RISCV: configs: tizen_visionfive2: Enable USB_CONFIGFS_ACM
[platform/kernel/linux-starfive.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112
113 struct mem_cgroup_tree_per_node {
114         struct rb_root rb_root;
115         struct rb_node *rb_rightmost;
116         spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127         struct list_head list;
128         struct eventfd_ctx *eventfd;
129 };
130
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135         /*
136          * memcg which the event belongs to.
137          */
138         struct mem_cgroup *memcg;
139         /*
140          * eventfd to signal userspace about the event.
141          */
142         struct eventfd_ctx *eventfd;
143         /*
144          * Each of these stored in a list by the cgroup.
145          */
146         struct list_head list;
147         /*
148          * register_event() callback will be used to add new userspace
149          * waiter for changes related to this event.  Use eventfd_signal()
150          * on eventfd to send notification to userspace.
151          */
152         int (*register_event)(struct mem_cgroup *memcg,
153                               struct eventfd_ctx *eventfd, const char *args);
154         /*
155          * unregister_event() callback will be called when userspace closes
156          * the eventfd or on cgroup removing.  This callback must be set,
157          * if you want provide notification functionality.
158          */
159         void (*unregister_event)(struct mem_cgroup *memcg,
160                                  struct eventfd_ctx *eventfd);
161         /*
162          * All fields below needed to unregister event when
163          * userspace closes eventfd.
164          */
165         poll_table pt;
166         wait_queue_head_t *wqh;
167         wait_queue_entry_t wait;
168         struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON       0x1U
179 #define MOVE_FILE       0x2U
180 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184         spinlock_t        lock; /* for from, to */
185         struct mm_struct  *mm;
186         struct mem_cgroup *from;
187         struct mem_cgroup *to;
188         unsigned long flags;
189         unsigned long precharge;
190         unsigned long moved_charge;
191         unsigned long moved_swap;
192         struct task_struct *moving_task;        /* a task moving charges */
193         wait_queue_head_t waitq;                /* a waitq for other context */
194 } mc = {
195         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208         _MEM,
209         _MEMSWAP,
210         _KMEM,
211         _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
217
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)            \
224         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
225              iter != NULL;                              \
226              iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter)                       \
229         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool task_is_dying(void)
234 {
235         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236                 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242         if (!memcg)
243                 memcg = root_mem_cgroup;
244         return &memcg->vmpressure;
245 }
246
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249         return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
255 bool mem_cgroup_kmem_disabled(void)
256 {
257         return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261                                       unsigned int nr_pages);
262
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266         unsigned int nr_bytes;
267         unsigned int nr_pages;
268         unsigned long flags;
269
270         /*
271          * At this point all allocated objects are freed, and
272          * objcg->nr_charged_bytes can't have an arbitrary byte value.
273          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274          *
275          * The following sequence can lead to it:
276          * 1) CPU0: objcg == stock->cached_objcg
277          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278          *          PAGE_SIZE bytes are charged
279          * 3) CPU1: a process from another memcg is allocating something,
280          *          the stock if flushed,
281          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282          * 5) CPU0: we do release this object,
283          *          92 bytes are added to stock->nr_bytes
284          * 6) CPU0: stock is flushed,
285          *          92 bytes are added to objcg->nr_charged_bytes
286          *
287          * In the result, nr_charged_bytes == PAGE_SIZE.
288          * This page will be uncharged in obj_cgroup_release().
289          */
290         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292         nr_pages = nr_bytes >> PAGE_SHIFT;
293
294         if (nr_pages)
295                 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297         spin_lock_irqsave(&objcg_lock, flags);
298         list_del(&objcg->list);
299         spin_unlock_irqrestore(&objcg_lock, flags);
300
301         percpu_ref_exit(ref);
302         kfree_rcu(objcg, rcu);
303 }
304
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307         struct obj_cgroup *objcg;
308         int ret;
309
310         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311         if (!objcg)
312                 return NULL;
313
314         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315                               GFP_KERNEL);
316         if (ret) {
317                 kfree(objcg);
318                 return NULL;
319         }
320         INIT_LIST_HEAD(&objcg->list);
321         return objcg;
322 }
323
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325                                   struct mem_cgroup *parent)
326 {
327         struct obj_cgroup *objcg, *iter;
328
329         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331         spin_lock_irq(&objcg_lock);
332
333         /* 1) Ready to reparent active objcg. */
334         list_add(&objcg->list, &memcg->objcg_list);
335         /* 2) Reparent active objcg and already reparented objcgs to parent. */
336         list_for_each_entry(iter, &memcg->objcg_list, list)
337                 WRITE_ONCE(iter->memcg, parent);
338         /* 3) Move already reparented objcgs to the parent's list */
339         list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341         spin_unlock_irq(&objcg_lock);
342
343         percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372         struct mem_cgroup *memcg = folio_memcg(folio);
373
374         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375                 memcg = root_mem_cgroup;
376
377         return &memcg->css;
378 }
379
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395         struct mem_cgroup *memcg;
396         unsigned long ino = 0;
397
398         rcu_read_lock();
399         /* page_folio() is racy here, but the entire function is racy anyway */
400         memcg = folio_memcg_check(page_folio(page));
401
402         while (memcg && !(memcg->css.flags & CSS_ONLINE))
403                 memcg = parent_mem_cgroup(memcg);
404         if (memcg)
405                 ino = cgroup_ino(memcg->css.cgroup);
406         rcu_read_unlock();
407         return ino;
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411                                          struct mem_cgroup_tree_per_node *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_node *mz_node;
417         bool rightmost = true;
418
419         if (mz->on_tree)
420                 return;
421
422         mz->usage_in_excess = new_usage_in_excess;
423         if (!mz->usage_in_excess)
424                 return;
425         while (*p) {
426                 parent = *p;
427                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428                                         tree_node);
429                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430                         p = &(*p)->rb_left;
431                         rightmost = false;
432                 } else {
433                         p = &(*p)->rb_right;
434                 }
435         }
436
437         if (rightmost)
438                 mctz->rb_rightmost = &mz->tree_node;
439
440         rb_link_node(&mz->tree_node, parent, p);
441         rb_insert_color(&mz->tree_node, &mctz->rb_root);
442         mz->on_tree = true;
443 }
444
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446                                          struct mem_cgroup_tree_per_node *mctz)
447 {
448         if (!mz->on_tree)
449                 return;
450
451         if (&mz->tree_node == mctz->rb_rightmost)
452                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454         rb_erase(&mz->tree_node, &mctz->rb_root);
455         mz->on_tree = false;
456 }
457
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459                                        struct mem_cgroup_tree_per_node *mctz)
460 {
461         unsigned long flags;
462
463         spin_lock_irqsave(&mctz->lock, flags);
464         __mem_cgroup_remove_exceeded(mz, mctz);
465         spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470         unsigned long nr_pages = page_counter_read(&memcg->memory);
471         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472         unsigned long excess = 0;
473
474         if (nr_pages > soft_limit)
475                 excess = nr_pages - soft_limit;
476
477         return excess;
478 }
479
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482         unsigned long excess;
483         struct mem_cgroup_per_node *mz;
484         struct mem_cgroup_tree_per_node *mctz;
485
486         if (lru_gen_enabled()) {
487                 if (soft_limit_excess(memcg))
488                         lru_gen_soft_reclaim(memcg, nid);
489                 return;
490         }
491
492         mctz = soft_limit_tree.rb_tree_per_node[nid];
493         if (!mctz)
494                 return;
495         /*
496          * Necessary to update all ancestors when hierarchy is used.
497          * because their event counter is not touched.
498          */
499         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500                 mz = memcg->nodeinfo[nid];
501                 excess = soft_limit_excess(memcg);
502                 /*
503                  * We have to update the tree if mz is on RB-tree or
504                  * mem is over its softlimit.
505                  */
506                 if (excess || mz->on_tree) {
507                         unsigned long flags;
508
509                         spin_lock_irqsave(&mctz->lock, flags);
510                         /* if on-tree, remove it */
511                         if (mz->on_tree)
512                                 __mem_cgroup_remove_exceeded(mz, mctz);
513                         /*
514                          * Insert again. mz->usage_in_excess will be updated.
515                          * If excess is 0, no tree ops.
516                          */
517                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
518                         spin_unlock_irqrestore(&mctz->lock, flags);
519                 }
520         }
521 }
522
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525         struct mem_cgroup_tree_per_node *mctz;
526         struct mem_cgroup_per_node *mz;
527         int nid;
528
529         for_each_node(nid) {
530                 mz = memcg->nodeinfo[nid];
531                 mctz = soft_limit_tree.rb_tree_per_node[nid];
532                 if (mctz)
533                         mem_cgroup_remove_exceeded(mz, mctz);
534         }
535 }
536
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540         struct mem_cgroup_per_node *mz;
541
542 retry:
543         mz = NULL;
544         if (!mctz->rb_rightmost)
545                 goto done;              /* Nothing to reclaim from */
546
547         mz = rb_entry(mctz->rb_rightmost,
548                       struct mem_cgroup_per_node, tree_node);
549         /*
550          * Remove the node now but someone else can add it back,
551          * we will to add it back at the end of reclaim to its correct
552          * position in the tree.
553          */
554         __mem_cgroup_remove_exceeded(mz, mctz);
555         if (!soft_limit_excess(mz->memcg) ||
556             !css_tryget(&mz->memcg->css))
557                 goto retry;
558 done:
559         return mz;
560 }
561
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565         struct mem_cgroup_per_node *mz;
566
567         spin_lock_irq(&mctz->lock);
568         mz = __mem_cgroup_largest_soft_limit_node(mctz);
569         spin_unlock_irq(&mctz->lock);
570         return mz;
571 }
572
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605         preempt_disable_nested();
606         VM_WARN_ON_IRQS_ENABLED();
607 }
608
609 static void __memcg_stats_lock(void)
610 {
611         preempt_disable_nested();
612 }
613
614 static void memcg_stats_unlock(void)
615 {
616         preempt_enable_nested();
617 }
618
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621         unsigned int x;
622
623         if (!val)
624                 return;
625
626         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628         x = __this_cpu_add_return(stats_updates, abs(val));
629         if (x > MEMCG_CHARGE_BATCH) {
630                 /*
631                  * If stats_flush_threshold exceeds the threshold
632                  * (>num_online_cpus()), cgroup stats update will be triggered
633                  * in __mem_cgroup_flush_stats(). Increasing this var further
634                  * is redundant and simply adds overhead in atomic update.
635                  */
636                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638                 __this_cpu_write(stats_updates, 0);
639         }
640 }
641
642 static void do_flush_stats(void)
643 {
644         /*
645          * We always flush the entire tree, so concurrent flushers can just
646          * skip. This avoids a thundering herd problem on the rstat global lock
647          * from memcg flushers (e.g. reclaim, refault, etc).
648          */
649         if (atomic_read(&stats_flush_ongoing) ||
650             atomic_xchg(&stats_flush_ongoing, 1))
651                 return;
652
653         WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655         cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657         atomic_set(&stats_flush_threshold, 0);
658         atomic_set(&stats_flush_ongoing, 0);
659 }
660
661 void mem_cgroup_flush_stats(void)
662 {
663         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664                 do_flush_stats();
665 }
666
667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669         if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670                 mem_cgroup_flush_stats();
671 }
672
673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675         /*
676          * Always flush here so that flushing in latency-sensitive paths is
677          * as cheap as possible.
678          */
679         do_flush_stats();
680         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685         PGPGIN,
686         PGPGOUT,
687         PGSCAN_KSWAPD,
688         PGSCAN_DIRECT,
689         PGSCAN_KHUGEPAGED,
690         PGSTEAL_KSWAPD,
691         PGSTEAL_DIRECT,
692         PGSTEAL_KHUGEPAGED,
693         PGFAULT,
694         PGMAJFAULT,
695         PGREFILL,
696         PGACTIVATE,
697         PGDEACTIVATE,
698         PGLAZYFREE,
699         PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701         ZSWPIN,
702         ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705         THP_FAULT_ALLOC,
706         THP_COLLAPSE_ALLOC,
707 #endif
708 };
709
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713 static void init_memcg_events(void)
714 {
715         int i;
716
717         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720
721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723         return mem_cgroup_events_index[idx] - 1;
724 }
725
726 struct memcg_vmstats_percpu {
727         /* Local (CPU and cgroup) page state & events */
728         long                    state[MEMCG_NR_STAT];
729         unsigned long           events[NR_MEMCG_EVENTS];
730
731         /* Delta calculation for lockless upward propagation */
732         long                    state_prev[MEMCG_NR_STAT];
733         unsigned long           events_prev[NR_MEMCG_EVENTS];
734
735         /* Cgroup1: threshold notifications & softlimit tree updates */
736         unsigned long           nr_page_events;
737         unsigned long           targets[MEM_CGROUP_NTARGETS];
738 };
739
740 struct memcg_vmstats {
741         /* Aggregated (CPU and subtree) page state & events */
742         long                    state[MEMCG_NR_STAT];
743         unsigned long           events[NR_MEMCG_EVENTS];
744
745         /* Non-hierarchical (CPU aggregated) page state & events */
746         long                    state_local[MEMCG_NR_STAT];
747         unsigned long           events_local[NR_MEMCG_EVENTS];
748
749         /* Pending child counts during tree propagation */
750         long                    state_pending[MEMCG_NR_STAT];
751         unsigned long           events_pending[NR_MEMCG_EVENTS];
752 };
753
754 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
755 {
756         long x = READ_ONCE(memcg->vmstats->state[idx]);
757 #ifdef CONFIG_SMP
758         if (x < 0)
759                 x = 0;
760 #endif
761         return x;
762 }
763
764 /**
765  * __mod_memcg_state - update cgroup memory statistics
766  * @memcg: the memory cgroup
767  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
768  * @val: delta to add to the counter, can be negative
769  */
770 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
771 {
772         if (mem_cgroup_disabled())
773                 return;
774
775         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
776         memcg_rstat_updated(memcg, val);
777 }
778
779 /* idx can be of type enum memcg_stat_item or node_stat_item. */
780 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
781 {
782         long x = READ_ONCE(memcg->vmstats->state_local[idx]);
783
784 #ifdef CONFIG_SMP
785         if (x < 0)
786                 x = 0;
787 #endif
788         return x;
789 }
790
791 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
792                               int val)
793 {
794         struct mem_cgroup_per_node *pn;
795         struct mem_cgroup *memcg;
796
797         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
798         memcg = pn->memcg;
799
800         /*
801          * The caller from rmap relay on disabled preemption becase they never
802          * update their counter from in-interrupt context. For these two
803          * counters we check that the update is never performed from an
804          * interrupt context while other caller need to have disabled interrupt.
805          */
806         __memcg_stats_lock();
807         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
808                 switch (idx) {
809                 case NR_ANON_MAPPED:
810                 case NR_FILE_MAPPED:
811                 case NR_ANON_THPS:
812                 case NR_SHMEM_PMDMAPPED:
813                 case NR_FILE_PMDMAPPED:
814                         WARN_ON_ONCE(!in_task());
815                         break;
816                 default:
817                         VM_WARN_ON_IRQS_ENABLED();
818                 }
819         }
820
821         /* Update memcg */
822         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
823
824         /* Update lruvec */
825         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
826
827         memcg_rstat_updated(memcg, val);
828         memcg_stats_unlock();
829 }
830
831 /**
832  * __mod_lruvec_state - update lruvec memory statistics
833  * @lruvec: the lruvec
834  * @idx: the stat item
835  * @val: delta to add to the counter, can be negative
836  *
837  * The lruvec is the intersection of the NUMA node and a cgroup. This
838  * function updates the all three counters that are affected by a
839  * change of state at this level: per-node, per-cgroup, per-lruvec.
840  */
841 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842                         int val)
843 {
844         /* Update node */
845         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846
847         /* Update memcg and lruvec */
848         if (!mem_cgroup_disabled())
849                 __mod_memcg_lruvec_state(lruvec, idx, val);
850 }
851
852 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
853                              int val)
854 {
855         struct page *head = compound_head(page); /* rmap on tail pages */
856         struct mem_cgroup *memcg;
857         pg_data_t *pgdat = page_pgdat(page);
858         struct lruvec *lruvec;
859
860         rcu_read_lock();
861         memcg = page_memcg(head);
862         /* Untracked pages have no memcg, no lruvec. Update only the node */
863         if (!memcg) {
864                 rcu_read_unlock();
865                 __mod_node_page_state(pgdat, idx, val);
866                 return;
867         }
868
869         lruvec = mem_cgroup_lruvec(memcg, pgdat);
870         __mod_lruvec_state(lruvec, idx, val);
871         rcu_read_unlock();
872 }
873 EXPORT_SYMBOL(__mod_lruvec_page_state);
874
875 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
876 {
877         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878         struct mem_cgroup *memcg;
879         struct lruvec *lruvec;
880
881         rcu_read_lock();
882         memcg = mem_cgroup_from_slab_obj(p);
883
884         /*
885          * Untracked pages have no memcg, no lruvec. Update only the
886          * node. If we reparent the slab objects to the root memcg,
887          * when we free the slab object, we need to update the per-memcg
888          * vmstats to keep it correct for the root memcg.
889          */
890         if (!memcg) {
891                 __mod_node_page_state(pgdat, idx, val);
892         } else {
893                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
894                 __mod_lruvec_state(lruvec, idx, val);
895         }
896         rcu_read_unlock();
897 }
898
899 /**
900  * __count_memcg_events - account VM events in a cgroup
901  * @memcg: the memory cgroup
902  * @idx: the event item
903  * @count: the number of events that occurred
904  */
905 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
906                           unsigned long count)
907 {
908         int index = memcg_events_index(idx);
909
910         if (mem_cgroup_disabled() || index < 0)
911                 return;
912
913         memcg_stats_lock();
914         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
915         memcg_rstat_updated(memcg, count);
916         memcg_stats_unlock();
917 }
918
919 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
920 {
921         int index = memcg_events_index(event);
922
923         if (index < 0)
924                 return 0;
925         return READ_ONCE(memcg->vmstats->events[index]);
926 }
927
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930         int index = memcg_events_index(event);
931
932         if (index < 0)
933                 return 0;
934
935         return READ_ONCE(memcg->vmstats->events_local[index]);
936 }
937
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939                                          int nr_pages)
940 {
941         /* pagein of a big page is an event. So, ignore page size */
942         if (nr_pages > 0)
943                 __count_memcg_events(memcg, PGPGIN, 1);
944         else {
945                 __count_memcg_events(memcg, PGPGOUT, 1);
946                 nr_pages = -nr_pages; /* for event */
947         }
948
949         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
950 }
951
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953                                        enum mem_cgroup_events_target target)
954 {
955         unsigned long val, next;
956
957         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
958         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
959         /* from time_after() in jiffies.h */
960         if ((long)(next - val) < 0) {
961                 switch (target) {
962                 case MEM_CGROUP_TARGET_THRESH:
963                         next = val + THRESHOLDS_EVENTS_TARGET;
964                         break;
965                 case MEM_CGROUP_TARGET_SOFTLIMIT:
966                         next = val + SOFTLIMIT_EVENTS_TARGET;
967                         break;
968                 default:
969                         break;
970                 }
971                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
972                 return true;
973         }
974         return false;
975 }
976
977 /*
978  * Check events in order.
979  *
980  */
981 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
982 {
983         if (IS_ENABLED(CONFIG_PREEMPT_RT))
984                 return;
985
986         /* threshold event is triggered in finer grain than soft limit */
987         if (unlikely(mem_cgroup_event_ratelimit(memcg,
988                                                 MEM_CGROUP_TARGET_THRESH))) {
989                 bool do_softlimit;
990
991                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
992                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
993                 mem_cgroup_threshold(memcg);
994                 if (unlikely(do_softlimit))
995                         mem_cgroup_update_tree(memcg, nid);
996         }
997 }
998
999 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000 {
1001         /*
1002          * mm_update_next_owner() may clear mm->owner to NULL
1003          * if it races with swapoff, page migration, etc.
1004          * So this can be called with p == NULL.
1005          */
1006         if (unlikely(!p))
1007                 return NULL;
1008
1009         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_from_task);
1012
1013 static __always_inline struct mem_cgroup *active_memcg(void)
1014 {
1015         if (!in_task())
1016                 return this_cpu_read(int_active_memcg);
1017         else
1018                 return current->active_memcg;
1019 }
1020
1021 /**
1022  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1023  * @mm: mm from which memcg should be extracted. It can be NULL.
1024  *
1025  * Obtain a reference on mm->memcg and returns it if successful. If mm
1026  * is NULL, then the memcg is chosen as follows:
1027  * 1) The active memcg, if set.
1028  * 2) current->mm->memcg, if available
1029  * 3) root memcg
1030  * If mem_cgroup is disabled, NULL is returned.
1031  */
1032 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1033 {
1034         struct mem_cgroup *memcg;
1035
1036         if (mem_cgroup_disabled())
1037                 return NULL;
1038
1039         /*
1040          * Page cache insertions can happen without an
1041          * actual mm context, e.g. during disk probing
1042          * on boot, loopback IO, acct() writes etc.
1043          *
1044          * No need to css_get on root memcg as the reference
1045          * counting is disabled on the root level in the
1046          * cgroup core. See CSS_NO_REF.
1047          */
1048         if (unlikely(!mm)) {
1049                 memcg = active_memcg();
1050                 if (unlikely(memcg)) {
1051                         /* remote memcg must hold a ref */
1052                         css_get(&memcg->css);
1053                         return memcg;
1054                 }
1055                 mm = current->mm;
1056                 if (unlikely(!mm))
1057                         return root_mem_cgroup;
1058         }
1059
1060         rcu_read_lock();
1061         do {
1062                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063                 if (unlikely(!memcg))
1064                         memcg = root_mem_cgroup;
1065         } while (!css_tryget(&memcg->css));
1066         rcu_read_unlock();
1067         return memcg;
1068 }
1069 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1070
1071 static __always_inline bool memcg_kmem_bypass(void)
1072 {
1073         /* Allow remote memcg charging from any context. */
1074         if (unlikely(active_memcg()))
1075                 return false;
1076
1077         /* Memcg to charge can't be determined. */
1078         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1079                 return true;
1080
1081         return false;
1082 }
1083
1084 /**
1085  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1086  * @root: hierarchy root
1087  * @prev: previously returned memcg, NULL on first invocation
1088  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1089  *
1090  * Returns references to children of the hierarchy below @root, or
1091  * @root itself, or %NULL after a full round-trip.
1092  *
1093  * Caller must pass the return value in @prev on subsequent
1094  * invocations for reference counting, or use mem_cgroup_iter_break()
1095  * to cancel a hierarchy walk before the round-trip is complete.
1096  *
1097  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1098  * in the hierarchy among all concurrent reclaimers operating on the
1099  * same node.
1100  */
1101 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102                                    struct mem_cgroup *prev,
1103                                    struct mem_cgroup_reclaim_cookie *reclaim)
1104 {
1105         struct mem_cgroup_reclaim_iter *iter;
1106         struct cgroup_subsys_state *css = NULL;
1107         struct mem_cgroup *memcg = NULL;
1108         struct mem_cgroup *pos = NULL;
1109
1110         if (mem_cgroup_disabled())
1111                 return NULL;
1112
1113         if (!root)
1114                 root = root_mem_cgroup;
1115
1116         rcu_read_lock();
1117
1118         if (reclaim) {
1119                 struct mem_cgroup_per_node *mz;
1120
1121                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1122                 iter = &mz->iter;
1123
1124                 /*
1125                  * On start, join the current reclaim iteration cycle.
1126                  * Exit when a concurrent walker completes it.
1127                  */
1128                 if (!prev)
1129                         reclaim->generation = iter->generation;
1130                 else if (reclaim->generation != iter->generation)
1131                         goto out_unlock;
1132
1133                 while (1) {
1134                         pos = READ_ONCE(iter->position);
1135                         if (!pos || css_tryget(&pos->css))
1136                                 break;
1137                         /*
1138                          * css reference reached zero, so iter->position will
1139                          * be cleared by ->css_released. However, we should not
1140                          * rely on this happening soon, because ->css_released
1141                          * is called from a work queue, and by busy-waiting we
1142                          * might block it. So we clear iter->position right
1143                          * away.
1144                          */
1145                         (void)cmpxchg(&iter->position, pos, NULL);
1146                 }
1147         } else if (prev) {
1148                 pos = prev;
1149         }
1150
1151         if (pos)
1152                 css = &pos->css;
1153
1154         for (;;) {
1155                 css = css_next_descendant_pre(css, &root->css);
1156                 if (!css) {
1157                         /*
1158                          * Reclaimers share the hierarchy walk, and a
1159                          * new one might jump in right at the end of
1160                          * the hierarchy - make sure they see at least
1161                          * one group and restart from the beginning.
1162                          */
1163                         if (!prev)
1164                                 continue;
1165                         break;
1166                 }
1167
1168                 /*
1169                  * Verify the css and acquire a reference.  The root
1170                  * is provided by the caller, so we know it's alive
1171                  * and kicking, and don't take an extra reference.
1172                  */
1173                 if (css == &root->css || css_tryget(css)) {
1174                         memcg = mem_cgroup_from_css(css);
1175                         break;
1176                 }
1177         }
1178
1179         if (reclaim) {
1180                 /*
1181                  * The position could have already been updated by a competing
1182                  * thread, so check that the value hasn't changed since we read
1183                  * it to avoid reclaiming from the same cgroup twice.
1184                  */
1185                 (void)cmpxchg(&iter->position, pos, memcg);
1186
1187                 if (pos)
1188                         css_put(&pos->css);
1189
1190                 if (!memcg)
1191                         iter->generation++;
1192         }
1193
1194 out_unlock:
1195         rcu_read_unlock();
1196         if (prev && prev != root)
1197                 css_put(&prev->css);
1198
1199         return memcg;
1200 }
1201
1202 /**
1203  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1204  * @root: hierarchy root
1205  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1206  */
1207 void mem_cgroup_iter_break(struct mem_cgroup *root,
1208                            struct mem_cgroup *prev)
1209 {
1210         if (!root)
1211                 root = root_mem_cgroup;
1212         if (prev && prev != root)
1213                 css_put(&prev->css);
1214 }
1215
1216 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1217                                         struct mem_cgroup *dead_memcg)
1218 {
1219         struct mem_cgroup_reclaim_iter *iter;
1220         struct mem_cgroup_per_node *mz;
1221         int nid;
1222
1223         for_each_node(nid) {
1224                 mz = from->nodeinfo[nid];
1225                 iter = &mz->iter;
1226                 cmpxchg(&iter->position, dead_memcg, NULL);
1227         }
1228 }
1229
1230 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1231 {
1232         struct mem_cgroup *memcg = dead_memcg;
1233         struct mem_cgroup *last;
1234
1235         do {
1236                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1237                 last = memcg;
1238         } while ((memcg = parent_mem_cgroup(memcg)));
1239
1240         /*
1241          * When cgroup1 non-hierarchy mode is used,
1242          * parent_mem_cgroup() does not walk all the way up to the
1243          * cgroup root (root_mem_cgroup). So we have to handle
1244          * dead_memcg from cgroup root separately.
1245          */
1246         if (!mem_cgroup_is_root(last))
1247                 __invalidate_reclaim_iterators(root_mem_cgroup,
1248                                                 dead_memcg);
1249 }
1250
1251 /**
1252  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1253  * @memcg: hierarchy root
1254  * @fn: function to call for each task
1255  * @arg: argument passed to @fn
1256  *
1257  * This function iterates over tasks attached to @memcg or to any of its
1258  * descendants and calls @fn for each task. If @fn returns a non-zero
1259  * value, the function breaks the iteration loop. Otherwise, it will iterate
1260  * over all tasks and return 0.
1261  *
1262  * This function must not be called for the root memory cgroup.
1263  */
1264 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1265                            int (*fn)(struct task_struct *, void *), void *arg)
1266 {
1267         struct mem_cgroup *iter;
1268         int ret = 0;
1269
1270         BUG_ON(mem_cgroup_is_root(memcg));
1271
1272         for_each_mem_cgroup_tree(iter, memcg) {
1273                 struct css_task_iter it;
1274                 struct task_struct *task;
1275
1276                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1277                 while (!ret && (task = css_task_iter_next(&it)))
1278                         ret = fn(task, arg);
1279                 css_task_iter_end(&it);
1280                 if (ret) {
1281                         mem_cgroup_iter_break(memcg, iter);
1282                         break;
1283                 }
1284         }
1285 }
1286
1287 #ifdef CONFIG_DEBUG_VM
1288 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1289 {
1290         struct mem_cgroup *memcg;
1291
1292         if (mem_cgroup_disabled())
1293                 return;
1294
1295         memcg = folio_memcg(folio);
1296
1297         if (!memcg)
1298                 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1299         else
1300                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1301 }
1302 #endif
1303
1304 /**
1305  * folio_lruvec_lock - Lock the lruvec for a folio.
1306  * @folio: Pointer to the folio.
1307  *
1308  * These functions are safe to use under any of the following conditions:
1309  * - folio locked
1310  * - folio_test_lru false
1311  * - folio_memcg_lock()
1312  * - folio frozen (refcount of 0)
1313  *
1314  * Return: The lruvec this folio is on with its lock held.
1315  */
1316 struct lruvec *folio_lruvec_lock(struct folio *folio)
1317 {
1318         struct lruvec *lruvec = folio_lruvec(folio);
1319
1320         spin_lock(&lruvec->lru_lock);
1321         lruvec_memcg_debug(lruvec, folio);
1322
1323         return lruvec;
1324 }
1325
1326 /**
1327  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1328  * @folio: Pointer to the folio.
1329  *
1330  * These functions are safe to use under any of the following conditions:
1331  * - folio locked
1332  * - folio_test_lru false
1333  * - folio_memcg_lock()
1334  * - folio frozen (refcount of 0)
1335  *
1336  * Return: The lruvec this folio is on with its lock held and interrupts
1337  * disabled.
1338  */
1339 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1340 {
1341         struct lruvec *lruvec = folio_lruvec(folio);
1342
1343         spin_lock_irq(&lruvec->lru_lock);
1344         lruvec_memcg_debug(lruvec, folio);
1345
1346         return lruvec;
1347 }
1348
1349 /**
1350  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1351  * @folio: Pointer to the folio.
1352  * @flags: Pointer to irqsave flags.
1353  *
1354  * These functions are safe to use under any of the following conditions:
1355  * - folio locked
1356  * - folio_test_lru false
1357  * - folio_memcg_lock()
1358  * - folio frozen (refcount of 0)
1359  *
1360  * Return: The lruvec this folio is on with its lock held and interrupts
1361  * disabled.
1362  */
1363 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1364                 unsigned long *flags)
1365 {
1366         struct lruvec *lruvec = folio_lruvec(folio);
1367
1368         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1369         lruvec_memcg_debug(lruvec, folio);
1370
1371         return lruvec;
1372 }
1373
1374 /**
1375  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376  * @lruvec: mem_cgroup per zone lru vector
1377  * @lru: index of lru list the page is sitting on
1378  * @zid: zone id of the accounted pages
1379  * @nr_pages: positive when adding or negative when removing
1380  *
1381  * This function must be called under lru_lock, just before a page is added
1382  * to or just after a page is removed from an lru list.
1383  */
1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385                                 int zid, int nr_pages)
1386 {
1387         struct mem_cgroup_per_node *mz;
1388         unsigned long *lru_size;
1389         long size;
1390
1391         if (mem_cgroup_disabled())
1392                 return;
1393
1394         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395         lru_size = &mz->lru_zone_size[zid][lru];
1396
1397         if (nr_pages < 0)
1398                 *lru_size += nr_pages;
1399
1400         size = *lru_size;
1401         if (WARN_ONCE(size < 0,
1402                 "%s(%p, %d, %d): lru_size %ld\n",
1403                 __func__, lruvec, lru, nr_pages, size)) {
1404                 VM_BUG_ON(1);
1405                 *lru_size = 0;
1406         }
1407
1408         if (nr_pages > 0)
1409                 *lru_size += nr_pages;
1410 }
1411
1412 /**
1413  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414  * @memcg: the memory cgroup
1415  *
1416  * Returns the maximum amount of memory @mem can be charged with, in
1417  * pages.
1418  */
1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420 {
1421         unsigned long margin = 0;
1422         unsigned long count;
1423         unsigned long limit;
1424
1425         count = page_counter_read(&memcg->memory);
1426         limit = READ_ONCE(memcg->memory.max);
1427         if (count < limit)
1428                 margin = limit - count;
1429
1430         if (do_memsw_account()) {
1431                 count = page_counter_read(&memcg->memsw);
1432                 limit = READ_ONCE(memcg->memsw.max);
1433                 if (count < limit)
1434                         margin = min(margin, limit - count);
1435                 else
1436                         margin = 0;
1437         }
1438
1439         return margin;
1440 }
1441
1442 /*
1443  * A routine for checking "mem" is under move_account() or not.
1444  *
1445  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446  * moving cgroups. This is for waiting at high-memory pressure
1447  * caused by "move".
1448  */
1449 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450 {
1451         struct mem_cgroup *from;
1452         struct mem_cgroup *to;
1453         bool ret = false;
1454         /*
1455          * Unlike task_move routines, we access mc.to, mc.from not under
1456          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457          */
1458         spin_lock(&mc.lock);
1459         from = mc.from;
1460         to = mc.to;
1461         if (!from)
1462                 goto unlock;
1463
1464         ret = mem_cgroup_is_descendant(from, memcg) ||
1465                 mem_cgroup_is_descendant(to, memcg);
1466 unlock:
1467         spin_unlock(&mc.lock);
1468         return ret;
1469 }
1470
1471 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 {
1473         if (mc.moving_task && current != mc.moving_task) {
1474                 if (mem_cgroup_under_move(memcg)) {
1475                         DEFINE_WAIT(wait);
1476                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477                         /* moving charge context might have finished. */
1478                         if (mc.moving_task)
1479                                 schedule();
1480                         finish_wait(&mc.waitq, &wait);
1481                         return true;
1482                 }
1483         }
1484         return false;
1485 }
1486
1487 struct memory_stat {
1488         const char *name;
1489         unsigned int idx;
1490 };
1491
1492 static const struct memory_stat memory_stats[] = {
1493         { "anon",                       NR_ANON_MAPPED                  },
1494         { "file",                       NR_FILE_PAGES                   },
1495         { "kernel",                     MEMCG_KMEM                      },
1496         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1497         { "pagetables",                 NR_PAGETABLE                    },
1498         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1499         { "percpu",                     MEMCG_PERCPU_B                  },
1500         { "sock",                       MEMCG_SOCK                      },
1501         { "vmalloc",                    MEMCG_VMALLOC                   },
1502         { "shmem",                      NR_SHMEM                        },
1503 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1504         { "zswap",                      MEMCG_ZSWAP_B                   },
1505         { "zswapped",                   MEMCG_ZSWAPPED                  },
1506 #endif
1507         { "file_mapped",                NR_FILE_MAPPED                  },
1508         { "file_dirty",                 NR_FILE_DIRTY                   },
1509         { "file_writeback",             NR_WRITEBACK                    },
1510 #ifdef CONFIG_SWAP
1511         { "swapcached",                 NR_SWAPCACHE                    },
1512 #endif
1513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1514         { "anon_thp",                   NR_ANON_THPS                    },
1515         { "file_thp",                   NR_FILE_THPS                    },
1516         { "shmem_thp",                  NR_SHMEM_THPS                   },
1517 #endif
1518         { "inactive_anon",              NR_INACTIVE_ANON                },
1519         { "active_anon",                NR_ACTIVE_ANON                  },
1520         { "inactive_file",              NR_INACTIVE_FILE                },
1521         { "active_file",                NR_ACTIVE_FILE                  },
1522         { "unevictable",                NR_UNEVICTABLE                  },
1523         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1524         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1525
1526         /* The memory events */
1527         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1528         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1529         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1530         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1531         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1532         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1533         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1534 };
1535
1536 /* Translate stat items to the correct unit for memory.stat output */
1537 static int memcg_page_state_unit(int item)
1538 {
1539         switch (item) {
1540         case MEMCG_PERCPU_B:
1541         case MEMCG_ZSWAP_B:
1542         case NR_SLAB_RECLAIMABLE_B:
1543         case NR_SLAB_UNRECLAIMABLE_B:
1544         case WORKINGSET_REFAULT_ANON:
1545         case WORKINGSET_REFAULT_FILE:
1546         case WORKINGSET_ACTIVATE_ANON:
1547         case WORKINGSET_ACTIVATE_FILE:
1548         case WORKINGSET_RESTORE_ANON:
1549         case WORKINGSET_RESTORE_FILE:
1550         case WORKINGSET_NODERECLAIM:
1551                 return 1;
1552         case NR_KERNEL_STACK_KB:
1553                 return SZ_1K;
1554         default:
1555                 return PAGE_SIZE;
1556         }
1557 }
1558
1559 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1560                                                     int item)
1561 {
1562         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1563 }
1564
1565 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1566 {
1567         int i;
1568
1569         /*
1570          * Provide statistics on the state of the memory subsystem as
1571          * well as cumulative event counters that show past behavior.
1572          *
1573          * This list is ordered following a combination of these gradients:
1574          * 1) generic big picture -> specifics and details
1575          * 2) reflecting userspace activity -> reflecting kernel heuristics
1576          *
1577          * Current memory state:
1578          */
1579         mem_cgroup_flush_stats();
1580
1581         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1582                 u64 size;
1583
1584                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1585                 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1586
1587                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1588                         size += memcg_page_state_output(memcg,
1589                                                         NR_SLAB_RECLAIMABLE_B);
1590                         seq_buf_printf(s, "slab %llu\n", size);
1591                 }
1592         }
1593
1594         /* Accumulated memory events */
1595         seq_buf_printf(s, "pgscan %lu\n",
1596                        memcg_events(memcg, PGSCAN_KSWAPD) +
1597                        memcg_events(memcg, PGSCAN_DIRECT) +
1598                        memcg_events(memcg, PGSCAN_KHUGEPAGED));
1599         seq_buf_printf(s, "pgsteal %lu\n",
1600                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1601                        memcg_events(memcg, PGSTEAL_DIRECT) +
1602                        memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1603
1604         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1605                 if (memcg_vm_event_stat[i] == PGPGIN ||
1606                     memcg_vm_event_stat[i] == PGPGOUT)
1607                         continue;
1608
1609                 seq_buf_printf(s, "%s %lu\n",
1610                                vm_event_name(memcg_vm_event_stat[i]),
1611                                memcg_events(memcg, memcg_vm_event_stat[i]));
1612         }
1613
1614         /* The above should easily fit into one page */
1615         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1616 }
1617
1618 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1619
1620 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1621 {
1622         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1623                 memcg_stat_format(memcg, s);
1624         else
1625                 memcg1_stat_format(memcg, s);
1626         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1627 }
1628
1629 /**
1630  * mem_cgroup_print_oom_context: Print OOM information relevant to
1631  * memory controller.
1632  * @memcg: The memory cgroup that went over limit
1633  * @p: Task that is going to be killed
1634  *
1635  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1636  * enabled
1637  */
1638 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1639 {
1640         rcu_read_lock();
1641
1642         if (memcg) {
1643                 pr_cont(",oom_memcg=");
1644                 pr_cont_cgroup_path(memcg->css.cgroup);
1645         } else
1646                 pr_cont(",global_oom");
1647         if (p) {
1648                 pr_cont(",task_memcg=");
1649                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1650         }
1651         rcu_read_unlock();
1652 }
1653
1654 /**
1655  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1656  * memory controller.
1657  * @memcg: The memory cgroup that went over limit
1658  */
1659 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1660 {
1661         /* Use static buffer, for the caller is holding oom_lock. */
1662         static char buf[PAGE_SIZE];
1663         struct seq_buf s;
1664
1665         lockdep_assert_held(&oom_lock);
1666
1667         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1668                 K((u64)page_counter_read(&memcg->memory)),
1669                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1670         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1671                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1672                         K((u64)page_counter_read(&memcg->swap)),
1673                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1674         else {
1675                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676                         K((u64)page_counter_read(&memcg->memsw)),
1677                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1678                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1679                         K((u64)page_counter_read(&memcg->kmem)),
1680                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1681         }
1682
1683         pr_info("Memory cgroup stats for ");
1684         pr_cont_cgroup_path(memcg->css.cgroup);
1685         pr_cont(":");
1686         seq_buf_init(&s, buf, sizeof(buf));
1687         memory_stat_format(memcg, &s);
1688         seq_buf_do_printk(&s, KERN_INFO);
1689 }
1690
1691 /*
1692  * Return the memory (and swap, if configured) limit for a memcg.
1693  */
1694 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1695 {
1696         unsigned long max = READ_ONCE(memcg->memory.max);
1697
1698         if (do_memsw_account()) {
1699                 if (mem_cgroup_swappiness(memcg)) {
1700                         /* Calculate swap excess capacity from memsw limit */
1701                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703                         max += min(swap, (unsigned long)total_swap_pages);
1704                 }
1705         } else {
1706                 if (mem_cgroup_swappiness(memcg))
1707                         max += min(READ_ONCE(memcg->swap.max),
1708                                    (unsigned long)total_swap_pages);
1709         }
1710         return max;
1711 }
1712
1713 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1714 {
1715         return page_counter_read(&memcg->memory);
1716 }
1717
1718 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1719                                      int order)
1720 {
1721         struct oom_control oc = {
1722                 .zonelist = NULL,
1723                 .nodemask = NULL,
1724                 .memcg = memcg,
1725                 .gfp_mask = gfp_mask,
1726                 .order = order,
1727         };
1728         bool ret = true;
1729
1730         if (mutex_lock_killable(&oom_lock))
1731                 return true;
1732
1733         if (mem_cgroup_margin(memcg) >= (1 << order))
1734                 goto unlock;
1735
1736         /*
1737          * A few threads which were not waiting at mutex_lock_killable() can
1738          * fail to bail out. Therefore, check again after holding oom_lock.
1739          */
1740         ret = task_is_dying() || out_of_memory(&oc);
1741
1742 unlock:
1743         mutex_unlock(&oom_lock);
1744         return ret;
1745 }
1746
1747 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1748                                    pg_data_t *pgdat,
1749                                    gfp_t gfp_mask,
1750                                    unsigned long *total_scanned)
1751 {
1752         struct mem_cgroup *victim = NULL;
1753         int total = 0;
1754         int loop = 0;
1755         unsigned long excess;
1756         unsigned long nr_scanned;
1757         struct mem_cgroup_reclaim_cookie reclaim = {
1758                 .pgdat = pgdat,
1759         };
1760
1761         excess = soft_limit_excess(root_memcg);
1762
1763         while (1) {
1764                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1765                 if (!victim) {
1766                         loop++;
1767                         if (loop >= 2) {
1768                                 /*
1769                                  * If we have not been able to reclaim
1770                                  * anything, it might because there are
1771                                  * no reclaimable pages under this hierarchy
1772                                  */
1773                                 if (!total)
1774                                         break;
1775                                 /*
1776                                  * We want to do more targeted reclaim.
1777                                  * excess >> 2 is not to excessive so as to
1778                                  * reclaim too much, nor too less that we keep
1779                                  * coming back to reclaim from this cgroup
1780                                  */
1781                                 if (total >= (excess >> 2) ||
1782                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1783                                         break;
1784                         }
1785                         continue;
1786                 }
1787                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1788                                         pgdat, &nr_scanned);
1789                 *total_scanned += nr_scanned;
1790                 if (!soft_limit_excess(root_memcg))
1791                         break;
1792         }
1793         mem_cgroup_iter_break(root_memcg, victim);
1794         return total;
1795 }
1796
1797 #ifdef CONFIG_LOCKDEP
1798 static struct lockdep_map memcg_oom_lock_dep_map = {
1799         .name = "memcg_oom_lock",
1800 };
1801 #endif
1802
1803 static DEFINE_SPINLOCK(memcg_oom_lock);
1804
1805 /*
1806  * Check OOM-Killer is already running under our hierarchy.
1807  * If someone is running, return false.
1808  */
1809 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1810 {
1811         struct mem_cgroup *iter, *failed = NULL;
1812
1813         spin_lock(&memcg_oom_lock);
1814
1815         for_each_mem_cgroup_tree(iter, memcg) {
1816                 if (iter->oom_lock) {
1817                         /*
1818                          * this subtree of our hierarchy is already locked
1819                          * so we cannot give a lock.
1820                          */
1821                         failed = iter;
1822                         mem_cgroup_iter_break(memcg, iter);
1823                         break;
1824                 } else
1825                         iter->oom_lock = true;
1826         }
1827
1828         if (failed) {
1829                 /*
1830                  * OK, we failed to lock the whole subtree so we have
1831                  * to clean up what we set up to the failing subtree
1832                  */
1833                 for_each_mem_cgroup_tree(iter, memcg) {
1834                         if (iter == failed) {
1835                                 mem_cgroup_iter_break(memcg, iter);
1836                                 break;
1837                         }
1838                         iter->oom_lock = false;
1839                 }
1840         } else
1841                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1842
1843         spin_unlock(&memcg_oom_lock);
1844
1845         return !failed;
1846 }
1847
1848 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1849 {
1850         struct mem_cgroup *iter;
1851
1852         spin_lock(&memcg_oom_lock);
1853         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1854         for_each_mem_cgroup_tree(iter, memcg)
1855                 iter->oom_lock = false;
1856         spin_unlock(&memcg_oom_lock);
1857 }
1858
1859 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1860 {
1861         struct mem_cgroup *iter;
1862
1863         spin_lock(&memcg_oom_lock);
1864         for_each_mem_cgroup_tree(iter, memcg)
1865                 iter->under_oom++;
1866         spin_unlock(&memcg_oom_lock);
1867 }
1868
1869 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1870 {
1871         struct mem_cgroup *iter;
1872
1873         /*
1874          * Be careful about under_oom underflows because a child memcg
1875          * could have been added after mem_cgroup_mark_under_oom.
1876          */
1877         spin_lock(&memcg_oom_lock);
1878         for_each_mem_cgroup_tree(iter, memcg)
1879                 if (iter->under_oom > 0)
1880                         iter->under_oom--;
1881         spin_unlock(&memcg_oom_lock);
1882 }
1883
1884 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1885
1886 struct oom_wait_info {
1887         struct mem_cgroup *memcg;
1888         wait_queue_entry_t      wait;
1889 };
1890
1891 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1892         unsigned mode, int sync, void *arg)
1893 {
1894         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1895         struct mem_cgroup *oom_wait_memcg;
1896         struct oom_wait_info *oom_wait_info;
1897
1898         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1899         oom_wait_memcg = oom_wait_info->memcg;
1900
1901         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1902             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1903                 return 0;
1904         return autoremove_wake_function(wait, mode, sync, arg);
1905 }
1906
1907 static void memcg_oom_recover(struct mem_cgroup *memcg)
1908 {
1909         /*
1910          * For the following lockless ->under_oom test, the only required
1911          * guarantee is that it must see the state asserted by an OOM when
1912          * this function is called as a result of userland actions
1913          * triggered by the notification of the OOM.  This is trivially
1914          * achieved by invoking mem_cgroup_mark_under_oom() before
1915          * triggering notification.
1916          */
1917         if (memcg && memcg->under_oom)
1918                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1919 }
1920
1921 /*
1922  * Returns true if successfully killed one or more processes. Though in some
1923  * corner cases it can return true even without killing any process.
1924  */
1925 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1926 {
1927         bool locked, ret;
1928
1929         if (order > PAGE_ALLOC_COSTLY_ORDER)
1930                 return false;
1931
1932         memcg_memory_event(memcg, MEMCG_OOM);
1933
1934         /*
1935          * We are in the middle of the charge context here, so we
1936          * don't want to block when potentially sitting on a callstack
1937          * that holds all kinds of filesystem and mm locks.
1938          *
1939          * cgroup1 allows disabling the OOM killer and waiting for outside
1940          * handling until the charge can succeed; remember the context and put
1941          * the task to sleep at the end of the page fault when all locks are
1942          * released.
1943          *
1944          * On the other hand, in-kernel OOM killer allows for an async victim
1945          * memory reclaim (oom_reaper) and that means that we are not solely
1946          * relying on the oom victim to make a forward progress and we can
1947          * invoke the oom killer here.
1948          *
1949          * Please note that mem_cgroup_out_of_memory might fail to find a
1950          * victim and then we have to bail out from the charge path.
1951          */
1952         if (READ_ONCE(memcg->oom_kill_disable)) {
1953                 if (current->in_user_fault) {
1954                         css_get(&memcg->css);
1955                         current->memcg_in_oom = memcg;
1956                         current->memcg_oom_gfp_mask = mask;
1957                         current->memcg_oom_order = order;
1958                 }
1959                 return false;
1960         }
1961
1962         mem_cgroup_mark_under_oom(memcg);
1963
1964         locked = mem_cgroup_oom_trylock(memcg);
1965
1966         if (locked)
1967                 mem_cgroup_oom_notify(memcg);
1968
1969         mem_cgroup_unmark_under_oom(memcg);
1970         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1971
1972         if (locked)
1973                 mem_cgroup_oom_unlock(memcg);
1974
1975         return ret;
1976 }
1977
1978 /**
1979  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1980  * @handle: actually kill/wait or just clean up the OOM state
1981  *
1982  * This has to be called at the end of a page fault if the memcg OOM
1983  * handler was enabled.
1984  *
1985  * Memcg supports userspace OOM handling where failed allocations must
1986  * sleep on a waitqueue until the userspace task resolves the
1987  * situation.  Sleeping directly in the charge context with all kinds
1988  * of locks held is not a good idea, instead we remember an OOM state
1989  * in the task and mem_cgroup_oom_synchronize() has to be called at
1990  * the end of the page fault to complete the OOM handling.
1991  *
1992  * Returns %true if an ongoing memcg OOM situation was detected and
1993  * completed, %false otherwise.
1994  */
1995 bool mem_cgroup_oom_synchronize(bool handle)
1996 {
1997         struct mem_cgroup *memcg = current->memcg_in_oom;
1998         struct oom_wait_info owait;
1999         bool locked;
2000
2001         /* OOM is global, do not handle */
2002         if (!memcg)
2003                 return false;
2004
2005         if (!handle)
2006                 goto cleanup;
2007
2008         owait.memcg = memcg;
2009         owait.wait.flags = 0;
2010         owait.wait.func = memcg_oom_wake_function;
2011         owait.wait.private = current;
2012         INIT_LIST_HEAD(&owait.wait.entry);
2013
2014         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2015         mem_cgroup_mark_under_oom(memcg);
2016
2017         locked = mem_cgroup_oom_trylock(memcg);
2018
2019         if (locked)
2020                 mem_cgroup_oom_notify(memcg);
2021
2022         schedule();
2023         mem_cgroup_unmark_under_oom(memcg);
2024         finish_wait(&memcg_oom_waitq, &owait.wait);
2025
2026         if (locked)
2027                 mem_cgroup_oom_unlock(memcg);
2028 cleanup:
2029         current->memcg_in_oom = NULL;
2030         css_put(&memcg->css);
2031         return true;
2032 }
2033
2034 /**
2035  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2036  * @victim: task to be killed by the OOM killer
2037  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2038  *
2039  * Returns a pointer to a memory cgroup, which has to be cleaned up
2040  * by killing all belonging OOM-killable tasks.
2041  *
2042  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2043  */
2044 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2045                                             struct mem_cgroup *oom_domain)
2046 {
2047         struct mem_cgroup *oom_group = NULL;
2048         struct mem_cgroup *memcg;
2049
2050         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2051                 return NULL;
2052
2053         if (!oom_domain)
2054                 oom_domain = root_mem_cgroup;
2055
2056         rcu_read_lock();
2057
2058         memcg = mem_cgroup_from_task(victim);
2059         if (mem_cgroup_is_root(memcg))
2060                 goto out;
2061
2062         /*
2063          * If the victim task has been asynchronously moved to a different
2064          * memory cgroup, we might end up killing tasks outside oom_domain.
2065          * In this case it's better to ignore memory.group.oom.
2066          */
2067         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2068                 goto out;
2069
2070         /*
2071          * Traverse the memory cgroup hierarchy from the victim task's
2072          * cgroup up to the OOMing cgroup (or root) to find the
2073          * highest-level memory cgroup with oom.group set.
2074          */
2075         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2076                 if (READ_ONCE(memcg->oom_group))
2077                         oom_group = memcg;
2078
2079                 if (memcg == oom_domain)
2080                         break;
2081         }
2082
2083         if (oom_group)
2084                 css_get(&oom_group->css);
2085 out:
2086         rcu_read_unlock();
2087
2088         return oom_group;
2089 }
2090
2091 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2092 {
2093         pr_info("Tasks in ");
2094         pr_cont_cgroup_path(memcg->css.cgroup);
2095         pr_cont(" are going to be killed due to memory.oom.group set\n");
2096 }
2097
2098 /**
2099  * folio_memcg_lock - Bind a folio to its memcg.
2100  * @folio: The folio.
2101  *
2102  * This function prevents unlocked LRU folios from being moved to
2103  * another cgroup.
2104  *
2105  * It ensures lifetime of the bound memcg.  The caller is responsible
2106  * for the lifetime of the folio.
2107  */
2108 void folio_memcg_lock(struct folio *folio)
2109 {
2110         struct mem_cgroup *memcg;
2111         unsigned long flags;
2112
2113         /*
2114          * The RCU lock is held throughout the transaction.  The fast
2115          * path can get away without acquiring the memcg->move_lock
2116          * because page moving starts with an RCU grace period.
2117          */
2118         rcu_read_lock();
2119
2120         if (mem_cgroup_disabled())
2121                 return;
2122 again:
2123         memcg = folio_memcg(folio);
2124         if (unlikely(!memcg))
2125                 return;
2126
2127 #ifdef CONFIG_PROVE_LOCKING
2128         local_irq_save(flags);
2129         might_lock(&memcg->move_lock);
2130         local_irq_restore(flags);
2131 #endif
2132
2133         if (atomic_read(&memcg->moving_account) <= 0)
2134                 return;
2135
2136         spin_lock_irqsave(&memcg->move_lock, flags);
2137         if (memcg != folio_memcg(folio)) {
2138                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2139                 goto again;
2140         }
2141
2142         /*
2143          * When charge migration first begins, we can have multiple
2144          * critical sections holding the fast-path RCU lock and one
2145          * holding the slowpath move_lock. Track the task who has the
2146          * move_lock for folio_memcg_unlock().
2147          */
2148         memcg->move_lock_task = current;
2149         memcg->move_lock_flags = flags;
2150 }
2151
2152 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2153 {
2154         if (memcg && memcg->move_lock_task == current) {
2155                 unsigned long flags = memcg->move_lock_flags;
2156
2157                 memcg->move_lock_task = NULL;
2158                 memcg->move_lock_flags = 0;
2159
2160                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2161         }
2162
2163         rcu_read_unlock();
2164 }
2165
2166 /**
2167  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2168  * @folio: The folio.
2169  *
2170  * This releases the binding created by folio_memcg_lock().  This does
2171  * not change the accounting of this folio to its memcg, but it does
2172  * permit others to change it.
2173  */
2174 void folio_memcg_unlock(struct folio *folio)
2175 {
2176         __folio_memcg_unlock(folio_memcg(folio));
2177 }
2178
2179 struct memcg_stock_pcp {
2180         local_lock_t stock_lock;
2181         struct mem_cgroup *cached; /* this never be root cgroup */
2182         unsigned int nr_pages;
2183
2184 #ifdef CONFIG_MEMCG_KMEM
2185         struct obj_cgroup *cached_objcg;
2186         struct pglist_data *cached_pgdat;
2187         unsigned int nr_bytes;
2188         int nr_slab_reclaimable_b;
2189         int nr_slab_unreclaimable_b;
2190 #endif
2191
2192         struct work_struct work;
2193         unsigned long flags;
2194 #define FLUSHING_CACHED_CHARGE  0
2195 };
2196 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2197         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2198 };
2199 static DEFINE_MUTEX(percpu_charge_mutex);
2200
2201 #ifdef CONFIG_MEMCG_KMEM
2202 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2203 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2204                                      struct mem_cgroup *root_memcg);
2205 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2206
2207 #else
2208 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2209 {
2210         return NULL;
2211 }
2212 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213                                      struct mem_cgroup *root_memcg)
2214 {
2215         return false;
2216 }
2217 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2218 {
2219 }
2220 #endif
2221
2222 /**
2223  * consume_stock: Try to consume stocked charge on this cpu.
2224  * @memcg: memcg to consume from.
2225  * @nr_pages: how many pages to charge.
2226  *
2227  * The charges will only happen if @memcg matches the current cpu's memcg
2228  * stock, and at least @nr_pages are available in that stock.  Failure to
2229  * service an allocation will refill the stock.
2230  *
2231  * returns true if successful, false otherwise.
2232  */
2233 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2234 {
2235         struct memcg_stock_pcp *stock;
2236         unsigned long flags;
2237         bool ret = false;
2238
2239         if (nr_pages > MEMCG_CHARGE_BATCH)
2240                 return ret;
2241
2242         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2243
2244         stock = this_cpu_ptr(&memcg_stock);
2245         if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2246                 stock->nr_pages -= nr_pages;
2247                 ret = true;
2248         }
2249
2250         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2251
2252         return ret;
2253 }
2254
2255 /*
2256  * Returns stocks cached in percpu and reset cached information.
2257  */
2258 static void drain_stock(struct memcg_stock_pcp *stock)
2259 {
2260         struct mem_cgroup *old = READ_ONCE(stock->cached);
2261
2262         if (!old)
2263                 return;
2264
2265         if (stock->nr_pages) {
2266                 page_counter_uncharge(&old->memory, stock->nr_pages);
2267                 if (do_memsw_account())
2268                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2269                 stock->nr_pages = 0;
2270         }
2271
2272         css_put(&old->css);
2273         WRITE_ONCE(stock->cached, NULL);
2274 }
2275
2276 static void drain_local_stock(struct work_struct *dummy)
2277 {
2278         struct memcg_stock_pcp *stock;
2279         struct obj_cgroup *old = NULL;
2280         unsigned long flags;
2281
2282         /*
2283          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2284          * drain_stock races is that we always operate on local CPU stock
2285          * here with IRQ disabled
2286          */
2287         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2288
2289         stock = this_cpu_ptr(&memcg_stock);
2290         old = drain_obj_stock(stock);
2291         drain_stock(stock);
2292         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2293
2294         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2295         if (old)
2296                 obj_cgroup_put(old);
2297 }
2298
2299 /*
2300  * Cache charges(val) to local per_cpu area.
2301  * This will be consumed by consume_stock() function, later.
2302  */
2303 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2304 {
2305         struct memcg_stock_pcp *stock;
2306
2307         stock = this_cpu_ptr(&memcg_stock);
2308         if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2309                 drain_stock(stock);
2310                 css_get(&memcg->css);
2311                 WRITE_ONCE(stock->cached, memcg);
2312         }
2313         stock->nr_pages += nr_pages;
2314
2315         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2316                 drain_stock(stock);
2317 }
2318
2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320 {
2321         unsigned long flags;
2322
2323         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2324         __refill_stock(memcg, nr_pages);
2325         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2326 }
2327
2328 /*
2329  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2330  * of the hierarchy under it.
2331  */
2332 static void drain_all_stock(struct mem_cgroup *root_memcg)
2333 {
2334         int cpu, curcpu;
2335
2336         /* If someone's already draining, avoid adding running more workers. */
2337         if (!mutex_trylock(&percpu_charge_mutex))
2338                 return;
2339         /*
2340          * Notify other cpus that system-wide "drain" is running
2341          * We do not care about races with the cpu hotplug because cpu down
2342          * as well as workers from this path always operate on the local
2343          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2344          */
2345         migrate_disable();
2346         curcpu = smp_processor_id();
2347         for_each_online_cpu(cpu) {
2348                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2349                 struct mem_cgroup *memcg;
2350                 bool flush = false;
2351
2352                 rcu_read_lock();
2353                 memcg = READ_ONCE(stock->cached);
2354                 if (memcg && stock->nr_pages &&
2355                     mem_cgroup_is_descendant(memcg, root_memcg))
2356                         flush = true;
2357                 else if (obj_stock_flush_required(stock, root_memcg))
2358                         flush = true;
2359                 rcu_read_unlock();
2360
2361                 if (flush &&
2362                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2363                         if (cpu == curcpu)
2364                                 drain_local_stock(&stock->work);
2365                         else if (!cpu_is_isolated(cpu))
2366                                 schedule_work_on(cpu, &stock->work);
2367                 }
2368         }
2369         migrate_enable();
2370         mutex_unlock(&percpu_charge_mutex);
2371 }
2372
2373 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2374 {
2375         struct memcg_stock_pcp *stock;
2376
2377         stock = &per_cpu(memcg_stock, cpu);
2378         drain_stock(stock);
2379
2380         return 0;
2381 }
2382
2383 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2384                                   unsigned int nr_pages,
2385                                   gfp_t gfp_mask)
2386 {
2387         unsigned long nr_reclaimed = 0;
2388
2389         do {
2390                 unsigned long pflags;
2391
2392                 if (page_counter_read(&memcg->memory) <=
2393                     READ_ONCE(memcg->memory.high))
2394                         continue;
2395
2396                 memcg_memory_event(memcg, MEMCG_HIGH);
2397
2398                 psi_memstall_enter(&pflags);
2399                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2400                                                         gfp_mask,
2401                                                         MEMCG_RECLAIM_MAY_SWAP);
2402                 psi_memstall_leave(&pflags);
2403         } while ((memcg = parent_mem_cgroup(memcg)) &&
2404                  !mem_cgroup_is_root(memcg));
2405
2406         return nr_reclaimed;
2407 }
2408
2409 static void high_work_func(struct work_struct *work)
2410 {
2411         struct mem_cgroup *memcg;
2412
2413         memcg = container_of(work, struct mem_cgroup, high_work);
2414         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2415 }
2416
2417 /*
2418  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2419  * enough to still cause a significant slowdown in most cases, while still
2420  * allowing diagnostics and tracing to proceed without becoming stuck.
2421  */
2422 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2423
2424 /*
2425  * When calculating the delay, we use these either side of the exponentiation to
2426  * maintain precision and scale to a reasonable number of jiffies (see the table
2427  * below.
2428  *
2429  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2430  *   overage ratio to a delay.
2431  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2432  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2433  *   to produce a reasonable delay curve.
2434  *
2435  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2436  * reasonable delay curve compared to precision-adjusted overage, not
2437  * penalising heavily at first, but still making sure that growth beyond the
2438  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2439  * example, with a high of 100 megabytes:
2440  *
2441  *  +-------+------------------------+
2442  *  | usage | time to allocate in ms |
2443  *  +-------+------------------------+
2444  *  | 100M  |                      0 |
2445  *  | 101M  |                      6 |
2446  *  | 102M  |                     25 |
2447  *  | 103M  |                     57 |
2448  *  | 104M  |                    102 |
2449  *  | 105M  |                    159 |
2450  *  | 106M  |                    230 |
2451  *  | 107M  |                    313 |
2452  *  | 108M  |                    409 |
2453  *  | 109M  |                    518 |
2454  *  | 110M  |                    639 |
2455  *  | 111M  |                    774 |
2456  *  | 112M  |                    921 |
2457  *  | 113M  |                   1081 |
2458  *  | 114M  |                   1254 |
2459  *  | 115M  |                   1439 |
2460  *  | 116M  |                   1638 |
2461  *  | 117M  |                   1849 |
2462  *  | 118M  |                   2000 |
2463  *  | 119M  |                   2000 |
2464  *  | 120M  |                   2000 |
2465  *  +-------+------------------------+
2466  */
2467  #define MEMCG_DELAY_PRECISION_SHIFT 20
2468  #define MEMCG_DELAY_SCALING_SHIFT 14
2469
2470 static u64 calculate_overage(unsigned long usage, unsigned long high)
2471 {
2472         u64 overage;
2473
2474         if (usage <= high)
2475                 return 0;
2476
2477         /*
2478          * Prevent division by 0 in overage calculation by acting as if
2479          * it was a threshold of 1 page
2480          */
2481         high = max(high, 1UL);
2482
2483         overage = usage - high;
2484         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2485         return div64_u64(overage, high);
2486 }
2487
2488 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2489 {
2490         u64 overage, max_overage = 0;
2491
2492         do {
2493                 overage = calculate_overage(page_counter_read(&memcg->memory),
2494                                             READ_ONCE(memcg->memory.high));
2495                 max_overage = max(overage, max_overage);
2496         } while ((memcg = parent_mem_cgroup(memcg)) &&
2497                  !mem_cgroup_is_root(memcg));
2498
2499         return max_overage;
2500 }
2501
2502 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2503 {
2504         u64 overage, max_overage = 0;
2505
2506         do {
2507                 overage = calculate_overage(page_counter_read(&memcg->swap),
2508                                             READ_ONCE(memcg->swap.high));
2509                 if (overage)
2510                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2511                 max_overage = max(overage, max_overage);
2512         } while ((memcg = parent_mem_cgroup(memcg)) &&
2513                  !mem_cgroup_is_root(memcg));
2514
2515         return max_overage;
2516 }
2517
2518 /*
2519  * Get the number of jiffies that we should penalise a mischievous cgroup which
2520  * is exceeding its memory.high by checking both it and its ancestors.
2521  */
2522 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2523                                           unsigned int nr_pages,
2524                                           u64 max_overage)
2525 {
2526         unsigned long penalty_jiffies;
2527
2528         if (!max_overage)
2529                 return 0;
2530
2531         /*
2532          * We use overage compared to memory.high to calculate the number of
2533          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2534          * fairly lenient on small overages, and increasingly harsh when the
2535          * memcg in question makes it clear that it has no intention of stopping
2536          * its crazy behaviour, so we exponentially increase the delay based on
2537          * overage amount.
2538          */
2539         penalty_jiffies = max_overage * max_overage * HZ;
2540         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2541         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2542
2543         /*
2544          * Factor in the task's own contribution to the overage, such that four
2545          * N-sized allocations are throttled approximately the same as one
2546          * 4N-sized allocation.
2547          *
2548          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2549          * larger the current charge patch is than that.
2550          */
2551         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2552 }
2553
2554 /*
2555  * Scheduled by try_charge() to be executed from the userland return path
2556  * and reclaims memory over the high limit.
2557  */
2558 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2559 {
2560         unsigned long penalty_jiffies;
2561         unsigned long pflags;
2562         unsigned long nr_reclaimed;
2563         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2564         int nr_retries = MAX_RECLAIM_RETRIES;
2565         struct mem_cgroup *memcg;
2566         bool in_retry = false;
2567
2568         if (likely(!nr_pages))
2569                 return;
2570
2571         memcg = get_mem_cgroup_from_mm(current->mm);
2572         current->memcg_nr_pages_over_high = 0;
2573
2574 retry_reclaim:
2575         /*
2576          * The allocating task should reclaim at least the batch size, but for
2577          * subsequent retries we only want to do what's necessary to prevent oom
2578          * or breaching resource isolation.
2579          *
2580          * This is distinct from memory.max or page allocator behaviour because
2581          * memory.high is currently batched, whereas memory.max and the page
2582          * allocator run every time an allocation is made.
2583          */
2584         nr_reclaimed = reclaim_high(memcg,
2585                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2586                                     gfp_mask);
2587
2588         /*
2589          * memory.high is breached and reclaim is unable to keep up. Throttle
2590          * allocators proactively to slow down excessive growth.
2591          */
2592         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2593                                                mem_find_max_overage(memcg));
2594
2595         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2596                                                 swap_find_max_overage(memcg));
2597
2598         /*
2599          * Clamp the max delay per usermode return so as to still keep the
2600          * application moving forwards and also permit diagnostics, albeit
2601          * extremely slowly.
2602          */
2603         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2604
2605         /*
2606          * Don't sleep if the amount of jiffies this memcg owes us is so low
2607          * that it's not even worth doing, in an attempt to be nice to those who
2608          * go only a small amount over their memory.high value and maybe haven't
2609          * been aggressively reclaimed enough yet.
2610          */
2611         if (penalty_jiffies <= HZ / 100)
2612                 goto out;
2613
2614         /*
2615          * If reclaim is making forward progress but we're still over
2616          * memory.high, we want to encourage that rather than doing allocator
2617          * throttling.
2618          */
2619         if (nr_reclaimed || nr_retries--) {
2620                 in_retry = true;
2621                 goto retry_reclaim;
2622         }
2623
2624         /*
2625          * If we exit early, we're guaranteed to die (since
2626          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2627          * need to account for any ill-begotten jiffies to pay them off later.
2628          */
2629         psi_memstall_enter(&pflags);
2630         schedule_timeout_killable(penalty_jiffies);
2631         psi_memstall_leave(&pflags);
2632
2633 out:
2634         css_put(&memcg->css);
2635 }
2636
2637 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2638                         unsigned int nr_pages)
2639 {
2640         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2641         int nr_retries = MAX_RECLAIM_RETRIES;
2642         struct mem_cgroup *mem_over_limit;
2643         struct page_counter *counter;
2644         unsigned long nr_reclaimed;
2645         bool passed_oom = false;
2646         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2647         bool drained = false;
2648         bool raised_max_event = false;
2649         unsigned long pflags;
2650
2651 retry:
2652         if (consume_stock(memcg, nr_pages))
2653                 return 0;
2654
2655         if (!do_memsw_account() ||
2656             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2657                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2658                         goto done_restock;
2659                 if (do_memsw_account())
2660                         page_counter_uncharge(&memcg->memsw, batch);
2661                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2662         } else {
2663                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2664                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2665         }
2666
2667         if (batch > nr_pages) {
2668                 batch = nr_pages;
2669                 goto retry;
2670         }
2671
2672         /*
2673          * Prevent unbounded recursion when reclaim operations need to
2674          * allocate memory. This might exceed the limits temporarily,
2675          * but we prefer facilitating memory reclaim and getting back
2676          * under the limit over triggering OOM kills in these cases.
2677          */
2678         if (unlikely(current->flags & PF_MEMALLOC))
2679                 goto force;
2680
2681         if (unlikely(task_in_memcg_oom(current)))
2682                 goto nomem;
2683
2684         if (!gfpflags_allow_blocking(gfp_mask))
2685                 goto nomem;
2686
2687         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2688         raised_max_event = true;
2689
2690         psi_memstall_enter(&pflags);
2691         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2692                                                     gfp_mask, reclaim_options);
2693         psi_memstall_leave(&pflags);
2694
2695         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2696                 goto retry;
2697
2698         if (!drained) {
2699                 drain_all_stock(mem_over_limit);
2700                 drained = true;
2701                 goto retry;
2702         }
2703
2704         if (gfp_mask & __GFP_NORETRY)
2705                 goto nomem;
2706         /*
2707          * Even though the limit is exceeded at this point, reclaim
2708          * may have been able to free some pages.  Retry the charge
2709          * before killing the task.
2710          *
2711          * Only for regular pages, though: huge pages are rather
2712          * unlikely to succeed so close to the limit, and we fall back
2713          * to regular pages anyway in case of failure.
2714          */
2715         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2716                 goto retry;
2717         /*
2718          * At task move, charge accounts can be doubly counted. So, it's
2719          * better to wait until the end of task_move if something is going on.
2720          */
2721         if (mem_cgroup_wait_acct_move(mem_over_limit))
2722                 goto retry;
2723
2724         if (nr_retries--)
2725                 goto retry;
2726
2727         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2728                 goto nomem;
2729
2730         /* Avoid endless loop for tasks bypassed by the oom killer */
2731         if (passed_oom && task_is_dying())
2732                 goto nomem;
2733
2734         /*
2735          * keep retrying as long as the memcg oom killer is able to make
2736          * a forward progress or bypass the charge if the oom killer
2737          * couldn't make any progress.
2738          */
2739         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2740                            get_order(nr_pages * PAGE_SIZE))) {
2741                 passed_oom = true;
2742                 nr_retries = MAX_RECLAIM_RETRIES;
2743                 goto retry;
2744         }
2745 nomem:
2746         /*
2747          * Memcg doesn't have a dedicated reserve for atomic
2748          * allocations. But like the global atomic pool, we need to
2749          * put the burden of reclaim on regular allocation requests
2750          * and let these go through as privileged allocations.
2751          */
2752         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2753                 return -ENOMEM;
2754 force:
2755         /*
2756          * If the allocation has to be enforced, don't forget to raise
2757          * a MEMCG_MAX event.
2758          */
2759         if (!raised_max_event)
2760                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2761
2762         /*
2763          * The allocation either can't fail or will lead to more memory
2764          * being freed very soon.  Allow memory usage go over the limit
2765          * temporarily by force charging it.
2766          */
2767         page_counter_charge(&memcg->memory, nr_pages);
2768         if (do_memsw_account())
2769                 page_counter_charge(&memcg->memsw, nr_pages);
2770
2771         return 0;
2772
2773 done_restock:
2774         if (batch > nr_pages)
2775                 refill_stock(memcg, batch - nr_pages);
2776
2777         /*
2778          * If the hierarchy is above the normal consumption range, schedule
2779          * reclaim on returning to userland.  We can perform reclaim here
2780          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2782          * not recorded as it most likely matches current's and won't
2783          * change in the meantime.  As high limit is checked again before
2784          * reclaim, the cost of mismatch is negligible.
2785          */
2786         do {
2787                 bool mem_high, swap_high;
2788
2789                 mem_high = page_counter_read(&memcg->memory) >
2790                         READ_ONCE(memcg->memory.high);
2791                 swap_high = page_counter_read(&memcg->swap) >
2792                         READ_ONCE(memcg->swap.high);
2793
2794                 /* Don't bother a random interrupted task */
2795                 if (!in_task()) {
2796                         if (mem_high) {
2797                                 schedule_work(&memcg->high_work);
2798                                 break;
2799                         }
2800                         continue;
2801                 }
2802
2803                 if (mem_high || swap_high) {
2804                         /*
2805                          * The allocating tasks in this cgroup will need to do
2806                          * reclaim or be throttled to prevent further growth
2807                          * of the memory or swap footprints.
2808                          *
2809                          * Target some best-effort fairness between the tasks,
2810                          * and distribute reclaim work and delay penalties
2811                          * based on how much each task is actually allocating.
2812                          */
2813                         current->memcg_nr_pages_over_high += batch;
2814                         set_notify_resume(current);
2815                         break;
2816                 }
2817         } while ((memcg = parent_mem_cgroup(memcg)));
2818
2819         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2820             !(current->flags & PF_MEMALLOC) &&
2821             gfpflags_allow_blocking(gfp_mask)) {
2822                 mem_cgroup_handle_over_high(gfp_mask);
2823         }
2824         return 0;
2825 }
2826
2827 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2828                              unsigned int nr_pages)
2829 {
2830         if (mem_cgroup_is_root(memcg))
2831                 return 0;
2832
2833         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2834 }
2835
2836 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2837 {
2838         if (mem_cgroup_is_root(memcg))
2839                 return;
2840
2841         page_counter_uncharge(&memcg->memory, nr_pages);
2842         if (do_memsw_account())
2843                 page_counter_uncharge(&memcg->memsw, nr_pages);
2844 }
2845
2846 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2847 {
2848         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2849         /*
2850          * Any of the following ensures page's memcg stability:
2851          *
2852          * - the page lock
2853          * - LRU isolation
2854          * - folio_memcg_lock()
2855          * - exclusive reference
2856          * - mem_cgroup_trylock_pages()
2857          */
2858         folio->memcg_data = (unsigned long)memcg;
2859 }
2860
2861 #ifdef CONFIG_MEMCG_KMEM
2862 /*
2863  * The allocated objcg pointers array is not accounted directly.
2864  * Moreover, it should not come from DMA buffer and is not readily
2865  * reclaimable. So those GFP bits should be masked off.
2866  */
2867 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | \
2868                                  __GFP_ACCOUNT | __GFP_NOFAIL)
2869
2870 /*
2871  * mod_objcg_mlstate() may be called with irq enabled, so
2872  * mod_memcg_lruvec_state() should be used.
2873  */
2874 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2875                                      struct pglist_data *pgdat,
2876                                      enum node_stat_item idx, int nr)
2877 {
2878         struct mem_cgroup *memcg;
2879         struct lruvec *lruvec;
2880
2881         rcu_read_lock();
2882         memcg = obj_cgroup_memcg(objcg);
2883         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2884         mod_memcg_lruvec_state(lruvec, idx, nr);
2885         rcu_read_unlock();
2886 }
2887
2888 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2889                                  gfp_t gfp, bool new_slab)
2890 {
2891         unsigned int objects = objs_per_slab(s, slab);
2892         unsigned long memcg_data;
2893         void *vec;
2894
2895         gfp &= ~OBJCGS_CLEAR_MASK;
2896         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2897                            slab_nid(slab));
2898         if (!vec)
2899                 return -ENOMEM;
2900
2901         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2902         if (new_slab) {
2903                 /*
2904                  * If the slab is brand new and nobody can yet access its
2905                  * memcg_data, no synchronization is required and memcg_data can
2906                  * be simply assigned.
2907                  */
2908                 slab->memcg_data = memcg_data;
2909         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2910                 /*
2911                  * If the slab is already in use, somebody can allocate and
2912                  * assign obj_cgroups in parallel. In this case the existing
2913                  * objcg vector should be reused.
2914                  */
2915                 kfree(vec);
2916                 return 0;
2917         }
2918
2919         kmemleak_not_leak(vec);
2920         return 0;
2921 }
2922
2923 static __always_inline
2924 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2925 {
2926         /*
2927          * Slab objects are accounted individually, not per-page.
2928          * Memcg membership data for each individual object is saved in
2929          * slab->memcg_data.
2930          */
2931         if (folio_test_slab(folio)) {
2932                 struct obj_cgroup **objcgs;
2933                 struct slab *slab;
2934                 unsigned int off;
2935
2936                 slab = folio_slab(folio);
2937                 objcgs = slab_objcgs(slab);
2938                 if (!objcgs)
2939                         return NULL;
2940
2941                 off = obj_to_index(slab->slab_cache, slab, p);
2942                 if (objcgs[off])
2943                         return obj_cgroup_memcg(objcgs[off]);
2944
2945                 return NULL;
2946         }
2947
2948         /*
2949          * folio_memcg_check() is used here, because in theory we can encounter
2950          * a folio where the slab flag has been cleared already, but
2951          * slab->memcg_data has not been freed yet
2952          * folio_memcg_check() will guarantee that a proper memory
2953          * cgroup pointer or NULL will be returned.
2954          */
2955         return folio_memcg_check(folio);
2956 }
2957
2958 /*
2959  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2960  *
2961  * A passed kernel object can be a slab object, vmalloc object or a generic
2962  * kernel page, so different mechanisms for getting the memory cgroup pointer
2963  * should be used.
2964  *
2965  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2966  * can not know for sure how the kernel object is implemented.
2967  * mem_cgroup_from_obj() can be safely used in such cases.
2968  *
2969  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2970  * cgroup_mutex, etc.
2971  */
2972 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2973 {
2974         struct folio *folio;
2975
2976         if (mem_cgroup_disabled())
2977                 return NULL;
2978
2979         if (unlikely(is_vmalloc_addr(p)))
2980                 folio = page_folio(vmalloc_to_page(p));
2981         else
2982                 folio = virt_to_folio(p);
2983
2984         return mem_cgroup_from_obj_folio(folio, p);
2985 }
2986
2987 /*
2988  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2989  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2990  * allocated using vmalloc().
2991  *
2992  * A passed kernel object must be a slab object or a generic kernel page.
2993  *
2994  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2995  * cgroup_mutex, etc.
2996  */
2997 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2998 {
2999         if (mem_cgroup_disabled())
3000                 return NULL;
3001
3002         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3003 }
3004
3005 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3006 {
3007         struct obj_cgroup *objcg = NULL;
3008
3009         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3010                 objcg = rcu_dereference(memcg->objcg);
3011                 if (objcg && obj_cgroup_tryget(objcg))
3012                         break;
3013                 objcg = NULL;
3014         }
3015         return objcg;
3016 }
3017
3018 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3019 {
3020         struct obj_cgroup *objcg = NULL;
3021         struct mem_cgroup *memcg;
3022
3023         if (memcg_kmem_bypass())
3024                 return NULL;
3025
3026         rcu_read_lock();
3027         if (unlikely(active_memcg()))
3028                 memcg = active_memcg();
3029         else
3030                 memcg = mem_cgroup_from_task(current);
3031         objcg = __get_obj_cgroup_from_memcg(memcg);
3032         rcu_read_unlock();
3033         return objcg;
3034 }
3035
3036 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3037 {
3038         struct obj_cgroup *objcg;
3039
3040         if (!memcg_kmem_online())
3041                 return NULL;
3042
3043         if (folio_memcg_kmem(folio)) {
3044                 objcg = __folio_objcg(folio);
3045                 obj_cgroup_get(objcg);
3046         } else {
3047                 struct mem_cgroup *memcg;
3048
3049                 rcu_read_lock();
3050                 memcg = __folio_memcg(folio);
3051                 if (memcg)
3052                         objcg = __get_obj_cgroup_from_memcg(memcg);
3053                 else
3054                         objcg = NULL;
3055                 rcu_read_unlock();
3056         }
3057         return objcg;
3058 }
3059
3060 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3061 {
3062         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3063         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3064                 if (nr_pages > 0)
3065                         page_counter_charge(&memcg->kmem, nr_pages);
3066                 else
3067                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3068         }
3069 }
3070
3071
3072 /*
3073  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3074  * @objcg: object cgroup to uncharge
3075  * @nr_pages: number of pages to uncharge
3076  */
3077 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3078                                       unsigned int nr_pages)
3079 {
3080         struct mem_cgroup *memcg;
3081
3082         memcg = get_mem_cgroup_from_objcg(objcg);
3083
3084         memcg_account_kmem(memcg, -nr_pages);
3085         refill_stock(memcg, nr_pages);
3086
3087         css_put(&memcg->css);
3088 }
3089
3090 /*
3091  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3092  * @objcg: object cgroup to charge
3093  * @gfp: reclaim mode
3094  * @nr_pages: number of pages to charge
3095  *
3096  * Returns 0 on success, an error code on failure.
3097  */
3098 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3099                                    unsigned int nr_pages)
3100 {
3101         struct mem_cgroup *memcg;
3102         int ret;
3103
3104         memcg = get_mem_cgroup_from_objcg(objcg);
3105
3106         ret = try_charge_memcg(memcg, gfp, nr_pages);
3107         if (ret)
3108                 goto out;
3109
3110         memcg_account_kmem(memcg, nr_pages);
3111 out:
3112         css_put(&memcg->css);
3113
3114         return ret;
3115 }
3116
3117 /**
3118  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3119  * @page: page to charge
3120  * @gfp: reclaim mode
3121  * @order: allocation order
3122  *
3123  * Returns 0 on success, an error code on failure.
3124  */
3125 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3126 {
3127         struct obj_cgroup *objcg;
3128         int ret = 0;
3129
3130         objcg = get_obj_cgroup_from_current();
3131         if (objcg) {
3132                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3133                 if (!ret) {
3134                         page->memcg_data = (unsigned long)objcg |
3135                                 MEMCG_DATA_KMEM;
3136                         return 0;
3137                 }
3138                 obj_cgroup_put(objcg);
3139         }
3140         return ret;
3141 }
3142
3143 /**
3144  * __memcg_kmem_uncharge_page: uncharge a kmem page
3145  * @page: page to uncharge
3146  * @order: allocation order
3147  */
3148 void __memcg_kmem_uncharge_page(struct page *page, int order)
3149 {
3150         struct folio *folio = page_folio(page);
3151         struct obj_cgroup *objcg;
3152         unsigned int nr_pages = 1 << order;
3153
3154         if (!folio_memcg_kmem(folio))
3155                 return;
3156
3157         objcg = __folio_objcg(folio);
3158         obj_cgroup_uncharge_pages(objcg, nr_pages);
3159         folio->memcg_data = 0;
3160         obj_cgroup_put(objcg);
3161 }
3162
3163 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3164                      enum node_stat_item idx, int nr)
3165 {
3166         struct memcg_stock_pcp *stock;
3167         struct obj_cgroup *old = NULL;
3168         unsigned long flags;
3169         int *bytes;
3170
3171         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3172         stock = this_cpu_ptr(&memcg_stock);
3173
3174         /*
3175          * Save vmstat data in stock and skip vmstat array update unless
3176          * accumulating over a page of vmstat data or when pgdat or idx
3177          * changes.
3178          */
3179         if (READ_ONCE(stock->cached_objcg) != objcg) {
3180                 old = drain_obj_stock(stock);
3181                 obj_cgroup_get(objcg);
3182                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3183                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3184                 WRITE_ONCE(stock->cached_objcg, objcg);
3185                 stock->cached_pgdat = pgdat;
3186         } else if (stock->cached_pgdat != pgdat) {
3187                 /* Flush the existing cached vmstat data */
3188                 struct pglist_data *oldpg = stock->cached_pgdat;
3189
3190                 if (stock->nr_slab_reclaimable_b) {
3191                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3192                                           stock->nr_slab_reclaimable_b);
3193                         stock->nr_slab_reclaimable_b = 0;
3194                 }
3195                 if (stock->nr_slab_unreclaimable_b) {
3196                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3197                                           stock->nr_slab_unreclaimable_b);
3198                         stock->nr_slab_unreclaimable_b = 0;
3199                 }
3200                 stock->cached_pgdat = pgdat;
3201         }
3202
3203         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3204                                                : &stock->nr_slab_unreclaimable_b;
3205         /*
3206          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3207          * cached locally at least once before pushing it out.
3208          */
3209         if (!*bytes) {
3210                 *bytes = nr;
3211                 nr = 0;
3212         } else {
3213                 *bytes += nr;
3214                 if (abs(*bytes) > PAGE_SIZE) {
3215                         nr = *bytes;
3216                         *bytes = 0;
3217                 } else {
3218                         nr = 0;
3219                 }
3220         }
3221         if (nr)
3222                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3223
3224         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3225         if (old)
3226                 obj_cgroup_put(old);
3227 }
3228
3229 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3230 {
3231         struct memcg_stock_pcp *stock;
3232         unsigned long flags;
3233         bool ret = false;
3234
3235         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3236
3237         stock = this_cpu_ptr(&memcg_stock);
3238         if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3239                 stock->nr_bytes -= nr_bytes;
3240                 ret = true;
3241         }
3242
3243         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3244
3245         return ret;
3246 }
3247
3248 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3249 {
3250         struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3251
3252         if (!old)
3253                 return NULL;
3254
3255         if (stock->nr_bytes) {
3256                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3257                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3258
3259                 if (nr_pages) {
3260                         struct mem_cgroup *memcg;
3261
3262                         memcg = get_mem_cgroup_from_objcg(old);
3263
3264                         memcg_account_kmem(memcg, -nr_pages);
3265                         __refill_stock(memcg, nr_pages);
3266
3267                         css_put(&memcg->css);
3268                 }
3269
3270                 /*
3271                  * The leftover is flushed to the centralized per-memcg value.
3272                  * On the next attempt to refill obj stock it will be moved
3273                  * to a per-cpu stock (probably, on an other CPU), see
3274                  * refill_obj_stock().
3275                  *
3276                  * How often it's flushed is a trade-off between the memory
3277                  * limit enforcement accuracy and potential CPU contention,
3278                  * so it might be changed in the future.
3279                  */
3280                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3281                 stock->nr_bytes = 0;
3282         }
3283
3284         /*
3285          * Flush the vmstat data in current stock
3286          */
3287         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3288                 if (stock->nr_slab_reclaimable_b) {
3289                         mod_objcg_mlstate(old, stock->cached_pgdat,
3290                                           NR_SLAB_RECLAIMABLE_B,
3291                                           stock->nr_slab_reclaimable_b);
3292                         stock->nr_slab_reclaimable_b = 0;
3293                 }
3294                 if (stock->nr_slab_unreclaimable_b) {
3295                         mod_objcg_mlstate(old, stock->cached_pgdat,
3296                                           NR_SLAB_UNRECLAIMABLE_B,
3297                                           stock->nr_slab_unreclaimable_b);
3298                         stock->nr_slab_unreclaimable_b = 0;
3299                 }
3300                 stock->cached_pgdat = NULL;
3301         }
3302
3303         WRITE_ONCE(stock->cached_objcg, NULL);
3304         /*
3305          * The `old' objects needs to be released by the caller via
3306          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3307          */
3308         return old;
3309 }
3310
3311 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3312                                      struct mem_cgroup *root_memcg)
3313 {
3314         struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3315         struct mem_cgroup *memcg;
3316
3317         if (objcg) {
3318                 memcg = obj_cgroup_memcg(objcg);
3319                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3320                         return true;
3321         }
3322
3323         return false;
3324 }
3325
3326 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3327                              bool allow_uncharge)
3328 {
3329         struct memcg_stock_pcp *stock;
3330         struct obj_cgroup *old = NULL;
3331         unsigned long flags;
3332         unsigned int nr_pages = 0;
3333
3334         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3335
3336         stock = this_cpu_ptr(&memcg_stock);
3337         if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3338                 old = drain_obj_stock(stock);
3339                 obj_cgroup_get(objcg);
3340                 WRITE_ONCE(stock->cached_objcg, objcg);
3341                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3342                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3343                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3344         }
3345         stock->nr_bytes += nr_bytes;
3346
3347         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3348                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3349                 stock->nr_bytes &= (PAGE_SIZE - 1);
3350         }
3351
3352         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3353         if (old)
3354                 obj_cgroup_put(old);
3355
3356         if (nr_pages)
3357                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3358 }
3359
3360 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3361 {
3362         unsigned int nr_pages, nr_bytes;
3363         int ret;
3364
3365         if (consume_obj_stock(objcg, size))
3366                 return 0;
3367
3368         /*
3369          * In theory, objcg->nr_charged_bytes can have enough
3370          * pre-charged bytes to satisfy the allocation. However,
3371          * flushing objcg->nr_charged_bytes requires two atomic
3372          * operations, and objcg->nr_charged_bytes can't be big.
3373          * The shared objcg->nr_charged_bytes can also become a
3374          * performance bottleneck if all tasks of the same memcg are
3375          * trying to update it. So it's better to ignore it and try
3376          * grab some new pages. The stock's nr_bytes will be flushed to
3377          * objcg->nr_charged_bytes later on when objcg changes.
3378          *
3379          * The stock's nr_bytes may contain enough pre-charged bytes
3380          * to allow one less page from being charged, but we can't rely
3381          * on the pre-charged bytes not being changed outside of
3382          * consume_obj_stock() or refill_obj_stock(). So ignore those
3383          * pre-charged bytes as well when charging pages. To avoid a
3384          * page uncharge right after a page charge, we set the
3385          * allow_uncharge flag to false when calling refill_obj_stock()
3386          * to temporarily allow the pre-charged bytes to exceed the page
3387          * size limit. The maximum reachable value of the pre-charged
3388          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3389          * race.
3390          */
3391         nr_pages = size >> PAGE_SHIFT;
3392         nr_bytes = size & (PAGE_SIZE - 1);
3393
3394         if (nr_bytes)
3395                 nr_pages += 1;
3396
3397         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3398         if (!ret && nr_bytes)
3399                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3400
3401         return ret;
3402 }
3403
3404 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3405 {
3406         refill_obj_stock(objcg, size, true);
3407 }
3408
3409 #endif /* CONFIG_MEMCG_KMEM */
3410
3411 /*
3412  * Because page_memcg(head) is not set on tails, set it now.
3413  */
3414 void split_page_memcg(struct page *head, unsigned int nr)
3415 {
3416         struct folio *folio = page_folio(head);
3417         struct mem_cgroup *memcg = folio_memcg(folio);
3418         int i;
3419
3420         if (mem_cgroup_disabled() || !memcg)
3421                 return;
3422
3423         for (i = 1; i < nr; i++)
3424                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3425
3426         if (folio_memcg_kmem(folio))
3427                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3428         else
3429                 css_get_many(&memcg->css, nr - 1);
3430 }
3431
3432 #ifdef CONFIG_SWAP
3433 /**
3434  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3435  * @entry: swap entry to be moved
3436  * @from:  mem_cgroup which the entry is moved from
3437  * @to:  mem_cgroup which the entry is moved to
3438  *
3439  * It succeeds only when the swap_cgroup's record for this entry is the same
3440  * as the mem_cgroup's id of @from.
3441  *
3442  * Returns 0 on success, -EINVAL on failure.
3443  *
3444  * The caller must have charged to @to, IOW, called page_counter_charge() about
3445  * both res and memsw, and called css_get().
3446  */
3447 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3448                                 struct mem_cgroup *from, struct mem_cgroup *to)
3449 {
3450         unsigned short old_id, new_id;
3451
3452         old_id = mem_cgroup_id(from);
3453         new_id = mem_cgroup_id(to);
3454
3455         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3456                 mod_memcg_state(from, MEMCG_SWAP, -1);
3457                 mod_memcg_state(to, MEMCG_SWAP, 1);
3458                 return 0;
3459         }
3460         return -EINVAL;
3461 }
3462 #else
3463 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3464                                 struct mem_cgroup *from, struct mem_cgroup *to)
3465 {
3466         return -EINVAL;
3467 }
3468 #endif
3469
3470 static DEFINE_MUTEX(memcg_max_mutex);
3471
3472 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3473                                  unsigned long max, bool memsw)
3474 {
3475         bool enlarge = false;
3476         bool drained = false;
3477         int ret;
3478         bool limits_invariant;
3479         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3480
3481         do {
3482                 if (signal_pending(current)) {
3483                         ret = -EINTR;
3484                         break;
3485                 }
3486
3487                 mutex_lock(&memcg_max_mutex);
3488                 /*
3489                  * Make sure that the new limit (memsw or memory limit) doesn't
3490                  * break our basic invariant rule memory.max <= memsw.max.
3491                  */
3492                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3493                                            max <= memcg->memsw.max;
3494                 if (!limits_invariant) {
3495                         mutex_unlock(&memcg_max_mutex);
3496                         ret = -EINVAL;
3497                         break;
3498                 }
3499                 if (max > counter->max)
3500                         enlarge = true;
3501                 ret = page_counter_set_max(counter, max);
3502                 mutex_unlock(&memcg_max_mutex);
3503
3504                 if (!ret)
3505                         break;
3506
3507                 if (!drained) {
3508                         drain_all_stock(memcg);
3509                         drained = true;
3510                         continue;
3511                 }
3512
3513                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3514                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3515                         ret = -EBUSY;
3516                         break;
3517                 }
3518         } while (true);
3519
3520         if (!ret && enlarge)
3521                 memcg_oom_recover(memcg);
3522
3523         return ret;
3524 }
3525
3526 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3527                                             gfp_t gfp_mask,
3528                                             unsigned long *total_scanned)
3529 {
3530         unsigned long nr_reclaimed = 0;
3531         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3532         unsigned long reclaimed;
3533         int loop = 0;
3534         struct mem_cgroup_tree_per_node *mctz;
3535         unsigned long excess;
3536
3537         if (lru_gen_enabled())
3538                 return 0;
3539
3540         if (order > 0)
3541                 return 0;
3542
3543         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3544
3545         /*
3546          * Do not even bother to check the largest node if the root
3547          * is empty. Do it lockless to prevent lock bouncing. Races
3548          * are acceptable as soft limit is best effort anyway.
3549          */
3550         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3551                 return 0;
3552
3553         /*
3554          * This loop can run a while, specially if mem_cgroup's continuously
3555          * keep exceeding their soft limit and putting the system under
3556          * pressure
3557          */
3558         do {
3559                 if (next_mz)
3560                         mz = next_mz;
3561                 else
3562                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3563                 if (!mz)
3564                         break;
3565
3566                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3567                                                     gfp_mask, total_scanned);
3568                 nr_reclaimed += reclaimed;
3569                 spin_lock_irq(&mctz->lock);
3570
3571                 /*
3572                  * If we failed to reclaim anything from this memory cgroup
3573                  * it is time to move on to the next cgroup
3574                  */
3575                 next_mz = NULL;
3576                 if (!reclaimed)
3577                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3578
3579                 excess = soft_limit_excess(mz->memcg);
3580                 /*
3581                  * One school of thought says that we should not add
3582                  * back the node to the tree if reclaim returns 0.
3583                  * But our reclaim could return 0, simply because due
3584                  * to priority we are exposing a smaller subset of
3585                  * memory to reclaim from. Consider this as a longer
3586                  * term TODO.
3587                  */
3588                 /* If excess == 0, no tree ops */
3589                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3590                 spin_unlock_irq(&mctz->lock);
3591                 css_put(&mz->memcg->css);
3592                 loop++;
3593                 /*
3594                  * Could not reclaim anything and there are no more
3595                  * mem cgroups to try or we seem to be looping without
3596                  * reclaiming anything.
3597                  */
3598                 if (!nr_reclaimed &&
3599                         (next_mz == NULL ||
3600                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3601                         break;
3602         } while (!nr_reclaimed);
3603         if (next_mz)
3604                 css_put(&next_mz->memcg->css);
3605         return nr_reclaimed;
3606 }
3607
3608 /*
3609  * Reclaims as many pages from the given memcg as possible.
3610  *
3611  * Caller is responsible for holding css reference for memcg.
3612  */
3613 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3614 {
3615         int nr_retries = MAX_RECLAIM_RETRIES;
3616
3617         /* we call try-to-free pages for make this cgroup empty */
3618         lru_add_drain_all();
3619
3620         drain_all_stock(memcg);
3621
3622         /* try to free all pages in this cgroup */
3623         while (nr_retries && page_counter_read(&memcg->memory)) {
3624                 if (signal_pending(current))
3625                         return -EINTR;
3626
3627                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3628                                                   MEMCG_RECLAIM_MAY_SWAP))
3629                         nr_retries--;
3630         }
3631
3632         return 0;
3633 }
3634
3635 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3636                                             char *buf, size_t nbytes,
3637                                             loff_t off)
3638 {
3639         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3640
3641         if (mem_cgroup_is_root(memcg))
3642                 return -EINVAL;
3643         return mem_cgroup_force_empty(memcg) ?: nbytes;
3644 }
3645
3646 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3647                                      struct cftype *cft)
3648 {
3649         return 1;
3650 }
3651
3652 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3653                                       struct cftype *cft, u64 val)
3654 {
3655         if (val == 1)
3656                 return 0;
3657
3658         pr_warn_once("Non-hierarchical mode is deprecated. "
3659                      "Please report your usecase to linux-mm@kvack.org if you "
3660                      "depend on this functionality.\n");
3661
3662         return -EINVAL;
3663 }
3664
3665 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3666 {
3667         unsigned long val;
3668
3669         if (mem_cgroup_is_root(memcg)) {
3670                 /*
3671                  * Approximate root's usage from global state. This isn't
3672                  * perfect, but the root usage was always an approximation.
3673                  */
3674                 val = global_node_page_state(NR_FILE_PAGES) +
3675                         global_node_page_state(NR_ANON_MAPPED);
3676                 if (swap)
3677                         val += total_swap_pages - get_nr_swap_pages();
3678         } else {
3679                 if (!swap)
3680                         val = page_counter_read(&memcg->memory);
3681                 else
3682                         val = page_counter_read(&memcg->memsw);
3683         }
3684         return val;
3685 }
3686
3687 enum {
3688         RES_USAGE,
3689         RES_LIMIT,
3690         RES_MAX_USAGE,
3691         RES_FAILCNT,
3692         RES_SOFT_LIMIT,
3693 };
3694
3695 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3696                                struct cftype *cft)
3697 {
3698         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3699         struct page_counter *counter;
3700
3701         switch (MEMFILE_TYPE(cft->private)) {
3702         case _MEM:
3703                 counter = &memcg->memory;
3704                 break;
3705         case _MEMSWAP:
3706                 counter = &memcg->memsw;
3707                 break;
3708         case _KMEM:
3709                 counter = &memcg->kmem;
3710                 break;
3711         case _TCP:
3712                 counter = &memcg->tcpmem;
3713                 break;
3714         default:
3715                 BUG();
3716         }
3717
3718         switch (MEMFILE_ATTR(cft->private)) {
3719         case RES_USAGE:
3720                 if (counter == &memcg->memory)
3721                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3722                 if (counter == &memcg->memsw)
3723                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3724                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3725         case RES_LIMIT:
3726                 return (u64)counter->max * PAGE_SIZE;
3727         case RES_MAX_USAGE:
3728                 return (u64)counter->watermark * PAGE_SIZE;
3729         case RES_FAILCNT:
3730                 return counter->failcnt;
3731         case RES_SOFT_LIMIT:
3732                 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3733         default:
3734                 BUG();
3735         }
3736 }
3737
3738 /*
3739  * This function doesn't do anything useful. Its only job is to provide a read
3740  * handler for a file so that cgroup_file_mode() will add read permissions.
3741  */
3742 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3743                                      __always_unused void *v)
3744 {
3745         return -EINVAL;
3746 }
3747
3748 #ifdef CONFIG_MEMCG_KMEM
3749 static int memcg_online_kmem(struct mem_cgroup *memcg)
3750 {
3751         struct obj_cgroup *objcg;
3752
3753         if (mem_cgroup_kmem_disabled())
3754                 return 0;
3755
3756         if (unlikely(mem_cgroup_is_root(memcg)))
3757                 return 0;
3758
3759         objcg = obj_cgroup_alloc();
3760         if (!objcg)
3761                 return -ENOMEM;
3762
3763         objcg->memcg = memcg;
3764         rcu_assign_pointer(memcg->objcg, objcg);
3765
3766         static_branch_enable(&memcg_kmem_online_key);
3767
3768         memcg->kmemcg_id = memcg->id.id;
3769
3770         return 0;
3771 }
3772
3773 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3774 {
3775         struct mem_cgroup *parent;
3776
3777         if (mem_cgroup_kmem_disabled())
3778                 return;
3779
3780         if (unlikely(mem_cgroup_is_root(memcg)))
3781                 return;
3782
3783         parent = parent_mem_cgroup(memcg);
3784         if (!parent)
3785                 parent = root_mem_cgroup;
3786
3787         memcg_reparent_objcgs(memcg, parent);
3788
3789         /*
3790          * After we have finished memcg_reparent_objcgs(), all list_lrus
3791          * corresponding to this cgroup are guaranteed to remain empty.
3792          * The ordering is imposed by list_lru_node->lock taken by
3793          * memcg_reparent_list_lrus().
3794          */
3795         memcg_reparent_list_lrus(memcg, parent);
3796 }
3797 #else
3798 static int memcg_online_kmem(struct mem_cgroup *memcg)
3799 {
3800         return 0;
3801 }
3802 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3803 {
3804 }
3805 #endif /* CONFIG_MEMCG_KMEM */
3806
3807 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3808 {
3809         int ret;
3810
3811         mutex_lock(&memcg_max_mutex);
3812
3813         ret = page_counter_set_max(&memcg->tcpmem, max);
3814         if (ret)
3815                 goto out;
3816
3817         if (!memcg->tcpmem_active) {
3818                 /*
3819                  * The active flag needs to be written after the static_key
3820                  * update. This is what guarantees that the socket activation
3821                  * function is the last one to run. See mem_cgroup_sk_alloc()
3822                  * for details, and note that we don't mark any socket as
3823                  * belonging to this memcg until that flag is up.
3824                  *
3825                  * We need to do this, because static_keys will span multiple
3826                  * sites, but we can't control their order. If we mark a socket
3827                  * as accounted, but the accounting functions are not patched in
3828                  * yet, we'll lose accounting.
3829                  *
3830                  * We never race with the readers in mem_cgroup_sk_alloc(),
3831                  * because when this value change, the code to process it is not
3832                  * patched in yet.
3833                  */
3834                 static_branch_inc(&memcg_sockets_enabled_key);
3835                 memcg->tcpmem_active = true;
3836         }
3837 out:
3838         mutex_unlock(&memcg_max_mutex);
3839         return ret;
3840 }
3841
3842 /*
3843  * The user of this function is...
3844  * RES_LIMIT.
3845  */
3846 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3847                                 char *buf, size_t nbytes, loff_t off)
3848 {
3849         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3850         unsigned long nr_pages;
3851         int ret;
3852
3853         buf = strstrip(buf);
3854         ret = page_counter_memparse(buf, "-1", &nr_pages);
3855         if (ret)
3856                 return ret;
3857
3858         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3859         case RES_LIMIT:
3860                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3861                         ret = -EINVAL;
3862                         break;
3863                 }
3864                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3865                 case _MEM:
3866                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3867                         break;
3868                 case _MEMSWAP:
3869                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3870                         break;
3871                 case _KMEM:
3872                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3873                                      "Writing any value to this file has no effect. "
3874                                      "Please report your usecase to linux-mm@kvack.org if you "
3875                                      "depend on this functionality.\n");
3876                         ret = 0;
3877                         break;
3878                 case _TCP:
3879                         ret = memcg_update_tcp_max(memcg, nr_pages);
3880                         break;
3881                 }
3882                 break;
3883         case RES_SOFT_LIMIT:
3884                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3885                         ret = -EOPNOTSUPP;
3886                 } else {
3887                         WRITE_ONCE(memcg->soft_limit, nr_pages);
3888                         ret = 0;
3889                 }
3890                 break;
3891         }
3892         return ret ?: nbytes;
3893 }
3894
3895 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3896                                 size_t nbytes, loff_t off)
3897 {
3898         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3899         struct page_counter *counter;
3900
3901         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3902         case _MEM:
3903                 counter = &memcg->memory;
3904                 break;
3905         case _MEMSWAP:
3906                 counter = &memcg->memsw;
3907                 break;
3908         case _KMEM:
3909                 counter = &memcg->kmem;
3910                 break;
3911         case _TCP:
3912                 counter = &memcg->tcpmem;
3913                 break;
3914         default:
3915                 BUG();
3916         }
3917
3918         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3919         case RES_MAX_USAGE:
3920                 page_counter_reset_watermark(counter);
3921                 break;
3922         case RES_FAILCNT:
3923                 counter->failcnt = 0;
3924                 break;
3925         default:
3926                 BUG();
3927         }
3928
3929         return nbytes;
3930 }
3931
3932 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3933                                         struct cftype *cft)
3934 {
3935         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3936 }
3937
3938 #ifdef CONFIG_MMU
3939 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3940                                         struct cftype *cft, u64 val)
3941 {
3942         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3943
3944         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3945                      "Please report your usecase to linux-mm@kvack.org if you "
3946                      "depend on this functionality.\n");
3947
3948         if (val & ~MOVE_MASK)
3949                 return -EINVAL;
3950
3951         /*
3952          * No kind of locking is needed in here, because ->can_attach() will
3953          * check this value once in the beginning of the process, and then carry
3954          * on with stale data. This means that changes to this value will only
3955          * affect task migrations starting after the change.
3956          */
3957         memcg->move_charge_at_immigrate = val;
3958         return 0;
3959 }
3960 #else
3961 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3962                                         struct cftype *cft, u64 val)
3963 {
3964         return -ENOSYS;
3965 }
3966 #endif
3967
3968 #ifdef CONFIG_NUMA
3969
3970 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3971 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3972 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3973
3974 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3975                                 int nid, unsigned int lru_mask, bool tree)
3976 {
3977         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3978         unsigned long nr = 0;
3979         enum lru_list lru;
3980
3981         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3982
3983         for_each_lru(lru) {
3984                 if (!(BIT(lru) & lru_mask))
3985                         continue;
3986                 if (tree)
3987                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3988                 else
3989                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3990         }
3991         return nr;
3992 }
3993
3994 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3995                                              unsigned int lru_mask,
3996                                              bool tree)
3997 {
3998         unsigned long nr = 0;
3999         enum lru_list lru;
4000
4001         for_each_lru(lru) {
4002                 if (!(BIT(lru) & lru_mask))
4003                         continue;
4004                 if (tree)
4005                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4006                 else
4007                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4008         }
4009         return nr;
4010 }
4011
4012 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4013 {
4014         struct numa_stat {
4015                 const char *name;
4016                 unsigned int lru_mask;
4017         };
4018
4019         static const struct numa_stat stats[] = {
4020                 { "total", LRU_ALL },
4021                 { "file", LRU_ALL_FILE },
4022                 { "anon", LRU_ALL_ANON },
4023                 { "unevictable", BIT(LRU_UNEVICTABLE) },
4024         };
4025         const struct numa_stat *stat;
4026         int nid;
4027         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4028
4029         mem_cgroup_flush_stats();
4030
4031         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4032                 seq_printf(m, "%s=%lu", stat->name,
4033                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4034                                                    false));
4035                 for_each_node_state(nid, N_MEMORY)
4036                         seq_printf(m, " N%d=%lu", nid,
4037                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4038                                                         stat->lru_mask, false));
4039                 seq_putc(m, '\n');
4040         }
4041
4042         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4043
4044                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4045                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4046                                                    true));
4047                 for_each_node_state(nid, N_MEMORY)
4048                         seq_printf(m, " N%d=%lu", nid,
4049                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4050                                                         stat->lru_mask, true));
4051                 seq_putc(m, '\n');
4052         }
4053
4054         return 0;
4055 }
4056 #endif /* CONFIG_NUMA */
4057
4058 static const unsigned int memcg1_stats[] = {
4059         NR_FILE_PAGES,
4060         NR_ANON_MAPPED,
4061 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4062         NR_ANON_THPS,
4063 #endif
4064         NR_SHMEM,
4065         NR_FILE_MAPPED,
4066         NR_FILE_DIRTY,
4067         NR_WRITEBACK,
4068         WORKINGSET_REFAULT_ANON,
4069         WORKINGSET_REFAULT_FILE,
4070         MEMCG_SWAP,
4071 };
4072
4073 static const char *const memcg1_stat_names[] = {
4074         "cache",
4075         "rss",
4076 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4077         "rss_huge",
4078 #endif
4079         "shmem",
4080         "mapped_file",
4081         "dirty",
4082         "writeback",
4083         "workingset_refault_anon",
4084         "workingset_refault_file",
4085         "swap",
4086 };
4087
4088 /* Universal VM events cgroup1 shows, original sort order */
4089 static const unsigned int memcg1_events[] = {
4090         PGPGIN,
4091         PGPGOUT,
4092         PGFAULT,
4093         PGMAJFAULT,
4094 };
4095
4096 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4097 {
4098         unsigned long memory, memsw;
4099         struct mem_cgroup *mi;
4100         unsigned int i;
4101
4102         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4103
4104         mem_cgroup_flush_stats();
4105
4106         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4107                 unsigned long nr;
4108
4109                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4110                         continue;
4111                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4112                 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4113                            nr * memcg_page_state_unit(memcg1_stats[i]));
4114         }
4115
4116         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4117                 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4118                                memcg_events_local(memcg, memcg1_events[i]));
4119
4120         for (i = 0; i < NR_LRU_LISTS; i++)
4121                 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4122                                memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4123                                PAGE_SIZE);
4124
4125         /* Hierarchical information */
4126         memory = memsw = PAGE_COUNTER_MAX;
4127         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4128                 memory = min(memory, READ_ONCE(mi->memory.max));
4129                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4130         }
4131         seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4132                        (u64)memory * PAGE_SIZE);
4133         if (do_memsw_account())
4134                 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4135                                (u64)memsw * PAGE_SIZE);
4136
4137         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4138                 unsigned long nr;
4139
4140                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4141                         continue;
4142                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4143                 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4144                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4145         }
4146
4147         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4148                 seq_buf_printf(s, "total_%s %llu\n",
4149                                vm_event_name(memcg1_events[i]),
4150                                (u64)memcg_events(memcg, memcg1_events[i]));
4151
4152         for (i = 0; i < NR_LRU_LISTS; i++)
4153                 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4154                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4155                                PAGE_SIZE);
4156
4157 #ifdef CONFIG_DEBUG_VM
4158         {
4159                 pg_data_t *pgdat;
4160                 struct mem_cgroup_per_node *mz;
4161                 unsigned long anon_cost = 0;
4162                 unsigned long file_cost = 0;
4163
4164                 for_each_online_pgdat(pgdat) {
4165                         mz = memcg->nodeinfo[pgdat->node_id];
4166
4167                         anon_cost += mz->lruvec.anon_cost;
4168                         file_cost += mz->lruvec.file_cost;
4169                 }
4170                 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4171                 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4172         }
4173 #endif
4174 }
4175
4176 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4177                                       struct cftype *cft)
4178 {
4179         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4180
4181         return mem_cgroup_swappiness(memcg);
4182 }
4183
4184 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4185                                        struct cftype *cft, u64 val)
4186 {
4187         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4188
4189         if (val > 200)
4190                 return -EINVAL;
4191
4192         if (!mem_cgroup_is_root(memcg))
4193                 WRITE_ONCE(memcg->swappiness, val);
4194         else
4195                 WRITE_ONCE(vm_swappiness, val);
4196
4197         return 0;
4198 }
4199
4200 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4201 {
4202         struct mem_cgroup_threshold_ary *t;
4203         unsigned long usage;
4204         int i;
4205
4206         rcu_read_lock();
4207         if (!swap)
4208                 t = rcu_dereference(memcg->thresholds.primary);
4209         else
4210                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4211
4212         if (!t)
4213                 goto unlock;
4214
4215         usage = mem_cgroup_usage(memcg, swap);
4216
4217         /*
4218          * current_threshold points to threshold just below or equal to usage.
4219          * If it's not true, a threshold was crossed after last
4220          * call of __mem_cgroup_threshold().
4221          */
4222         i = t->current_threshold;
4223
4224         /*
4225          * Iterate backward over array of thresholds starting from
4226          * current_threshold and check if a threshold is crossed.
4227          * If none of thresholds below usage is crossed, we read
4228          * only one element of the array here.
4229          */
4230         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4231                 eventfd_signal(t->entries[i].eventfd, 1);
4232
4233         /* i = current_threshold + 1 */
4234         i++;
4235
4236         /*
4237          * Iterate forward over array of thresholds starting from
4238          * current_threshold+1 and check if a threshold is crossed.
4239          * If none of thresholds above usage is crossed, we read
4240          * only one element of the array here.
4241          */
4242         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4243                 eventfd_signal(t->entries[i].eventfd, 1);
4244
4245         /* Update current_threshold */
4246         t->current_threshold = i - 1;
4247 unlock:
4248         rcu_read_unlock();
4249 }
4250
4251 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4252 {
4253         while (memcg) {
4254                 __mem_cgroup_threshold(memcg, false);
4255                 if (do_memsw_account())
4256                         __mem_cgroup_threshold(memcg, true);
4257
4258                 memcg = parent_mem_cgroup(memcg);
4259         }
4260 }
4261
4262 static int compare_thresholds(const void *a, const void *b)
4263 {
4264         const struct mem_cgroup_threshold *_a = a;
4265         const struct mem_cgroup_threshold *_b = b;
4266
4267         if (_a->threshold > _b->threshold)
4268                 return 1;
4269
4270         if (_a->threshold < _b->threshold)
4271                 return -1;
4272
4273         return 0;
4274 }
4275
4276 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4277 {
4278         struct mem_cgroup_eventfd_list *ev;
4279
4280         spin_lock(&memcg_oom_lock);
4281
4282         list_for_each_entry(ev, &memcg->oom_notify, list)
4283                 eventfd_signal(ev->eventfd, 1);
4284
4285         spin_unlock(&memcg_oom_lock);
4286         return 0;
4287 }
4288
4289 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4290 {
4291         struct mem_cgroup *iter;
4292
4293         for_each_mem_cgroup_tree(iter, memcg)
4294                 mem_cgroup_oom_notify_cb(iter);
4295 }
4296
4297 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4298         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4299 {
4300         struct mem_cgroup_thresholds *thresholds;
4301         struct mem_cgroup_threshold_ary *new;
4302         unsigned long threshold;
4303         unsigned long usage;
4304         int i, size, ret;
4305
4306         ret = page_counter_memparse(args, "-1", &threshold);
4307         if (ret)
4308                 return ret;
4309
4310         mutex_lock(&memcg->thresholds_lock);
4311
4312         if (type == _MEM) {
4313                 thresholds = &memcg->thresholds;
4314                 usage = mem_cgroup_usage(memcg, false);
4315         } else if (type == _MEMSWAP) {
4316                 thresholds = &memcg->memsw_thresholds;
4317                 usage = mem_cgroup_usage(memcg, true);
4318         } else
4319                 BUG();
4320
4321         /* Check if a threshold crossed before adding a new one */
4322         if (thresholds->primary)
4323                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4324
4325         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4326
4327         /* Allocate memory for new array of thresholds */
4328         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4329         if (!new) {
4330                 ret = -ENOMEM;
4331                 goto unlock;
4332         }
4333         new->size = size;
4334
4335         /* Copy thresholds (if any) to new array */
4336         if (thresholds->primary)
4337                 memcpy(new->entries, thresholds->primary->entries,
4338                        flex_array_size(new, entries, size - 1));
4339
4340         /* Add new threshold */
4341         new->entries[size - 1].eventfd = eventfd;
4342         new->entries[size - 1].threshold = threshold;
4343
4344         /* Sort thresholds. Registering of new threshold isn't time-critical */
4345         sort(new->entries, size, sizeof(*new->entries),
4346                         compare_thresholds, NULL);
4347
4348         /* Find current threshold */
4349         new->current_threshold = -1;
4350         for (i = 0; i < size; i++) {
4351                 if (new->entries[i].threshold <= usage) {
4352                         /*
4353                          * new->current_threshold will not be used until
4354                          * rcu_assign_pointer(), so it's safe to increment
4355                          * it here.
4356                          */
4357                         ++new->current_threshold;
4358                 } else
4359                         break;
4360         }
4361
4362         /* Free old spare buffer and save old primary buffer as spare */
4363         kfree(thresholds->spare);
4364         thresholds->spare = thresholds->primary;
4365
4366         rcu_assign_pointer(thresholds->primary, new);
4367
4368         /* To be sure that nobody uses thresholds */
4369         synchronize_rcu();
4370
4371 unlock:
4372         mutex_unlock(&memcg->thresholds_lock);
4373
4374         return ret;
4375 }
4376
4377 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4378         struct eventfd_ctx *eventfd, const char *args)
4379 {
4380         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4381 }
4382
4383 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4384         struct eventfd_ctx *eventfd, const char *args)
4385 {
4386         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4387 }
4388
4389 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4390         struct eventfd_ctx *eventfd, enum res_type type)
4391 {
4392         struct mem_cgroup_thresholds *thresholds;
4393         struct mem_cgroup_threshold_ary *new;
4394         unsigned long usage;
4395         int i, j, size, entries;
4396
4397         mutex_lock(&memcg->thresholds_lock);
4398
4399         if (type == _MEM) {
4400                 thresholds = &memcg->thresholds;
4401                 usage = mem_cgroup_usage(memcg, false);
4402         } else if (type == _MEMSWAP) {
4403                 thresholds = &memcg->memsw_thresholds;
4404                 usage = mem_cgroup_usage(memcg, true);
4405         } else
4406                 BUG();
4407
4408         if (!thresholds->primary)
4409                 goto unlock;
4410
4411         /* Check if a threshold crossed before removing */
4412         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4413
4414         /* Calculate new number of threshold */
4415         size = entries = 0;
4416         for (i = 0; i < thresholds->primary->size; i++) {
4417                 if (thresholds->primary->entries[i].eventfd != eventfd)
4418                         size++;
4419                 else
4420                         entries++;
4421         }
4422
4423         new = thresholds->spare;
4424
4425         /* If no items related to eventfd have been cleared, nothing to do */
4426         if (!entries)
4427                 goto unlock;
4428
4429         /* Set thresholds array to NULL if we don't have thresholds */
4430         if (!size) {
4431                 kfree(new);
4432                 new = NULL;
4433                 goto swap_buffers;
4434         }
4435
4436         new->size = size;
4437
4438         /* Copy thresholds and find current threshold */
4439         new->current_threshold = -1;
4440         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4441                 if (thresholds->primary->entries[i].eventfd == eventfd)
4442                         continue;
4443
4444                 new->entries[j] = thresholds->primary->entries[i];
4445                 if (new->entries[j].threshold <= usage) {
4446                         /*
4447                          * new->current_threshold will not be used
4448                          * until rcu_assign_pointer(), so it's safe to increment
4449                          * it here.
4450                          */
4451                         ++new->current_threshold;
4452                 }
4453                 j++;
4454         }
4455
4456 swap_buffers:
4457         /* Swap primary and spare array */
4458         thresholds->spare = thresholds->primary;
4459
4460         rcu_assign_pointer(thresholds->primary, new);
4461
4462         /* To be sure that nobody uses thresholds */
4463         synchronize_rcu();
4464
4465         /* If all events are unregistered, free the spare array */
4466         if (!new) {
4467                 kfree(thresholds->spare);
4468                 thresholds->spare = NULL;
4469         }
4470 unlock:
4471         mutex_unlock(&memcg->thresholds_lock);
4472 }
4473
4474 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4475         struct eventfd_ctx *eventfd)
4476 {
4477         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4478 }
4479
4480 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4481         struct eventfd_ctx *eventfd)
4482 {
4483         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4484 }
4485
4486 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4487         struct eventfd_ctx *eventfd, const char *args)
4488 {
4489         struct mem_cgroup_eventfd_list *event;
4490
4491         event = kmalloc(sizeof(*event), GFP_KERNEL);
4492         if (!event)
4493                 return -ENOMEM;
4494
4495         spin_lock(&memcg_oom_lock);
4496
4497         event->eventfd = eventfd;
4498         list_add(&event->list, &memcg->oom_notify);
4499
4500         /* already in OOM ? */
4501         if (memcg->under_oom)
4502                 eventfd_signal(eventfd, 1);
4503         spin_unlock(&memcg_oom_lock);
4504
4505         return 0;
4506 }
4507
4508 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4509         struct eventfd_ctx *eventfd)
4510 {
4511         struct mem_cgroup_eventfd_list *ev, *tmp;
4512
4513         spin_lock(&memcg_oom_lock);
4514
4515         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4516                 if (ev->eventfd == eventfd) {
4517                         list_del(&ev->list);
4518                         kfree(ev);
4519                 }
4520         }
4521
4522         spin_unlock(&memcg_oom_lock);
4523 }
4524
4525 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4526 {
4527         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4528
4529         seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4530         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4531         seq_printf(sf, "oom_kill %lu\n",
4532                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4533         return 0;
4534 }
4535
4536 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4537         struct cftype *cft, u64 val)
4538 {
4539         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4540
4541         /* cannot set to root cgroup and only 0 and 1 are allowed */
4542         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4543                 return -EINVAL;
4544
4545         WRITE_ONCE(memcg->oom_kill_disable, val);
4546         if (!val)
4547                 memcg_oom_recover(memcg);
4548
4549         return 0;
4550 }
4551
4552 #ifdef CONFIG_CGROUP_WRITEBACK
4553
4554 #include <trace/events/writeback.h>
4555
4556 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4557 {
4558         return wb_domain_init(&memcg->cgwb_domain, gfp);
4559 }
4560
4561 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4562 {
4563         wb_domain_exit(&memcg->cgwb_domain);
4564 }
4565
4566 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4567 {
4568         wb_domain_size_changed(&memcg->cgwb_domain);
4569 }
4570
4571 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4572 {
4573         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4574
4575         if (!memcg->css.parent)
4576                 return NULL;
4577
4578         return &memcg->cgwb_domain;
4579 }
4580
4581 /**
4582  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4583  * @wb: bdi_writeback in question
4584  * @pfilepages: out parameter for number of file pages
4585  * @pheadroom: out parameter for number of allocatable pages according to memcg
4586  * @pdirty: out parameter for number of dirty pages
4587  * @pwriteback: out parameter for number of pages under writeback
4588  *
4589  * Determine the numbers of file, headroom, dirty, and writeback pages in
4590  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4591  * is a bit more involved.
4592  *
4593  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4594  * headroom is calculated as the lowest headroom of itself and the
4595  * ancestors.  Note that this doesn't consider the actual amount of
4596  * available memory in the system.  The caller should further cap
4597  * *@pheadroom accordingly.
4598  */
4599 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4600                          unsigned long *pheadroom, unsigned long *pdirty,
4601                          unsigned long *pwriteback)
4602 {
4603         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4604         struct mem_cgroup *parent;
4605
4606         mem_cgroup_flush_stats();
4607
4608         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4609         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4610         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4611                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4612
4613         *pheadroom = PAGE_COUNTER_MAX;
4614         while ((parent = parent_mem_cgroup(memcg))) {
4615                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4616                                             READ_ONCE(memcg->memory.high));
4617                 unsigned long used = page_counter_read(&memcg->memory);
4618
4619                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4620                 memcg = parent;
4621         }
4622 }
4623
4624 /*
4625  * Foreign dirty flushing
4626  *
4627  * There's an inherent mismatch between memcg and writeback.  The former
4628  * tracks ownership per-page while the latter per-inode.  This was a
4629  * deliberate design decision because honoring per-page ownership in the
4630  * writeback path is complicated, may lead to higher CPU and IO overheads
4631  * and deemed unnecessary given that write-sharing an inode across
4632  * different cgroups isn't a common use-case.
4633  *
4634  * Combined with inode majority-writer ownership switching, this works well
4635  * enough in most cases but there are some pathological cases.  For
4636  * example, let's say there are two cgroups A and B which keep writing to
4637  * different but confined parts of the same inode.  B owns the inode and
4638  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4639  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4640  * triggering background writeback.  A will be slowed down without a way to
4641  * make writeback of the dirty pages happen.
4642  *
4643  * Conditions like the above can lead to a cgroup getting repeatedly and
4644  * severely throttled after making some progress after each
4645  * dirty_expire_interval while the underlying IO device is almost
4646  * completely idle.
4647  *
4648  * Solving this problem completely requires matching the ownership tracking
4649  * granularities between memcg and writeback in either direction.  However,
4650  * the more egregious behaviors can be avoided by simply remembering the
4651  * most recent foreign dirtying events and initiating remote flushes on
4652  * them when local writeback isn't enough to keep the memory clean enough.
4653  *
4654  * The following two functions implement such mechanism.  When a foreign
4655  * page - a page whose memcg and writeback ownerships don't match - is
4656  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4657  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4658  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4659  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4660  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4661  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4662  * limited to MEMCG_CGWB_FRN_CNT.
4663  *
4664  * The mechanism only remembers IDs and doesn't hold any object references.
4665  * As being wrong occasionally doesn't matter, updates and accesses to the
4666  * records are lockless and racy.
4667  */
4668 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4669                                              struct bdi_writeback *wb)
4670 {
4671         struct mem_cgroup *memcg = folio_memcg(folio);
4672         struct memcg_cgwb_frn *frn;
4673         u64 now = get_jiffies_64();
4674         u64 oldest_at = now;
4675         int oldest = -1;
4676         int i;
4677
4678         trace_track_foreign_dirty(folio, wb);
4679
4680         /*
4681          * Pick the slot to use.  If there is already a slot for @wb, keep
4682          * using it.  If not replace the oldest one which isn't being
4683          * written out.
4684          */
4685         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4686                 frn = &memcg->cgwb_frn[i];
4687                 if (frn->bdi_id == wb->bdi->id &&
4688                     frn->memcg_id == wb->memcg_css->id)
4689                         break;
4690                 if (time_before64(frn->at, oldest_at) &&
4691                     atomic_read(&frn->done.cnt) == 1) {
4692                         oldest = i;
4693                         oldest_at = frn->at;
4694                 }
4695         }
4696
4697         if (i < MEMCG_CGWB_FRN_CNT) {
4698                 /*
4699                  * Re-using an existing one.  Update timestamp lazily to
4700                  * avoid making the cacheline hot.  We want them to be
4701                  * reasonably up-to-date and significantly shorter than
4702                  * dirty_expire_interval as that's what expires the record.
4703                  * Use the shorter of 1s and dirty_expire_interval / 8.
4704                  */
4705                 unsigned long update_intv =
4706                         min_t(unsigned long, HZ,
4707                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4708
4709                 if (time_before64(frn->at, now - update_intv))
4710                         frn->at = now;
4711         } else if (oldest >= 0) {
4712                 /* replace the oldest free one */
4713                 frn = &memcg->cgwb_frn[oldest];
4714                 frn->bdi_id = wb->bdi->id;
4715                 frn->memcg_id = wb->memcg_css->id;
4716                 frn->at = now;
4717         }
4718 }
4719
4720 /* issue foreign writeback flushes for recorded foreign dirtying events */
4721 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4722 {
4723         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4724         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4725         u64 now = jiffies_64;
4726         int i;
4727
4728         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4729                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4730
4731                 /*
4732                  * If the record is older than dirty_expire_interval,
4733                  * writeback on it has already started.  No need to kick it
4734                  * off again.  Also, don't start a new one if there's
4735                  * already one in flight.
4736                  */
4737                 if (time_after64(frn->at, now - intv) &&
4738                     atomic_read(&frn->done.cnt) == 1) {
4739                         frn->at = 0;
4740                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4741                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4742                                                WB_REASON_FOREIGN_FLUSH,
4743                                                &frn->done);
4744                 }
4745         }
4746 }
4747
4748 #else   /* CONFIG_CGROUP_WRITEBACK */
4749
4750 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4751 {
4752         return 0;
4753 }
4754
4755 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4756 {
4757 }
4758
4759 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4760 {
4761 }
4762
4763 #endif  /* CONFIG_CGROUP_WRITEBACK */
4764
4765 /*
4766  * DO NOT USE IN NEW FILES.
4767  *
4768  * "cgroup.event_control" implementation.
4769  *
4770  * This is way over-engineered.  It tries to support fully configurable
4771  * events for each user.  Such level of flexibility is completely
4772  * unnecessary especially in the light of the planned unified hierarchy.
4773  *
4774  * Please deprecate this and replace with something simpler if at all
4775  * possible.
4776  */
4777
4778 /*
4779  * Unregister event and free resources.
4780  *
4781  * Gets called from workqueue.
4782  */
4783 static void memcg_event_remove(struct work_struct *work)
4784 {
4785         struct mem_cgroup_event *event =
4786                 container_of(work, struct mem_cgroup_event, remove);
4787         struct mem_cgroup *memcg = event->memcg;
4788
4789         remove_wait_queue(event->wqh, &event->wait);
4790
4791         event->unregister_event(memcg, event->eventfd);
4792
4793         /* Notify userspace the event is going away. */
4794         eventfd_signal(event->eventfd, 1);
4795
4796         eventfd_ctx_put(event->eventfd);
4797         kfree(event);
4798         css_put(&memcg->css);
4799 }
4800
4801 /*
4802  * Gets called on EPOLLHUP on eventfd when user closes it.
4803  *
4804  * Called with wqh->lock held and interrupts disabled.
4805  */
4806 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4807                             int sync, void *key)
4808 {
4809         struct mem_cgroup_event *event =
4810                 container_of(wait, struct mem_cgroup_event, wait);
4811         struct mem_cgroup *memcg = event->memcg;
4812         __poll_t flags = key_to_poll(key);
4813
4814         if (flags & EPOLLHUP) {
4815                 /*
4816                  * If the event has been detached at cgroup removal, we
4817                  * can simply return knowing the other side will cleanup
4818                  * for us.
4819                  *
4820                  * We can't race against event freeing since the other
4821                  * side will require wqh->lock via remove_wait_queue(),
4822                  * which we hold.
4823                  */
4824                 spin_lock(&memcg->event_list_lock);
4825                 if (!list_empty(&event->list)) {
4826                         list_del_init(&event->list);
4827                         /*
4828                          * We are in atomic context, but cgroup_event_remove()
4829                          * may sleep, so we have to call it in workqueue.
4830                          */
4831                         schedule_work(&event->remove);
4832                 }
4833                 spin_unlock(&memcg->event_list_lock);
4834         }
4835
4836         return 0;
4837 }
4838
4839 static void memcg_event_ptable_queue_proc(struct file *file,
4840                 wait_queue_head_t *wqh, poll_table *pt)
4841 {
4842         struct mem_cgroup_event *event =
4843                 container_of(pt, struct mem_cgroup_event, pt);
4844
4845         event->wqh = wqh;
4846         add_wait_queue(wqh, &event->wait);
4847 }
4848
4849 /*
4850  * DO NOT USE IN NEW FILES.
4851  *
4852  * Parse input and register new cgroup event handler.
4853  *
4854  * Input must be in format '<event_fd> <control_fd> <args>'.
4855  * Interpretation of args is defined by control file implementation.
4856  */
4857 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4858                                          char *buf, size_t nbytes, loff_t off)
4859 {
4860         struct cgroup_subsys_state *css = of_css(of);
4861         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4862         struct mem_cgroup_event *event;
4863         struct cgroup_subsys_state *cfile_css;
4864         unsigned int efd, cfd;
4865         struct fd efile;
4866         struct fd cfile;
4867         struct dentry *cdentry;
4868         const char *name;
4869         char *endp;
4870         int ret;
4871
4872         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4873                 return -EOPNOTSUPP;
4874
4875         buf = strstrip(buf);
4876
4877         efd = simple_strtoul(buf, &endp, 10);
4878         if (*endp != ' ')
4879                 return -EINVAL;
4880         buf = endp + 1;
4881
4882         cfd = simple_strtoul(buf, &endp, 10);
4883         if ((*endp != ' ') && (*endp != '\0'))
4884                 return -EINVAL;
4885         buf = endp + 1;
4886
4887         event = kzalloc(sizeof(*event), GFP_KERNEL);
4888         if (!event)
4889                 return -ENOMEM;
4890
4891         event->memcg = memcg;
4892         INIT_LIST_HEAD(&event->list);
4893         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4894         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4895         INIT_WORK(&event->remove, memcg_event_remove);
4896
4897         efile = fdget(efd);
4898         if (!efile.file) {
4899                 ret = -EBADF;
4900                 goto out_kfree;
4901         }
4902
4903         event->eventfd = eventfd_ctx_fileget(efile.file);
4904         if (IS_ERR(event->eventfd)) {
4905                 ret = PTR_ERR(event->eventfd);
4906                 goto out_put_efile;
4907         }
4908
4909         cfile = fdget(cfd);
4910         if (!cfile.file) {
4911                 ret = -EBADF;
4912                 goto out_put_eventfd;
4913         }
4914
4915         /* the process need read permission on control file */
4916         /* AV: shouldn't we check that it's been opened for read instead? */
4917         ret = file_permission(cfile.file, MAY_READ);
4918         if (ret < 0)
4919                 goto out_put_cfile;
4920
4921         /*
4922          * The control file must be a regular cgroup1 file. As a regular cgroup
4923          * file can't be renamed, it's safe to access its name afterwards.
4924          */
4925         cdentry = cfile.file->f_path.dentry;
4926         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4927                 ret = -EINVAL;
4928                 goto out_put_cfile;
4929         }
4930
4931         /*
4932          * Determine the event callbacks and set them in @event.  This used
4933          * to be done via struct cftype but cgroup core no longer knows
4934          * about these events.  The following is crude but the whole thing
4935          * is for compatibility anyway.
4936          *
4937          * DO NOT ADD NEW FILES.
4938          */
4939         name = cdentry->d_name.name;
4940
4941         if (!strcmp(name, "memory.usage_in_bytes")) {
4942                 event->register_event = mem_cgroup_usage_register_event;
4943                 event->unregister_event = mem_cgroup_usage_unregister_event;
4944         } else if (!strcmp(name, "memory.oom_control")) {
4945                 event->register_event = mem_cgroup_oom_register_event;
4946                 event->unregister_event = mem_cgroup_oom_unregister_event;
4947         } else if (!strcmp(name, "memory.pressure_level")) {
4948                 event->register_event = vmpressure_register_event;
4949                 event->unregister_event = vmpressure_unregister_event;
4950         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4951                 event->register_event = memsw_cgroup_usage_register_event;
4952                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4953         } else {
4954                 ret = -EINVAL;
4955                 goto out_put_cfile;
4956         }
4957
4958         /*
4959          * Verify @cfile should belong to @css.  Also, remaining events are
4960          * automatically removed on cgroup destruction but the removal is
4961          * asynchronous, so take an extra ref on @css.
4962          */
4963         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4964                                                &memory_cgrp_subsys);
4965         ret = -EINVAL;
4966         if (IS_ERR(cfile_css))
4967                 goto out_put_cfile;
4968         if (cfile_css != css) {
4969                 css_put(cfile_css);
4970                 goto out_put_cfile;
4971         }
4972
4973         ret = event->register_event(memcg, event->eventfd, buf);
4974         if (ret)
4975                 goto out_put_css;
4976
4977         vfs_poll(efile.file, &event->pt);
4978
4979         spin_lock_irq(&memcg->event_list_lock);
4980         list_add(&event->list, &memcg->event_list);
4981         spin_unlock_irq(&memcg->event_list_lock);
4982
4983         fdput(cfile);
4984         fdput(efile);
4985
4986         return nbytes;
4987
4988 out_put_css:
4989         css_put(css);
4990 out_put_cfile:
4991         fdput(cfile);
4992 out_put_eventfd:
4993         eventfd_ctx_put(event->eventfd);
4994 out_put_efile:
4995         fdput(efile);
4996 out_kfree:
4997         kfree(event);
4998
4999         return ret;
5000 }
5001
5002 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5003 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5004 {
5005         /*
5006          * Deprecated.
5007          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5008          */
5009         return 0;
5010 }
5011 #endif
5012
5013 static int memory_stat_show(struct seq_file *m, void *v);
5014
5015 static struct cftype mem_cgroup_legacy_files[] = {
5016         {
5017                 .name = "usage_in_bytes",
5018                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5019                 .read_u64 = mem_cgroup_read_u64,
5020         },
5021         {
5022                 .name = "max_usage_in_bytes",
5023                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5024                 .write = mem_cgroup_reset,
5025                 .read_u64 = mem_cgroup_read_u64,
5026         },
5027         {
5028                 .name = "limit_in_bytes",
5029                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5030                 .write = mem_cgroup_write,
5031                 .read_u64 = mem_cgroup_read_u64,
5032         },
5033         {
5034                 .name = "soft_limit_in_bytes",
5035                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5036                 .write = mem_cgroup_write,
5037                 .read_u64 = mem_cgroup_read_u64,
5038         },
5039         {
5040                 .name = "failcnt",
5041                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5042                 .write = mem_cgroup_reset,
5043                 .read_u64 = mem_cgroup_read_u64,
5044         },
5045         {
5046                 .name = "stat",
5047                 .seq_show = memory_stat_show,
5048         },
5049         {
5050                 .name = "force_empty",
5051                 .write = mem_cgroup_force_empty_write,
5052         },
5053         {
5054                 .name = "use_hierarchy",
5055                 .write_u64 = mem_cgroup_hierarchy_write,
5056                 .read_u64 = mem_cgroup_hierarchy_read,
5057         },
5058         {
5059                 .name = "cgroup.event_control",         /* XXX: for compat */
5060                 .write = memcg_write_event_control,
5061                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5062         },
5063         {
5064                 .name = "swappiness",
5065                 .read_u64 = mem_cgroup_swappiness_read,
5066                 .write_u64 = mem_cgroup_swappiness_write,
5067         },
5068         {
5069                 .name = "move_charge_at_immigrate",
5070                 .read_u64 = mem_cgroup_move_charge_read,
5071                 .write_u64 = mem_cgroup_move_charge_write,
5072         },
5073         {
5074                 .name = "oom_control",
5075                 .seq_show = mem_cgroup_oom_control_read,
5076                 .write_u64 = mem_cgroup_oom_control_write,
5077         },
5078         {
5079                 .name = "pressure_level",
5080                 .seq_show = mem_cgroup_dummy_seq_show,
5081         },
5082 #ifdef CONFIG_NUMA
5083         {
5084                 .name = "numa_stat",
5085                 .seq_show = memcg_numa_stat_show,
5086         },
5087 #endif
5088         {
5089                 .name = "kmem.limit_in_bytes",
5090                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5091                 .write = mem_cgroup_write,
5092                 .read_u64 = mem_cgroup_read_u64,
5093         },
5094         {
5095                 .name = "kmem.usage_in_bytes",
5096                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5097                 .read_u64 = mem_cgroup_read_u64,
5098         },
5099         {
5100                 .name = "kmem.failcnt",
5101                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5102                 .write = mem_cgroup_reset,
5103                 .read_u64 = mem_cgroup_read_u64,
5104         },
5105         {
5106                 .name = "kmem.max_usage_in_bytes",
5107                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5108                 .write = mem_cgroup_reset,
5109                 .read_u64 = mem_cgroup_read_u64,
5110         },
5111 #if defined(CONFIG_MEMCG_KMEM) && \
5112         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5113         {
5114                 .name = "kmem.slabinfo",
5115                 .seq_show = mem_cgroup_slab_show,
5116         },
5117 #endif
5118         {
5119                 .name = "kmem.tcp.limit_in_bytes",
5120                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5121                 .write = mem_cgroup_write,
5122                 .read_u64 = mem_cgroup_read_u64,
5123         },
5124         {
5125                 .name = "kmem.tcp.usage_in_bytes",
5126                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5127                 .read_u64 = mem_cgroup_read_u64,
5128         },
5129         {
5130                 .name = "kmem.tcp.failcnt",
5131                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5132                 .write = mem_cgroup_reset,
5133                 .read_u64 = mem_cgroup_read_u64,
5134         },
5135         {
5136                 .name = "kmem.tcp.max_usage_in_bytes",
5137                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5138                 .write = mem_cgroup_reset,
5139                 .read_u64 = mem_cgroup_read_u64,
5140         },
5141         { },    /* terminate */
5142 };
5143
5144 /*
5145  * Private memory cgroup IDR
5146  *
5147  * Swap-out records and page cache shadow entries need to store memcg
5148  * references in constrained space, so we maintain an ID space that is
5149  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5150  * memory-controlled cgroups to 64k.
5151  *
5152  * However, there usually are many references to the offline CSS after
5153  * the cgroup has been destroyed, such as page cache or reclaimable
5154  * slab objects, that don't need to hang on to the ID. We want to keep
5155  * those dead CSS from occupying IDs, or we might quickly exhaust the
5156  * relatively small ID space and prevent the creation of new cgroups
5157  * even when there are much fewer than 64k cgroups - possibly none.
5158  *
5159  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5160  * be freed and recycled when it's no longer needed, which is usually
5161  * when the CSS is offlined.
5162  *
5163  * The only exception to that are records of swapped out tmpfs/shmem
5164  * pages that need to be attributed to live ancestors on swapin. But
5165  * those references are manageable from userspace.
5166  */
5167
5168 #define MEM_CGROUP_ID_MAX       ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5169 static DEFINE_IDR(mem_cgroup_idr);
5170
5171 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5172 {
5173         if (memcg->id.id > 0) {
5174                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5175                 memcg->id.id = 0;
5176         }
5177 }
5178
5179 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5180                                                   unsigned int n)
5181 {
5182         refcount_add(n, &memcg->id.ref);
5183 }
5184
5185 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5186 {
5187         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5188                 mem_cgroup_id_remove(memcg);
5189
5190                 /* Memcg ID pins CSS */
5191                 css_put(&memcg->css);
5192         }
5193 }
5194
5195 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5196 {
5197         mem_cgroup_id_put_many(memcg, 1);
5198 }
5199
5200 /**
5201  * mem_cgroup_from_id - look up a memcg from a memcg id
5202  * @id: the memcg id to look up
5203  *
5204  * Caller must hold rcu_read_lock().
5205  */
5206 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5207 {
5208         WARN_ON_ONCE(!rcu_read_lock_held());
5209         return idr_find(&mem_cgroup_idr, id);
5210 }
5211
5212 #ifdef CONFIG_SHRINKER_DEBUG
5213 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5214 {
5215         struct cgroup *cgrp;
5216         struct cgroup_subsys_state *css;
5217         struct mem_cgroup *memcg;
5218
5219         cgrp = cgroup_get_from_id(ino);
5220         if (IS_ERR(cgrp))
5221                 return ERR_CAST(cgrp);
5222
5223         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5224         if (css)
5225                 memcg = container_of(css, struct mem_cgroup, css);
5226         else
5227                 memcg = ERR_PTR(-ENOENT);
5228
5229         cgroup_put(cgrp);
5230
5231         return memcg;
5232 }
5233 #endif
5234
5235 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5236 {
5237         struct mem_cgroup_per_node *pn;
5238
5239         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5240         if (!pn)
5241                 return 1;
5242
5243         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5244                                                    GFP_KERNEL_ACCOUNT);
5245         if (!pn->lruvec_stats_percpu) {
5246                 kfree(pn);
5247                 return 1;
5248         }
5249
5250         lruvec_init(&pn->lruvec);
5251         pn->memcg = memcg;
5252
5253         memcg->nodeinfo[node] = pn;
5254         return 0;
5255 }
5256
5257 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5258 {
5259         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5260
5261         if (!pn)
5262                 return;
5263
5264         free_percpu(pn->lruvec_stats_percpu);
5265         kfree(pn);
5266 }
5267
5268 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5269 {
5270         int node;
5271
5272         for_each_node(node)
5273                 free_mem_cgroup_per_node_info(memcg, node);
5274         kfree(memcg->vmstats);
5275         free_percpu(memcg->vmstats_percpu);
5276         kfree(memcg);
5277 }
5278
5279 static void mem_cgroup_free(struct mem_cgroup *memcg)
5280 {
5281         lru_gen_exit_memcg(memcg);
5282         memcg_wb_domain_exit(memcg);
5283         __mem_cgroup_free(memcg);
5284 }
5285
5286 static struct mem_cgroup *mem_cgroup_alloc(void)
5287 {
5288         struct mem_cgroup *memcg;
5289         int node;
5290         int __maybe_unused i;
5291         long error = -ENOMEM;
5292
5293         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5294         if (!memcg)
5295                 return ERR_PTR(error);
5296
5297         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5298                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5299         if (memcg->id.id < 0) {
5300                 error = memcg->id.id;
5301                 goto fail;
5302         }
5303
5304         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5305         if (!memcg->vmstats)
5306                 goto fail;
5307
5308         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5309                                                  GFP_KERNEL_ACCOUNT);
5310         if (!memcg->vmstats_percpu)
5311                 goto fail;
5312
5313         for_each_node(node)
5314                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5315                         goto fail;
5316
5317         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5318                 goto fail;
5319
5320         INIT_WORK(&memcg->high_work, high_work_func);
5321         INIT_LIST_HEAD(&memcg->oom_notify);
5322         mutex_init(&memcg->thresholds_lock);
5323         spin_lock_init(&memcg->move_lock);
5324         vmpressure_init(&memcg->vmpressure);
5325         INIT_LIST_HEAD(&memcg->event_list);
5326         spin_lock_init(&memcg->event_list_lock);
5327         memcg->socket_pressure = jiffies;
5328 #ifdef CONFIG_MEMCG_KMEM
5329         memcg->kmemcg_id = -1;
5330         INIT_LIST_HEAD(&memcg->objcg_list);
5331 #endif
5332 #ifdef CONFIG_CGROUP_WRITEBACK
5333         INIT_LIST_HEAD(&memcg->cgwb_list);
5334         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5335                 memcg->cgwb_frn[i].done =
5336                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5337 #endif
5338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5339         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5340         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5341         memcg->deferred_split_queue.split_queue_len = 0;
5342 #endif
5343         lru_gen_init_memcg(memcg);
5344         return memcg;
5345 fail:
5346         mem_cgroup_id_remove(memcg);
5347         __mem_cgroup_free(memcg);
5348         return ERR_PTR(error);
5349 }
5350
5351 static struct cgroup_subsys_state * __ref
5352 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5353 {
5354         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5355         struct mem_cgroup *memcg, *old_memcg;
5356
5357         old_memcg = set_active_memcg(parent);
5358         memcg = mem_cgroup_alloc();
5359         set_active_memcg(old_memcg);
5360         if (IS_ERR(memcg))
5361                 return ERR_CAST(memcg);
5362
5363         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5364         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5365 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5366         memcg->zswap_max = PAGE_COUNTER_MAX;
5367 #endif
5368         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5369         if (parent) {
5370                 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5371                 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5372
5373                 page_counter_init(&memcg->memory, &parent->memory);
5374                 page_counter_init(&memcg->swap, &parent->swap);
5375                 page_counter_init(&memcg->kmem, &parent->kmem);
5376                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5377         } else {
5378                 init_memcg_events();
5379                 page_counter_init(&memcg->memory, NULL);
5380                 page_counter_init(&memcg->swap, NULL);
5381                 page_counter_init(&memcg->kmem, NULL);
5382                 page_counter_init(&memcg->tcpmem, NULL);
5383
5384                 root_mem_cgroup = memcg;
5385                 return &memcg->css;
5386         }
5387
5388         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5389                 static_branch_inc(&memcg_sockets_enabled_key);
5390
5391 #if defined(CONFIG_MEMCG_KMEM)
5392         if (!cgroup_memory_nobpf)
5393                 static_branch_inc(&memcg_bpf_enabled_key);
5394 #endif
5395
5396         return &memcg->css;
5397 }
5398
5399 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5400 {
5401         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403         if (memcg_online_kmem(memcg))
5404                 goto remove_id;
5405
5406         /*
5407          * A memcg must be visible for expand_shrinker_info()
5408          * by the time the maps are allocated. So, we allocate maps
5409          * here, when for_each_mem_cgroup() can't skip it.
5410          */
5411         if (alloc_shrinker_info(memcg))
5412                 goto offline_kmem;
5413
5414         if (unlikely(mem_cgroup_is_root(memcg)))
5415                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5416                                    FLUSH_TIME);
5417         lru_gen_online_memcg(memcg);
5418
5419         /* Online state pins memcg ID, memcg ID pins CSS */
5420         refcount_set(&memcg->id.ref, 1);
5421         css_get(css);
5422
5423         /*
5424          * Ensure mem_cgroup_from_id() works once we're fully online.
5425          *
5426          * We could do this earlier and require callers to filter with
5427          * css_tryget_online(). But right now there are no users that
5428          * need earlier access, and the workingset code relies on the
5429          * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5430          * publish it here at the end of onlining. This matches the
5431          * regular ID destruction during offlining.
5432          */
5433         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5434
5435         return 0;
5436 offline_kmem:
5437         memcg_offline_kmem(memcg);
5438 remove_id:
5439         mem_cgroup_id_remove(memcg);
5440         return -ENOMEM;
5441 }
5442
5443 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5444 {
5445         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5446         struct mem_cgroup_event *event, *tmp;
5447
5448         /*
5449          * Unregister events and notify userspace.
5450          * Notify userspace about cgroup removing only after rmdir of cgroup
5451          * directory to avoid race between userspace and kernelspace.
5452          */
5453         spin_lock_irq(&memcg->event_list_lock);
5454         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5455                 list_del_init(&event->list);
5456                 schedule_work(&event->remove);
5457         }
5458         spin_unlock_irq(&memcg->event_list_lock);
5459
5460         page_counter_set_min(&memcg->memory, 0);
5461         page_counter_set_low(&memcg->memory, 0);
5462
5463         memcg_offline_kmem(memcg);
5464         reparent_shrinker_deferred(memcg);
5465         wb_memcg_offline(memcg);
5466         lru_gen_offline_memcg(memcg);
5467
5468         drain_all_stock(memcg);
5469
5470         mem_cgroup_id_put(memcg);
5471 }
5472
5473 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5474 {
5475         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5476
5477         invalidate_reclaim_iterators(memcg);
5478         lru_gen_release_memcg(memcg);
5479 }
5480
5481 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5482 {
5483         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5484         int __maybe_unused i;
5485
5486 #ifdef CONFIG_CGROUP_WRITEBACK
5487         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5488                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5489 #endif
5490         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5491                 static_branch_dec(&memcg_sockets_enabled_key);
5492
5493         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5494                 static_branch_dec(&memcg_sockets_enabled_key);
5495
5496 #if defined(CONFIG_MEMCG_KMEM)
5497         if (!cgroup_memory_nobpf)
5498                 static_branch_dec(&memcg_bpf_enabled_key);
5499 #endif
5500
5501         vmpressure_cleanup(&memcg->vmpressure);
5502         cancel_work_sync(&memcg->high_work);
5503         mem_cgroup_remove_from_trees(memcg);
5504         free_shrinker_info(memcg);
5505         mem_cgroup_free(memcg);
5506 }
5507
5508 /**
5509  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5510  * @css: the target css
5511  *
5512  * Reset the states of the mem_cgroup associated with @css.  This is
5513  * invoked when the userland requests disabling on the default hierarchy
5514  * but the memcg is pinned through dependency.  The memcg should stop
5515  * applying policies and should revert to the vanilla state as it may be
5516  * made visible again.
5517  *
5518  * The current implementation only resets the essential configurations.
5519  * This needs to be expanded to cover all the visible parts.
5520  */
5521 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5522 {
5523         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5524
5525         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5526         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5527         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5528         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5529         page_counter_set_min(&memcg->memory, 0);
5530         page_counter_set_low(&memcg->memory, 0);
5531         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5532         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5533         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5534         memcg_wb_domain_size_changed(memcg);
5535 }
5536
5537 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5538 {
5539         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5540         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5541         struct memcg_vmstats_percpu *statc;
5542         long delta, delta_cpu, v;
5543         int i, nid;
5544
5545         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5546
5547         for (i = 0; i < MEMCG_NR_STAT; i++) {
5548                 /*
5549                  * Collect the aggregated propagation counts of groups
5550                  * below us. We're in a per-cpu loop here and this is
5551                  * a global counter, so the first cycle will get them.
5552                  */
5553                 delta = memcg->vmstats->state_pending[i];
5554                 if (delta)
5555                         memcg->vmstats->state_pending[i] = 0;
5556
5557                 /* Add CPU changes on this level since the last flush */
5558                 delta_cpu = 0;
5559                 v = READ_ONCE(statc->state[i]);
5560                 if (v != statc->state_prev[i]) {
5561                         delta_cpu = v - statc->state_prev[i];
5562                         delta += delta_cpu;
5563                         statc->state_prev[i] = v;
5564                 }
5565
5566                 /* Aggregate counts on this level and propagate upwards */
5567                 if (delta_cpu)
5568                         memcg->vmstats->state_local[i] += delta_cpu;
5569
5570                 if (delta) {
5571                         memcg->vmstats->state[i] += delta;
5572                         if (parent)
5573                                 parent->vmstats->state_pending[i] += delta;
5574                 }
5575         }
5576
5577         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5578                 delta = memcg->vmstats->events_pending[i];
5579                 if (delta)
5580                         memcg->vmstats->events_pending[i] = 0;
5581
5582                 delta_cpu = 0;
5583                 v = READ_ONCE(statc->events[i]);
5584                 if (v != statc->events_prev[i]) {
5585                         delta_cpu = v - statc->events_prev[i];
5586                         delta += delta_cpu;
5587                         statc->events_prev[i] = v;
5588                 }
5589
5590                 if (delta_cpu)
5591                         memcg->vmstats->events_local[i] += delta_cpu;
5592
5593                 if (delta) {
5594                         memcg->vmstats->events[i] += delta;
5595                         if (parent)
5596                                 parent->vmstats->events_pending[i] += delta;
5597                 }
5598         }
5599
5600         for_each_node_state(nid, N_MEMORY) {
5601                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5602                 struct mem_cgroup_per_node *ppn = NULL;
5603                 struct lruvec_stats_percpu *lstatc;
5604
5605                 if (parent)
5606                         ppn = parent->nodeinfo[nid];
5607
5608                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5609
5610                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5611                         delta = pn->lruvec_stats.state_pending[i];
5612                         if (delta)
5613                                 pn->lruvec_stats.state_pending[i] = 0;
5614
5615                         delta_cpu = 0;
5616                         v = READ_ONCE(lstatc->state[i]);
5617                         if (v != lstatc->state_prev[i]) {
5618                                 delta_cpu = v - lstatc->state_prev[i];
5619                                 delta += delta_cpu;
5620                                 lstatc->state_prev[i] = v;
5621                         }
5622
5623                         if (delta_cpu)
5624                                 pn->lruvec_stats.state_local[i] += delta_cpu;
5625
5626                         if (delta) {
5627                                 pn->lruvec_stats.state[i] += delta;
5628                                 if (ppn)
5629                                         ppn->lruvec_stats.state_pending[i] += delta;
5630                         }
5631                 }
5632         }
5633 }
5634
5635 #ifdef CONFIG_MMU
5636 /* Handlers for move charge at task migration. */
5637 static int mem_cgroup_do_precharge(unsigned long count)
5638 {
5639         int ret;
5640
5641         /* Try a single bulk charge without reclaim first, kswapd may wake */
5642         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5643         if (!ret) {
5644                 mc.precharge += count;
5645                 return ret;
5646         }
5647
5648         /* Try charges one by one with reclaim, but do not retry */
5649         while (count--) {
5650                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5651                 if (ret)
5652                         return ret;
5653                 mc.precharge++;
5654                 cond_resched();
5655         }
5656         return 0;
5657 }
5658
5659 union mc_target {
5660         struct page     *page;
5661         swp_entry_t     ent;
5662 };
5663
5664 enum mc_target_type {
5665         MC_TARGET_NONE = 0,
5666         MC_TARGET_PAGE,
5667         MC_TARGET_SWAP,
5668         MC_TARGET_DEVICE,
5669 };
5670
5671 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5672                                                 unsigned long addr, pte_t ptent)
5673 {
5674         struct page *page = vm_normal_page(vma, addr, ptent);
5675
5676         if (!page)
5677                 return NULL;
5678         if (PageAnon(page)) {
5679                 if (!(mc.flags & MOVE_ANON))
5680                         return NULL;
5681         } else {
5682                 if (!(mc.flags & MOVE_FILE))
5683                         return NULL;
5684         }
5685         get_page(page);
5686
5687         return page;
5688 }
5689
5690 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5691 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5692                         pte_t ptent, swp_entry_t *entry)
5693 {
5694         struct page *page = NULL;
5695         swp_entry_t ent = pte_to_swp_entry(ptent);
5696
5697         if (!(mc.flags & MOVE_ANON))
5698                 return NULL;
5699
5700         /*
5701          * Handle device private pages that are not accessible by the CPU, but
5702          * stored as special swap entries in the page table.
5703          */
5704         if (is_device_private_entry(ent)) {
5705                 page = pfn_swap_entry_to_page(ent);
5706                 if (!get_page_unless_zero(page))
5707                         return NULL;
5708                 return page;
5709         }
5710
5711         if (non_swap_entry(ent))
5712                 return NULL;
5713
5714         /*
5715          * Because swap_cache_get_folio() updates some statistics counter,
5716          * we call find_get_page() with swapper_space directly.
5717          */
5718         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5719         entry->val = ent.val;
5720
5721         return page;
5722 }
5723 #else
5724 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5725                         pte_t ptent, swp_entry_t *entry)
5726 {
5727         return NULL;
5728 }
5729 #endif
5730
5731 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5732                         unsigned long addr, pte_t ptent)
5733 {
5734         unsigned long index;
5735         struct folio *folio;
5736
5737         if (!vma->vm_file) /* anonymous vma */
5738                 return NULL;
5739         if (!(mc.flags & MOVE_FILE))
5740                 return NULL;
5741
5742         /* folio is moved even if it's not RSS of this task(page-faulted). */
5743         /* shmem/tmpfs may report page out on swap: account for that too. */
5744         index = linear_page_index(vma, addr);
5745         folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5746         if (IS_ERR(folio))
5747                 return NULL;
5748         return folio_file_page(folio, index);
5749 }
5750
5751 /**
5752  * mem_cgroup_move_account - move account of the page
5753  * @page: the page
5754  * @compound: charge the page as compound or small page
5755  * @from: mem_cgroup which the page is moved from.
5756  * @to: mem_cgroup which the page is moved to. @from != @to.
5757  *
5758  * The page must be locked and not on the LRU.
5759  *
5760  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5761  * from old cgroup.
5762  */
5763 static int mem_cgroup_move_account(struct page *page,
5764                                    bool compound,
5765                                    struct mem_cgroup *from,
5766                                    struct mem_cgroup *to)
5767 {
5768         struct folio *folio = page_folio(page);
5769         struct lruvec *from_vec, *to_vec;
5770         struct pglist_data *pgdat;
5771         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5772         int nid, ret;
5773
5774         VM_BUG_ON(from == to);
5775         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5776         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5777         VM_BUG_ON(compound && !folio_test_large(folio));
5778
5779         ret = -EINVAL;
5780         if (folio_memcg(folio) != from)
5781                 goto out;
5782
5783         pgdat = folio_pgdat(folio);
5784         from_vec = mem_cgroup_lruvec(from, pgdat);
5785         to_vec = mem_cgroup_lruvec(to, pgdat);
5786
5787         folio_memcg_lock(folio);
5788
5789         if (folio_test_anon(folio)) {
5790                 if (folio_mapped(folio)) {
5791                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5792                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5793                         if (folio_test_pmd_mappable(folio)) {
5794                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5795                                                    -nr_pages);
5796                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5797                                                    nr_pages);
5798                         }
5799                 }
5800         } else {
5801                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5802                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5803
5804                 if (folio_test_swapbacked(folio)) {
5805                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5806                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5807                 }
5808
5809                 if (folio_mapped(folio)) {
5810                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5811                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5812                 }
5813
5814                 if (folio_test_dirty(folio)) {
5815                         struct address_space *mapping = folio_mapping(folio);
5816
5817                         if (mapping_can_writeback(mapping)) {
5818                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5819                                                    -nr_pages);
5820                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5821                                                    nr_pages);
5822                         }
5823                 }
5824         }
5825
5826 #ifdef CONFIG_SWAP
5827         if (folio_test_swapcache(folio)) {
5828                 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5829                 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5830         }
5831 #endif
5832         if (folio_test_writeback(folio)) {
5833                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5834                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5835         }
5836
5837         /*
5838          * All state has been migrated, let's switch to the new memcg.
5839          *
5840          * It is safe to change page's memcg here because the page
5841          * is referenced, charged, isolated, and locked: we can't race
5842          * with (un)charging, migration, LRU putback, or anything else
5843          * that would rely on a stable page's memory cgroup.
5844          *
5845          * Note that folio_memcg_lock is a memcg lock, not a page lock,
5846          * to save space. As soon as we switch page's memory cgroup to a
5847          * new memcg that isn't locked, the above state can change
5848          * concurrently again. Make sure we're truly done with it.
5849          */
5850         smp_mb();
5851
5852         css_get(&to->css);
5853         css_put(&from->css);
5854
5855         folio->memcg_data = (unsigned long)to;
5856
5857         __folio_memcg_unlock(from);
5858
5859         ret = 0;
5860         nid = folio_nid(folio);
5861
5862         local_irq_disable();
5863         mem_cgroup_charge_statistics(to, nr_pages);
5864         memcg_check_events(to, nid);
5865         mem_cgroup_charge_statistics(from, -nr_pages);
5866         memcg_check_events(from, nid);
5867         local_irq_enable();
5868 out:
5869         return ret;
5870 }
5871
5872 /**
5873  * get_mctgt_type - get target type of moving charge
5874  * @vma: the vma the pte to be checked belongs
5875  * @addr: the address corresponding to the pte to be checked
5876  * @ptent: the pte to be checked
5877  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5878  *
5879  * Context: Called with pte lock held.
5880  * Return:
5881  * * MC_TARGET_NONE - If the pte is not a target for move charge.
5882  * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5883  *   move charge. If @target is not NULL, the page is stored in target->page
5884  *   with extra refcnt taken (Caller should release it).
5885  * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5886  *   target for charge migration.  If @target is not NULL, the entry is
5887  *   stored in target->ent.
5888  * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5889  *   thus not on the lru.  For now such page is charged like a regular page
5890  *   would be as it is just special memory taking the place of a regular page.
5891  *   See Documentations/vm/hmm.txt and include/linux/hmm.h
5892  */
5893 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5894                 unsigned long addr, pte_t ptent, union mc_target *target)
5895 {
5896         struct page *page = NULL;
5897         enum mc_target_type ret = MC_TARGET_NONE;
5898         swp_entry_t ent = { .val = 0 };
5899
5900         if (pte_present(ptent))
5901                 page = mc_handle_present_pte(vma, addr, ptent);
5902         else if (pte_none_mostly(ptent))
5903                 /*
5904                  * PTE markers should be treated as a none pte here, separated
5905                  * from other swap handling below.
5906                  */
5907                 page = mc_handle_file_pte(vma, addr, ptent);
5908         else if (is_swap_pte(ptent))
5909                 page = mc_handle_swap_pte(vma, ptent, &ent);
5910
5911         if (target && page) {
5912                 if (!trylock_page(page)) {
5913                         put_page(page);
5914                         return ret;
5915                 }
5916                 /*
5917                  * page_mapped() must be stable during the move. This
5918                  * pte is locked, so if it's present, the page cannot
5919                  * become unmapped. If it isn't, we have only partial
5920                  * control over the mapped state: the page lock will
5921                  * prevent new faults against pagecache and swapcache,
5922                  * so an unmapped page cannot become mapped. However,
5923                  * if the page is already mapped elsewhere, it can
5924                  * unmap, and there is nothing we can do about it.
5925                  * Alas, skip moving the page in this case.
5926                  */
5927                 if (!pte_present(ptent) && page_mapped(page)) {
5928                         unlock_page(page);
5929                         put_page(page);
5930                         return ret;
5931                 }
5932         }
5933
5934         if (!page && !ent.val)
5935                 return ret;
5936         if (page) {
5937                 /*
5938                  * Do only loose check w/o serialization.
5939                  * mem_cgroup_move_account() checks the page is valid or
5940                  * not under LRU exclusion.
5941                  */
5942                 if (page_memcg(page) == mc.from) {
5943                         ret = MC_TARGET_PAGE;
5944                         if (is_device_private_page(page) ||
5945                             is_device_coherent_page(page))
5946                                 ret = MC_TARGET_DEVICE;
5947                         if (target)
5948                                 target->page = page;
5949                 }
5950                 if (!ret || !target) {
5951                         if (target)
5952                                 unlock_page(page);
5953                         put_page(page);
5954                 }
5955         }
5956         /*
5957          * There is a swap entry and a page doesn't exist or isn't charged.
5958          * But we cannot move a tail-page in a THP.
5959          */
5960         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5961             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5962                 ret = MC_TARGET_SWAP;
5963                 if (target)
5964                         target->ent = ent;
5965         }
5966         return ret;
5967 }
5968
5969 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5970 /*
5971  * We don't consider PMD mapped swapping or file mapped pages because THP does
5972  * not support them for now.
5973  * Caller should make sure that pmd_trans_huge(pmd) is true.
5974  */
5975 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5976                 unsigned long addr, pmd_t pmd, union mc_target *target)
5977 {
5978         struct page *page = NULL;
5979         enum mc_target_type ret = MC_TARGET_NONE;
5980
5981         if (unlikely(is_swap_pmd(pmd))) {
5982                 VM_BUG_ON(thp_migration_supported() &&
5983                                   !is_pmd_migration_entry(pmd));
5984                 return ret;
5985         }
5986         page = pmd_page(pmd);
5987         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5988         if (!(mc.flags & MOVE_ANON))
5989                 return ret;
5990         if (page_memcg(page) == mc.from) {
5991                 ret = MC_TARGET_PAGE;
5992                 if (target) {
5993                         get_page(page);
5994                         if (!trylock_page(page)) {
5995                                 put_page(page);
5996                                 return MC_TARGET_NONE;
5997                         }
5998                         target->page = page;
5999                 }
6000         }
6001         return ret;
6002 }
6003 #else
6004 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6005                 unsigned long addr, pmd_t pmd, union mc_target *target)
6006 {
6007         return MC_TARGET_NONE;
6008 }
6009 #endif
6010
6011 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6012                                         unsigned long addr, unsigned long end,
6013                                         struct mm_walk *walk)
6014 {
6015         struct vm_area_struct *vma = walk->vma;
6016         pte_t *pte;
6017         spinlock_t *ptl;
6018
6019         ptl = pmd_trans_huge_lock(pmd, vma);
6020         if (ptl) {
6021                 /*
6022                  * Note their can not be MC_TARGET_DEVICE for now as we do not
6023                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6024                  * this might change.
6025                  */
6026                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6027                         mc.precharge += HPAGE_PMD_NR;
6028                 spin_unlock(ptl);
6029                 return 0;
6030         }
6031
6032         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6033         if (!pte)
6034                 return 0;
6035         for (; addr != end; pte++, addr += PAGE_SIZE)
6036                 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6037                         mc.precharge++; /* increment precharge temporarily */
6038         pte_unmap_unlock(pte - 1, ptl);
6039         cond_resched();
6040
6041         return 0;
6042 }
6043
6044 static const struct mm_walk_ops precharge_walk_ops = {
6045         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
6046         .walk_lock      = PGWALK_RDLOCK,
6047 };
6048
6049 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6050 {
6051         unsigned long precharge;
6052
6053         mmap_read_lock(mm);
6054         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6055         mmap_read_unlock(mm);
6056
6057         precharge = mc.precharge;
6058         mc.precharge = 0;
6059
6060         return precharge;
6061 }
6062
6063 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6064 {
6065         unsigned long precharge = mem_cgroup_count_precharge(mm);
6066
6067         VM_BUG_ON(mc.moving_task);
6068         mc.moving_task = current;
6069         return mem_cgroup_do_precharge(precharge);
6070 }
6071
6072 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6073 static void __mem_cgroup_clear_mc(void)
6074 {
6075         struct mem_cgroup *from = mc.from;
6076         struct mem_cgroup *to = mc.to;
6077
6078         /* we must uncharge all the leftover precharges from mc.to */
6079         if (mc.precharge) {
6080                 cancel_charge(mc.to, mc.precharge);
6081                 mc.precharge = 0;
6082         }
6083         /*
6084          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6085          * we must uncharge here.
6086          */
6087         if (mc.moved_charge) {
6088                 cancel_charge(mc.from, mc.moved_charge);
6089                 mc.moved_charge = 0;
6090         }
6091         /* we must fixup refcnts and charges */
6092         if (mc.moved_swap) {
6093                 /* uncharge swap account from the old cgroup */
6094                 if (!mem_cgroup_is_root(mc.from))
6095                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6096
6097                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6098
6099                 /*
6100                  * we charged both to->memory and to->memsw, so we
6101                  * should uncharge to->memory.
6102                  */
6103                 if (!mem_cgroup_is_root(mc.to))
6104                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6105
6106                 mc.moved_swap = 0;
6107         }
6108         memcg_oom_recover(from);
6109         memcg_oom_recover(to);
6110         wake_up_all(&mc.waitq);
6111 }
6112
6113 static void mem_cgroup_clear_mc(void)
6114 {
6115         struct mm_struct *mm = mc.mm;
6116
6117         /*
6118          * we must clear moving_task before waking up waiters at the end of
6119          * task migration.
6120          */
6121         mc.moving_task = NULL;
6122         __mem_cgroup_clear_mc();
6123         spin_lock(&mc.lock);
6124         mc.from = NULL;
6125         mc.to = NULL;
6126         mc.mm = NULL;
6127         spin_unlock(&mc.lock);
6128
6129         mmput(mm);
6130 }
6131
6132 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6133 {
6134         struct cgroup_subsys_state *css;
6135         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6136         struct mem_cgroup *from;
6137         struct task_struct *leader, *p;
6138         struct mm_struct *mm;
6139         unsigned long move_flags;
6140         int ret = 0;
6141
6142         /* charge immigration isn't supported on the default hierarchy */
6143         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6144                 return 0;
6145
6146         /*
6147          * Multi-process migrations only happen on the default hierarchy
6148          * where charge immigration is not used.  Perform charge
6149          * immigration if @tset contains a leader and whine if there are
6150          * multiple.
6151          */
6152         p = NULL;
6153         cgroup_taskset_for_each_leader(leader, css, tset) {
6154                 WARN_ON_ONCE(p);
6155                 p = leader;
6156                 memcg = mem_cgroup_from_css(css);
6157         }
6158         if (!p)
6159                 return 0;
6160
6161         /*
6162          * We are now committed to this value whatever it is. Changes in this
6163          * tunable will only affect upcoming migrations, not the current one.
6164          * So we need to save it, and keep it going.
6165          */
6166         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6167         if (!move_flags)
6168                 return 0;
6169
6170         from = mem_cgroup_from_task(p);
6171
6172         VM_BUG_ON(from == memcg);
6173
6174         mm = get_task_mm(p);
6175         if (!mm)
6176                 return 0;
6177         /* We move charges only when we move a owner of the mm */
6178         if (mm->owner == p) {
6179                 VM_BUG_ON(mc.from);
6180                 VM_BUG_ON(mc.to);
6181                 VM_BUG_ON(mc.precharge);
6182                 VM_BUG_ON(mc.moved_charge);
6183                 VM_BUG_ON(mc.moved_swap);
6184
6185                 spin_lock(&mc.lock);
6186                 mc.mm = mm;
6187                 mc.from = from;
6188                 mc.to = memcg;
6189                 mc.flags = move_flags;
6190                 spin_unlock(&mc.lock);
6191                 /* We set mc.moving_task later */
6192
6193                 ret = mem_cgroup_precharge_mc(mm);
6194                 if (ret)
6195                         mem_cgroup_clear_mc();
6196         } else {
6197                 mmput(mm);
6198         }
6199         return ret;
6200 }
6201
6202 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6203 {
6204         if (mc.to)
6205                 mem_cgroup_clear_mc();
6206 }
6207
6208 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6209                                 unsigned long addr, unsigned long end,
6210                                 struct mm_walk *walk)
6211 {
6212         int ret = 0;
6213         struct vm_area_struct *vma = walk->vma;
6214         pte_t *pte;
6215         spinlock_t *ptl;
6216         enum mc_target_type target_type;
6217         union mc_target target;
6218         struct page *page;
6219
6220         ptl = pmd_trans_huge_lock(pmd, vma);
6221         if (ptl) {
6222                 if (mc.precharge < HPAGE_PMD_NR) {
6223                         spin_unlock(ptl);
6224                         return 0;
6225                 }
6226                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6227                 if (target_type == MC_TARGET_PAGE) {
6228                         page = target.page;
6229                         if (isolate_lru_page(page)) {
6230                                 if (!mem_cgroup_move_account(page, true,
6231                                                              mc.from, mc.to)) {
6232                                         mc.precharge -= HPAGE_PMD_NR;
6233                                         mc.moved_charge += HPAGE_PMD_NR;
6234                                 }
6235                                 putback_lru_page(page);
6236                         }
6237                         unlock_page(page);
6238                         put_page(page);
6239                 } else if (target_type == MC_TARGET_DEVICE) {
6240                         page = target.page;
6241                         if (!mem_cgroup_move_account(page, true,
6242                                                      mc.from, mc.to)) {
6243                                 mc.precharge -= HPAGE_PMD_NR;
6244                                 mc.moved_charge += HPAGE_PMD_NR;
6245                         }
6246                         unlock_page(page);
6247                         put_page(page);
6248                 }
6249                 spin_unlock(ptl);
6250                 return 0;
6251         }
6252
6253 retry:
6254         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6255         if (!pte)
6256                 return 0;
6257         for (; addr != end; addr += PAGE_SIZE) {
6258                 pte_t ptent = ptep_get(pte++);
6259                 bool device = false;
6260                 swp_entry_t ent;
6261
6262                 if (!mc.precharge)
6263                         break;
6264
6265                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6266                 case MC_TARGET_DEVICE:
6267                         device = true;
6268                         fallthrough;
6269                 case MC_TARGET_PAGE:
6270                         page = target.page;
6271                         /*
6272                          * We can have a part of the split pmd here. Moving it
6273                          * can be done but it would be too convoluted so simply
6274                          * ignore such a partial THP and keep it in original
6275                          * memcg. There should be somebody mapping the head.
6276                          */
6277                         if (PageTransCompound(page))
6278                                 goto put;
6279                         if (!device && !isolate_lru_page(page))
6280                                 goto put;
6281                         if (!mem_cgroup_move_account(page, false,
6282                                                 mc.from, mc.to)) {
6283                                 mc.precharge--;
6284                                 /* we uncharge from mc.from later. */
6285                                 mc.moved_charge++;
6286                         }
6287                         if (!device)
6288                                 putback_lru_page(page);
6289 put:                    /* get_mctgt_type() gets & locks the page */
6290                         unlock_page(page);
6291                         put_page(page);
6292                         break;
6293                 case MC_TARGET_SWAP:
6294                         ent = target.ent;
6295                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6296                                 mc.precharge--;
6297                                 mem_cgroup_id_get_many(mc.to, 1);
6298                                 /* we fixup other refcnts and charges later. */
6299                                 mc.moved_swap++;
6300                         }
6301                         break;
6302                 default:
6303                         break;
6304                 }
6305         }
6306         pte_unmap_unlock(pte - 1, ptl);
6307         cond_resched();
6308
6309         if (addr != end) {
6310                 /*
6311                  * We have consumed all precharges we got in can_attach().
6312                  * We try charge one by one, but don't do any additional
6313                  * charges to mc.to if we have failed in charge once in attach()
6314                  * phase.
6315                  */
6316                 ret = mem_cgroup_do_precharge(1);
6317                 if (!ret)
6318                         goto retry;
6319         }
6320
6321         return ret;
6322 }
6323
6324 static const struct mm_walk_ops charge_walk_ops = {
6325         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6326         .walk_lock      = PGWALK_RDLOCK,
6327 };
6328
6329 static void mem_cgroup_move_charge(void)
6330 {
6331         lru_add_drain_all();
6332         /*
6333          * Signal folio_memcg_lock() to take the memcg's move_lock
6334          * while we're moving its pages to another memcg. Then wait
6335          * for already started RCU-only updates to finish.
6336          */
6337         atomic_inc(&mc.from->moving_account);
6338         synchronize_rcu();
6339 retry:
6340         if (unlikely(!mmap_read_trylock(mc.mm))) {
6341                 /*
6342                  * Someone who are holding the mmap_lock might be waiting in
6343                  * waitq. So we cancel all extra charges, wake up all waiters,
6344                  * and retry. Because we cancel precharges, we might not be able
6345                  * to move enough charges, but moving charge is a best-effort
6346                  * feature anyway, so it wouldn't be a big problem.
6347                  */
6348                 __mem_cgroup_clear_mc();
6349                 cond_resched();
6350                 goto retry;
6351         }
6352         /*
6353          * When we have consumed all precharges and failed in doing
6354          * additional charge, the page walk just aborts.
6355          */
6356         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6357         mmap_read_unlock(mc.mm);
6358         atomic_dec(&mc.from->moving_account);
6359 }
6360
6361 static void mem_cgroup_move_task(void)
6362 {
6363         if (mc.to) {
6364                 mem_cgroup_move_charge();
6365                 mem_cgroup_clear_mc();
6366         }
6367 }
6368 #else   /* !CONFIG_MMU */
6369 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6370 {
6371         return 0;
6372 }
6373 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6374 {
6375 }
6376 static void mem_cgroup_move_task(void)
6377 {
6378 }
6379 #endif
6380
6381 #ifdef CONFIG_LRU_GEN
6382 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6383 {
6384         struct task_struct *task;
6385         struct cgroup_subsys_state *css;
6386
6387         /* find the first leader if there is any */
6388         cgroup_taskset_for_each_leader(task, css, tset)
6389                 break;
6390
6391         if (!task)
6392                 return;
6393
6394         task_lock(task);
6395         if (task->mm && READ_ONCE(task->mm->owner) == task)
6396                 lru_gen_migrate_mm(task->mm);
6397         task_unlock(task);
6398 }
6399 #else
6400 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6401 {
6402 }
6403 #endif /* CONFIG_LRU_GEN */
6404
6405 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6406 {
6407         if (value == PAGE_COUNTER_MAX)
6408                 seq_puts(m, "max\n");
6409         else
6410                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6411
6412         return 0;
6413 }
6414
6415 static u64 memory_current_read(struct cgroup_subsys_state *css,
6416                                struct cftype *cft)
6417 {
6418         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6419
6420         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6421 }
6422
6423 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6424                             struct cftype *cft)
6425 {
6426         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6427
6428         return (u64)memcg->memory.watermark * PAGE_SIZE;
6429 }
6430
6431 static int memory_min_show(struct seq_file *m, void *v)
6432 {
6433         return seq_puts_memcg_tunable(m,
6434                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6435 }
6436
6437 static ssize_t memory_min_write(struct kernfs_open_file *of,
6438                                 char *buf, size_t nbytes, loff_t off)
6439 {
6440         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6441         unsigned long min;
6442         int err;
6443
6444         buf = strstrip(buf);
6445         err = page_counter_memparse(buf, "max", &min);
6446         if (err)
6447                 return err;
6448
6449         page_counter_set_min(&memcg->memory, min);
6450
6451         return nbytes;
6452 }
6453
6454 static int memory_low_show(struct seq_file *m, void *v)
6455 {
6456         return seq_puts_memcg_tunable(m,
6457                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6458 }
6459
6460 static ssize_t memory_low_write(struct kernfs_open_file *of,
6461                                 char *buf, size_t nbytes, loff_t off)
6462 {
6463         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6464         unsigned long low;
6465         int err;
6466
6467         buf = strstrip(buf);
6468         err = page_counter_memparse(buf, "max", &low);
6469         if (err)
6470                 return err;
6471
6472         page_counter_set_low(&memcg->memory, low);
6473
6474         return nbytes;
6475 }
6476
6477 static int memory_high_show(struct seq_file *m, void *v)
6478 {
6479         return seq_puts_memcg_tunable(m,
6480                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6481 }
6482
6483 static ssize_t memory_high_write(struct kernfs_open_file *of,
6484                                  char *buf, size_t nbytes, loff_t off)
6485 {
6486         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6487         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6488         bool drained = false;
6489         unsigned long high;
6490         int err;
6491
6492         buf = strstrip(buf);
6493         err = page_counter_memparse(buf, "max", &high);
6494         if (err)
6495                 return err;
6496
6497         page_counter_set_high(&memcg->memory, high);
6498
6499         for (;;) {
6500                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6501                 unsigned long reclaimed;
6502
6503                 if (nr_pages <= high)
6504                         break;
6505
6506                 if (signal_pending(current))
6507                         break;
6508
6509                 if (!drained) {
6510                         drain_all_stock(memcg);
6511                         drained = true;
6512                         continue;
6513                 }
6514
6515                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6516                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6517
6518                 if (!reclaimed && !nr_retries--)
6519                         break;
6520         }
6521
6522         memcg_wb_domain_size_changed(memcg);
6523         return nbytes;
6524 }
6525
6526 static int memory_max_show(struct seq_file *m, void *v)
6527 {
6528         return seq_puts_memcg_tunable(m,
6529                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6530 }
6531
6532 static ssize_t memory_max_write(struct kernfs_open_file *of,
6533                                 char *buf, size_t nbytes, loff_t off)
6534 {
6535         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6536         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6537         bool drained = false;
6538         unsigned long max;
6539         int err;
6540
6541         buf = strstrip(buf);
6542         err = page_counter_memparse(buf, "max", &max);
6543         if (err)
6544                 return err;
6545
6546         xchg(&memcg->memory.max, max);
6547
6548         for (;;) {
6549                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6550
6551                 if (nr_pages <= max)
6552                         break;
6553
6554                 if (signal_pending(current))
6555                         break;
6556
6557                 if (!drained) {
6558                         drain_all_stock(memcg);
6559                         drained = true;
6560                         continue;
6561                 }
6562
6563                 if (nr_reclaims) {
6564                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6565                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6566                                 nr_reclaims--;
6567                         continue;
6568                 }
6569
6570                 memcg_memory_event(memcg, MEMCG_OOM);
6571                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6572                         break;
6573         }
6574
6575         memcg_wb_domain_size_changed(memcg);
6576         return nbytes;
6577 }
6578
6579 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6580 {
6581         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6582         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6583         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6584         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6585         seq_printf(m, "oom_kill %lu\n",
6586                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6587         seq_printf(m, "oom_group_kill %lu\n",
6588                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6589 }
6590
6591 static int memory_events_show(struct seq_file *m, void *v)
6592 {
6593         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6594
6595         __memory_events_show(m, memcg->memory_events);
6596         return 0;
6597 }
6598
6599 static int memory_events_local_show(struct seq_file *m, void *v)
6600 {
6601         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6602
6603         __memory_events_show(m, memcg->memory_events_local);
6604         return 0;
6605 }
6606
6607 static int memory_stat_show(struct seq_file *m, void *v)
6608 {
6609         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6610         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6611         struct seq_buf s;
6612
6613         if (!buf)
6614                 return -ENOMEM;
6615         seq_buf_init(&s, buf, PAGE_SIZE);
6616         memory_stat_format(memcg, &s);
6617         seq_puts(m, buf);
6618         kfree(buf);
6619         return 0;
6620 }
6621
6622 #ifdef CONFIG_NUMA
6623 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6624                                                      int item)
6625 {
6626         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6627 }
6628
6629 static int memory_numa_stat_show(struct seq_file *m, void *v)
6630 {
6631         int i;
6632         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6633
6634         mem_cgroup_flush_stats();
6635
6636         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6637                 int nid;
6638
6639                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6640                         continue;
6641
6642                 seq_printf(m, "%s", memory_stats[i].name);
6643                 for_each_node_state(nid, N_MEMORY) {
6644                         u64 size;
6645                         struct lruvec *lruvec;
6646
6647                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6648                         size = lruvec_page_state_output(lruvec,
6649                                                         memory_stats[i].idx);
6650                         seq_printf(m, " N%d=%llu", nid, size);
6651                 }
6652                 seq_putc(m, '\n');
6653         }
6654
6655         return 0;
6656 }
6657 #endif
6658
6659 static int memory_oom_group_show(struct seq_file *m, void *v)
6660 {
6661         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6662
6663         seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6664
6665         return 0;
6666 }
6667
6668 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6669                                       char *buf, size_t nbytes, loff_t off)
6670 {
6671         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6672         int ret, oom_group;
6673
6674         buf = strstrip(buf);
6675         if (!buf)
6676                 return -EINVAL;
6677
6678         ret = kstrtoint(buf, 0, &oom_group);
6679         if (ret)
6680                 return ret;
6681
6682         if (oom_group != 0 && oom_group != 1)
6683                 return -EINVAL;
6684
6685         WRITE_ONCE(memcg->oom_group, oom_group);
6686
6687         return nbytes;
6688 }
6689
6690 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6691                               size_t nbytes, loff_t off)
6692 {
6693         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6694         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6695         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6696         unsigned int reclaim_options;
6697         int err;
6698
6699         buf = strstrip(buf);
6700         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6701         if (err)
6702                 return err;
6703
6704         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6705         while (nr_reclaimed < nr_to_reclaim) {
6706                 unsigned long reclaimed;
6707
6708                 if (signal_pending(current))
6709                         return -EINTR;
6710
6711                 /*
6712                  * This is the final attempt, drain percpu lru caches in the
6713                  * hope of introducing more evictable pages for
6714                  * try_to_free_mem_cgroup_pages().
6715                  */
6716                 if (!nr_retries)
6717                         lru_add_drain_all();
6718
6719                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6720                                         min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6721                                         GFP_KERNEL, reclaim_options);
6722
6723                 if (!reclaimed && !nr_retries--)
6724                         return -EAGAIN;
6725
6726                 nr_reclaimed += reclaimed;
6727         }
6728
6729         return nbytes;
6730 }
6731
6732 static struct cftype memory_files[] = {
6733         {
6734                 .name = "current",
6735                 .flags = CFTYPE_NOT_ON_ROOT,
6736                 .read_u64 = memory_current_read,
6737         },
6738         {
6739                 .name = "peak",
6740                 .flags = CFTYPE_NOT_ON_ROOT,
6741                 .read_u64 = memory_peak_read,
6742         },
6743         {
6744                 .name = "min",
6745                 .flags = CFTYPE_NOT_ON_ROOT,
6746                 .seq_show = memory_min_show,
6747                 .write = memory_min_write,
6748         },
6749         {
6750                 .name = "low",
6751                 .flags = CFTYPE_NOT_ON_ROOT,
6752                 .seq_show = memory_low_show,
6753                 .write = memory_low_write,
6754         },
6755         {
6756                 .name = "high",
6757                 .flags = CFTYPE_NOT_ON_ROOT,
6758                 .seq_show = memory_high_show,
6759                 .write = memory_high_write,
6760         },
6761         {
6762                 .name = "max",
6763                 .flags = CFTYPE_NOT_ON_ROOT,
6764                 .seq_show = memory_max_show,
6765                 .write = memory_max_write,
6766         },
6767         {
6768                 .name = "events",
6769                 .flags = CFTYPE_NOT_ON_ROOT,
6770                 .file_offset = offsetof(struct mem_cgroup, events_file),
6771                 .seq_show = memory_events_show,
6772         },
6773         {
6774                 .name = "events.local",
6775                 .flags = CFTYPE_NOT_ON_ROOT,
6776                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6777                 .seq_show = memory_events_local_show,
6778         },
6779         {
6780                 .name = "stat",
6781                 .seq_show = memory_stat_show,
6782         },
6783 #ifdef CONFIG_NUMA
6784         {
6785                 .name = "numa_stat",
6786                 .seq_show = memory_numa_stat_show,
6787         },
6788 #endif
6789         {
6790                 .name = "oom.group",
6791                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6792                 .seq_show = memory_oom_group_show,
6793                 .write = memory_oom_group_write,
6794         },
6795         {
6796                 .name = "reclaim",
6797                 .flags = CFTYPE_NS_DELEGATABLE,
6798                 .write = memory_reclaim,
6799         },
6800         { }     /* terminate */
6801 };
6802
6803 struct cgroup_subsys memory_cgrp_subsys = {
6804         .css_alloc = mem_cgroup_css_alloc,
6805         .css_online = mem_cgroup_css_online,
6806         .css_offline = mem_cgroup_css_offline,
6807         .css_released = mem_cgroup_css_released,
6808         .css_free = mem_cgroup_css_free,
6809         .css_reset = mem_cgroup_css_reset,
6810         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6811         .can_attach = mem_cgroup_can_attach,
6812         .attach = mem_cgroup_attach,
6813         .cancel_attach = mem_cgroup_cancel_attach,
6814         .post_attach = mem_cgroup_move_task,
6815         .dfl_cftypes = memory_files,
6816         .legacy_cftypes = mem_cgroup_legacy_files,
6817         .early_init = 0,
6818 };
6819
6820 /*
6821  * This function calculates an individual cgroup's effective
6822  * protection which is derived from its own memory.min/low, its
6823  * parent's and siblings' settings, as well as the actual memory
6824  * distribution in the tree.
6825  *
6826  * The following rules apply to the effective protection values:
6827  *
6828  * 1. At the first level of reclaim, effective protection is equal to
6829  *    the declared protection in memory.min and memory.low.
6830  *
6831  * 2. To enable safe delegation of the protection configuration, at
6832  *    subsequent levels the effective protection is capped to the
6833  *    parent's effective protection.
6834  *
6835  * 3. To make complex and dynamic subtrees easier to configure, the
6836  *    user is allowed to overcommit the declared protection at a given
6837  *    level. If that is the case, the parent's effective protection is
6838  *    distributed to the children in proportion to how much protection
6839  *    they have declared and how much of it they are utilizing.
6840  *
6841  *    This makes distribution proportional, but also work-conserving:
6842  *    if one cgroup claims much more protection than it uses memory,
6843  *    the unused remainder is available to its siblings.
6844  *
6845  * 4. Conversely, when the declared protection is undercommitted at a
6846  *    given level, the distribution of the larger parental protection
6847  *    budget is NOT proportional. A cgroup's protection from a sibling
6848  *    is capped to its own memory.min/low setting.
6849  *
6850  * 5. However, to allow protecting recursive subtrees from each other
6851  *    without having to declare each individual cgroup's fixed share
6852  *    of the ancestor's claim to protection, any unutilized -
6853  *    "floating" - protection from up the tree is distributed in
6854  *    proportion to each cgroup's *usage*. This makes the protection
6855  *    neutral wrt sibling cgroups and lets them compete freely over
6856  *    the shared parental protection budget, but it protects the
6857  *    subtree as a whole from neighboring subtrees.
6858  *
6859  * Note that 4. and 5. are not in conflict: 4. is about protecting
6860  * against immediate siblings whereas 5. is about protecting against
6861  * neighboring subtrees.
6862  */
6863 static unsigned long effective_protection(unsigned long usage,
6864                                           unsigned long parent_usage,
6865                                           unsigned long setting,
6866                                           unsigned long parent_effective,
6867                                           unsigned long siblings_protected)
6868 {
6869         unsigned long protected;
6870         unsigned long ep;
6871
6872         protected = min(usage, setting);
6873         /*
6874          * If all cgroups at this level combined claim and use more
6875          * protection than what the parent affords them, distribute
6876          * shares in proportion to utilization.
6877          *
6878          * We are using actual utilization rather than the statically
6879          * claimed protection in order to be work-conserving: claimed
6880          * but unused protection is available to siblings that would
6881          * otherwise get a smaller chunk than what they claimed.
6882          */
6883         if (siblings_protected > parent_effective)
6884                 return protected * parent_effective / siblings_protected;
6885
6886         /*
6887          * Ok, utilized protection of all children is within what the
6888          * parent affords them, so we know whatever this child claims
6889          * and utilizes is effectively protected.
6890          *
6891          * If there is unprotected usage beyond this value, reclaim
6892          * will apply pressure in proportion to that amount.
6893          *
6894          * If there is unutilized protection, the cgroup will be fully
6895          * shielded from reclaim, but we do return a smaller value for
6896          * protection than what the group could enjoy in theory. This
6897          * is okay. With the overcommit distribution above, effective
6898          * protection is always dependent on how memory is actually
6899          * consumed among the siblings anyway.
6900          */
6901         ep = protected;
6902
6903         /*
6904          * If the children aren't claiming (all of) the protection
6905          * afforded to them by the parent, distribute the remainder in
6906          * proportion to the (unprotected) memory of each cgroup. That
6907          * way, cgroups that aren't explicitly prioritized wrt each
6908          * other compete freely over the allowance, but they are
6909          * collectively protected from neighboring trees.
6910          *
6911          * We're using unprotected memory for the weight so that if
6912          * some cgroups DO claim explicit protection, we don't protect
6913          * the same bytes twice.
6914          *
6915          * Check both usage and parent_usage against the respective
6916          * protected values. One should imply the other, but they
6917          * aren't read atomically - make sure the division is sane.
6918          */
6919         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6920                 return ep;
6921         if (parent_effective > siblings_protected &&
6922             parent_usage > siblings_protected &&
6923             usage > protected) {
6924                 unsigned long unclaimed;
6925
6926                 unclaimed = parent_effective - siblings_protected;
6927                 unclaimed *= usage - protected;
6928                 unclaimed /= parent_usage - siblings_protected;
6929
6930                 ep += unclaimed;
6931         }
6932
6933         return ep;
6934 }
6935
6936 /**
6937  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6938  * @root: the top ancestor of the sub-tree being checked
6939  * @memcg: the memory cgroup to check
6940  *
6941  * WARNING: This function is not stateless! It can only be used as part
6942  *          of a top-down tree iteration, not for isolated queries.
6943  */
6944 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6945                                      struct mem_cgroup *memcg)
6946 {
6947         unsigned long usage, parent_usage;
6948         struct mem_cgroup *parent;
6949
6950         if (mem_cgroup_disabled())
6951                 return;
6952
6953         if (!root)
6954                 root = root_mem_cgroup;
6955
6956         /*
6957          * Effective values of the reclaim targets are ignored so they
6958          * can be stale. Have a look at mem_cgroup_protection for more
6959          * details.
6960          * TODO: calculation should be more robust so that we do not need
6961          * that special casing.
6962          */
6963         if (memcg == root)
6964                 return;
6965
6966         usage = page_counter_read(&memcg->memory);
6967         if (!usage)
6968                 return;
6969
6970         parent = parent_mem_cgroup(memcg);
6971
6972         if (parent == root) {
6973                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6974                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6975                 return;
6976         }
6977
6978         parent_usage = page_counter_read(&parent->memory);
6979
6980         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6981                         READ_ONCE(memcg->memory.min),
6982                         READ_ONCE(parent->memory.emin),
6983                         atomic_long_read(&parent->memory.children_min_usage)));
6984
6985         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6986                         READ_ONCE(memcg->memory.low),
6987                         READ_ONCE(parent->memory.elow),
6988                         atomic_long_read(&parent->memory.children_low_usage)));
6989 }
6990
6991 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6992                         gfp_t gfp)
6993 {
6994         long nr_pages = folio_nr_pages(folio);
6995         int ret;
6996
6997         ret = try_charge(memcg, gfp, nr_pages);
6998         if (ret)
6999                 goto out;
7000
7001         css_get(&memcg->css);
7002         commit_charge(folio, memcg);
7003
7004         local_irq_disable();
7005         mem_cgroup_charge_statistics(memcg, nr_pages);
7006         memcg_check_events(memcg, folio_nid(folio));
7007         local_irq_enable();
7008 out:
7009         return ret;
7010 }
7011
7012 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7013 {
7014         struct mem_cgroup *memcg;
7015         int ret;
7016
7017         memcg = get_mem_cgroup_from_mm(mm);
7018         ret = charge_memcg(folio, memcg, gfp);
7019         css_put(&memcg->css);
7020
7021         return ret;
7022 }
7023
7024 /**
7025  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7026  * @folio: folio to charge.
7027  * @mm: mm context of the victim
7028  * @gfp: reclaim mode
7029  * @entry: swap entry for which the folio is allocated
7030  *
7031  * This function charges a folio allocated for swapin. Please call this before
7032  * adding the folio to the swapcache.
7033  *
7034  * Returns 0 on success. Otherwise, an error code is returned.
7035  */
7036 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7037                                   gfp_t gfp, swp_entry_t entry)
7038 {
7039         struct mem_cgroup *memcg;
7040         unsigned short id;
7041         int ret;
7042
7043         if (mem_cgroup_disabled())
7044                 return 0;
7045
7046         id = lookup_swap_cgroup_id(entry);
7047         rcu_read_lock();
7048         memcg = mem_cgroup_from_id(id);
7049         if (!memcg || !css_tryget_online(&memcg->css))
7050                 memcg = get_mem_cgroup_from_mm(mm);
7051         rcu_read_unlock();
7052
7053         ret = charge_memcg(folio, memcg, gfp);
7054
7055         css_put(&memcg->css);
7056         return ret;
7057 }
7058
7059 /*
7060  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7061  * @entry: swap entry for which the page is charged
7062  *
7063  * Call this function after successfully adding the charged page to swapcache.
7064  *
7065  * Note: This function assumes the page for which swap slot is being uncharged
7066  * is order 0 page.
7067  */
7068 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7069 {
7070         /*
7071          * Cgroup1's unified memory+swap counter has been charged with the
7072          * new swapcache page, finish the transfer by uncharging the swap
7073          * slot. The swap slot would also get uncharged when it dies, but
7074          * it can stick around indefinitely and we'd count the page twice
7075          * the entire time.
7076          *
7077          * Cgroup2 has separate resource counters for memory and swap,
7078          * so this is a non-issue here. Memory and swap charge lifetimes
7079          * correspond 1:1 to page and swap slot lifetimes: we charge the
7080          * page to memory here, and uncharge swap when the slot is freed.
7081          */
7082         if (!mem_cgroup_disabled() && do_memsw_account()) {
7083                 /*
7084                  * The swap entry might not get freed for a long time,
7085                  * let's not wait for it.  The page already received a
7086                  * memory+swap charge, drop the swap entry duplicate.
7087                  */
7088                 mem_cgroup_uncharge_swap(entry, 1);
7089         }
7090 }
7091
7092 struct uncharge_gather {
7093         struct mem_cgroup *memcg;
7094         unsigned long nr_memory;
7095         unsigned long pgpgout;
7096         unsigned long nr_kmem;
7097         int nid;
7098 };
7099
7100 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7101 {
7102         memset(ug, 0, sizeof(*ug));
7103 }
7104
7105 static void uncharge_batch(const struct uncharge_gather *ug)
7106 {
7107         unsigned long flags;
7108
7109         if (ug->nr_memory) {
7110                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7111                 if (do_memsw_account())
7112                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7113                 if (ug->nr_kmem)
7114                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7115                 memcg_oom_recover(ug->memcg);
7116         }
7117
7118         local_irq_save(flags);
7119         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7120         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7121         memcg_check_events(ug->memcg, ug->nid);
7122         local_irq_restore(flags);
7123
7124         /* drop reference from uncharge_folio */
7125         css_put(&ug->memcg->css);
7126 }
7127
7128 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7129 {
7130         long nr_pages;
7131         struct mem_cgroup *memcg;
7132         struct obj_cgroup *objcg;
7133
7134         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7135
7136         /*
7137          * Nobody should be changing or seriously looking at
7138          * folio memcg or objcg at this point, we have fully
7139          * exclusive access to the folio.
7140          */
7141         if (folio_memcg_kmem(folio)) {
7142                 objcg = __folio_objcg(folio);
7143                 /*
7144                  * This get matches the put at the end of the function and
7145                  * kmem pages do not hold memcg references anymore.
7146                  */
7147                 memcg = get_mem_cgroup_from_objcg(objcg);
7148         } else {
7149                 memcg = __folio_memcg(folio);
7150         }
7151
7152         if (!memcg)
7153                 return;
7154
7155         if (ug->memcg != memcg) {
7156                 if (ug->memcg) {
7157                         uncharge_batch(ug);
7158                         uncharge_gather_clear(ug);
7159                 }
7160                 ug->memcg = memcg;
7161                 ug->nid = folio_nid(folio);
7162
7163                 /* pairs with css_put in uncharge_batch */
7164                 css_get(&memcg->css);
7165         }
7166
7167         nr_pages = folio_nr_pages(folio);
7168
7169         if (folio_memcg_kmem(folio)) {
7170                 ug->nr_memory += nr_pages;
7171                 ug->nr_kmem += nr_pages;
7172
7173                 folio->memcg_data = 0;
7174                 obj_cgroup_put(objcg);
7175         } else {
7176                 /* LRU pages aren't accounted at the root level */
7177                 if (!mem_cgroup_is_root(memcg))
7178                         ug->nr_memory += nr_pages;
7179                 ug->pgpgout++;
7180
7181                 folio->memcg_data = 0;
7182         }
7183
7184         css_put(&memcg->css);
7185 }
7186
7187 void __mem_cgroup_uncharge(struct folio *folio)
7188 {
7189         struct uncharge_gather ug;
7190
7191         /* Don't touch folio->lru of any random page, pre-check: */
7192         if (!folio_memcg(folio))
7193                 return;
7194
7195         uncharge_gather_clear(&ug);
7196         uncharge_folio(folio, &ug);
7197         uncharge_batch(&ug);
7198 }
7199
7200 /**
7201  * __mem_cgroup_uncharge_list - uncharge a list of page
7202  * @page_list: list of pages to uncharge
7203  *
7204  * Uncharge a list of pages previously charged with
7205  * __mem_cgroup_charge().
7206  */
7207 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7208 {
7209         struct uncharge_gather ug;
7210         struct folio *folio;
7211
7212         uncharge_gather_clear(&ug);
7213         list_for_each_entry(folio, page_list, lru)
7214                 uncharge_folio(folio, &ug);
7215         if (ug.memcg)
7216                 uncharge_batch(&ug);
7217 }
7218
7219 /**
7220  * mem_cgroup_migrate - Charge a folio's replacement.
7221  * @old: Currently circulating folio.
7222  * @new: Replacement folio.
7223  *
7224  * Charge @new as a replacement folio for @old. @old will
7225  * be uncharged upon free.
7226  *
7227  * Both folios must be locked, @new->mapping must be set up.
7228  */
7229 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7230 {
7231         struct mem_cgroup *memcg;
7232         long nr_pages = folio_nr_pages(new);
7233         unsigned long flags;
7234
7235         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7236         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7237         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7238         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7239
7240         if (mem_cgroup_disabled())
7241                 return;
7242
7243         /* Page cache replacement: new folio already charged? */
7244         if (folio_memcg(new))
7245                 return;
7246
7247         memcg = folio_memcg(old);
7248         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7249         if (!memcg)
7250                 return;
7251
7252         /* Force-charge the new page. The old one will be freed soon */
7253         if (!mem_cgroup_is_root(memcg)) {
7254                 page_counter_charge(&memcg->memory, nr_pages);
7255                 if (do_memsw_account())
7256                         page_counter_charge(&memcg->memsw, nr_pages);
7257         }
7258
7259         css_get(&memcg->css);
7260         commit_charge(new, memcg);
7261
7262         local_irq_save(flags);
7263         mem_cgroup_charge_statistics(memcg, nr_pages);
7264         memcg_check_events(memcg, folio_nid(new));
7265         local_irq_restore(flags);
7266 }
7267
7268 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7269 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7270
7271 void mem_cgroup_sk_alloc(struct sock *sk)
7272 {
7273         struct mem_cgroup *memcg;
7274
7275         if (!mem_cgroup_sockets_enabled)
7276                 return;
7277
7278         /* Do not associate the sock with unrelated interrupted task's memcg. */
7279         if (!in_task())
7280                 return;
7281
7282         rcu_read_lock();
7283         memcg = mem_cgroup_from_task(current);
7284         if (mem_cgroup_is_root(memcg))
7285                 goto out;
7286         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7287                 goto out;
7288         if (css_tryget(&memcg->css))
7289                 sk->sk_memcg = memcg;
7290 out:
7291         rcu_read_unlock();
7292 }
7293
7294 void mem_cgroup_sk_free(struct sock *sk)
7295 {
7296         if (sk->sk_memcg)
7297                 css_put(&sk->sk_memcg->css);
7298 }
7299
7300 /**
7301  * mem_cgroup_charge_skmem - charge socket memory
7302  * @memcg: memcg to charge
7303  * @nr_pages: number of pages to charge
7304  * @gfp_mask: reclaim mode
7305  *
7306  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7307  * @memcg's configured limit, %false if it doesn't.
7308  */
7309 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7310                              gfp_t gfp_mask)
7311 {
7312         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7313                 struct page_counter *fail;
7314
7315                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7316                         memcg->tcpmem_pressure = 0;
7317                         return true;
7318                 }
7319                 memcg->tcpmem_pressure = 1;
7320                 if (gfp_mask & __GFP_NOFAIL) {
7321                         page_counter_charge(&memcg->tcpmem, nr_pages);
7322                         return true;
7323                 }
7324                 return false;
7325         }
7326
7327         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7328                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7329                 return true;
7330         }
7331
7332         return false;
7333 }
7334
7335 /**
7336  * mem_cgroup_uncharge_skmem - uncharge socket memory
7337  * @memcg: memcg to uncharge
7338  * @nr_pages: number of pages to uncharge
7339  */
7340 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7341 {
7342         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7343                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7344                 return;
7345         }
7346
7347         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7348
7349         refill_stock(memcg, nr_pages);
7350 }
7351
7352 static int __init cgroup_memory(char *s)
7353 {
7354         char *token;
7355
7356         while ((token = strsep(&s, ",")) != NULL) {
7357                 if (!*token)
7358                         continue;
7359                 if (!strcmp(token, "nosocket"))
7360                         cgroup_memory_nosocket = true;
7361                 if (!strcmp(token, "nokmem"))
7362                         cgroup_memory_nokmem = true;
7363                 if (!strcmp(token, "nobpf"))
7364                         cgroup_memory_nobpf = true;
7365         }
7366         return 1;
7367 }
7368 __setup("cgroup.memory=", cgroup_memory);
7369
7370 /*
7371  * subsys_initcall() for memory controller.
7372  *
7373  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7374  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7375  * basically everything that doesn't depend on a specific mem_cgroup structure
7376  * should be initialized from here.
7377  */
7378 static int __init mem_cgroup_init(void)
7379 {
7380         int cpu, node;
7381
7382         /*
7383          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7384          * used for per-memcg-per-cpu caching of per-node statistics. In order
7385          * to work fine, we should make sure that the overfill threshold can't
7386          * exceed S32_MAX / PAGE_SIZE.
7387          */
7388         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7389
7390         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7391                                   memcg_hotplug_cpu_dead);
7392
7393         for_each_possible_cpu(cpu)
7394                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7395                           drain_local_stock);
7396
7397         for_each_node(node) {
7398                 struct mem_cgroup_tree_per_node *rtpn;
7399
7400                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7401
7402                 rtpn->rb_root = RB_ROOT;
7403                 rtpn->rb_rightmost = NULL;
7404                 spin_lock_init(&rtpn->lock);
7405                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7406         }
7407
7408         return 0;
7409 }
7410 subsys_initcall(mem_cgroup_init);
7411
7412 #ifdef CONFIG_SWAP
7413 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7414 {
7415         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7416                 /*
7417                  * The root cgroup cannot be destroyed, so it's refcount must
7418                  * always be >= 1.
7419                  */
7420                 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7421                         VM_BUG_ON(1);
7422                         break;
7423                 }
7424                 memcg = parent_mem_cgroup(memcg);
7425                 if (!memcg)
7426                         memcg = root_mem_cgroup;
7427         }
7428         return memcg;
7429 }
7430
7431 /**
7432  * mem_cgroup_swapout - transfer a memsw charge to swap
7433  * @folio: folio whose memsw charge to transfer
7434  * @entry: swap entry to move the charge to
7435  *
7436  * Transfer the memsw charge of @folio to @entry.
7437  */
7438 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7439 {
7440         struct mem_cgroup *memcg, *swap_memcg;
7441         unsigned int nr_entries;
7442         unsigned short oldid;
7443
7444         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7445         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7446
7447         if (mem_cgroup_disabled())
7448                 return;
7449
7450         if (!do_memsw_account())
7451                 return;
7452
7453         memcg = folio_memcg(folio);
7454
7455         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7456         if (!memcg)
7457                 return;
7458
7459         /*
7460          * In case the memcg owning these pages has been offlined and doesn't
7461          * have an ID allocated to it anymore, charge the closest online
7462          * ancestor for the swap instead and transfer the memory+swap charge.
7463          */
7464         swap_memcg = mem_cgroup_id_get_online(memcg);
7465         nr_entries = folio_nr_pages(folio);
7466         /* Get references for the tail pages, too */
7467         if (nr_entries > 1)
7468                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7469         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7470                                    nr_entries);
7471         VM_BUG_ON_FOLIO(oldid, folio);
7472         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7473
7474         folio->memcg_data = 0;
7475
7476         if (!mem_cgroup_is_root(memcg))
7477                 page_counter_uncharge(&memcg->memory, nr_entries);
7478
7479         if (memcg != swap_memcg) {
7480                 if (!mem_cgroup_is_root(swap_memcg))
7481                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7482                 page_counter_uncharge(&memcg->memsw, nr_entries);
7483         }
7484
7485         /*
7486          * Interrupts should be disabled here because the caller holds the
7487          * i_pages lock which is taken with interrupts-off. It is
7488          * important here to have the interrupts disabled because it is the
7489          * only synchronisation we have for updating the per-CPU variables.
7490          */
7491         memcg_stats_lock();
7492         mem_cgroup_charge_statistics(memcg, -nr_entries);
7493         memcg_stats_unlock();
7494         memcg_check_events(memcg, folio_nid(folio));
7495
7496         css_put(&memcg->css);
7497 }
7498
7499 /**
7500  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7501  * @folio: folio being added to swap
7502  * @entry: swap entry to charge
7503  *
7504  * Try to charge @folio's memcg for the swap space at @entry.
7505  *
7506  * Returns 0 on success, -ENOMEM on failure.
7507  */
7508 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7509 {
7510         unsigned int nr_pages = folio_nr_pages(folio);
7511         struct page_counter *counter;
7512         struct mem_cgroup *memcg;
7513         unsigned short oldid;
7514
7515         if (do_memsw_account())
7516                 return 0;
7517
7518         memcg = folio_memcg(folio);
7519
7520         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7521         if (!memcg)
7522                 return 0;
7523
7524         if (!entry.val) {
7525                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7526                 return 0;
7527         }
7528
7529         memcg = mem_cgroup_id_get_online(memcg);
7530
7531         if (!mem_cgroup_is_root(memcg) &&
7532             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7533                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7534                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7535                 mem_cgroup_id_put(memcg);
7536                 return -ENOMEM;
7537         }
7538
7539         /* Get references for the tail pages, too */
7540         if (nr_pages > 1)
7541                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7542         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7543         VM_BUG_ON_FOLIO(oldid, folio);
7544         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7545
7546         return 0;
7547 }
7548
7549 /**
7550  * __mem_cgroup_uncharge_swap - uncharge swap space
7551  * @entry: swap entry to uncharge
7552  * @nr_pages: the amount of swap space to uncharge
7553  */
7554 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7555 {
7556         struct mem_cgroup *memcg;
7557         unsigned short id;
7558
7559         id = swap_cgroup_record(entry, 0, nr_pages);
7560         rcu_read_lock();
7561         memcg = mem_cgroup_from_id(id);
7562         if (memcg) {
7563                 if (!mem_cgroup_is_root(memcg)) {
7564                         if (do_memsw_account())
7565                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7566                         else
7567                                 page_counter_uncharge(&memcg->swap, nr_pages);
7568                 }
7569                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7570                 mem_cgroup_id_put_many(memcg, nr_pages);
7571         }
7572         rcu_read_unlock();
7573 }
7574
7575 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7576 {
7577         long nr_swap_pages = get_nr_swap_pages();
7578
7579         if (mem_cgroup_disabled() || do_memsw_account())
7580                 return nr_swap_pages;
7581         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7582                 nr_swap_pages = min_t(long, nr_swap_pages,
7583                                       READ_ONCE(memcg->swap.max) -
7584                                       page_counter_read(&memcg->swap));
7585         return nr_swap_pages;
7586 }
7587
7588 bool mem_cgroup_swap_full(struct folio *folio)
7589 {
7590         struct mem_cgroup *memcg;
7591
7592         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7593
7594         if (vm_swap_full())
7595                 return true;
7596         if (do_memsw_account())
7597                 return false;
7598
7599         memcg = folio_memcg(folio);
7600         if (!memcg)
7601                 return false;
7602
7603         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7604                 unsigned long usage = page_counter_read(&memcg->swap);
7605
7606                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7607                     usage * 2 >= READ_ONCE(memcg->swap.max))
7608                         return true;
7609         }
7610
7611         return false;
7612 }
7613
7614 static int __init setup_swap_account(char *s)
7615 {
7616         pr_warn_once("The swapaccount= commandline option is deprecated. "
7617                      "Please report your usecase to linux-mm@kvack.org if you "
7618                      "depend on this functionality.\n");
7619         return 1;
7620 }
7621 __setup("swapaccount=", setup_swap_account);
7622
7623 static u64 swap_current_read(struct cgroup_subsys_state *css,
7624                              struct cftype *cft)
7625 {
7626         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7627
7628         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7629 }
7630
7631 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7632                           struct cftype *cft)
7633 {
7634         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7635
7636         return (u64)memcg->swap.watermark * PAGE_SIZE;
7637 }
7638
7639 static int swap_high_show(struct seq_file *m, void *v)
7640 {
7641         return seq_puts_memcg_tunable(m,
7642                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7643 }
7644
7645 static ssize_t swap_high_write(struct kernfs_open_file *of,
7646                                char *buf, size_t nbytes, loff_t off)
7647 {
7648         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7649         unsigned long high;
7650         int err;
7651
7652         buf = strstrip(buf);
7653         err = page_counter_memparse(buf, "max", &high);
7654         if (err)
7655                 return err;
7656
7657         page_counter_set_high(&memcg->swap, high);
7658
7659         return nbytes;
7660 }
7661
7662 static int swap_max_show(struct seq_file *m, void *v)
7663 {
7664         return seq_puts_memcg_tunable(m,
7665                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7666 }
7667
7668 static ssize_t swap_max_write(struct kernfs_open_file *of,
7669                               char *buf, size_t nbytes, loff_t off)
7670 {
7671         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7672         unsigned long max;
7673         int err;
7674
7675         buf = strstrip(buf);
7676         err = page_counter_memparse(buf, "max", &max);
7677         if (err)
7678                 return err;
7679
7680         xchg(&memcg->swap.max, max);
7681
7682         return nbytes;
7683 }
7684
7685 static int swap_events_show(struct seq_file *m, void *v)
7686 {
7687         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7688
7689         seq_printf(m, "high %lu\n",
7690                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7691         seq_printf(m, "max %lu\n",
7692                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7693         seq_printf(m, "fail %lu\n",
7694                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7695
7696         return 0;
7697 }
7698
7699 static struct cftype swap_files[] = {
7700         {
7701                 .name = "swap.current",
7702                 .flags = CFTYPE_NOT_ON_ROOT,
7703                 .read_u64 = swap_current_read,
7704         },
7705         {
7706                 .name = "swap.high",
7707                 .flags = CFTYPE_NOT_ON_ROOT,
7708                 .seq_show = swap_high_show,
7709                 .write = swap_high_write,
7710         },
7711         {
7712                 .name = "swap.max",
7713                 .flags = CFTYPE_NOT_ON_ROOT,
7714                 .seq_show = swap_max_show,
7715                 .write = swap_max_write,
7716         },
7717         {
7718                 .name = "swap.peak",
7719                 .flags = CFTYPE_NOT_ON_ROOT,
7720                 .read_u64 = swap_peak_read,
7721         },
7722         {
7723                 .name = "swap.events",
7724                 .flags = CFTYPE_NOT_ON_ROOT,
7725                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7726                 .seq_show = swap_events_show,
7727         },
7728         { }     /* terminate */
7729 };
7730
7731 static struct cftype memsw_files[] = {
7732         {
7733                 .name = "memsw.usage_in_bytes",
7734                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7735                 .read_u64 = mem_cgroup_read_u64,
7736         },
7737         {
7738                 .name = "memsw.max_usage_in_bytes",
7739                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7740                 .write = mem_cgroup_reset,
7741                 .read_u64 = mem_cgroup_read_u64,
7742         },
7743         {
7744                 .name = "memsw.limit_in_bytes",
7745                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7746                 .write = mem_cgroup_write,
7747                 .read_u64 = mem_cgroup_read_u64,
7748         },
7749         {
7750                 .name = "memsw.failcnt",
7751                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7752                 .write = mem_cgroup_reset,
7753                 .read_u64 = mem_cgroup_read_u64,
7754         },
7755         { },    /* terminate */
7756 };
7757
7758 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7759 /**
7760  * obj_cgroup_may_zswap - check if this cgroup can zswap
7761  * @objcg: the object cgroup
7762  *
7763  * Check if the hierarchical zswap limit has been reached.
7764  *
7765  * This doesn't check for specific headroom, and it is not atomic
7766  * either. But with zswap, the size of the allocation is only known
7767  * once compression has occured, and this optimistic pre-check avoids
7768  * spending cycles on compression when there is already no room left
7769  * or zswap is disabled altogether somewhere in the hierarchy.
7770  */
7771 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7772 {
7773         struct mem_cgroup *memcg, *original_memcg;
7774         bool ret = true;
7775
7776         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7777                 return true;
7778
7779         original_memcg = get_mem_cgroup_from_objcg(objcg);
7780         for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7781              memcg = parent_mem_cgroup(memcg)) {
7782                 unsigned long max = READ_ONCE(memcg->zswap_max);
7783                 unsigned long pages;
7784
7785                 if (max == PAGE_COUNTER_MAX)
7786                         continue;
7787                 if (max == 0) {
7788                         ret = false;
7789                         break;
7790                 }
7791
7792                 cgroup_rstat_flush(memcg->css.cgroup);
7793                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7794                 if (pages < max)
7795                         continue;
7796                 ret = false;
7797                 break;
7798         }
7799         mem_cgroup_put(original_memcg);
7800         return ret;
7801 }
7802
7803 /**
7804  * obj_cgroup_charge_zswap - charge compression backend memory
7805  * @objcg: the object cgroup
7806  * @size: size of compressed object
7807  *
7808  * This forces the charge after obj_cgroup_may_zswap() allowed
7809  * compression and storage in zwap for this cgroup to go ahead.
7810  */
7811 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7812 {
7813         struct mem_cgroup *memcg;
7814
7815         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7816                 return;
7817
7818         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7819
7820         /* PF_MEMALLOC context, charging must succeed */
7821         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7822                 VM_WARN_ON_ONCE(1);
7823
7824         rcu_read_lock();
7825         memcg = obj_cgroup_memcg(objcg);
7826         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7827         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7828         rcu_read_unlock();
7829 }
7830
7831 /**
7832  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7833  * @objcg: the object cgroup
7834  * @size: size of compressed object
7835  *
7836  * Uncharges zswap memory on page in.
7837  */
7838 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7839 {
7840         struct mem_cgroup *memcg;
7841
7842         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7843                 return;
7844
7845         obj_cgroup_uncharge(objcg, size);
7846
7847         rcu_read_lock();
7848         memcg = obj_cgroup_memcg(objcg);
7849         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7850         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7851         rcu_read_unlock();
7852 }
7853
7854 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7855                               struct cftype *cft)
7856 {
7857         cgroup_rstat_flush(css->cgroup);
7858         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7859 }
7860
7861 static int zswap_max_show(struct seq_file *m, void *v)
7862 {
7863         return seq_puts_memcg_tunable(m,
7864                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7865 }
7866
7867 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7868                                char *buf, size_t nbytes, loff_t off)
7869 {
7870         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7871         unsigned long max;
7872         int err;
7873
7874         buf = strstrip(buf);
7875         err = page_counter_memparse(buf, "max", &max);
7876         if (err)
7877                 return err;
7878
7879         xchg(&memcg->zswap_max, max);
7880
7881         return nbytes;
7882 }
7883
7884 static struct cftype zswap_files[] = {
7885         {
7886                 .name = "zswap.current",
7887                 .flags = CFTYPE_NOT_ON_ROOT,
7888                 .read_u64 = zswap_current_read,
7889         },
7890         {
7891                 .name = "zswap.max",
7892                 .flags = CFTYPE_NOT_ON_ROOT,
7893                 .seq_show = zswap_max_show,
7894                 .write = zswap_max_write,
7895         },
7896         { }     /* terminate */
7897 };
7898 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7899
7900 static int __init mem_cgroup_swap_init(void)
7901 {
7902         if (mem_cgroup_disabled())
7903                 return 0;
7904
7905         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7906         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7907 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7908         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7909 #endif
7910         return 0;
7911 }
7912 subsys_initcall(mem_cgroup_swap_init);
7913
7914 #endif /* CONFIG_SWAP */