4397 static void mem_cgroup_get(struct mem_cgroup *mem)
4398 {
4399         atomic_inc(&mem->refcnt);
4400 }
4401
4402 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4403 {
4404         if (atomic_sub_and_test(count, &mem->refcnt)) {
4405                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4406                 __mem_cgroup_free(mem);
4407                 if (parent)
4408                         mem_cgroup_put(parent);
4409         }
4410 }
4411
4412 static void mem_cgroup_put(struct mem_cgroup *mem)
4413 {
4414         __mem_cgroup_put(mem, 1);
4415 }
4416
4417 /*
4418  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4419  */
4420 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4421 {
4422         if (!mem->res.parent)
4423                 return NULL;
4424         return mem_cgroup_from_res_counter(mem->res.parent, res);
4425 }
4426
4427 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4428 static void __init enable_swap_cgroup(void)
4429 {
4430         if (!mem_cgroup_disabled() && really_do_swap_account)
4431                 do_swap_account = 1;
4432 }
4433 #else
4434 static void __init enable_swap_cgroup(void)
4435 {
4436 }
4437 #endif
4438
4439 static int mem_cgroup_soft_limit_tree_init(void)
4440 {
4441         struct mem_cgroup_tree_per_node *rtpn;
4442         struct mem_cgroup_tree_per_zone *rtpz;
4443         int tmp, node, zone;
4444
4445         for_each_node_state(node, N_POSSIBLE) {
4446                 tmp = node;
4447                 if (!node_state(node, N_NORMAL_MEMORY))
4448                         tmp = -1;
4449                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4450                 if (!rtpn)
4451                         return 1;
4452
4453                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4454
4455                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4456                         rtpz = &rtpn->rb_tree_per_zone[zone];
4457                         rtpz->rb_root = RB_ROOT;
4458                         spin_lock_init(&rtpz->lock);
4459                 }
4460         }
4461         return 0;
4462 }
4463
4464 static struct cgroup_subsys_state * __ref
4465 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4466 {
4467         struct mem_cgroup *mem, *parent;
4468         long error = -ENOMEM;
4469         int node;
4470
4471         mem = mem_cgroup_alloc();
4472         if (!mem)
4473                 return ERR_PTR(error);
4474
4475         for_each_node_state(node, N_POSSIBLE)
4476                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4477                         goto free_out;
4478
4479         /* root ? */
4480         if (cont->parent == NULL) {
4481                 int cpu;
4482                 enable_swap_cgroup();
4483                 parent = NULL;
4484                 root_mem_cgroup = mem;
4485                 if (mem_cgroup_soft_limit_tree_init())
4486                         goto free_out;
4487                 for_each_possible_cpu(cpu) {
4488                         struct memcg_stock_pcp *stock =
4489                                                 &per_cpu(memcg_stock, cpu);
4490                         INIT_WORK(&stock->work, drain_local_stock);
4491                 }
4492                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4493         } else {
4494                 parent = mem_cgroup_from_cont(cont->parent);
4495                 mem->use_hierarchy = parent->use_hierarchy;
4496                 mem->oom_kill_disable = parent->oom_kill_disable;
4497         }
4498
4499         if (parent && parent->use_hierarchy) {
4500                 res_counter_init(&mem->res, &parent->res);
4501                 res_counter_init(&mem->memsw, &parent->memsw);
4502                 /*
4503                  * We increment refcnt of the parent to ensure that we can
4504                  * safely access it on res_counter_charge/uncharge.
4505                  * This refcnt will be decremented when freeing this
4506                  * mem_cgroup(see mem_cgroup_put).
4507                  */
4508                 mem_cgroup_get(parent);
4509         } else {
4510                 res_counter_init(&mem->res, NULL);
4511                 res_counter_init(&mem->memsw, NULL);
4512         }
4513         mem->last_scanned_child = 0;
4514         INIT_LIST_HEAD(&mem->oom_notify);
4515
4516         if (parent)
4517                 mem->swappiness = get_swappiness(parent);
4518         atomic_set(&mem->refcnt, 1);
4519         mem->move_charge_at_immigrate = 0;
4520         mutex_init(&mem->thresholds_lock);
4521         return &mem->css;
4522 free_out:
4523         __mem_cgroup_free(mem);
4524         root_mem_cgroup = NULL;
4525         return ERR_PTR(error);
4526 }
4527
4528 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4529                                         struct cgroup *cont)
4530 {
4531         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4532
4533         return mem_cgroup_force_empty(mem, false);
4534 }
4535
4536 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4537                                 struct cgroup *cont)
4538 {
4539         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4540
4541         mem_cgroup_put(mem);
4542 }
4543
4544 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4545                                 struct cgroup *cont)
4546 {
4547         int ret;
4548
4549         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4550                                 ARRAY_SIZE(mem_cgroup_files));
4551
4552         if (!ret)
4553                 ret = register_memsw_files(cont, ss);
4554         return ret;
4555 }
4556
4557 #ifdef CONFIG_MMU
4558 /* Handlers for move charge at task migration. */
4559 #define PRECHARGE_COUNT_AT_ONCE 256
4560 static int mem_cgroup_do_precharge(unsigned long count)
4561 {
4562         int ret = 0;
4563         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4564         struct mem_cgroup *mem = mc.to;
4565
4566         if (mem_cgroup_is_root(mem)) {
4567                 mc.precharge += count;
4568                 /* we don't need css_get for root */
4569                 return ret;
4570         }
4571         /* try to charge at once */
4572         if (count > 1) {
4573                 struct res_counter *dummy;
4574                 /*
4575                  * "mem" cannot be under rmdir() because we've already checked
4576                  * by cgroup_lock_live_cgroup() that it is not removed and we
4577                  * are still under the same cgroup_mutex. So we can postpone
4578                  * css_get().
4579                  */
4580                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4581                         goto one_by_one;
4582                 if (do_swap_account && res_counter_charge(&mem->memsw,
4583                                                 PAGE_SIZE * count, &dummy)) {
4584                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4585                         goto one_by_one;
4586                 }
4587                 mc.precharge += count;
4588                 return ret;
4589         }
4590 one_by_one:
4591         /* fall back to one by one charge */
4592         while (count--) {
4593                 if (signal_pending(current)) {
4594                         ret = -EINTR;
4595                         break;
4596                 }
4597                 if (!batch_count--) {
4598                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4599                         cond_resched();
4600                 }
4601                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4602                                               PAGE_SIZE);
4603                 if (ret || !mem)
4604                         /* mem_cgroup_clear_mc() will do uncharge later */
4605                         return -ENOMEM;
4606                 mc.precharge++;
4607         }
4608         return ret;
4609 }
4610
4611 /**
4612  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4613  * @vma: the vma the pte to be checked belongs
4614  * @addr: the address corresponding to the pte to be checked
4615  * @ptent: the pte to be checked
4616  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4617  *
4618  * Returns
4619  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4620  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4621  *     move charge. if @target is not NULL, the page is stored in target->page
4622  *     with extra refcnt got(Callers should handle it).
4623  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4624  *     target for charge migration. if @target is not NULL, the entry is stored
4625  *     in target->ent.
4626  *
4627  * Called with pte lock held.
4628  */
4629 union mc_target {
4630         struct page     *page;
4631         swp_entry_t     ent;
4632 };
4633
4634 enum mc_target_type {
4635         MC_TARGET_NONE, /* not used */
4636         MC_TARGET_PAGE,
4637         MC_TARGET_SWAP,
4638 };
4639
4640 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4641                                                 unsigned long addr, pte_t ptent)
4642 {
4643         struct page *page = vm_normal_page(vma, addr, ptent);
4644
4645         if (!page || !page_mapped(page))
4646                 return NULL;
4647         if (PageAnon(page)) {
4648                 /* we don't move shared anon */
4649                 if (!move_anon() || page_mapcount(page) > 2)
4650                         return NULL;
4651         } else if (!move_file())
4652                 /* we ignore mapcount for file pages */
4653                 return NULL;
4654         if (!get_page_unless_zero(page))
4655                 return NULL;
4656
4657         return page;
4658 }
4659
4660 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4661                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4662 {
4663         int usage_count;
4664         struct page *page = NULL;
4665         swp_entry_t ent = pte_to_swp_entry(ptent);
4666
4667         if (!move_anon() || non_swap_entry(ent))
4668                 return NULL;
4669         usage_count = mem_cgroup_count_swap_user(ent, &page);
4670         if (usage_count > 1) { /* we don't move shared anon */
4671                 if (page)
4672                         put_page(page);
4673                 return NULL;
4674         }
4675         if (do_swap_account)
4676                 entry->val = ent.val;
4677
4678         return page;
4679 }
4680
4681 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4682                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4683 {
4684         struct page *page = NULL;
4685         struct inode *inode;
4686         struct address_space *mapping;
4687         pgoff_t pgoff;
4688
4689         if (!vma->vm_file) /* anonymous vma */
4690                 return NULL;
4691         if (!move_file())
4692                 return NULL;
4693
4694         inode = vma->vm_file->f_path.dentry->d_inode;
4695         mapping = vma->vm_file->f_mapping;
4696         if (pte_none(ptent))
4697                 pgoff = linear_page_index(vma, addr);
4698         else /* pte_file(ptent) is true */
4699                 pgoff = pte_to_pgoff(ptent);
4700
4701         /* page is moved even if it's not RSS of this task(page-faulted). */
4702         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4703                 page = find_get_page(mapping, pgoff);
4704         } else { /* shmem/tmpfs file. we should take account of swap too. */
4705                 swp_entry_t ent;
4706                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4707                 if (do_swap_account)
4708                         entry->val = ent.val;
4709         }
4710
4711         return page;
4712 }
4713
4714 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4715                 unsigned long addr, pte_t ptent, union mc_target *target)
4716 {
4717         struct page *page = NULL;
4718         struct page_cgroup *pc;
4719         int ret = 0;
4720         swp_entry_t ent = { .val = 0 };
4721
4722         if (pte_present(ptent))
4723                 page = mc_handle_present_pte(vma, addr, ptent);
4724         else if (is_swap_pte(ptent))
4725                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4726         else if (pte_none(ptent) || pte_file(ptent))
4727                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4728
4729         if (!page && !ent.val)
4730                 return 0;
4731         if (page) {
4732                 pc = lookup_page_cgroup(page);
4733                 /*
4734                  * Do only loose check w/o page_cgroup lock.
4735                  * mem_cgroup_move_account() checks the pc is valid or not under
4736                  * the lock.
4737                  */
4738                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4739                         ret = MC_TARGET_PAGE;
4740                         if (target)
4741                                 target->page = page;
4742                 }
4743                 if (!ret || !target)
4744                         put_page(page);
4745         }
4746         /* There is a swap entry and a page doesn't exist or isn't charged */
4747         if (ent.val && !ret &&
4748                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4749                 ret = MC_TARGET_SWAP;
4750                 if (target)
4751                         target->ent = ent;
4752         }
4753         return ret;
4754 }
4755
4756 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4757                                         unsigned long addr, unsigned long end,
4758                                         struct mm_walk *walk)
4759 {
4760         struct vm_area_struct *vma = walk->private;
4761         pte_t *pte;
4762         spinlock_t *ptl;
4763
4764         split_huge_page_pmd(walk->mm, pmd);
4765
4766         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4767         for (; addr != end; pte++, addr += PAGE_SIZE)
4768                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4769                         mc.precharge++; /* increment precharge temporarily */
4770         pte_unmap_unlock(pte - 1, ptl);
4771         cond_resched();
4772
4773         return 0;
4774 }
4775
4776 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4777 {
4778         unsigned long precharge;
4779         struct vm_area_struct *vma;
4780
4781         down_read(&mm->mmap_sem);
4782         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4783                 struct mm_walk mem_cgroup_count_precharge_walk = {
4784                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4785                         .mm = mm,
4786                         .private = vma,
4787                 };
4788                 if (is_vm_hugetlb_page(vma))
4789                         continue;
4790                 walk_page_range(vma->vm_start, vma->vm_end,
4791                                         &mem_cgroup_count_precharge_walk);
4792         }
4793         up_read(&mm->mmap_sem);
4794
4795         precharge = mc.precharge;
4796         mc.precharge = 0;
4797
4798         return precharge;
4799 }
4800
4801 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4802 {
4803         unsigned long precharge = mem_cgroup_count_precharge(mm);
4804
4805         VM_BUG_ON(mc.moving_task);
4806         mc.moving_task = current;
4807         return mem_cgroup_do_precharge(precharge);
4808 }
4809
4810 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4811 static void __mem_cgroup_clear_mc(void)
4812 {
4813         struct mem_cgroup *from = mc.from;
4814         struct mem_cgroup *to = mc.to;
4815
4816         /* we must uncharge all the leftover precharges from mc.to */
4817         if (mc.precharge) {
4818                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4819                 mc.precharge = 0;
4820         }
4821         /*
4822          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4823          * we must uncharge here.
4824          */
4825         if (mc.moved_charge) {
4826                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4827                 mc.moved_charge = 0;
4828         }
4829         /* we must fixup refcnts and charges */
4830         if (mc.moved_swap) {
4831                 /* uncharge swap account from the old cgroup */
4832                 if (!mem_cgroup_is_root(mc.from))
4833                         res_counter_uncharge(&mc.from->memsw,
4834                                                 PAGE_SIZE * mc.moved_swap);
4835                 __mem_cgroup_put(mc.from, mc.moved_swap);
4836
4837                 if (!mem_cgroup_is_root(mc.to)) {
4838                         /*
4839                          * we charged both to->res and to->memsw, so we should
4840                          * uncharge to->res.
4841                          */
4842                         res_counter_uncharge(&mc.to->res,
4843                                                 PAGE_SIZE * mc.moved_swap);
4844                 }
4845                 /* we've already done mem_cgroup_get(mc.to) */
4846                 mc.moved_swap = 0;
4847         }
4848         memcg_oom_recover(from);
4849         memcg_oom_recover(to);
4850         wake_up_all(&mc.waitq);
4851 }
4852
4853 static void mem_cgroup_clear_mc(void)
4854 {
4855         struct mem_cgroup *from = mc.from;
4856
4857         /*
4858          * we must clear moving_task before waking up waiters at the end of
4859          * task migration.
4860          */
4861         mc.moving_task = NULL;
4862         __mem_cgroup_clear_mc();
4863         spin_lock(&mc.lock);
4864         mc.from = NULL;
4865         mc.to = NULL;
4866         spin_unlock(&mc.lock);
4867         mem_cgroup_end_move(from);
4868 }
4869
4870 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4871                                 struct cgroup *cgroup,
4872                                 struct task_struct *p,
4873                                 bool threadgroup)
4874 {
4875         int ret = 0;
4876         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4877
4878         if (mem->move_charge_at_immigrate) {
4879                 struct mm_struct *mm;
4880                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4881
4882                 VM_BUG_ON(from == mem);
4883
4884                 mm = get_task_mm(p);
4885                 if (!mm)
4886                         return 0;
4887                 /* We move charges only when we move a owner of the mm */
4888                 if (mm->owner == p) {
4889                         VM_BUG_ON(mc.from);
4890                         VM_BUG_ON(mc.to);
4891                         VM_BUG_ON(mc.precharge);
4892                         VM_BUG_ON(mc.moved_charge);
4893                         VM_BUG_ON(mc.moved_swap);
4894                         mem_cgroup_start_move(from);
4895                         spin_lock(&mc.lock);
4896                         mc.from = from;
4897                         mc.to = mem;
4898                         spin_unlock(&mc.lock);
4899                         /* We set mc.moving_task later */
4900
4901                         ret = mem_cgroup_precharge_mc(mm);
4902                         if (ret)
4903                                 mem_cgroup_clear_mc();
4904                 }
4905                 mmput(mm);
4906         }
4907         return ret;
4908 }
4909
4910 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4911                                 struct cgroup *cgroup,
4912                                 struct task_struct *p,
4913                                 bool threadgroup)
4914 {
4915         mem_cgroup_clear_mc();
4916 }
4917
4918 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4919                                 unsigned long addr, unsigned long end,
4920                                 struct mm_walk *walk)
4921 {
4922         int ret = 0;
4923         struct vm_area_struct *vma = walk->private;
4924         pte_t *pte;
4925         spinlock_t *ptl;
4926
4927         split_huge_page_pmd(walk->mm, pmd);
4928 retry:
4929         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4930         for (; addr != end; addr += PAGE_SIZE) {
4931                 pte_t ptent = *(pte++);
4932                 union mc_target target;
4933                 int type;
4934                 struct page *page;
4935                 struct page_cgroup *pc;
4936                 swp_entry_t ent;
4937
4938                 if (!mc.precharge)
4939                         break;
4940
4941                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4942                 switch (type) {
4943                 case MC_TARGET_PAGE:
4944                         page = target.page;
4945                         if (isolate_lru_page(page))
4946                                 goto put;
4947                         pc = lookup_page_cgroup(page);
4948                         if (!mem_cgroup_move_account(page, pc,
4949                                         mc.from, mc.to, false, PAGE_SIZE)) {
4950                                 mc.precharge--;
4951                                 /* we uncharge from mc.from later. */
4952                                 mc.moved_charge++;
4953                         }
4954                         putback_lru_page(page);
4955 put:                    /* is_target_pte_for_mc() gets the page */
4956                         put_page(page);
4957                         break;
4958                 case MC_TARGET_SWAP:
4959                         ent = target.ent;
4960                         if (!mem_cgroup_move_swap_account(ent,
4961                                                 mc.from, mc.to, false)) {
4962                                 mc.precharge--;
4963                                 /* we fixup refcnts and charges later. */
4964                                 mc.moved_swap++;
4965                         }
4966                         break;
4967                 default:
4968                         break;
4969                 }
4970         }
4971         pte_unmap_unlock(pte - 1, ptl);
4972         cond_resched();
4973
4974         if (addr != end) {
4975                 /*
4976                  * We have consumed all precharges we got in can_attach().
4977                  * We try charge one by one, but don't do any additional
4978                  * charges to mc.to if we have failed in charge once in attach()
4979                  * phase.
4980                  */
4981                 ret = mem_cgroup_do_precharge(1);
4982                 if (!ret)
4983                         goto retry;
4984         }
4985
4986         return ret;
4987 }
4988
4989 static void mem_cgroup_move_charge(struct mm_struct *mm)
4990 {
4991         struct vm_area_struct *vma;
4992
4993         lru_add_drain_all();
4994 retry:
4995         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4996                 /*
4997                  * Someone who are holding the mmap_sem might be waiting in
4998                  * waitq. So we cancel all extra charges, wake up all waiters,
4999                  * and retry. Because we cancel precharges, we might not be able
5000                  * to move enough charges, but moving charge is a best-effort
5001                  * feature anyway, so it wouldn't be a big problem.
5002                  */
5003                 __mem_cgroup_clear_mc();
5004                 cond_resched();
5005                 goto retry;
5006         }
5007         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5008                 int ret;
5009                 struct mm_walk mem_cgroup_move_charge_walk = {
5010                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5011                         .mm = mm,
5012                         .private = vma,
5013                 };
5014                 if (is_vm_hugetlb_page(vma))
5015                         continue;
5016                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5017                                                 &mem_cgroup_move_charge_walk);
5018                 if (ret)
5019                         /*
5020                          * means we have consumed all precharges and failed in
5021                          * doing additional charge. Just abandon here.
5022                          */
5023                         break;
5024         }
5025         up_read(&mm->mmap_sem);
5026 }
5027
5028 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5029                                 struct cgroup *cont,
5030                                 struct cgroup *old_cont,
5031                                 struct task_struct *p,
5032                                 bool threadgroup)
5033 {
5034         struct mm_struct *mm;
5035
5036         if (!mc.to)
5037                 /* no need to move charge */
5038                 return;
5039
5040         mm = get_task_mm(p);
5041         if (mm) {
5042                 mem_cgroup_move_charge(mm);
5043                 mmput(mm);
5044         }
5045         mem_cgroup_clear_mc();
5046 }
5047 #else   /* !CONFIG_MMU */
5048 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5049                                 struct cgroup *cgroup,
5050                                 struct task_struct *p,
5051                                 bool threadgroup)
5052 {
5053         return 0;
5054 }
5055 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5056                                 struct cgroup *cgroup,
5057                                 struct task_struct *p,
5058                                 bool threadgroup)
5059 {
5060 }
5061 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5062                                 struct cgroup *cont,
5063                                 struct cgroup *old_cont,
5064                                 struct task_struct *p,
5065                                 bool threadgroup)
5066 {
5067 }
5068 #endif
5069
5070 struct cgroup_subsys mem_cgroup_subsys = {
5071         .name = "memory",
5072         .subsys_id = mem_cgroup_subsys_id,
5073         .create = mem_cgroup_create,
5074         .pre_destroy = mem_cgroup_pre_destroy,
5075         .destroy = mem_cgroup_destroy,
5076         .populate = mem_cgroup_populate,
5077         .can_attach = mem_cgroup_can_attach,
5078         .cancel_attach = mem_cgroup_cancel_attach,
5079         .attach = mem_cgroup_move_task,
5080         .early_init = 0,
5081         .use_id = 1,
5082 };
5083
5084 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5085 static int __init enable_swap_account(char *s)
5086 {
5087         /* consider enabled if no parameter or 1 is given */
5088         if (!(*s) || !strcmp(s, "=1"))
5089                 really_do_swap_account = 1;
5090         else if (!strcmp(s, "=0"))
5091                 really_do_swap_account = 0;
5092         return 1;
5093 }
5094 __setup("swapaccount", enable_swap_account);
5095
5096 static int __init disable_swap_account(char *s)
5097 {
5098         printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5099         enable_swap_account("=0");
5100         return 1;
5101 }
5102 __setup("noswapaccount", disable_swap_account);
5103 #endif