1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
94 #define do_swap_account 0
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
103 static const char *const mem_cgroup_lru_names[] = {
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event {
143 * memcg which the event belongs to.
145 struct mem_cgroup *memcg;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx *eventfd;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
221 /* for encoding cft->private value on file */
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
241 #define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
244 iter = mem_cgroup_iter(root, iter, NULL))
246 #define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 #ifdef CONFIG_MEMCG_KMEM
266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
276 static DEFINE_IDA(memcg_cache_ida);
277 int memcg_nr_cache_ids;
279 /* Protects memcg_nr_cache_ids */
280 static DECLARE_RWSEM(memcg_cache_ids_sem);
282 void memcg_get_cache_ids(void)
284 down_read(&memcg_cache_ids_sem);
287 void memcg_put_cache_ids(void)
289 up_read(&memcg_cache_ids_sem);
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
302 * increase ours as well if it increases.
304 #define MEMCG_CACHES_MIN_SIZE 4
305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
314 EXPORT_SYMBOL(memcg_kmem_enabled_key);
316 struct workqueue_struct *memcg_kmem_cache_wq;
318 static int memcg_shrinker_map_size;
319 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
329 struct memcg_shrinker_map *new, *old;
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
362 if (mem_cgroup_is_root(memcg))
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
379 if (mem_cgroup_is_root(memcg))
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
387 memcg_free_shrinker_maps(memcg);
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
393 mutex_unlock(&memcg_shrinker_map_mutex);
398 int memcg_expand_shrinker_maps(int new_id)
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
435 set_bit(shrinker_id, map->map);
440 #else /* CONFIG_MEMCG_KMEM */
441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
446 #endif /* CONFIG_MEMCG_KMEM */
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
461 struct mem_cgroup *memcg;
463 memcg = page->mem_cgroup;
465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 memcg = root_mem_cgroup;
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
484 ino_t page_cgroup_ino(struct page *page)
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
494 ino = cgroup_ino(memcg->css.cgroup);
499 static struct mem_cgroup_per_node *
500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
502 int nid = page_to_nid(page);
504 return memcg->nodeinfo[nid];
507 static struct mem_cgroup_tree_per_node *
508 soft_limit_tree_node(int nid)
510 return soft_limit_tree.rb_tree_per_node[nid];
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_from_page(struct page *page)
516 int nid = page_to_nid(page);
518 return soft_limit_tree.rb_tree_per_node[nid];
521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
523 unsigned long new_usage_in_excess)
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
527 struct mem_cgroup_per_node *mz_node;
528 bool rightmost = true;
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
554 mctz->rb_rightmost = &mz->tree_node;
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
570 rb_erase(&mz->tree_node, &mctz->rb_root);
574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
579 spin_lock_irqsave(&mctz->lock, flags);
580 __mem_cgroup_remove_exceeded(mz, mctz);
581 spin_unlock_irqrestore(&mctz->lock, flags);
584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 unsigned long excess = 0;
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
598 unsigned long excess;
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
602 mctz = soft_limit_tree_from_page(page);
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 mz = mem_cgroup_page_nodeinfo(memcg, page);
611 excess = soft_limit_excess(memcg);
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
616 if (excess || mz->on_tree) {
619 spin_lock_irqsave(&mctz->lock, flags);
620 /* if on-tree, remove it */
622 __mem_cgroup_remove_exceeded(mz, mctz);
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
628 spin_unlock_irqrestore(&mctz->lock, flags);
633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
643 mem_cgroup_remove_exceeded(mz, mctz);
647 static struct mem_cgroup_per_node *
648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
650 struct mem_cgroup_per_node *mz;
654 if (!mctz->rb_rightmost)
655 goto done; /* Nothing to reclaim from */
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 if (!soft_limit_excess(mz->memcg) ||
666 !css_tryget_online(&mz->memcg->css))
672 static struct mem_cgroup_per_node *
673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
675 struct mem_cgroup_per_node *mz;
677 spin_lock_irq(&mctz->lock);
678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 spin_unlock_irq(&mctz->lock);
683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
686 return atomic_long_read(&memcg->events[event]);
689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
691 bool compound, int nr_pages)
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
701 if (PageSwapBacked(page))
702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
710 /* pagein of a big page is an event. So, ignore page size */
712 __count_memcg_events(memcg, PGPGIN, 1);
714 __count_memcg_events(memcg, PGPGOUT, 1);
715 nr_pages = -nr_pages; /* for event */
718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
725 unsigned long nr = 0;
728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
731 if (!(BIT(lru) & lru_mask))
733 nr += mem_cgroup_get_lru_size(lruvec, lru);
738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
739 unsigned int lru_mask)
741 unsigned long nr = 0;
744 for_each_node_state(nid, N_MEMORY)
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
752 unsigned long val, next;
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
756 /* from time_after() in jiffies.h */
757 if ((long)(next - val) < 0) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
778 * Check events in order.
781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
783 /* threshold event is triggered in finer grain than soft limit */
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
787 bool do_numainfo __maybe_unused;
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
795 mem_cgroup_threshold(memcg);
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
799 if (unlikely(do_numainfo))
800 atomic_inc(&memcg->numainfo_events);
805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
817 EXPORT_SYMBOL(mem_cgroup_from_task);
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
829 struct mem_cgroup *memcg;
831 if (mem_cgroup_disabled())
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
842 memcg = root_mem_cgroup;
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
848 } while (!css_tryget_online(&memcg->css));
852 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
863 struct mem_cgroup *memcg = page->mem_cgroup;
865 if (mem_cgroup_disabled())
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
874 EXPORT_SYMBOL(get_mem_cgroup_from_page);
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
885 if (css_tryget_online(¤t->active_memcg->css))
886 memcg = current->active_memcg;
890 return get_mem_cgroup_from_mm(current->mm);
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
906 * Reclaimers can specify a node and a priority level in @reclaim to
907 * divide up the memcgs in the hierarchy among all concurrent
908 * reclaimers operating on the same node and priority.
910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
911 struct mem_cgroup *prev,
912 struct mem_cgroup_reclaim_cookie *reclaim)
914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
915 struct cgroup_subsys_state *css = NULL;
916 struct mem_cgroup *memcg = NULL;
917 struct mem_cgroup *pos = NULL;
919 if (mem_cgroup_disabled())
923 root = root_mem_cgroup;
925 if (prev && !reclaim)
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
937 struct mem_cgroup_per_node *mz;
939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
940 iter = &mz->iter[reclaim->priority];
942 if (prev && reclaim->generation != iter->generation)
946 pos = READ_ONCE(iter->position);
947 if (!pos || css_tryget(&pos->css))
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
957 (void)cmpxchg(&iter->position, pos, NULL);
965 css = css_next_descendant_pre(css, &root->css);
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
983 memcg = mem_cgroup_from_css(css);
985 if (css == &root->css)
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
1000 (void)cmpxchg(&iter->position, pos, memcg);
1008 reclaim->generation = iter->generation;
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1025 void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
1038 struct mem_cgroup_per_node *mz;
1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043 for_each_node(nid) {
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1065 * This function must not be called for the root memory cgroup.
1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1070 struct mem_cgroup *iter;
1073 BUG_ON(memcg == root_mem_cgroup);
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1079 css_task_iter_start(&iter->css, 0, &it);
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1084 mem_cgroup_iter_break(memcg, iter);
1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1094 * @pgdat: pgdat of the page
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1102 struct mem_cgroup_per_node *mz;
1103 struct mem_cgroup *memcg;
1104 struct lruvec *lruvec;
1106 if (mem_cgroup_disabled()) {
1107 lruvec = &pgdat->lruvec;
1111 memcg = page->mem_cgroup;
1113 * Swapcache readahead pages are added to the LRU - and
1114 * possibly migrated - before they are charged.
1117 memcg = root_mem_cgroup;
1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
1120 lruvec = &mz->lruvec;
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
1136 * @zid: zone id of the accounted pages
1137 * @nr_pages: positive when adding or negative when removing
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144 int zid, int nr_pages)
1146 struct mem_cgroup_per_node *mz;
1147 unsigned long *lru_size;
1150 if (mem_cgroup_disabled())
1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154 lru_size = &mz->lru_zone_size[zid][lru];
1157 *lru_size += nr_pages;
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
1168 *lru_size += nr_pages;
1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1173 struct mem_cgroup *task_memcg;
1174 struct task_struct *p;
1177 p = find_lock_task_mm(task);
1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1199 * @memcg: the memory cgroup
1201 * Returns the maximum amount of memory @mem can be charged with, in
1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
1210 count = page_counter_read(&memcg->memory);
1211 limit = READ_ONCE(memcg->memory.max);
1213 margin = limit - count;
1215 if (do_memsw_account()) {
1216 count = page_counter_read(&memcg->memsw);
1217 limit = READ_ONCE(memcg->memsw.max);
1219 margin = min(margin, limit - count);
1228 * A routine for checking "mem" is under move_account() or not.
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1243 spin_lock(&mc.lock);
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
1252 spin_unlock(&mc.lock);
1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1258 if (mc.moving_task && current != mc.moving_task) {
1259 if (mem_cgroup_under_move(memcg)) {
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1265 finish_wait(&mc.waitq, &wait);
1272 static const unsigned int memcg1_stats[] = {
1283 static const char *const memcg1_stat_names[] = {
1294 #define K(x) ((x) << (PAGE_SHIFT-10))
1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1303 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1305 struct mem_cgroup *iter;
1311 pr_info("Task in ");
1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 pr_cont(" killed as a result of limit of ");
1315 pr_info("Memory limit reached of cgroup ");
1318 pr_cont_cgroup_path(memcg->css.cgroup);
1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 K((u64)page_counter_read(&memcg->memory)),
1325 K((u64)memcg->memory.max), memcg->memory.failcnt);
1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 K((u64)page_counter_read(&memcg->memsw)),
1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->kmem)),
1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1333 for_each_mem_cgroup_tree(iter, memcg) {
1334 pr_info("Memory cgroup stats for ");
1335 pr_cont_cgroup_path(iter->css.cgroup);
1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1341 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342 K(memcg_page_state(iter, memcg1_stats[i])));
1345 for (i = 0; i < NR_LRU_LISTS; i++)
1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1354 * Return the memory (and swap, if configured) limit for a memcg.
1356 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1360 max = memcg->memory.max;
1361 if (mem_cgroup_swappiness(memcg)) {
1362 unsigned long memsw_max;
1363 unsigned long swap_max;
1365 memsw_max = memcg->memsw.max;
1366 swap_max = memcg->swap.max;
1367 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 max = min(max + swap_max, memsw_max);
1373 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1376 struct oom_control oc = {
1380 .gfp_mask = gfp_mask,
1385 mutex_lock(&oom_lock);
1386 ret = out_of_memory(&oc);
1387 mutex_unlock(&oom_lock);
1391 #if MAX_NUMNODES > 1
1394 * test_mem_cgroup_node_reclaimable
1395 * @memcg: the target memcg
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 int nid, bool noswap)
1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1408 if (noswap || !total_swap_pages)
1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1429 if (!atomic_read(&memcg->numainfo_events))
1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1434 /* make a nodemask where this memcg uses memory from */
1435 memcg->scan_nodes = node_states[N_MEMORY];
1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1457 * Now, we use round-robin. Better algorithm is welcomed.
1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
1466 node = next_node_in(node, memcg->scan_nodes);
1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 * last time it really checked all the LRUs due to rate limiting.
1470 * Fallback to the current node in that case for simplicity.
1472 if (unlikely(node == MAX_NUMNODES))
1473 node = numa_node_id();
1475 memcg->last_scanned_node = node;
1479 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1485 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1488 unsigned long *total_scanned)
1490 struct mem_cgroup *victim = NULL;
1493 unsigned long excess;
1494 unsigned long nr_scanned;
1495 struct mem_cgroup_reclaim_cookie reclaim = {
1500 excess = soft_limit_excess(root_memcg);
1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1508 * If we have not been able to reclaim
1509 * anything, it might because there are
1510 * no reclaimable pages under this hierarchy
1515 * We want to do more targeted reclaim.
1516 * excess >> 2 is not to excessive so as to
1517 * reclaim too much, nor too less that we keep
1518 * coming back to reclaim from this cgroup
1520 if (total >= (excess >> 2) ||
1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527 pgdat, &nr_scanned);
1528 *total_scanned += nr_scanned;
1529 if (!soft_limit_excess(root_memcg))
1532 mem_cgroup_iter_break(root_memcg, victim);
1536 #ifdef CONFIG_LOCKDEP
1537 static struct lockdep_map memcg_oom_lock_dep_map = {
1538 .name = "memcg_oom_lock",
1542 static DEFINE_SPINLOCK(memcg_oom_lock);
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1548 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1550 struct mem_cgroup *iter, *failed = NULL;
1552 spin_lock(&memcg_oom_lock);
1554 for_each_mem_cgroup_tree(iter, memcg) {
1555 if (iter->oom_lock) {
1557 * this subtree of our hierarchy is already locked
1558 * so we cannot give a lock.
1561 mem_cgroup_iter_break(memcg, iter);
1564 iter->oom_lock = true;
1569 * OK, we failed to lock the whole subtree so we have
1570 * to clean up what we set up to the failing subtree
1572 for_each_mem_cgroup_tree(iter, memcg) {
1573 if (iter == failed) {
1574 mem_cgroup_iter_break(memcg, iter);
1577 iter->oom_lock = false;
1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1582 spin_unlock(&memcg_oom_lock);
1587 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1589 struct mem_cgroup *iter;
1591 spin_lock(&memcg_oom_lock);
1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593 for_each_mem_cgroup_tree(iter, memcg)
1594 iter->oom_lock = false;
1595 spin_unlock(&memcg_oom_lock);
1598 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1600 struct mem_cgroup *iter;
1602 spin_lock(&memcg_oom_lock);
1603 for_each_mem_cgroup_tree(iter, memcg)
1605 spin_unlock(&memcg_oom_lock);
1608 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1610 struct mem_cgroup *iter;
1613 * When a new child is created while the hierarchy is under oom,
1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1616 spin_lock(&memcg_oom_lock);
1617 for_each_mem_cgroup_tree(iter, memcg)
1618 if (iter->under_oom > 0)
1620 spin_unlock(&memcg_oom_lock);
1623 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1625 struct oom_wait_info {
1626 struct mem_cgroup *memcg;
1627 wait_queue_entry_t wait;
1630 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1631 unsigned mode, int sync, void *arg)
1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 struct mem_cgroup *oom_wait_memcg;
1635 struct oom_wait_info *oom_wait_info;
1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638 oom_wait_memcg = oom_wait_info->memcg;
1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1643 return autoremove_wake_function(wait, mode, sync, arg);
1646 static void memcg_oom_recover(struct mem_cgroup *memcg)
1649 * For the following lockless ->under_oom test, the only required
1650 * guarantee is that it must see the state asserted by an OOM when
1651 * this function is called as a result of userland actions
1652 * triggered by the notification of the OOM. This is trivially
1653 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 * triggering notification.
1656 if (memcg && memcg->under_oom)
1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1667 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1673 * We are in the middle of the charge context here, so we
1674 * don't want to block when potentially sitting on a callstack
1675 * that holds all kinds of filesystem and mm locks.
1677 * cgroup1 allows disabling the OOM killer and waiting for outside
1678 * handling until the charge can succeed; remember the context and put
1679 * the task to sleep at the end of the page fault when all locks are
1682 * On the other hand, in-kernel OOM killer allows for an async victim
1683 * memory reclaim (oom_reaper) and that means that we are not solely
1684 * relying on the oom victim to make a forward progress and we can
1685 * invoke the oom killer here.
1687 * Please note that mem_cgroup_out_of_memory might fail to find a
1688 * victim and then we have to bail out from the charge path.
1690 if (memcg->oom_kill_disable) {
1691 if (!current->in_user_fault)
1693 css_get(&memcg->css);
1694 current->memcg_in_oom = memcg;
1695 current->memcg_oom_gfp_mask = mask;
1696 current->memcg_oom_order = order;
1701 if (mem_cgroup_out_of_memory(memcg, mask, order))
1704 WARN(1,"Memory cgroup charge failed because of no reclaimable memory! "
1705 "This looks like a misconfiguration or a kernel bug.");
1710 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1711 * @handle: actually kill/wait or just clean up the OOM state
1713 * This has to be called at the end of a page fault if the memcg OOM
1714 * handler was enabled.
1716 * Memcg supports userspace OOM handling where failed allocations must
1717 * sleep on a waitqueue until the userspace task resolves the
1718 * situation. Sleeping directly in the charge context with all kinds
1719 * of locks held is not a good idea, instead we remember an OOM state
1720 * in the task and mem_cgroup_oom_synchronize() has to be called at
1721 * the end of the page fault to complete the OOM handling.
1723 * Returns %true if an ongoing memcg OOM situation was detected and
1724 * completed, %false otherwise.
1726 bool mem_cgroup_oom_synchronize(bool handle)
1728 struct mem_cgroup *memcg = current->memcg_in_oom;
1729 struct oom_wait_info owait;
1732 /* OOM is global, do not handle */
1739 owait.memcg = memcg;
1740 owait.wait.flags = 0;
1741 owait.wait.func = memcg_oom_wake_function;
1742 owait.wait.private = current;
1743 INIT_LIST_HEAD(&owait.wait.entry);
1745 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1746 mem_cgroup_mark_under_oom(memcg);
1748 locked = mem_cgroup_oom_trylock(memcg);
1751 mem_cgroup_oom_notify(memcg);
1753 if (locked && !memcg->oom_kill_disable) {
1754 mem_cgroup_unmark_under_oom(memcg);
1755 finish_wait(&memcg_oom_waitq, &owait.wait);
1756 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1757 current->memcg_oom_order);
1760 mem_cgroup_unmark_under_oom(memcg);
1761 finish_wait(&memcg_oom_waitq, &owait.wait);
1765 mem_cgroup_oom_unlock(memcg);
1767 * There is no guarantee that an OOM-lock contender
1768 * sees the wakeups triggered by the OOM kill
1769 * uncharges. Wake any sleepers explicitely.
1771 memcg_oom_recover(memcg);
1774 current->memcg_in_oom = NULL;
1775 css_put(&memcg->css);
1780 * lock_page_memcg - lock a page->mem_cgroup binding
1783 * This function protects unlocked LRU pages from being moved to
1786 * It ensures lifetime of the returned memcg. Caller is responsible
1787 * for the lifetime of the page; __unlock_page_memcg() is available
1788 * when @page might get freed inside the locked section.
1790 struct mem_cgroup *lock_page_memcg(struct page *page)
1792 struct mem_cgroup *memcg;
1793 unsigned long flags;
1796 * The RCU lock is held throughout the transaction. The fast
1797 * path can get away without acquiring the memcg->move_lock
1798 * because page moving starts with an RCU grace period.
1800 * The RCU lock also protects the memcg from being freed when
1801 * the page state that is going to change is the only thing
1802 * preventing the page itself from being freed. E.g. writeback
1803 * doesn't hold a page reference and relies on PG_writeback to
1804 * keep off truncation, migration and so forth.
1808 if (mem_cgroup_disabled())
1811 memcg = page->mem_cgroup;
1812 if (unlikely(!memcg))
1815 if (atomic_read(&memcg->moving_account) <= 0)
1818 spin_lock_irqsave(&memcg->move_lock, flags);
1819 if (memcg != page->mem_cgroup) {
1820 spin_unlock_irqrestore(&memcg->move_lock, flags);
1825 * When charge migration first begins, we can have locked and
1826 * unlocked page stat updates happening concurrently. Track
1827 * the task who has the lock for unlock_page_memcg().
1829 memcg->move_lock_task = current;
1830 memcg->move_lock_flags = flags;
1834 EXPORT_SYMBOL(lock_page_memcg);
1837 * __unlock_page_memcg - unlock and unpin a memcg
1840 * Unlock and unpin a memcg returned by lock_page_memcg().
1842 void __unlock_page_memcg(struct mem_cgroup *memcg)
1844 if (memcg && memcg->move_lock_task == current) {
1845 unsigned long flags = memcg->move_lock_flags;
1847 memcg->move_lock_task = NULL;
1848 memcg->move_lock_flags = 0;
1850 spin_unlock_irqrestore(&memcg->move_lock, flags);
1857 * unlock_page_memcg - unlock a page->mem_cgroup binding
1860 void unlock_page_memcg(struct page *page)
1862 __unlock_page_memcg(page->mem_cgroup);
1864 EXPORT_SYMBOL(unlock_page_memcg);
1866 struct memcg_stock_pcp {
1867 struct mem_cgroup *cached; /* this never be root cgroup */
1868 unsigned int nr_pages;
1869 struct work_struct work;
1870 unsigned long flags;
1871 #define FLUSHING_CACHED_CHARGE 0
1873 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1874 static DEFINE_MUTEX(percpu_charge_mutex);
1877 * consume_stock: Try to consume stocked charge on this cpu.
1878 * @memcg: memcg to consume from.
1879 * @nr_pages: how many pages to charge.
1881 * The charges will only happen if @memcg matches the current cpu's memcg
1882 * stock, and at least @nr_pages are available in that stock. Failure to
1883 * service an allocation will refill the stock.
1885 * returns true if successful, false otherwise.
1887 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1889 struct memcg_stock_pcp *stock;
1890 unsigned long flags;
1893 if (nr_pages > MEMCG_CHARGE_BATCH)
1896 local_irq_save(flags);
1898 stock = this_cpu_ptr(&memcg_stock);
1899 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1900 stock->nr_pages -= nr_pages;
1904 local_irq_restore(flags);
1910 * Returns stocks cached in percpu and reset cached information.
1912 static void drain_stock(struct memcg_stock_pcp *stock)
1914 struct mem_cgroup *old = stock->cached;
1916 if (stock->nr_pages) {
1917 page_counter_uncharge(&old->memory, stock->nr_pages);
1918 if (do_memsw_account())
1919 page_counter_uncharge(&old->memsw, stock->nr_pages);
1920 css_put_many(&old->css, stock->nr_pages);
1921 stock->nr_pages = 0;
1923 stock->cached = NULL;
1926 static void drain_local_stock(struct work_struct *dummy)
1928 struct memcg_stock_pcp *stock;
1929 unsigned long flags;
1932 * The only protection from memory hotplug vs. drain_stock races is
1933 * that we always operate on local CPU stock here with IRQ disabled
1935 local_irq_save(flags);
1937 stock = this_cpu_ptr(&memcg_stock);
1939 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1941 local_irq_restore(flags);
1945 * Cache charges(val) to local per_cpu area.
1946 * This will be consumed by consume_stock() function, later.
1948 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1950 struct memcg_stock_pcp *stock;
1951 unsigned long flags;
1953 local_irq_save(flags);
1955 stock = this_cpu_ptr(&memcg_stock);
1956 if (stock->cached != memcg) { /* reset if necessary */
1958 stock->cached = memcg;
1960 stock->nr_pages += nr_pages;
1962 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1965 local_irq_restore(flags);
1969 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1970 * of the hierarchy under it.
1972 static void drain_all_stock(struct mem_cgroup *root_memcg)
1976 /* If someone's already draining, avoid adding running more workers. */
1977 if (!mutex_trylock(&percpu_charge_mutex))
1980 * Notify other cpus that system-wide "drain" is running
1981 * We do not care about races with the cpu hotplug because cpu down
1982 * as well as workers from this path always operate on the local
1983 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1986 for_each_online_cpu(cpu) {
1987 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1988 struct mem_cgroup *memcg;
1990 memcg = stock->cached;
1991 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1993 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1994 css_put(&memcg->css);
1997 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1999 drain_local_stock(&stock->work);
2001 schedule_work_on(cpu, &stock->work);
2003 css_put(&memcg->css);
2006 mutex_unlock(&percpu_charge_mutex);
2009 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2011 struct memcg_stock_pcp *stock;
2012 struct mem_cgroup *memcg;
2014 stock = &per_cpu(memcg_stock, cpu);
2017 for_each_mem_cgroup(memcg) {
2020 for (i = 0; i < MEMCG_NR_STAT; i++) {
2024 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2026 atomic_long_add(x, &memcg->stat[i]);
2028 if (i >= NR_VM_NODE_STAT_ITEMS)
2031 for_each_node(nid) {
2032 struct mem_cgroup_per_node *pn;
2034 pn = mem_cgroup_nodeinfo(memcg, nid);
2035 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2037 atomic_long_add(x, &pn->lruvec_stat[i]);
2041 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2044 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2046 atomic_long_add(x, &memcg->events[i]);
2053 static void reclaim_high(struct mem_cgroup *memcg,
2054 unsigned int nr_pages,
2058 if (page_counter_read(&memcg->memory) <= memcg->high)
2060 memcg_memory_event(memcg, MEMCG_HIGH);
2061 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2062 } while ((memcg = parent_mem_cgroup(memcg)));
2065 static void high_work_func(struct work_struct *work)
2067 struct mem_cgroup *memcg;
2069 memcg = container_of(work, struct mem_cgroup, high_work);
2070 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2074 * Scheduled by try_charge() to be executed from the userland return path
2075 * and reclaims memory over the high limit.
2077 void mem_cgroup_handle_over_high(void)
2079 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2080 struct mem_cgroup *memcg;
2082 if (likely(!nr_pages))
2085 memcg = get_mem_cgroup_from_mm(current->mm);
2086 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2087 css_put(&memcg->css);
2088 current->memcg_nr_pages_over_high = 0;
2091 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2092 unsigned int nr_pages)
2094 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2095 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2096 struct mem_cgroup *mem_over_limit;
2097 struct page_counter *counter;
2098 unsigned long nr_reclaimed;
2099 bool may_swap = true;
2100 bool drained = false;
2102 enum oom_status oom_status;
2104 if (mem_cgroup_is_root(memcg))
2107 if (consume_stock(memcg, nr_pages))
2110 if (!do_memsw_account() ||
2111 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2112 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2114 if (do_memsw_account())
2115 page_counter_uncharge(&memcg->memsw, batch);
2116 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2118 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2122 if (batch > nr_pages) {
2128 * Unlike in global OOM situations, memcg is not in a physical
2129 * memory shortage. Allow dying and OOM-killed tasks to
2130 * bypass the last charges so that they can exit quickly and
2131 * free their memory.
2133 if (unlikely(tsk_is_oom_victim(current) ||
2134 fatal_signal_pending(current) ||
2135 current->flags & PF_EXITING))
2139 * Prevent unbounded recursion when reclaim operations need to
2140 * allocate memory. This might exceed the limits temporarily,
2141 * but we prefer facilitating memory reclaim and getting back
2142 * under the limit over triggering OOM kills in these cases.
2144 if (unlikely(current->flags & PF_MEMALLOC))
2147 if (unlikely(task_in_memcg_oom(current)))
2150 if (!gfpflags_allow_blocking(gfp_mask))
2153 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2155 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2156 gfp_mask, may_swap);
2158 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2162 drain_all_stock(mem_over_limit);
2167 if (gfp_mask & __GFP_NORETRY)
2170 * Even though the limit is exceeded at this point, reclaim
2171 * may have been able to free some pages. Retry the charge
2172 * before killing the task.
2174 * Only for regular pages, though: huge pages are rather
2175 * unlikely to succeed so close to the limit, and we fall back
2176 * to regular pages anyway in case of failure.
2178 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2181 * At task move, charge accounts can be doubly counted. So, it's
2182 * better to wait until the end of task_move if something is going on.
2184 if (mem_cgroup_wait_acct_move(mem_over_limit))
2190 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2193 if (gfp_mask & __GFP_NOFAIL)
2196 if (fatal_signal_pending(current))
2199 memcg_memory_event(mem_over_limit, MEMCG_OOM);
2202 * keep retrying as long as the memcg oom killer is able to make
2203 * a forward progress or bypass the charge if the oom killer
2204 * couldn't make any progress.
2206 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2207 get_order(nr_pages * PAGE_SIZE));
2208 switch (oom_status) {
2210 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2219 if (!(gfp_mask & __GFP_NOFAIL))
2223 * The allocation either can't fail or will lead to more memory
2224 * being freed very soon. Allow memory usage go over the limit
2225 * temporarily by force charging it.
2227 page_counter_charge(&memcg->memory, nr_pages);
2228 if (do_memsw_account())
2229 page_counter_charge(&memcg->memsw, nr_pages);
2230 css_get_many(&memcg->css, nr_pages);
2235 css_get_many(&memcg->css, batch);
2236 if (batch > nr_pages)
2237 refill_stock(memcg, batch - nr_pages);
2240 * If the hierarchy is above the normal consumption range, schedule
2241 * reclaim on returning to userland. We can perform reclaim here
2242 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2243 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2244 * not recorded as it most likely matches current's and won't
2245 * change in the meantime. As high limit is checked again before
2246 * reclaim, the cost of mismatch is negligible.
2249 if (page_counter_read(&memcg->memory) > memcg->high) {
2250 /* Don't bother a random interrupted task */
2251 if (in_interrupt()) {
2252 schedule_work(&memcg->high_work);
2255 current->memcg_nr_pages_over_high += batch;
2256 set_notify_resume(current);
2259 } while ((memcg = parent_mem_cgroup(memcg)));
2264 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2266 if (mem_cgroup_is_root(memcg))
2269 page_counter_uncharge(&memcg->memory, nr_pages);
2270 if (do_memsw_account())
2271 page_counter_uncharge(&memcg->memsw, nr_pages);
2273 css_put_many(&memcg->css, nr_pages);
2276 static void lock_page_lru(struct page *page, int *isolated)
2278 struct zone *zone = page_zone(page);
2280 spin_lock_irq(zone_lru_lock(zone));
2281 if (PageLRU(page)) {
2282 struct lruvec *lruvec;
2284 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2286 del_page_from_lru_list(page, lruvec, page_lru(page));
2292 static void unlock_page_lru(struct page *page, int isolated)
2294 struct zone *zone = page_zone(page);
2297 struct lruvec *lruvec;
2299 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2300 VM_BUG_ON_PAGE(PageLRU(page), page);
2302 add_page_to_lru_list(page, lruvec, page_lru(page));
2304 spin_unlock_irq(zone_lru_lock(zone));
2307 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2312 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2315 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2316 * may already be on some other mem_cgroup's LRU. Take care of it.
2319 lock_page_lru(page, &isolated);
2322 * Nobody should be changing or seriously looking at
2323 * page->mem_cgroup at this point:
2325 * - the page is uncharged
2327 * - the page is off-LRU
2329 * - an anonymous fault has exclusive page access, except for
2330 * a locked page table
2332 * - a page cache insertion, a swapin fault, or a migration
2333 * have the page locked
2335 page->mem_cgroup = memcg;
2338 unlock_page_lru(page, isolated);
2341 #ifdef CONFIG_MEMCG_KMEM
2342 static int memcg_alloc_cache_id(void)
2347 id = ida_simple_get(&memcg_cache_ida,
2348 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2352 if (id < memcg_nr_cache_ids)
2356 * There's no space for the new id in memcg_caches arrays,
2357 * so we have to grow them.
2359 down_write(&memcg_cache_ids_sem);
2361 size = 2 * (id + 1);
2362 if (size < MEMCG_CACHES_MIN_SIZE)
2363 size = MEMCG_CACHES_MIN_SIZE;
2364 else if (size > MEMCG_CACHES_MAX_SIZE)
2365 size = MEMCG_CACHES_MAX_SIZE;
2367 err = memcg_update_all_caches(size);
2369 err = memcg_update_all_list_lrus(size);
2371 memcg_nr_cache_ids = size;
2373 up_write(&memcg_cache_ids_sem);
2376 ida_simple_remove(&memcg_cache_ida, id);
2382 static void memcg_free_cache_id(int id)
2384 ida_simple_remove(&memcg_cache_ida, id);
2387 struct memcg_kmem_cache_create_work {
2388 struct mem_cgroup *memcg;
2389 struct kmem_cache *cachep;
2390 struct work_struct work;
2393 static void memcg_kmem_cache_create_func(struct work_struct *w)
2395 struct memcg_kmem_cache_create_work *cw =
2396 container_of(w, struct memcg_kmem_cache_create_work, work);
2397 struct mem_cgroup *memcg = cw->memcg;
2398 struct kmem_cache *cachep = cw->cachep;
2400 memcg_create_kmem_cache(memcg, cachep);
2402 css_put(&memcg->css);
2407 * Enqueue the creation of a per-memcg kmem_cache.
2409 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2410 struct kmem_cache *cachep)
2412 struct memcg_kmem_cache_create_work *cw;
2414 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2418 css_get(&memcg->css);
2421 cw->cachep = cachep;
2422 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2424 queue_work(memcg_kmem_cache_wq, &cw->work);
2427 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2428 struct kmem_cache *cachep)
2431 * We need to stop accounting when we kmalloc, because if the
2432 * corresponding kmalloc cache is not yet created, the first allocation
2433 * in __memcg_schedule_kmem_cache_create will recurse.
2435 * However, it is better to enclose the whole function. Depending on
2436 * the debugging options enabled, INIT_WORK(), for instance, can
2437 * trigger an allocation. This too, will make us recurse. Because at
2438 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2439 * the safest choice is to do it like this, wrapping the whole function.
2441 current->memcg_kmem_skip_account = 1;
2442 __memcg_schedule_kmem_cache_create(memcg, cachep);
2443 current->memcg_kmem_skip_account = 0;
2446 static inline bool memcg_kmem_bypass(void)
2448 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2454 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2455 * @cachep: the original global kmem cache
2457 * Return the kmem_cache we're supposed to use for a slab allocation.
2458 * We try to use the current memcg's version of the cache.
2460 * If the cache does not exist yet, if we are the first user of it, we
2461 * create it asynchronously in a workqueue and let the current allocation
2462 * go through with the original cache.
2464 * This function takes a reference to the cache it returns to assure it
2465 * won't get destroyed while we are working with it. Once the caller is
2466 * done with it, memcg_kmem_put_cache() must be called to release the
2469 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2471 struct mem_cgroup *memcg;
2472 struct kmem_cache *memcg_cachep;
2475 VM_BUG_ON(!is_root_cache(cachep));
2477 if (memcg_kmem_bypass())
2480 if (current->memcg_kmem_skip_account)
2483 memcg = get_mem_cgroup_from_current();
2484 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2488 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2489 if (likely(memcg_cachep))
2490 return memcg_cachep;
2493 * If we are in a safe context (can wait, and not in interrupt
2494 * context), we could be be predictable and return right away.
2495 * This would guarantee that the allocation being performed
2496 * already belongs in the new cache.
2498 * However, there are some clashes that can arrive from locking.
2499 * For instance, because we acquire the slab_mutex while doing
2500 * memcg_create_kmem_cache, this means no further allocation
2501 * could happen with the slab_mutex held. So it's better to
2504 memcg_schedule_kmem_cache_create(memcg, cachep);
2506 css_put(&memcg->css);
2511 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2512 * @cachep: the cache returned by memcg_kmem_get_cache
2514 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2516 if (!is_root_cache(cachep))
2517 css_put(&cachep->memcg_params.memcg->css);
2521 * memcg_kmem_charge_memcg: charge a kmem page
2522 * @page: page to charge
2523 * @gfp: reclaim mode
2524 * @order: allocation order
2525 * @memcg: memory cgroup to charge
2527 * Returns 0 on success, an error code on failure.
2529 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2530 struct mem_cgroup *memcg)
2532 unsigned int nr_pages = 1 << order;
2533 struct page_counter *counter;
2536 ret = try_charge(memcg, gfp, nr_pages);
2540 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2541 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2542 cancel_charge(memcg, nr_pages);
2546 page->mem_cgroup = memcg;
2552 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2553 * @page: page to charge
2554 * @gfp: reclaim mode
2555 * @order: allocation order
2557 * Returns 0 on success, an error code on failure.
2559 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2561 struct mem_cgroup *memcg;
2564 if (memcg_kmem_bypass())
2567 memcg = get_mem_cgroup_from_current();
2568 if (!mem_cgroup_is_root(memcg)) {
2569 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2571 __SetPageKmemcg(page);
2573 css_put(&memcg->css);
2577 * memcg_kmem_uncharge: uncharge a kmem page
2578 * @page: page to uncharge
2579 * @order: allocation order
2581 void memcg_kmem_uncharge(struct page *page, int order)
2583 struct mem_cgroup *memcg = page->mem_cgroup;
2584 unsigned int nr_pages = 1 << order;
2589 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2591 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2592 page_counter_uncharge(&memcg->kmem, nr_pages);
2594 page_counter_uncharge(&memcg->memory, nr_pages);
2595 if (do_memsw_account())
2596 page_counter_uncharge(&memcg->memsw, nr_pages);
2598 page->mem_cgroup = NULL;
2600 /* slab pages do not have PageKmemcg flag set */
2601 if (PageKmemcg(page))
2602 __ClearPageKmemcg(page);
2604 css_put_many(&memcg->css, nr_pages);
2606 #endif /* CONFIG_MEMCG_KMEM */
2608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2611 * Because tail pages are not marked as "used", set it. We're under
2612 * zone_lru_lock and migration entries setup in all page mappings.
2614 void mem_cgroup_split_huge_fixup(struct page *head)
2618 if (mem_cgroup_disabled())
2621 for (i = 1; i < HPAGE_PMD_NR; i++)
2622 head[i].mem_cgroup = head->mem_cgroup;
2624 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2626 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2628 #ifdef CONFIG_MEMCG_SWAP
2630 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2631 * @entry: swap entry to be moved
2632 * @from: mem_cgroup which the entry is moved from
2633 * @to: mem_cgroup which the entry is moved to
2635 * It succeeds only when the swap_cgroup's record for this entry is the same
2636 * as the mem_cgroup's id of @from.
2638 * Returns 0 on success, -EINVAL on failure.
2640 * The caller must have charged to @to, IOW, called page_counter_charge() about
2641 * both res and memsw, and called css_get().
2643 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2644 struct mem_cgroup *from, struct mem_cgroup *to)
2646 unsigned short old_id, new_id;
2648 old_id = mem_cgroup_id(from);
2649 new_id = mem_cgroup_id(to);
2651 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2652 mod_memcg_state(from, MEMCG_SWAP, -1);
2653 mod_memcg_state(to, MEMCG_SWAP, 1);
2659 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2660 struct mem_cgroup *from, struct mem_cgroup *to)
2666 static DEFINE_MUTEX(memcg_max_mutex);
2668 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2669 unsigned long max, bool memsw)
2671 bool enlarge = false;
2672 bool drained = false;
2674 bool limits_invariant;
2675 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2678 if (signal_pending(current)) {
2683 mutex_lock(&memcg_max_mutex);
2685 * Make sure that the new limit (memsw or memory limit) doesn't
2686 * break our basic invariant rule memory.max <= memsw.max.
2688 limits_invariant = memsw ? max >= memcg->memory.max :
2689 max <= memcg->memsw.max;
2690 if (!limits_invariant) {
2691 mutex_unlock(&memcg_max_mutex);
2695 if (max > counter->max)
2697 ret = page_counter_set_max(counter, max);
2698 mutex_unlock(&memcg_max_mutex);
2704 drain_all_stock(memcg);
2709 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2710 GFP_KERNEL, !memsw)) {
2716 if (!ret && enlarge)
2717 memcg_oom_recover(memcg);
2722 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2724 unsigned long *total_scanned)
2726 unsigned long nr_reclaimed = 0;
2727 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2728 unsigned long reclaimed;
2730 struct mem_cgroup_tree_per_node *mctz;
2731 unsigned long excess;
2732 unsigned long nr_scanned;
2737 mctz = soft_limit_tree_node(pgdat->node_id);
2740 * Do not even bother to check the largest node if the root
2741 * is empty. Do it lockless to prevent lock bouncing. Races
2742 * are acceptable as soft limit is best effort anyway.
2744 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2748 * This loop can run a while, specially if mem_cgroup's continuously
2749 * keep exceeding their soft limit and putting the system under
2756 mz = mem_cgroup_largest_soft_limit_node(mctz);
2761 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2762 gfp_mask, &nr_scanned);
2763 nr_reclaimed += reclaimed;
2764 *total_scanned += nr_scanned;
2765 spin_lock_irq(&mctz->lock);
2766 __mem_cgroup_remove_exceeded(mz, mctz);
2769 * If we failed to reclaim anything from this memory cgroup
2770 * it is time to move on to the next cgroup
2774 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2776 excess = soft_limit_excess(mz->memcg);
2778 * One school of thought says that we should not add
2779 * back the node to the tree if reclaim returns 0.
2780 * But our reclaim could return 0, simply because due
2781 * to priority we are exposing a smaller subset of
2782 * memory to reclaim from. Consider this as a longer
2785 /* If excess == 0, no tree ops */
2786 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2787 spin_unlock_irq(&mctz->lock);
2788 css_put(&mz->memcg->css);
2791 * Could not reclaim anything and there are no more
2792 * mem cgroups to try or we seem to be looping without
2793 * reclaiming anything.
2795 if (!nr_reclaimed &&
2797 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2799 } while (!nr_reclaimed);
2801 css_put(&next_mz->memcg->css);
2802 return nr_reclaimed;
2806 * Test whether @memcg has children, dead or alive. Note that this
2807 * function doesn't care whether @memcg has use_hierarchy enabled and
2808 * returns %true if there are child csses according to the cgroup
2809 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2811 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2816 ret = css_next_child(NULL, &memcg->css);
2822 * Reclaims as many pages from the given memcg as possible.
2824 * Caller is responsible for holding css reference for memcg.
2826 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2828 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2830 /* we call try-to-free pages for make this cgroup empty */
2831 lru_add_drain_all();
2833 drain_all_stock(memcg);
2835 /* try to free all pages in this cgroup */
2836 while (nr_retries && page_counter_read(&memcg->memory)) {
2839 if (signal_pending(current))
2842 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2846 /* maybe some writeback is necessary */
2847 congestion_wait(BLK_RW_ASYNC, HZ/10);
2855 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2856 char *buf, size_t nbytes,
2859 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2861 if (mem_cgroup_is_root(memcg))
2863 return mem_cgroup_force_empty(memcg) ?: nbytes;
2866 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2869 return mem_cgroup_from_css(css)->use_hierarchy;
2872 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2873 struct cftype *cft, u64 val)
2876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2877 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2879 if (memcg->use_hierarchy == val)
2883 * If parent's use_hierarchy is set, we can't make any modifications
2884 * in the child subtrees. If it is unset, then the change can
2885 * occur, provided the current cgroup has no children.
2887 * For the root cgroup, parent_mem is NULL, we allow value to be
2888 * set if there are no children.
2890 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2891 (val == 1 || val == 0)) {
2892 if (!memcg_has_children(memcg))
2893 memcg->use_hierarchy = val;
2902 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2904 struct mem_cgroup *iter;
2907 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2909 for_each_mem_cgroup_tree(iter, memcg) {
2910 for (i = 0; i < MEMCG_NR_STAT; i++)
2911 stat[i] += memcg_page_state(iter, i);
2915 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2917 struct mem_cgroup *iter;
2920 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2922 for_each_mem_cgroup_tree(iter, memcg) {
2923 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2924 events[i] += memcg_sum_events(iter, i);
2928 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2930 unsigned long val = 0;
2932 if (mem_cgroup_is_root(memcg)) {
2933 struct mem_cgroup *iter;
2935 for_each_mem_cgroup_tree(iter, memcg) {
2936 val += memcg_page_state(iter, MEMCG_CACHE);
2937 val += memcg_page_state(iter, MEMCG_RSS);
2939 val += memcg_page_state(iter, MEMCG_SWAP);
2943 val = page_counter_read(&memcg->memory);
2945 val = page_counter_read(&memcg->memsw);
2958 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2961 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2962 struct page_counter *counter;
2964 switch (MEMFILE_TYPE(cft->private)) {
2966 counter = &memcg->memory;
2969 counter = &memcg->memsw;
2972 counter = &memcg->kmem;
2975 counter = &memcg->tcpmem;
2981 switch (MEMFILE_ATTR(cft->private)) {
2983 if (counter == &memcg->memory)
2984 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2985 if (counter == &memcg->memsw)
2986 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2987 return (u64)page_counter_read(counter) * PAGE_SIZE;
2989 return (u64)counter->max * PAGE_SIZE;
2991 return (u64)counter->watermark * PAGE_SIZE;
2993 return counter->failcnt;
2994 case RES_SOFT_LIMIT:
2995 return (u64)memcg->soft_limit * PAGE_SIZE;
3001 #ifdef CONFIG_MEMCG_KMEM
3002 static int memcg_online_kmem(struct mem_cgroup *memcg)
3006 if (cgroup_memory_nokmem)
3009 BUG_ON(memcg->kmemcg_id >= 0);
3010 BUG_ON(memcg->kmem_state);
3012 memcg_id = memcg_alloc_cache_id();
3016 static_branch_inc(&memcg_kmem_enabled_key);
3018 * A memory cgroup is considered kmem-online as soon as it gets
3019 * kmemcg_id. Setting the id after enabling static branching will
3020 * guarantee no one starts accounting before all call sites are
3023 memcg->kmemcg_id = memcg_id;
3024 memcg->kmem_state = KMEM_ONLINE;
3025 INIT_LIST_HEAD(&memcg->kmem_caches);
3030 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3032 struct cgroup_subsys_state *css;
3033 struct mem_cgroup *parent, *child;
3036 if (memcg->kmem_state != KMEM_ONLINE)
3039 * Clear the online state before clearing memcg_caches array
3040 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3041 * guarantees that no cache will be created for this cgroup
3042 * after we are done (see memcg_create_kmem_cache()).
3044 memcg->kmem_state = KMEM_ALLOCATED;
3046 memcg_deactivate_kmem_caches(memcg);
3048 kmemcg_id = memcg->kmemcg_id;
3049 BUG_ON(kmemcg_id < 0);
3051 parent = parent_mem_cgroup(memcg);
3053 parent = root_mem_cgroup;
3056 * Change kmemcg_id of this cgroup and all its descendants to the
3057 * parent's id, and then move all entries from this cgroup's list_lrus
3058 * to ones of the parent. After we have finished, all list_lrus
3059 * corresponding to this cgroup are guaranteed to remain empty. The
3060 * ordering is imposed by list_lru_node->lock taken by
3061 * memcg_drain_all_list_lrus().
3063 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3064 css_for_each_descendant_pre(css, &memcg->css) {
3065 child = mem_cgroup_from_css(css);
3066 BUG_ON(child->kmemcg_id != kmemcg_id);
3067 child->kmemcg_id = parent->kmemcg_id;
3068 if (!memcg->use_hierarchy)
3073 memcg_drain_all_list_lrus(kmemcg_id, parent);
3075 memcg_free_cache_id(kmemcg_id);
3078 static void memcg_free_kmem(struct mem_cgroup *memcg)
3080 /* css_alloc() failed, offlining didn't happen */
3081 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3082 memcg_offline_kmem(memcg);
3084 if (memcg->kmem_state == KMEM_ALLOCATED) {
3085 memcg_destroy_kmem_caches(memcg);
3086 static_branch_dec(&memcg_kmem_enabled_key);
3087 WARN_ON(page_counter_read(&memcg->kmem));
3091 static int memcg_online_kmem(struct mem_cgroup *memcg)
3095 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3098 static void memcg_free_kmem(struct mem_cgroup *memcg)
3101 #endif /* CONFIG_MEMCG_KMEM */
3103 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3108 mutex_lock(&memcg_max_mutex);
3109 ret = page_counter_set_max(&memcg->kmem, max);
3110 mutex_unlock(&memcg_max_mutex);
3114 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3118 mutex_lock(&memcg_max_mutex);
3120 ret = page_counter_set_max(&memcg->tcpmem, max);
3124 if (!memcg->tcpmem_active) {
3126 * The active flag needs to be written after the static_key
3127 * update. This is what guarantees that the socket activation
3128 * function is the last one to run. See mem_cgroup_sk_alloc()
3129 * for details, and note that we don't mark any socket as
3130 * belonging to this memcg until that flag is up.
3132 * We need to do this, because static_keys will span multiple
3133 * sites, but we can't control their order. If we mark a socket
3134 * as accounted, but the accounting functions are not patched in
3135 * yet, we'll lose accounting.
3137 * We never race with the readers in mem_cgroup_sk_alloc(),
3138 * because when this value change, the code to process it is not
3141 static_branch_inc(&memcg_sockets_enabled_key);
3142 memcg->tcpmem_active = true;
3145 mutex_unlock(&memcg_max_mutex);
3150 * The user of this function is...
3153 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3154 char *buf, size_t nbytes, loff_t off)
3156 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3157 unsigned long nr_pages;
3160 buf = strstrip(buf);
3161 ret = page_counter_memparse(buf, "-1", &nr_pages);
3165 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3167 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3171 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3173 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3176 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3179 ret = memcg_update_kmem_max(memcg, nr_pages);
3182 ret = memcg_update_tcp_max(memcg, nr_pages);
3186 case RES_SOFT_LIMIT:
3187 memcg->soft_limit = nr_pages;
3191 return ret ?: nbytes;
3194 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3195 size_t nbytes, loff_t off)
3197 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3198 struct page_counter *counter;
3200 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3202 counter = &memcg->memory;
3205 counter = &memcg->memsw;
3208 counter = &memcg->kmem;
3211 counter = &memcg->tcpmem;
3217 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3219 page_counter_reset_watermark(counter);
3222 counter->failcnt = 0;
3231 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3234 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3238 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3239 struct cftype *cft, u64 val)
3241 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3243 if (val & ~MOVE_MASK)
3247 * No kind of locking is needed in here, because ->can_attach() will
3248 * check this value once in the beginning of the process, and then carry
3249 * on with stale data. This means that changes to this value will only
3250 * affect task migrations starting after the change.
3252 memcg->move_charge_at_immigrate = val;
3256 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3257 struct cftype *cft, u64 val)
3264 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3268 unsigned int lru_mask;
3271 static const struct numa_stat stats[] = {
3272 { "total", LRU_ALL },
3273 { "file", LRU_ALL_FILE },
3274 { "anon", LRU_ALL_ANON },
3275 { "unevictable", BIT(LRU_UNEVICTABLE) },
3277 const struct numa_stat *stat;
3280 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3282 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3283 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3284 seq_printf(m, "%s=%lu", stat->name, nr);
3285 for_each_node_state(nid, N_MEMORY) {
3286 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3288 seq_printf(m, " N%d=%lu", nid, nr);
3293 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3294 struct mem_cgroup *iter;
3297 for_each_mem_cgroup_tree(iter, memcg)
3298 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3299 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3300 for_each_node_state(nid, N_MEMORY) {
3302 for_each_mem_cgroup_tree(iter, memcg)
3303 nr += mem_cgroup_node_nr_lru_pages(
3304 iter, nid, stat->lru_mask);
3305 seq_printf(m, " N%d=%lu", nid, nr);
3312 #endif /* CONFIG_NUMA */
3314 /* Universal VM events cgroup1 shows, original sort order */
3315 static const unsigned int memcg1_events[] = {
3322 static const char *const memcg1_event_names[] = {
3329 static int memcg_stat_show(struct seq_file *m, void *v)
3331 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3332 unsigned long memory, memsw;
3333 struct mem_cgroup *mi;
3336 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3337 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3339 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3340 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3342 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3343 memcg_page_state(memcg, memcg1_stats[i]) *
3347 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3348 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3349 memcg_sum_events(memcg, memcg1_events[i]));
3351 for (i = 0; i < NR_LRU_LISTS; i++)
3352 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3353 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3355 /* Hierarchical information */
3356 memory = memsw = PAGE_COUNTER_MAX;
3357 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3358 memory = min(memory, mi->memory.max);
3359 memsw = min(memsw, mi->memsw.max);
3361 seq_printf(m, "hierarchical_memory_limit %llu\n",
3362 (u64)memory * PAGE_SIZE);
3363 if (do_memsw_account())
3364 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3365 (u64)memsw * PAGE_SIZE);
3367 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3368 unsigned long long val = 0;
3370 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3372 for_each_mem_cgroup_tree(mi, memcg)
3373 val += memcg_page_state(mi, memcg1_stats[i]) *
3375 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3378 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3379 unsigned long long val = 0;
3381 for_each_mem_cgroup_tree(mi, memcg)
3382 val += memcg_sum_events(mi, memcg1_events[i]);
3383 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3386 for (i = 0; i < NR_LRU_LISTS; i++) {
3387 unsigned long long val = 0;
3389 for_each_mem_cgroup_tree(mi, memcg)
3390 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3391 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3394 #ifdef CONFIG_DEBUG_VM
3397 struct mem_cgroup_per_node *mz;
3398 struct zone_reclaim_stat *rstat;
3399 unsigned long recent_rotated[2] = {0, 0};
3400 unsigned long recent_scanned[2] = {0, 0};
3402 for_each_online_pgdat(pgdat) {
3403 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3404 rstat = &mz->lruvec.reclaim_stat;
3406 recent_rotated[0] += rstat->recent_rotated[0];
3407 recent_rotated[1] += rstat->recent_rotated[1];
3408 recent_scanned[0] += rstat->recent_scanned[0];
3409 recent_scanned[1] += rstat->recent_scanned[1];
3411 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3412 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3413 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3414 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3421 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3424 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3426 return mem_cgroup_swappiness(memcg);
3429 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3430 struct cftype *cft, u64 val)
3432 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3438 memcg->swappiness = val;
3440 vm_swappiness = val;
3445 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3447 struct mem_cgroup_threshold_ary *t;
3448 unsigned long usage;
3453 t = rcu_dereference(memcg->thresholds.primary);
3455 t = rcu_dereference(memcg->memsw_thresholds.primary);
3460 usage = mem_cgroup_usage(memcg, swap);
3463 * current_threshold points to threshold just below or equal to usage.
3464 * If it's not true, a threshold was crossed after last
3465 * call of __mem_cgroup_threshold().
3467 i = t->current_threshold;
3470 * Iterate backward over array of thresholds starting from
3471 * current_threshold and check if a threshold is crossed.
3472 * If none of thresholds below usage is crossed, we read
3473 * only one element of the array here.
3475 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3476 eventfd_signal(t->entries[i].eventfd, 1);
3478 /* i = current_threshold + 1 */
3482 * Iterate forward over array of thresholds starting from
3483 * current_threshold+1 and check if a threshold is crossed.
3484 * If none of thresholds above usage is crossed, we read
3485 * only one element of the array here.
3487 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3488 eventfd_signal(t->entries[i].eventfd, 1);
3490 /* Update current_threshold */
3491 t->current_threshold = i - 1;
3496 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3499 __mem_cgroup_threshold(memcg, false);
3500 if (do_memsw_account())
3501 __mem_cgroup_threshold(memcg, true);
3503 memcg = parent_mem_cgroup(memcg);
3507 static int compare_thresholds(const void *a, const void *b)
3509 const struct mem_cgroup_threshold *_a = a;
3510 const struct mem_cgroup_threshold *_b = b;
3512 if (_a->threshold > _b->threshold)
3515 if (_a->threshold < _b->threshold)
3521 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3523 struct mem_cgroup_eventfd_list *ev;
3525 spin_lock(&memcg_oom_lock);
3527 list_for_each_entry(ev, &memcg->oom_notify, list)
3528 eventfd_signal(ev->eventfd, 1);
3530 spin_unlock(&memcg_oom_lock);
3534 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3536 struct mem_cgroup *iter;
3538 for_each_mem_cgroup_tree(iter, memcg)
3539 mem_cgroup_oom_notify_cb(iter);
3542 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3543 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3545 struct mem_cgroup_thresholds *thresholds;
3546 struct mem_cgroup_threshold_ary *new;
3547 unsigned long threshold;
3548 unsigned long usage;
3551 ret = page_counter_memparse(args, "-1", &threshold);
3555 mutex_lock(&memcg->thresholds_lock);
3558 thresholds = &memcg->thresholds;
3559 usage = mem_cgroup_usage(memcg, false);
3560 } else if (type == _MEMSWAP) {
3561 thresholds = &memcg->memsw_thresholds;
3562 usage = mem_cgroup_usage(memcg, true);
3566 /* Check if a threshold crossed before adding a new one */
3567 if (thresholds->primary)
3568 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3570 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3572 /* Allocate memory for new array of thresholds */
3573 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3581 /* Copy thresholds (if any) to new array */
3582 if (thresholds->primary) {
3583 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3584 sizeof(struct mem_cgroup_threshold));
3587 /* Add new threshold */
3588 new->entries[size - 1].eventfd = eventfd;
3589 new->entries[size - 1].threshold = threshold;
3591 /* Sort thresholds. Registering of new threshold isn't time-critical */
3592 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3593 compare_thresholds, NULL);
3595 /* Find current threshold */
3596 new->current_threshold = -1;
3597 for (i = 0; i < size; i++) {
3598 if (new->entries[i].threshold <= usage) {
3600 * new->current_threshold will not be used until
3601 * rcu_assign_pointer(), so it's safe to increment
3604 ++new->current_threshold;
3609 /* Free old spare buffer and save old primary buffer as spare */
3610 kfree(thresholds->spare);
3611 thresholds->spare = thresholds->primary;
3613 rcu_assign_pointer(thresholds->primary, new);
3615 /* To be sure that nobody uses thresholds */
3619 mutex_unlock(&memcg->thresholds_lock);
3624 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3625 struct eventfd_ctx *eventfd, const char *args)
3627 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3630 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3631 struct eventfd_ctx *eventfd, const char *args)
3633 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3636 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3637 struct eventfd_ctx *eventfd, enum res_type type)
3639 struct mem_cgroup_thresholds *thresholds;
3640 struct mem_cgroup_threshold_ary *new;
3641 unsigned long usage;
3644 mutex_lock(&memcg->thresholds_lock);
3647 thresholds = &memcg->thresholds;
3648 usage = mem_cgroup_usage(memcg, false);
3649 } else if (type == _MEMSWAP) {
3650 thresholds = &memcg->memsw_thresholds;
3651 usage = mem_cgroup_usage(memcg, true);
3655 if (!thresholds->primary)
3658 /* Check if a threshold crossed before removing */
3659 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3661 /* Calculate new number of threshold */
3663 for (i = 0; i < thresholds->primary->size; i++) {
3664 if (thresholds->primary->entries[i].eventfd != eventfd)
3668 new = thresholds->spare;
3670 /* Set thresholds array to NULL if we don't have thresholds */
3679 /* Copy thresholds and find current threshold */
3680 new->current_threshold = -1;
3681 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3682 if (thresholds->primary->entries[i].eventfd == eventfd)
3685 new->entries[j] = thresholds->primary->entries[i];
3686 if (new->entries[j].threshold <= usage) {
3688 * new->current_threshold will not be used
3689 * until rcu_assign_pointer(), so it's safe to increment
3692 ++new->current_threshold;
3698 /* Swap primary and spare array */
3699 thresholds->spare = thresholds->primary;
3701 rcu_assign_pointer(thresholds->primary, new);
3703 /* To be sure that nobody uses thresholds */
3706 /* If all events are unregistered, free the spare array */
3708 kfree(thresholds->spare);
3709 thresholds->spare = NULL;
3712 mutex_unlock(&memcg->thresholds_lock);
3715 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3716 struct eventfd_ctx *eventfd)
3718 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3721 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3722 struct eventfd_ctx *eventfd)
3724 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3727 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3728 struct eventfd_ctx *eventfd, const char *args)
3730 struct mem_cgroup_eventfd_list *event;
3732 event = kmalloc(sizeof(*event), GFP_KERNEL);
3736 spin_lock(&memcg_oom_lock);
3738 event->eventfd = eventfd;
3739 list_add(&event->list, &memcg->oom_notify);
3741 /* already in OOM ? */
3742 if (memcg->under_oom)
3743 eventfd_signal(eventfd, 1);
3744 spin_unlock(&memcg_oom_lock);
3749 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3750 struct eventfd_ctx *eventfd)
3752 struct mem_cgroup_eventfd_list *ev, *tmp;
3754 spin_lock(&memcg_oom_lock);
3756 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3757 if (ev->eventfd == eventfd) {
3758 list_del(&ev->list);
3763 spin_unlock(&memcg_oom_lock);
3766 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3768 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3770 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3771 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3772 seq_printf(sf, "oom_kill %lu\n",
3773 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3777 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3778 struct cftype *cft, u64 val)
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3782 /* cannot set to root cgroup and only 0 and 1 are allowed */
3783 if (!css->parent || !((val == 0) || (val == 1)))
3786 memcg->oom_kill_disable = val;
3788 memcg_oom_recover(memcg);
3793 #ifdef CONFIG_CGROUP_WRITEBACK
3795 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3797 return wb_domain_init(&memcg->cgwb_domain, gfp);
3800 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3802 wb_domain_exit(&memcg->cgwb_domain);
3805 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3807 wb_domain_size_changed(&memcg->cgwb_domain);
3810 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3812 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3814 if (!memcg->css.parent)
3817 return &memcg->cgwb_domain;
3821 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3822 * @wb: bdi_writeback in question
3823 * @pfilepages: out parameter for number of file pages
3824 * @pheadroom: out parameter for number of allocatable pages according to memcg
3825 * @pdirty: out parameter for number of dirty pages
3826 * @pwriteback: out parameter for number of pages under writeback
3828 * Determine the numbers of file, headroom, dirty, and writeback pages in
3829 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3830 * is a bit more involved.
3832 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3833 * headroom is calculated as the lowest headroom of itself and the
3834 * ancestors. Note that this doesn't consider the actual amount of
3835 * available memory in the system. The caller should further cap
3836 * *@pheadroom accordingly.
3838 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3839 unsigned long *pheadroom, unsigned long *pdirty,
3840 unsigned long *pwriteback)
3842 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3843 struct mem_cgroup *parent;
3845 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3847 /* this should eventually include NR_UNSTABLE_NFS */
3848 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3849 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3850 (1 << LRU_ACTIVE_FILE));
3851 *pheadroom = PAGE_COUNTER_MAX;
3853 while ((parent = parent_mem_cgroup(memcg))) {
3854 unsigned long ceiling = min(memcg->memory.max, memcg->high);
3855 unsigned long used = page_counter_read(&memcg->memory);
3857 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3862 #else /* CONFIG_CGROUP_WRITEBACK */
3864 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3869 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3873 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3877 #endif /* CONFIG_CGROUP_WRITEBACK */
3880 * DO NOT USE IN NEW FILES.
3882 * "cgroup.event_control" implementation.
3884 * This is way over-engineered. It tries to support fully configurable
3885 * events for each user. Such level of flexibility is completely
3886 * unnecessary especially in the light of the planned unified hierarchy.
3888 * Please deprecate this and replace with something simpler if at all
3893 * Unregister event and free resources.
3895 * Gets called from workqueue.
3897 static void memcg_event_remove(struct work_struct *work)
3899 struct mem_cgroup_event *event =
3900 container_of(work, struct mem_cgroup_event, remove);
3901 struct mem_cgroup *memcg = event->memcg;
3903 remove_wait_queue(event->wqh, &event->wait);
3905 event->unregister_event(memcg, event->eventfd);
3907 /* Notify userspace the event is going away. */
3908 eventfd_signal(event->eventfd, 1);
3910 eventfd_ctx_put(event->eventfd);
3912 css_put(&memcg->css);
3916 * Gets called on EPOLLHUP on eventfd when user closes it.
3918 * Called with wqh->lock held and interrupts disabled.
3920 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3921 int sync, void *key)
3923 struct mem_cgroup_event *event =
3924 container_of(wait, struct mem_cgroup_event, wait);
3925 struct mem_cgroup *memcg = event->memcg;
3926 __poll_t flags = key_to_poll(key);
3928 if (flags & EPOLLHUP) {
3930 * If the event has been detached at cgroup removal, we
3931 * can simply return knowing the other side will cleanup
3934 * We can't race against event freeing since the other
3935 * side will require wqh->lock via remove_wait_queue(),
3938 spin_lock(&memcg->event_list_lock);
3939 if (!list_empty(&event->list)) {
3940 list_del_init(&event->list);
3942 * We are in atomic context, but cgroup_event_remove()
3943 * may sleep, so we have to call it in workqueue.
3945 schedule_work(&event->remove);
3947 spin_unlock(&memcg->event_list_lock);
3953 static void memcg_event_ptable_queue_proc(struct file *file,
3954 wait_queue_head_t *wqh, poll_table *pt)
3956 struct mem_cgroup_event *event =
3957 container_of(pt, struct mem_cgroup_event, pt);
3960 add_wait_queue(wqh, &event->wait);
3964 * DO NOT USE IN NEW FILES.
3966 * Parse input and register new cgroup event handler.
3968 * Input must be in format '<event_fd> <control_fd> <args>'.
3969 * Interpretation of args is defined by control file implementation.
3971 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3972 char *buf, size_t nbytes, loff_t off)
3974 struct cgroup_subsys_state *css = of_css(of);
3975 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3976 struct mem_cgroup_event *event;
3977 struct cgroup_subsys_state *cfile_css;
3978 unsigned int efd, cfd;
3985 buf = strstrip(buf);
3987 efd = simple_strtoul(buf, &endp, 10);
3992 cfd = simple_strtoul(buf, &endp, 10);
3993 if ((*endp != ' ') && (*endp != '\0'))
3997 event = kzalloc(sizeof(*event), GFP_KERNEL);
4001 event->memcg = memcg;
4002 INIT_LIST_HEAD(&event->list);
4003 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4004 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4005 INIT_WORK(&event->remove, memcg_event_remove);
4013 event->eventfd = eventfd_ctx_fileget(efile.file);
4014 if (IS_ERR(event->eventfd)) {
4015 ret = PTR_ERR(event->eventfd);
4022 goto out_put_eventfd;
4025 /* the process need read permission on control file */
4026 /* AV: shouldn't we check that it's been opened for read instead? */
4027 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4032 * Determine the event callbacks and set them in @event. This used
4033 * to be done via struct cftype but cgroup core no longer knows
4034 * about these events. The following is crude but the whole thing
4035 * is for compatibility anyway.
4037 * DO NOT ADD NEW FILES.
4039 name = cfile.file->f_path.dentry->d_name.name;
4041 if (!strcmp(name, "memory.usage_in_bytes")) {
4042 event->register_event = mem_cgroup_usage_register_event;
4043 event->unregister_event = mem_cgroup_usage_unregister_event;
4044 } else if (!strcmp(name, "memory.oom_control")) {
4045 event->register_event = mem_cgroup_oom_register_event;
4046 event->unregister_event = mem_cgroup_oom_unregister_event;
4047 } else if (!strcmp(name, "memory.pressure_level")) {
4048 event->register_event = vmpressure_register_event;
4049 event->unregister_event = vmpressure_unregister_event;
4050 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4051 event->register_event = memsw_cgroup_usage_register_event;
4052 event->unregister_event = memsw_cgroup_usage_unregister_event;
4059 * Verify @cfile should belong to @css. Also, remaining events are
4060 * automatically removed on cgroup destruction but the removal is
4061 * asynchronous, so take an extra ref on @css.
4063 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4064 &memory_cgrp_subsys);
4066 if (IS_ERR(cfile_css))
4068 if (cfile_css != css) {
4073 ret = event->register_event(memcg, event->eventfd, buf);
4077 vfs_poll(efile.file, &event->pt);
4079 spin_lock(&memcg->event_list_lock);
4080 list_add(&event->list, &memcg->event_list);
4081 spin_unlock(&memcg->event_list_lock);
4093 eventfd_ctx_put(event->eventfd);
4102 static struct cftype mem_cgroup_legacy_files[] = {
4104 .name = "usage_in_bytes",
4105 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4106 .read_u64 = mem_cgroup_read_u64,
4109 .name = "max_usage_in_bytes",
4110 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4111 .write = mem_cgroup_reset,
4112 .read_u64 = mem_cgroup_read_u64,
4115 .name = "limit_in_bytes",
4116 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4117 .write = mem_cgroup_write,
4118 .read_u64 = mem_cgroup_read_u64,
4121 .name = "soft_limit_in_bytes",
4122 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4123 .write = mem_cgroup_write,
4124 .read_u64 = mem_cgroup_read_u64,
4128 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4129 .write = mem_cgroup_reset,
4130 .read_u64 = mem_cgroup_read_u64,
4134 .seq_show = memcg_stat_show,
4137 .name = "force_empty",
4138 .write = mem_cgroup_force_empty_write,
4141 .name = "use_hierarchy",
4142 .write_u64 = mem_cgroup_hierarchy_write,
4143 .read_u64 = mem_cgroup_hierarchy_read,
4146 .name = "cgroup.event_control", /* XXX: for compat */
4147 .write = memcg_write_event_control,
4148 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4151 .name = "swappiness",
4152 .read_u64 = mem_cgroup_swappiness_read,
4153 .write_u64 = mem_cgroup_swappiness_write,
4156 .name = "move_charge_at_immigrate",
4157 .read_u64 = mem_cgroup_move_charge_read,
4158 .write_u64 = mem_cgroup_move_charge_write,
4161 .name = "oom_control",
4162 .seq_show = mem_cgroup_oom_control_read,
4163 .write_u64 = mem_cgroup_oom_control_write,
4164 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4167 .name = "pressure_level",
4171 .name = "numa_stat",
4172 .seq_show = memcg_numa_stat_show,
4176 .name = "kmem.limit_in_bytes",
4177 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4178 .write = mem_cgroup_write,
4179 .read_u64 = mem_cgroup_read_u64,
4182 .name = "kmem.usage_in_bytes",
4183 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4184 .read_u64 = mem_cgroup_read_u64,
4187 .name = "kmem.failcnt",
4188 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4189 .write = mem_cgroup_reset,
4190 .read_u64 = mem_cgroup_read_u64,
4193 .name = "kmem.max_usage_in_bytes",
4194 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4195 .write = mem_cgroup_reset,
4196 .read_u64 = mem_cgroup_read_u64,
4198 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4200 .name = "kmem.slabinfo",
4201 .seq_start = memcg_slab_start,
4202 .seq_next = memcg_slab_next,
4203 .seq_stop = memcg_slab_stop,
4204 .seq_show = memcg_slab_show,
4208 .name = "kmem.tcp.limit_in_bytes",
4209 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4210 .write = mem_cgroup_write,
4211 .read_u64 = mem_cgroup_read_u64,
4214 .name = "kmem.tcp.usage_in_bytes",
4215 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4216 .read_u64 = mem_cgroup_read_u64,
4219 .name = "kmem.tcp.failcnt",
4220 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4221 .write = mem_cgroup_reset,
4222 .read_u64 = mem_cgroup_read_u64,
4225 .name = "kmem.tcp.max_usage_in_bytes",
4226 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4227 .write = mem_cgroup_reset,
4228 .read_u64 = mem_cgroup_read_u64,
4230 { }, /* terminate */
4234 * Private memory cgroup IDR
4236 * Swap-out records and page cache shadow entries need to store memcg
4237 * references in constrained space, so we maintain an ID space that is
4238 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4239 * memory-controlled cgroups to 64k.
4241 * However, there usually are many references to the oflline CSS after
4242 * the cgroup has been destroyed, such as page cache or reclaimable
4243 * slab objects, that don't need to hang on to the ID. We want to keep
4244 * those dead CSS from occupying IDs, or we might quickly exhaust the
4245 * relatively small ID space and prevent the creation of new cgroups
4246 * even when there are much fewer than 64k cgroups - possibly none.
4248 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4249 * be freed and recycled when it's no longer needed, which is usually
4250 * when the CSS is offlined.
4252 * The only exception to that are records of swapped out tmpfs/shmem
4253 * pages that need to be attributed to live ancestors on swapin. But
4254 * those references are manageable from userspace.
4257 static DEFINE_IDR(mem_cgroup_idr);
4259 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4261 if (memcg->id.id > 0) {
4262 idr_remove(&mem_cgroup_idr, memcg->id.id);
4267 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4269 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4270 atomic_add(n, &memcg->id.ref);
4273 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4275 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4276 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4277 mem_cgroup_id_remove(memcg);
4279 /* Memcg ID pins CSS */
4280 css_put(&memcg->css);
4284 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4286 mem_cgroup_id_get_many(memcg, 1);
4289 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4291 mem_cgroup_id_put_many(memcg, 1);
4295 * mem_cgroup_from_id - look up a memcg from a memcg id
4296 * @id: the memcg id to look up
4298 * Caller must hold rcu_read_lock().
4300 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4302 WARN_ON_ONCE(!rcu_read_lock_held());
4303 return idr_find(&mem_cgroup_idr, id);
4306 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4308 struct mem_cgroup_per_node *pn;
4311 * This routine is called against possible nodes.
4312 * But it's BUG to call kmalloc() against offline node.
4314 * TODO: this routine can waste much memory for nodes which will
4315 * never be onlined. It's better to use memory hotplug callback
4318 if (!node_state(node, N_NORMAL_MEMORY))
4320 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4324 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4325 if (!pn->lruvec_stat_cpu) {
4330 lruvec_init(&pn->lruvec);
4331 pn->usage_in_excess = 0;
4332 pn->on_tree = false;
4335 memcg->nodeinfo[node] = pn;
4339 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4341 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4346 free_percpu(pn->lruvec_stat_cpu);
4350 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4355 free_mem_cgroup_per_node_info(memcg, node);
4356 free_percpu(memcg->stat_cpu);
4360 static void mem_cgroup_free(struct mem_cgroup *memcg)
4362 memcg_wb_domain_exit(memcg);
4363 __mem_cgroup_free(memcg);
4366 static struct mem_cgroup *mem_cgroup_alloc(void)
4368 struct mem_cgroup *memcg;
4372 size = sizeof(struct mem_cgroup);
4373 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4375 memcg = kzalloc(size, GFP_KERNEL);
4379 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4380 1, MEM_CGROUP_ID_MAX,
4382 if (memcg->id.id < 0)
4385 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4386 if (!memcg->stat_cpu)
4390 if (alloc_mem_cgroup_per_node_info(memcg, node))
4393 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4396 INIT_WORK(&memcg->high_work, high_work_func);
4397 memcg->last_scanned_node = MAX_NUMNODES;
4398 INIT_LIST_HEAD(&memcg->oom_notify);
4399 mutex_init(&memcg->thresholds_lock);
4400 spin_lock_init(&memcg->move_lock);
4401 vmpressure_init(&memcg->vmpressure);
4402 INIT_LIST_HEAD(&memcg->event_list);
4403 spin_lock_init(&memcg->event_list_lock);
4404 memcg->socket_pressure = jiffies;
4405 #ifdef CONFIG_MEMCG_KMEM
4406 memcg->kmemcg_id = -1;
4408 #ifdef CONFIG_CGROUP_WRITEBACK
4409 INIT_LIST_HEAD(&memcg->cgwb_list);
4411 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4414 mem_cgroup_id_remove(memcg);
4415 __mem_cgroup_free(memcg);
4419 static struct cgroup_subsys_state * __ref
4420 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4422 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4423 struct mem_cgroup *memcg;
4424 long error = -ENOMEM;
4426 memcg = mem_cgroup_alloc();
4428 return ERR_PTR(error);
4430 memcg->high = PAGE_COUNTER_MAX;
4431 memcg->soft_limit = PAGE_COUNTER_MAX;
4433 memcg->swappiness = mem_cgroup_swappiness(parent);
4434 memcg->oom_kill_disable = parent->oom_kill_disable;
4436 if (parent && parent->use_hierarchy) {
4437 memcg->use_hierarchy = true;
4438 page_counter_init(&memcg->memory, &parent->memory);
4439 page_counter_init(&memcg->swap, &parent->swap);
4440 page_counter_init(&memcg->memsw, &parent->memsw);
4441 page_counter_init(&memcg->kmem, &parent->kmem);
4442 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4444 page_counter_init(&memcg->memory, NULL);
4445 page_counter_init(&memcg->swap, NULL);
4446 page_counter_init(&memcg->memsw, NULL);
4447 page_counter_init(&memcg->kmem, NULL);
4448 page_counter_init(&memcg->tcpmem, NULL);
4450 * Deeper hierachy with use_hierarchy == false doesn't make
4451 * much sense so let cgroup subsystem know about this
4452 * unfortunate state in our controller.
4454 if (parent != root_mem_cgroup)
4455 memory_cgrp_subsys.broken_hierarchy = true;
4458 /* The following stuff does not apply to the root */
4460 root_mem_cgroup = memcg;
4464 error = memcg_online_kmem(memcg);
4468 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4469 static_branch_inc(&memcg_sockets_enabled_key);
4473 mem_cgroup_id_remove(memcg);
4474 mem_cgroup_free(memcg);
4475 return ERR_PTR(-ENOMEM);
4478 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4480 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4483 * A memcg must be visible for memcg_expand_shrinker_maps()
4484 * by the time the maps are allocated. So, we allocate maps
4485 * here, when for_each_mem_cgroup() can't skip it.
4487 if (memcg_alloc_shrinker_maps(memcg)) {
4488 mem_cgroup_id_remove(memcg);
4492 /* Online state pins memcg ID, memcg ID pins CSS */
4493 atomic_set(&memcg->id.ref, 1);
4498 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4500 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4501 struct mem_cgroup_event *event, *tmp;
4504 * Unregister events and notify userspace.
4505 * Notify userspace about cgroup removing only after rmdir of cgroup
4506 * directory to avoid race between userspace and kernelspace.
4508 spin_lock(&memcg->event_list_lock);
4509 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4510 list_del_init(&event->list);
4511 schedule_work(&event->remove);
4513 spin_unlock(&memcg->event_list_lock);
4515 page_counter_set_min(&memcg->memory, 0);
4516 page_counter_set_low(&memcg->memory, 0);
4518 memcg_offline_kmem(memcg);
4519 wb_memcg_offline(memcg);
4521 mem_cgroup_id_put(memcg);
4524 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4526 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4528 invalidate_reclaim_iterators(memcg);
4531 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4533 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4535 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4536 static_branch_dec(&memcg_sockets_enabled_key);
4538 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4539 static_branch_dec(&memcg_sockets_enabled_key);
4541 vmpressure_cleanup(&memcg->vmpressure);
4542 cancel_work_sync(&memcg->high_work);
4543 mem_cgroup_remove_from_trees(memcg);
4544 memcg_free_shrinker_maps(memcg);
4545 memcg_free_kmem(memcg);
4546 mem_cgroup_free(memcg);
4550 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4551 * @css: the target css
4553 * Reset the states of the mem_cgroup associated with @css. This is
4554 * invoked when the userland requests disabling on the default hierarchy
4555 * but the memcg is pinned through dependency. The memcg should stop
4556 * applying policies and should revert to the vanilla state as it may be
4557 * made visible again.
4559 * The current implementation only resets the essential configurations.
4560 * This needs to be expanded to cover all the visible parts.
4562 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4564 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4566 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4567 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4568 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4569 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4570 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4571 page_counter_set_min(&memcg->memory, 0);
4572 page_counter_set_low(&memcg->memory, 0);
4573 memcg->high = PAGE_COUNTER_MAX;
4574 memcg->soft_limit = PAGE_COUNTER_MAX;
4575 memcg_wb_domain_size_changed(memcg);
4579 /* Handlers for move charge at task migration. */
4580 static int mem_cgroup_do_precharge(unsigned long count)
4584 /* Try a single bulk charge without reclaim first, kswapd may wake */
4585 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4587 mc.precharge += count;
4591 /* Try charges one by one with reclaim, but do not retry */
4593 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4607 enum mc_target_type {
4614 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4615 unsigned long addr, pte_t ptent)
4617 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4619 if (!page || !page_mapped(page))
4621 if (PageAnon(page)) {
4622 if (!(mc.flags & MOVE_ANON))
4625 if (!(mc.flags & MOVE_FILE))
4628 if (!get_page_unless_zero(page))
4634 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4635 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4636 pte_t ptent, swp_entry_t *entry)
4638 struct page *page = NULL;
4639 swp_entry_t ent = pte_to_swp_entry(ptent);
4641 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4645 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4646 * a device and because they are not accessible by CPU they are store
4647 * as special swap entry in the CPU page table.
4649 if (is_device_private_entry(ent)) {
4650 page = device_private_entry_to_page(ent);
4652 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4653 * a refcount of 1 when free (unlike normal page)
4655 if (!page_ref_add_unless(page, 1, 1))
4661 * Because lookup_swap_cache() updates some statistics counter,
4662 * we call find_get_page() with swapper_space directly.
4664 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4665 if (do_memsw_account())
4666 entry->val = ent.val;
4671 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4672 pte_t ptent, swp_entry_t *entry)
4678 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4679 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4681 struct page *page = NULL;
4682 struct address_space *mapping;
4685 if (!vma->vm_file) /* anonymous vma */
4687 if (!(mc.flags & MOVE_FILE))
4690 mapping = vma->vm_file->f_mapping;
4691 pgoff = linear_page_index(vma, addr);
4693 /* page is moved even if it's not RSS of this task(page-faulted). */
4695 /* shmem/tmpfs may report page out on swap: account for that too. */
4696 if (shmem_mapping(mapping)) {
4697 page = find_get_entry(mapping, pgoff);
4698 if (radix_tree_exceptional_entry(page)) {
4699 swp_entry_t swp = radix_to_swp_entry(page);
4700 if (do_memsw_account())
4702 page = find_get_page(swap_address_space(swp),
4706 page = find_get_page(mapping, pgoff);
4708 page = find_get_page(mapping, pgoff);
4714 * mem_cgroup_move_account - move account of the page
4716 * @compound: charge the page as compound or small page
4717 * @from: mem_cgroup which the page is moved from.
4718 * @to: mem_cgroup which the page is moved to. @from != @to.
4720 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4722 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4725 static int mem_cgroup_move_account(struct page *page,
4727 struct mem_cgroup *from,
4728 struct mem_cgroup *to)
4730 unsigned long flags;
4731 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4735 VM_BUG_ON(from == to);
4736 VM_BUG_ON_PAGE(PageLRU(page), page);
4737 VM_BUG_ON(compound && !PageTransHuge(page));
4740 * Prevent mem_cgroup_migrate() from looking at
4741 * page->mem_cgroup of its source page while we change it.
4744 if (!trylock_page(page))
4748 if (page->mem_cgroup != from)
4751 anon = PageAnon(page);
4753 spin_lock_irqsave(&from->move_lock, flags);
4755 if (!anon && page_mapped(page)) {
4756 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4757 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4761 * move_lock grabbed above and caller set from->moving_account, so
4762 * mod_memcg_page_state will serialize updates to PageDirty.
4763 * So mapping should be stable for dirty pages.
4765 if (!anon && PageDirty(page)) {
4766 struct address_space *mapping = page_mapping(page);
4768 if (mapping_cap_account_dirty(mapping)) {
4769 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4770 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4774 if (PageWriteback(page)) {
4775 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4776 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4780 * It is safe to change page->mem_cgroup here because the page
4781 * is referenced, charged, and isolated - we can't race with
4782 * uncharging, charging, migration, or LRU putback.
4785 /* caller should have done css_get */
4786 page->mem_cgroup = to;
4787 spin_unlock_irqrestore(&from->move_lock, flags);
4791 local_irq_disable();
4792 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4793 memcg_check_events(to, page);
4794 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4795 memcg_check_events(from, page);
4804 * get_mctgt_type - get target type of moving charge
4805 * @vma: the vma the pte to be checked belongs
4806 * @addr: the address corresponding to the pte to be checked
4807 * @ptent: the pte to be checked
4808 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4811 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4812 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4813 * move charge. if @target is not NULL, the page is stored in target->page
4814 * with extra refcnt got(Callers should handle it).
4815 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4816 * target for charge migration. if @target is not NULL, the entry is stored
4818 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4819 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4820 * For now we such page is charge like a regular page would be as for all
4821 * intent and purposes it is just special memory taking the place of a
4824 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4826 * Called with pte lock held.
4829 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4830 unsigned long addr, pte_t ptent, union mc_target *target)
4832 struct page *page = NULL;
4833 enum mc_target_type ret = MC_TARGET_NONE;
4834 swp_entry_t ent = { .val = 0 };
4836 if (pte_present(ptent))
4837 page = mc_handle_present_pte(vma, addr, ptent);
4838 else if (is_swap_pte(ptent))
4839 page = mc_handle_swap_pte(vma, ptent, &ent);
4840 else if (pte_none(ptent))
4841 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4843 if (!page && !ent.val)
4847 * Do only loose check w/o serialization.
4848 * mem_cgroup_move_account() checks the page is valid or
4849 * not under LRU exclusion.
4851 if (page->mem_cgroup == mc.from) {
4852 ret = MC_TARGET_PAGE;
4853 if (is_device_private_page(page) ||
4854 is_device_public_page(page))
4855 ret = MC_TARGET_DEVICE;
4857 target->page = page;
4859 if (!ret || !target)
4863 * There is a swap entry and a page doesn't exist or isn't charged.
4864 * But we cannot move a tail-page in a THP.
4866 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4867 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4868 ret = MC_TARGET_SWAP;
4875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4877 * We don't consider PMD mapped swapping or file mapped pages because THP does
4878 * not support them for now.
4879 * Caller should make sure that pmd_trans_huge(pmd) is true.
4881 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4882 unsigned long addr, pmd_t pmd, union mc_target *target)
4884 struct page *page = NULL;
4885 enum mc_target_type ret = MC_TARGET_NONE;
4887 if (unlikely(is_swap_pmd(pmd))) {
4888 VM_BUG_ON(thp_migration_supported() &&
4889 !is_pmd_migration_entry(pmd));
4892 page = pmd_page(pmd);
4893 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4894 if (!(mc.flags & MOVE_ANON))
4896 if (page->mem_cgroup == mc.from) {
4897 ret = MC_TARGET_PAGE;
4900 target->page = page;
4906 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4907 unsigned long addr, pmd_t pmd, union mc_target *target)
4909 return MC_TARGET_NONE;
4913 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4914 unsigned long addr, unsigned long end,
4915 struct mm_walk *walk)
4917 struct vm_area_struct *vma = walk->vma;
4921 ptl = pmd_trans_huge_lock(pmd, vma);
4924 * Note their can not be MC_TARGET_DEVICE for now as we do not
4925 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4926 * MEMORY_DEVICE_PRIVATE but this might change.
4928 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4929 mc.precharge += HPAGE_PMD_NR;
4934 if (pmd_trans_unstable(pmd))
4936 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4937 for (; addr != end; pte++, addr += PAGE_SIZE)
4938 if (get_mctgt_type(vma, addr, *pte, NULL))
4939 mc.precharge++; /* increment precharge temporarily */
4940 pte_unmap_unlock(pte - 1, ptl);
4946 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4948 unsigned long precharge;
4950 struct mm_walk mem_cgroup_count_precharge_walk = {
4951 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4954 down_read(&mm->mmap_sem);
4955 walk_page_range(0, mm->highest_vm_end,
4956 &mem_cgroup_count_precharge_walk);
4957 up_read(&mm->mmap_sem);
4959 precharge = mc.precharge;
4965 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4967 unsigned long precharge = mem_cgroup_count_precharge(mm);
4969 VM_BUG_ON(mc.moving_task);
4970 mc.moving_task = current;
4971 return mem_cgroup_do_precharge(precharge);
4974 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4975 static void __mem_cgroup_clear_mc(void)
4977 struct mem_cgroup *from = mc.from;
4978 struct mem_cgroup *to = mc.to;
4980 /* we must uncharge all the leftover precharges from mc.to */
4982 cancel_charge(mc.to, mc.precharge);
4986 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4987 * we must uncharge here.
4989 if (mc.moved_charge) {
4990 cancel_charge(mc.from, mc.moved_charge);
4991 mc.moved_charge = 0;
4993 /* we must fixup refcnts and charges */
4994 if (mc.moved_swap) {
4995 /* uncharge swap account from the old cgroup */
4996 if (!mem_cgroup_is_root(mc.from))
4997 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4999 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5002 * we charged both to->memory and to->memsw, so we
5003 * should uncharge to->memory.
5005 if (!mem_cgroup_is_root(mc.to))
5006 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5008 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5009 css_put_many(&mc.to->css, mc.moved_swap);
5013 memcg_oom_recover(from);
5014 memcg_oom_recover(to);
5015 wake_up_all(&mc.waitq);
5018 static void mem_cgroup_clear_mc(void)
5020 struct mm_struct *mm = mc.mm;
5023 * we must clear moving_task before waking up waiters at the end of
5026 mc.moving_task = NULL;
5027 __mem_cgroup_clear_mc();
5028 spin_lock(&mc.lock);
5032 spin_unlock(&mc.lock);
5037 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5039 struct cgroup_subsys_state *css;
5040 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5041 struct mem_cgroup *from;
5042 struct task_struct *leader, *p;
5043 struct mm_struct *mm;
5044 unsigned long move_flags;
5047 /* charge immigration isn't supported on the default hierarchy */
5048 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5052 * Multi-process migrations only happen on the default hierarchy
5053 * where charge immigration is not used. Perform charge
5054 * immigration if @tset contains a leader and whine if there are
5058 cgroup_taskset_for_each_leader(leader, css, tset) {
5061 memcg = mem_cgroup_from_css(css);
5067 * We are now commited to this value whatever it is. Changes in this
5068 * tunable will only affect upcoming migrations, not the current one.
5069 * So we need to save it, and keep it going.
5071 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5075 from = mem_cgroup_from_task(p);
5077 VM_BUG_ON(from == memcg);
5079 mm = get_task_mm(p);
5082 /* We move charges only when we move a owner of the mm */
5083 if (mm->owner == p) {
5086 VM_BUG_ON(mc.precharge);
5087 VM_BUG_ON(mc.moved_charge);
5088 VM_BUG_ON(mc.moved_swap);
5090 spin_lock(&mc.lock);
5094 mc.flags = move_flags;
5095 spin_unlock(&mc.lock);
5096 /* We set mc.moving_task later */
5098 ret = mem_cgroup_precharge_mc(mm);
5100 mem_cgroup_clear_mc();
5107 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5110 mem_cgroup_clear_mc();
5113 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5114 unsigned long addr, unsigned long end,
5115 struct mm_walk *walk)
5118 struct vm_area_struct *vma = walk->vma;
5121 enum mc_target_type target_type;
5122 union mc_target target;
5125 ptl = pmd_trans_huge_lock(pmd, vma);
5127 if (mc.precharge < HPAGE_PMD_NR) {
5131 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5132 if (target_type == MC_TARGET_PAGE) {
5134 if (!isolate_lru_page(page)) {
5135 if (!mem_cgroup_move_account(page, true,
5137 mc.precharge -= HPAGE_PMD_NR;
5138 mc.moved_charge += HPAGE_PMD_NR;
5140 putback_lru_page(page);
5143 } else if (target_type == MC_TARGET_DEVICE) {
5145 if (!mem_cgroup_move_account(page, true,
5147 mc.precharge -= HPAGE_PMD_NR;
5148 mc.moved_charge += HPAGE_PMD_NR;
5156 if (pmd_trans_unstable(pmd))
5159 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5160 for (; addr != end; addr += PAGE_SIZE) {
5161 pte_t ptent = *(pte++);
5162 bool device = false;
5168 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5169 case MC_TARGET_DEVICE:
5172 case MC_TARGET_PAGE:
5175 * We can have a part of the split pmd here. Moving it
5176 * can be done but it would be too convoluted so simply
5177 * ignore such a partial THP and keep it in original
5178 * memcg. There should be somebody mapping the head.
5180 if (PageTransCompound(page))
5182 if (!device && isolate_lru_page(page))
5184 if (!mem_cgroup_move_account(page, false,
5187 /* we uncharge from mc.from later. */
5191 putback_lru_page(page);
5192 put: /* get_mctgt_type() gets the page */
5195 case MC_TARGET_SWAP:
5197 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5199 /* we fixup refcnts and charges later. */
5207 pte_unmap_unlock(pte - 1, ptl);
5212 * We have consumed all precharges we got in can_attach().
5213 * We try charge one by one, but don't do any additional
5214 * charges to mc.to if we have failed in charge once in attach()
5217 ret = mem_cgroup_do_precharge(1);
5225 static void mem_cgroup_move_charge(void)
5227 struct mm_walk mem_cgroup_move_charge_walk = {
5228 .pmd_entry = mem_cgroup_move_charge_pte_range,
5232 lru_add_drain_all();
5234 * Signal lock_page_memcg() to take the memcg's move_lock
5235 * while we're moving its pages to another memcg. Then wait
5236 * for already started RCU-only updates to finish.
5238 atomic_inc(&mc.from->moving_account);
5241 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5243 * Someone who are holding the mmap_sem might be waiting in
5244 * waitq. So we cancel all extra charges, wake up all waiters,
5245 * and retry. Because we cancel precharges, we might not be able
5246 * to move enough charges, but moving charge is a best-effort
5247 * feature anyway, so it wouldn't be a big problem.
5249 __mem_cgroup_clear_mc();
5254 * When we have consumed all precharges and failed in doing
5255 * additional charge, the page walk just aborts.
5257 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5259 up_read(&mc.mm->mmap_sem);
5260 atomic_dec(&mc.from->moving_account);
5263 static void mem_cgroup_move_task(void)
5266 mem_cgroup_move_charge();
5267 mem_cgroup_clear_mc();
5270 #else /* !CONFIG_MMU */
5271 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5275 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5278 static void mem_cgroup_move_task(void)
5284 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5285 * to verify whether we're attached to the default hierarchy on each mount
5288 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5291 * use_hierarchy is forced on the default hierarchy. cgroup core
5292 * guarantees that @root doesn't have any children, so turning it
5293 * on for the root memcg is enough.
5295 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5296 root_mem_cgroup->use_hierarchy = true;
5298 root_mem_cgroup->use_hierarchy = false;
5301 static u64 memory_current_read(struct cgroup_subsys_state *css,
5304 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5306 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5309 static int memory_min_show(struct seq_file *m, void *v)
5311 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5312 unsigned long min = READ_ONCE(memcg->memory.min);
5314 if (min == PAGE_COUNTER_MAX)
5315 seq_puts(m, "max\n");
5317 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5322 static ssize_t memory_min_write(struct kernfs_open_file *of,
5323 char *buf, size_t nbytes, loff_t off)
5325 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5329 buf = strstrip(buf);
5330 err = page_counter_memparse(buf, "max", &min);
5334 page_counter_set_min(&memcg->memory, min);
5339 static int memory_low_show(struct seq_file *m, void *v)
5341 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5342 unsigned long low = READ_ONCE(memcg->memory.low);
5344 if (low == PAGE_COUNTER_MAX)
5345 seq_puts(m, "max\n");
5347 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5352 static ssize_t memory_low_write(struct kernfs_open_file *of,
5353 char *buf, size_t nbytes, loff_t off)
5355 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5359 buf = strstrip(buf);
5360 err = page_counter_memparse(buf, "max", &low);
5364 page_counter_set_low(&memcg->memory, low);
5369 static int memory_high_show(struct seq_file *m, void *v)
5371 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5372 unsigned long high = READ_ONCE(memcg->high);
5374 if (high == PAGE_COUNTER_MAX)
5375 seq_puts(m, "max\n");
5377 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5382 static ssize_t memory_high_write(struct kernfs_open_file *of,
5383 char *buf, size_t nbytes, loff_t off)
5385 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5386 unsigned long nr_pages;
5390 buf = strstrip(buf);
5391 err = page_counter_memparse(buf, "max", &high);
5397 nr_pages = page_counter_read(&memcg->memory);
5398 if (nr_pages > high)
5399 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5402 memcg_wb_domain_size_changed(memcg);
5406 static int memory_max_show(struct seq_file *m, void *v)
5408 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5409 unsigned long max = READ_ONCE(memcg->memory.max);
5411 if (max == PAGE_COUNTER_MAX)
5412 seq_puts(m, "max\n");
5414 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5419 static ssize_t memory_max_write(struct kernfs_open_file *of,
5420 char *buf, size_t nbytes, loff_t off)
5422 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5423 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5424 bool drained = false;
5428 buf = strstrip(buf);
5429 err = page_counter_memparse(buf, "max", &max);
5433 xchg(&memcg->memory.max, max);
5436 unsigned long nr_pages = page_counter_read(&memcg->memory);
5438 if (nr_pages <= max)
5441 if (signal_pending(current)) {
5447 drain_all_stock(memcg);
5453 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5459 memcg_memory_event(memcg, MEMCG_OOM);
5460 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5464 memcg_wb_domain_size_changed(memcg);
5468 static int memory_events_show(struct seq_file *m, void *v)
5470 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5472 seq_printf(m, "low %lu\n",
5473 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5474 seq_printf(m, "high %lu\n",
5475 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5476 seq_printf(m, "max %lu\n",
5477 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5478 seq_printf(m, "oom %lu\n",
5479 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5480 seq_printf(m, "oom_kill %lu\n",
5481 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5486 static int memory_stat_show(struct seq_file *m, void *v)
5488 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5489 unsigned long stat[MEMCG_NR_STAT];
5490 unsigned long events[NR_VM_EVENT_ITEMS];
5494 * Provide statistics on the state of the memory subsystem as
5495 * well as cumulative event counters that show past behavior.
5497 * This list is ordered following a combination of these gradients:
5498 * 1) generic big picture -> specifics and details
5499 * 2) reflecting userspace activity -> reflecting kernel heuristics
5501 * Current memory state:
5504 tree_stat(memcg, stat);
5505 tree_events(memcg, events);
5507 seq_printf(m, "anon %llu\n",
5508 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5509 seq_printf(m, "file %llu\n",
5510 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5511 seq_printf(m, "kernel_stack %llu\n",
5512 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5513 seq_printf(m, "slab %llu\n",
5514 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5515 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5516 seq_printf(m, "sock %llu\n",
5517 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5519 seq_printf(m, "shmem %llu\n",
5520 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5521 seq_printf(m, "file_mapped %llu\n",
5522 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5523 seq_printf(m, "file_dirty %llu\n",
5524 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5525 seq_printf(m, "file_writeback %llu\n",
5526 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5528 for (i = 0; i < NR_LRU_LISTS; i++) {
5529 struct mem_cgroup *mi;
5530 unsigned long val = 0;
5532 for_each_mem_cgroup_tree(mi, memcg)
5533 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5534 seq_printf(m, "%s %llu\n",
5535 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5538 seq_printf(m, "slab_reclaimable %llu\n",
5539 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5540 seq_printf(m, "slab_unreclaimable %llu\n",
5541 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5543 /* Accumulated memory events */
5545 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5546 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5548 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5549 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5550 events[PGSCAN_DIRECT]);
5551 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5552 events[PGSTEAL_DIRECT]);
5553 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5554 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5555 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5556 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5558 seq_printf(m, "workingset_refault %lu\n",
5559 stat[WORKINGSET_REFAULT]);
5560 seq_printf(m, "workingset_activate %lu\n",
5561 stat[WORKINGSET_ACTIVATE]);
5562 seq_printf(m, "workingset_nodereclaim %lu\n",
5563 stat[WORKINGSET_NODERECLAIM]);
5568 static struct cftype memory_files[] = {
5571 .flags = CFTYPE_NOT_ON_ROOT,
5572 .read_u64 = memory_current_read,
5576 .flags = CFTYPE_NOT_ON_ROOT,
5577 .seq_show = memory_min_show,
5578 .write = memory_min_write,
5582 .flags = CFTYPE_NOT_ON_ROOT,
5583 .seq_show = memory_low_show,
5584 .write = memory_low_write,
5588 .flags = CFTYPE_NOT_ON_ROOT,
5589 .seq_show = memory_high_show,
5590 .write = memory_high_write,
5594 .flags = CFTYPE_NOT_ON_ROOT,
5595 .seq_show = memory_max_show,
5596 .write = memory_max_write,
5600 .flags = CFTYPE_NOT_ON_ROOT,
5601 .file_offset = offsetof(struct mem_cgroup, events_file),
5602 .seq_show = memory_events_show,
5606 .flags = CFTYPE_NOT_ON_ROOT,
5607 .seq_show = memory_stat_show,
5612 struct cgroup_subsys memory_cgrp_subsys = {
5613 .css_alloc = mem_cgroup_css_alloc,
5614 .css_online = mem_cgroup_css_online,
5615 .css_offline = mem_cgroup_css_offline,
5616 .css_released = mem_cgroup_css_released,
5617 .css_free = mem_cgroup_css_free,
5618 .css_reset = mem_cgroup_css_reset,
5619 .can_attach = mem_cgroup_can_attach,
5620 .cancel_attach = mem_cgroup_cancel_attach,
5621 .post_attach = mem_cgroup_move_task,
5622 .bind = mem_cgroup_bind,
5623 .dfl_cftypes = memory_files,
5624 .legacy_cftypes = mem_cgroup_legacy_files,
5629 * mem_cgroup_protected - check if memory consumption is in the normal range
5630 * @root: the top ancestor of the sub-tree being checked
5631 * @memcg: the memory cgroup to check
5633 * WARNING: This function is not stateless! It can only be used as part
5634 * of a top-down tree iteration, not for isolated queries.
5636 * Returns one of the following:
5637 * MEMCG_PROT_NONE: cgroup memory is not protected
5638 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5639 * an unprotected supply of reclaimable memory from other cgroups.
5640 * MEMCG_PROT_MIN: cgroup memory is protected
5642 * @root is exclusive; it is never protected when looked at directly
5644 * To provide a proper hierarchical behavior, effective memory.min/low values
5645 * are used. Below is the description of how effective memory.low is calculated.
5646 * Effective memory.min values is calculated in the same way.
5648 * Effective memory.low is always equal or less than the original memory.low.
5649 * If there is no memory.low overcommittment (which is always true for
5650 * top-level memory cgroups), these two values are equal.
5651 * Otherwise, it's a part of parent's effective memory.low,
5652 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5653 * memory.low usages, where memory.low usage is the size of actually
5657 * elow = min( memory.low, parent->elow * ------------------ ),
5658 * siblings_low_usage
5660 * | memory.current, if memory.current < memory.low
5665 * Such definition of the effective memory.low provides the expected
5666 * hierarchical behavior: parent's memory.low value is limiting
5667 * children, unprotected memory is reclaimed first and cgroups,
5668 * which are not using their guarantee do not affect actual memory
5671 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5673 * A A/memory.low = 2G, A/memory.current = 6G
5675 * BC DE B/memory.low = 3G B/memory.current = 2G
5676 * C/memory.low = 1G C/memory.current = 2G
5677 * D/memory.low = 0 D/memory.current = 2G
5678 * E/memory.low = 10G E/memory.current = 0
5680 * and the memory pressure is applied, the following memory distribution
5681 * is expected (approximately):
5683 * A/memory.current = 2G
5685 * B/memory.current = 1.3G
5686 * C/memory.current = 0.6G
5687 * D/memory.current = 0
5688 * E/memory.current = 0
5690 * These calculations require constant tracking of the actual low usages
5691 * (see propagate_protected_usage()), as well as recursive calculation of
5692 * effective memory.low values. But as we do call mem_cgroup_protected()
5693 * path for each memory cgroup top-down from the reclaim,
5694 * it's possible to optimize this part, and save calculated elow
5695 * for next usage. This part is intentionally racy, but it's ok,
5696 * as memory.low is a best-effort mechanism.
5698 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5699 struct mem_cgroup *memcg)
5701 struct mem_cgroup *parent;
5702 unsigned long emin, parent_emin;
5703 unsigned long elow, parent_elow;
5704 unsigned long usage;
5706 if (mem_cgroup_disabled())
5707 return MEMCG_PROT_NONE;
5710 root = root_mem_cgroup;
5712 return MEMCG_PROT_NONE;
5714 usage = page_counter_read(&memcg->memory);
5716 return MEMCG_PROT_NONE;
5718 emin = memcg->memory.min;
5719 elow = memcg->memory.low;
5721 parent = parent_mem_cgroup(memcg);
5722 /* No parent means a non-hierarchical mode on v1 memcg */
5724 return MEMCG_PROT_NONE;
5729 parent_emin = READ_ONCE(parent->memory.emin);
5730 emin = min(emin, parent_emin);
5731 if (emin && parent_emin) {
5732 unsigned long min_usage, siblings_min_usage;
5734 min_usage = min(usage, memcg->memory.min);
5735 siblings_min_usage = atomic_long_read(
5736 &parent->memory.children_min_usage);
5738 if (min_usage && siblings_min_usage)
5739 emin = min(emin, parent_emin * min_usage /
5740 siblings_min_usage);
5743 parent_elow = READ_ONCE(parent->memory.elow);
5744 elow = min(elow, parent_elow);
5745 if (elow && parent_elow) {
5746 unsigned long low_usage, siblings_low_usage;
5748 low_usage = min(usage, memcg->memory.low);
5749 siblings_low_usage = atomic_long_read(
5750 &parent->memory.children_low_usage);
5752 if (low_usage && siblings_low_usage)
5753 elow = min(elow, parent_elow * low_usage /
5754 siblings_low_usage);
5758 memcg->memory.emin = emin;
5759 memcg->memory.elow = elow;
5762 return MEMCG_PROT_MIN;
5763 else if (usage <= elow)
5764 return MEMCG_PROT_LOW;
5766 return MEMCG_PROT_NONE;
5770 * mem_cgroup_try_charge - try charging a page
5771 * @page: page to charge
5772 * @mm: mm context of the victim
5773 * @gfp_mask: reclaim mode
5774 * @memcgp: charged memcg return
5775 * @compound: charge the page as compound or small page
5777 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5778 * pages according to @gfp_mask if necessary.
5780 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5781 * Otherwise, an error code is returned.
5783 * After page->mapping has been set up, the caller must finalize the
5784 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5785 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5787 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5788 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5791 struct mem_cgroup *memcg = NULL;
5792 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5795 if (mem_cgroup_disabled())
5798 if (PageSwapCache(page)) {
5800 * Every swap fault against a single page tries to charge the
5801 * page, bail as early as possible. shmem_unuse() encounters
5802 * already charged pages, too. The USED bit is protected by
5803 * the page lock, which serializes swap cache removal, which
5804 * in turn serializes uncharging.
5806 VM_BUG_ON_PAGE(!PageLocked(page), page);
5807 if (compound_head(page)->mem_cgroup)
5810 if (do_swap_account) {
5811 swp_entry_t ent = { .val = page_private(page), };
5812 unsigned short id = lookup_swap_cgroup_id(ent);
5815 memcg = mem_cgroup_from_id(id);
5816 if (memcg && !css_tryget_online(&memcg->css))
5823 memcg = get_mem_cgroup_from_mm(mm);
5825 ret = try_charge(memcg, gfp_mask, nr_pages);
5827 css_put(&memcg->css);
5833 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5834 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5837 struct mem_cgroup *memcg;
5840 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5842 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5847 * mem_cgroup_commit_charge - commit a page charge
5848 * @page: page to charge
5849 * @memcg: memcg to charge the page to
5850 * @lrucare: page might be on LRU already
5851 * @compound: charge the page as compound or small page
5853 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5854 * after page->mapping has been set up. This must happen atomically
5855 * as part of the page instantiation, i.e. under the page table lock
5856 * for anonymous pages, under the page lock for page and swap cache.
5858 * In addition, the page must not be on the LRU during the commit, to
5859 * prevent racing with task migration. If it might be, use @lrucare.
5861 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5863 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5864 bool lrucare, bool compound)
5866 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5868 VM_BUG_ON_PAGE(!page->mapping, page);
5869 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5871 if (mem_cgroup_disabled())
5874 * Swap faults will attempt to charge the same page multiple
5875 * times. But reuse_swap_page() might have removed the page
5876 * from swapcache already, so we can't check PageSwapCache().
5881 commit_charge(page, memcg, lrucare);
5883 local_irq_disable();
5884 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5885 memcg_check_events(memcg, page);
5888 if (do_memsw_account() && PageSwapCache(page)) {
5889 swp_entry_t entry = { .val = page_private(page) };
5891 * The swap entry might not get freed for a long time,
5892 * let's not wait for it. The page already received a
5893 * memory+swap charge, drop the swap entry duplicate.
5895 mem_cgroup_uncharge_swap(entry, nr_pages);
5900 * mem_cgroup_cancel_charge - cancel a page charge
5901 * @page: page to charge
5902 * @memcg: memcg to charge the page to
5903 * @compound: charge the page as compound or small page
5905 * Cancel a charge transaction started by mem_cgroup_try_charge().
5907 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5910 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5912 if (mem_cgroup_disabled())
5915 * Swap faults will attempt to charge the same page multiple
5916 * times. But reuse_swap_page() might have removed the page
5917 * from swapcache already, so we can't check PageSwapCache().
5922 cancel_charge(memcg, nr_pages);
5925 struct uncharge_gather {
5926 struct mem_cgroup *memcg;
5927 unsigned long pgpgout;
5928 unsigned long nr_anon;
5929 unsigned long nr_file;
5930 unsigned long nr_kmem;
5931 unsigned long nr_huge;
5932 unsigned long nr_shmem;
5933 struct page *dummy_page;
5936 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5938 memset(ug, 0, sizeof(*ug));
5941 static void uncharge_batch(const struct uncharge_gather *ug)
5943 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5944 unsigned long flags;
5946 if (!mem_cgroup_is_root(ug->memcg)) {
5947 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5948 if (do_memsw_account())
5949 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5950 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5951 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5952 memcg_oom_recover(ug->memcg);
5955 local_irq_save(flags);
5956 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5957 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5958 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5959 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5960 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5961 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5962 memcg_check_events(ug->memcg, ug->dummy_page);
5963 local_irq_restore(flags);
5965 if (!mem_cgroup_is_root(ug->memcg))
5966 css_put_many(&ug->memcg->css, nr_pages);
5969 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5971 VM_BUG_ON_PAGE(PageLRU(page), page);
5972 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5973 !PageHWPoison(page) , page);
5975 if (!page->mem_cgroup)
5979 * Nobody should be changing or seriously looking at
5980 * page->mem_cgroup at this point, we have fully
5981 * exclusive access to the page.
5984 if (ug->memcg != page->mem_cgroup) {
5987 uncharge_gather_clear(ug);
5989 ug->memcg = page->mem_cgroup;
5992 if (!PageKmemcg(page)) {
5993 unsigned int nr_pages = 1;
5995 if (PageTransHuge(page)) {
5996 nr_pages <<= compound_order(page);
5997 ug->nr_huge += nr_pages;
6000 ug->nr_anon += nr_pages;
6002 ug->nr_file += nr_pages;
6003 if (PageSwapBacked(page))
6004 ug->nr_shmem += nr_pages;
6008 ug->nr_kmem += 1 << compound_order(page);
6009 __ClearPageKmemcg(page);
6012 ug->dummy_page = page;
6013 page->mem_cgroup = NULL;
6016 static void uncharge_list(struct list_head *page_list)
6018 struct uncharge_gather ug;
6019 struct list_head *next;
6021 uncharge_gather_clear(&ug);
6024 * Note that the list can be a single page->lru; hence the
6025 * do-while loop instead of a simple list_for_each_entry().
6027 next = page_list->next;
6031 page = list_entry(next, struct page, lru);
6032 next = page->lru.next;
6034 uncharge_page(page, &ug);
6035 } while (next != page_list);
6038 uncharge_batch(&ug);
6042 * mem_cgroup_uncharge - uncharge a page
6043 * @page: page to uncharge
6045 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6046 * mem_cgroup_commit_charge().
6048 void mem_cgroup_uncharge(struct page *page)
6050 struct uncharge_gather ug;
6052 if (mem_cgroup_disabled())
6055 /* Don't touch page->lru of any random page, pre-check: */
6056 if (!page->mem_cgroup)
6059 uncharge_gather_clear(&ug);
6060 uncharge_page(page, &ug);
6061 uncharge_batch(&ug);
6065 * mem_cgroup_uncharge_list - uncharge a list of page
6066 * @page_list: list of pages to uncharge
6068 * Uncharge a list of pages previously charged with
6069 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6071 void mem_cgroup_uncharge_list(struct list_head *page_list)
6073 if (mem_cgroup_disabled())
6076 if (!list_empty(page_list))
6077 uncharge_list(page_list);
6081 * mem_cgroup_migrate - charge a page's replacement
6082 * @oldpage: currently circulating page
6083 * @newpage: replacement page
6085 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6086 * be uncharged upon free.
6088 * Both pages must be locked, @newpage->mapping must be set up.
6090 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6092 struct mem_cgroup *memcg;
6093 unsigned int nr_pages;
6095 unsigned long flags;
6097 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6098 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6099 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6100 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6103 if (mem_cgroup_disabled())
6106 /* Page cache replacement: new page already charged? */
6107 if (newpage->mem_cgroup)
6110 /* Swapcache readahead pages can get replaced before being charged */
6111 memcg = oldpage->mem_cgroup;
6115 /* Force-charge the new page. The old one will be freed soon */
6116 compound = PageTransHuge(newpage);
6117 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6119 page_counter_charge(&memcg->memory, nr_pages);
6120 if (do_memsw_account())
6121 page_counter_charge(&memcg->memsw, nr_pages);
6122 css_get_many(&memcg->css, nr_pages);
6124 commit_charge(newpage, memcg, false);
6126 local_irq_save(flags);
6127 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6128 memcg_check_events(memcg, newpage);
6129 local_irq_restore(flags);
6132 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6133 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6135 void mem_cgroup_sk_alloc(struct sock *sk)
6137 struct mem_cgroup *memcg;
6139 if (!mem_cgroup_sockets_enabled)
6143 * Socket cloning can throw us here with sk_memcg already
6144 * filled. It won't however, necessarily happen from
6145 * process context. So the test for root memcg given
6146 * the current task's memcg won't help us in this case.
6148 * Respecting the original socket's memcg is a better
6149 * decision in this case.
6152 css_get(&sk->sk_memcg->css);
6157 memcg = mem_cgroup_from_task(current);
6158 if (memcg == root_mem_cgroup)
6160 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6162 if (css_tryget_online(&memcg->css))
6163 sk->sk_memcg = memcg;
6168 void mem_cgroup_sk_free(struct sock *sk)
6171 css_put(&sk->sk_memcg->css);
6175 * mem_cgroup_charge_skmem - charge socket memory
6176 * @memcg: memcg to charge
6177 * @nr_pages: number of pages to charge
6179 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6180 * @memcg's configured limit, %false if the charge had to be forced.
6182 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6184 gfp_t gfp_mask = GFP_KERNEL;
6186 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6187 struct page_counter *fail;
6189 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6190 memcg->tcpmem_pressure = 0;
6193 page_counter_charge(&memcg->tcpmem, nr_pages);
6194 memcg->tcpmem_pressure = 1;
6198 /* Don't block in the packet receive path */
6200 gfp_mask = GFP_NOWAIT;
6202 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6204 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6207 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6212 * mem_cgroup_uncharge_skmem - uncharge socket memory
6213 * @memcg: memcg to uncharge
6214 * @nr_pages: number of pages to uncharge
6216 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6218 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6219 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6223 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6225 refill_stock(memcg, nr_pages);
6228 static int __init cgroup_memory(char *s)
6232 while ((token = strsep(&s, ",")) != NULL) {
6235 if (!strcmp(token, "nosocket"))
6236 cgroup_memory_nosocket = true;
6237 if (!strcmp(token, "nokmem"))
6238 cgroup_memory_nokmem = true;
6242 __setup("cgroup.memory=", cgroup_memory);
6245 * subsys_initcall() for memory controller.
6247 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6248 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6249 * basically everything that doesn't depend on a specific mem_cgroup structure
6250 * should be initialized from here.
6252 static int __init mem_cgroup_init(void)
6256 #ifdef CONFIG_MEMCG_KMEM
6258 * Kmem cache creation is mostly done with the slab_mutex held,
6259 * so use a workqueue with limited concurrency to avoid stalling
6260 * all worker threads in case lots of cgroups are created and
6261 * destroyed simultaneously.
6263 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6264 BUG_ON(!memcg_kmem_cache_wq);
6267 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6268 memcg_hotplug_cpu_dead);
6270 for_each_possible_cpu(cpu)
6271 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6274 for_each_node(node) {
6275 struct mem_cgroup_tree_per_node *rtpn;
6277 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6278 node_online(node) ? node : NUMA_NO_NODE);
6280 rtpn->rb_root = RB_ROOT;
6281 rtpn->rb_rightmost = NULL;
6282 spin_lock_init(&rtpn->lock);
6283 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6288 subsys_initcall(mem_cgroup_init);
6290 #ifdef CONFIG_MEMCG_SWAP
6291 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6293 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6295 * The root cgroup cannot be destroyed, so it's refcount must
6298 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6302 memcg = parent_mem_cgroup(memcg);
6304 memcg = root_mem_cgroup;
6310 * mem_cgroup_swapout - transfer a memsw charge to swap
6311 * @page: page whose memsw charge to transfer
6312 * @entry: swap entry to move the charge to
6314 * Transfer the memsw charge of @page to @entry.
6316 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6318 struct mem_cgroup *memcg, *swap_memcg;
6319 unsigned int nr_entries;
6320 unsigned short oldid;
6322 VM_BUG_ON_PAGE(PageLRU(page), page);
6323 VM_BUG_ON_PAGE(page_count(page), page);
6325 if (!do_memsw_account())
6328 memcg = page->mem_cgroup;
6330 /* Readahead page, never charged */
6335 * In case the memcg owning these pages has been offlined and doesn't
6336 * have an ID allocated to it anymore, charge the closest online
6337 * ancestor for the swap instead and transfer the memory+swap charge.
6339 swap_memcg = mem_cgroup_id_get_online(memcg);
6340 nr_entries = hpage_nr_pages(page);
6341 /* Get references for the tail pages, too */
6343 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6344 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6346 VM_BUG_ON_PAGE(oldid, page);
6347 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6349 page->mem_cgroup = NULL;
6351 if (!mem_cgroup_is_root(memcg))
6352 page_counter_uncharge(&memcg->memory, nr_entries);
6354 if (memcg != swap_memcg) {
6355 if (!mem_cgroup_is_root(swap_memcg))
6356 page_counter_charge(&swap_memcg->memsw, nr_entries);
6357 page_counter_uncharge(&memcg->memsw, nr_entries);
6361 * Interrupts should be disabled here because the caller holds the
6362 * i_pages lock which is taken with interrupts-off. It is
6363 * important here to have the interrupts disabled because it is the
6364 * only synchronisation we have for updating the per-CPU variables.
6366 VM_BUG_ON(!irqs_disabled());
6367 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6369 memcg_check_events(memcg, page);
6371 if (!mem_cgroup_is_root(memcg))
6372 css_put_many(&memcg->css, nr_entries);
6376 * mem_cgroup_try_charge_swap - try charging swap space for a page
6377 * @page: page being added to swap
6378 * @entry: swap entry to charge
6380 * Try to charge @page's memcg for the swap space at @entry.
6382 * Returns 0 on success, -ENOMEM on failure.
6384 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6386 unsigned int nr_pages = hpage_nr_pages(page);
6387 struct page_counter *counter;
6388 struct mem_cgroup *memcg;
6389 unsigned short oldid;
6391 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6394 memcg = page->mem_cgroup;
6396 /* Readahead page, never charged */
6401 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6405 memcg = mem_cgroup_id_get_online(memcg);
6407 if (!mem_cgroup_is_root(memcg) &&
6408 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6409 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6410 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6411 mem_cgroup_id_put(memcg);
6415 /* Get references for the tail pages, too */
6417 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6418 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6419 VM_BUG_ON_PAGE(oldid, page);
6420 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6426 * mem_cgroup_uncharge_swap - uncharge swap space
6427 * @entry: swap entry to uncharge
6428 * @nr_pages: the amount of swap space to uncharge
6430 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6432 struct mem_cgroup *memcg;
6435 if (!do_swap_account)
6438 id = swap_cgroup_record(entry, 0, nr_pages);
6440 memcg = mem_cgroup_from_id(id);
6442 if (!mem_cgroup_is_root(memcg)) {
6443 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6444 page_counter_uncharge(&memcg->swap, nr_pages);
6446 page_counter_uncharge(&memcg->memsw, nr_pages);
6448 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6449 mem_cgroup_id_put_many(memcg, nr_pages);
6454 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6456 long nr_swap_pages = get_nr_swap_pages();
6458 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6459 return nr_swap_pages;
6460 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6461 nr_swap_pages = min_t(long, nr_swap_pages,
6462 READ_ONCE(memcg->swap.max) -
6463 page_counter_read(&memcg->swap));
6464 return nr_swap_pages;
6467 bool mem_cgroup_swap_full(struct page *page)
6469 struct mem_cgroup *memcg;
6471 VM_BUG_ON_PAGE(!PageLocked(page), page);
6475 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6478 memcg = page->mem_cgroup;
6482 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6483 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6489 /* for remember boot option*/
6490 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6491 static int really_do_swap_account __initdata = 1;
6493 static int really_do_swap_account __initdata;
6496 static int __init enable_swap_account(char *s)
6498 if (!strcmp(s, "1"))
6499 really_do_swap_account = 1;
6500 else if (!strcmp(s, "0"))
6501 really_do_swap_account = 0;
6504 __setup("swapaccount=", enable_swap_account);
6506 static u64 swap_current_read(struct cgroup_subsys_state *css,
6509 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6511 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6514 static int swap_max_show(struct seq_file *m, void *v)
6516 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6517 unsigned long max = READ_ONCE(memcg->swap.max);
6519 if (max == PAGE_COUNTER_MAX)
6520 seq_puts(m, "max\n");
6522 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6527 static ssize_t swap_max_write(struct kernfs_open_file *of,
6528 char *buf, size_t nbytes, loff_t off)
6530 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6534 buf = strstrip(buf);
6535 err = page_counter_memparse(buf, "max", &max);
6539 xchg(&memcg->swap.max, max);
6544 static int swap_events_show(struct seq_file *m, void *v)
6546 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6548 seq_printf(m, "max %lu\n",
6549 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6550 seq_printf(m, "fail %lu\n",
6551 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6556 static struct cftype swap_files[] = {
6558 .name = "swap.current",
6559 .flags = CFTYPE_NOT_ON_ROOT,
6560 .read_u64 = swap_current_read,
6564 .flags = CFTYPE_NOT_ON_ROOT,
6565 .seq_show = swap_max_show,
6566 .write = swap_max_write,
6569 .name = "swap.events",
6570 .flags = CFTYPE_NOT_ON_ROOT,
6571 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6572 .seq_show = swap_events_show,
6577 static struct cftype memsw_cgroup_files[] = {
6579 .name = "memsw.usage_in_bytes",
6580 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6581 .read_u64 = mem_cgroup_read_u64,
6584 .name = "memsw.max_usage_in_bytes",
6585 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6586 .write = mem_cgroup_reset,
6587 .read_u64 = mem_cgroup_read_u64,
6590 .name = "memsw.limit_in_bytes",
6591 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6592 .write = mem_cgroup_write,
6593 .read_u64 = mem_cgroup_read_u64,
6596 .name = "memsw.failcnt",
6597 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6598 .write = mem_cgroup_reset,
6599 .read_u64 = mem_cgroup_read_u64,
6601 { }, /* terminate */
6604 static int __init mem_cgroup_swap_init(void)
6606 if (!mem_cgroup_disabled() && really_do_swap_account) {
6607 do_swap_account = 1;
6608 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6610 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6611 memsw_cgroup_files));
6615 subsys_initcall(mem_cgroup_swap_init);
6617 #endif /* CONFIG_MEMCG_SWAP */