6e7f849a1a9e397353e3c779bf5206e222b763a1
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES      5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account         (0)
77 #endif
78
79
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84         /*
85          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86          */
87         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
88         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
89         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
93         MEM_CGROUP_STAT_NSTATS,
94 };
95
96 enum mem_cgroup_events_index {
97         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
98         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
99         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
100         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
101         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
102         MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105  * Per memcg event counter is incremented at every pagein/pageout. With THP,
106  * it will be incremated by the number of pages. This counter is used for
107  * for trigger some periodic events. This is straightforward and better
108  * than using jiffies etc. to handle periodic memcg event.
109  */
110 enum mem_cgroup_events_target {
111         MEM_CGROUP_TARGET_THRESH,
112         MEM_CGROUP_TARGET_SOFTLIMIT,
113         MEM_CGROUP_TARGET_NUMAINFO,
114         MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET  (1024)
119
120 struct mem_cgroup_stat_cpu {
121         long count[MEM_CGROUP_STAT_NSTATS];
122         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123         unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125
126 struct mem_cgroup_reclaim_iter {
127         /* css_id of the last scanned hierarchy member */
128         int position;
129         /* scan generation, increased every round-trip */
130         unsigned int generation;
131 };
132
133 /*
134  * per-zone information in memory controller.
135  */
136 struct mem_cgroup_per_zone {
137         struct lruvec           lruvec;
138         unsigned long           count[NR_LRU_LISTS];
139
140         struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
142         struct zone_reclaim_stat reclaim_stat;
143         struct rb_node          tree_node;      /* RB tree node */
144         unsigned long long      usage_in_excess;/* Set to the value by which */
145                                                 /* the soft limit is exceeded*/
146         bool                    on_tree;
147         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
148                                                 /* use container_of        */
149 };
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
152
153 struct mem_cgroup_per_node {
154         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155 };
156
157 struct mem_cgroup_lru_info {
158         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159 };
160
161 /*
162  * Cgroups above their limits are maintained in a RB-Tree, independent of
163  * their hierarchy representation
164  */
165
166 struct mem_cgroup_tree_per_zone {
167         struct rb_root rb_root;
168         spinlock_t lock;
169 };
170
171 struct mem_cgroup_tree_per_node {
172         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173 };
174
175 struct mem_cgroup_tree {
176         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177 };
178
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
181 struct mem_cgroup_threshold {
182         struct eventfd_ctx *eventfd;
183         u64 threshold;
184 };
185
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188         /* An array index points to threshold just below usage. */
189         int current_threshold;
190         /* Size of entries[] */
191         unsigned int size;
192         /* Array of thresholds */
193         struct mem_cgroup_threshold entries[0];
194 };
195
196 struct mem_cgroup_thresholds {
197         /* Primary thresholds array */
198         struct mem_cgroup_threshold_ary *primary;
199         /*
200          * Spare threshold array.
201          * This is needed to make mem_cgroup_unregister_event() "never fail".
202          * It must be able to store at least primary->size - 1 entries.
203          */
204         struct mem_cgroup_threshold_ary *spare;
205 };
206
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209         struct list_head list;
210         struct eventfd_ctx *eventfd;
211 };
212
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215
216 /*
217  * The memory controller data structure. The memory controller controls both
218  * page cache and RSS per cgroup. We would eventually like to provide
219  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220  * to help the administrator determine what knobs to tune.
221  *
222  * TODO: Add a water mark for the memory controller. Reclaim will begin when
223  * we hit the water mark. May be even add a low water mark, such that
224  * no reclaim occurs from a cgroup at it's low water mark, this is
225  * a feature that will be implemented much later in the future.
226  */
227 struct mem_cgroup {
228         struct cgroup_subsys_state css;
229         /*
230          * the counter to account for memory usage
231          */
232         struct res_counter res;
233         /*
234          * the counter to account for mem+swap usage.
235          */
236         struct res_counter memsw;
237         /*
238          * Per cgroup active and inactive list, similar to the
239          * per zone LRU lists.
240          */
241         struct mem_cgroup_lru_info info;
242         int last_scanned_node;
243 #if MAX_NUMNODES > 1
244         nodemask_t      scan_nodes;
245         atomic_t        numainfo_events;
246         atomic_t        numainfo_updating;
247 #endif
248         /*
249          * Should the accounting and control be hierarchical, per subtree?
250          */
251         bool use_hierarchy;
252
253         bool            oom_lock;
254         atomic_t        under_oom;
255
256         atomic_t        refcnt;
257
258         int     swappiness;
259         /* OOM-Killer disable */
260         int             oom_kill_disable;
261
262         /* set when res.limit == memsw.limit */
263         bool            memsw_is_minimum;
264
265         /* protect arrays of thresholds */
266         struct mutex thresholds_lock;
267
268         /* thresholds for memory usage. RCU-protected */
269         struct mem_cgroup_thresholds thresholds;
270
271         /* thresholds for mem+swap usage. RCU-protected */
272         struct mem_cgroup_thresholds memsw_thresholds;
273
274         /* For oom notifier event fd */
275         struct list_head oom_notify;
276
277         /*
278          * Should we move charges of a task when a task is moved into this
279          * mem_cgroup ? And what type of charges should we move ?
280          */
281         unsigned long   move_charge_at_immigrate;
282         /*
283          * percpu counter.
284          */
285         struct mem_cgroup_stat_cpu *stat;
286         /*
287          * used when a cpu is offlined or other synchronizations
288          * See mem_cgroup_read_stat().
289          */
290         struct mem_cgroup_stat_cpu nocpu_base;
291         spinlock_t pcp_counter_lock;
292
293 #ifdef CONFIG_INET
294         struct tcp_memcontrol tcp_mem;
295 #endif
296 };
297
298 /* Stuffs for move charges at task migration. */
299 /*
300  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301  * left-shifted bitmap of these types.
302  */
303 enum move_type {
304         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
305         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
306         NR_MOVE_TYPE,
307 };
308
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311         spinlock_t        lock; /* for from, to */
312         struct mem_cgroup *from;
313         struct mem_cgroup *to;
314         unsigned long precharge;
315         unsigned long moved_charge;
316         unsigned long moved_swap;
317         struct task_struct *moving_task;        /* a task moving charges */
318         wait_queue_head_t waitq;                /* a waitq for other context */
319 } mc = {
320         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322 };
323
324 static bool move_anon(void)
325 {
326         return test_bit(MOVE_CHARGE_TYPE_ANON,
327                                         &mc.to->move_charge_at_immigrate);
328 }
329
330 static bool move_file(void)
331 {
332         return test_bit(MOVE_CHARGE_TYPE_FILE,
333                                         &mc.to->move_charge_at_immigrate);
334 }
335
336 /*
337  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338  * limit reclaim to prevent infinite loops, if they ever occur.
339  */
340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
342
343 enum charge_type {
344         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345         MEM_CGROUP_CHARGE_TYPE_MAPPED,
346         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
347         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
348         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
349         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
350         NR_CHARGE_TYPE,
351 };
352
353 /* for encoding cft->private value on file */
354 #define _MEM                    (0)
355 #define _MEMSWAP                (1)
356 #define _OOM_TYPE               (2)
357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL             (0)
362
363 /*
364  * Reclaim flags for mem_cgroup_hierarchical_reclaim
365  */
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
373
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #ifdef CONFIG_INET
377 #include <net/sock.h>
378 #include <net/ip.h>
379
380 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381 void sock_update_memcg(struct sock *sk)
382 {
383         if (static_branch(&memcg_socket_limit_enabled)) {
384                 struct mem_cgroup *memcg;
385
386                 BUG_ON(!sk->sk_prot->proto_cgroup);
387
388                 /* Socket cloning can throw us here with sk_cgrp already
389                  * filled. It won't however, necessarily happen from
390                  * process context. So the test for root memcg given
391                  * the current task's memcg won't help us in this case.
392                  *
393                  * Respecting the original socket's memcg is a better
394                  * decision in this case.
395                  */
396                 if (sk->sk_cgrp) {
397                         BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398                         mem_cgroup_get(sk->sk_cgrp->memcg);
399                         return;
400                 }
401
402                 rcu_read_lock();
403                 memcg = mem_cgroup_from_task(current);
404                 if (!mem_cgroup_is_root(memcg)) {
405                         mem_cgroup_get(memcg);
406                         sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407                 }
408                 rcu_read_unlock();
409         }
410 }
411 EXPORT_SYMBOL(sock_update_memcg);
412
413 void sock_release_memcg(struct sock *sk)
414 {
415         if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416                 struct mem_cgroup *memcg;
417                 WARN_ON(!sk->sk_cgrp->memcg);
418                 memcg = sk->sk_cgrp->memcg;
419                 mem_cgroup_put(memcg);
420         }
421 }
422
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424 {
425         if (!memcg || mem_cgroup_is_root(memcg))
426                 return NULL;
427
428         return &memcg->tcp_mem.cg_proto;
429 }
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
435
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438 {
439         return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 }
441
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443 {
444         return &memcg->css;
445 }
446
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449 {
450         int nid = page_to_nid(page);
451         int zid = page_zonenum(page);
452
453         return mem_cgroup_zoneinfo(memcg, nid, zid);
454 }
455
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
458 {
459         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460 }
461
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
464 {
465         int nid = page_to_nid(page);
466         int zid = page_zonenum(page);
467
468         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469 }
470
471 static void
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473                                 struct mem_cgroup_per_zone *mz,
474                                 struct mem_cgroup_tree_per_zone *mctz,
475                                 unsigned long long new_usage_in_excess)
476 {
477         struct rb_node **p = &mctz->rb_root.rb_node;
478         struct rb_node *parent = NULL;
479         struct mem_cgroup_per_zone *mz_node;
480
481         if (mz->on_tree)
482                 return;
483
484         mz->usage_in_excess = new_usage_in_excess;
485         if (!mz->usage_in_excess)
486                 return;
487         while (*p) {
488                 parent = *p;
489                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490                                         tree_node);
491                 if (mz->usage_in_excess < mz_node->usage_in_excess)
492                         p = &(*p)->rb_left;
493                 /*
494                  * We can't avoid mem cgroups that are over their soft
495                  * limit by the same amount
496                  */
497                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498                         p = &(*p)->rb_right;
499         }
500         rb_link_node(&mz->tree_node, parent, p);
501         rb_insert_color(&mz->tree_node, &mctz->rb_root);
502         mz->on_tree = true;
503 }
504
505 static void
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507                                 struct mem_cgroup_per_zone *mz,
508                                 struct mem_cgroup_tree_per_zone *mctz)
509 {
510         if (!mz->on_tree)
511                 return;
512         rb_erase(&mz->tree_node, &mctz->rb_root);
513         mz->on_tree = false;
514 }
515
516 static void
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518                                 struct mem_cgroup_per_zone *mz,
519                                 struct mem_cgroup_tree_per_zone *mctz)
520 {
521         spin_lock(&mctz->lock);
522         __mem_cgroup_remove_exceeded(memcg, mz, mctz);
523         spin_unlock(&mctz->lock);
524 }
525
526
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528 {
529         unsigned long long excess;
530         struct mem_cgroup_per_zone *mz;
531         struct mem_cgroup_tree_per_zone *mctz;
532         int nid = page_to_nid(page);
533         int zid = page_zonenum(page);
534         mctz = soft_limit_tree_from_page(page);
535
536         /*
537          * Necessary to update all ancestors when hierarchy is used.
538          * because their event counter is not touched.
539          */
540         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542                 excess = res_counter_soft_limit_excess(&memcg->res);
543                 /*
544                  * We have to update the tree if mz is on RB-tree or
545                  * mem is over its softlimit.
546                  */
547                 if (excess || mz->on_tree) {
548                         spin_lock(&mctz->lock);
549                         /* if on-tree, remove it */
550                         if (mz->on_tree)
551                                 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
552                         /*
553                          * Insert again. mz->usage_in_excess will be updated.
554                          * If excess is 0, no tree ops.
555                          */
556                         __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557                         spin_unlock(&mctz->lock);
558                 }
559         }
560 }
561
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 {
564         int node, zone;
565         struct mem_cgroup_per_zone *mz;
566         struct mem_cgroup_tree_per_zone *mctz;
567
568         for_each_node_state(node, N_POSSIBLE) {
569                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570                         mz = mem_cgroup_zoneinfo(memcg, node, zone);
571                         mctz = soft_limit_tree_node_zone(node, zone);
572                         mem_cgroup_remove_exceeded(memcg, mz, mctz);
573                 }
574         }
575 }
576
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579 {
580         struct rb_node *rightmost = NULL;
581         struct mem_cgroup_per_zone *mz;
582
583 retry:
584         mz = NULL;
585         rightmost = rb_last(&mctz->rb_root);
586         if (!rightmost)
587                 goto done;              /* Nothing to reclaim from */
588
589         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590         /*
591          * Remove the node now but someone else can add it back,
592          * we will to add it back at the end of reclaim to its correct
593          * position in the tree.
594          */
595         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597                 !css_tryget(&mz->mem->css))
598                 goto retry;
599 done:
600         return mz;
601 }
602
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605 {
606         struct mem_cgroup_per_zone *mz;
607
608         spin_lock(&mctz->lock);
609         mz = __mem_cgroup_largest_soft_limit_node(mctz);
610         spin_unlock(&mctz->lock);
611         return mz;
612 }
613
614 /*
615  * Implementation Note: reading percpu statistics for memcg.
616  *
617  * Both of vmstat[] and percpu_counter has threshold and do periodic
618  * synchronization to implement "quick" read. There are trade-off between
619  * reading cost and precision of value. Then, we may have a chance to implement
620  * a periodic synchronizion of counter in memcg's counter.
621  *
622  * But this _read() function is used for user interface now. The user accounts
623  * memory usage by memory cgroup and he _always_ requires exact value because
624  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625  * have to visit all online cpus and make sum. So, for now, unnecessary
626  * synchronization is not implemented. (just implemented for cpu hotplug)
627  *
628  * If there are kernel internal actions which can make use of some not-exact
629  * value, and reading all cpu value can be performance bottleneck in some
630  * common workload, threashold and synchonization as vmstat[] should be
631  * implemented.
632  */
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634                                  enum mem_cgroup_stat_index idx)
635 {
636         long val = 0;
637         int cpu;
638
639         get_online_cpus();
640         for_each_online_cpu(cpu)
641                 val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643         spin_lock(&memcg->pcp_counter_lock);
644         val += memcg->nocpu_base.count[idx];
645         spin_unlock(&memcg->pcp_counter_lock);
646 #endif
647         put_online_cpus();
648         return val;
649 }
650
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652                                          bool charge)
653 {
654         int val = (charge) ? 1 : -1;
655         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 }
657
658 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
659 {
660         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
661 }
662
663 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
664 {
665         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
666 }
667
668 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
669                                             enum mem_cgroup_events_index idx)
670 {
671         unsigned long val = 0;
672         int cpu;
673
674         for_each_online_cpu(cpu)
675                 val += per_cpu(memcg->stat->events[idx], cpu);
676 #ifdef CONFIG_HOTPLUG_CPU
677         spin_lock(&memcg->pcp_counter_lock);
678         val += memcg->nocpu_base.events[idx];
679         spin_unlock(&memcg->pcp_counter_lock);
680 #endif
681         return val;
682 }
683
684 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
685                                          bool file, int nr_pages)
686 {
687         preempt_disable();
688
689         if (file)
690                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
691                                 nr_pages);
692         else
693                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
694                                 nr_pages);
695
696         /* pagein of a big page is an event. So, ignore page size */
697         if (nr_pages > 0)
698                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
699         else {
700                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
701                 nr_pages = -nr_pages; /* for event */
702         }
703
704         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
705
706         preempt_enable();
707 }
708
709 unsigned long
710 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
711                         unsigned int lru_mask)
712 {
713         struct mem_cgroup_per_zone *mz;
714         enum lru_list l;
715         unsigned long ret = 0;
716
717         mz = mem_cgroup_zoneinfo(memcg, nid, zid);
718
719         for_each_lru(l) {
720                 if (BIT(l) & lru_mask)
721                         ret += MEM_CGROUP_ZSTAT(mz, l);
722         }
723         return ret;
724 }
725
726 static unsigned long
727 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728                         int nid, unsigned int lru_mask)
729 {
730         u64 total = 0;
731         int zid;
732
733         for (zid = 0; zid < MAX_NR_ZONES; zid++)
734                 total += mem_cgroup_zone_nr_lru_pages(memcg,
735                                                 nid, zid, lru_mask);
736
737         return total;
738 }
739
740 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
741                         unsigned int lru_mask)
742 {
743         int nid;
744         u64 total = 0;
745
746         for_each_node_state(nid, N_HIGH_MEMORY)
747                 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
748         return total;
749 }
750
751 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
752 {
753         unsigned long val, next;
754
755         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
756         next = __this_cpu_read(memcg->stat->targets[target]);
757         /* from time_after() in jiffies.h */
758         return ((long)next - (long)val < 0);
759 }
760
761 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
762 {
763         unsigned long val, next;
764
765         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
766
767         switch (target) {
768         case MEM_CGROUP_TARGET_THRESH:
769                 next = val + THRESHOLDS_EVENTS_TARGET;
770                 break;
771         case MEM_CGROUP_TARGET_SOFTLIMIT:
772                 next = val + SOFTLIMIT_EVENTS_TARGET;
773                 break;
774         case MEM_CGROUP_TARGET_NUMAINFO:
775                 next = val + NUMAINFO_EVENTS_TARGET;
776                 break;
777         default:
778                 return;
779         }
780
781         __this_cpu_write(memcg->stat->targets[target], next);
782 }
783
784 /*
785  * Check events in order.
786  *
787  */
788 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
789 {
790         preempt_disable();
791         /* threshold event is triggered in finer grain than soft limit */
792         if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
793                 mem_cgroup_threshold(memcg);
794                 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
795                 if (unlikely(__memcg_event_check(memcg,
796                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
797                         mem_cgroup_update_tree(memcg, page);
798                         __mem_cgroup_target_update(memcg,
799                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
800                 }
801 #if MAX_NUMNODES > 1
802                 if (unlikely(__memcg_event_check(memcg,
803                         MEM_CGROUP_TARGET_NUMAINFO))) {
804                         atomic_inc(&memcg->numainfo_events);
805                         __mem_cgroup_target_update(memcg,
806                                 MEM_CGROUP_TARGET_NUMAINFO);
807                 }
808 #endif
809         }
810         preempt_enable();
811 }
812
813 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
814 {
815         return container_of(cgroup_subsys_state(cont,
816                                 mem_cgroup_subsys_id), struct mem_cgroup,
817                                 css);
818 }
819
820 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
821 {
822         /*
823          * mm_update_next_owner() may clear mm->owner to NULL
824          * if it races with swapoff, page migration, etc.
825          * So this can be called with p == NULL.
826          */
827         if (unlikely(!p))
828                 return NULL;
829
830         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
831                                 struct mem_cgroup, css);
832 }
833
834 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
835 {
836         struct mem_cgroup *memcg = NULL;
837
838         if (!mm)
839                 return NULL;
840         /*
841          * Because we have no locks, mm->owner's may be being moved to other
842          * cgroup. We use css_tryget() here even if this looks
843          * pessimistic (rather than adding locks here).
844          */
845         rcu_read_lock();
846         do {
847                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
848                 if (unlikely(!memcg))
849                         break;
850         } while (!css_tryget(&memcg->css));
851         rcu_read_unlock();
852         return memcg;
853 }
854
855 /**
856  * mem_cgroup_iter - iterate over memory cgroup hierarchy
857  * @root: hierarchy root
858  * @prev: previously returned memcg, NULL on first invocation
859  * @reclaim: cookie for shared reclaim walks, NULL for full walks
860  *
861  * Returns references to children of the hierarchy below @root, or
862  * @root itself, or %NULL after a full round-trip.
863  *
864  * Caller must pass the return value in @prev on subsequent
865  * invocations for reference counting, or use mem_cgroup_iter_break()
866  * to cancel a hierarchy walk before the round-trip is complete.
867  *
868  * Reclaimers can specify a zone and a priority level in @reclaim to
869  * divide up the memcgs in the hierarchy among all concurrent
870  * reclaimers operating on the same zone and priority.
871  */
872 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
873                                    struct mem_cgroup *prev,
874                                    struct mem_cgroup_reclaim_cookie *reclaim)
875 {
876         struct mem_cgroup *memcg = NULL;
877         int id = 0;
878
879         if (mem_cgroup_disabled())
880                 return NULL;
881
882         if (!root)
883                 root = root_mem_cgroup;
884
885         if (prev && !reclaim)
886                 id = css_id(&prev->css);
887
888         if (prev && prev != root)
889                 css_put(&prev->css);
890
891         if (!root->use_hierarchy && root != root_mem_cgroup) {
892                 if (prev)
893                         return NULL;
894                 return root;
895         }
896
897         while (!memcg) {
898                 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
899                 struct cgroup_subsys_state *css;
900
901                 if (reclaim) {
902                         int nid = zone_to_nid(reclaim->zone);
903                         int zid = zone_idx(reclaim->zone);
904                         struct mem_cgroup_per_zone *mz;
905
906                         mz = mem_cgroup_zoneinfo(root, nid, zid);
907                         iter = &mz->reclaim_iter[reclaim->priority];
908                         if (prev && reclaim->generation != iter->generation)
909                                 return NULL;
910                         id = iter->position;
911                 }
912
913                 rcu_read_lock();
914                 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
915                 if (css) {
916                         if (css == &root->css || css_tryget(css))
917                                 memcg = container_of(css,
918                                                      struct mem_cgroup, css);
919                 } else
920                         id = 0;
921                 rcu_read_unlock();
922
923                 if (reclaim) {
924                         iter->position = id;
925                         if (!css)
926                                 iter->generation++;
927                         else if (!prev && memcg)
928                                 reclaim->generation = iter->generation;
929                 }
930
931                 if (prev && !css)
932                         return NULL;
933         }
934         return memcg;
935 }
936
937 /**
938  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
939  * @root: hierarchy root
940  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
941  */
942 void mem_cgroup_iter_break(struct mem_cgroup *root,
943                            struct mem_cgroup *prev)
944 {
945         if (!root)
946                 root = root_mem_cgroup;
947         if (prev && prev != root)
948                 css_put(&prev->css);
949 }
950
951 /*
952  * Iteration constructs for visiting all cgroups (under a tree).  If
953  * loops are exited prematurely (break), mem_cgroup_iter_break() must
954  * be used for reference counting.
955  */
956 #define for_each_mem_cgroup_tree(iter, root)            \
957         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
958              iter != NULL;                              \
959              iter = mem_cgroup_iter(root, iter, NULL))
960
961 #define for_each_mem_cgroup(iter)                       \
962         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
963              iter != NULL;                              \
964              iter = mem_cgroup_iter(NULL, iter, NULL))
965
966 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
967 {
968         return (memcg == root_mem_cgroup);
969 }
970
971 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
972 {
973         struct mem_cgroup *memcg;
974
975         if (!mm)
976                 return;
977
978         rcu_read_lock();
979         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
980         if (unlikely(!memcg))
981                 goto out;
982
983         switch (idx) {
984         case PGMAJFAULT:
985                 mem_cgroup_pgmajfault(memcg, 1);
986                 break;
987         case PGFAULT:
988                 mem_cgroup_pgfault(memcg, 1);
989                 break;
990         default:
991                 BUG();
992         }
993 out:
994         rcu_read_unlock();
995 }
996 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
997
998 /*
999  * Following LRU functions are allowed to be used without PCG_LOCK.
1000  * Operations are called by routine of global LRU independently from memcg.
1001  * What we have to take care of here is validness of pc->mem_cgroup.
1002  *
1003  * Changes to pc->mem_cgroup happens when
1004  * 1. charge
1005  * 2. moving account
1006  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1007  * It is added to LRU before charge.
1008  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1009  * When moving account, the page is not on LRU. It's isolated.
1010  */
1011
1012 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
1013 {
1014         struct page_cgroup *pc;
1015         struct mem_cgroup_per_zone *mz;
1016
1017         if (mem_cgroup_disabled())
1018                 return;
1019         pc = lookup_page_cgroup(page);
1020         /* can happen while we handle swapcache. */
1021         if (!TestClearPageCgroupAcctLRU(pc))
1022                 return;
1023         VM_BUG_ON(!pc->mem_cgroup);
1024         /*
1025          * We don't check PCG_USED bit. It's cleared when the "page" is finally
1026          * removed from global LRU.
1027          */
1028         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1029         /* huge page split is done under lru_lock. so, we have no races. */
1030         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1031         VM_BUG_ON(list_empty(&pc->lru));
1032         list_del_init(&pc->lru);
1033 }
1034
1035 void mem_cgroup_del_lru(struct page *page)
1036 {
1037         mem_cgroup_del_lru_list(page, page_lru(page));
1038 }
1039
1040 /*
1041  * Writeback is about to end against a page which has been marked for immediate
1042  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
1043  * inactive list.
1044  */
1045 void mem_cgroup_rotate_reclaimable_page(struct page *page)
1046 {
1047         struct mem_cgroup_per_zone *mz;
1048         struct page_cgroup *pc;
1049         enum lru_list lru = page_lru(page);
1050
1051         if (mem_cgroup_disabled())
1052                 return;
1053
1054         pc = lookup_page_cgroup(page);
1055         /* unused page is not rotated. */
1056         if (!PageCgroupUsed(pc))
1057                 return;
1058         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1059         smp_rmb();
1060         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1061         list_move_tail(&pc->lru, &mz->lruvec.lists[lru]);
1062 }
1063
1064 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1065 {
1066         struct mem_cgroup_per_zone *mz;
1067         struct page_cgroup *pc;
1068
1069         if (mem_cgroup_disabled())
1070                 return;
1071
1072         pc = lookup_page_cgroup(page);
1073         /* unused page is not rotated. */
1074         if (!PageCgroupUsed(pc))
1075                 return;
1076         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1077         smp_rmb();
1078         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1079         list_move(&pc->lru, &mz->lruvec.lists[lru]);
1080 }
1081
1082 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1083 {
1084         struct page_cgroup *pc;
1085         struct mem_cgroup_per_zone *mz;
1086
1087         if (mem_cgroup_disabled())
1088                 return;
1089         pc = lookup_page_cgroup(page);
1090         VM_BUG_ON(PageCgroupAcctLRU(pc));
1091         /*
1092          * putback:                             charge:
1093          * SetPageLRU                           SetPageCgroupUsed
1094          * smp_mb                               smp_mb
1095          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1096          *
1097          * Ensure that one of the two sides adds the page to the memcg
1098          * LRU during a race.
1099          */
1100         smp_mb();
1101         if (!PageCgroupUsed(pc))
1102                 return;
1103         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1104         smp_rmb();
1105         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1106         /* huge page split is done under lru_lock. so, we have no races. */
1107         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1108         SetPageCgroupAcctLRU(pc);
1109         list_add(&pc->lru, &mz->lruvec.lists[lru]);
1110 }
1111
1112 /*
1113  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1114  * while it's linked to lru because the page may be reused after it's fully
1115  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1116  * It's done under lock_page and expected that zone->lru_lock isnever held.
1117  */
1118 static void mem_cgroup_lru_del_before_commit(struct page *page)
1119 {
1120         unsigned long flags;
1121         struct zone *zone = page_zone(page);
1122         struct page_cgroup *pc = lookup_page_cgroup(page);
1123
1124         /*
1125          * Doing this check without taking ->lru_lock seems wrong but this
1126          * is safe. Because if page_cgroup's USED bit is unset, the page
1127          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1128          * set, the commit after this will fail, anyway.
1129          * This all charge/uncharge is done under some mutual execustion.
1130          * So, we don't need to taking care of changes in USED bit.
1131          */
1132         if (likely(!PageLRU(page)))
1133                 return;
1134
1135         spin_lock_irqsave(&zone->lru_lock, flags);
1136         /*
1137          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1138          * is guarded by lock_page() because the page is SwapCache.
1139          */
1140         if (!PageCgroupUsed(pc))
1141                 mem_cgroup_del_lru_list(page, page_lru(page));
1142         spin_unlock_irqrestore(&zone->lru_lock, flags);
1143 }
1144
1145 static void mem_cgroup_lru_add_after_commit(struct page *page)
1146 {
1147         unsigned long flags;
1148         struct zone *zone = page_zone(page);
1149         struct page_cgroup *pc = lookup_page_cgroup(page);
1150         /*
1151          * putback:                             charge:
1152          * SetPageLRU                           SetPageCgroupUsed
1153          * smp_mb                               smp_mb
1154          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1155          *
1156          * Ensure that one of the two sides adds the page to the memcg
1157          * LRU during a race.
1158          */
1159         smp_mb();
1160         /* taking care of that the page is added to LRU while we commit it */
1161         if (likely(!PageLRU(page)))
1162                 return;
1163         spin_lock_irqsave(&zone->lru_lock, flags);
1164         /* link when the page is linked to LRU but page_cgroup isn't */
1165         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1166                 mem_cgroup_add_lru_list(page, page_lru(page));
1167         spin_unlock_irqrestore(&zone->lru_lock, flags);
1168 }
1169
1170
1171 void mem_cgroup_move_lists(struct page *page,
1172                            enum lru_list from, enum lru_list to)
1173 {
1174         if (mem_cgroup_disabled())
1175                 return;
1176         mem_cgroup_del_lru_list(page, from);
1177         mem_cgroup_add_lru_list(page, to);
1178 }
1179
1180 /*
1181  * Checks whether given mem is same or in the root_mem_cgroup's
1182  * hierarchy subtree
1183  */
1184 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1185                 struct mem_cgroup *memcg)
1186 {
1187         if (root_memcg != memcg) {
1188                 return (root_memcg->use_hierarchy &&
1189                         css_is_ancestor(&memcg->css, &root_memcg->css));
1190         }
1191
1192         return true;
1193 }
1194
1195 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1196 {
1197         int ret;
1198         struct mem_cgroup *curr = NULL;
1199         struct task_struct *p;
1200
1201         p = find_lock_task_mm(task);
1202         if (!p)
1203                 return 0;
1204         curr = try_get_mem_cgroup_from_mm(p->mm);
1205         task_unlock(p);
1206         if (!curr)
1207                 return 0;
1208         /*
1209          * We should check use_hierarchy of "memcg" not "curr". Because checking
1210          * use_hierarchy of "curr" here make this function true if hierarchy is
1211          * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1212          * hierarchy(even if use_hierarchy is disabled in "memcg").
1213          */
1214         ret = mem_cgroup_same_or_subtree(memcg, curr);
1215         css_put(&curr->css);
1216         return ret;
1217 }
1218
1219 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1220 {
1221         unsigned long inactive_ratio;
1222         int nid = zone_to_nid(zone);
1223         int zid = zone_idx(zone);
1224         unsigned long inactive;
1225         unsigned long active;
1226         unsigned long gb;
1227
1228         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229                                                 BIT(LRU_INACTIVE_ANON));
1230         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231                                               BIT(LRU_ACTIVE_ANON));
1232
1233         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1234         if (gb)
1235                 inactive_ratio = int_sqrt(10 * gb);
1236         else
1237                 inactive_ratio = 1;
1238
1239         return inactive * inactive_ratio < active;
1240 }
1241
1242 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1243 {
1244         unsigned long active;
1245         unsigned long inactive;
1246         int zid = zone_idx(zone);
1247         int nid = zone_to_nid(zone);
1248
1249         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1250                                                 BIT(LRU_INACTIVE_FILE));
1251         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1252                                               BIT(LRU_ACTIVE_FILE));
1253
1254         return (active > inactive);
1255 }
1256
1257 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1258                                                       struct zone *zone)
1259 {
1260         int nid = zone_to_nid(zone);
1261         int zid = zone_idx(zone);
1262         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1263
1264         return &mz->reclaim_stat;
1265 }
1266
1267 struct zone_reclaim_stat *
1268 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1269 {
1270         struct page_cgroup *pc;
1271         struct mem_cgroup_per_zone *mz;
1272
1273         if (mem_cgroup_disabled())
1274                 return NULL;
1275
1276         pc = lookup_page_cgroup(page);
1277         if (!PageCgroupUsed(pc))
1278                 return NULL;
1279         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1280         smp_rmb();
1281         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1282         return &mz->reclaim_stat;
1283 }
1284
1285 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1286                                         struct list_head *dst,
1287                                         unsigned long *scanned, int order,
1288                                         isolate_mode_t mode,
1289                                         struct zone *z,
1290                                         struct mem_cgroup *mem_cont,
1291                                         int active, int file)
1292 {
1293         unsigned long nr_taken = 0;
1294         struct page *page;
1295         unsigned long scan;
1296         LIST_HEAD(pc_list);
1297         struct list_head *src;
1298         struct page_cgroup *pc, *tmp;
1299         int nid = zone_to_nid(z);
1300         int zid = zone_idx(z);
1301         struct mem_cgroup_per_zone *mz;
1302         int lru = LRU_FILE * file + active;
1303         int ret;
1304
1305         BUG_ON(!mem_cont);
1306         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1307         src = &mz->lruvec.lists[lru];
1308
1309         scan = 0;
1310         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1311                 if (scan >= nr_to_scan)
1312                         break;
1313
1314                 if (unlikely(!PageCgroupUsed(pc)))
1315                         continue;
1316
1317                 page = lookup_cgroup_page(pc);
1318
1319                 if (unlikely(!PageLRU(page)))
1320                         continue;
1321
1322                 scan++;
1323                 ret = __isolate_lru_page(page, mode, file);
1324                 switch (ret) {
1325                 case 0:
1326                         list_move(&page->lru, dst);
1327                         mem_cgroup_del_lru(page);
1328                         nr_taken += hpage_nr_pages(page);
1329                         break;
1330                 case -EBUSY:
1331                         /* we don't affect global LRU but rotate in our LRU */
1332                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1333                         break;
1334                 default:
1335                         break;
1336                 }
1337         }
1338
1339         *scanned = scan;
1340
1341         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1342                                       0, 0, 0, mode);
1343
1344         return nr_taken;
1345 }
1346
1347 #define mem_cgroup_from_res_counter(counter, member)    \
1348         container_of(counter, struct mem_cgroup, member)
1349
1350 /**
1351  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1352  * @mem: the memory cgroup
1353  *
1354  * Returns the maximum amount of memory @mem can be charged with, in
1355  * pages.
1356  */
1357 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1358 {
1359         unsigned long long margin;
1360
1361         margin = res_counter_margin(&memcg->res);
1362         if (do_swap_account)
1363                 margin = min(margin, res_counter_margin(&memcg->memsw));
1364         return margin >> PAGE_SHIFT;
1365 }
1366
1367 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1368 {
1369         struct cgroup *cgrp = memcg->css.cgroup;
1370
1371         /* root ? */
1372         if (cgrp->parent == NULL)
1373                 return vm_swappiness;
1374
1375         return memcg->swappiness;
1376 }
1377
1378 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1379 {
1380         int cpu;
1381
1382         get_online_cpus();
1383         spin_lock(&memcg->pcp_counter_lock);
1384         for_each_online_cpu(cpu)
1385                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1386         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1387         spin_unlock(&memcg->pcp_counter_lock);
1388         put_online_cpus();
1389
1390         synchronize_rcu();
1391 }
1392
1393 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1394 {
1395         int cpu;
1396
1397         if (!memcg)
1398                 return;
1399         get_online_cpus();
1400         spin_lock(&memcg->pcp_counter_lock);
1401         for_each_online_cpu(cpu)
1402                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1403         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1404         spin_unlock(&memcg->pcp_counter_lock);
1405         put_online_cpus();
1406 }
1407 /*
1408  * 2 routines for checking "mem" is under move_account() or not.
1409  *
1410  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1411  *                        for avoiding race in accounting. If true,
1412  *                        pc->mem_cgroup may be overwritten.
1413  *
1414  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1415  *                        under hierarchy of moving cgroups. This is for
1416  *                        waiting at hith-memory prressure caused by "move".
1417  */
1418
1419 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1420 {
1421         VM_BUG_ON(!rcu_read_lock_held());
1422         return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1423 }
1424
1425 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1426 {
1427         struct mem_cgroup *from;
1428         struct mem_cgroup *to;
1429         bool ret = false;
1430         /*
1431          * Unlike task_move routines, we access mc.to, mc.from not under
1432          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1433          */
1434         spin_lock(&mc.lock);
1435         from = mc.from;
1436         to = mc.to;
1437         if (!from)
1438                 goto unlock;
1439
1440         ret = mem_cgroup_same_or_subtree(memcg, from)
1441                 || mem_cgroup_same_or_subtree(memcg, to);
1442 unlock:
1443         spin_unlock(&mc.lock);
1444         return ret;
1445 }
1446
1447 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1448 {
1449         if (mc.moving_task && current != mc.moving_task) {
1450                 if (mem_cgroup_under_move(memcg)) {
1451                         DEFINE_WAIT(wait);
1452                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1453                         /* moving charge context might have finished. */
1454                         if (mc.moving_task)
1455                                 schedule();
1456                         finish_wait(&mc.waitq, &wait);
1457                         return true;
1458                 }
1459         }
1460         return false;
1461 }
1462
1463 /**
1464  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1465  * @memcg: The memory cgroup that went over limit
1466  * @p: Task that is going to be killed
1467  *
1468  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1469  * enabled
1470  */
1471 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1472 {
1473         struct cgroup *task_cgrp;
1474         struct cgroup *mem_cgrp;
1475         /*
1476          * Need a buffer in BSS, can't rely on allocations. The code relies
1477          * on the assumption that OOM is serialized for memory controller.
1478          * If this assumption is broken, revisit this code.
1479          */
1480         static char memcg_name[PATH_MAX];
1481         int ret;
1482
1483         if (!memcg || !p)
1484                 return;
1485
1486
1487         rcu_read_lock();
1488
1489         mem_cgrp = memcg->css.cgroup;
1490         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1491
1492         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1493         if (ret < 0) {
1494                 /*
1495                  * Unfortunately, we are unable to convert to a useful name
1496                  * But we'll still print out the usage information
1497                  */
1498                 rcu_read_unlock();
1499                 goto done;
1500         }
1501         rcu_read_unlock();
1502
1503         printk(KERN_INFO "Task in %s killed", memcg_name);
1504
1505         rcu_read_lock();
1506         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1507         if (ret < 0) {
1508                 rcu_read_unlock();
1509                 goto done;
1510         }
1511         rcu_read_unlock();
1512
1513         /*
1514          * Continues from above, so we don't need an KERN_ level
1515          */
1516         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1517 done:
1518
1519         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1520                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1521                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1522                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1523         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1524                 "failcnt %llu\n",
1525                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1526                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1527                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1528 }
1529
1530 /*
1531  * This function returns the number of memcg under hierarchy tree. Returns
1532  * 1(self count) if no children.
1533  */
1534 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1535 {
1536         int num = 0;
1537         struct mem_cgroup *iter;
1538
1539         for_each_mem_cgroup_tree(iter, memcg)
1540                 num++;
1541         return num;
1542 }
1543
1544 /*
1545  * Return the memory (and swap, if configured) limit for a memcg.
1546  */
1547 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1548 {
1549         u64 limit;
1550         u64 memsw;
1551
1552         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1553         limit += total_swap_pages << PAGE_SHIFT;
1554
1555         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1556         /*
1557          * If memsw is finite and limits the amount of swap space available
1558          * to this memcg, return that limit.
1559          */
1560         return min(limit, memsw);
1561 }
1562
1563 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1564                                         gfp_t gfp_mask,
1565                                         unsigned long flags)
1566 {
1567         unsigned long total = 0;
1568         bool noswap = false;
1569         int loop;
1570
1571         if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1572                 noswap = true;
1573         if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1574                 noswap = true;
1575
1576         for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1577                 if (loop)
1578                         drain_all_stock_async(memcg);
1579                 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1580                 /*
1581                  * Allow limit shrinkers, which are triggered directly
1582                  * by userspace, to catch signals and stop reclaim
1583                  * after minimal progress, regardless of the margin.
1584                  */
1585                 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1586                         break;
1587                 if (mem_cgroup_margin(memcg))
1588                         break;
1589                 /*
1590                  * If nothing was reclaimed after two attempts, there
1591                  * may be no reclaimable pages in this hierarchy.
1592                  */
1593                 if (loop && !total)
1594                         break;
1595         }
1596         return total;
1597 }
1598
1599 /**
1600  * test_mem_cgroup_node_reclaimable
1601  * @mem: the target memcg
1602  * @nid: the node ID to be checked.
1603  * @noswap : specify true here if the user wants flle only information.
1604  *
1605  * This function returns whether the specified memcg contains any
1606  * reclaimable pages on a node. Returns true if there are any reclaimable
1607  * pages in the node.
1608  */
1609 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1610                 int nid, bool noswap)
1611 {
1612         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1613                 return true;
1614         if (noswap || !total_swap_pages)
1615                 return false;
1616         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1617                 return true;
1618         return false;
1619
1620 }
1621 #if MAX_NUMNODES > 1
1622
1623 /*
1624  * Always updating the nodemask is not very good - even if we have an empty
1625  * list or the wrong list here, we can start from some node and traverse all
1626  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1627  *
1628  */
1629 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1630 {
1631         int nid;
1632         /*
1633          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1634          * pagein/pageout changes since the last update.
1635          */
1636         if (!atomic_read(&memcg->numainfo_events))
1637                 return;
1638         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1639                 return;
1640
1641         /* make a nodemask where this memcg uses memory from */
1642         memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1643
1644         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1645
1646                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1647                         node_clear(nid, memcg->scan_nodes);
1648         }
1649
1650         atomic_set(&memcg->numainfo_events, 0);
1651         atomic_set(&memcg->numainfo_updating, 0);
1652 }
1653
1654 /*
1655  * Selecting a node where we start reclaim from. Because what we need is just
1656  * reducing usage counter, start from anywhere is O,K. Considering
1657  * memory reclaim from current node, there are pros. and cons.
1658  *
1659  * Freeing memory from current node means freeing memory from a node which
1660  * we'll use or we've used. So, it may make LRU bad. And if several threads
1661  * hit limits, it will see a contention on a node. But freeing from remote
1662  * node means more costs for memory reclaim because of memory latency.
1663  *
1664  * Now, we use round-robin. Better algorithm is welcomed.
1665  */
1666 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1667 {
1668         int node;
1669
1670         mem_cgroup_may_update_nodemask(memcg);
1671         node = memcg->last_scanned_node;
1672
1673         node = next_node(node, memcg->scan_nodes);
1674         if (node == MAX_NUMNODES)
1675                 node = first_node(memcg->scan_nodes);
1676         /*
1677          * We call this when we hit limit, not when pages are added to LRU.
1678          * No LRU may hold pages because all pages are UNEVICTABLE or
1679          * memcg is too small and all pages are not on LRU. In that case,
1680          * we use curret node.
1681          */
1682         if (unlikely(node == MAX_NUMNODES))
1683                 node = numa_node_id();
1684
1685         memcg->last_scanned_node = node;
1686         return node;
1687 }
1688
1689 /*
1690  * Check all nodes whether it contains reclaimable pages or not.
1691  * For quick scan, we make use of scan_nodes. This will allow us to skip
1692  * unused nodes. But scan_nodes is lazily updated and may not cotain
1693  * enough new information. We need to do double check.
1694  */
1695 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1696 {
1697         int nid;
1698
1699         /*
1700          * quick check...making use of scan_node.
1701          * We can skip unused nodes.
1702          */
1703         if (!nodes_empty(memcg->scan_nodes)) {
1704                 for (nid = first_node(memcg->scan_nodes);
1705                      nid < MAX_NUMNODES;
1706                      nid = next_node(nid, memcg->scan_nodes)) {
1707
1708                         if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1709                                 return true;
1710                 }
1711         }
1712         /*
1713          * Check rest of nodes.
1714          */
1715         for_each_node_state(nid, N_HIGH_MEMORY) {
1716                 if (node_isset(nid, memcg->scan_nodes))
1717                         continue;
1718                 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1719                         return true;
1720         }
1721         return false;
1722 }
1723
1724 #else
1725 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1726 {
1727         return 0;
1728 }
1729
1730 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1731 {
1732         return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1733 }
1734 #endif
1735
1736 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1737                                    struct zone *zone,
1738                                    gfp_t gfp_mask,
1739                                    unsigned long *total_scanned)
1740 {
1741         struct mem_cgroup *victim = NULL;
1742         int total = 0;
1743         int loop = 0;
1744         unsigned long excess;
1745         unsigned long nr_scanned;
1746         struct mem_cgroup_reclaim_cookie reclaim = {
1747                 .zone = zone,
1748                 .priority = 0,
1749         };
1750
1751         excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1752
1753         while (1) {
1754                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1755                 if (!victim) {
1756                         loop++;
1757                         if (loop >= 2) {
1758                                 /*
1759                                  * If we have not been able to reclaim
1760                                  * anything, it might because there are
1761                                  * no reclaimable pages under this hierarchy
1762                                  */
1763                                 if (!total)
1764                                         break;
1765                                 /*
1766                                  * We want to do more targeted reclaim.
1767                                  * excess >> 2 is not to excessive so as to
1768                                  * reclaim too much, nor too less that we keep
1769                                  * coming back to reclaim from this cgroup
1770                                  */
1771                                 if (total >= (excess >> 2) ||
1772                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1773                                         break;
1774                         }
1775                         continue;
1776                 }
1777                 if (!mem_cgroup_reclaimable(victim, false))
1778                         continue;
1779                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1780                                                      zone, &nr_scanned);
1781                 *total_scanned += nr_scanned;
1782                 if (!res_counter_soft_limit_excess(&root_memcg->res))
1783                         break;
1784         }
1785         mem_cgroup_iter_break(root_memcg, victim);
1786         return total;
1787 }
1788
1789 /*
1790  * Check OOM-Killer is already running under our hierarchy.
1791  * If someone is running, return false.
1792  * Has to be called with memcg_oom_lock
1793  */
1794 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1795 {
1796         struct mem_cgroup *iter, *failed = NULL;
1797
1798         for_each_mem_cgroup_tree(iter, memcg) {
1799                 if (iter->oom_lock) {
1800                         /*
1801                          * this subtree of our hierarchy is already locked
1802                          * so we cannot give a lock.
1803                          */
1804                         failed = iter;
1805                         mem_cgroup_iter_break(memcg, iter);
1806                         break;
1807                 } else
1808                         iter->oom_lock = true;
1809         }
1810
1811         if (!failed)
1812                 return true;
1813
1814         /*
1815          * OK, we failed to lock the whole subtree so we have to clean up
1816          * what we set up to the failing subtree
1817          */
1818         for_each_mem_cgroup_tree(iter, memcg) {
1819                 if (iter == failed) {
1820                         mem_cgroup_iter_break(memcg, iter);
1821                         break;
1822                 }
1823                 iter->oom_lock = false;
1824         }
1825         return false;
1826 }
1827
1828 /*
1829  * Has to be called with memcg_oom_lock
1830  */
1831 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1832 {
1833         struct mem_cgroup *iter;
1834
1835         for_each_mem_cgroup_tree(iter, memcg)
1836                 iter->oom_lock = false;
1837         return 0;
1838 }
1839
1840 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1841 {
1842         struct mem_cgroup *iter;
1843
1844         for_each_mem_cgroup_tree(iter, memcg)
1845                 atomic_inc(&iter->under_oom);
1846 }
1847
1848 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1849 {
1850         struct mem_cgroup *iter;
1851
1852         /*
1853          * When a new child is created while the hierarchy is under oom,
1854          * mem_cgroup_oom_lock() may not be called. We have to use
1855          * atomic_add_unless() here.
1856          */
1857         for_each_mem_cgroup_tree(iter, memcg)
1858                 atomic_add_unless(&iter->under_oom, -1, 0);
1859 }
1860
1861 static DEFINE_SPINLOCK(memcg_oom_lock);
1862 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1863
1864 struct oom_wait_info {
1865         struct mem_cgroup *mem;
1866         wait_queue_t    wait;
1867 };
1868
1869 static int memcg_oom_wake_function(wait_queue_t *wait,
1870         unsigned mode, int sync, void *arg)
1871 {
1872         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1873                           *oom_wait_memcg;
1874         struct oom_wait_info *oom_wait_info;
1875
1876         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1877         oom_wait_memcg = oom_wait_info->mem;
1878
1879         /*
1880          * Both of oom_wait_info->mem and wake_mem are stable under us.
1881          * Then we can use css_is_ancestor without taking care of RCU.
1882          */
1883         if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1884                 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1885                 return 0;
1886         return autoremove_wake_function(wait, mode, sync, arg);
1887 }
1888
1889 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1890 {
1891         /* for filtering, pass "memcg" as argument. */
1892         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1893 }
1894
1895 static void memcg_oom_recover(struct mem_cgroup *memcg)
1896 {
1897         if (memcg && atomic_read(&memcg->under_oom))
1898                 memcg_wakeup_oom(memcg);
1899 }
1900
1901 /*
1902  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1903  */
1904 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1905 {
1906         struct oom_wait_info owait;
1907         bool locked, need_to_kill;
1908
1909         owait.mem = memcg;
1910         owait.wait.flags = 0;
1911         owait.wait.func = memcg_oom_wake_function;
1912         owait.wait.private = current;
1913         INIT_LIST_HEAD(&owait.wait.task_list);
1914         need_to_kill = true;
1915         mem_cgroup_mark_under_oom(memcg);
1916
1917         /* At first, try to OOM lock hierarchy under memcg.*/
1918         spin_lock(&memcg_oom_lock);
1919         locked = mem_cgroup_oom_lock(memcg);
1920         /*
1921          * Even if signal_pending(), we can't quit charge() loop without
1922          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1923          * under OOM is always welcomed, use TASK_KILLABLE here.
1924          */
1925         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1926         if (!locked || memcg->oom_kill_disable)
1927                 need_to_kill = false;
1928         if (locked)
1929                 mem_cgroup_oom_notify(memcg);
1930         spin_unlock(&memcg_oom_lock);
1931
1932         if (need_to_kill) {
1933                 finish_wait(&memcg_oom_waitq, &owait.wait);
1934                 mem_cgroup_out_of_memory(memcg, mask);
1935         } else {
1936                 schedule();
1937                 finish_wait(&memcg_oom_waitq, &owait.wait);
1938         }
1939         spin_lock(&memcg_oom_lock);
1940         if (locked)
1941                 mem_cgroup_oom_unlock(memcg);
1942         memcg_wakeup_oom(memcg);
1943         spin_unlock(&memcg_oom_lock);
1944
1945         mem_cgroup_unmark_under_oom(memcg);
1946
1947         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1948                 return false;
1949         /* Give chance to dying process */
1950         schedule_timeout_uninterruptible(1);
1951         return true;
1952 }
1953
1954 /*
1955  * Currently used to update mapped file statistics, but the routine can be
1956  * generalized to update other statistics as well.
1957  *
1958  * Notes: Race condition
1959  *
1960  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1961  * it tends to be costly. But considering some conditions, we doesn't need
1962  * to do so _always_.
1963  *
1964  * Considering "charge", lock_page_cgroup() is not required because all
1965  * file-stat operations happen after a page is attached to radix-tree. There
1966  * are no race with "charge".
1967  *
1968  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1969  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1970  * if there are race with "uncharge". Statistics itself is properly handled
1971  * by flags.
1972  *
1973  * Considering "move", this is an only case we see a race. To make the race
1974  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1975  * possibility of race condition. If there is, we take a lock.
1976  */
1977
1978 void mem_cgroup_update_page_stat(struct page *page,
1979                                  enum mem_cgroup_page_stat_item idx, int val)
1980 {
1981         struct mem_cgroup *memcg;
1982         struct page_cgroup *pc = lookup_page_cgroup(page);
1983         bool need_unlock = false;
1984         unsigned long uninitialized_var(flags);
1985
1986         if (unlikely(!pc))
1987                 return;
1988
1989         rcu_read_lock();
1990         memcg = pc->mem_cgroup;
1991         if (unlikely(!memcg || !PageCgroupUsed(pc)))
1992                 goto out;
1993         /* pc->mem_cgroup is unstable ? */
1994         if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1995                 /* take a lock against to access pc->mem_cgroup */
1996                 move_lock_page_cgroup(pc, &flags);
1997                 need_unlock = true;
1998                 memcg = pc->mem_cgroup;
1999                 if (!memcg || !PageCgroupUsed(pc))
2000                         goto out;
2001         }
2002
2003         switch (idx) {
2004         case MEMCG_NR_FILE_MAPPED:
2005                 if (val > 0)
2006                         SetPageCgroupFileMapped(pc);
2007                 else if (!page_mapped(page))
2008                         ClearPageCgroupFileMapped(pc);
2009                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2010                 break;
2011         default:
2012                 BUG();
2013         }
2014
2015         this_cpu_add(memcg->stat->count[idx], val);
2016
2017 out:
2018         if (unlikely(need_unlock))
2019                 move_unlock_page_cgroup(pc, &flags);
2020         rcu_read_unlock();
2021         return;
2022 }
2023 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2024
2025 /*
2026  * size of first charge trial. "32" comes from vmscan.c's magic value.
2027  * TODO: maybe necessary to use big numbers in big irons.
2028  */
2029 #define CHARGE_BATCH    32U
2030 struct memcg_stock_pcp {
2031         struct mem_cgroup *cached; /* this never be root cgroup */
2032         unsigned int nr_pages;
2033         struct work_struct work;
2034         unsigned long flags;
2035 #define FLUSHING_CACHED_CHARGE  (0)
2036 };
2037 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2038 static DEFINE_MUTEX(percpu_charge_mutex);
2039
2040 /*
2041  * Try to consume stocked charge on this cpu. If success, one page is consumed
2042  * from local stock and true is returned. If the stock is 0 or charges from a
2043  * cgroup which is not current target, returns false. This stock will be
2044  * refilled.
2045  */
2046 static bool consume_stock(struct mem_cgroup *memcg)
2047 {
2048         struct memcg_stock_pcp *stock;
2049         bool ret = true;
2050
2051         stock = &get_cpu_var(memcg_stock);
2052         if (memcg == stock->cached && stock->nr_pages)
2053                 stock->nr_pages--;
2054         else /* need to call res_counter_charge */
2055                 ret = false;
2056         put_cpu_var(memcg_stock);
2057         return ret;
2058 }
2059
2060 /*
2061  * Returns stocks cached in percpu to res_counter and reset cached information.
2062  */
2063 static void drain_stock(struct memcg_stock_pcp *stock)
2064 {
2065         struct mem_cgroup *old = stock->cached;
2066
2067         if (stock->nr_pages) {
2068                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2069
2070                 res_counter_uncharge(&old->res, bytes);
2071                 if (do_swap_account)
2072                         res_counter_uncharge(&old->memsw, bytes);
2073                 stock->nr_pages = 0;
2074         }
2075         stock->cached = NULL;
2076 }
2077
2078 /*
2079  * This must be called under preempt disabled or must be called by
2080  * a thread which is pinned to local cpu.
2081  */
2082 static void drain_local_stock(struct work_struct *dummy)
2083 {
2084         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2085         drain_stock(stock);
2086         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2087 }
2088
2089 /*
2090  * Cache charges(val) which is from res_counter, to local per_cpu area.
2091  * This will be consumed by consume_stock() function, later.
2092  */
2093 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2094 {
2095         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2096
2097         if (stock->cached != memcg) { /* reset if necessary */
2098                 drain_stock(stock);
2099                 stock->cached = memcg;
2100         }
2101         stock->nr_pages += nr_pages;
2102         put_cpu_var(memcg_stock);
2103 }
2104
2105 /*
2106  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2107  * of the hierarchy under it. sync flag says whether we should block
2108  * until the work is done.
2109  */
2110 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2111 {
2112         int cpu, curcpu;
2113
2114         /* Notify other cpus that system-wide "drain" is running */
2115         get_online_cpus();
2116         curcpu = get_cpu();
2117         for_each_online_cpu(cpu) {
2118                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2119                 struct mem_cgroup *memcg;
2120
2121                 memcg = stock->cached;
2122                 if (!memcg || !stock->nr_pages)
2123                         continue;
2124                 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2125                         continue;
2126                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2127                         if (cpu == curcpu)
2128                                 drain_local_stock(&stock->work);
2129                         else
2130                                 schedule_work_on(cpu, &stock->work);
2131                 }
2132         }
2133         put_cpu();
2134
2135         if (!sync)
2136                 goto out;
2137
2138         for_each_online_cpu(cpu) {
2139                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2140                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2141                         flush_work(&stock->work);
2142         }
2143 out:
2144         put_online_cpus();
2145 }
2146
2147 /*
2148  * Tries to drain stocked charges in other cpus. This function is asynchronous
2149  * and just put a work per cpu for draining localy on each cpu. Caller can
2150  * expects some charges will be back to res_counter later but cannot wait for
2151  * it.
2152  */
2153 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2154 {
2155         /*
2156          * If someone calls draining, avoid adding more kworker runs.
2157          */
2158         if (!mutex_trylock(&percpu_charge_mutex))
2159                 return;
2160         drain_all_stock(root_memcg, false);
2161         mutex_unlock(&percpu_charge_mutex);
2162 }
2163
2164 /* This is a synchronous drain interface. */
2165 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2166 {
2167         /* called when force_empty is called */
2168         mutex_lock(&percpu_charge_mutex);
2169         drain_all_stock(root_memcg, true);
2170         mutex_unlock(&percpu_charge_mutex);
2171 }
2172
2173 /*
2174  * This function drains percpu counter value from DEAD cpu and
2175  * move it to local cpu. Note that this function can be preempted.
2176  */
2177 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2178 {
2179         int i;
2180
2181         spin_lock(&memcg->pcp_counter_lock);
2182         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2183                 long x = per_cpu(memcg->stat->count[i], cpu);
2184
2185                 per_cpu(memcg->stat->count[i], cpu) = 0;
2186                 memcg->nocpu_base.count[i] += x;
2187         }
2188         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2189                 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2190
2191                 per_cpu(memcg->stat->events[i], cpu) = 0;
2192                 memcg->nocpu_base.events[i] += x;
2193         }
2194         /* need to clear ON_MOVE value, works as a kind of lock. */
2195         per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2196         spin_unlock(&memcg->pcp_counter_lock);
2197 }
2198
2199 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2200 {
2201         int idx = MEM_CGROUP_ON_MOVE;
2202
2203         spin_lock(&memcg->pcp_counter_lock);
2204         per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2205         spin_unlock(&memcg->pcp_counter_lock);
2206 }
2207
2208 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2209                                         unsigned long action,
2210                                         void *hcpu)
2211 {
2212         int cpu = (unsigned long)hcpu;
2213         struct memcg_stock_pcp *stock;
2214         struct mem_cgroup *iter;
2215
2216         if ((action == CPU_ONLINE)) {
2217                 for_each_mem_cgroup(iter)
2218                         synchronize_mem_cgroup_on_move(iter, cpu);
2219                 return NOTIFY_OK;
2220         }
2221
2222         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2223                 return NOTIFY_OK;
2224
2225         for_each_mem_cgroup(iter)
2226                 mem_cgroup_drain_pcp_counter(iter, cpu);
2227
2228         stock = &per_cpu(memcg_stock, cpu);
2229         drain_stock(stock);
2230         return NOTIFY_OK;
2231 }
2232
2233
2234 /* See __mem_cgroup_try_charge() for details */
2235 enum {
2236         CHARGE_OK,              /* success */
2237         CHARGE_RETRY,           /* need to retry but retry is not bad */
2238         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2239         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2240         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2241 };
2242
2243 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2244                                 unsigned int nr_pages, bool oom_check)
2245 {
2246         unsigned long csize = nr_pages * PAGE_SIZE;
2247         struct mem_cgroup *mem_over_limit;
2248         struct res_counter *fail_res;
2249         unsigned long flags = 0;
2250         int ret;
2251
2252         ret = res_counter_charge(&memcg->res, csize, &fail_res);
2253
2254         if (likely(!ret)) {
2255                 if (!do_swap_account)
2256                         return CHARGE_OK;
2257                 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2258                 if (likely(!ret))
2259                         return CHARGE_OK;
2260
2261                 res_counter_uncharge(&memcg->res, csize);
2262                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2263                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2264         } else
2265                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2266         /*
2267          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2268          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2269          *
2270          * Never reclaim on behalf of optional batching, retry with a
2271          * single page instead.
2272          */
2273         if (nr_pages == CHARGE_BATCH)
2274                 return CHARGE_RETRY;
2275
2276         if (!(gfp_mask & __GFP_WAIT))
2277                 return CHARGE_WOULDBLOCK;
2278
2279         ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2280         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2281                 return CHARGE_RETRY;
2282         /*
2283          * Even though the limit is exceeded at this point, reclaim
2284          * may have been able to free some pages.  Retry the charge
2285          * before killing the task.
2286          *
2287          * Only for regular pages, though: huge pages are rather
2288          * unlikely to succeed so close to the limit, and we fall back
2289          * to regular pages anyway in case of failure.
2290          */
2291         if (nr_pages == 1 && ret)
2292                 return CHARGE_RETRY;
2293
2294         /*
2295          * At task move, charge accounts can be doubly counted. So, it's
2296          * better to wait until the end of task_move if something is going on.
2297          */
2298         if (mem_cgroup_wait_acct_move(mem_over_limit))
2299                 return CHARGE_RETRY;
2300
2301         /* If we don't need to call oom-killer at el, return immediately */
2302         if (!oom_check)
2303                 return CHARGE_NOMEM;
2304         /* check OOM */
2305         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2306                 return CHARGE_OOM_DIE;
2307
2308         return CHARGE_RETRY;
2309 }
2310
2311 /*
2312  * Unlike exported interface, "oom" parameter is added. if oom==true,
2313  * oom-killer can be invoked.
2314  */
2315 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2316                                    gfp_t gfp_mask,
2317                                    unsigned int nr_pages,
2318                                    struct mem_cgroup **ptr,
2319                                    bool oom)
2320 {
2321         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2322         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2323         struct mem_cgroup *memcg = NULL;
2324         int ret;
2325
2326         /*
2327          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2328          * in system level. So, allow to go ahead dying process in addition to
2329          * MEMDIE process.
2330          */
2331         if (unlikely(test_thread_flag(TIF_MEMDIE)
2332                      || fatal_signal_pending(current)))
2333                 goto bypass;
2334
2335         /*
2336          * We always charge the cgroup the mm_struct belongs to.
2337          * The mm_struct's mem_cgroup changes on task migration if the
2338          * thread group leader migrates. It's possible that mm is not
2339          * set, if so charge the init_mm (happens for pagecache usage).
2340          */
2341         if (!*ptr && !mm)
2342                 goto bypass;
2343 again:
2344         if (*ptr) { /* css should be a valid one */
2345                 memcg = *ptr;
2346                 VM_BUG_ON(css_is_removed(&memcg->css));
2347                 if (mem_cgroup_is_root(memcg))
2348                         goto done;
2349                 if (nr_pages == 1 && consume_stock(memcg))
2350                         goto done;
2351                 css_get(&memcg->css);
2352         } else {
2353                 struct task_struct *p;
2354
2355                 rcu_read_lock();
2356                 p = rcu_dereference(mm->owner);
2357                 /*
2358                  * Because we don't have task_lock(), "p" can exit.
2359                  * In that case, "memcg" can point to root or p can be NULL with
2360                  * race with swapoff. Then, we have small risk of mis-accouning.
2361                  * But such kind of mis-account by race always happens because
2362                  * we don't have cgroup_mutex(). It's overkill and we allo that
2363                  * small race, here.
2364                  * (*) swapoff at el will charge against mm-struct not against
2365                  * task-struct. So, mm->owner can be NULL.
2366                  */
2367                 memcg = mem_cgroup_from_task(p);
2368                 if (!memcg || mem_cgroup_is_root(memcg)) {
2369                         rcu_read_unlock();
2370                         goto done;
2371                 }
2372                 if (nr_pages == 1 && consume_stock(memcg)) {
2373                         /*
2374                          * It seems dagerous to access memcg without css_get().
2375                          * But considering how consume_stok works, it's not
2376                          * necessary. If consume_stock success, some charges
2377                          * from this memcg are cached on this cpu. So, we
2378                          * don't need to call css_get()/css_tryget() before
2379                          * calling consume_stock().
2380                          */
2381                         rcu_read_unlock();
2382                         goto done;
2383                 }
2384                 /* after here, we may be blocked. we need to get refcnt */
2385                 if (!css_tryget(&memcg->css)) {
2386                         rcu_read_unlock();
2387                         goto again;
2388                 }
2389                 rcu_read_unlock();
2390         }
2391
2392         do {
2393                 bool oom_check;
2394
2395                 /* If killed, bypass charge */
2396                 if (fatal_signal_pending(current)) {
2397                         css_put(&memcg->css);
2398                         goto bypass;
2399                 }
2400
2401                 oom_check = false;
2402                 if (oom && !nr_oom_retries) {
2403                         oom_check = true;
2404                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2405                 }
2406
2407                 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2408                 switch (ret) {
2409                 case CHARGE_OK:
2410                         break;
2411                 case CHARGE_RETRY: /* not in OOM situation but retry */
2412                         batch = nr_pages;
2413                         css_put(&memcg->css);
2414                         memcg = NULL;
2415                         goto again;
2416                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2417                         css_put(&memcg->css);
2418                         goto nomem;
2419                 case CHARGE_NOMEM: /* OOM routine works */
2420                         if (!oom) {
2421                                 css_put(&memcg->css);
2422                                 goto nomem;
2423                         }
2424                         /* If oom, we never return -ENOMEM */
2425                         nr_oom_retries--;
2426                         break;
2427                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2428                         css_put(&memcg->css);
2429                         goto bypass;
2430                 }
2431         } while (ret != CHARGE_OK);
2432
2433         if (batch > nr_pages)
2434                 refill_stock(memcg, batch - nr_pages);
2435         css_put(&memcg->css);
2436 done:
2437         *ptr = memcg;
2438         return 0;
2439 nomem:
2440         *ptr = NULL;
2441         return -ENOMEM;
2442 bypass:
2443         *ptr = NULL;
2444         return 0;
2445 }
2446
2447 /*
2448  * Somemtimes we have to undo a charge we got by try_charge().
2449  * This function is for that and do uncharge, put css's refcnt.
2450  * gotten by try_charge().
2451  */
2452 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2453                                        unsigned int nr_pages)
2454 {
2455         if (!mem_cgroup_is_root(memcg)) {
2456                 unsigned long bytes = nr_pages * PAGE_SIZE;
2457
2458                 res_counter_uncharge(&memcg->res, bytes);
2459                 if (do_swap_account)
2460                         res_counter_uncharge(&memcg->memsw, bytes);
2461         }
2462 }
2463
2464 /*
2465  * A helper function to get mem_cgroup from ID. must be called under
2466  * rcu_read_lock(). The caller must check css_is_removed() or some if
2467  * it's concern. (dropping refcnt from swap can be called against removed
2468  * memcg.)
2469  */
2470 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2471 {
2472         struct cgroup_subsys_state *css;
2473
2474         /* ID 0 is unused ID */
2475         if (!id)
2476                 return NULL;
2477         css = css_lookup(&mem_cgroup_subsys, id);
2478         if (!css)
2479                 return NULL;
2480         return container_of(css, struct mem_cgroup, css);
2481 }
2482
2483 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2484 {
2485         struct mem_cgroup *memcg = NULL;
2486         struct page_cgroup *pc;
2487         unsigned short id;
2488         swp_entry_t ent;
2489
2490         VM_BUG_ON(!PageLocked(page));
2491
2492         pc = lookup_page_cgroup(page);
2493         lock_page_cgroup(pc);
2494         if (PageCgroupUsed(pc)) {
2495                 memcg = pc->mem_cgroup;
2496                 if (memcg && !css_tryget(&memcg->css))
2497                         memcg = NULL;
2498         } else if (PageSwapCache(page)) {
2499                 ent.val = page_private(page);
2500                 id = lookup_swap_cgroup(ent);
2501                 rcu_read_lock();
2502                 memcg = mem_cgroup_lookup(id);
2503                 if (memcg && !css_tryget(&memcg->css))
2504                         memcg = NULL;
2505                 rcu_read_unlock();
2506         }
2507         unlock_page_cgroup(pc);
2508         return memcg;
2509 }
2510
2511 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2512                                        struct page *page,
2513                                        unsigned int nr_pages,
2514                                        struct page_cgroup *pc,
2515                                        enum charge_type ctype)
2516 {
2517         lock_page_cgroup(pc);
2518         if (unlikely(PageCgroupUsed(pc))) {
2519                 unlock_page_cgroup(pc);
2520                 __mem_cgroup_cancel_charge(memcg, nr_pages);
2521                 return;
2522         }
2523         /*
2524          * we don't need page_cgroup_lock about tail pages, becase they are not
2525          * accessed by any other context at this point.
2526          */
2527         pc->mem_cgroup = memcg;
2528         /*
2529          * We access a page_cgroup asynchronously without lock_page_cgroup().
2530          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2531          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2532          * before USED bit, we need memory barrier here.
2533          * See mem_cgroup_add_lru_list(), etc.
2534          */
2535         smp_wmb();
2536         switch (ctype) {
2537         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2538         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2539                 SetPageCgroupCache(pc);
2540                 SetPageCgroupUsed(pc);
2541                 break;
2542         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2543                 ClearPageCgroupCache(pc);
2544                 SetPageCgroupUsed(pc);
2545                 break;
2546         default:
2547                 break;
2548         }
2549
2550         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2551         unlock_page_cgroup(pc);
2552         /*
2553          * "charge_statistics" updated event counter. Then, check it.
2554          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2555          * if they exceeds softlimit.
2556          */
2557         memcg_check_events(memcg, page);
2558 }
2559
2560 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2561
2562 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2563                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2564 /*
2565  * Because tail pages are not marked as "used", set it. We're under
2566  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2567  */
2568 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2569 {
2570         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2571         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2572         unsigned long flags;
2573
2574         if (mem_cgroup_disabled())
2575                 return;
2576         /*
2577          * We have no races with charge/uncharge but will have races with
2578          * page state accounting.
2579          */
2580         move_lock_page_cgroup(head_pc, &flags);
2581
2582         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2583         smp_wmb(); /* see __commit_charge() */
2584         if (PageCgroupAcctLRU(head_pc)) {
2585                 enum lru_list lru;
2586                 struct mem_cgroup_per_zone *mz;
2587
2588                 /*
2589                  * LRU flags cannot be copied because we need to add tail
2590                  *.page to LRU by generic call and our hook will be called.
2591                  * We hold lru_lock, then, reduce counter directly.
2592                  */
2593                 lru = page_lru(head);
2594                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2595                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2596         }
2597         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2598         move_unlock_page_cgroup(head_pc, &flags);
2599 }
2600 #endif
2601
2602 /**
2603  * mem_cgroup_move_account - move account of the page
2604  * @page: the page
2605  * @nr_pages: number of regular pages (>1 for huge pages)
2606  * @pc: page_cgroup of the page.
2607  * @from: mem_cgroup which the page is moved from.
2608  * @to: mem_cgroup which the page is moved to. @from != @to.
2609  * @uncharge: whether we should call uncharge and css_put against @from.
2610  *
2611  * The caller must confirm following.
2612  * - page is not on LRU (isolate_page() is useful.)
2613  * - compound_lock is held when nr_pages > 1
2614  *
2615  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2616  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2617  * true, this function does "uncharge" from old cgroup, but it doesn't if
2618  * @uncharge is false, so a caller should do "uncharge".
2619  */
2620 static int mem_cgroup_move_account(struct page *page,
2621                                    unsigned int nr_pages,
2622                                    struct page_cgroup *pc,
2623                                    struct mem_cgroup *from,
2624                                    struct mem_cgroup *to,
2625                                    bool uncharge)
2626 {
2627         unsigned long flags;
2628         int ret;
2629
2630         VM_BUG_ON(from == to);
2631         VM_BUG_ON(PageLRU(page));
2632         /*
2633          * The page is isolated from LRU. So, collapse function
2634          * will not handle this page. But page splitting can happen.
2635          * Do this check under compound_page_lock(). The caller should
2636          * hold it.
2637          */
2638         ret = -EBUSY;
2639         if (nr_pages > 1 && !PageTransHuge(page))
2640                 goto out;
2641
2642         lock_page_cgroup(pc);
2643
2644         ret = -EINVAL;
2645         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2646                 goto unlock;
2647
2648         move_lock_page_cgroup(pc, &flags);
2649
2650         if (PageCgroupFileMapped(pc)) {
2651                 /* Update mapped_file data for mem_cgroup */
2652                 preempt_disable();
2653                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2654                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2655                 preempt_enable();
2656         }
2657         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2658         if (uncharge)
2659                 /* This is not "cancel", but cancel_charge does all we need. */
2660                 __mem_cgroup_cancel_charge(from, nr_pages);
2661
2662         /* caller should have done css_get */
2663         pc->mem_cgroup = to;
2664         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2665         /*
2666          * We charges against "to" which may not have any tasks. Then, "to"
2667          * can be under rmdir(). But in current implementation, caller of
2668          * this function is just force_empty() and move charge, so it's
2669          * guaranteed that "to" is never removed. So, we don't check rmdir
2670          * status here.
2671          */
2672         move_unlock_page_cgroup(pc, &flags);
2673         ret = 0;
2674 unlock:
2675         unlock_page_cgroup(pc);
2676         /*
2677          * check events
2678          */
2679         memcg_check_events(to, page);
2680         memcg_check_events(from, page);
2681 out:
2682         return ret;
2683 }
2684
2685 /*
2686  * move charges to its parent.
2687  */
2688
2689 static int mem_cgroup_move_parent(struct page *page,
2690                                   struct page_cgroup *pc,
2691                                   struct mem_cgroup *child,
2692                                   gfp_t gfp_mask)
2693 {
2694         struct cgroup *cg = child->css.cgroup;
2695         struct cgroup *pcg = cg->parent;
2696         struct mem_cgroup *parent;
2697         unsigned int nr_pages;
2698         unsigned long uninitialized_var(flags);
2699         int ret;
2700
2701         /* Is ROOT ? */
2702         if (!pcg)
2703                 return -EINVAL;
2704
2705         ret = -EBUSY;
2706         if (!get_page_unless_zero(page))
2707                 goto out;
2708         if (isolate_lru_page(page))
2709                 goto put;
2710
2711         nr_pages = hpage_nr_pages(page);
2712
2713         parent = mem_cgroup_from_cont(pcg);
2714         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2715         if (ret || !parent)
2716                 goto put_back;
2717
2718         if (nr_pages > 1)
2719                 flags = compound_lock_irqsave(page);
2720
2721         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2722         if (ret)
2723                 __mem_cgroup_cancel_charge(parent, nr_pages);
2724
2725         if (nr_pages > 1)
2726                 compound_unlock_irqrestore(page, flags);
2727 put_back:
2728         putback_lru_page(page);
2729 put:
2730         put_page(page);
2731 out:
2732         return ret;
2733 }
2734
2735 /*
2736  * Charge the memory controller for page usage.
2737  * Return
2738  * 0 if the charge was successful
2739  * < 0 if the cgroup is over its limit
2740  */
2741 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2742                                 gfp_t gfp_mask, enum charge_type ctype)
2743 {
2744         struct mem_cgroup *memcg = NULL;
2745         unsigned int nr_pages = 1;
2746         struct page_cgroup *pc;
2747         bool oom = true;
2748         int ret;
2749
2750         if (PageTransHuge(page)) {
2751                 nr_pages <<= compound_order(page);
2752                 VM_BUG_ON(!PageTransHuge(page));
2753                 /*
2754                  * Never OOM-kill a process for a huge page.  The
2755                  * fault handler will fall back to regular pages.
2756                  */
2757                 oom = false;
2758         }
2759
2760         pc = lookup_page_cgroup(page);
2761         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2762
2763         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2764         if (ret || !memcg)
2765                 return ret;
2766
2767         __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2768         return 0;
2769 }
2770
2771 int mem_cgroup_newpage_charge(struct page *page,
2772                               struct mm_struct *mm, gfp_t gfp_mask)
2773 {
2774         if (mem_cgroup_disabled())
2775                 return 0;
2776         /*
2777          * If already mapped, we don't have to account.
2778          * If page cache, page->mapping has address_space.
2779          * But page->mapping may have out-of-use anon_vma pointer,
2780          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2781          * is NULL.
2782          */
2783         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2784                 return 0;
2785         if (unlikely(!mm))
2786                 mm = &init_mm;
2787         return mem_cgroup_charge_common(page, mm, gfp_mask,
2788                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2789 }
2790
2791 static void
2792 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2793                                         enum charge_type ctype);
2794
2795 static void
2796 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2797                                         enum charge_type ctype)
2798 {
2799         struct page_cgroup *pc = lookup_page_cgroup(page);
2800         /*
2801          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2802          * is already on LRU. It means the page may on some other page_cgroup's
2803          * LRU. Take care of it.
2804          */
2805         mem_cgroup_lru_del_before_commit(page);
2806         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2807         mem_cgroup_lru_add_after_commit(page);
2808         return;
2809 }
2810
2811 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2812                                 gfp_t gfp_mask)
2813 {
2814         struct mem_cgroup *memcg = NULL;
2815         int ret;
2816
2817         if (mem_cgroup_disabled())
2818                 return 0;
2819         if (PageCompound(page))
2820                 return 0;
2821
2822         if (unlikely(!mm))
2823                 mm = &init_mm;
2824
2825         if (page_is_file_cache(page)) {
2826                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2827                 if (ret || !memcg)
2828                         return ret;
2829
2830                 /*
2831                  * FUSE reuses pages without going through the final
2832                  * put that would remove them from the LRU list, make
2833                  * sure that they get relinked properly.
2834                  */
2835                 __mem_cgroup_commit_charge_lrucare(page, memcg,
2836                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2837                 return ret;
2838         }
2839         /* shmem */
2840         if (PageSwapCache(page)) {
2841                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2842                 if (!ret)
2843                         __mem_cgroup_commit_charge_swapin(page, memcg,
2844                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2845         } else
2846                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2847                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2848
2849         return ret;
2850 }
2851
2852 /*
2853  * While swap-in, try_charge -> commit or cancel, the page is locked.
2854  * And when try_charge() successfully returns, one refcnt to memcg without
2855  * struct page_cgroup is acquired. This refcnt will be consumed by
2856  * "commit()" or removed by "cancel()"
2857  */
2858 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2859                                  struct page *page,
2860                                  gfp_t mask, struct mem_cgroup **ptr)
2861 {
2862         struct mem_cgroup *memcg;
2863         int ret;
2864
2865         *ptr = NULL;
2866
2867         if (mem_cgroup_disabled())
2868                 return 0;
2869
2870         if (!do_swap_account)
2871                 goto charge_cur_mm;
2872         /*
2873          * A racing thread's fault, or swapoff, may have already updated
2874          * the pte, and even removed page from swap cache: in those cases
2875          * do_swap_page()'s pte_same() test will fail; but there's also a
2876          * KSM case which does need to charge the page.
2877          */
2878         if (!PageSwapCache(page))
2879                 goto charge_cur_mm;
2880         memcg = try_get_mem_cgroup_from_page(page);
2881         if (!memcg)
2882                 goto charge_cur_mm;
2883         *ptr = memcg;
2884         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2885         css_put(&memcg->css);
2886         return ret;
2887 charge_cur_mm:
2888         if (unlikely(!mm))
2889                 mm = &init_mm;
2890         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2891 }
2892
2893 static void
2894 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2895                                         enum charge_type ctype)
2896 {
2897         if (mem_cgroup_disabled())
2898                 return;
2899         if (!ptr)
2900                 return;
2901         cgroup_exclude_rmdir(&ptr->css);
2902
2903         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2904         /*
2905          * Now swap is on-memory. This means this page may be
2906          * counted both as mem and swap....double count.
2907          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2908          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2909          * may call delete_from_swap_cache() before reach here.
2910          */
2911         if (do_swap_account && PageSwapCache(page)) {
2912                 swp_entry_t ent = {.val = page_private(page)};
2913                 unsigned short id;
2914                 struct mem_cgroup *memcg;
2915
2916                 id = swap_cgroup_record(ent, 0);
2917                 rcu_read_lock();
2918                 memcg = mem_cgroup_lookup(id);
2919                 if (memcg) {
2920                         /*
2921                          * This recorded memcg can be obsolete one. So, avoid
2922                          * calling css_tryget
2923                          */
2924                         if (!mem_cgroup_is_root(memcg))
2925                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2926                         mem_cgroup_swap_statistics(memcg, false);
2927                         mem_cgroup_put(memcg);
2928                 }
2929                 rcu_read_unlock();
2930         }
2931         /*
2932          * At swapin, we may charge account against cgroup which has no tasks.
2933          * So, rmdir()->pre_destroy() can be called while we do this charge.
2934          * In that case, we need to call pre_destroy() again. check it here.
2935          */
2936         cgroup_release_and_wakeup_rmdir(&ptr->css);
2937 }
2938
2939 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2940 {
2941         __mem_cgroup_commit_charge_swapin(page, ptr,
2942                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2943 }
2944
2945 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2946 {
2947         if (mem_cgroup_disabled())
2948                 return;
2949         if (!memcg)
2950                 return;
2951         __mem_cgroup_cancel_charge(memcg, 1);
2952 }
2953
2954 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2955                                    unsigned int nr_pages,
2956                                    const enum charge_type ctype)
2957 {
2958         struct memcg_batch_info *batch = NULL;
2959         bool uncharge_memsw = true;
2960
2961         /* If swapout, usage of swap doesn't decrease */
2962         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2963                 uncharge_memsw = false;
2964
2965         batch = &current->memcg_batch;
2966         /*
2967          * In usual, we do css_get() when we remember memcg pointer.
2968          * But in this case, we keep res->usage until end of a series of
2969          * uncharges. Then, it's ok to ignore memcg's refcnt.
2970          */
2971         if (!batch->memcg)
2972                 batch->memcg = memcg;
2973         /*
2974          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2975          * In those cases, all pages freed continuously can be expected to be in
2976          * the same cgroup and we have chance to coalesce uncharges.
2977          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2978          * because we want to do uncharge as soon as possible.
2979          */
2980
2981         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2982                 goto direct_uncharge;
2983
2984         if (nr_pages > 1)
2985                 goto direct_uncharge;
2986
2987         /*
2988          * In typical case, batch->memcg == mem. This means we can
2989          * merge a series of uncharges to an uncharge of res_counter.
2990          * If not, we uncharge res_counter ony by one.
2991          */
2992         if (batch->memcg != memcg)
2993                 goto direct_uncharge;
2994         /* remember freed charge and uncharge it later */
2995         batch->nr_pages++;
2996         if (uncharge_memsw)
2997                 batch->memsw_nr_pages++;
2998         return;
2999 direct_uncharge:
3000         res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3001         if (uncharge_memsw)
3002                 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3003         if (unlikely(batch->memcg != memcg))
3004                 memcg_oom_recover(memcg);
3005         return;
3006 }
3007
3008 /*
3009  * uncharge if !page_mapped(page)
3010  */
3011 static struct mem_cgroup *
3012 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3013 {
3014         struct mem_cgroup *memcg = NULL;
3015         unsigned int nr_pages = 1;
3016         struct page_cgroup *pc;
3017
3018         if (mem_cgroup_disabled())
3019                 return NULL;
3020
3021         if (PageSwapCache(page))
3022                 return NULL;
3023
3024         if (PageTransHuge(page)) {
3025                 nr_pages <<= compound_order(page);
3026                 VM_BUG_ON(!PageTransHuge(page));
3027         }
3028         /*
3029          * Check if our page_cgroup is valid
3030          */
3031         pc = lookup_page_cgroup(page);
3032         if (unlikely(!pc || !PageCgroupUsed(pc)))
3033                 return NULL;
3034
3035         lock_page_cgroup(pc);
3036
3037         memcg = pc->mem_cgroup;
3038
3039         if (!PageCgroupUsed(pc))
3040                 goto unlock_out;
3041
3042         switch (ctype) {
3043         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3044         case MEM_CGROUP_CHARGE_TYPE_DROP:
3045                 /* See mem_cgroup_prepare_migration() */
3046                 if (page_mapped(page) || PageCgroupMigration(pc))
3047                         goto unlock_out;
3048                 break;
3049         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3050                 if (!PageAnon(page)) {  /* Shared memory */
3051                         if (page->mapping && !page_is_file_cache(page))
3052                                 goto unlock_out;
3053                 } else if (page_mapped(page)) /* Anon */
3054                                 goto unlock_out;
3055                 break;
3056         default:
3057                 break;
3058         }
3059
3060         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3061
3062         ClearPageCgroupUsed(pc);
3063         /*
3064          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3065          * freed from LRU. This is safe because uncharged page is expected not
3066          * to be reused (freed soon). Exception is SwapCache, it's handled by
3067          * special functions.
3068          */
3069
3070         unlock_page_cgroup(pc);
3071         /*
3072          * even after unlock, we have memcg->res.usage here and this memcg
3073          * will never be freed.
3074          */
3075         memcg_check_events(memcg, page);
3076         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3077                 mem_cgroup_swap_statistics(memcg, true);
3078                 mem_cgroup_get(memcg);
3079         }
3080         if (!mem_cgroup_is_root(memcg))
3081                 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3082
3083         return memcg;
3084
3085 unlock_out:
3086         unlock_page_cgroup(pc);
3087         return NULL;
3088 }
3089
3090 void mem_cgroup_uncharge_page(struct page *page)
3091 {
3092         /* early check. */
3093         if (page_mapped(page))
3094                 return;
3095         if (page->mapping && !PageAnon(page))
3096                 return;
3097         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3098 }
3099
3100 void mem_cgroup_uncharge_cache_page(struct page *page)
3101 {
3102         VM_BUG_ON(page_mapped(page));
3103         VM_BUG_ON(page->mapping);
3104         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3105 }
3106
3107 /*
3108  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3109  * In that cases, pages are freed continuously and we can expect pages
3110  * are in the same memcg. All these calls itself limits the number of
3111  * pages freed at once, then uncharge_start/end() is called properly.
3112  * This may be called prural(2) times in a context,
3113  */
3114
3115 void mem_cgroup_uncharge_start(void)
3116 {
3117         current->memcg_batch.do_batch++;
3118         /* We can do nest. */
3119         if (current->memcg_batch.do_batch == 1) {
3120                 current->memcg_batch.memcg = NULL;
3121                 current->memcg_batch.nr_pages = 0;
3122                 current->memcg_batch.memsw_nr_pages = 0;
3123         }
3124 }
3125
3126 void mem_cgroup_uncharge_end(void)
3127 {
3128         struct memcg_batch_info *batch = &current->memcg_batch;
3129
3130         if (!batch->do_batch)
3131                 return;
3132
3133         batch->do_batch--;
3134         if (batch->do_batch) /* If stacked, do nothing. */
3135                 return;
3136
3137         if (!batch->memcg)
3138                 return;
3139         /*
3140          * This "batch->memcg" is valid without any css_get/put etc...
3141          * bacause we hide charges behind us.
3142          */
3143         if (batch->nr_pages)
3144                 res_counter_uncharge(&batch->memcg->res,
3145                                      batch->nr_pages * PAGE_SIZE);
3146         if (batch->memsw_nr_pages)
3147                 res_counter_uncharge(&batch->memcg->memsw,
3148                                      batch->memsw_nr_pages * PAGE_SIZE);
3149         memcg_oom_recover(batch->memcg);
3150         /* forget this pointer (for sanity check) */
3151         batch->memcg = NULL;
3152 }
3153
3154 #ifdef CONFIG_SWAP
3155 /*
3156  * called after __delete_from_swap_cache() and drop "page" account.
3157  * memcg information is recorded to swap_cgroup of "ent"
3158  */
3159 void
3160 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3161 {
3162         struct mem_cgroup *memcg;
3163         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3164
3165         if (!swapout) /* this was a swap cache but the swap is unused ! */
3166                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3167
3168         memcg = __mem_cgroup_uncharge_common(page, ctype);
3169
3170         /*
3171          * record memcg information,  if swapout && memcg != NULL,
3172          * mem_cgroup_get() was called in uncharge().
3173          */
3174         if (do_swap_account && swapout && memcg)
3175                 swap_cgroup_record(ent, css_id(&memcg->css));
3176 }
3177 #endif
3178
3179 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3180 /*
3181  * called from swap_entry_free(). remove record in swap_cgroup and
3182  * uncharge "memsw" account.
3183  */
3184 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3185 {
3186         struct mem_cgroup *memcg;
3187         unsigned short id;
3188
3189         if (!do_swap_account)
3190                 return;
3191
3192         id = swap_cgroup_record(ent, 0);
3193         rcu_read_lock();
3194         memcg = mem_cgroup_lookup(id);
3195         if (memcg) {
3196                 /*
3197                  * We uncharge this because swap is freed.
3198                  * This memcg can be obsolete one. We avoid calling css_tryget
3199                  */
3200                 if (!mem_cgroup_is_root(memcg))
3201                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3202                 mem_cgroup_swap_statistics(memcg, false);
3203                 mem_cgroup_put(memcg);
3204         }
3205         rcu_read_unlock();
3206 }
3207
3208 /**
3209  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3210  * @entry: swap entry to be moved
3211  * @from:  mem_cgroup which the entry is moved from
3212  * @to:  mem_cgroup which the entry is moved to
3213  * @need_fixup: whether we should fixup res_counters and refcounts.
3214  *
3215  * It succeeds only when the swap_cgroup's record for this entry is the same
3216  * as the mem_cgroup's id of @from.
3217  *
3218  * Returns 0 on success, -EINVAL on failure.
3219  *
3220  * The caller must have charged to @to, IOW, called res_counter_charge() about
3221  * both res and memsw, and called css_get().
3222  */
3223 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3224                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3225 {
3226         unsigned short old_id, new_id;
3227
3228         old_id = css_id(&from->css);
3229         new_id = css_id(&to->css);
3230
3231         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3232                 mem_cgroup_swap_statistics(from, false);
3233                 mem_cgroup_swap_statistics(to, true);
3234                 /*
3235                  * This function is only called from task migration context now.
3236                  * It postpones res_counter and refcount handling till the end
3237                  * of task migration(mem_cgroup_clear_mc()) for performance
3238                  * improvement. But we cannot postpone mem_cgroup_get(to)
3239                  * because if the process that has been moved to @to does
3240                  * swap-in, the refcount of @to might be decreased to 0.
3241                  */
3242                 mem_cgroup_get(to);
3243                 if (need_fixup) {
3244                         if (!mem_cgroup_is_root(from))
3245                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3246                         mem_cgroup_put(from);
3247                         /*
3248                          * we charged both to->res and to->memsw, so we should
3249                          * uncharge to->res.
3250                          */
3251                         if (!mem_cgroup_is_root(to))
3252                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3253                 }
3254                 return 0;
3255         }
3256         return -EINVAL;
3257 }
3258 #else
3259 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3260                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3261 {
3262         return -EINVAL;
3263 }
3264 #endif
3265
3266 /*
3267  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3268  * page belongs to.
3269  */
3270 int mem_cgroup_prepare_migration(struct page *page,
3271         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3272 {
3273         struct mem_cgroup *memcg = NULL;
3274         struct page_cgroup *pc;
3275         enum charge_type ctype;
3276         int ret = 0;
3277
3278         *ptr = NULL;
3279
3280         VM_BUG_ON(PageTransHuge(page));
3281         if (mem_cgroup_disabled())
3282                 return 0;
3283
3284         pc = lookup_page_cgroup(page);
3285         lock_page_cgroup(pc);
3286         if (PageCgroupUsed(pc)) {
3287                 memcg = pc->mem_cgroup;
3288                 css_get(&memcg->css);
3289                 /*
3290                  * At migrating an anonymous page, its mapcount goes down
3291                  * to 0 and uncharge() will be called. But, even if it's fully
3292                  * unmapped, migration may fail and this page has to be
3293                  * charged again. We set MIGRATION flag here and delay uncharge
3294                  * until end_migration() is called
3295                  *
3296                  * Corner Case Thinking
3297                  * A)
3298                  * When the old page was mapped as Anon and it's unmap-and-freed
3299                  * while migration was ongoing.
3300                  * If unmap finds the old page, uncharge() of it will be delayed
3301                  * until end_migration(). If unmap finds a new page, it's
3302                  * uncharged when it make mapcount to be 1->0. If unmap code
3303                  * finds swap_migration_entry, the new page will not be mapped
3304                  * and end_migration() will find it(mapcount==0).
3305                  *
3306                  * B)
3307                  * When the old page was mapped but migraion fails, the kernel
3308                  * remaps it. A charge for it is kept by MIGRATION flag even
3309                  * if mapcount goes down to 0. We can do remap successfully
3310                  * without charging it again.
3311                  *
3312                  * C)
3313                  * The "old" page is under lock_page() until the end of
3314                  * migration, so, the old page itself will not be swapped-out.
3315                  * If the new page is swapped out before end_migraton, our
3316                  * hook to usual swap-out path will catch the event.
3317                  */
3318                 if (PageAnon(page))
3319                         SetPageCgroupMigration(pc);
3320         }
3321         unlock_page_cgroup(pc);
3322         /*
3323          * If the page is not charged at this point,
3324          * we return here.
3325          */
3326         if (!memcg)
3327                 return 0;
3328
3329         *ptr = memcg;
3330         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3331         css_put(&memcg->css);/* drop extra refcnt */
3332         if (ret || *ptr == NULL) {
3333                 if (PageAnon(page)) {
3334                         lock_page_cgroup(pc);
3335                         ClearPageCgroupMigration(pc);
3336                         unlock_page_cgroup(pc);
3337                         /*
3338                          * The old page may be fully unmapped while we kept it.
3339                          */
3340                         mem_cgroup_uncharge_page(page);
3341                 }
3342                 return -ENOMEM;
3343         }
3344         /*
3345          * We charge new page before it's used/mapped. So, even if unlock_page()
3346          * is called before end_migration, we can catch all events on this new
3347          * page. In the case new page is migrated but not remapped, new page's
3348          * mapcount will be finally 0 and we call uncharge in end_migration().
3349          */
3350         pc = lookup_page_cgroup(newpage);
3351         if (PageAnon(page))
3352                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3353         else if (page_is_file_cache(page))
3354                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3355         else
3356                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3357         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3358         return ret;
3359 }
3360
3361 /* remove redundant charge if migration failed*/
3362 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3363         struct page *oldpage, struct page *newpage, bool migration_ok)
3364 {
3365         struct page *used, *unused;
3366         struct page_cgroup *pc;
3367
3368         if (!memcg)
3369                 return;
3370         /* blocks rmdir() */
3371         cgroup_exclude_rmdir(&memcg->css);
3372         if (!migration_ok) {
3373                 used = oldpage;
3374                 unused = newpage;
3375         } else {
3376                 used = newpage;
3377                 unused = oldpage;
3378         }
3379         /*
3380          * We disallowed uncharge of pages under migration because mapcount
3381          * of the page goes down to zero, temporarly.
3382          * Clear the flag and check the page should be charged.
3383          */
3384         pc = lookup_page_cgroup(oldpage);
3385         lock_page_cgroup(pc);
3386         ClearPageCgroupMigration(pc);
3387         unlock_page_cgroup(pc);
3388
3389         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3390
3391         /*
3392          * If a page is a file cache, radix-tree replacement is very atomic
3393          * and we can skip this check. When it was an Anon page, its mapcount
3394          * goes down to 0. But because we added MIGRATION flage, it's not
3395          * uncharged yet. There are several case but page->mapcount check
3396          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3397          * check. (see prepare_charge() also)
3398          */
3399         if (PageAnon(used))
3400                 mem_cgroup_uncharge_page(used);
3401         /*
3402          * At migration, we may charge account against cgroup which has no
3403          * tasks.
3404          * So, rmdir()->pre_destroy() can be called while we do this charge.
3405          * In that case, we need to call pre_destroy() again. check it here.
3406          */
3407         cgroup_release_and_wakeup_rmdir(&memcg->css);
3408 }
3409
3410 /*
3411  * At replace page cache, newpage is not under any memcg but it's on
3412  * LRU. So, this function doesn't touch res_counter but handles LRU
3413  * in correct way. Both pages are locked so we cannot race with uncharge.
3414  */
3415 void mem_cgroup_replace_page_cache(struct page *oldpage,
3416                                   struct page *newpage)
3417 {
3418         struct mem_cgroup *memcg;
3419         struct page_cgroup *pc;
3420         struct zone *zone;
3421         enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3422         unsigned long flags;
3423
3424         if (mem_cgroup_disabled())
3425                 return;
3426
3427         pc = lookup_page_cgroup(oldpage);
3428         /* fix accounting on old pages */
3429         lock_page_cgroup(pc);
3430         memcg = pc->mem_cgroup;
3431         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3432         ClearPageCgroupUsed(pc);
3433         unlock_page_cgroup(pc);
3434
3435         if (PageSwapBacked(oldpage))
3436                 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3437
3438         zone = page_zone(newpage);
3439         pc = lookup_page_cgroup(newpage);
3440         /*
3441          * Even if newpage->mapping was NULL before starting replacement,
3442          * the newpage may be on LRU(or pagevec for LRU) already. We lock
3443          * LRU while we overwrite pc->mem_cgroup.
3444          */
3445         spin_lock_irqsave(&zone->lru_lock, flags);
3446         if (PageLRU(newpage))
3447                 del_page_from_lru_list(zone, newpage, page_lru(newpage));
3448         __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3449         if (PageLRU(newpage))
3450                 add_page_to_lru_list(zone, newpage, page_lru(newpage));
3451         spin_unlock_irqrestore(&zone->lru_lock, flags);
3452 }
3453
3454 #ifdef CONFIG_DEBUG_VM
3455 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3456 {
3457         struct page_cgroup *pc;
3458
3459         pc = lookup_page_cgroup(page);
3460         if (likely(pc) && PageCgroupUsed(pc))
3461                 return pc;
3462         return NULL;
3463 }
3464
3465 bool mem_cgroup_bad_page_check(struct page *page)
3466 {
3467         if (mem_cgroup_disabled())
3468                 return false;
3469
3470         return lookup_page_cgroup_used(page) != NULL;
3471 }
3472
3473 void mem_cgroup_print_bad_page(struct page *page)
3474 {
3475         struct page_cgroup *pc;
3476
3477         pc = lookup_page_cgroup_used(page);
3478         if (pc) {
3479                 int ret = -1;
3480                 char *path;
3481
3482                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3483                        pc, pc->flags, pc->mem_cgroup);
3484
3485                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3486                 if (path) {
3487                         rcu_read_lock();
3488                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3489                                                         path, PATH_MAX);
3490                         rcu_read_unlock();
3491                 }
3492
3493                 printk(KERN_CONT "(%s)\n",
3494                                 (ret < 0) ? "cannot get the path" : path);
3495                 kfree(path);
3496         }
3497 }
3498 #endif
3499
3500 static DEFINE_MUTEX(set_limit_mutex);
3501
3502 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3503                                 unsigned long long val)
3504 {
3505         int retry_count;
3506         u64 memswlimit, memlimit;
3507         int ret = 0;
3508         int children = mem_cgroup_count_children(memcg);
3509         u64 curusage, oldusage;
3510         int enlarge;
3511
3512         /*
3513          * For keeping hierarchical_reclaim simple, how long we should retry
3514          * is depends on callers. We set our retry-count to be function
3515          * of # of children which we should visit in this loop.
3516          */
3517         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3518
3519         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3520
3521         enlarge = 0;
3522         while (retry_count) {
3523                 if (signal_pending(current)) {
3524                         ret = -EINTR;
3525                         break;
3526                 }
3527                 /*
3528                  * Rather than hide all in some function, I do this in
3529                  * open coded manner. You see what this really does.
3530                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3531                  */
3532                 mutex_lock(&set_limit_mutex);
3533                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3534                 if (memswlimit < val) {
3535                         ret = -EINVAL;
3536                         mutex_unlock(&set_limit_mutex);
3537                         break;
3538                 }
3539
3540                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3541                 if (memlimit < val)
3542                         enlarge = 1;
3543
3544                 ret = res_counter_set_limit(&memcg->res, val);
3545                 if (!ret) {
3546                         if (memswlimit == val)
3547                                 memcg->memsw_is_minimum = true;
3548                         else
3549                                 memcg->memsw_is_minimum = false;
3550                 }
3551                 mutex_unlock(&set_limit_mutex);
3552
3553                 if (!ret)
3554                         break;
3555
3556                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3557                                    MEM_CGROUP_RECLAIM_SHRINK);
3558                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3559                 /* Usage is reduced ? */
3560                 if (curusage >= oldusage)
3561                         retry_count--;
3562                 else
3563                         oldusage = curusage;
3564         }
3565         if (!ret && enlarge)
3566                 memcg_oom_recover(memcg);
3567
3568         return ret;
3569 }
3570
3571 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3572                                         unsigned long long val)
3573 {
3574         int retry_count;
3575         u64 memlimit, memswlimit, oldusage, curusage;
3576         int children = mem_cgroup_count_children(memcg);
3577         int ret = -EBUSY;
3578         int enlarge = 0;
3579
3580         /* see mem_cgroup_resize_res_limit */
3581         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3582         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3583         while (retry_count) {
3584                 if (signal_pending(current)) {
3585                         ret = -EINTR;
3586                         break;
3587                 }
3588                 /*
3589                  * Rather than hide all in some function, I do this in
3590                  * open coded manner. You see what this really does.
3591                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3592                  */
3593                 mutex_lock(&set_limit_mutex);
3594                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3595                 if (memlimit > val) {
3596                         ret = -EINVAL;
3597                         mutex_unlock(&set_limit_mutex);
3598                         break;
3599                 }
3600                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3601                 if (memswlimit < val)
3602                         enlarge = 1;
3603                 ret = res_counter_set_limit(&memcg->memsw, val);
3604                 if (!ret) {
3605                         if (memlimit == val)
3606                                 memcg->memsw_is_minimum = true;
3607                         else
3608                                 memcg->memsw_is_minimum = false;
3609                 }
3610                 mutex_unlock(&set_limit_mutex);
3611
3612                 if (!ret)
3613                         break;
3614
3615                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3616                                    MEM_CGROUP_RECLAIM_NOSWAP |
3617                                    MEM_CGROUP_RECLAIM_SHRINK);
3618                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3619                 /* Usage is reduced ? */
3620                 if (curusage >= oldusage)
3621                         retry_count--;
3622                 else
3623                         oldusage = curusage;
3624         }
3625         if (!ret && enlarge)
3626                 memcg_oom_recover(memcg);
3627         return ret;
3628 }
3629
3630 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3631                                             gfp_t gfp_mask,
3632                                             unsigned long *total_scanned)
3633 {
3634         unsigned long nr_reclaimed = 0;
3635         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3636         unsigned long reclaimed;
3637         int loop = 0;
3638         struct mem_cgroup_tree_per_zone *mctz;
3639         unsigned long long excess;
3640         unsigned long nr_scanned;
3641
3642         if (order > 0)
3643                 return 0;
3644
3645         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3646         /*
3647          * This loop can run a while, specially if mem_cgroup's continuously
3648          * keep exceeding their soft limit and putting the system under
3649          * pressure
3650          */
3651         do {
3652                 if (next_mz)
3653                         mz = next_mz;
3654                 else
3655                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3656                 if (!mz)
3657                         break;
3658
3659                 nr_scanned = 0;
3660                 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3661                                                     gfp_mask, &nr_scanned);
3662                 nr_reclaimed += reclaimed;
3663                 *total_scanned += nr_scanned;
3664                 spin_lock(&mctz->lock);
3665
3666                 /*
3667                  * If we failed to reclaim anything from this memory cgroup
3668                  * it is time to move on to the next cgroup
3669                  */
3670                 next_mz = NULL;
3671                 if (!reclaimed) {
3672                         do {
3673                                 /*
3674                                  * Loop until we find yet another one.
3675                                  *
3676                                  * By the time we get the soft_limit lock
3677                                  * again, someone might have aded the
3678                                  * group back on the RB tree. Iterate to
3679                                  * make sure we get a different mem.
3680                                  * mem_cgroup_largest_soft_limit_node returns
3681                                  * NULL if no other cgroup is present on
3682                                  * the tree
3683                                  */
3684                                 next_mz =
3685                                 __mem_cgroup_largest_soft_limit_node(mctz);
3686                                 if (next_mz == mz)
3687                                         css_put(&next_mz->mem->css);
3688                                 else /* next_mz == NULL or other memcg */
3689                                         break;
3690                         } while (1);
3691                 }
3692                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3693                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3694                 /*
3695                  * One school of thought says that we should not add
3696                  * back the node to the tree if reclaim returns 0.
3697                  * But our reclaim could return 0, simply because due
3698                  * to priority we are exposing a smaller subset of
3699                  * memory to reclaim from. Consider this as a longer
3700                  * term TODO.
3701                  */
3702                 /* If excess == 0, no tree ops */
3703                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3704                 spin_unlock(&mctz->lock);
3705                 css_put(&mz->mem->css);
3706                 loop++;
3707                 /*
3708                  * Could not reclaim anything and there are no more
3709                  * mem cgroups to try or we seem to be looping without
3710                  * reclaiming anything.
3711                  */
3712                 if (!nr_reclaimed &&
3713                         (next_mz == NULL ||
3714                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3715                         break;
3716         } while (!nr_reclaimed);
3717         if (next_mz)
3718                 css_put(&next_mz->mem->css);
3719         return nr_reclaimed;
3720 }
3721
3722 /*
3723  * This routine traverse page_cgroup in given list and drop them all.
3724  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3725  */
3726 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3727                                 int node, int zid, enum lru_list lru)
3728 {
3729         struct zone *zone;
3730         struct mem_cgroup_per_zone *mz;
3731         struct page_cgroup *pc, *busy;
3732         unsigned long flags, loop;
3733         struct list_head *list;
3734         int ret = 0;
3735
3736         zone = &NODE_DATA(node)->node_zones[zid];
3737         mz = mem_cgroup_zoneinfo(memcg, node, zid);
3738         list = &mz->lruvec.lists[lru];
3739
3740         loop = MEM_CGROUP_ZSTAT(mz, lru);
3741         /* give some margin against EBUSY etc...*/
3742         loop += 256;
3743         busy = NULL;
3744         while (loop--) {
3745                 struct page *page;
3746
3747                 ret = 0;
3748                 spin_lock_irqsave(&zone->lru_lock, flags);
3749                 if (list_empty(list)) {
3750                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3751                         break;
3752                 }
3753                 pc = list_entry(list->prev, struct page_cgroup, lru);
3754                 if (busy == pc) {
3755                         list_move(&pc->lru, list);
3756                         busy = NULL;
3757                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3758                         continue;
3759                 }
3760                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3761
3762                 page = lookup_cgroup_page(pc);
3763
3764                 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3765                 if (ret == -ENOMEM)
3766                         break;
3767
3768                 if (ret == -EBUSY || ret == -EINVAL) {
3769                         /* found lock contention or "pc" is obsolete. */
3770                         busy = pc;
3771                         cond_resched();
3772                 } else
3773                         busy = NULL;
3774         }
3775
3776         if (!ret && !list_empty(list))
3777                 return -EBUSY;
3778         return ret;
3779 }
3780
3781 /*
3782  * make mem_cgroup's charge to be 0 if there is no task.
3783  * This enables deleting this mem_cgroup.
3784  */
3785 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3786 {
3787         int ret;
3788         int node, zid, shrink;
3789         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3790         struct cgroup *cgrp = memcg->css.cgroup;
3791
3792         css_get(&memcg->css);
3793
3794         shrink = 0;
3795         /* should free all ? */
3796         if (free_all)
3797                 goto try_to_free;
3798 move_account:
3799         do {
3800                 ret = -EBUSY;
3801                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3802                         goto out;
3803                 ret = -EINTR;
3804                 if (signal_pending(current))
3805                         goto out;
3806                 /* This is for making all *used* pages to be on LRU. */
3807                 lru_add_drain_all();
3808                 drain_all_stock_sync(memcg);
3809                 ret = 0;
3810                 mem_cgroup_start_move(memcg);
3811                 for_each_node_state(node, N_HIGH_MEMORY) {
3812                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3813                                 enum lru_list l;
3814                                 for_each_lru(l) {
3815                                         ret = mem_cgroup_force_empty_list(memcg,
3816                                                         node, zid, l);
3817                                         if (ret)
3818                                                 break;
3819                                 }
3820                         }
3821                         if (ret)
3822                                 break;
3823                 }
3824                 mem_cgroup_end_move(memcg);
3825                 memcg_oom_recover(memcg);
3826                 /* it seems parent cgroup doesn't have enough mem */
3827                 if (ret == -ENOMEM)
3828                         goto try_to_free;
3829                 cond_resched();
3830         /* "ret" should also be checked to ensure all lists are empty. */
3831         } while (memcg->res.usage > 0 || ret);
3832 out:
3833         css_put(&memcg->css);
3834         return ret;
3835
3836 try_to_free:
3837         /* returns EBUSY if there is a task or if we come here twice. */
3838         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3839                 ret = -EBUSY;
3840                 goto out;
3841         }
3842         /* we call try-to-free pages for make this cgroup empty */
3843         lru_add_drain_all();
3844         /* try to free all pages in this cgroup */
3845         shrink = 1;
3846         while (nr_retries && memcg->res.usage > 0) {
3847                 int progress;
3848
3849                 if (signal_pending(current)) {
3850                         ret = -EINTR;
3851                         goto out;
3852                 }
3853                 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3854                                                 false);
3855                 if (!progress) {
3856                         nr_retries--;
3857                         /* maybe some writeback is necessary */
3858                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3859                 }
3860
3861         }
3862         lru_add_drain();
3863         /* try move_account...there may be some *locked* pages. */
3864         goto move_account;
3865 }
3866
3867 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3868 {
3869         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3870 }
3871
3872
3873 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3874 {
3875         return mem_cgroup_from_cont(cont)->use_hierarchy;
3876 }
3877
3878 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3879                                         u64 val)
3880 {
3881         int retval = 0;
3882         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3883         struct cgroup *parent = cont->parent;
3884         struct mem_cgroup *parent_memcg = NULL;
3885
3886         if (parent)
3887                 parent_memcg = mem_cgroup_from_cont(parent);
3888
3889         cgroup_lock();
3890         /*
3891          * If parent's use_hierarchy is set, we can't make any modifications
3892          * in the child subtrees. If it is unset, then the change can
3893          * occur, provided the current cgroup has no children.
3894          *
3895          * For the root cgroup, parent_mem is NULL, we allow value to be
3896          * set if there are no children.
3897          */
3898         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3899                                 (val == 1 || val == 0)) {
3900                 if (list_empty(&cont->children))
3901                         memcg->use_hierarchy = val;
3902                 else
3903                         retval = -EBUSY;
3904         } else
3905                 retval = -EINVAL;
3906         cgroup_unlock();
3907
3908         return retval;
3909 }
3910
3911
3912 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3913                                                enum mem_cgroup_stat_index idx)
3914 {
3915         struct mem_cgroup *iter;
3916         long val = 0;
3917
3918         /* Per-cpu values can be negative, use a signed accumulator */
3919         for_each_mem_cgroup_tree(iter, memcg)
3920                 val += mem_cgroup_read_stat(iter, idx);
3921
3922         if (val < 0) /* race ? */
3923                 val = 0;
3924         return val;
3925 }
3926
3927 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3928 {
3929         u64 val;
3930
3931         if (!mem_cgroup_is_root(memcg)) {
3932                 if (!swap)
3933                         return res_counter_read_u64(&memcg->res, RES_USAGE);
3934                 else
3935                         return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3936         }
3937
3938         val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3939         val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3940
3941         if (swap)
3942                 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3943
3944         return val << PAGE_SHIFT;
3945 }
3946
3947 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3948 {
3949         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3950         u64 val;
3951         int type, name;
3952
3953         type = MEMFILE_TYPE(cft->private);
3954         name = MEMFILE_ATTR(cft->private);
3955         switch (type) {
3956         case _MEM:
3957                 if (name == RES_USAGE)
3958                         val = mem_cgroup_usage(memcg, false);
3959                 else
3960                         val = res_counter_read_u64(&memcg->res, name);
3961                 break;
3962         case _MEMSWAP:
3963                 if (name == RES_USAGE)
3964                         val = mem_cgroup_usage(memcg, true);
3965                 else
3966                         val = res_counter_read_u64(&memcg->memsw, name);
3967                 break;
3968         default:
3969                 BUG();
3970                 break;
3971         }
3972         return val;
3973 }
3974 /*
3975  * The user of this function is...
3976  * RES_LIMIT.
3977  */
3978 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3979                             const char *buffer)
3980 {
3981         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3982         int type, name;
3983         unsigned long long val;
3984         int ret;
3985
3986         type = MEMFILE_TYPE(cft->private);
3987         name = MEMFILE_ATTR(cft->private);
3988         switch (name) {
3989         case RES_LIMIT:
3990                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3991                         ret = -EINVAL;
3992                         break;
3993                 }
3994                 /* This function does all necessary parse...reuse it */
3995                 ret = res_counter_memparse_write_strategy(buffer, &val);
3996                 if (ret)
3997                         break;
3998                 if (type == _MEM)
3999                         ret = mem_cgroup_resize_limit(memcg, val);
4000                 else
4001                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
4002                 break;
4003         case RES_SOFT_LIMIT:
4004                 ret = res_counter_memparse_write_strategy(buffer, &val);
4005                 if (ret)
4006                         break;
4007                 /*
4008                  * For memsw, soft limits are hard to implement in terms
4009                  * of semantics, for now, we support soft limits for
4010                  * control without swap
4011                  */
4012                 if (type == _MEM)
4013                         ret = res_counter_set_soft_limit(&memcg->res, val);
4014                 else
4015                         ret = -EINVAL;
4016                 break;
4017         default:
4018                 ret = -EINVAL; /* should be BUG() ? */
4019                 break;
4020         }
4021         return ret;
4022 }
4023
4024 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4025                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4026 {
4027         struct cgroup *cgroup;
4028         unsigned long long min_limit, min_memsw_limit, tmp;
4029
4030         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4031         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4032         cgroup = memcg->css.cgroup;
4033         if (!memcg->use_hierarchy)
4034                 goto out;
4035
4036         while (cgroup->parent) {
4037                 cgroup = cgroup->parent;
4038                 memcg = mem_cgroup_from_cont(cgroup);
4039                 if (!memcg->use_hierarchy)
4040                         break;
4041                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4042                 min_limit = min(min_limit, tmp);
4043                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4044                 min_memsw_limit = min(min_memsw_limit, tmp);
4045         }
4046 out:
4047         *mem_limit = min_limit;
4048         *memsw_limit = min_memsw_limit;
4049         return;
4050 }
4051
4052 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4053 {
4054         struct mem_cgroup *memcg;
4055         int type, name;
4056
4057         memcg = mem_cgroup_from_cont(cont);
4058         type = MEMFILE_TYPE(event);
4059         name = MEMFILE_ATTR(event);
4060         switch (name) {
4061         case RES_MAX_USAGE:
4062                 if (type == _MEM)
4063                         res_counter_reset_max(&memcg->res);
4064                 else
4065                         res_counter_reset_max(&memcg->memsw);
4066                 break;
4067         case RES_FAILCNT:
4068                 if (type == _MEM)
4069                         res_counter_reset_failcnt(&memcg->res);
4070                 else
4071                         res_counter_reset_failcnt(&memcg->memsw);
4072                 break;
4073         }
4074
4075         return 0;
4076 }
4077
4078 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4079                                         struct cftype *cft)
4080 {
4081         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4082 }
4083
4084 #ifdef CONFIG_MMU
4085 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4086                                         struct cftype *cft, u64 val)
4087 {
4088         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4089
4090         if (val >= (1 << NR_MOVE_TYPE))
4091                 return -EINVAL;
4092         /*
4093          * We check this value several times in both in can_attach() and
4094          * attach(), so we need cgroup lock to prevent this value from being
4095          * inconsistent.
4096          */
4097         cgroup_lock();
4098         memcg->move_charge_at_immigrate = val;
4099         cgroup_unlock();
4100
4101         return 0;
4102 }
4103 #else
4104 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4105                                         struct cftype *cft, u64 val)
4106 {
4107         return -ENOSYS;
4108 }
4109 #endif
4110
4111
4112 /* For read statistics */
4113 enum {
4114         MCS_CACHE,
4115         MCS_RSS,
4116         MCS_FILE_MAPPED,
4117         MCS_PGPGIN,
4118         MCS_PGPGOUT,
4119         MCS_SWAP,
4120         MCS_PGFAULT,
4121         MCS_PGMAJFAULT,
4122         MCS_INACTIVE_ANON,
4123         MCS_ACTIVE_ANON,
4124         MCS_INACTIVE_FILE,
4125         MCS_ACTIVE_FILE,
4126         MCS_UNEVICTABLE,
4127         NR_MCS_STAT,
4128 };
4129
4130 struct mcs_total_stat {
4131         s64 stat[NR_MCS_STAT];
4132 };
4133
4134 struct {
4135         char *local_name;
4136         char *total_name;
4137 } memcg_stat_strings[NR_MCS_STAT] = {
4138         {"cache", "total_cache"},
4139         {"rss", "total_rss"},
4140         {"mapped_file", "total_mapped_file"},
4141         {"pgpgin", "total_pgpgin"},
4142         {"pgpgout", "total_pgpgout"},
4143         {"swap", "total_swap"},
4144         {"pgfault", "total_pgfault"},
4145         {"pgmajfault", "total_pgmajfault"},
4146         {"inactive_anon", "total_inactive_anon"},
4147         {"active_anon", "total_active_anon"},
4148         {"inactive_file", "total_inactive_file"},
4149         {"active_file", "total_active_file"},
4150         {"unevictable", "total_unevictable"}
4151 };
4152
4153
4154 static void
4155 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4156 {
4157         s64 val;
4158
4159         /* per cpu stat */
4160         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4161         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4162         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4163         s->stat[MCS_RSS] += val * PAGE_SIZE;
4164         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4165         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4166         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4167         s->stat[MCS_PGPGIN] += val;
4168         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4169         s->stat[MCS_PGPGOUT] += val;
4170         if (do_swap_account) {
4171                 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4172                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4173         }
4174         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4175         s->stat[MCS_PGFAULT] += val;
4176         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4177         s->stat[MCS_PGMAJFAULT] += val;
4178
4179         /* per zone stat */
4180         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4181         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4182         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4183         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4184         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4185         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4186         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4187         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4188         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4189         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4190 }
4191
4192 static void
4193 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4194 {
4195         struct mem_cgroup *iter;
4196
4197         for_each_mem_cgroup_tree(iter, memcg)
4198                 mem_cgroup_get_local_stat(iter, s);
4199 }
4200
4201 #ifdef CONFIG_NUMA
4202 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4203 {
4204         int nid;
4205         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4206         unsigned long node_nr;
4207         struct cgroup *cont = m->private;
4208         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4209
4210         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4211         seq_printf(m, "total=%lu", total_nr);
4212         for_each_node_state(nid, N_HIGH_MEMORY) {
4213                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4214                 seq_printf(m, " N%d=%lu", nid, node_nr);
4215         }
4216         seq_putc(m, '\n');
4217
4218         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4219         seq_printf(m, "file=%lu", file_nr);
4220         for_each_node_state(nid, N_HIGH_MEMORY) {
4221                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4222                                 LRU_ALL_FILE);
4223                 seq_printf(m, " N%d=%lu", nid, node_nr);
4224         }
4225         seq_putc(m, '\n');
4226
4227         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4228         seq_printf(m, "anon=%lu", anon_nr);
4229         for_each_node_state(nid, N_HIGH_MEMORY) {
4230                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4231                                 LRU_ALL_ANON);
4232                 seq_printf(m, " N%d=%lu", nid, node_nr);
4233         }
4234         seq_putc(m, '\n');
4235
4236         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4237         seq_printf(m, "unevictable=%lu", unevictable_nr);
4238         for_each_node_state(nid, N_HIGH_MEMORY) {
4239                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4240                                 BIT(LRU_UNEVICTABLE));
4241                 seq_printf(m, " N%d=%lu", nid, node_nr);
4242         }
4243         seq_putc(m, '\n');
4244         return 0;
4245 }
4246 #endif /* CONFIG_NUMA */
4247
4248 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4249                                  struct cgroup_map_cb *cb)
4250 {
4251         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4252         struct mcs_total_stat mystat;
4253         int i;
4254
4255         memset(&mystat, 0, sizeof(mystat));
4256         mem_cgroup_get_local_stat(mem_cont, &mystat);
4257
4258
4259         for (i = 0; i < NR_MCS_STAT; i++) {
4260                 if (i == MCS_SWAP && !do_swap_account)
4261                         continue;
4262                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4263         }
4264
4265         /* Hierarchical information */
4266         {
4267                 unsigned long long limit, memsw_limit;
4268                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4269                 cb->fill(cb, "hierarchical_memory_limit", limit);
4270                 if (do_swap_account)
4271                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4272         }
4273
4274         memset(&mystat, 0, sizeof(mystat));
4275         mem_cgroup_get_total_stat(mem_cont, &mystat);
4276         for (i = 0; i < NR_MCS_STAT; i++) {
4277                 if (i == MCS_SWAP && !do_swap_account)
4278                         continue;
4279                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4280         }
4281
4282 #ifdef CONFIG_DEBUG_VM
4283         {
4284                 int nid, zid;
4285                 struct mem_cgroup_per_zone *mz;
4286                 unsigned long recent_rotated[2] = {0, 0};
4287                 unsigned long recent_scanned[2] = {0, 0};
4288
4289                 for_each_online_node(nid)
4290                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4291                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4292
4293                                 recent_rotated[0] +=
4294                                         mz->reclaim_stat.recent_rotated[0];
4295                                 recent_rotated[1] +=
4296                                         mz->reclaim_stat.recent_rotated[1];
4297                                 recent_scanned[0] +=
4298                                         mz->reclaim_stat.recent_scanned[0];
4299                                 recent_scanned[1] +=
4300                                         mz->reclaim_stat.recent_scanned[1];
4301                         }
4302                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4303                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4304                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4305                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4306         }
4307 #endif
4308
4309         return 0;
4310 }
4311
4312 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4313 {
4314         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4315
4316         return mem_cgroup_swappiness(memcg);
4317 }
4318
4319 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4320                                        u64 val)
4321 {
4322         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4323         struct mem_cgroup *parent;
4324
4325         if (val > 100)
4326                 return -EINVAL;
4327
4328         if (cgrp->parent == NULL)
4329                 return -EINVAL;
4330
4331         parent = mem_cgroup_from_cont(cgrp->parent);
4332
4333         cgroup_lock();
4334
4335         /* If under hierarchy, only empty-root can set this value */
4336         if ((parent->use_hierarchy) ||
4337             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4338                 cgroup_unlock();
4339                 return -EINVAL;
4340         }
4341
4342         memcg->swappiness = val;
4343
4344         cgroup_unlock();
4345
4346         return 0;
4347 }
4348
4349 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4350 {
4351         struct mem_cgroup_threshold_ary *t;
4352         u64 usage;
4353         int i;
4354
4355         rcu_read_lock();
4356         if (!swap)
4357                 t = rcu_dereference(memcg->thresholds.primary);
4358         else
4359                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4360
4361         if (!t)
4362                 goto unlock;
4363
4364         usage = mem_cgroup_usage(memcg, swap);
4365
4366         /*
4367          * current_threshold points to threshold just below usage.
4368          * If it's not true, a threshold was crossed after last
4369          * call of __mem_cgroup_threshold().
4370          */
4371         i = t->current_threshold;
4372
4373         /*
4374          * Iterate backward over array of thresholds starting from
4375          * current_threshold and check if a threshold is crossed.
4376          * If none of thresholds below usage is crossed, we read
4377          * only one element of the array here.
4378          */
4379         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4380                 eventfd_signal(t->entries[i].eventfd, 1);
4381
4382         /* i = current_threshold + 1 */
4383         i++;
4384
4385         /*
4386          * Iterate forward over array of thresholds starting from
4387          * current_threshold+1 and check if a threshold is crossed.
4388          * If none of thresholds above usage is crossed, we read
4389          * only one element of the array here.
4390          */
4391         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4392                 eventfd_signal(t->entries[i].eventfd, 1);
4393
4394         /* Update current_threshold */
4395         t->current_threshold = i - 1;
4396 unlock:
4397         rcu_read_unlock();
4398 }
4399
4400 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4401 {
4402         while (memcg) {
4403                 __mem_cgroup_threshold(memcg, false);
4404                 if (do_swap_account)
4405                         __mem_cgroup_threshold(memcg, true);
4406
4407                 memcg = parent_mem_cgroup(memcg);
4408         }
4409 }
4410
4411 static int compare_thresholds(const void *a, const void *b)
4412 {
4413         const struct mem_cgroup_threshold *_a = a;
4414         const struct mem_cgroup_threshold *_b = b;
4415
4416         return _a->threshold - _b->threshold;
4417 }
4418
4419 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4420 {
4421         struct mem_cgroup_eventfd_list *ev;
4422
4423         list_for_each_entry(ev, &memcg->oom_notify, list)
4424                 eventfd_signal(ev->eventfd, 1);
4425         return 0;
4426 }
4427
4428 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4429 {
4430         struct mem_cgroup *iter;
4431
4432         for_each_mem_cgroup_tree(iter, memcg)
4433                 mem_cgroup_oom_notify_cb(iter);
4434 }
4435
4436 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4437         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4438 {
4439         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4440         struct mem_cgroup_thresholds *thresholds;
4441         struct mem_cgroup_threshold_ary *new;
4442         int type = MEMFILE_TYPE(cft->private);
4443         u64 threshold, usage;
4444         int i, size, ret;
4445
4446         ret = res_counter_memparse_write_strategy(args, &threshold);
4447         if (ret)
4448                 return ret;
4449
4450         mutex_lock(&memcg->thresholds_lock);
4451
4452         if (type == _MEM)
4453                 thresholds = &memcg->thresholds;
4454         else if (type == _MEMSWAP)
4455                 thresholds = &memcg->memsw_thresholds;
4456         else
4457                 BUG();
4458
4459         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4460
4461         /* Check if a threshold crossed before adding a new one */
4462         if (thresholds->primary)
4463                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4464
4465         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4466
4467         /* Allocate memory for new array of thresholds */
4468         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4469                         GFP_KERNEL);
4470         if (!new) {
4471                 ret = -ENOMEM;
4472                 goto unlock;
4473         }
4474         new->size = size;
4475
4476         /* Copy thresholds (if any) to new array */
4477         if (thresholds->primary) {
4478                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4479                                 sizeof(struct mem_cgroup_threshold));
4480         }
4481
4482         /* Add new threshold */
4483         new->entries[size - 1].eventfd = eventfd;
4484         new->entries[size - 1].threshold = threshold;
4485
4486         /* Sort thresholds. Registering of new threshold isn't time-critical */
4487         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4488                         compare_thresholds, NULL);
4489
4490         /* Find current threshold */
4491         new->current_threshold = -1;
4492         for (i = 0; i < size; i++) {
4493                 if (new->entries[i].threshold < usage) {
4494                         /*
4495                          * new->current_threshold will not be used until
4496                          * rcu_assign_pointer(), so it's safe to increment
4497                          * it here.
4498                          */
4499                         ++new->current_threshold;
4500                 }
4501         }
4502
4503         /* Free old spare buffer and save old primary buffer as spare */
4504         kfree(thresholds->spare);
4505         thresholds->spare = thresholds->primary;
4506
4507         rcu_assign_pointer(thresholds->primary, new);
4508
4509         /* To be sure that nobody uses thresholds */
4510         synchronize_rcu();
4511
4512 unlock:
4513         mutex_unlock(&memcg->thresholds_lock);
4514
4515         return ret;
4516 }
4517
4518 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4519         struct cftype *cft, struct eventfd_ctx *eventfd)
4520 {
4521         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4522         struct mem_cgroup_thresholds *thresholds;
4523         struct mem_cgroup_threshold_ary *new;
4524         int type = MEMFILE_TYPE(cft->private);
4525         u64 usage;
4526         int i, j, size;
4527
4528         mutex_lock(&memcg->thresholds_lock);
4529         if (type == _MEM)
4530                 thresholds = &memcg->thresholds;
4531         else if (type == _MEMSWAP)
4532                 thresholds = &memcg->memsw_thresholds;
4533         else
4534                 BUG();
4535
4536         /*
4537          * Something went wrong if we trying to unregister a threshold
4538          * if we don't have thresholds
4539          */
4540         BUG_ON(!thresholds);
4541
4542         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4543
4544         /* Check if a threshold crossed before removing */
4545         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4546
4547         /* Calculate new number of threshold */
4548         size = 0;
4549         for (i = 0; i < thresholds->primary->size; i++) {
4550                 if (thresholds->primary->entries[i].eventfd != eventfd)
4551                         size++;
4552         }
4553
4554         new = thresholds->spare;
4555
4556         /* Set thresholds array to NULL if we don't have thresholds */
4557         if (!size) {
4558                 kfree(new);
4559                 new = NULL;
4560                 goto swap_buffers;
4561         }
4562
4563         new->size = size;
4564
4565         /* Copy thresholds and find current threshold */
4566         new->current_threshold = -1;
4567         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4568                 if (thresholds->primary->entries[i].eventfd == eventfd)
4569                         continue;
4570
4571                 new->entries[j] = thresholds->primary->entries[i];
4572                 if (new->entries[j].threshold < usage) {
4573                         /*
4574                          * new->current_threshold will not be used
4575                          * until rcu_assign_pointer(), so it's safe to increment
4576                          * it here.
4577                          */
4578                         ++new->current_threshold;
4579                 }
4580                 j++;
4581         }
4582
4583 swap_buffers:
4584         /* Swap primary and spare array */
4585         thresholds->spare = thresholds->primary;
4586         rcu_assign_pointer(thresholds->primary, new);
4587
4588         /* To be sure that nobody uses thresholds */
4589         synchronize_rcu();
4590
4591         mutex_unlock(&memcg->thresholds_lock);
4592 }
4593
4594 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4595         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4596 {
4597         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4598         struct mem_cgroup_eventfd_list *event;
4599         int type = MEMFILE_TYPE(cft->private);
4600
4601         BUG_ON(type != _OOM_TYPE);
4602         event = kmalloc(sizeof(*event), GFP_KERNEL);
4603         if (!event)
4604                 return -ENOMEM;
4605
4606         spin_lock(&memcg_oom_lock);
4607
4608         event->eventfd = eventfd;
4609         list_add(&event->list, &memcg->oom_notify);
4610
4611         /* already in OOM ? */
4612         if (atomic_read(&memcg->under_oom))
4613                 eventfd_signal(eventfd, 1);
4614         spin_unlock(&memcg_oom_lock);
4615
4616         return 0;
4617 }
4618
4619 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4620         struct cftype *cft, struct eventfd_ctx *eventfd)
4621 {
4622         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4623         struct mem_cgroup_eventfd_list *ev, *tmp;
4624         int type = MEMFILE_TYPE(cft->private);
4625
4626         BUG_ON(type != _OOM_TYPE);
4627
4628         spin_lock(&memcg_oom_lock);
4629
4630         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4631                 if (ev->eventfd == eventfd) {
4632                         list_del(&ev->list);
4633                         kfree(ev);
4634                 }
4635         }
4636
4637         spin_unlock(&memcg_oom_lock);
4638 }
4639
4640 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4641         struct cftype *cft,  struct cgroup_map_cb *cb)
4642 {
4643         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4644
4645         cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4646
4647         if (atomic_read(&memcg->under_oom))
4648                 cb->fill(cb, "under_oom", 1);
4649         else
4650                 cb->fill(cb, "under_oom", 0);
4651         return 0;
4652 }
4653
4654 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4655         struct cftype *cft, u64 val)
4656 {
4657         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4658         struct mem_cgroup *parent;
4659
4660         /* cannot set to root cgroup and only 0 and 1 are allowed */
4661         if (!cgrp->parent || !((val == 0) || (val == 1)))
4662                 return -EINVAL;
4663
4664         parent = mem_cgroup_from_cont(cgrp->parent);
4665
4666         cgroup_lock();
4667         /* oom-kill-disable is a flag for subhierarchy. */
4668         if ((parent->use_hierarchy) ||
4669             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4670                 cgroup_unlock();
4671                 return -EINVAL;
4672         }
4673         memcg->oom_kill_disable = val;
4674         if (!val)
4675                 memcg_oom_recover(memcg);
4676         cgroup_unlock();
4677         return 0;
4678 }
4679
4680 #ifdef CONFIG_NUMA
4681 static const struct file_operations mem_control_numa_stat_file_operations = {
4682         .read = seq_read,
4683         .llseek = seq_lseek,
4684         .release = single_release,
4685 };
4686
4687 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4688 {
4689         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4690
4691         file->f_op = &mem_control_numa_stat_file_operations;
4692         return single_open(file, mem_control_numa_stat_show, cont);
4693 }
4694 #endif /* CONFIG_NUMA */
4695
4696 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4697 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4698 {
4699         /*
4700          * Part of this would be better living in a separate allocation
4701          * function, leaving us with just the cgroup tree population work.
4702          * We, however, depend on state such as network's proto_list that
4703          * is only initialized after cgroup creation. I found the less
4704          * cumbersome way to deal with it to defer it all to populate time
4705          */
4706         return mem_cgroup_sockets_init(cont, ss);
4707 };
4708
4709 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4710                                 struct cgroup *cont)
4711 {
4712         mem_cgroup_sockets_destroy(cont, ss);
4713 }
4714 #else
4715 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716 {
4717         return 0;
4718 }
4719
4720 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4721                                 struct cgroup *cont)
4722 {
4723 }
4724 #endif
4725
4726 static struct cftype mem_cgroup_files[] = {
4727         {
4728                 .name = "usage_in_bytes",
4729                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4730                 .read_u64 = mem_cgroup_read,
4731                 .register_event = mem_cgroup_usage_register_event,
4732                 .unregister_event = mem_cgroup_usage_unregister_event,
4733         },
4734         {
4735                 .name = "max_usage_in_bytes",
4736                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4737                 .trigger = mem_cgroup_reset,
4738                 .read_u64 = mem_cgroup_read,
4739         },
4740         {
4741                 .name = "limit_in_bytes",
4742                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4743                 .write_string = mem_cgroup_write,
4744                 .read_u64 = mem_cgroup_read,
4745         },
4746         {
4747                 .name = "soft_limit_in_bytes",
4748                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4749                 .write_string = mem_cgroup_write,
4750                 .read_u64 = mem_cgroup_read,
4751         },
4752         {
4753                 .name = "failcnt",
4754                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4755                 .trigger = mem_cgroup_reset,
4756                 .read_u64 = mem_cgroup_read,
4757         },
4758         {
4759                 .name = "stat",
4760                 .read_map = mem_control_stat_show,
4761         },
4762         {
4763                 .name = "force_empty",
4764                 .trigger = mem_cgroup_force_empty_write,
4765         },
4766         {
4767                 .name = "use_hierarchy",
4768                 .write_u64 = mem_cgroup_hierarchy_write,
4769                 .read_u64 = mem_cgroup_hierarchy_read,
4770         },
4771         {
4772                 .name = "swappiness",
4773                 .read_u64 = mem_cgroup_swappiness_read,
4774                 .write_u64 = mem_cgroup_swappiness_write,
4775         },
4776         {
4777                 .name = "move_charge_at_immigrate",
4778                 .read_u64 = mem_cgroup_move_charge_read,
4779                 .write_u64 = mem_cgroup_move_charge_write,
4780         },
4781         {
4782                 .name = "oom_control",
4783                 .read_map = mem_cgroup_oom_control_read,
4784                 .write_u64 = mem_cgroup_oom_control_write,
4785                 .register_event = mem_cgroup_oom_register_event,
4786                 .unregister_event = mem_cgroup_oom_unregister_event,
4787                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4788         },
4789 #ifdef CONFIG_NUMA
4790         {
4791                 .name = "numa_stat",
4792                 .open = mem_control_numa_stat_open,
4793                 .mode = S_IRUGO,
4794         },
4795 #endif
4796 };
4797
4798 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4799 static struct cftype memsw_cgroup_files[] = {
4800         {
4801                 .name = "memsw.usage_in_bytes",
4802                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4803                 .read_u64 = mem_cgroup_read,
4804                 .register_event = mem_cgroup_usage_register_event,
4805                 .unregister_event = mem_cgroup_usage_unregister_event,
4806         },
4807         {
4808                 .name = "memsw.max_usage_in_bytes",
4809                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4810                 .trigger = mem_cgroup_reset,
4811                 .read_u64 = mem_cgroup_read,
4812         },
4813         {
4814                 .name = "memsw.limit_in_bytes",
4815                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4816                 .write_string = mem_cgroup_write,
4817                 .read_u64 = mem_cgroup_read,
4818         },
4819         {
4820                 .name = "memsw.failcnt",
4821                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4822                 .trigger = mem_cgroup_reset,
4823                 .read_u64 = mem_cgroup_read,
4824         },
4825 };
4826
4827 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4828 {
4829         if (!do_swap_account)
4830                 return 0;
4831         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4832                                 ARRAY_SIZE(memsw_cgroup_files));
4833 };
4834 #else
4835 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4836 {
4837         return 0;
4838 }
4839 #endif
4840
4841 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4842 {
4843         struct mem_cgroup_per_node *pn;
4844         struct mem_cgroup_per_zone *mz;
4845         enum lru_list l;
4846         int zone, tmp = node;
4847         /*
4848          * This routine is called against possible nodes.
4849          * But it's BUG to call kmalloc() against offline node.
4850          *
4851          * TODO: this routine can waste much memory for nodes which will
4852          *       never be onlined. It's better to use memory hotplug callback
4853          *       function.
4854          */
4855         if (!node_state(node, N_NORMAL_MEMORY))
4856                 tmp = -1;
4857         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4858         if (!pn)
4859                 return 1;
4860
4861         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4862                 mz = &pn->zoneinfo[zone];
4863                 for_each_lru(l)
4864                         INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4865                 mz->usage_in_excess = 0;
4866                 mz->on_tree = false;
4867                 mz->mem = memcg;
4868         }
4869         memcg->info.nodeinfo[node] = pn;
4870         return 0;
4871 }
4872
4873 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4874 {
4875         kfree(memcg->info.nodeinfo[node]);
4876 }
4877
4878 static struct mem_cgroup *mem_cgroup_alloc(void)
4879 {
4880         struct mem_cgroup *mem;
4881         int size = sizeof(struct mem_cgroup);
4882
4883         /* Can be very big if MAX_NUMNODES is very big */
4884         if (size < PAGE_SIZE)
4885                 mem = kzalloc(size, GFP_KERNEL);
4886         else
4887                 mem = vzalloc(size);
4888
4889         if (!mem)
4890                 return NULL;
4891
4892         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4893         if (!mem->stat)
4894                 goto out_free;
4895         spin_lock_init(&mem->pcp_counter_lock);
4896         return mem;
4897
4898 out_free:
4899         if (size < PAGE_SIZE)
4900                 kfree(mem);
4901         else
4902                 vfree(mem);
4903         return NULL;
4904 }
4905
4906 /*
4907  * At destroying mem_cgroup, references from swap_cgroup can remain.
4908  * (scanning all at force_empty is too costly...)
4909  *
4910  * Instead of clearing all references at force_empty, we remember
4911  * the number of reference from swap_cgroup and free mem_cgroup when
4912  * it goes down to 0.
4913  *
4914  * Removal of cgroup itself succeeds regardless of refs from swap.
4915  */
4916
4917 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4918 {
4919         int node;
4920
4921         mem_cgroup_remove_from_trees(memcg);
4922         free_css_id(&mem_cgroup_subsys, &memcg->css);
4923
4924         for_each_node_state(node, N_POSSIBLE)
4925                 free_mem_cgroup_per_zone_info(memcg, node);
4926
4927         free_percpu(memcg->stat);
4928         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4929                 kfree(memcg);
4930         else
4931                 vfree(memcg);
4932 }
4933
4934 static void mem_cgroup_get(struct mem_cgroup *memcg)
4935 {
4936         atomic_inc(&memcg->refcnt);
4937 }
4938
4939 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4940 {
4941         if (atomic_sub_and_test(count, &memcg->refcnt)) {
4942                 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4943                 __mem_cgroup_free(memcg);
4944                 if (parent)
4945                         mem_cgroup_put(parent);
4946         }
4947 }
4948
4949 static void mem_cgroup_put(struct mem_cgroup *memcg)
4950 {
4951         __mem_cgroup_put(memcg, 1);
4952 }
4953
4954 /*
4955  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4956  */
4957 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4958 {
4959         if (!memcg->res.parent)
4960                 return NULL;
4961         return mem_cgroup_from_res_counter(memcg->res.parent, res);
4962 }
4963 EXPORT_SYMBOL(parent_mem_cgroup);
4964
4965 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4966 static void __init enable_swap_cgroup(void)
4967 {
4968         if (!mem_cgroup_disabled() && really_do_swap_account)
4969                 do_swap_account = 1;
4970 }
4971 #else
4972 static void __init enable_swap_cgroup(void)
4973 {
4974 }
4975 #endif
4976
4977 static int mem_cgroup_soft_limit_tree_init(void)
4978 {
4979         struct mem_cgroup_tree_per_node *rtpn;
4980         struct mem_cgroup_tree_per_zone *rtpz;
4981         int tmp, node, zone;
4982
4983         for_each_node_state(node, N_POSSIBLE) {
4984                 tmp = node;
4985                 if (!node_state(node, N_NORMAL_MEMORY))
4986                         tmp = -1;
4987                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4988                 if (!rtpn)
4989                         return 1;
4990
4991                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4992
4993                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4994                         rtpz = &rtpn->rb_tree_per_zone[zone];
4995                         rtpz->rb_root = RB_ROOT;
4996                         spin_lock_init(&rtpz->lock);
4997                 }
4998         }
4999         return 0;
5000 }
5001
5002 static struct cgroup_subsys_state * __ref
5003 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5004 {
5005         struct mem_cgroup *memcg, *parent;
5006         long error = -ENOMEM;
5007         int node;
5008
5009         memcg = mem_cgroup_alloc();
5010         if (!memcg)
5011                 return ERR_PTR(error);
5012
5013         for_each_node_state(node, N_POSSIBLE)
5014                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5015                         goto free_out;
5016
5017         /* root ? */
5018         if (cont->parent == NULL) {
5019                 int cpu;
5020                 enable_swap_cgroup();
5021                 parent = NULL;
5022                 if (mem_cgroup_soft_limit_tree_init())
5023                         goto free_out;
5024                 root_mem_cgroup = memcg;
5025                 for_each_possible_cpu(cpu) {
5026                         struct memcg_stock_pcp *stock =
5027                                                 &per_cpu(memcg_stock, cpu);
5028                         INIT_WORK(&stock->work, drain_local_stock);
5029                 }
5030                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5031         } else {
5032                 parent = mem_cgroup_from_cont(cont->parent);
5033                 memcg->use_hierarchy = parent->use_hierarchy;
5034                 memcg->oom_kill_disable = parent->oom_kill_disable;
5035         }
5036
5037         if (parent && parent->use_hierarchy) {
5038                 res_counter_init(&memcg->res, &parent->res);
5039                 res_counter_init(&memcg->memsw, &parent->memsw);
5040                 /*
5041                  * We increment refcnt of the parent to ensure that we can
5042                  * safely access it on res_counter_charge/uncharge.
5043                  * This refcnt will be decremented when freeing this
5044                  * mem_cgroup(see mem_cgroup_put).
5045                  */
5046                 mem_cgroup_get(parent);
5047         } else {
5048                 res_counter_init(&memcg->res, NULL);
5049                 res_counter_init(&memcg->memsw, NULL);
5050         }
5051         memcg->last_scanned_node = MAX_NUMNODES;
5052         INIT_LIST_HEAD(&memcg->oom_notify);
5053
5054         if (parent)
5055                 memcg->swappiness = mem_cgroup_swappiness(parent);
5056         atomic_set(&memcg->refcnt, 1);
5057         memcg->move_charge_at_immigrate = 0;
5058         mutex_init(&memcg->thresholds_lock);
5059         return &memcg->css;
5060 free_out:
5061         __mem_cgroup_free(memcg);
5062         return ERR_PTR(error);
5063 }
5064
5065 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5066                                         struct cgroup *cont)
5067 {
5068         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5069
5070         return mem_cgroup_force_empty(memcg, false);
5071 }
5072
5073 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5074                                 struct cgroup *cont)
5075 {
5076         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5077
5078         kmem_cgroup_destroy(ss, cont);
5079
5080         mem_cgroup_put(memcg);
5081 }
5082
5083 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5084                                 struct cgroup *cont)
5085 {
5086         int ret;
5087
5088         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5089                                 ARRAY_SIZE(mem_cgroup_files));
5090
5091         if (!ret)
5092                 ret = register_memsw_files(cont, ss);
5093
5094         if (!ret)
5095                 ret = register_kmem_files(cont, ss);
5096
5097         return ret;
5098 }
5099
5100 #ifdef CONFIG_MMU
5101 /* Handlers for move charge at task migration. */
5102 #define PRECHARGE_COUNT_AT_ONCE 256
5103 static int mem_cgroup_do_precharge(unsigned long count)
5104 {
5105         int ret = 0;
5106         int batch_count = PRECHARGE_COUNT_AT_ONCE;
5107         struct mem_cgroup *memcg = mc.to;
5108
5109         if (mem_cgroup_is_root(memcg)) {
5110                 mc.precharge += count;
5111                 /* we don't need css_get for root */
5112                 return ret;
5113         }
5114         /* try to charge at once */
5115         if (count > 1) {
5116                 struct res_counter *dummy;
5117                 /*
5118                  * "memcg" cannot be under rmdir() because we've already checked
5119                  * by cgroup_lock_live_cgroup() that it is not removed and we
5120                  * are still under the same cgroup_mutex. So we can postpone
5121                  * css_get().
5122                  */
5123                 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5124                         goto one_by_one;
5125                 if (do_swap_account && res_counter_charge(&memcg->memsw,
5126                                                 PAGE_SIZE * count, &dummy)) {
5127                         res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5128                         goto one_by_one;
5129                 }
5130                 mc.precharge += count;
5131                 return ret;
5132         }
5133 one_by_one:
5134         /* fall back to one by one charge */
5135         while (count--) {
5136                 if (signal_pending(current)) {
5137                         ret = -EINTR;
5138                         break;
5139                 }
5140                 if (!batch_count--) {
5141                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5142                         cond_resched();
5143                 }
5144                 ret = __mem_cgroup_try_charge(NULL,
5145                                         GFP_KERNEL, 1, &memcg, false);
5146                 if (ret || !memcg)
5147                         /* mem_cgroup_clear_mc() will do uncharge later */
5148                         return -ENOMEM;
5149                 mc.precharge++;
5150         }
5151         return ret;
5152 }
5153
5154 /**
5155  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5156  * @vma: the vma the pte to be checked belongs
5157  * @addr: the address corresponding to the pte to be checked
5158  * @ptent: the pte to be checked
5159  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5160  *
5161  * Returns
5162  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5163  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5164  *     move charge. if @target is not NULL, the page is stored in target->page
5165  *     with extra refcnt got(Callers should handle it).
5166  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5167  *     target for charge migration. if @target is not NULL, the entry is stored
5168  *     in target->ent.
5169  *
5170  * Called with pte lock held.
5171  */
5172 union mc_target {
5173         struct page     *page;
5174         swp_entry_t     ent;
5175 };
5176
5177 enum mc_target_type {
5178         MC_TARGET_NONE, /* not used */
5179         MC_TARGET_PAGE,
5180         MC_TARGET_SWAP,
5181 };
5182
5183 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5184                                                 unsigned long addr, pte_t ptent)
5185 {
5186         struct page *page = vm_normal_page(vma, addr, ptent);
5187
5188         if (!page || !page_mapped(page))
5189                 return NULL;
5190         if (PageAnon(page)) {
5191                 /* we don't move shared anon */
5192                 if (!move_anon() || page_mapcount(page) > 2)
5193                         return NULL;
5194         } else if (!move_file())
5195                 /* we ignore mapcount for file pages */
5196                 return NULL;
5197         if (!get_page_unless_zero(page))
5198                 return NULL;
5199
5200         return page;
5201 }
5202
5203 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5204                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5205 {
5206         int usage_count;
5207         struct page *page = NULL;
5208         swp_entry_t ent = pte_to_swp_entry(ptent);
5209
5210         if (!move_anon() || non_swap_entry(ent))
5211                 return NULL;
5212         usage_count = mem_cgroup_count_swap_user(ent, &page);
5213         if (usage_count > 1) { /* we don't move shared anon */
5214                 if (page)
5215                         put_page(page);
5216                 return NULL;
5217         }
5218         if (do_swap_account)
5219                 entry->val = ent.val;
5220
5221         return page;
5222 }
5223
5224 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5225                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5226 {
5227         struct page *page = NULL;
5228         struct inode *inode;
5229         struct address_space *mapping;
5230         pgoff_t pgoff;
5231
5232         if (!vma->vm_file) /* anonymous vma */
5233                 return NULL;
5234         if (!move_file())
5235                 return NULL;
5236
5237         inode = vma->vm_file->f_path.dentry->d_inode;
5238         mapping = vma->vm_file->f_mapping;
5239         if (pte_none(ptent))
5240                 pgoff = linear_page_index(vma, addr);
5241         else /* pte_file(ptent) is true */
5242                 pgoff = pte_to_pgoff(ptent);
5243
5244         /* page is moved even if it's not RSS of this task(page-faulted). */
5245         page = find_get_page(mapping, pgoff);
5246
5247 #ifdef CONFIG_SWAP
5248         /* shmem/tmpfs may report page out on swap: account for that too. */
5249         if (radix_tree_exceptional_entry(page)) {
5250                 swp_entry_t swap = radix_to_swp_entry(page);
5251                 if (do_swap_account)
5252                         *entry = swap;
5253                 page = find_get_page(&swapper_space, swap.val);
5254         }
5255 #endif
5256         return page;
5257 }
5258
5259 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5260                 unsigned long addr, pte_t ptent, union mc_target *target)
5261 {
5262         struct page *page = NULL;
5263         struct page_cgroup *pc;
5264         int ret = 0;
5265         swp_entry_t ent = { .val = 0 };
5266
5267         if (pte_present(ptent))
5268                 page = mc_handle_present_pte(vma, addr, ptent);
5269         else if (is_swap_pte(ptent))
5270                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5271         else if (pte_none(ptent) || pte_file(ptent))
5272                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5273
5274         if (!page && !ent.val)
5275                 return 0;
5276         if (page) {
5277                 pc = lookup_page_cgroup(page);
5278                 /*
5279                  * Do only loose check w/o page_cgroup lock.
5280                  * mem_cgroup_move_account() checks the pc is valid or not under
5281                  * the lock.
5282                  */
5283                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5284                         ret = MC_TARGET_PAGE;
5285                         if (target)
5286                                 target->page = page;
5287                 }
5288                 if (!ret || !target)
5289                         put_page(page);
5290         }
5291         /* There is a swap entry and a page doesn't exist or isn't charged */
5292         if (ent.val && !ret &&
5293                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5294                 ret = MC_TARGET_SWAP;
5295                 if (target)
5296                         target->ent = ent;
5297         }
5298         return ret;
5299 }
5300
5301 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5302                                         unsigned long addr, unsigned long end,
5303                                         struct mm_walk *walk)
5304 {
5305         struct vm_area_struct *vma = walk->private;
5306         pte_t *pte;
5307         spinlock_t *ptl;
5308
5309         split_huge_page_pmd(walk->mm, pmd);
5310
5311         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5312         for (; addr != end; pte++, addr += PAGE_SIZE)
5313                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5314                         mc.precharge++; /* increment precharge temporarily */
5315         pte_unmap_unlock(pte - 1, ptl);
5316         cond_resched();
5317
5318         return 0;
5319 }
5320
5321 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5322 {
5323         unsigned long precharge;
5324         struct vm_area_struct *vma;
5325
5326         down_read(&mm->mmap_sem);
5327         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5328                 struct mm_walk mem_cgroup_count_precharge_walk = {
5329                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5330                         .mm = mm,
5331                         .private = vma,
5332                 };
5333                 if (is_vm_hugetlb_page(vma))
5334                         continue;
5335                 walk_page_range(vma->vm_start, vma->vm_end,
5336                                         &mem_cgroup_count_precharge_walk);
5337         }
5338         up_read(&mm->mmap_sem);
5339
5340         precharge = mc.precharge;
5341         mc.precharge = 0;
5342
5343         return precharge;
5344 }
5345
5346 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5347 {
5348         unsigned long precharge = mem_cgroup_count_precharge(mm);
5349
5350         VM_BUG_ON(mc.moving_task);
5351         mc.moving_task = current;
5352         return mem_cgroup_do_precharge(precharge);
5353 }
5354
5355 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5356 static void __mem_cgroup_clear_mc(void)
5357 {
5358         struct mem_cgroup *from = mc.from;
5359         struct mem_cgroup *to = mc.to;
5360
5361         /* we must uncharge all the leftover precharges from mc.to */
5362         if (mc.precharge) {
5363                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5364                 mc.precharge = 0;
5365         }
5366         /*
5367          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5368          * we must uncharge here.
5369          */
5370         if (mc.moved_charge) {
5371                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5372                 mc.moved_charge = 0;
5373         }
5374         /* we must fixup refcnts and charges */
5375         if (mc.moved_swap) {
5376                 /* uncharge swap account from the old cgroup */
5377                 if (!mem_cgroup_is_root(mc.from))
5378                         res_counter_uncharge(&mc.from->memsw,
5379                                                 PAGE_SIZE * mc.moved_swap);
5380                 __mem_cgroup_put(mc.from, mc.moved_swap);
5381
5382                 if (!mem_cgroup_is_root(mc.to)) {
5383                         /*
5384                          * we charged both to->res and to->memsw, so we should
5385                          * uncharge to->res.
5386                          */
5387                         res_counter_uncharge(&mc.to->res,
5388                                                 PAGE_SIZE * mc.moved_swap);
5389                 }
5390                 /* we've already done mem_cgroup_get(mc.to) */
5391                 mc.moved_swap = 0;
5392         }
5393         memcg_oom_recover(from);
5394         memcg_oom_recover(to);
5395         wake_up_all(&mc.waitq);
5396 }
5397
5398 static void mem_cgroup_clear_mc(void)
5399 {
5400         struct mem_cgroup *from = mc.from;
5401
5402         /*
5403          * we must clear moving_task before waking up waiters at the end of
5404          * task migration.
5405          */
5406         mc.moving_task = NULL;
5407         __mem_cgroup_clear_mc();
5408         spin_lock(&mc.lock);
5409         mc.from = NULL;
5410         mc.to = NULL;
5411         spin_unlock(&mc.lock);
5412         mem_cgroup_end_move(from);
5413 }
5414
5415 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5416                                 struct cgroup *cgroup,
5417                                 struct cgroup_taskset *tset)
5418 {
5419         struct task_struct *p = cgroup_taskset_first(tset);
5420         int ret = 0;
5421         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5422
5423         if (memcg->move_charge_at_immigrate) {
5424                 struct mm_struct *mm;
5425                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5426
5427                 VM_BUG_ON(from == memcg);
5428
5429                 mm = get_task_mm(p);
5430                 if (!mm)
5431                         return 0;
5432                 /* We move charges only when we move a owner of the mm */
5433                 if (mm->owner == p) {
5434                         VM_BUG_ON(mc.from);
5435                         VM_BUG_ON(mc.to);
5436                         VM_BUG_ON(mc.precharge);
5437                         VM_BUG_ON(mc.moved_charge);
5438                         VM_BUG_ON(mc.moved_swap);
5439                         mem_cgroup_start_move(from);
5440                         spin_lock(&mc.lock);
5441                         mc.from = from;
5442                         mc.to = memcg;
5443                         spin_unlock(&mc.lock);
5444                         /* We set mc.moving_task later */
5445
5446                         ret = mem_cgroup_precharge_mc(mm);
5447                         if (ret)
5448                                 mem_cgroup_clear_mc();
5449                 }
5450                 mmput(mm);
5451         }
5452         return ret;
5453 }
5454
5455 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5456                                 struct cgroup *cgroup,
5457                                 struct cgroup_taskset *tset)
5458 {
5459         mem_cgroup_clear_mc();
5460 }
5461
5462 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5463                                 unsigned long addr, unsigned long end,
5464                                 struct mm_walk *walk)
5465 {
5466         int ret = 0;
5467         struct vm_area_struct *vma = walk->private;
5468         pte_t *pte;
5469         spinlock_t *ptl;
5470
5471         split_huge_page_pmd(walk->mm, pmd);
5472 retry:
5473         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5474         for (; addr != end; addr += PAGE_SIZE) {
5475                 pte_t ptent = *(pte++);
5476                 union mc_target target;
5477                 int type;
5478                 struct page *page;
5479                 struct page_cgroup *pc;
5480                 swp_entry_t ent;
5481
5482                 if (!mc.precharge)
5483                         break;
5484
5485                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5486                 switch (type) {
5487                 case MC_TARGET_PAGE:
5488                         page = target.page;
5489                         if (isolate_lru_page(page))
5490                                 goto put;
5491                         pc = lookup_page_cgroup(page);
5492                         if (!mem_cgroup_move_account(page, 1, pc,
5493                                                      mc.from, mc.to, false)) {
5494                                 mc.precharge--;
5495                                 /* we uncharge from mc.from later. */
5496                                 mc.moved_charge++;
5497                         }
5498                         putback_lru_page(page);
5499 put:                    /* is_target_pte_for_mc() gets the page */
5500                         put_page(page);
5501                         break;
5502                 case MC_TARGET_SWAP:
5503                         ent = target.ent;
5504                         if (!mem_cgroup_move_swap_account(ent,
5505                                                 mc.from, mc.to, false)) {
5506                                 mc.precharge--;
5507                                 /* we fixup refcnts and charges later. */
5508                                 mc.moved_swap++;
5509                         }
5510                         break;
5511                 default:
5512                         break;
5513                 }
5514         }
5515         pte_unmap_unlock(pte - 1, ptl);
5516         cond_resched();
5517
5518         if (addr != end) {
5519                 /*
5520                  * We have consumed all precharges we got in can_attach().
5521                  * We try charge one by one, but don't do any additional
5522                  * charges to mc.to if we have failed in charge once in attach()
5523                  * phase.
5524                  */
5525                 ret = mem_cgroup_do_precharge(1);
5526                 if (!ret)
5527                         goto retry;
5528         }
5529
5530         return ret;
5531 }
5532
5533 static void mem_cgroup_move_charge(struct mm_struct *mm)
5534 {
5535         struct vm_area_struct *vma;
5536
5537         lru_add_drain_all();
5538 retry:
5539         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5540                 /*
5541                  * Someone who are holding the mmap_sem might be waiting in
5542                  * waitq. So we cancel all extra charges, wake up all waiters,
5543                  * and retry. Because we cancel precharges, we might not be able
5544                  * to move enough charges, but moving charge is a best-effort
5545                  * feature anyway, so it wouldn't be a big problem.
5546                  */
5547                 __mem_cgroup_clear_mc();
5548                 cond_resched();
5549                 goto retry;
5550         }
5551         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5552                 int ret;
5553                 struct mm_walk mem_cgroup_move_charge_walk = {
5554                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5555                         .mm = mm,
5556                         .private = vma,
5557                 };
5558                 if (is_vm_hugetlb_page(vma))
5559                         continue;
5560                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5561                                                 &mem_cgroup_move_charge_walk);
5562                 if (ret)
5563                         /*
5564                          * means we have consumed all precharges and failed in
5565                          * doing additional charge. Just abandon here.
5566                          */
5567                         break;
5568         }
5569         up_read(&mm->mmap_sem);
5570 }
5571
5572 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5573                                 struct cgroup *cont,
5574                                 struct cgroup_taskset *tset)
5575 {
5576         struct task_struct *p = cgroup_taskset_first(tset);
5577         struct mm_struct *mm = get_task_mm(p);
5578
5579         if (mm) {
5580                 if (mc.to)
5581                         mem_cgroup_move_charge(mm);
5582                 put_swap_token(mm);
5583                 mmput(mm);
5584         }
5585         if (mc.to)
5586                 mem_cgroup_clear_mc();
5587 }
5588 #else   /* !CONFIG_MMU */
5589 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5590                                 struct cgroup *cgroup,
5591                                 struct cgroup_taskset *tset)
5592 {
5593         return 0;
5594 }
5595 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5596                                 struct cgroup *cgroup,
5597                                 struct cgroup_taskset *tset)
5598 {
5599 }
5600 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5601                                 struct cgroup *cont,
5602                                 struct cgroup_taskset *tset)
5603 {
5604 }
5605 #endif
5606
5607 struct cgroup_subsys mem_cgroup_subsys = {
5608         .name = "memory",
5609         .subsys_id = mem_cgroup_subsys_id,
5610         .create = mem_cgroup_create,
5611         .pre_destroy = mem_cgroup_pre_destroy,
5612         .destroy = mem_cgroup_destroy,
5613         .populate = mem_cgroup_populate,
5614         .can_attach = mem_cgroup_can_attach,
5615         .cancel_attach = mem_cgroup_cancel_attach,
5616         .attach = mem_cgroup_move_task,
5617         .early_init = 0,
5618         .use_id = 1,
5619 };
5620
5621 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5622 static int __init enable_swap_account(char *s)
5623 {
5624         /* consider enabled if no parameter or 1 is given */
5625         if (!strcmp(s, "1"))
5626                 really_do_swap_account = 1;
5627         else if (!strcmp(s, "0"))
5628                 really_do_swap_account = 0;
5629         return 1;
5630 }
5631 __setup("swapaccount=", enable_swap_account);
5632
5633 #endif