tizen: packaging: Add baselibs.conf to provide 64-bit kernel & modules for 32-bit...
[platform/kernel/linux-rpi.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112
113 struct mem_cgroup_tree_per_node {
114         struct rb_root rb_root;
115         struct rb_node *rb_rightmost;
116         spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127         struct list_head list;
128         struct eventfd_ctx *eventfd;
129 };
130
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135         /*
136          * memcg which the event belongs to.
137          */
138         struct mem_cgroup *memcg;
139         /*
140          * eventfd to signal userspace about the event.
141          */
142         struct eventfd_ctx *eventfd;
143         /*
144          * Each of these stored in a list by the cgroup.
145          */
146         struct list_head list;
147         /*
148          * register_event() callback will be used to add new userspace
149          * waiter for changes related to this event.  Use eventfd_signal()
150          * on eventfd to send notification to userspace.
151          */
152         int (*register_event)(struct mem_cgroup *memcg,
153                               struct eventfd_ctx *eventfd, const char *args);
154         /*
155          * unregister_event() callback will be called when userspace closes
156          * the eventfd or on cgroup removing.  This callback must be set,
157          * if you want provide notification functionality.
158          */
159         void (*unregister_event)(struct mem_cgroup *memcg,
160                                  struct eventfd_ctx *eventfd);
161         /*
162          * All fields below needed to unregister event when
163          * userspace closes eventfd.
164          */
165         poll_table pt;
166         wait_queue_head_t *wqh;
167         wait_queue_entry_t wait;
168         struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON       0x1U
179 #define MOVE_FILE       0x2U
180 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184         spinlock_t        lock; /* for from, to */
185         struct mm_struct  *mm;
186         struct mem_cgroup *from;
187         struct mem_cgroup *to;
188         unsigned long flags;
189         unsigned long precharge;
190         unsigned long moved_charge;
191         unsigned long moved_swap;
192         struct task_struct *moving_task;        /* a task moving charges */
193         wait_queue_head_t waitq;                /* a waitq for other context */
194 } mc = {
195         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208         _MEM,
209         _MEMSWAP,
210         _KMEM,
211         _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
217
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)            \
224         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
225              iter != NULL;                              \
226              iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter)                       \
229         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool task_is_dying(void)
234 {
235         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236                 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242         if (!memcg)
243                 memcg = root_mem_cgroup;
244         return &memcg->vmpressure;
245 }
246
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249         return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
255 bool mem_cgroup_kmem_disabled(void)
256 {
257         return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261                                       unsigned int nr_pages);
262
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266         unsigned int nr_bytes;
267         unsigned int nr_pages;
268         unsigned long flags;
269
270         /*
271          * At this point all allocated objects are freed, and
272          * objcg->nr_charged_bytes can't have an arbitrary byte value.
273          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274          *
275          * The following sequence can lead to it:
276          * 1) CPU0: objcg == stock->cached_objcg
277          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278          *          PAGE_SIZE bytes are charged
279          * 3) CPU1: a process from another memcg is allocating something,
280          *          the stock if flushed,
281          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282          * 5) CPU0: we do release this object,
283          *          92 bytes are added to stock->nr_bytes
284          * 6) CPU0: stock is flushed,
285          *          92 bytes are added to objcg->nr_charged_bytes
286          *
287          * In the result, nr_charged_bytes == PAGE_SIZE.
288          * This page will be uncharged in obj_cgroup_release().
289          */
290         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292         nr_pages = nr_bytes >> PAGE_SHIFT;
293
294         if (nr_pages)
295                 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297         spin_lock_irqsave(&objcg_lock, flags);
298         list_del(&objcg->list);
299         spin_unlock_irqrestore(&objcg_lock, flags);
300
301         percpu_ref_exit(ref);
302         kfree_rcu(objcg, rcu);
303 }
304
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307         struct obj_cgroup *objcg;
308         int ret;
309
310         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311         if (!objcg)
312                 return NULL;
313
314         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315                               GFP_KERNEL);
316         if (ret) {
317                 kfree(objcg);
318                 return NULL;
319         }
320         INIT_LIST_HEAD(&objcg->list);
321         return objcg;
322 }
323
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325                                   struct mem_cgroup *parent)
326 {
327         struct obj_cgroup *objcg, *iter;
328
329         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331         spin_lock_irq(&objcg_lock);
332
333         /* 1) Ready to reparent active objcg. */
334         list_add(&objcg->list, &memcg->objcg_list);
335         /* 2) Reparent active objcg and already reparented objcgs to parent. */
336         list_for_each_entry(iter, &memcg->objcg_list, list)
337                 WRITE_ONCE(iter->memcg, parent);
338         /* 3) Move already reparented objcgs to the parent's list */
339         list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341         spin_unlock_irq(&objcg_lock);
342
343         percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372         struct mem_cgroup *memcg = folio_memcg(folio);
373
374         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375                 memcg = root_mem_cgroup;
376
377         return &memcg->css;
378 }
379
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395         struct mem_cgroup *memcg;
396         unsigned long ino = 0;
397
398         rcu_read_lock();
399         /* page_folio() is racy here, but the entire function is racy anyway */
400         memcg = folio_memcg_check(page_folio(page));
401
402         while (memcg && !(memcg->css.flags & CSS_ONLINE))
403                 memcg = parent_mem_cgroup(memcg);
404         if (memcg)
405                 ino = cgroup_ino(memcg->css.cgroup);
406         rcu_read_unlock();
407         return ino;
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411                                          struct mem_cgroup_tree_per_node *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_node *mz_node;
417         bool rightmost = true;
418
419         if (mz->on_tree)
420                 return;
421
422         mz->usage_in_excess = new_usage_in_excess;
423         if (!mz->usage_in_excess)
424                 return;
425         while (*p) {
426                 parent = *p;
427                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428                                         tree_node);
429                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430                         p = &(*p)->rb_left;
431                         rightmost = false;
432                 } else {
433                         p = &(*p)->rb_right;
434                 }
435         }
436
437         if (rightmost)
438                 mctz->rb_rightmost = &mz->tree_node;
439
440         rb_link_node(&mz->tree_node, parent, p);
441         rb_insert_color(&mz->tree_node, &mctz->rb_root);
442         mz->on_tree = true;
443 }
444
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446                                          struct mem_cgroup_tree_per_node *mctz)
447 {
448         if (!mz->on_tree)
449                 return;
450
451         if (&mz->tree_node == mctz->rb_rightmost)
452                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454         rb_erase(&mz->tree_node, &mctz->rb_root);
455         mz->on_tree = false;
456 }
457
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459                                        struct mem_cgroup_tree_per_node *mctz)
460 {
461         unsigned long flags;
462
463         spin_lock_irqsave(&mctz->lock, flags);
464         __mem_cgroup_remove_exceeded(mz, mctz);
465         spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470         unsigned long nr_pages = page_counter_read(&memcg->memory);
471         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472         unsigned long excess = 0;
473
474         if (nr_pages > soft_limit)
475                 excess = nr_pages - soft_limit;
476
477         return excess;
478 }
479
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482         unsigned long excess;
483         struct mem_cgroup_per_node *mz;
484         struct mem_cgroup_tree_per_node *mctz;
485
486         if (lru_gen_enabled()) {
487                 if (soft_limit_excess(memcg))
488                         lru_gen_soft_reclaim(memcg, nid);
489                 return;
490         }
491
492         mctz = soft_limit_tree.rb_tree_per_node[nid];
493         if (!mctz)
494                 return;
495         /*
496          * Necessary to update all ancestors when hierarchy is used.
497          * because their event counter is not touched.
498          */
499         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500                 mz = memcg->nodeinfo[nid];
501                 excess = soft_limit_excess(memcg);
502                 /*
503                  * We have to update the tree if mz is on RB-tree or
504                  * mem is over its softlimit.
505                  */
506                 if (excess || mz->on_tree) {
507                         unsigned long flags;
508
509                         spin_lock_irqsave(&mctz->lock, flags);
510                         /* if on-tree, remove it */
511                         if (mz->on_tree)
512                                 __mem_cgroup_remove_exceeded(mz, mctz);
513                         /*
514                          * Insert again. mz->usage_in_excess will be updated.
515                          * If excess is 0, no tree ops.
516                          */
517                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
518                         spin_unlock_irqrestore(&mctz->lock, flags);
519                 }
520         }
521 }
522
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525         struct mem_cgroup_tree_per_node *mctz;
526         struct mem_cgroup_per_node *mz;
527         int nid;
528
529         for_each_node(nid) {
530                 mz = memcg->nodeinfo[nid];
531                 mctz = soft_limit_tree.rb_tree_per_node[nid];
532                 if (mctz)
533                         mem_cgroup_remove_exceeded(mz, mctz);
534         }
535 }
536
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540         struct mem_cgroup_per_node *mz;
541
542 retry:
543         mz = NULL;
544         if (!mctz->rb_rightmost)
545                 goto done;              /* Nothing to reclaim from */
546
547         mz = rb_entry(mctz->rb_rightmost,
548                       struct mem_cgroup_per_node, tree_node);
549         /*
550          * Remove the node now but someone else can add it back,
551          * we will to add it back at the end of reclaim to its correct
552          * position in the tree.
553          */
554         __mem_cgroup_remove_exceeded(mz, mctz);
555         if (!soft_limit_excess(mz->memcg) ||
556             !css_tryget(&mz->memcg->css))
557                 goto retry;
558 done:
559         return mz;
560 }
561
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565         struct mem_cgroup_per_node *mz;
566
567         spin_lock_irq(&mctz->lock);
568         mz = __mem_cgroup_largest_soft_limit_node(mctz);
569         spin_unlock_irq(&mctz->lock);
570         return mz;
571 }
572
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605         preempt_disable_nested();
606         VM_WARN_ON_IRQS_ENABLED();
607 }
608
609 static void __memcg_stats_lock(void)
610 {
611         preempt_disable_nested();
612 }
613
614 static void memcg_stats_unlock(void)
615 {
616         preempt_enable_nested();
617 }
618
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621         unsigned int x;
622
623         if (!val)
624                 return;
625
626         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628         x = __this_cpu_add_return(stats_updates, abs(val));
629         if (x > MEMCG_CHARGE_BATCH) {
630                 /*
631                  * If stats_flush_threshold exceeds the threshold
632                  * (>num_online_cpus()), cgroup stats update will be triggered
633                  * in __mem_cgroup_flush_stats(). Increasing this var further
634                  * is redundant and simply adds overhead in atomic update.
635                  */
636                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638                 __this_cpu_write(stats_updates, 0);
639         }
640 }
641
642 static void do_flush_stats(void)
643 {
644         /*
645          * We always flush the entire tree, so concurrent flushers can just
646          * skip. This avoids a thundering herd problem on the rstat global lock
647          * from memcg flushers (e.g. reclaim, refault, etc).
648          */
649         if (atomic_read(&stats_flush_ongoing) ||
650             atomic_xchg(&stats_flush_ongoing, 1))
651                 return;
652
653         WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655         cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657         atomic_set(&stats_flush_threshold, 0);
658         atomic_set(&stats_flush_ongoing, 0);
659 }
660
661 void mem_cgroup_flush_stats(void)
662 {
663         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664                 do_flush_stats();
665 }
666
667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669         if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670                 mem_cgroup_flush_stats();
671 }
672
673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675         /*
676          * Always flush here so that flushing in latency-sensitive paths is
677          * as cheap as possible.
678          */
679         do_flush_stats();
680         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685         PGPGIN,
686         PGPGOUT,
687         PGSCAN_KSWAPD,
688         PGSCAN_DIRECT,
689         PGSCAN_KHUGEPAGED,
690         PGSTEAL_KSWAPD,
691         PGSTEAL_DIRECT,
692         PGSTEAL_KHUGEPAGED,
693         PGFAULT,
694         PGMAJFAULT,
695         PGREFILL,
696         PGACTIVATE,
697         PGDEACTIVATE,
698         PGLAZYFREE,
699         PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701         ZSWPIN,
702         ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705         THP_FAULT_ALLOC,
706         THP_COLLAPSE_ALLOC,
707 #endif
708 };
709
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713 static void init_memcg_events(void)
714 {
715         int i;
716
717         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720
721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723         return mem_cgroup_events_index[idx] - 1;
724 }
725
726 struct memcg_vmstats_percpu {
727         /* Local (CPU and cgroup) page state & events */
728         long                    state[MEMCG_NR_STAT];
729         unsigned long           events[NR_MEMCG_EVENTS];
730
731         /* Delta calculation for lockless upward propagation */
732         long                    state_prev[MEMCG_NR_STAT];
733         unsigned long           events_prev[NR_MEMCG_EVENTS];
734
735         /* Cgroup1: threshold notifications & softlimit tree updates */
736         unsigned long           nr_page_events;
737         unsigned long           targets[MEM_CGROUP_NTARGETS];
738 };
739
740 struct memcg_vmstats {
741         /* Aggregated (CPU and subtree) page state & events */
742         long                    state[MEMCG_NR_STAT];
743         unsigned long           events[NR_MEMCG_EVENTS];
744
745         /* Non-hierarchical (CPU aggregated) page state & events */
746         long                    state_local[MEMCG_NR_STAT];
747         unsigned long           events_local[NR_MEMCG_EVENTS];
748
749         /* Pending child counts during tree propagation */
750         long                    state_pending[MEMCG_NR_STAT];
751         unsigned long           events_pending[NR_MEMCG_EVENTS];
752 };
753
754 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
755 {
756         long x = READ_ONCE(memcg->vmstats->state[idx]);
757 #ifdef CONFIG_SMP
758         if (x < 0)
759                 x = 0;
760 #endif
761         return x;
762 }
763
764 /**
765  * __mod_memcg_state - update cgroup memory statistics
766  * @memcg: the memory cgroup
767  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
768  * @val: delta to add to the counter, can be negative
769  */
770 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
771 {
772         if (mem_cgroup_disabled())
773                 return;
774
775         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
776         memcg_rstat_updated(memcg, val);
777 }
778
779 /* idx can be of type enum memcg_stat_item or node_stat_item. */
780 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
781 {
782         long x = READ_ONCE(memcg->vmstats->state_local[idx]);
783
784 #ifdef CONFIG_SMP
785         if (x < 0)
786                 x = 0;
787 #endif
788         return x;
789 }
790
791 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
792                               int val)
793 {
794         struct mem_cgroup_per_node *pn;
795         struct mem_cgroup *memcg;
796
797         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
798         memcg = pn->memcg;
799
800         /*
801          * The caller from rmap relay on disabled preemption becase they never
802          * update their counter from in-interrupt context. For these two
803          * counters we check that the update is never performed from an
804          * interrupt context while other caller need to have disabled interrupt.
805          */
806         __memcg_stats_lock();
807         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
808                 switch (idx) {
809                 case NR_ANON_MAPPED:
810                 case NR_FILE_MAPPED:
811                 case NR_ANON_THPS:
812                 case NR_SHMEM_PMDMAPPED:
813                 case NR_FILE_PMDMAPPED:
814                         WARN_ON_ONCE(!in_task());
815                         break;
816                 default:
817                         VM_WARN_ON_IRQS_ENABLED();
818                 }
819         }
820
821         /* Update memcg */
822         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
823
824         /* Update lruvec */
825         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
826
827         memcg_rstat_updated(memcg, val);
828         memcg_stats_unlock();
829 }
830
831 /**
832  * __mod_lruvec_state - update lruvec memory statistics
833  * @lruvec: the lruvec
834  * @idx: the stat item
835  * @val: delta to add to the counter, can be negative
836  *
837  * The lruvec is the intersection of the NUMA node and a cgroup. This
838  * function updates the all three counters that are affected by a
839  * change of state at this level: per-node, per-cgroup, per-lruvec.
840  */
841 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842                         int val)
843 {
844         /* Update node */
845         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846
847         /* Update memcg and lruvec */
848         if (!mem_cgroup_disabled())
849                 __mod_memcg_lruvec_state(lruvec, idx, val);
850 }
851
852 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
853                              int val)
854 {
855         struct page *head = compound_head(page); /* rmap on tail pages */
856         struct mem_cgroup *memcg;
857         pg_data_t *pgdat = page_pgdat(page);
858         struct lruvec *lruvec;
859
860         rcu_read_lock();
861         memcg = page_memcg(head);
862         /* Untracked pages have no memcg, no lruvec. Update only the node */
863         if (!memcg) {
864                 rcu_read_unlock();
865                 __mod_node_page_state(pgdat, idx, val);
866                 return;
867         }
868
869         lruvec = mem_cgroup_lruvec(memcg, pgdat);
870         __mod_lruvec_state(lruvec, idx, val);
871         rcu_read_unlock();
872 }
873 EXPORT_SYMBOL(__mod_lruvec_page_state);
874
875 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
876 {
877         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878         struct mem_cgroup *memcg;
879         struct lruvec *lruvec;
880
881         rcu_read_lock();
882         memcg = mem_cgroup_from_slab_obj(p);
883
884         /*
885          * Untracked pages have no memcg, no lruvec. Update only the
886          * node. If we reparent the slab objects to the root memcg,
887          * when we free the slab object, we need to update the per-memcg
888          * vmstats to keep it correct for the root memcg.
889          */
890         if (!memcg) {
891                 __mod_node_page_state(pgdat, idx, val);
892         } else {
893                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
894                 __mod_lruvec_state(lruvec, idx, val);
895         }
896         rcu_read_unlock();
897 }
898
899 /**
900  * __count_memcg_events - account VM events in a cgroup
901  * @memcg: the memory cgroup
902  * @idx: the event item
903  * @count: the number of events that occurred
904  */
905 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
906                           unsigned long count)
907 {
908         int index = memcg_events_index(idx);
909
910         if (mem_cgroup_disabled() || index < 0)
911                 return;
912
913         memcg_stats_lock();
914         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
915         memcg_rstat_updated(memcg, count);
916         memcg_stats_unlock();
917 }
918
919 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
920 {
921         int index = memcg_events_index(event);
922
923         if (index < 0)
924                 return 0;
925         return READ_ONCE(memcg->vmstats->events[index]);
926 }
927
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930         int index = memcg_events_index(event);
931
932         if (index < 0)
933                 return 0;
934
935         return READ_ONCE(memcg->vmstats->events_local[index]);
936 }
937
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939                                          int nr_pages)
940 {
941         /* pagein of a big page is an event. So, ignore page size */
942         if (nr_pages > 0)
943                 __count_memcg_events(memcg, PGPGIN, 1);
944         else {
945                 __count_memcg_events(memcg, PGPGOUT, 1);
946                 nr_pages = -nr_pages; /* for event */
947         }
948
949         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
950 }
951
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953                                        enum mem_cgroup_events_target target)
954 {
955         unsigned long val, next;
956
957         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
958         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
959         /* from time_after() in jiffies.h */
960         if ((long)(next - val) < 0) {
961                 switch (target) {
962                 case MEM_CGROUP_TARGET_THRESH:
963                         next = val + THRESHOLDS_EVENTS_TARGET;
964                         break;
965                 case MEM_CGROUP_TARGET_SOFTLIMIT:
966                         next = val + SOFTLIMIT_EVENTS_TARGET;
967                         break;
968                 default:
969                         break;
970                 }
971                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
972                 return true;
973         }
974         return false;
975 }
976
977 /*
978  * Check events in order.
979  *
980  */
981 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
982 {
983         if (IS_ENABLED(CONFIG_PREEMPT_RT))
984                 return;
985
986         /* threshold event is triggered in finer grain than soft limit */
987         if (unlikely(mem_cgroup_event_ratelimit(memcg,
988                                                 MEM_CGROUP_TARGET_THRESH))) {
989                 bool do_softlimit;
990
991                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
992                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
993                 mem_cgroup_threshold(memcg);
994                 if (unlikely(do_softlimit))
995                         mem_cgroup_update_tree(memcg, nid);
996         }
997 }
998
999 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000 {
1001         /*
1002          * mm_update_next_owner() may clear mm->owner to NULL
1003          * if it races with swapoff, page migration, etc.
1004          * So this can be called with p == NULL.
1005          */
1006         if (unlikely(!p))
1007                 return NULL;
1008
1009         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_from_task);
1012
1013 static __always_inline struct mem_cgroup *active_memcg(void)
1014 {
1015         if (!in_task())
1016                 return this_cpu_read(int_active_memcg);
1017         else
1018                 return current->active_memcg;
1019 }
1020
1021 /**
1022  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1023  * @mm: mm from which memcg should be extracted. It can be NULL.
1024  *
1025  * Obtain a reference on mm->memcg and returns it if successful. If mm
1026  * is NULL, then the memcg is chosen as follows:
1027  * 1) The active memcg, if set.
1028  * 2) current->mm->memcg, if available
1029  * 3) root memcg
1030  * If mem_cgroup is disabled, NULL is returned.
1031  */
1032 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1033 {
1034         struct mem_cgroup *memcg;
1035
1036         if (mem_cgroup_disabled())
1037                 return NULL;
1038
1039         /*
1040          * Page cache insertions can happen without an
1041          * actual mm context, e.g. during disk probing
1042          * on boot, loopback IO, acct() writes etc.
1043          *
1044          * No need to css_get on root memcg as the reference
1045          * counting is disabled on the root level in the
1046          * cgroup core. See CSS_NO_REF.
1047          */
1048         if (unlikely(!mm)) {
1049                 memcg = active_memcg();
1050                 if (unlikely(memcg)) {
1051                         /* remote memcg must hold a ref */
1052                         css_get(&memcg->css);
1053                         return memcg;
1054                 }
1055                 mm = current->mm;
1056                 if (unlikely(!mm))
1057                         return root_mem_cgroup;
1058         }
1059
1060         rcu_read_lock();
1061         do {
1062                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063                 if (unlikely(!memcg))
1064                         memcg = root_mem_cgroup;
1065         } while (!css_tryget(&memcg->css));
1066         rcu_read_unlock();
1067         return memcg;
1068 }
1069 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1070
1071 static __always_inline bool memcg_kmem_bypass(void)
1072 {
1073         /* Allow remote memcg charging from any context. */
1074         if (unlikely(active_memcg()))
1075                 return false;
1076
1077         /* Memcg to charge can't be determined. */
1078         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1079                 return true;
1080
1081         return false;
1082 }
1083
1084 /**
1085  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1086  * @root: hierarchy root
1087  * @prev: previously returned memcg, NULL on first invocation
1088  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1089  *
1090  * Returns references to children of the hierarchy below @root, or
1091  * @root itself, or %NULL after a full round-trip.
1092  *
1093  * Caller must pass the return value in @prev on subsequent
1094  * invocations for reference counting, or use mem_cgroup_iter_break()
1095  * to cancel a hierarchy walk before the round-trip is complete.
1096  *
1097  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1098  * in the hierarchy among all concurrent reclaimers operating on the
1099  * same node.
1100  */
1101 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102                                    struct mem_cgroup *prev,
1103                                    struct mem_cgroup_reclaim_cookie *reclaim)
1104 {
1105         struct mem_cgroup_reclaim_iter *iter;
1106         struct cgroup_subsys_state *css = NULL;
1107         struct mem_cgroup *memcg = NULL;
1108         struct mem_cgroup *pos = NULL;
1109
1110         if (mem_cgroup_disabled())
1111                 return NULL;
1112
1113         if (!root)
1114                 root = root_mem_cgroup;
1115
1116         rcu_read_lock();
1117
1118         if (reclaim) {
1119                 struct mem_cgroup_per_node *mz;
1120
1121                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1122                 iter = &mz->iter;
1123
1124                 /*
1125                  * On start, join the current reclaim iteration cycle.
1126                  * Exit when a concurrent walker completes it.
1127                  */
1128                 if (!prev)
1129                         reclaim->generation = iter->generation;
1130                 else if (reclaim->generation != iter->generation)
1131                         goto out_unlock;
1132
1133                 while (1) {
1134                         pos = READ_ONCE(iter->position);
1135                         if (!pos || css_tryget(&pos->css))
1136                                 break;
1137                         /*
1138                          * css reference reached zero, so iter->position will
1139                          * be cleared by ->css_released. However, we should not
1140                          * rely on this happening soon, because ->css_released
1141                          * is called from a work queue, and by busy-waiting we
1142                          * might block it. So we clear iter->position right
1143                          * away.
1144                          */
1145                         (void)cmpxchg(&iter->position, pos, NULL);
1146                 }
1147         } else if (prev) {
1148                 pos = prev;
1149         }
1150
1151         if (pos)
1152                 css = &pos->css;
1153
1154         for (;;) {
1155                 css = css_next_descendant_pre(css, &root->css);
1156                 if (!css) {
1157                         /*
1158                          * Reclaimers share the hierarchy walk, and a
1159                          * new one might jump in right at the end of
1160                          * the hierarchy - make sure they see at least
1161                          * one group and restart from the beginning.
1162                          */
1163                         if (!prev)
1164                                 continue;
1165                         break;
1166                 }
1167
1168                 /*
1169                  * Verify the css and acquire a reference.  The root
1170                  * is provided by the caller, so we know it's alive
1171                  * and kicking, and don't take an extra reference.
1172                  */
1173                 if (css == &root->css || css_tryget(css)) {
1174                         memcg = mem_cgroup_from_css(css);
1175                         break;
1176                 }
1177         }
1178
1179         if (reclaim) {
1180                 /*
1181                  * The position could have already been updated by a competing
1182                  * thread, so check that the value hasn't changed since we read
1183                  * it to avoid reclaiming from the same cgroup twice.
1184                  */
1185                 (void)cmpxchg(&iter->position, pos, memcg);
1186
1187                 if (pos)
1188                         css_put(&pos->css);
1189
1190                 if (!memcg)
1191                         iter->generation++;
1192         }
1193
1194 out_unlock:
1195         rcu_read_unlock();
1196         if (prev && prev != root)
1197                 css_put(&prev->css);
1198
1199         return memcg;
1200 }
1201
1202 /**
1203  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1204  * @root: hierarchy root
1205  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1206  */
1207 void mem_cgroup_iter_break(struct mem_cgroup *root,
1208                            struct mem_cgroup *prev)
1209 {
1210         if (!root)
1211                 root = root_mem_cgroup;
1212         if (prev && prev != root)
1213                 css_put(&prev->css);
1214 }
1215
1216 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1217                                         struct mem_cgroup *dead_memcg)
1218 {
1219         struct mem_cgroup_reclaim_iter *iter;
1220         struct mem_cgroup_per_node *mz;
1221         int nid;
1222
1223         for_each_node(nid) {
1224                 mz = from->nodeinfo[nid];
1225                 iter = &mz->iter;
1226                 cmpxchg(&iter->position, dead_memcg, NULL);
1227         }
1228 }
1229
1230 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1231 {
1232         struct mem_cgroup *memcg = dead_memcg;
1233         struct mem_cgroup *last;
1234
1235         do {
1236                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1237                 last = memcg;
1238         } while ((memcg = parent_mem_cgroup(memcg)));
1239
1240         /*
1241          * When cgroup1 non-hierarchy mode is used,
1242          * parent_mem_cgroup() does not walk all the way up to the
1243          * cgroup root (root_mem_cgroup). So we have to handle
1244          * dead_memcg from cgroup root separately.
1245          */
1246         if (!mem_cgroup_is_root(last))
1247                 __invalidate_reclaim_iterators(root_mem_cgroup,
1248                                                 dead_memcg);
1249 }
1250
1251 /**
1252  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1253  * @memcg: hierarchy root
1254  * @fn: function to call for each task
1255  * @arg: argument passed to @fn
1256  *
1257  * This function iterates over tasks attached to @memcg or to any of its
1258  * descendants and calls @fn for each task. If @fn returns a non-zero
1259  * value, the function breaks the iteration loop. Otherwise, it will iterate
1260  * over all tasks and return 0.
1261  *
1262  * This function must not be called for the root memory cgroup.
1263  */
1264 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1265                            int (*fn)(struct task_struct *, void *), void *arg)
1266 {
1267         struct mem_cgroup *iter;
1268         int ret = 0;
1269
1270         BUG_ON(mem_cgroup_is_root(memcg));
1271
1272         for_each_mem_cgroup_tree(iter, memcg) {
1273                 struct css_task_iter it;
1274                 struct task_struct *task;
1275
1276                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1277                 while (!ret && (task = css_task_iter_next(&it)))
1278                         ret = fn(task, arg);
1279                 css_task_iter_end(&it);
1280                 if (ret) {
1281                         mem_cgroup_iter_break(memcg, iter);
1282                         break;
1283                 }
1284         }
1285 }
1286
1287 #ifdef CONFIG_DEBUG_VM
1288 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1289 {
1290         struct mem_cgroup *memcg;
1291
1292         if (mem_cgroup_disabled())
1293                 return;
1294
1295         memcg = folio_memcg(folio);
1296
1297         if (!memcg)
1298                 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1299         else
1300                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1301 }
1302 #endif
1303
1304 /**
1305  * folio_lruvec_lock - Lock the lruvec for a folio.
1306  * @folio: Pointer to the folio.
1307  *
1308  * These functions are safe to use under any of the following conditions:
1309  * - folio locked
1310  * - folio_test_lru false
1311  * - folio_memcg_lock()
1312  * - folio frozen (refcount of 0)
1313  *
1314  * Return: The lruvec this folio is on with its lock held.
1315  */
1316 struct lruvec *folio_lruvec_lock(struct folio *folio)
1317 {
1318         struct lruvec *lruvec = folio_lruvec(folio);
1319
1320         spin_lock(&lruvec->lru_lock);
1321         lruvec_memcg_debug(lruvec, folio);
1322
1323         return lruvec;
1324 }
1325
1326 /**
1327  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1328  * @folio: Pointer to the folio.
1329  *
1330  * These functions are safe to use under any of the following conditions:
1331  * - folio locked
1332  * - folio_test_lru false
1333  * - folio_memcg_lock()
1334  * - folio frozen (refcount of 0)
1335  *
1336  * Return: The lruvec this folio is on with its lock held and interrupts
1337  * disabled.
1338  */
1339 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1340 {
1341         struct lruvec *lruvec = folio_lruvec(folio);
1342
1343         spin_lock_irq(&lruvec->lru_lock);
1344         lruvec_memcg_debug(lruvec, folio);
1345
1346         return lruvec;
1347 }
1348
1349 /**
1350  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1351  * @folio: Pointer to the folio.
1352  * @flags: Pointer to irqsave flags.
1353  *
1354  * These functions are safe to use under any of the following conditions:
1355  * - folio locked
1356  * - folio_test_lru false
1357  * - folio_memcg_lock()
1358  * - folio frozen (refcount of 0)
1359  *
1360  * Return: The lruvec this folio is on with its lock held and interrupts
1361  * disabled.
1362  */
1363 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1364                 unsigned long *flags)
1365 {
1366         struct lruvec *lruvec = folio_lruvec(folio);
1367
1368         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1369         lruvec_memcg_debug(lruvec, folio);
1370
1371         return lruvec;
1372 }
1373
1374 /**
1375  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376  * @lruvec: mem_cgroup per zone lru vector
1377  * @lru: index of lru list the page is sitting on
1378  * @zid: zone id of the accounted pages
1379  * @nr_pages: positive when adding or negative when removing
1380  *
1381  * This function must be called under lru_lock, just before a page is added
1382  * to or just after a page is removed from an lru list.
1383  */
1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385                                 int zid, int nr_pages)
1386 {
1387         struct mem_cgroup_per_node *mz;
1388         unsigned long *lru_size;
1389         long size;
1390
1391         if (mem_cgroup_disabled())
1392                 return;
1393
1394         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395         lru_size = &mz->lru_zone_size[zid][lru];
1396
1397         if (nr_pages < 0)
1398                 *lru_size += nr_pages;
1399
1400         size = *lru_size;
1401         if (WARN_ONCE(size < 0,
1402                 "%s(%p, %d, %d): lru_size %ld\n",
1403                 __func__, lruvec, lru, nr_pages, size)) {
1404                 VM_BUG_ON(1);
1405                 *lru_size = 0;
1406         }
1407
1408         if (nr_pages > 0)
1409                 *lru_size += nr_pages;
1410 }
1411
1412 /**
1413  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414  * @memcg: the memory cgroup
1415  *
1416  * Returns the maximum amount of memory @mem can be charged with, in
1417  * pages.
1418  */
1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420 {
1421         unsigned long margin = 0;
1422         unsigned long count;
1423         unsigned long limit;
1424
1425         count = page_counter_read(&memcg->memory);
1426         limit = READ_ONCE(memcg->memory.max);
1427         if (count < limit)
1428                 margin = limit - count;
1429
1430         if (do_memsw_account()) {
1431                 count = page_counter_read(&memcg->memsw);
1432                 limit = READ_ONCE(memcg->memsw.max);
1433                 if (count < limit)
1434                         margin = min(margin, limit - count);
1435                 else
1436                         margin = 0;
1437         }
1438
1439         return margin;
1440 }
1441
1442 /*
1443  * A routine for checking "mem" is under move_account() or not.
1444  *
1445  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446  * moving cgroups. This is for waiting at high-memory pressure
1447  * caused by "move".
1448  */
1449 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450 {
1451         struct mem_cgroup *from;
1452         struct mem_cgroup *to;
1453         bool ret = false;
1454         /*
1455          * Unlike task_move routines, we access mc.to, mc.from not under
1456          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457          */
1458         spin_lock(&mc.lock);
1459         from = mc.from;
1460         to = mc.to;
1461         if (!from)
1462                 goto unlock;
1463
1464         ret = mem_cgroup_is_descendant(from, memcg) ||
1465                 mem_cgroup_is_descendant(to, memcg);
1466 unlock:
1467         spin_unlock(&mc.lock);
1468         return ret;
1469 }
1470
1471 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 {
1473         if (mc.moving_task && current != mc.moving_task) {
1474                 if (mem_cgroup_under_move(memcg)) {
1475                         DEFINE_WAIT(wait);
1476                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477                         /* moving charge context might have finished. */
1478                         if (mc.moving_task)
1479                                 schedule();
1480                         finish_wait(&mc.waitq, &wait);
1481                         return true;
1482                 }
1483         }
1484         return false;
1485 }
1486
1487 struct memory_stat {
1488         const char *name;
1489         unsigned int idx;
1490 };
1491
1492 static const struct memory_stat memory_stats[] = {
1493         { "anon",                       NR_ANON_MAPPED                  },
1494         { "file",                       NR_FILE_PAGES                   },
1495         { "kernel",                     MEMCG_KMEM                      },
1496         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1497         { "pagetables",                 NR_PAGETABLE                    },
1498         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1499         { "percpu",                     MEMCG_PERCPU_B                  },
1500         { "sock",                       MEMCG_SOCK                      },
1501         { "vmalloc",                    MEMCG_VMALLOC                   },
1502         { "shmem",                      NR_SHMEM                        },
1503 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1504         { "zswap",                      MEMCG_ZSWAP_B                   },
1505         { "zswapped",                   MEMCG_ZSWAPPED                  },
1506 #endif
1507         { "file_mapped",                NR_FILE_MAPPED                  },
1508         { "file_dirty",                 NR_FILE_DIRTY                   },
1509         { "file_writeback",             NR_WRITEBACK                    },
1510 #ifdef CONFIG_SWAP
1511         { "swapcached",                 NR_SWAPCACHE                    },
1512 #endif
1513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1514         { "anon_thp",                   NR_ANON_THPS                    },
1515         { "file_thp",                   NR_FILE_THPS                    },
1516         { "shmem_thp",                  NR_SHMEM_THPS                   },
1517 #endif
1518         { "inactive_anon",              NR_INACTIVE_ANON                },
1519         { "active_anon",                NR_ACTIVE_ANON                  },
1520         { "inactive_file",              NR_INACTIVE_FILE                },
1521         { "active_file",                NR_ACTIVE_FILE                  },
1522         { "unevictable",                NR_UNEVICTABLE                  },
1523         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1524         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1525
1526         /* The memory events */
1527         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1528         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1529         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1530         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1531         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1532         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1533         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1534 };
1535
1536 /* Translate stat items to the correct unit for memory.stat output */
1537 static int memcg_page_state_unit(int item)
1538 {
1539         switch (item) {
1540         case MEMCG_PERCPU_B:
1541         case MEMCG_ZSWAP_B:
1542         case NR_SLAB_RECLAIMABLE_B:
1543         case NR_SLAB_UNRECLAIMABLE_B:
1544         case WORKINGSET_REFAULT_ANON:
1545         case WORKINGSET_REFAULT_FILE:
1546         case WORKINGSET_ACTIVATE_ANON:
1547         case WORKINGSET_ACTIVATE_FILE:
1548         case WORKINGSET_RESTORE_ANON:
1549         case WORKINGSET_RESTORE_FILE:
1550         case WORKINGSET_NODERECLAIM:
1551                 return 1;
1552         case NR_KERNEL_STACK_KB:
1553                 return SZ_1K;
1554         default:
1555                 return PAGE_SIZE;
1556         }
1557 }
1558
1559 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1560                                                     int item)
1561 {
1562         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1563 }
1564
1565 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1566 {
1567         int i;
1568
1569         /*
1570          * Provide statistics on the state of the memory subsystem as
1571          * well as cumulative event counters that show past behavior.
1572          *
1573          * This list is ordered following a combination of these gradients:
1574          * 1) generic big picture -> specifics and details
1575          * 2) reflecting userspace activity -> reflecting kernel heuristics
1576          *
1577          * Current memory state:
1578          */
1579         mem_cgroup_flush_stats();
1580
1581         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1582                 u64 size;
1583
1584                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1585                 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1586
1587                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1588                         size += memcg_page_state_output(memcg,
1589                                                         NR_SLAB_RECLAIMABLE_B);
1590                         seq_buf_printf(s, "slab %llu\n", size);
1591                 }
1592         }
1593
1594         /* Accumulated memory events */
1595         seq_buf_printf(s, "pgscan %lu\n",
1596                        memcg_events(memcg, PGSCAN_KSWAPD) +
1597                        memcg_events(memcg, PGSCAN_DIRECT) +
1598                        memcg_events(memcg, PGSCAN_KHUGEPAGED));
1599         seq_buf_printf(s, "pgsteal %lu\n",
1600                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1601                        memcg_events(memcg, PGSTEAL_DIRECT) +
1602                        memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1603
1604         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1605                 if (memcg_vm_event_stat[i] == PGPGIN ||
1606                     memcg_vm_event_stat[i] == PGPGOUT)
1607                         continue;
1608
1609                 seq_buf_printf(s, "%s %lu\n",
1610                                vm_event_name(memcg_vm_event_stat[i]),
1611                                memcg_events(memcg, memcg_vm_event_stat[i]));
1612         }
1613
1614         /* The above should easily fit into one page */
1615         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1616 }
1617
1618 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1619
1620 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1621 {
1622         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1623                 memcg_stat_format(memcg, s);
1624         else
1625                 memcg1_stat_format(memcg, s);
1626         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1627 }
1628
1629 /**
1630  * mem_cgroup_print_oom_context: Print OOM information relevant to
1631  * memory controller.
1632  * @memcg: The memory cgroup that went over limit
1633  * @p: Task that is going to be killed
1634  *
1635  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1636  * enabled
1637  */
1638 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1639 {
1640         rcu_read_lock();
1641
1642         if (memcg) {
1643                 pr_cont(",oom_memcg=");
1644                 pr_cont_cgroup_path(memcg->css.cgroup);
1645         } else
1646                 pr_cont(",global_oom");
1647         if (p) {
1648                 pr_cont(",task_memcg=");
1649                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1650         }
1651         rcu_read_unlock();
1652 }
1653
1654 /**
1655  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1656  * memory controller.
1657  * @memcg: The memory cgroup that went over limit
1658  */
1659 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1660 {
1661         /* Use static buffer, for the caller is holding oom_lock. */
1662         static char buf[PAGE_SIZE];
1663         struct seq_buf s;
1664
1665         lockdep_assert_held(&oom_lock);
1666
1667         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1668                 K((u64)page_counter_read(&memcg->memory)),
1669                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1670         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1671                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1672                         K((u64)page_counter_read(&memcg->swap)),
1673                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1674         else {
1675                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676                         K((u64)page_counter_read(&memcg->memsw)),
1677                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1678                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1679                         K((u64)page_counter_read(&memcg->kmem)),
1680                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1681         }
1682
1683         pr_info("Memory cgroup stats for ");
1684         pr_cont_cgroup_path(memcg->css.cgroup);
1685         pr_cont(":");
1686         seq_buf_init(&s, buf, sizeof(buf));
1687         memory_stat_format(memcg, &s);
1688         seq_buf_do_printk(&s, KERN_INFO);
1689 }
1690
1691 /*
1692  * Return the memory (and swap, if configured) limit for a memcg.
1693  */
1694 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1695 {
1696         unsigned long max = READ_ONCE(memcg->memory.max);
1697
1698         if (do_memsw_account()) {
1699                 if (mem_cgroup_swappiness(memcg)) {
1700                         /* Calculate swap excess capacity from memsw limit */
1701                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703                         max += min(swap, (unsigned long)total_swap_pages);
1704                 }
1705         } else {
1706                 if (mem_cgroup_swappiness(memcg))
1707                         max += min(READ_ONCE(memcg->swap.max),
1708                                    (unsigned long)total_swap_pages);
1709         }
1710         return max;
1711 }
1712
1713 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1714 {
1715         return page_counter_read(&memcg->memory);
1716 }
1717
1718 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1719                                      int order)
1720 {
1721         struct oom_control oc = {
1722                 .zonelist = NULL,
1723                 .nodemask = NULL,
1724                 .memcg = memcg,
1725                 .gfp_mask = gfp_mask,
1726                 .order = order,
1727         };
1728         bool ret = true;
1729
1730         if (mutex_lock_killable(&oom_lock))
1731                 return true;
1732
1733         if (mem_cgroup_margin(memcg) >= (1 << order))
1734                 goto unlock;
1735
1736         /*
1737          * A few threads which were not waiting at mutex_lock_killable() can
1738          * fail to bail out. Therefore, check again after holding oom_lock.
1739          */
1740         ret = task_is_dying() || out_of_memory(&oc);
1741
1742 unlock:
1743         mutex_unlock(&oom_lock);
1744         return ret;
1745 }
1746
1747 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1748                                    pg_data_t *pgdat,
1749                                    gfp_t gfp_mask,
1750                                    unsigned long *total_scanned)
1751 {
1752         struct mem_cgroup *victim = NULL;
1753         int total = 0;
1754         int loop = 0;
1755         unsigned long excess;
1756         unsigned long nr_scanned;
1757         struct mem_cgroup_reclaim_cookie reclaim = {
1758                 .pgdat = pgdat,
1759         };
1760
1761         excess = soft_limit_excess(root_memcg);
1762
1763         while (1) {
1764                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1765                 if (!victim) {
1766                         loop++;
1767                         if (loop >= 2) {
1768                                 /*
1769                                  * If we have not been able to reclaim
1770                                  * anything, it might because there are
1771                                  * no reclaimable pages under this hierarchy
1772                                  */
1773                                 if (!total)
1774                                         break;
1775                                 /*
1776                                  * We want to do more targeted reclaim.
1777                                  * excess >> 2 is not to excessive so as to
1778                                  * reclaim too much, nor too less that we keep
1779                                  * coming back to reclaim from this cgroup
1780                                  */
1781                                 if (total >= (excess >> 2) ||
1782                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1783                                         break;
1784                         }
1785                         continue;
1786                 }
1787                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1788                                         pgdat, &nr_scanned);
1789                 *total_scanned += nr_scanned;
1790                 if (!soft_limit_excess(root_memcg))
1791                         break;
1792         }
1793         mem_cgroup_iter_break(root_memcg, victim);
1794         return total;
1795 }
1796
1797 #ifdef CONFIG_LOCKDEP
1798 static struct lockdep_map memcg_oom_lock_dep_map = {
1799         .name = "memcg_oom_lock",
1800 };
1801 #endif
1802
1803 static DEFINE_SPINLOCK(memcg_oom_lock);
1804
1805 /*
1806  * Check OOM-Killer is already running under our hierarchy.
1807  * If someone is running, return false.
1808  */
1809 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1810 {
1811         struct mem_cgroup *iter, *failed = NULL;
1812
1813         spin_lock(&memcg_oom_lock);
1814
1815         for_each_mem_cgroup_tree(iter, memcg) {
1816                 if (iter->oom_lock) {
1817                         /*
1818                          * this subtree of our hierarchy is already locked
1819                          * so we cannot give a lock.
1820                          */
1821                         failed = iter;
1822                         mem_cgroup_iter_break(memcg, iter);
1823                         break;
1824                 } else
1825                         iter->oom_lock = true;
1826         }
1827
1828         if (failed) {
1829                 /*
1830                  * OK, we failed to lock the whole subtree so we have
1831                  * to clean up what we set up to the failing subtree
1832                  */
1833                 for_each_mem_cgroup_tree(iter, memcg) {
1834                         if (iter == failed) {
1835                                 mem_cgroup_iter_break(memcg, iter);
1836                                 break;
1837                         }
1838                         iter->oom_lock = false;
1839                 }
1840         } else
1841                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1842
1843         spin_unlock(&memcg_oom_lock);
1844
1845         return !failed;
1846 }
1847
1848 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1849 {
1850         struct mem_cgroup *iter;
1851
1852         spin_lock(&memcg_oom_lock);
1853         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1854         for_each_mem_cgroup_tree(iter, memcg)
1855                 iter->oom_lock = false;
1856         spin_unlock(&memcg_oom_lock);
1857 }
1858
1859 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1860 {
1861         struct mem_cgroup *iter;
1862
1863         spin_lock(&memcg_oom_lock);
1864         for_each_mem_cgroup_tree(iter, memcg)
1865                 iter->under_oom++;
1866         spin_unlock(&memcg_oom_lock);
1867 }
1868
1869 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1870 {
1871         struct mem_cgroup *iter;
1872
1873         /*
1874          * Be careful about under_oom underflows because a child memcg
1875          * could have been added after mem_cgroup_mark_under_oom.
1876          */
1877         spin_lock(&memcg_oom_lock);
1878         for_each_mem_cgroup_tree(iter, memcg)
1879                 if (iter->under_oom > 0)
1880                         iter->under_oom--;
1881         spin_unlock(&memcg_oom_lock);
1882 }
1883
1884 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1885
1886 struct oom_wait_info {
1887         struct mem_cgroup *memcg;
1888         wait_queue_entry_t      wait;
1889 };
1890
1891 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1892         unsigned mode, int sync, void *arg)
1893 {
1894         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1895         struct mem_cgroup *oom_wait_memcg;
1896         struct oom_wait_info *oom_wait_info;
1897
1898         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1899         oom_wait_memcg = oom_wait_info->memcg;
1900
1901         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1902             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1903                 return 0;
1904         return autoremove_wake_function(wait, mode, sync, arg);
1905 }
1906
1907 static void memcg_oom_recover(struct mem_cgroup *memcg)
1908 {
1909         /*
1910          * For the following lockless ->under_oom test, the only required
1911          * guarantee is that it must see the state asserted by an OOM when
1912          * this function is called as a result of userland actions
1913          * triggered by the notification of the OOM.  This is trivially
1914          * achieved by invoking mem_cgroup_mark_under_oom() before
1915          * triggering notification.
1916          */
1917         if (memcg && memcg->under_oom)
1918                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1919 }
1920
1921 /*
1922  * Returns true if successfully killed one or more processes. Though in some
1923  * corner cases it can return true even without killing any process.
1924  */
1925 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1926 {
1927         bool locked, ret;
1928
1929         if (order > PAGE_ALLOC_COSTLY_ORDER)
1930                 return false;
1931
1932         memcg_memory_event(memcg, MEMCG_OOM);
1933
1934         /*
1935          * We are in the middle of the charge context here, so we
1936          * don't want to block when potentially sitting on a callstack
1937          * that holds all kinds of filesystem and mm locks.
1938          *
1939          * cgroup1 allows disabling the OOM killer and waiting for outside
1940          * handling until the charge can succeed; remember the context and put
1941          * the task to sleep at the end of the page fault when all locks are
1942          * released.
1943          *
1944          * On the other hand, in-kernel OOM killer allows for an async victim
1945          * memory reclaim (oom_reaper) and that means that we are not solely
1946          * relying on the oom victim to make a forward progress and we can
1947          * invoke the oom killer here.
1948          *
1949          * Please note that mem_cgroup_out_of_memory might fail to find a
1950          * victim and then we have to bail out from the charge path.
1951          */
1952         if (READ_ONCE(memcg->oom_kill_disable)) {
1953                 if (current->in_user_fault) {
1954                         css_get(&memcg->css);
1955                         current->memcg_in_oom = memcg;
1956                         current->memcg_oom_gfp_mask = mask;
1957                         current->memcg_oom_order = order;
1958                 }
1959                 return false;
1960         }
1961
1962         mem_cgroup_mark_under_oom(memcg);
1963
1964         locked = mem_cgroup_oom_trylock(memcg);
1965
1966         if (locked)
1967                 mem_cgroup_oom_notify(memcg);
1968
1969         mem_cgroup_unmark_under_oom(memcg);
1970         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1971
1972         if (locked)
1973                 mem_cgroup_oom_unlock(memcg);
1974
1975         return ret;
1976 }
1977
1978 /**
1979  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1980  * @handle: actually kill/wait or just clean up the OOM state
1981  *
1982  * This has to be called at the end of a page fault if the memcg OOM
1983  * handler was enabled.
1984  *
1985  * Memcg supports userspace OOM handling where failed allocations must
1986  * sleep on a waitqueue until the userspace task resolves the
1987  * situation.  Sleeping directly in the charge context with all kinds
1988  * of locks held is not a good idea, instead we remember an OOM state
1989  * in the task and mem_cgroup_oom_synchronize() has to be called at
1990  * the end of the page fault to complete the OOM handling.
1991  *
1992  * Returns %true if an ongoing memcg OOM situation was detected and
1993  * completed, %false otherwise.
1994  */
1995 bool mem_cgroup_oom_synchronize(bool handle)
1996 {
1997         struct mem_cgroup *memcg = current->memcg_in_oom;
1998         struct oom_wait_info owait;
1999         bool locked;
2000
2001         /* OOM is global, do not handle */
2002         if (!memcg)
2003                 return false;
2004
2005         if (!handle)
2006                 goto cleanup;
2007
2008         owait.memcg = memcg;
2009         owait.wait.flags = 0;
2010         owait.wait.func = memcg_oom_wake_function;
2011         owait.wait.private = current;
2012         INIT_LIST_HEAD(&owait.wait.entry);
2013
2014         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2015         mem_cgroup_mark_under_oom(memcg);
2016
2017         locked = mem_cgroup_oom_trylock(memcg);
2018
2019         if (locked)
2020                 mem_cgroup_oom_notify(memcg);
2021
2022         schedule();
2023         mem_cgroup_unmark_under_oom(memcg);
2024         finish_wait(&memcg_oom_waitq, &owait.wait);
2025
2026         if (locked)
2027                 mem_cgroup_oom_unlock(memcg);
2028 cleanup:
2029         current->memcg_in_oom = NULL;
2030         css_put(&memcg->css);
2031         return true;
2032 }
2033
2034 /**
2035  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2036  * @victim: task to be killed by the OOM killer
2037  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2038  *
2039  * Returns a pointer to a memory cgroup, which has to be cleaned up
2040  * by killing all belonging OOM-killable tasks.
2041  *
2042  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2043  */
2044 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2045                                             struct mem_cgroup *oom_domain)
2046 {
2047         struct mem_cgroup *oom_group = NULL;
2048         struct mem_cgroup *memcg;
2049
2050         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2051                 return NULL;
2052
2053         if (!oom_domain)
2054                 oom_domain = root_mem_cgroup;
2055
2056         rcu_read_lock();
2057
2058         memcg = mem_cgroup_from_task(victim);
2059         if (mem_cgroup_is_root(memcg))
2060                 goto out;
2061
2062         /*
2063          * If the victim task has been asynchronously moved to a different
2064          * memory cgroup, we might end up killing tasks outside oom_domain.
2065          * In this case it's better to ignore memory.group.oom.
2066          */
2067         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2068                 goto out;
2069
2070         /*
2071          * Traverse the memory cgroup hierarchy from the victim task's
2072          * cgroup up to the OOMing cgroup (or root) to find the
2073          * highest-level memory cgroup with oom.group set.
2074          */
2075         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2076                 if (READ_ONCE(memcg->oom_group))
2077                         oom_group = memcg;
2078
2079                 if (memcg == oom_domain)
2080                         break;
2081         }
2082
2083         if (oom_group)
2084                 css_get(&oom_group->css);
2085 out:
2086         rcu_read_unlock();
2087
2088         return oom_group;
2089 }
2090
2091 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2092 {
2093         pr_info("Tasks in ");
2094         pr_cont_cgroup_path(memcg->css.cgroup);
2095         pr_cont(" are going to be killed due to memory.oom.group set\n");
2096 }
2097
2098 /**
2099  * folio_memcg_lock - Bind a folio to its memcg.
2100  * @folio: The folio.
2101  *
2102  * This function prevents unlocked LRU folios from being moved to
2103  * another cgroup.
2104  *
2105  * It ensures lifetime of the bound memcg.  The caller is responsible
2106  * for the lifetime of the folio.
2107  */
2108 void folio_memcg_lock(struct folio *folio)
2109 {
2110         struct mem_cgroup *memcg;
2111         unsigned long flags;
2112
2113         /*
2114          * The RCU lock is held throughout the transaction.  The fast
2115          * path can get away without acquiring the memcg->move_lock
2116          * because page moving starts with an RCU grace period.
2117          */
2118         rcu_read_lock();
2119
2120         if (mem_cgroup_disabled())
2121                 return;
2122 again:
2123         memcg = folio_memcg(folio);
2124         if (unlikely(!memcg))
2125                 return;
2126
2127 #ifdef CONFIG_PROVE_LOCKING
2128         local_irq_save(flags);
2129         might_lock(&memcg->move_lock);
2130         local_irq_restore(flags);
2131 #endif
2132
2133         if (atomic_read(&memcg->moving_account) <= 0)
2134                 return;
2135
2136         spin_lock_irqsave(&memcg->move_lock, flags);
2137         if (memcg != folio_memcg(folio)) {
2138                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2139                 goto again;
2140         }
2141
2142         /*
2143          * When charge migration first begins, we can have multiple
2144          * critical sections holding the fast-path RCU lock and one
2145          * holding the slowpath move_lock. Track the task who has the
2146          * move_lock for folio_memcg_unlock().
2147          */
2148         memcg->move_lock_task = current;
2149         memcg->move_lock_flags = flags;
2150 }
2151
2152 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2153 {
2154         if (memcg && memcg->move_lock_task == current) {
2155                 unsigned long flags = memcg->move_lock_flags;
2156
2157                 memcg->move_lock_task = NULL;
2158                 memcg->move_lock_flags = 0;
2159
2160                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2161         }
2162
2163         rcu_read_unlock();
2164 }
2165
2166 /**
2167  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2168  * @folio: The folio.
2169  *
2170  * This releases the binding created by folio_memcg_lock().  This does
2171  * not change the accounting of this folio to its memcg, but it does
2172  * permit others to change it.
2173  */
2174 void folio_memcg_unlock(struct folio *folio)
2175 {
2176         __folio_memcg_unlock(folio_memcg(folio));
2177 }
2178
2179 struct memcg_stock_pcp {
2180         local_lock_t stock_lock;
2181         struct mem_cgroup *cached; /* this never be root cgroup */
2182         unsigned int nr_pages;
2183
2184 #ifdef CONFIG_MEMCG_KMEM
2185         struct obj_cgroup *cached_objcg;
2186         struct pglist_data *cached_pgdat;
2187         unsigned int nr_bytes;
2188         int nr_slab_reclaimable_b;
2189         int nr_slab_unreclaimable_b;
2190 #endif
2191
2192         struct work_struct work;
2193         unsigned long flags;
2194 #define FLUSHING_CACHED_CHARGE  0
2195 };
2196 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2197         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2198 };
2199 static DEFINE_MUTEX(percpu_charge_mutex);
2200
2201 #ifdef CONFIG_MEMCG_KMEM
2202 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2203 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2204                                      struct mem_cgroup *root_memcg);
2205 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2206
2207 #else
2208 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2209 {
2210         return NULL;
2211 }
2212 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213                                      struct mem_cgroup *root_memcg)
2214 {
2215         return false;
2216 }
2217 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2218 {
2219 }
2220 #endif
2221
2222 /**
2223  * consume_stock: Try to consume stocked charge on this cpu.
2224  * @memcg: memcg to consume from.
2225  * @nr_pages: how many pages to charge.
2226  *
2227  * The charges will only happen if @memcg matches the current cpu's memcg
2228  * stock, and at least @nr_pages are available in that stock.  Failure to
2229  * service an allocation will refill the stock.
2230  *
2231  * returns true if successful, false otherwise.
2232  */
2233 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2234 {
2235         struct memcg_stock_pcp *stock;
2236         unsigned long flags;
2237         bool ret = false;
2238
2239         if (nr_pages > MEMCG_CHARGE_BATCH)
2240                 return ret;
2241
2242         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2243
2244         stock = this_cpu_ptr(&memcg_stock);
2245         if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2246                 stock->nr_pages -= nr_pages;
2247                 ret = true;
2248         }
2249
2250         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2251
2252         return ret;
2253 }
2254
2255 /*
2256  * Returns stocks cached in percpu and reset cached information.
2257  */
2258 static void drain_stock(struct memcg_stock_pcp *stock)
2259 {
2260         struct mem_cgroup *old = READ_ONCE(stock->cached);
2261
2262         if (!old)
2263                 return;
2264
2265         if (stock->nr_pages) {
2266                 page_counter_uncharge(&old->memory, stock->nr_pages);
2267                 if (do_memsw_account())
2268                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2269                 stock->nr_pages = 0;
2270         }
2271
2272         css_put(&old->css);
2273         WRITE_ONCE(stock->cached, NULL);
2274 }
2275
2276 static void drain_local_stock(struct work_struct *dummy)
2277 {
2278         struct memcg_stock_pcp *stock;
2279         struct obj_cgroup *old = NULL;
2280         unsigned long flags;
2281
2282         /*
2283          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2284          * drain_stock races is that we always operate on local CPU stock
2285          * here with IRQ disabled
2286          */
2287         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2288
2289         stock = this_cpu_ptr(&memcg_stock);
2290         old = drain_obj_stock(stock);
2291         drain_stock(stock);
2292         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2293
2294         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2295         if (old)
2296                 obj_cgroup_put(old);
2297 }
2298
2299 /*
2300  * Cache charges(val) to local per_cpu area.
2301  * This will be consumed by consume_stock() function, later.
2302  */
2303 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2304 {
2305         struct memcg_stock_pcp *stock;
2306
2307         stock = this_cpu_ptr(&memcg_stock);
2308         if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2309                 drain_stock(stock);
2310                 css_get(&memcg->css);
2311                 WRITE_ONCE(stock->cached, memcg);
2312         }
2313         stock->nr_pages += nr_pages;
2314
2315         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2316                 drain_stock(stock);
2317 }
2318
2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320 {
2321         unsigned long flags;
2322
2323         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2324         __refill_stock(memcg, nr_pages);
2325         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2326 }
2327
2328 /*
2329  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2330  * of the hierarchy under it.
2331  */
2332 static void drain_all_stock(struct mem_cgroup *root_memcg)
2333 {
2334         int cpu, curcpu;
2335
2336         /* If someone's already draining, avoid adding running more workers. */
2337         if (!mutex_trylock(&percpu_charge_mutex))
2338                 return;
2339         /*
2340          * Notify other cpus that system-wide "drain" is running
2341          * We do not care about races with the cpu hotplug because cpu down
2342          * as well as workers from this path always operate on the local
2343          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2344          */
2345         migrate_disable();
2346         curcpu = smp_processor_id();
2347         for_each_online_cpu(cpu) {
2348                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2349                 struct mem_cgroup *memcg;
2350                 bool flush = false;
2351
2352                 rcu_read_lock();
2353                 memcg = READ_ONCE(stock->cached);
2354                 if (memcg && stock->nr_pages &&
2355                     mem_cgroup_is_descendant(memcg, root_memcg))
2356                         flush = true;
2357                 else if (obj_stock_flush_required(stock, root_memcg))
2358                         flush = true;
2359                 rcu_read_unlock();
2360
2361                 if (flush &&
2362                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2363                         if (cpu == curcpu)
2364                                 drain_local_stock(&stock->work);
2365                         else if (!cpu_is_isolated(cpu))
2366                                 schedule_work_on(cpu, &stock->work);
2367                 }
2368         }
2369         migrate_enable();
2370         mutex_unlock(&percpu_charge_mutex);
2371 }
2372
2373 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2374 {
2375         struct memcg_stock_pcp *stock;
2376
2377         stock = &per_cpu(memcg_stock, cpu);
2378         drain_stock(stock);
2379
2380         return 0;
2381 }
2382
2383 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2384                                   unsigned int nr_pages,
2385                                   gfp_t gfp_mask)
2386 {
2387         unsigned long nr_reclaimed = 0;
2388
2389         do {
2390                 unsigned long pflags;
2391
2392                 if (page_counter_read(&memcg->memory) <=
2393                     READ_ONCE(memcg->memory.high))
2394                         continue;
2395
2396                 memcg_memory_event(memcg, MEMCG_HIGH);
2397
2398                 psi_memstall_enter(&pflags);
2399                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2400                                                         gfp_mask,
2401                                                         MEMCG_RECLAIM_MAY_SWAP);
2402                 psi_memstall_leave(&pflags);
2403         } while ((memcg = parent_mem_cgroup(memcg)) &&
2404                  !mem_cgroup_is_root(memcg));
2405
2406         return nr_reclaimed;
2407 }
2408
2409 static void high_work_func(struct work_struct *work)
2410 {
2411         struct mem_cgroup *memcg;
2412
2413         memcg = container_of(work, struct mem_cgroup, high_work);
2414         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2415 }
2416
2417 /*
2418  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2419  * enough to still cause a significant slowdown in most cases, while still
2420  * allowing diagnostics and tracing to proceed without becoming stuck.
2421  */
2422 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2423
2424 /*
2425  * When calculating the delay, we use these either side of the exponentiation to
2426  * maintain precision and scale to a reasonable number of jiffies (see the table
2427  * below.
2428  *
2429  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2430  *   overage ratio to a delay.
2431  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2432  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2433  *   to produce a reasonable delay curve.
2434  *
2435  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2436  * reasonable delay curve compared to precision-adjusted overage, not
2437  * penalising heavily at first, but still making sure that growth beyond the
2438  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2439  * example, with a high of 100 megabytes:
2440  *
2441  *  +-------+------------------------+
2442  *  | usage | time to allocate in ms |
2443  *  +-------+------------------------+
2444  *  | 100M  |                      0 |
2445  *  | 101M  |                      6 |
2446  *  | 102M  |                     25 |
2447  *  | 103M  |                     57 |
2448  *  | 104M  |                    102 |
2449  *  | 105M  |                    159 |
2450  *  | 106M  |                    230 |
2451  *  | 107M  |                    313 |
2452  *  | 108M  |                    409 |
2453  *  | 109M  |                    518 |
2454  *  | 110M  |                    639 |
2455  *  | 111M  |                    774 |
2456  *  | 112M  |                    921 |
2457  *  | 113M  |                   1081 |
2458  *  | 114M  |                   1254 |
2459  *  | 115M  |                   1439 |
2460  *  | 116M  |                   1638 |
2461  *  | 117M  |                   1849 |
2462  *  | 118M  |                   2000 |
2463  *  | 119M  |                   2000 |
2464  *  | 120M  |                   2000 |
2465  *  +-------+------------------------+
2466  */
2467  #define MEMCG_DELAY_PRECISION_SHIFT 20
2468  #define MEMCG_DELAY_SCALING_SHIFT 14
2469
2470 static u64 calculate_overage(unsigned long usage, unsigned long high)
2471 {
2472         u64 overage;
2473
2474         if (usage <= high)
2475                 return 0;
2476
2477         /*
2478          * Prevent division by 0 in overage calculation by acting as if
2479          * it was a threshold of 1 page
2480          */
2481         high = max(high, 1UL);
2482
2483         overage = usage - high;
2484         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2485         return div64_u64(overage, high);
2486 }
2487
2488 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2489 {
2490         u64 overage, max_overage = 0;
2491
2492         do {
2493                 overage = calculate_overage(page_counter_read(&memcg->memory),
2494                                             READ_ONCE(memcg->memory.high));
2495                 max_overage = max(overage, max_overage);
2496         } while ((memcg = parent_mem_cgroup(memcg)) &&
2497                  !mem_cgroup_is_root(memcg));
2498
2499         return max_overage;
2500 }
2501
2502 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2503 {
2504         u64 overage, max_overage = 0;
2505
2506         do {
2507                 overage = calculate_overage(page_counter_read(&memcg->swap),
2508                                             READ_ONCE(memcg->swap.high));
2509                 if (overage)
2510                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2511                 max_overage = max(overage, max_overage);
2512         } while ((memcg = parent_mem_cgroup(memcg)) &&
2513                  !mem_cgroup_is_root(memcg));
2514
2515         return max_overage;
2516 }
2517
2518 /*
2519  * Get the number of jiffies that we should penalise a mischievous cgroup which
2520  * is exceeding its memory.high by checking both it and its ancestors.
2521  */
2522 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2523                                           unsigned int nr_pages,
2524                                           u64 max_overage)
2525 {
2526         unsigned long penalty_jiffies;
2527
2528         if (!max_overage)
2529                 return 0;
2530
2531         /*
2532          * We use overage compared to memory.high to calculate the number of
2533          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2534          * fairly lenient on small overages, and increasingly harsh when the
2535          * memcg in question makes it clear that it has no intention of stopping
2536          * its crazy behaviour, so we exponentially increase the delay based on
2537          * overage amount.
2538          */
2539         penalty_jiffies = max_overage * max_overage * HZ;
2540         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2541         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2542
2543         /*
2544          * Factor in the task's own contribution to the overage, such that four
2545          * N-sized allocations are throttled approximately the same as one
2546          * 4N-sized allocation.
2547          *
2548          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2549          * larger the current charge patch is than that.
2550          */
2551         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2552 }
2553
2554 /*
2555  * Scheduled by try_charge() to be executed from the userland return path
2556  * and reclaims memory over the high limit.
2557  */
2558 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2559 {
2560         unsigned long penalty_jiffies;
2561         unsigned long pflags;
2562         unsigned long nr_reclaimed;
2563         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2564         int nr_retries = MAX_RECLAIM_RETRIES;
2565         struct mem_cgroup *memcg;
2566         bool in_retry = false;
2567
2568         if (likely(!nr_pages))
2569                 return;
2570
2571         memcg = get_mem_cgroup_from_mm(current->mm);
2572         current->memcg_nr_pages_over_high = 0;
2573
2574 retry_reclaim:
2575         /*
2576          * The allocating task should reclaim at least the batch size, but for
2577          * subsequent retries we only want to do what's necessary to prevent oom
2578          * or breaching resource isolation.
2579          *
2580          * This is distinct from memory.max or page allocator behaviour because
2581          * memory.high is currently batched, whereas memory.max and the page
2582          * allocator run every time an allocation is made.
2583          */
2584         nr_reclaimed = reclaim_high(memcg,
2585                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2586                                     gfp_mask);
2587
2588         /*
2589          * memory.high is breached and reclaim is unable to keep up. Throttle
2590          * allocators proactively to slow down excessive growth.
2591          */
2592         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2593                                                mem_find_max_overage(memcg));
2594
2595         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2596                                                 swap_find_max_overage(memcg));
2597
2598         /*
2599          * Clamp the max delay per usermode return so as to still keep the
2600          * application moving forwards and also permit diagnostics, albeit
2601          * extremely slowly.
2602          */
2603         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2604
2605         /*
2606          * Don't sleep if the amount of jiffies this memcg owes us is so low
2607          * that it's not even worth doing, in an attempt to be nice to those who
2608          * go only a small amount over their memory.high value and maybe haven't
2609          * been aggressively reclaimed enough yet.
2610          */
2611         if (penalty_jiffies <= HZ / 100)
2612                 goto out;
2613
2614         /*
2615          * If reclaim is making forward progress but we're still over
2616          * memory.high, we want to encourage that rather than doing allocator
2617          * throttling.
2618          */
2619         if (nr_reclaimed || nr_retries--) {
2620                 in_retry = true;
2621                 goto retry_reclaim;
2622         }
2623
2624         /*
2625          * If we exit early, we're guaranteed to die (since
2626          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2627          * need to account for any ill-begotten jiffies to pay them off later.
2628          */
2629         psi_memstall_enter(&pflags);
2630         schedule_timeout_killable(penalty_jiffies);
2631         psi_memstall_leave(&pflags);
2632
2633 out:
2634         css_put(&memcg->css);
2635 }
2636
2637 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2638                         unsigned int nr_pages)
2639 {
2640         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2641         int nr_retries = MAX_RECLAIM_RETRIES;
2642         struct mem_cgroup *mem_over_limit;
2643         struct page_counter *counter;
2644         unsigned long nr_reclaimed;
2645         bool passed_oom = false;
2646         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2647         bool drained = false;
2648         bool raised_max_event = false;
2649         unsigned long pflags;
2650
2651 retry:
2652         if (consume_stock(memcg, nr_pages))
2653                 return 0;
2654
2655         if (!do_memsw_account() ||
2656             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2657                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2658                         goto done_restock;
2659                 if (do_memsw_account())
2660                         page_counter_uncharge(&memcg->memsw, batch);
2661                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2662         } else {
2663                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2664                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2665         }
2666
2667         if (batch > nr_pages) {
2668                 batch = nr_pages;
2669                 goto retry;
2670         }
2671
2672         /*
2673          * Prevent unbounded recursion when reclaim operations need to
2674          * allocate memory. This might exceed the limits temporarily,
2675          * but we prefer facilitating memory reclaim and getting back
2676          * under the limit over triggering OOM kills in these cases.
2677          */
2678         if (unlikely(current->flags & PF_MEMALLOC))
2679                 goto force;
2680
2681         if (unlikely(task_in_memcg_oom(current)))
2682                 goto nomem;
2683
2684         if (!gfpflags_allow_blocking(gfp_mask))
2685                 goto nomem;
2686
2687         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2688         raised_max_event = true;
2689
2690         psi_memstall_enter(&pflags);
2691         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2692                                                     gfp_mask, reclaim_options);
2693         psi_memstall_leave(&pflags);
2694
2695         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2696                 goto retry;
2697
2698         if (!drained) {
2699                 drain_all_stock(mem_over_limit);
2700                 drained = true;
2701                 goto retry;
2702         }
2703
2704         if (gfp_mask & __GFP_NORETRY)
2705                 goto nomem;
2706         /*
2707          * Even though the limit is exceeded at this point, reclaim
2708          * may have been able to free some pages.  Retry the charge
2709          * before killing the task.
2710          *
2711          * Only for regular pages, though: huge pages are rather
2712          * unlikely to succeed so close to the limit, and we fall back
2713          * to regular pages anyway in case of failure.
2714          */
2715         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2716                 goto retry;
2717         /*
2718          * At task move, charge accounts can be doubly counted. So, it's
2719          * better to wait until the end of task_move if something is going on.
2720          */
2721         if (mem_cgroup_wait_acct_move(mem_over_limit))
2722                 goto retry;
2723
2724         if (nr_retries--)
2725                 goto retry;
2726
2727         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2728                 goto nomem;
2729
2730         /* Avoid endless loop for tasks bypassed by the oom killer */
2731         if (passed_oom && task_is_dying())
2732                 goto nomem;
2733
2734         /*
2735          * keep retrying as long as the memcg oom killer is able to make
2736          * a forward progress or bypass the charge if the oom killer
2737          * couldn't make any progress.
2738          */
2739         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2740                            get_order(nr_pages * PAGE_SIZE))) {
2741                 passed_oom = true;
2742                 nr_retries = MAX_RECLAIM_RETRIES;
2743                 goto retry;
2744         }
2745 nomem:
2746         /*
2747          * Memcg doesn't have a dedicated reserve for atomic
2748          * allocations. But like the global atomic pool, we need to
2749          * put the burden of reclaim on regular allocation requests
2750          * and let these go through as privileged allocations.
2751          */
2752         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2753                 return -ENOMEM;
2754 force:
2755         /*
2756          * If the allocation has to be enforced, don't forget to raise
2757          * a MEMCG_MAX event.
2758          */
2759         if (!raised_max_event)
2760                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2761
2762         /*
2763          * The allocation either can't fail or will lead to more memory
2764          * being freed very soon.  Allow memory usage go over the limit
2765          * temporarily by force charging it.
2766          */
2767         page_counter_charge(&memcg->memory, nr_pages);
2768         if (do_memsw_account())
2769                 page_counter_charge(&memcg->memsw, nr_pages);
2770
2771         return 0;
2772
2773 done_restock:
2774         if (batch > nr_pages)
2775                 refill_stock(memcg, batch - nr_pages);
2776
2777         /*
2778          * If the hierarchy is above the normal consumption range, schedule
2779          * reclaim on returning to userland.  We can perform reclaim here
2780          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2782          * not recorded as it most likely matches current's and won't
2783          * change in the meantime.  As high limit is checked again before
2784          * reclaim, the cost of mismatch is negligible.
2785          */
2786         do {
2787                 bool mem_high, swap_high;
2788
2789                 mem_high = page_counter_read(&memcg->memory) >
2790                         READ_ONCE(memcg->memory.high);
2791                 swap_high = page_counter_read(&memcg->swap) >
2792                         READ_ONCE(memcg->swap.high);
2793
2794                 /* Don't bother a random interrupted task */
2795                 if (!in_task()) {
2796                         if (mem_high) {
2797                                 schedule_work(&memcg->high_work);
2798                                 break;
2799                         }
2800                         continue;
2801                 }
2802
2803                 if (mem_high || swap_high) {
2804                         /*
2805                          * The allocating tasks in this cgroup will need to do
2806                          * reclaim or be throttled to prevent further growth
2807                          * of the memory or swap footprints.
2808                          *
2809                          * Target some best-effort fairness between the tasks,
2810                          * and distribute reclaim work and delay penalties
2811                          * based on how much each task is actually allocating.
2812                          */
2813                         current->memcg_nr_pages_over_high += batch;
2814                         set_notify_resume(current);
2815                         break;
2816                 }
2817         } while ((memcg = parent_mem_cgroup(memcg)));
2818
2819         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2820             !(current->flags & PF_MEMALLOC) &&
2821             gfpflags_allow_blocking(gfp_mask)) {
2822                 mem_cgroup_handle_over_high(gfp_mask);
2823         }
2824         return 0;
2825 }
2826
2827 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2828                              unsigned int nr_pages)
2829 {
2830         if (mem_cgroup_is_root(memcg))
2831                 return 0;
2832
2833         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2834 }
2835
2836 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2837 {
2838         if (mem_cgroup_is_root(memcg))
2839                 return;
2840
2841         page_counter_uncharge(&memcg->memory, nr_pages);
2842         if (do_memsw_account())
2843                 page_counter_uncharge(&memcg->memsw, nr_pages);
2844 }
2845
2846 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2847 {
2848         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2849         /*
2850          * Any of the following ensures page's memcg stability:
2851          *
2852          * - the page lock
2853          * - LRU isolation
2854          * - folio_memcg_lock()
2855          * - exclusive reference
2856          * - mem_cgroup_trylock_pages()
2857          */
2858         folio->memcg_data = (unsigned long)memcg;
2859 }
2860
2861 #ifdef CONFIG_MEMCG_KMEM
2862 /*
2863  * The allocated objcg pointers array is not accounted directly.
2864  * Moreover, it should not come from DMA buffer and is not readily
2865  * reclaimable. So those GFP bits should be masked off.
2866  */
2867 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | \
2868                                  __GFP_ACCOUNT | __GFP_NOFAIL)
2869
2870 /*
2871  * mod_objcg_mlstate() may be called with irq enabled, so
2872  * mod_memcg_lruvec_state() should be used.
2873  */
2874 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2875                                      struct pglist_data *pgdat,
2876                                      enum node_stat_item idx, int nr)
2877 {
2878         struct mem_cgroup *memcg;
2879         struct lruvec *lruvec;
2880
2881         rcu_read_lock();
2882         memcg = obj_cgroup_memcg(objcg);
2883         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2884         mod_memcg_lruvec_state(lruvec, idx, nr);
2885         rcu_read_unlock();
2886 }
2887
2888 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2889                                  gfp_t gfp, bool new_slab)
2890 {
2891         unsigned int objects = objs_per_slab(s, slab);
2892         unsigned long memcg_data;
2893         void *vec;
2894
2895         gfp &= ~OBJCGS_CLEAR_MASK;
2896         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2897                            slab_nid(slab));
2898         if (!vec)
2899                 return -ENOMEM;
2900
2901         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2902         if (new_slab) {
2903                 /*
2904                  * If the slab is brand new and nobody can yet access its
2905                  * memcg_data, no synchronization is required and memcg_data can
2906                  * be simply assigned.
2907                  */
2908                 slab->memcg_data = memcg_data;
2909         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2910                 /*
2911                  * If the slab is already in use, somebody can allocate and
2912                  * assign obj_cgroups in parallel. In this case the existing
2913                  * objcg vector should be reused.
2914                  */
2915                 kfree(vec);
2916                 return 0;
2917         }
2918
2919         kmemleak_not_leak(vec);
2920         return 0;
2921 }
2922
2923 static __always_inline
2924 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2925 {
2926         /*
2927          * Slab objects are accounted individually, not per-page.
2928          * Memcg membership data for each individual object is saved in
2929          * slab->memcg_data.
2930          */
2931         if (folio_test_slab(folio)) {
2932                 struct obj_cgroup **objcgs;
2933                 struct slab *slab;
2934                 unsigned int off;
2935
2936                 slab = folio_slab(folio);
2937                 objcgs = slab_objcgs(slab);
2938                 if (!objcgs)
2939                         return NULL;
2940
2941                 off = obj_to_index(slab->slab_cache, slab, p);
2942                 if (objcgs[off])
2943                         return obj_cgroup_memcg(objcgs[off]);
2944
2945                 return NULL;
2946         }
2947
2948         /*
2949          * folio_memcg_check() is used here, because in theory we can encounter
2950          * a folio where the slab flag has been cleared already, but
2951          * slab->memcg_data has not been freed yet
2952          * folio_memcg_check() will guarantee that a proper memory
2953          * cgroup pointer or NULL will be returned.
2954          */
2955         return folio_memcg_check(folio);
2956 }
2957
2958 /*
2959  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2960  *
2961  * A passed kernel object can be a slab object, vmalloc object or a generic
2962  * kernel page, so different mechanisms for getting the memory cgroup pointer
2963  * should be used.
2964  *
2965  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2966  * can not know for sure how the kernel object is implemented.
2967  * mem_cgroup_from_obj() can be safely used in such cases.
2968  *
2969  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2970  * cgroup_mutex, etc.
2971  */
2972 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2973 {
2974         struct folio *folio;
2975
2976         if (mem_cgroup_disabled())
2977                 return NULL;
2978
2979         if (unlikely(is_vmalloc_addr(p)))
2980                 folio = page_folio(vmalloc_to_page(p));
2981         else
2982                 folio = virt_to_folio(p);
2983
2984         return mem_cgroup_from_obj_folio(folio, p);
2985 }
2986
2987 /*
2988  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2989  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2990  * allocated using vmalloc().
2991  *
2992  * A passed kernel object must be a slab object or a generic kernel page.
2993  *
2994  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2995  * cgroup_mutex, etc.
2996  */
2997 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2998 {
2999         if (mem_cgroup_disabled())
3000                 return NULL;
3001
3002         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3003 }
3004
3005 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3006 {
3007         struct obj_cgroup *objcg = NULL;
3008
3009         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3010                 objcg = rcu_dereference(memcg->objcg);
3011                 if (objcg && obj_cgroup_tryget(objcg))
3012                         break;
3013                 objcg = NULL;
3014         }
3015         return objcg;
3016 }
3017
3018 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3019 {
3020         struct obj_cgroup *objcg = NULL;
3021         struct mem_cgroup *memcg;
3022
3023         if (memcg_kmem_bypass())
3024                 return NULL;
3025
3026         rcu_read_lock();
3027         if (unlikely(active_memcg()))
3028                 memcg = active_memcg();
3029         else
3030                 memcg = mem_cgroup_from_task(current);
3031         objcg = __get_obj_cgroup_from_memcg(memcg);
3032         rcu_read_unlock();
3033         return objcg;
3034 }
3035
3036 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3037 {
3038         struct obj_cgroup *objcg;
3039
3040         if (!memcg_kmem_online())
3041                 return NULL;
3042
3043         if (folio_memcg_kmem(folio)) {
3044                 objcg = __folio_objcg(folio);
3045                 obj_cgroup_get(objcg);
3046         } else {
3047                 struct mem_cgroup *memcg;
3048
3049                 rcu_read_lock();
3050                 memcg = __folio_memcg(folio);
3051                 if (memcg)
3052                         objcg = __get_obj_cgroup_from_memcg(memcg);
3053                 else
3054                         objcg = NULL;
3055                 rcu_read_unlock();
3056         }
3057         return objcg;
3058 }
3059
3060 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3061 {
3062         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3063         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3064                 if (nr_pages > 0)
3065                         page_counter_charge(&memcg->kmem, nr_pages);
3066                 else
3067                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3068         }
3069 }
3070
3071
3072 /*
3073  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3074  * @objcg: object cgroup to uncharge
3075  * @nr_pages: number of pages to uncharge
3076  */
3077 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3078                                       unsigned int nr_pages)
3079 {
3080         struct mem_cgroup *memcg;
3081
3082         memcg = get_mem_cgroup_from_objcg(objcg);
3083
3084         memcg_account_kmem(memcg, -nr_pages);
3085         refill_stock(memcg, nr_pages);
3086
3087         css_put(&memcg->css);
3088 }
3089
3090 /*
3091  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3092  * @objcg: object cgroup to charge
3093  * @gfp: reclaim mode
3094  * @nr_pages: number of pages to charge
3095  *
3096  * Returns 0 on success, an error code on failure.
3097  */
3098 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3099                                    unsigned int nr_pages)
3100 {
3101         struct mem_cgroup *memcg;
3102         int ret;
3103
3104         memcg = get_mem_cgroup_from_objcg(objcg);
3105
3106         ret = try_charge_memcg(memcg, gfp, nr_pages);
3107         if (ret)
3108                 goto out;
3109
3110         memcg_account_kmem(memcg, nr_pages);
3111 out:
3112         css_put(&memcg->css);
3113
3114         return ret;
3115 }
3116
3117 /**
3118  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3119  * @page: page to charge
3120  * @gfp: reclaim mode
3121  * @order: allocation order
3122  *
3123  * Returns 0 on success, an error code on failure.
3124  */
3125 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3126 {
3127         struct obj_cgroup *objcg;
3128         int ret = 0;
3129
3130         objcg = get_obj_cgroup_from_current();
3131         if (objcg) {
3132                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3133                 if (!ret) {
3134                         page->memcg_data = (unsigned long)objcg |
3135                                 MEMCG_DATA_KMEM;
3136                         return 0;
3137                 }
3138                 obj_cgroup_put(objcg);
3139         }
3140         return ret;
3141 }
3142
3143 /**
3144  * __memcg_kmem_uncharge_page: uncharge a kmem page
3145  * @page: page to uncharge
3146  * @order: allocation order
3147  */
3148 void __memcg_kmem_uncharge_page(struct page *page, int order)
3149 {
3150         struct folio *folio = page_folio(page);
3151         struct obj_cgroup *objcg;
3152         unsigned int nr_pages = 1 << order;
3153
3154         if (!folio_memcg_kmem(folio))
3155                 return;
3156
3157         objcg = __folio_objcg(folio);
3158         obj_cgroup_uncharge_pages(objcg, nr_pages);
3159         folio->memcg_data = 0;
3160         obj_cgroup_put(objcg);
3161 }
3162
3163 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3164                      enum node_stat_item idx, int nr)
3165 {
3166         struct memcg_stock_pcp *stock;
3167         struct obj_cgroup *old = NULL;
3168         unsigned long flags;
3169         int *bytes;
3170
3171         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3172         stock = this_cpu_ptr(&memcg_stock);
3173
3174         /*
3175          * Save vmstat data in stock and skip vmstat array update unless
3176          * accumulating over a page of vmstat data or when pgdat or idx
3177          * changes.
3178          */
3179         if (READ_ONCE(stock->cached_objcg) != objcg) {
3180                 old = drain_obj_stock(stock);
3181                 obj_cgroup_get(objcg);
3182                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3183                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3184                 WRITE_ONCE(stock->cached_objcg, objcg);
3185                 stock->cached_pgdat = pgdat;
3186         } else if (stock->cached_pgdat != pgdat) {
3187                 /* Flush the existing cached vmstat data */
3188                 struct pglist_data *oldpg = stock->cached_pgdat;
3189
3190                 if (stock->nr_slab_reclaimable_b) {
3191                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3192                                           stock->nr_slab_reclaimable_b);
3193                         stock->nr_slab_reclaimable_b = 0;
3194                 }
3195                 if (stock->nr_slab_unreclaimable_b) {
3196                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3197                                           stock->nr_slab_unreclaimable_b);
3198                         stock->nr_slab_unreclaimable_b = 0;
3199                 }
3200                 stock->cached_pgdat = pgdat;
3201         }
3202
3203         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3204                                                : &stock->nr_slab_unreclaimable_b;
3205         /*
3206          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3207          * cached locally at least once before pushing it out.
3208          */
3209         if (!*bytes) {
3210                 *bytes = nr;
3211                 nr = 0;
3212         } else {
3213                 *bytes += nr;
3214                 if (abs(*bytes) > PAGE_SIZE) {
3215                         nr = *bytes;
3216                         *bytes = 0;
3217                 } else {
3218                         nr = 0;
3219                 }
3220         }
3221         if (nr)
3222                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3223
3224         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3225         if (old)
3226                 obj_cgroup_put(old);
3227 }
3228
3229 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3230 {
3231         struct memcg_stock_pcp *stock;
3232         unsigned long flags;
3233         bool ret = false;
3234
3235         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3236
3237         stock = this_cpu_ptr(&memcg_stock);
3238         if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3239                 stock->nr_bytes -= nr_bytes;
3240                 ret = true;
3241         }
3242
3243         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3244
3245         return ret;
3246 }
3247
3248 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3249 {
3250         struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3251
3252         if (!old)
3253                 return NULL;
3254
3255         if (stock->nr_bytes) {
3256                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3257                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3258
3259                 if (nr_pages) {
3260                         struct mem_cgroup *memcg;
3261
3262                         memcg = get_mem_cgroup_from_objcg(old);
3263
3264                         memcg_account_kmem(memcg, -nr_pages);
3265                         __refill_stock(memcg, nr_pages);
3266
3267                         css_put(&memcg->css);
3268                 }
3269
3270                 /*
3271                  * The leftover is flushed to the centralized per-memcg value.
3272                  * On the next attempt to refill obj stock it will be moved
3273                  * to a per-cpu stock (probably, on an other CPU), see
3274                  * refill_obj_stock().
3275                  *
3276                  * How often it's flushed is a trade-off between the memory
3277                  * limit enforcement accuracy and potential CPU contention,
3278                  * so it might be changed in the future.
3279                  */
3280                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3281                 stock->nr_bytes = 0;
3282         }
3283
3284         /*
3285          * Flush the vmstat data in current stock
3286          */
3287         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3288                 if (stock->nr_slab_reclaimable_b) {
3289                         mod_objcg_mlstate(old, stock->cached_pgdat,
3290                                           NR_SLAB_RECLAIMABLE_B,
3291                                           stock->nr_slab_reclaimable_b);
3292                         stock->nr_slab_reclaimable_b = 0;
3293                 }
3294                 if (stock->nr_slab_unreclaimable_b) {
3295                         mod_objcg_mlstate(old, stock->cached_pgdat,
3296                                           NR_SLAB_UNRECLAIMABLE_B,
3297                                           stock->nr_slab_unreclaimable_b);
3298                         stock->nr_slab_unreclaimable_b = 0;
3299                 }
3300                 stock->cached_pgdat = NULL;
3301         }
3302
3303         WRITE_ONCE(stock->cached_objcg, NULL);
3304         /*
3305          * The `old' objects needs to be released by the caller via
3306          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3307          */
3308         return old;
3309 }
3310
3311 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3312                                      struct mem_cgroup *root_memcg)
3313 {
3314         struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3315         struct mem_cgroup *memcg;
3316
3317         if (objcg) {
3318                 memcg = obj_cgroup_memcg(objcg);
3319                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3320                         return true;
3321         }
3322
3323         return false;
3324 }
3325
3326 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3327                              bool allow_uncharge)
3328 {
3329         struct memcg_stock_pcp *stock;
3330         struct obj_cgroup *old = NULL;
3331         unsigned long flags;
3332         unsigned int nr_pages = 0;
3333
3334         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3335
3336         stock = this_cpu_ptr(&memcg_stock);
3337         if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3338                 old = drain_obj_stock(stock);
3339                 obj_cgroup_get(objcg);
3340                 WRITE_ONCE(stock->cached_objcg, objcg);
3341                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3342                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3343                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3344         }
3345         stock->nr_bytes += nr_bytes;
3346
3347         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3348                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3349                 stock->nr_bytes &= (PAGE_SIZE - 1);
3350         }
3351
3352         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3353         if (old)
3354                 obj_cgroup_put(old);
3355
3356         if (nr_pages)
3357                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3358 }
3359
3360 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3361 {
3362         unsigned int nr_pages, nr_bytes;
3363         int ret;
3364
3365         if (consume_obj_stock(objcg, size))
3366                 return 0;
3367
3368         /*
3369          * In theory, objcg->nr_charged_bytes can have enough
3370          * pre-charged bytes to satisfy the allocation. However,
3371          * flushing objcg->nr_charged_bytes requires two atomic
3372          * operations, and objcg->nr_charged_bytes can't be big.
3373          * The shared objcg->nr_charged_bytes can also become a
3374          * performance bottleneck if all tasks of the same memcg are
3375          * trying to update it. So it's better to ignore it and try
3376          * grab some new pages. The stock's nr_bytes will be flushed to
3377          * objcg->nr_charged_bytes later on when objcg changes.
3378          *
3379          * The stock's nr_bytes may contain enough pre-charged bytes
3380          * to allow one less page from being charged, but we can't rely
3381          * on the pre-charged bytes not being changed outside of
3382          * consume_obj_stock() or refill_obj_stock(). So ignore those
3383          * pre-charged bytes as well when charging pages. To avoid a
3384          * page uncharge right after a page charge, we set the
3385          * allow_uncharge flag to false when calling refill_obj_stock()
3386          * to temporarily allow the pre-charged bytes to exceed the page
3387          * size limit. The maximum reachable value of the pre-charged
3388          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3389          * race.
3390          */
3391         nr_pages = size >> PAGE_SHIFT;
3392         nr_bytes = size & (PAGE_SIZE - 1);
3393
3394         if (nr_bytes)
3395                 nr_pages += 1;
3396
3397         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3398         if (!ret && nr_bytes)
3399                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3400
3401         return ret;
3402 }
3403
3404 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3405 {
3406         refill_obj_stock(objcg, size, true);
3407 }
3408
3409 #endif /* CONFIG_MEMCG_KMEM */
3410
3411 /*
3412  * Because page_memcg(head) is not set on tails, set it now.
3413  */
3414 void split_page_memcg(struct page *head, unsigned int nr)
3415 {
3416         struct folio *folio = page_folio(head);
3417         struct mem_cgroup *memcg = folio_memcg(folio);
3418         int i;
3419
3420         if (mem_cgroup_disabled() || !memcg)
3421                 return;
3422
3423         for (i = 1; i < nr; i++)
3424                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3425
3426         if (folio_memcg_kmem(folio))
3427                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3428         else
3429                 css_get_many(&memcg->css, nr - 1);
3430 }
3431
3432 #ifdef CONFIG_SWAP
3433 /**
3434  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3435  * @entry: swap entry to be moved
3436  * @from:  mem_cgroup which the entry is moved from
3437  * @to:  mem_cgroup which the entry is moved to
3438  *
3439  * It succeeds only when the swap_cgroup's record for this entry is the same
3440  * as the mem_cgroup's id of @from.
3441  *
3442  * Returns 0 on success, -EINVAL on failure.
3443  *
3444  * The caller must have charged to @to, IOW, called page_counter_charge() about
3445  * both res and memsw, and called css_get().
3446  */
3447 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3448                                 struct mem_cgroup *from, struct mem_cgroup *to)
3449 {
3450         unsigned short old_id, new_id;
3451
3452         old_id = mem_cgroup_id(from);
3453         new_id = mem_cgroup_id(to);
3454
3455         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3456                 mod_memcg_state(from, MEMCG_SWAP, -1);
3457                 mod_memcg_state(to, MEMCG_SWAP, 1);
3458                 return 0;
3459         }
3460         return -EINVAL;
3461 }
3462 #else
3463 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3464                                 struct mem_cgroup *from, struct mem_cgroup *to)
3465 {
3466         return -EINVAL;
3467 }
3468 #endif
3469
3470 static DEFINE_MUTEX(memcg_max_mutex);
3471
3472 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3473                                  unsigned long max, bool memsw)
3474 {
3475         bool enlarge = false;
3476         bool drained = false;
3477         int ret;
3478         bool limits_invariant;
3479         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3480
3481         do {
3482                 if (signal_pending(current)) {
3483                         ret = -EINTR;
3484                         break;
3485                 }
3486
3487                 mutex_lock(&memcg_max_mutex);
3488                 /*
3489                  * Make sure that the new limit (memsw or memory limit) doesn't
3490                  * break our basic invariant rule memory.max <= memsw.max.
3491                  */
3492                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3493                                            max <= memcg->memsw.max;
3494                 if (!limits_invariant) {
3495                         mutex_unlock(&memcg_max_mutex);
3496                         ret = -EINVAL;
3497                         break;
3498                 }
3499                 if (max > counter->max)
3500                         enlarge = true;
3501                 ret = page_counter_set_max(counter, max);
3502                 mutex_unlock(&memcg_max_mutex);
3503
3504                 if (!ret)
3505                         break;
3506
3507                 if (!drained) {
3508                         drain_all_stock(memcg);
3509                         drained = true;
3510                         continue;
3511                 }
3512
3513                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3514                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3515                         ret = -EBUSY;
3516                         break;
3517                 }
3518         } while (true);
3519
3520         if (!ret && enlarge)
3521                 memcg_oom_recover(memcg);
3522
3523         return ret;
3524 }
3525
3526 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3527                                             gfp_t gfp_mask,
3528                                             unsigned long *total_scanned)
3529 {
3530         unsigned long nr_reclaimed = 0;
3531         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3532         unsigned long reclaimed;
3533         int loop = 0;
3534         struct mem_cgroup_tree_per_node *mctz;
3535         unsigned long excess;
3536
3537         if (lru_gen_enabled())
3538                 return 0;
3539
3540         if (order > 0)
3541                 return 0;
3542
3543         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3544
3545         /*
3546          * Do not even bother to check the largest node if the root
3547          * is empty. Do it lockless to prevent lock bouncing. Races
3548          * are acceptable as soft limit is best effort anyway.
3549          */
3550         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3551                 return 0;
3552
3553         /*
3554          * This loop can run a while, specially if mem_cgroup's continuously
3555          * keep exceeding their soft limit and putting the system under
3556          * pressure
3557          */
3558         do {
3559                 if (next_mz)
3560                         mz = next_mz;
3561                 else
3562                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3563                 if (!mz)
3564                         break;
3565
3566                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3567                                                     gfp_mask, total_scanned);
3568                 nr_reclaimed += reclaimed;
3569                 spin_lock_irq(&mctz->lock);
3570
3571                 /*
3572                  * If we failed to reclaim anything from this memory cgroup
3573                  * it is time to move on to the next cgroup
3574                  */
3575                 next_mz = NULL;
3576                 if (!reclaimed)
3577                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3578
3579                 excess = soft_limit_excess(mz->memcg);
3580                 /*
3581                  * One school of thought says that we should not add
3582                  * back the node to the tree if reclaim returns 0.
3583                  * But our reclaim could return 0, simply because due
3584                  * to priority we are exposing a smaller subset of
3585                  * memory to reclaim from. Consider this as a longer
3586                  * term TODO.
3587                  */
3588                 /* If excess == 0, no tree ops */
3589                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3590                 spin_unlock_irq(&mctz->lock);
3591                 css_put(&mz->memcg->css);
3592                 loop++;
3593                 /*
3594                  * Could not reclaim anything and there are no more
3595                  * mem cgroups to try or we seem to be looping without
3596                  * reclaiming anything.
3597                  */
3598                 if (!nr_reclaimed &&
3599                         (next_mz == NULL ||
3600                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3601                         break;
3602         } while (!nr_reclaimed);
3603         if (next_mz)
3604                 css_put(&next_mz->memcg->css);
3605         return nr_reclaimed;
3606 }
3607
3608 /*
3609  * Reclaims as many pages from the given memcg as possible.
3610  *
3611  * Caller is responsible for holding css reference for memcg.
3612  */
3613 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3614 {
3615         int nr_retries = MAX_RECLAIM_RETRIES;
3616
3617         /* we call try-to-free pages for make this cgroup empty */
3618         lru_add_drain_all();
3619
3620         drain_all_stock(memcg);
3621
3622         /* try to free all pages in this cgroup */
3623         while (nr_retries && page_counter_read(&memcg->memory)) {
3624                 if (signal_pending(current))
3625                         return -EINTR;
3626
3627                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3628                                                   MEMCG_RECLAIM_MAY_SWAP))
3629                         nr_retries--;
3630         }
3631
3632         return 0;
3633 }
3634
3635 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3636                                             char *buf, size_t nbytes,
3637                                             loff_t off)
3638 {
3639         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3640
3641         if (mem_cgroup_is_root(memcg))
3642                 return -EINVAL;
3643         return mem_cgroup_force_empty(memcg) ?: nbytes;
3644 }
3645
3646 #if defined(CONFIG_MEMCG) && defined(CONFIG_SWAP)
3647 static int mem_cgroup_force_reclaim(struct cgroup_subsys_state *css,
3648                                struct cftype *cft, u64 val)
3649 {
3650         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3651         unsigned long nr_to_reclaim = val;
3652         unsigned long total = 0;
3653         int loop;
3654
3655         for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
3656                 total += try_to_free_mem_cgroup_pages(memcg, nr_to_reclaim,
3657                                                 GFP_KERNEL, true);
3658
3659                 /*
3660                  * If nothing was reclaimed after two attempts, there
3661                  * may be no reclaimable pages in this hierarchy.
3662                  * If more than nr_to_reclaim pages were already reclaimed,
3663                  * finish force reclaim.
3664                  */
3665                 if (loop && (!total || total > nr_to_reclaim))
3666                         break;
3667         }
3668
3669         pr_info("%s: [Mem_reclaim] Loop: %d - Total_reclaimed: %lu - nr_to_reclaim: %lu\n",
3670                 __func__, loop, total, nr_to_reclaim);
3671
3672         return total;
3673 }
3674 #endif
3675
3676 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3677                                      struct cftype *cft)
3678 {
3679         return 1;
3680 }
3681
3682 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3683                                       struct cftype *cft, u64 val)
3684 {
3685         if (val == 1)
3686                 return 0;
3687
3688         pr_warn_once("Non-hierarchical mode is deprecated. "
3689                      "Please report your usecase to linux-mm@kvack.org if you "
3690                      "depend on this functionality.\n");
3691
3692         return -EINVAL;
3693 }
3694
3695 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3696 {
3697         unsigned long val;
3698
3699         if (mem_cgroup_is_root(memcg)) {
3700                 /*
3701                  * Approximate root's usage from global state. This isn't
3702                  * perfect, but the root usage was always an approximation.
3703                  */
3704                 val = global_node_page_state(NR_FILE_PAGES) +
3705                         global_node_page_state(NR_ANON_MAPPED);
3706                 if (swap)
3707                         val += total_swap_pages - get_nr_swap_pages();
3708         } else {
3709                 if (!swap)
3710                         val = page_counter_read(&memcg->memory);
3711                 else
3712                         val = page_counter_read(&memcg->memsw);
3713         }
3714         return val;
3715 }
3716
3717 enum {
3718         RES_USAGE,
3719         RES_LIMIT,
3720         RES_MAX_USAGE,
3721         RES_FAILCNT,
3722         RES_SOFT_LIMIT,
3723 };
3724
3725 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3726                                struct cftype *cft)
3727 {
3728         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3729         struct page_counter *counter;
3730
3731         switch (MEMFILE_TYPE(cft->private)) {
3732         case _MEM:
3733                 counter = &memcg->memory;
3734                 break;
3735         case _MEMSWAP:
3736                 counter = &memcg->memsw;
3737                 break;
3738         case _KMEM:
3739                 counter = &memcg->kmem;
3740                 break;
3741         case _TCP:
3742                 counter = &memcg->tcpmem;
3743                 break;
3744         default:
3745                 BUG();
3746         }
3747
3748         switch (MEMFILE_ATTR(cft->private)) {
3749         case RES_USAGE:
3750                 if (counter == &memcg->memory)
3751                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3752                 if (counter == &memcg->memsw)
3753                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3754                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3755         case RES_LIMIT:
3756                 return (u64)counter->max * PAGE_SIZE;
3757         case RES_MAX_USAGE:
3758                 return (u64)counter->watermark * PAGE_SIZE;
3759         case RES_FAILCNT:
3760                 return counter->failcnt;
3761         case RES_SOFT_LIMIT:
3762                 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3763         default:
3764                 BUG();
3765         }
3766 }
3767
3768 /*
3769  * This function doesn't do anything useful. Its only job is to provide a read
3770  * handler for a file so that cgroup_file_mode() will add read permissions.
3771  */
3772 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3773                                      __always_unused void *v)
3774 {
3775         return -EINVAL;
3776 }
3777
3778 #ifdef CONFIG_MEMCG_KMEM
3779 static int memcg_online_kmem(struct mem_cgroup *memcg)
3780 {
3781         struct obj_cgroup *objcg;
3782
3783         if (mem_cgroup_kmem_disabled())
3784                 return 0;
3785
3786         if (unlikely(mem_cgroup_is_root(memcg)))
3787                 return 0;
3788
3789         objcg = obj_cgroup_alloc();
3790         if (!objcg)
3791                 return -ENOMEM;
3792
3793         objcg->memcg = memcg;
3794         rcu_assign_pointer(memcg->objcg, objcg);
3795
3796         static_branch_enable(&memcg_kmem_online_key);
3797
3798         memcg->kmemcg_id = memcg->id.id;
3799
3800         return 0;
3801 }
3802
3803 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3804 {
3805         struct mem_cgroup *parent;
3806
3807         if (mem_cgroup_kmem_disabled())
3808                 return;
3809
3810         if (unlikely(mem_cgroup_is_root(memcg)))
3811                 return;
3812
3813         parent = parent_mem_cgroup(memcg);
3814         if (!parent)
3815                 parent = root_mem_cgroup;
3816
3817         memcg_reparent_objcgs(memcg, parent);
3818
3819         /*
3820          * After we have finished memcg_reparent_objcgs(), all list_lrus
3821          * corresponding to this cgroup are guaranteed to remain empty.
3822          * The ordering is imposed by list_lru_node->lock taken by
3823          * memcg_reparent_list_lrus().
3824          */
3825         memcg_reparent_list_lrus(memcg, parent);
3826 }
3827 #else
3828 static int memcg_online_kmem(struct mem_cgroup *memcg)
3829 {
3830         return 0;
3831 }
3832 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3833 {
3834 }
3835 #endif /* CONFIG_MEMCG_KMEM */
3836
3837 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3838 {
3839         int ret;
3840
3841         mutex_lock(&memcg_max_mutex);
3842
3843         ret = page_counter_set_max(&memcg->tcpmem, max);
3844         if (ret)
3845                 goto out;
3846
3847         if (!memcg->tcpmem_active) {
3848                 /*
3849                  * The active flag needs to be written after the static_key
3850                  * update. This is what guarantees that the socket activation
3851                  * function is the last one to run. See mem_cgroup_sk_alloc()
3852                  * for details, and note that we don't mark any socket as
3853                  * belonging to this memcg until that flag is up.
3854                  *
3855                  * We need to do this, because static_keys will span multiple
3856                  * sites, but we can't control their order. If we mark a socket
3857                  * as accounted, but the accounting functions are not patched in
3858                  * yet, we'll lose accounting.
3859                  *
3860                  * We never race with the readers in mem_cgroup_sk_alloc(),
3861                  * because when this value change, the code to process it is not
3862                  * patched in yet.
3863                  */
3864                 static_branch_inc(&memcg_sockets_enabled_key);
3865                 memcg->tcpmem_active = true;
3866         }
3867 out:
3868         mutex_unlock(&memcg_max_mutex);
3869         return ret;
3870 }
3871
3872 /*
3873  * The user of this function is...
3874  * RES_LIMIT.
3875  */
3876 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3877                                 char *buf, size_t nbytes, loff_t off)
3878 {
3879         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3880         unsigned long nr_pages;
3881         int ret;
3882
3883         buf = strstrip(buf);
3884         ret = page_counter_memparse(buf, "-1", &nr_pages);
3885         if (ret)
3886                 return ret;
3887
3888         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3889         case RES_LIMIT:
3890                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3891                         ret = -EINVAL;
3892                         break;
3893                 }
3894                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3895                 case _MEM:
3896                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3897                         break;
3898                 case _MEMSWAP:
3899                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3900                         break;
3901                 case _KMEM:
3902                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3903                                      "Writing any value to this file has no effect. "
3904                                      "Please report your usecase to linux-mm@kvack.org if you "
3905                                      "depend on this functionality.\n");
3906                         ret = 0;
3907                         break;
3908                 case _TCP:
3909                         ret = memcg_update_tcp_max(memcg, nr_pages);
3910                         break;
3911                 }
3912                 break;
3913         case RES_SOFT_LIMIT:
3914                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3915                         ret = -EOPNOTSUPP;
3916                 } else {
3917                         WRITE_ONCE(memcg->soft_limit, nr_pages);
3918                         ret = 0;
3919                 }
3920                 break;
3921         }
3922         return ret ?: nbytes;
3923 }
3924
3925 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3926                                 size_t nbytes, loff_t off)
3927 {
3928         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3929         struct page_counter *counter;
3930
3931         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3932         case _MEM:
3933                 counter = &memcg->memory;
3934                 break;
3935         case _MEMSWAP:
3936                 counter = &memcg->memsw;
3937                 break;
3938         case _KMEM:
3939                 counter = &memcg->kmem;
3940                 break;
3941         case _TCP:
3942                 counter = &memcg->tcpmem;
3943                 break;
3944         default:
3945                 BUG();
3946         }
3947
3948         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3949         case RES_MAX_USAGE:
3950                 page_counter_reset_watermark(counter);
3951                 break;
3952         case RES_FAILCNT:
3953                 counter->failcnt = 0;
3954                 break;
3955         default:
3956                 BUG();
3957         }
3958
3959         return nbytes;
3960 }
3961
3962 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3963                                         struct cftype *cft)
3964 {
3965         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3966 }
3967
3968 #ifdef CONFIG_MMU
3969 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3970                                         struct cftype *cft, u64 val)
3971 {
3972         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3973
3974         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3975                      "Please report your usecase to linux-mm@kvack.org if you "
3976                      "depend on this functionality.\n");
3977
3978         if (val & ~MOVE_MASK)
3979                 return -EINVAL;
3980
3981         /*
3982          * No kind of locking is needed in here, because ->can_attach() will
3983          * check this value once in the beginning of the process, and then carry
3984          * on with stale data. This means that changes to this value will only
3985          * affect task migrations starting after the change.
3986          */
3987         memcg->move_charge_at_immigrate = val;
3988         return 0;
3989 }
3990 #else
3991 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3992                                         struct cftype *cft, u64 val)
3993 {
3994         return -ENOSYS;
3995 }
3996 #endif
3997
3998 #ifdef CONFIG_NUMA
3999
4000 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4001 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4002 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
4003
4004 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4005                                 int nid, unsigned int lru_mask, bool tree)
4006 {
4007         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4008         unsigned long nr = 0;
4009         enum lru_list lru;
4010
4011         VM_BUG_ON((unsigned)nid >= nr_node_ids);
4012
4013         for_each_lru(lru) {
4014                 if (!(BIT(lru) & lru_mask))
4015                         continue;
4016                 if (tree)
4017                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4018                 else
4019                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4020         }
4021         return nr;
4022 }
4023
4024 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4025                                              unsigned int lru_mask,
4026                                              bool tree)
4027 {
4028         unsigned long nr = 0;
4029         enum lru_list lru;
4030
4031         for_each_lru(lru) {
4032                 if (!(BIT(lru) & lru_mask))
4033                         continue;
4034                 if (tree)
4035                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4036                 else
4037                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4038         }
4039         return nr;
4040 }
4041
4042 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4043 {
4044         struct numa_stat {
4045                 const char *name;
4046                 unsigned int lru_mask;
4047         };
4048
4049         static const struct numa_stat stats[] = {
4050                 { "total", LRU_ALL },
4051                 { "file", LRU_ALL_FILE },
4052                 { "anon", LRU_ALL_ANON },
4053                 { "unevictable", BIT(LRU_UNEVICTABLE) },
4054         };
4055         const struct numa_stat *stat;
4056         int nid;
4057         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4058
4059         mem_cgroup_flush_stats();
4060
4061         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4062                 seq_printf(m, "%s=%lu", stat->name,
4063                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4064                                                    false));
4065                 for_each_node_state(nid, N_MEMORY)
4066                         seq_printf(m, " N%d=%lu", nid,
4067                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4068                                                         stat->lru_mask, false));
4069                 seq_putc(m, '\n');
4070         }
4071
4072         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4073
4074                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4075                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4076                                                    true));
4077                 for_each_node_state(nid, N_MEMORY)
4078                         seq_printf(m, " N%d=%lu", nid,
4079                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4080                                                         stat->lru_mask, true));
4081                 seq_putc(m, '\n');
4082         }
4083
4084         return 0;
4085 }
4086 #endif /* CONFIG_NUMA */
4087
4088 static const unsigned int memcg1_stats[] = {
4089         NR_FILE_PAGES,
4090         NR_ANON_MAPPED,
4091 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4092         NR_ANON_THPS,
4093 #endif
4094         NR_SHMEM,
4095         NR_FILE_MAPPED,
4096         NR_FILE_DIRTY,
4097         NR_WRITEBACK,
4098         WORKINGSET_REFAULT_ANON,
4099         WORKINGSET_REFAULT_FILE,
4100         MEMCG_SWAP,
4101 };
4102
4103 static const char *const memcg1_stat_names[] = {
4104         "cache",
4105         "rss",
4106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4107         "rss_huge",
4108 #endif
4109         "shmem",
4110         "mapped_file",
4111         "dirty",
4112         "writeback",
4113         "workingset_refault_anon",
4114         "workingset_refault_file",
4115         "swap",
4116 };
4117
4118 /* Universal VM events cgroup1 shows, original sort order */
4119 static const unsigned int memcg1_events[] = {
4120         PGPGIN,
4121         PGPGOUT,
4122         PGFAULT,
4123         PGMAJFAULT,
4124 };
4125
4126 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4127 {
4128         unsigned long memory, memsw;
4129         struct mem_cgroup *mi;
4130         unsigned int i;
4131
4132         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4133
4134         mem_cgroup_flush_stats();
4135
4136         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4137                 unsigned long nr;
4138
4139                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4140                         continue;
4141                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4142                 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4143                            nr * memcg_page_state_unit(memcg1_stats[i]));
4144         }
4145
4146         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4147                 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4148                                memcg_events_local(memcg, memcg1_events[i]));
4149
4150         for (i = 0; i < NR_LRU_LISTS; i++)
4151                 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4152                                memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4153                                PAGE_SIZE);
4154
4155         /* Hierarchical information */
4156         memory = memsw = PAGE_COUNTER_MAX;
4157         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4158                 memory = min(memory, READ_ONCE(mi->memory.max));
4159                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4160         }
4161         seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4162                        (u64)memory * PAGE_SIZE);
4163         if (do_memsw_account())
4164                 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4165                                (u64)memsw * PAGE_SIZE);
4166
4167         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4168                 unsigned long nr;
4169
4170                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4171                         continue;
4172                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4173                 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4174                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4175         }
4176
4177         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4178                 seq_buf_printf(s, "total_%s %llu\n",
4179                                vm_event_name(memcg1_events[i]),
4180                                (u64)memcg_events(memcg, memcg1_events[i]));
4181
4182         for (i = 0; i < NR_LRU_LISTS; i++)
4183                 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4184                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4185                                PAGE_SIZE);
4186
4187 #ifdef CONFIG_DEBUG_VM
4188         {
4189                 pg_data_t *pgdat;
4190                 struct mem_cgroup_per_node *mz;
4191                 unsigned long anon_cost = 0;
4192                 unsigned long file_cost = 0;
4193
4194                 for_each_online_pgdat(pgdat) {
4195                         mz = memcg->nodeinfo[pgdat->node_id];
4196
4197                         anon_cost += mz->lruvec.anon_cost;
4198                         file_cost += mz->lruvec.file_cost;
4199                 }
4200                 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4201                 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4202         }
4203 #endif
4204 }
4205
4206 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4207                                       struct cftype *cft)
4208 {
4209         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4210
4211         return mem_cgroup_swappiness(memcg);
4212 }
4213
4214 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4215                                        struct cftype *cft, u64 val)
4216 {
4217         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4218
4219         if (val > 200)
4220                 return -EINVAL;
4221
4222         if (!mem_cgroup_is_root(memcg))
4223                 WRITE_ONCE(memcg->swappiness, val);
4224         else
4225                 WRITE_ONCE(vm_swappiness, val);
4226
4227         return 0;
4228 }
4229
4230 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4231 {
4232         struct mem_cgroup_threshold_ary *t;
4233         unsigned long usage;
4234         int i;
4235
4236         rcu_read_lock();
4237         if (!swap)
4238                 t = rcu_dereference(memcg->thresholds.primary);
4239         else
4240                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4241
4242         if (!t)
4243                 goto unlock;
4244
4245         usage = mem_cgroup_usage(memcg, swap);
4246
4247         /*
4248          * current_threshold points to threshold just below or equal to usage.
4249          * If it's not true, a threshold was crossed after last
4250          * call of __mem_cgroup_threshold().
4251          */
4252         i = t->current_threshold;
4253
4254         /*
4255          * Iterate backward over array of thresholds starting from
4256          * current_threshold and check if a threshold is crossed.
4257          * If none of thresholds below usage is crossed, we read
4258          * only one element of the array here.
4259          */
4260         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4261                 eventfd_signal(t->entries[i].eventfd, 1);
4262
4263         /* i = current_threshold + 1 */
4264         i++;
4265
4266         /*
4267          * Iterate forward over array of thresholds starting from
4268          * current_threshold+1 and check if a threshold is crossed.
4269          * If none of thresholds above usage is crossed, we read
4270          * only one element of the array here.
4271          */
4272         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4273                 eventfd_signal(t->entries[i].eventfd, 1);
4274
4275         /* Update current_threshold */
4276         t->current_threshold = i - 1;
4277 unlock:
4278         rcu_read_unlock();
4279 }
4280
4281 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4282 {
4283         while (memcg) {
4284                 __mem_cgroup_threshold(memcg, false);
4285                 if (do_memsw_account())
4286                         __mem_cgroup_threshold(memcg, true);
4287
4288                 memcg = parent_mem_cgroup(memcg);
4289         }
4290 }
4291
4292 static int compare_thresholds(const void *a, const void *b)
4293 {
4294         const struct mem_cgroup_threshold *_a = a;
4295         const struct mem_cgroup_threshold *_b = b;
4296
4297         if (_a->threshold > _b->threshold)
4298                 return 1;
4299
4300         if (_a->threshold < _b->threshold)
4301                 return -1;
4302
4303         return 0;
4304 }
4305
4306 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4307 {
4308         struct mem_cgroup_eventfd_list *ev;
4309
4310         spin_lock(&memcg_oom_lock);
4311
4312         list_for_each_entry(ev, &memcg->oom_notify, list)
4313                 eventfd_signal(ev->eventfd, 1);
4314
4315         spin_unlock(&memcg_oom_lock);
4316         return 0;
4317 }
4318
4319 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4320 {
4321         struct mem_cgroup *iter;
4322
4323         for_each_mem_cgroup_tree(iter, memcg)
4324                 mem_cgroup_oom_notify_cb(iter);
4325 }
4326
4327 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4328         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4329 {
4330         struct mem_cgroup_thresholds *thresholds;
4331         struct mem_cgroup_threshold_ary *new;
4332         unsigned long threshold;
4333         unsigned long usage;
4334         int i, size, ret;
4335
4336         ret = page_counter_memparse(args, "-1", &threshold);
4337         if (ret)
4338                 return ret;
4339
4340         mutex_lock(&memcg->thresholds_lock);
4341
4342         if (type == _MEM) {
4343                 thresholds = &memcg->thresholds;
4344                 usage = mem_cgroup_usage(memcg, false);
4345         } else if (type == _MEMSWAP) {
4346                 thresholds = &memcg->memsw_thresholds;
4347                 usage = mem_cgroup_usage(memcg, true);
4348         } else
4349                 BUG();
4350
4351         /* Check if a threshold crossed before adding a new one */
4352         if (thresholds->primary)
4353                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4354
4355         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4356
4357         /* Allocate memory for new array of thresholds */
4358         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4359         if (!new) {
4360                 ret = -ENOMEM;
4361                 goto unlock;
4362         }
4363         new->size = size;
4364
4365         /* Copy thresholds (if any) to new array */
4366         if (thresholds->primary)
4367                 memcpy(new->entries, thresholds->primary->entries,
4368                        flex_array_size(new, entries, size - 1));
4369
4370         /* Add new threshold */
4371         new->entries[size - 1].eventfd = eventfd;
4372         new->entries[size - 1].threshold = threshold;
4373
4374         /* Sort thresholds. Registering of new threshold isn't time-critical */
4375         sort(new->entries, size, sizeof(*new->entries),
4376                         compare_thresholds, NULL);
4377
4378         /* Find current threshold */
4379         new->current_threshold = -1;
4380         for (i = 0; i < size; i++) {
4381                 if (new->entries[i].threshold <= usage) {
4382                         /*
4383                          * new->current_threshold will not be used until
4384                          * rcu_assign_pointer(), so it's safe to increment
4385                          * it here.
4386                          */
4387                         ++new->current_threshold;
4388                 } else
4389                         break;
4390         }
4391
4392         /* Free old spare buffer and save old primary buffer as spare */
4393         kfree(thresholds->spare);
4394         thresholds->spare = thresholds->primary;
4395
4396         rcu_assign_pointer(thresholds->primary, new);
4397
4398         /* To be sure that nobody uses thresholds */
4399         synchronize_rcu();
4400
4401 unlock:
4402         mutex_unlock(&memcg->thresholds_lock);
4403
4404         return ret;
4405 }
4406
4407 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4408         struct eventfd_ctx *eventfd, const char *args)
4409 {
4410         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4411 }
4412
4413 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4414         struct eventfd_ctx *eventfd, const char *args)
4415 {
4416         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4417 }
4418
4419 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4420         struct eventfd_ctx *eventfd, enum res_type type)
4421 {
4422         struct mem_cgroup_thresholds *thresholds;
4423         struct mem_cgroup_threshold_ary *new;
4424         unsigned long usage;
4425         int i, j, size, entries;
4426
4427         mutex_lock(&memcg->thresholds_lock);
4428
4429         if (type == _MEM) {
4430                 thresholds = &memcg->thresholds;
4431                 usage = mem_cgroup_usage(memcg, false);
4432         } else if (type == _MEMSWAP) {
4433                 thresholds = &memcg->memsw_thresholds;
4434                 usage = mem_cgroup_usage(memcg, true);
4435         } else
4436                 BUG();
4437
4438         if (!thresholds->primary)
4439                 goto unlock;
4440
4441         /* Check if a threshold crossed before removing */
4442         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4443
4444         /* Calculate new number of threshold */
4445         size = entries = 0;
4446         for (i = 0; i < thresholds->primary->size; i++) {
4447                 if (thresholds->primary->entries[i].eventfd != eventfd)
4448                         size++;
4449                 else
4450                         entries++;
4451         }
4452
4453         new = thresholds->spare;
4454
4455         /* If no items related to eventfd have been cleared, nothing to do */
4456         if (!entries)
4457                 goto unlock;
4458
4459         /* Set thresholds array to NULL if we don't have thresholds */
4460         if (!size) {
4461                 kfree(new);
4462                 new = NULL;
4463                 goto swap_buffers;
4464         }
4465
4466         new->size = size;
4467
4468         /* Copy thresholds and find current threshold */
4469         new->current_threshold = -1;
4470         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4471                 if (thresholds->primary->entries[i].eventfd == eventfd)
4472                         continue;
4473
4474                 new->entries[j] = thresholds->primary->entries[i];
4475                 if (new->entries[j].threshold <= usage) {
4476                         /*
4477                          * new->current_threshold will not be used
4478                          * until rcu_assign_pointer(), so it's safe to increment
4479                          * it here.
4480                          */
4481                         ++new->current_threshold;
4482                 }
4483                 j++;
4484         }
4485
4486 swap_buffers:
4487         /* Swap primary and spare array */
4488         thresholds->spare = thresholds->primary;
4489
4490         rcu_assign_pointer(thresholds->primary, new);
4491
4492         /* To be sure that nobody uses thresholds */
4493         synchronize_rcu();
4494
4495         /* If all events are unregistered, free the spare array */
4496         if (!new) {
4497                 kfree(thresholds->spare);
4498                 thresholds->spare = NULL;
4499         }
4500 unlock:
4501         mutex_unlock(&memcg->thresholds_lock);
4502 }
4503
4504 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4505         struct eventfd_ctx *eventfd)
4506 {
4507         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4508 }
4509
4510 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4511         struct eventfd_ctx *eventfd)
4512 {
4513         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4514 }
4515
4516 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4517         struct eventfd_ctx *eventfd, const char *args)
4518 {
4519         struct mem_cgroup_eventfd_list *event;
4520
4521         event = kmalloc(sizeof(*event), GFP_KERNEL);
4522         if (!event)
4523                 return -ENOMEM;
4524
4525         spin_lock(&memcg_oom_lock);
4526
4527         event->eventfd = eventfd;
4528         list_add(&event->list, &memcg->oom_notify);
4529
4530         /* already in OOM ? */
4531         if (memcg->under_oom)
4532                 eventfd_signal(eventfd, 1);
4533         spin_unlock(&memcg_oom_lock);
4534
4535         return 0;
4536 }
4537
4538 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4539         struct eventfd_ctx *eventfd)
4540 {
4541         struct mem_cgroup_eventfd_list *ev, *tmp;
4542
4543         spin_lock(&memcg_oom_lock);
4544
4545         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4546                 if (ev->eventfd == eventfd) {
4547                         list_del(&ev->list);
4548                         kfree(ev);
4549                 }
4550         }
4551
4552         spin_unlock(&memcg_oom_lock);
4553 }
4554
4555 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4556 {
4557         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4558
4559         seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4560         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4561         seq_printf(sf, "oom_kill %lu\n",
4562                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4563         return 0;
4564 }
4565
4566 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4567         struct cftype *cft, u64 val)
4568 {
4569         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4570
4571         /* cannot set to root cgroup and only 0 and 1 are allowed */
4572         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4573                 return -EINVAL;
4574
4575         WRITE_ONCE(memcg->oom_kill_disable, val);
4576         if (!val)
4577                 memcg_oom_recover(memcg);
4578
4579         return 0;
4580 }
4581
4582 #ifdef CONFIG_CGROUP_WRITEBACK
4583
4584 #include <trace/events/writeback.h>
4585
4586 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4587 {
4588         return wb_domain_init(&memcg->cgwb_domain, gfp);
4589 }
4590
4591 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4592 {
4593         wb_domain_exit(&memcg->cgwb_domain);
4594 }
4595
4596 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4597 {
4598         wb_domain_size_changed(&memcg->cgwb_domain);
4599 }
4600
4601 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4602 {
4603         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4604
4605         if (!memcg->css.parent)
4606                 return NULL;
4607
4608         return &memcg->cgwb_domain;
4609 }
4610
4611 /**
4612  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4613  * @wb: bdi_writeback in question
4614  * @pfilepages: out parameter for number of file pages
4615  * @pheadroom: out parameter for number of allocatable pages according to memcg
4616  * @pdirty: out parameter for number of dirty pages
4617  * @pwriteback: out parameter for number of pages under writeback
4618  *
4619  * Determine the numbers of file, headroom, dirty, and writeback pages in
4620  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4621  * is a bit more involved.
4622  *
4623  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4624  * headroom is calculated as the lowest headroom of itself and the
4625  * ancestors.  Note that this doesn't consider the actual amount of
4626  * available memory in the system.  The caller should further cap
4627  * *@pheadroom accordingly.
4628  */
4629 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4630                          unsigned long *pheadroom, unsigned long *pdirty,
4631                          unsigned long *pwriteback)
4632 {
4633         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4634         struct mem_cgroup *parent;
4635
4636         mem_cgroup_flush_stats();
4637
4638         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4639         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4640         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4641                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4642
4643         *pheadroom = PAGE_COUNTER_MAX;
4644         while ((parent = parent_mem_cgroup(memcg))) {
4645                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4646                                             READ_ONCE(memcg->memory.high));
4647                 unsigned long used = page_counter_read(&memcg->memory);
4648
4649                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4650                 memcg = parent;
4651         }
4652 }
4653
4654 /*
4655  * Foreign dirty flushing
4656  *
4657  * There's an inherent mismatch between memcg and writeback.  The former
4658  * tracks ownership per-page while the latter per-inode.  This was a
4659  * deliberate design decision because honoring per-page ownership in the
4660  * writeback path is complicated, may lead to higher CPU and IO overheads
4661  * and deemed unnecessary given that write-sharing an inode across
4662  * different cgroups isn't a common use-case.
4663  *
4664  * Combined with inode majority-writer ownership switching, this works well
4665  * enough in most cases but there are some pathological cases.  For
4666  * example, let's say there are two cgroups A and B which keep writing to
4667  * different but confined parts of the same inode.  B owns the inode and
4668  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4669  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4670  * triggering background writeback.  A will be slowed down without a way to
4671  * make writeback of the dirty pages happen.
4672  *
4673  * Conditions like the above can lead to a cgroup getting repeatedly and
4674  * severely throttled after making some progress after each
4675  * dirty_expire_interval while the underlying IO device is almost
4676  * completely idle.
4677  *
4678  * Solving this problem completely requires matching the ownership tracking
4679  * granularities between memcg and writeback in either direction.  However,
4680  * the more egregious behaviors can be avoided by simply remembering the
4681  * most recent foreign dirtying events and initiating remote flushes on
4682  * them when local writeback isn't enough to keep the memory clean enough.
4683  *
4684  * The following two functions implement such mechanism.  When a foreign
4685  * page - a page whose memcg and writeback ownerships don't match - is
4686  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4687  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4688  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4689  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4690  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4691  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4692  * limited to MEMCG_CGWB_FRN_CNT.
4693  *
4694  * The mechanism only remembers IDs and doesn't hold any object references.
4695  * As being wrong occasionally doesn't matter, updates and accesses to the
4696  * records are lockless and racy.
4697  */
4698 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4699                                              struct bdi_writeback *wb)
4700 {
4701         struct mem_cgroup *memcg = folio_memcg(folio);
4702         struct memcg_cgwb_frn *frn;
4703         u64 now = get_jiffies_64();
4704         u64 oldest_at = now;
4705         int oldest = -1;
4706         int i;
4707
4708         trace_track_foreign_dirty(folio, wb);
4709
4710         /*
4711          * Pick the slot to use.  If there is already a slot for @wb, keep
4712          * using it.  If not replace the oldest one which isn't being
4713          * written out.
4714          */
4715         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4716                 frn = &memcg->cgwb_frn[i];
4717                 if (frn->bdi_id == wb->bdi->id &&
4718                     frn->memcg_id == wb->memcg_css->id)
4719                         break;
4720                 if (time_before64(frn->at, oldest_at) &&
4721                     atomic_read(&frn->done.cnt) == 1) {
4722                         oldest = i;
4723                         oldest_at = frn->at;
4724                 }
4725         }
4726
4727         if (i < MEMCG_CGWB_FRN_CNT) {
4728                 /*
4729                  * Re-using an existing one.  Update timestamp lazily to
4730                  * avoid making the cacheline hot.  We want them to be
4731                  * reasonably up-to-date and significantly shorter than
4732                  * dirty_expire_interval as that's what expires the record.
4733                  * Use the shorter of 1s and dirty_expire_interval / 8.
4734                  */
4735                 unsigned long update_intv =
4736                         min_t(unsigned long, HZ,
4737                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4738
4739                 if (time_before64(frn->at, now - update_intv))
4740                         frn->at = now;
4741         } else if (oldest >= 0) {
4742                 /* replace the oldest free one */
4743                 frn = &memcg->cgwb_frn[oldest];
4744                 frn->bdi_id = wb->bdi->id;
4745                 frn->memcg_id = wb->memcg_css->id;
4746                 frn->at = now;
4747         }
4748 }
4749
4750 /* issue foreign writeback flushes for recorded foreign dirtying events */
4751 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4752 {
4753         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4754         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4755         u64 now = jiffies_64;
4756         int i;
4757
4758         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4759                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4760
4761                 /*
4762                  * If the record is older than dirty_expire_interval,
4763                  * writeback on it has already started.  No need to kick it
4764                  * off again.  Also, don't start a new one if there's
4765                  * already one in flight.
4766                  */
4767                 if (time_after64(frn->at, now - intv) &&
4768                     atomic_read(&frn->done.cnt) == 1) {
4769                         frn->at = 0;
4770                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4771                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4772                                                WB_REASON_FOREIGN_FLUSH,
4773                                                &frn->done);
4774                 }
4775         }
4776 }
4777
4778 #else   /* CONFIG_CGROUP_WRITEBACK */
4779
4780 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4781 {
4782         return 0;
4783 }
4784
4785 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4786 {
4787 }
4788
4789 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4790 {
4791 }
4792
4793 #endif  /* CONFIG_CGROUP_WRITEBACK */
4794
4795 /*
4796  * DO NOT USE IN NEW FILES.
4797  *
4798  * "cgroup.event_control" implementation.
4799  *
4800  * This is way over-engineered.  It tries to support fully configurable
4801  * events for each user.  Such level of flexibility is completely
4802  * unnecessary especially in the light of the planned unified hierarchy.
4803  *
4804  * Please deprecate this and replace with something simpler if at all
4805  * possible.
4806  */
4807
4808 /*
4809  * Unregister event and free resources.
4810  *
4811  * Gets called from workqueue.
4812  */
4813 static void memcg_event_remove(struct work_struct *work)
4814 {
4815         struct mem_cgroup_event *event =
4816                 container_of(work, struct mem_cgroup_event, remove);
4817         struct mem_cgroup *memcg = event->memcg;
4818
4819         remove_wait_queue(event->wqh, &event->wait);
4820
4821         event->unregister_event(memcg, event->eventfd);
4822
4823         /* Notify userspace the event is going away. */
4824         eventfd_signal(event->eventfd, 1);
4825
4826         eventfd_ctx_put(event->eventfd);
4827         kfree(event);
4828         css_put(&memcg->css);
4829 }
4830
4831 /*
4832  * Gets called on EPOLLHUP on eventfd when user closes it.
4833  *
4834  * Called with wqh->lock held and interrupts disabled.
4835  */
4836 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4837                             int sync, void *key)
4838 {
4839         struct mem_cgroup_event *event =
4840                 container_of(wait, struct mem_cgroup_event, wait);
4841         struct mem_cgroup *memcg = event->memcg;
4842         __poll_t flags = key_to_poll(key);
4843
4844         if (flags & EPOLLHUP) {
4845                 /*
4846                  * If the event has been detached at cgroup removal, we
4847                  * can simply return knowing the other side will cleanup
4848                  * for us.
4849                  *
4850                  * We can't race against event freeing since the other
4851                  * side will require wqh->lock via remove_wait_queue(),
4852                  * which we hold.
4853                  */
4854                 spin_lock(&memcg->event_list_lock);
4855                 if (!list_empty(&event->list)) {
4856                         list_del_init(&event->list);
4857                         /*
4858                          * We are in atomic context, but cgroup_event_remove()
4859                          * may sleep, so we have to call it in workqueue.
4860                          */
4861                         schedule_work(&event->remove);
4862                 }
4863                 spin_unlock(&memcg->event_list_lock);
4864         }
4865
4866         return 0;
4867 }
4868
4869 static void memcg_event_ptable_queue_proc(struct file *file,
4870                 wait_queue_head_t *wqh, poll_table *pt)
4871 {
4872         struct mem_cgroup_event *event =
4873                 container_of(pt, struct mem_cgroup_event, pt);
4874
4875         event->wqh = wqh;
4876         add_wait_queue(wqh, &event->wait);
4877 }
4878
4879 /*
4880  * DO NOT USE IN NEW FILES.
4881  *
4882  * Parse input and register new cgroup event handler.
4883  *
4884  * Input must be in format '<event_fd> <control_fd> <args>'.
4885  * Interpretation of args is defined by control file implementation.
4886  */
4887 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4888                                          char *buf, size_t nbytes, loff_t off)
4889 {
4890         struct cgroup_subsys_state *css = of_css(of);
4891         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4892         struct mem_cgroup_event *event;
4893         struct cgroup_subsys_state *cfile_css;
4894         unsigned int efd, cfd;
4895         struct fd efile;
4896         struct fd cfile;
4897         struct dentry *cdentry;
4898         const char *name;
4899         char *endp;
4900         int ret;
4901
4902         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4903                 return -EOPNOTSUPP;
4904
4905         buf = strstrip(buf);
4906
4907         efd = simple_strtoul(buf, &endp, 10);
4908         if (*endp != ' ')
4909                 return -EINVAL;
4910         buf = endp + 1;
4911
4912         cfd = simple_strtoul(buf, &endp, 10);
4913         if ((*endp != ' ') && (*endp != '\0'))
4914                 return -EINVAL;
4915         buf = endp + 1;
4916
4917         event = kzalloc(sizeof(*event), GFP_KERNEL);
4918         if (!event)
4919                 return -ENOMEM;
4920
4921         event->memcg = memcg;
4922         INIT_LIST_HEAD(&event->list);
4923         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4924         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4925         INIT_WORK(&event->remove, memcg_event_remove);
4926
4927         efile = fdget(efd);
4928         if (!efile.file) {
4929                 ret = -EBADF;
4930                 goto out_kfree;
4931         }
4932
4933         event->eventfd = eventfd_ctx_fileget(efile.file);
4934         if (IS_ERR(event->eventfd)) {
4935                 ret = PTR_ERR(event->eventfd);
4936                 goto out_put_efile;
4937         }
4938
4939         cfile = fdget(cfd);
4940         if (!cfile.file) {
4941                 ret = -EBADF;
4942                 goto out_put_eventfd;
4943         }
4944
4945         /* the process need read permission on control file */
4946         /* AV: shouldn't we check that it's been opened for read instead? */
4947         ret = file_permission(cfile.file, MAY_READ);
4948         if (ret < 0)
4949                 goto out_put_cfile;
4950
4951         /*
4952          * The control file must be a regular cgroup1 file. As a regular cgroup
4953          * file can't be renamed, it's safe to access its name afterwards.
4954          */
4955         cdentry = cfile.file->f_path.dentry;
4956         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4957                 ret = -EINVAL;
4958                 goto out_put_cfile;
4959         }
4960
4961         /*
4962          * Determine the event callbacks and set them in @event.  This used
4963          * to be done via struct cftype but cgroup core no longer knows
4964          * about these events.  The following is crude but the whole thing
4965          * is for compatibility anyway.
4966          *
4967          * DO NOT ADD NEW FILES.
4968          */
4969         name = cdentry->d_name.name;
4970
4971         if (!strcmp(name, "memory.usage_in_bytes")) {
4972                 event->register_event = mem_cgroup_usage_register_event;
4973                 event->unregister_event = mem_cgroup_usage_unregister_event;
4974         } else if (!strcmp(name, "memory.oom_control")) {
4975                 event->register_event = mem_cgroup_oom_register_event;
4976                 event->unregister_event = mem_cgroup_oom_unregister_event;
4977         } else if (!strcmp(name, "memory.pressure_level")) {
4978                 event->register_event = vmpressure_register_event;
4979                 event->unregister_event = vmpressure_unregister_event;
4980         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4981                 event->register_event = memsw_cgroup_usage_register_event;
4982                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4983         } else {
4984                 ret = -EINVAL;
4985                 goto out_put_cfile;
4986         }
4987
4988         /*
4989          * Verify @cfile should belong to @css.  Also, remaining events are
4990          * automatically removed on cgroup destruction but the removal is
4991          * asynchronous, so take an extra ref on @css.
4992          */
4993         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4994                                                &memory_cgrp_subsys);
4995         ret = -EINVAL;
4996         if (IS_ERR(cfile_css))
4997                 goto out_put_cfile;
4998         if (cfile_css != css) {
4999                 css_put(cfile_css);
5000                 goto out_put_cfile;
5001         }
5002
5003         ret = event->register_event(memcg, event->eventfd, buf);
5004         if (ret)
5005                 goto out_put_css;
5006
5007         vfs_poll(efile.file, &event->pt);
5008
5009         spin_lock_irq(&memcg->event_list_lock);
5010         list_add(&event->list, &memcg->event_list);
5011         spin_unlock_irq(&memcg->event_list_lock);
5012
5013         fdput(cfile);
5014         fdput(efile);
5015
5016         return nbytes;
5017
5018 out_put_css:
5019         css_put(css);
5020 out_put_cfile:
5021         fdput(cfile);
5022 out_put_eventfd:
5023         eventfd_ctx_put(event->eventfd);
5024 out_put_efile:
5025         fdput(efile);
5026 out_kfree:
5027         kfree(event);
5028
5029         return ret;
5030 }
5031
5032 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5033 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5034 {
5035         /*
5036          * Deprecated.
5037          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5038          */
5039         return 0;
5040 }
5041 #endif
5042
5043 static int memory_stat_show(struct seq_file *m, void *v);
5044
5045 static struct cftype mem_cgroup_legacy_files[] = {
5046         {
5047                 .name = "usage_in_bytes",
5048                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5049                 .read_u64 = mem_cgroup_read_u64,
5050         },
5051         {
5052                 .name = "max_usage_in_bytes",
5053                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5054                 .write = mem_cgroup_reset,
5055                 .read_u64 = mem_cgroup_read_u64,
5056         },
5057         {
5058                 .name = "limit_in_bytes",
5059                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5060                 .write = mem_cgroup_write,
5061                 .read_u64 = mem_cgroup_read_u64,
5062         },
5063         {
5064                 .name = "soft_limit_in_bytes",
5065                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5066                 .write = mem_cgroup_write,
5067                 .read_u64 = mem_cgroup_read_u64,
5068         },
5069         {
5070                 .name = "failcnt",
5071                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5072                 .write = mem_cgroup_reset,
5073                 .read_u64 = mem_cgroup_read_u64,
5074         },
5075         {
5076                 .name = "stat",
5077                 .seq_show = memory_stat_show,
5078         },
5079         {
5080                 .name = "force_empty",
5081                 .write = mem_cgroup_force_empty_write,
5082         },
5083         {
5084                 .name = "use_hierarchy",
5085                 .write_u64 = mem_cgroup_hierarchy_write,
5086                 .read_u64 = mem_cgroup_hierarchy_read,
5087         },
5088         {
5089                 .name = "cgroup.event_control",         /* XXX: for compat */
5090                 .write = memcg_write_event_control,
5091                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5092         },
5093         {
5094                 .name = "swappiness",
5095                 .read_u64 = mem_cgroup_swappiness_read,
5096                 .write_u64 = mem_cgroup_swappiness_write,
5097         },
5098         {
5099                 .name = "move_charge_at_immigrate",
5100                 .read_u64 = mem_cgroup_move_charge_read,
5101                 .write_u64 = mem_cgroup_move_charge_write,
5102         },
5103         {
5104                 .name = "oom_control",
5105                 .seq_show = mem_cgroup_oom_control_read,
5106                 .write_u64 = mem_cgroup_oom_control_write,
5107         },
5108         {
5109                 .name = "pressure_level",
5110                 .seq_show = mem_cgroup_dummy_seq_show,
5111         },
5112 #ifdef CONFIG_NUMA
5113         {
5114                 .name = "numa_stat",
5115                 .seq_show = memcg_numa_stat_show,
5116         },
5117 #endif
5118         {
5119                 .name = "kmem.limit_in_bytes",
5120                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5121                 .write = mem_cgroup_write,
5122                 .read_u64 = mem_cgroup_read_u64,
5123         },
5124         {
5125                 .name = "kmem.usage_in_bytes",
5126                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5127                 .read_u64 = mem_cgroup_read_u64,
5128         },
5129         {
5130                 .name = "kmem.failcnt",
5131                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5132                 .write = mem_cgroup_reset,
5133                 .read_u64 = mem_cgroup_read_u64,
5134         },
5135         {
5136                 .name = "kmem.max_usage_in_bytes",
5137                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5138                 .write = mem_cgroup_reset,
5139                 .read_u64 = mem_cgroup_read_u64,
5140         },
5141 #if defined(CONFIG_MEMCG_KMEM) && \
5142         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5143         {
5144                 .name = "kmem.slabinfo",
5145                 .seq_show = mem_cgroup_slab_show,
5146         },
5147 #endif
5148         {
5149                 .name = "kmem.tcp.limit_in_bytes",
5150                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5151                 .write = mem_cgroup_write,
5152                 .read_u64 = mem_cgroup_read_u64,
5153         },
5154         {
5155                 .name = "kmem.tcp.usage_in_bytes",
5156                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5157                 .read_u64 = mem_cgroup_read_u64,
5158         },
5159         {
5160                 .name = "kmem.tcp.failcnt",
5161                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5162                 .write = mem_cgroup_reset,
5163                 .read_u64 = mem_cgroup_read_u64,
5164         },
5165         {
5166                 .name = "kmem.tcp.max_usage_in_bytes",
5167                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5168                 .write = mem_cgroup_reset,
5169                 .read_u64 = mem_cgroup_read_u64,
5170         },
5171         { },    /* terminate */
5172 };
5173
5174 /*
5175  * Private memory cgroup IDR
5176  *
5177  * Swap-out records and page cache shadow entries need to store memcg
5178  * references in constrained space, so we maintain an ID space that is
5179  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5180  * memory-controlled cgroups to 64k.
5181  *
5182  * However, there usually are many references to the offline CSS after
5183  * the cgroup has been destroyed, such as page cache or reclaimable
5184  * slab objects, that don't need to hang on to the ID. We want to keep
5185  * those dead CSS from occupying IDs, or we might quickly exhaust the
5186  * relatively small ID space and prevent the creation of new cgroups
5187  * even when there are much fewer than 64k cgroups - possibly none.
5188  *
5189  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5190  * be freed and recycled when it's no longer needed, which is usually
5191  * when the CSS is offlined.
5192  *
5193  * The only exception to that are records of swapped out tmpfs/shmem
5194  * pages that need to be attributed to live ancestors on swapin. But
5195  * those references are manageable from userspace.
5196  */
5197
5198 #define MEM_CGROUP_ID_MAX       ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5199 static DEFINE_IDR(mem_cgroup_idr);
5200
5201 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5202 {
5203         if (memcg->id.id > 0) {
5204                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5205                 memcg->id.id = 0;
5206         }
5207 }
5208
5209 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5210                                                   unsigned int n)
5211 {
5212         refcount_add(n, &memcg->id.ref);
5213 }
5214
5215 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5216 {
5217         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5218                 mem_cgroup_id_remove(memcg);
5219
5220                 /* Memcg ID pins CSS */
5221                 css_put(&memcg->css);
5222         }
5223 }
5224
5225 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5226 {
5227         mem_cgroup_id_put_many(memcg, 1);
5228 }
5229
5230 /**
5231  * mem_cgroup_from_id - look up a memcg from a memcg id
5232  * @id: the memcg id to look up
5233  *
5234  * Caller must hold rcu_read_lock().
5235  */
5236 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5237 {
5238         WARN_ON_ONCE(!rcu_read_lock_held());
5239         return idr_find(&mem_cgroup_idr, id);
5240 }
5241
5242 #ifdef CONFIG_SHRINKER_DEBUG
5243 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5244 {
5245         struct cgroup *cgrp;
5246         struct cgroup_subsys_state *css;
5247         struct mem_cgroup *memcg;
5248
5249         cgrp = cgroup_get_from_id(ino);
5250         if (IS_ERR(cgrp))
5251                 return ERR_CAST(cgrp);
5252
5253         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5254         if (css)
5255                 memcg = container_of(css, struct mem_cgroup, css);
5256         else
5257                 memcg = ERR_PTR(-ENOENT);
5258
5259         cgroup_put(cgrp);
5260
5261         return memcg;
5262 }
5263 #endif
5264
5265 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5266 {
5267         struct mem_cgroup_per_node *pn;
5268
5269         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5270         if (!pn)
5271                 return 1;
5272
5273         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5274                                                    GFP_KERNEL_ACCOUNT);
5275         if (!pn->lruvec_stats_percpu) {
5276                 kfree(pn);
5277                 return 1;
5278         }
5279
5280         lruvec_init(&pn->lruvec);
5281         pn->memcg = memcg;
5282
5283         memcg->nodeinfo[node] = pn;
5284         return 0;
5285 }
5286
5287 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5288 {
5289         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5290
5291         if (!pn)
5292                 return;
5293
5294         free_percpu(pn->lruvec_stats_percpu);
5295         kfree(pn);
5296 }
5297
5298 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5299 {
5300         int node;
5301
5302         for_each_node(node)
5303                 free_mem_cgroup_per_node_info(memcg, node);
5304         kfree(memcg->vmstats);
5305         free_percpu(memcg->vmstats_percpu);
5306         kfree(memcg);
5307 }
5308
5309 static void mem_cgroup_free(struct mem_cgroup *memcg)
5310 {
5311         lru_gen_exit_memcg(memcg);
5312         memcg_wb_domain_exit(memcg);
5313         __mem_cgroup_free(memcg);
5314 }
5315
5316 static struct mem_cgroup *mem_cgroup_alloc(void)
5317 {
5318         struct mem_cgroup *memcg;
5319         int node;
5320         int __maybe_unused i;
5321         long error = -ENOMEM;
5322
5323         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5324         if (!memcg)
5325                 return ERR_PTR(error);
5326
5327         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5328                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5329         if (memcg->id.id < 0) {
5330                 error = memcg->id.id;
5331                 goto fail;
5332         }
5333
5334         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5335         if (!memcg->vmstats)
5336                 goto fail;
5337
5338         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5339                                                  GFP_KERNEL_ACCOUNT);
5340         if (!memcg->vmstats_percpu)
5341                 goto fail;
5342
5343         for_each_node(node)
5344                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5345                         goto fail;
5346
5347         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5348                 goto fail;
5349
5350         INIT_WORK(&memcg->high_work, high_work_func);
5351         INIT_LIST_HEAD(&memcg->oom_notify);
5352         mutex_init(&memcg->thresholds_lock);
5353         spin_lock_init(&memcg->move_lock);
5354         vmpressure_init(&memcg->vmpressure);
5355         INIT_LIST_HEAD(&memcg->event_list);
5356         spin_lock_init(&memcg->event_list_lock);
5357         memcg->socket_pressure = jiffies;
5358 #ifdef CONFIG_MEMCG_KMEM
5359         memcg->kmemcg_id = -1;
5360         INIT_LIST_HEAD(&memcg->objcg_list);
5361 #endif
5362 #ifdef CONFIG_CGROUP_WRITEBACK
5363         INIT_LIST_HEAD(&memcg->cgwb_list);
5364         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5365                 memcg->cgwb_frn[i].done =
5366                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5367 #endif
5368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5369         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5370         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5371         memcg->deferred_split_queue.split_queue_len = 0;
5372 #endif
5373         lru_gen_init_memcg(memcg);
5374         return memcg;
5375 fail:
5376         mem_cgroup_id_remove(memcg);
5377         __mem_cgroup_free(memcg);
5378         return ERR_PTR(error);
5379 }
5380
5381 static struct cgroup_subsys_state * __ref
5382 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5383 {
5384         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5385         struct mem_cgroup *memcg, *old_memcg;
5386
5387         old_memcg = set_active_memcg(parent);
5388         memcg = mem_cgroup_alloc();
5389         set_active_memcg(old_memcg);
5390         if (IS_ERR(memcg))
5391                 return ERR_CAST(memcg);
5392
5393         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5394         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5395 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5396         memcg->zswap_max = PAGE_COUNTER_MAX;
5397 #endif
5398         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5399         if (parent) {
5400                 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5401                 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5402
5403                 page_counter_init(&memcg->memory, &parent->memory);
5404                 page_counter_init(&memcg->swap, &parent->swap);
5405                 page_counter_init(&memcg->kmem, &parent->kmem);
5406                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5407         } else {
5408                 init_memcg_events();
5409                 page_counter_init(&memcg->memory, NULL);
5410                 page_counter_init(&memcg->swap, NULL);
5411                 page_counter_init(&memcg->kmem, NULL);
5412                 page_counter_init(&memcg->tcpmem, NULL);
5413
5414                 root_mem_cgroup = memcg;
5415                 return &memcg->css;
5416         }
5417
5418         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5419                 static_branch_inc(&memcg_sockets_enabled_key);
5420
5421 #if defined(CONFIG_MEMCG_KMEM)
5422         if (!cgroup_memory_nobpf)
5423                 static_branch_inc(&memcg_bpf_enabled_key);
5424 #endif
5425
5426         return &memcg->css;
5427 }
5428
5429 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5430 {
5431         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432
5433         if (memcg_online_kmem(memcg))
5434                 goto remove_id;
5435
5436         /*
5437          * A memcg must be visible for expand_shrinker_info()
5438          * by the time the maps are allocated. So, we allocate maps
5439          * here, when for_each_mem_cgroup() can't skip it.
5440          */
5441         if (alloc_shrinker_info(memcg))
5442                 goto offline_kmem;
5443
5444         if (unlikely(mem_cgroup_is_root(memcg)))
5445                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5446                                    FLUSH_TIME);
5447         lru_gen_online_memcg(memcg);
5448
5449         /* Online state pins memcg ID, memcg ID pins CSS */
5450         refcount_set(&memcg->id.ref, 1);
5451         css_get(css);
5452
5453         /*
5454          * Ensure mem_cgroup_from_id() works once we're fully online.
5455          *
5456          * We could do this earlier and require callers to filter with
5457          * css_tryget_online(). But right now there are no users that
5458          * need earlier access, and the workingset code relies on the
5459          * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5460          * publish it here at the end of onlining. This matches the
5461          * regular ID destruction during offlining.
5462          */
5463         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5464
5465         return 0;
5466 offline_kmem:
5467         memcg_offline_kmem(memcg);
5468 remove_id:
5469         mem_cgroup_id_remove(memcg);
5470         return -ENOMEM;
5471 }
5472
5473 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5474 {
5475         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5476         struct mem_cgroup_event *event, *tmp;
5477
5478         /*
5479          * Unregister events and notify userspace.
5480          * Notify userspace about cgroup removing only after rmdir of cgroup
5481          * directory to avoid race between userspace and kernelspace.
5482          */
5483         spin_lock_irq(&memcg->event_list_lock);
5484         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5485                 list_del_init(&event->list);
5486                 schedule_work(&event->remove);
5487         }
5488         spin_unlock_irq(&memcg->event_list_lock);
5489
5490         page_counter_set_min(&memcg->memory, 0);
5491         page_counter_set_low(&memcg->memory, 0);
5492
5493         memcg_offline_kmem(memcg);
5494         reparent_shrinker_deferred(memcg);
5495         wb_memcg_offline(memcg);
5496         lru_gen_offline_memcg(memcg);
5497
5498         drain_all_stock(memcg);
5499
5500         mem_cgroup_id_put(memcg);
5501 }
5502
5503 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5504 {
5505         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5506
5507         invalidate_reclaim_iterators(memcg);
5508         lru_gen_release_memcg(memcg);
5509 }
5510
5511 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5512 {
5513         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5514         int __maybe_unused i;
5515
5516 #ifdef CONFIG_CGROUP_WRITEBACK
5517         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5518                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5519 #endif
5520         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5521                 static_branch_dec(&memcg_sockets_enabled_key);
5522
5523         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5524                 static_branch_dec(&memcg_sockets_enabled_key);
5525
5526 #if defined(CONFIG_MEMCG_KMEM)
5527         if (!cgroup_memory_nobpf)
5528                 static_branch_dec(&memcg_bpf_enabled_key);
5529 #endif
5530
5531         vmpressure_cleanup(&memcg->vmpressure);
5532         cancel_work_sync(&memcg->high_work);
5533         mem_cgroup_remove_from_trees(memcg);
5534         free_shrinker_info(memcg);
5535         mem_cgroup_free(memcg);
5536 }
5537
5538 /**
5539  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5540  * @css: the target css
5541  *
5542  * Reset the states of the mem_cgroup associated with @css.  This is
5543  * invoked when the userland requests disabling on the default hierarchy
5544  * but the memcg is pinned through dependency.  The memcg should stop
5545  * applying policies and should revert to the vanilla state as it may be
5546  * made visible again.
5547  *
5548  * The current implementation only resets the essential configurations.
5549  * This needs to be expanded to cover all the visible parts.
5550  */
5551 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5552 {
5553         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5554
5555         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5556         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5557         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5558         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5559         page_counter_set_min(&memcg->memory, 0);
5560         page_counter_set_low(&memcg->memory, 0);
5561         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5562         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5563         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5564         memcg_wb_domain_size_changed(memcg);
5565 }
5566
5567 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5568 {
5569         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5570         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5571         struct memcg_vmstats_percpu *statc;
5572         long delta, delta_cpu, v;
5573         int i, nid;
5574
5575         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5576
5577         for (i = 0; i < MEMCG_NR_STAT; i++) {
5578                 /*
5579                  * Collect the aggregated propagation counts of groups
5580                  * below us. We're in a per-cpu loop here and this is
5581                  * a global counter, so the first cycle will get them.
5582                  */
5583                 delta = memcg->vmstats->state_pending[i];
5584                 if (delta)
5585                         memcg->vmstats->state_pending[i] = 0;
5586
5587                 /* Add CPU changes on this level since the last flush */
5588                 delta_cpu = 0;
5589                 v = READ_ONCE(statc->state[i]);
5590                 if (v != statc->state_prev[i]) {
5591                         delta_cpu = v - statc->state_prev[i];
5592                         delta += delta_cpu;
5593                         statc->state_prev[i] = v;
5594                 }
5595
5596                 /* Aggregate counts on this level and propagate upwards */
5597                 if (delta_cpu)
5598                         memcg->vmstats->state_local[i] += delta_cpu;
5599
5600                 if (delta) {
5601                         memcg->vmstats->state[i] += delta;
5602                         if (parent)
5603                                 parent->vmstats->state_pending[i] += delta;
5604                 }
5605         }
5606
5607         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5608                 delta = memcg->vmstats->events_pending[i];
5609                 if (delta)
5610                         memcg->vmstats->events_pending[i] = 0;
5611
5612                 delta_cpu = 0;
5613                 v = READ_ONCE(statc->events[i]);
5614                 if (v != statc->events_prev[i]) {
5615                         delta_cpu = v - statc->events_prev[i];
5616                         delta += delta_cpu;
5617                         statc->events_prev[i] = v;
5618                 }
5619
5620                 if (delta_cpu)
5621                         memcg->vmstats->events_local[i] += delta_cpu;
5622
5623                 if (delta) {
5624                         memcg->vmstats->events[i] += delta;
5625                         if (parent)
5626                                 parent->vmstats->events_pending[i] += delta;
5627                 }
5628         }
5629
5630         for_each_node_state(nid, N_MEMORY) {
5631                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5632                 struct mem_cgroup_per_node *ppn = NULL;
5633                 struct lruvec_stats_percpu *lstatc;
5634
5635                 if (parent)
5636                         ppn = parent->nodeinfo[nid];
5637
5638                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5639
5640                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5641                         delta = pn->lruvec_stats.state_pending[i];
5642                         if (delta)
5643                                 pn->lruvec_stats.state_pending[i] = 0;
5644
5645                         delta_cpu = 0;
5646                         v = READ_ONCE(lstatc->state[i]);
5647                         if (v != lstatc->state_prev[i]) {
5648                                 delta_cpu = v - lstatc->state_prev[i];
5649                                 delta += delta_cpu;
5650                                 lstatc->state_prev[i] = v;
5651                         }
5652
5653                         if (delta_cpu)
5654                                 pn->lruvec_stats.state_local[i] += delta_cpu;
5655
5656                         if (delta) {
5657                                 pn->lruvec_stats.state[i] += delta;
5658                                 if (ppn)
5659                                         ppn->lruvec_stats.state_pending[i] += delta;
5660                         }
5661                 }
5662         }
5663 }
5664
5665 #ifdef CONFIG_MMU
5666 /* Handlers for move charge at task migration. */
5667 static int mem_cgroup_do_precharge(unsigned long count)
5668 {
5669         int ret;
5670
5671         /* Try a single bulk charge without reclaim first, kswapd may wake */
5672         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5673         if (!ret) {
5674                 mc.precharge += count;
5675                 return ret;
5676         }
5677
5678         /* Try charges one by one with reclaim, but do not retry */
5679         while (count--) {
5680                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5681                 if (ret)
5682                         return ret;
5683                 mc.precharge++;
5684                 cond_resched();
5685         }
5686         return 0;
5687 }
5688
5689 union mc_target {
5690         struct page     *page;
5691         swp_entry_t     ent;
5692 };
5693
5694 enum mc_target_type {
5695         MC_TARGET_NONE = 0,
5696         MC_TARGET_PAGE,
5697         MC_TARGET_SWAP,
5698         MC_TARGET_DEVICE,
5699 };
5700
5701 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5702                                                 unsigned long addr, pte_t ptent)
5703 {
5704         struct page *page = vm_normal_page(vma, addr, ptent);
5705
5706         if (!page)
5707                 return NULL;
5708         if (PageAnon(page)) {
5709                 if (!(mc.flags & MOVE_ANON))
5710                         return NULL;
5711         } else {
5712                 if (!(mc.flags & MOVE_FILE))
5713                         return NULL;
5714         }
5715         get_page(page);
5716
5717         return page;
5718 }
5719
5720 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5721 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5722                         pte_t ptent, swp_entry_t *entry)
5723 {
5724         struct page *page = NULL;
5725         swp_entry_t ent = pte_to_swp_entry(ptent);
5726
5727         if (!(mc.flags & MOVE_ANON))
5728                 return NULL;
5729
5730         /*
5731          * Handle device private pages that are not accessible by the CPU, but
5732          * stored as special swap entries in the page table.
5733          */
5734         if (is_device_private_entry(ent)) {
5735                 page = pfn_swap_entry_to_page(ent);
5736                 if (!get_page_unless_zero(page))
5737                         return NULL;
5738                 return page;
5739         }
5740
5741         if (non_swap_entry(ent))
5742                 return NULL;
5743
5744         /*
5745          * Because swap_cache_get_folio() updates some statistics counter,
5746          * we call find_get_page() with swapper_space directly.
5747          */
5748         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5749         entry->val = ent.val;
5750
5751         return page;
5752 }
5753 #else
5754 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5755                         pte_t ptent, swp_entry_t *entry)
5756 {
5757         return NULL;
5758 }
5759 #endif
5760
5761 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5762                         unsigned long addr, pte_t ptent)
5763 {
5764         unsigned long index;
5765         struct folio *folio;
5766
5767         if (!vma->vm_file) /* anonymous vma */
5768                 return NULL;
5769         if (!(mc.flags & MOVE_FILE))
5770                 return NULL;
5771
5772         /* folio is moved even if it's not RSS of this task(page-faulted). */
5773         /* shmem/tmpfs may report page out on swap: account for that too. */
5774         index = linear_page_index(vma, addr);
5775         folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5776         if (IS_ERR(folio))
5777                 return NULL;
5778         return folio_file_page(folio, index);
5779 }
5780
5781 /**
5782  * mem_cgroup_move_account - move account of the page
5783  * @page: the page
5784  * @compound: charge the page as compound or small page
5785  * @from: mem_cgroup which the page is moved from.
5786  * @to: mem_cgroup which the page is moved to. @from != @to.
5787  *
5788  * The page must be locked and not on the LRU.
5789  *
5790  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5791  * from old cgroup.
5792  */
5793 static int mem_cgroup_move_account(struct page *page,
5794                                    bool compound,
5795                                    struct mem_cgroup *from,
5796                                    struct mem_cgroup *to)
5797 {
5798         struct folio *folio = page_folio(page);
5799         struct lruvec *from_vec, *to_vec;
5800         struct pglist_data *pgdat;
5801         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5802         int nid, ret;
5803
5804         VM_BUG_ON(from == to);
5805         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5806         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5807         VM_BUG_ON(compound && !folio_test_large(folio));
5808
5809         ret = -EINVAL;
5810         if (folio_memcg(folio) != from)
5811                 goto out;
5812
5813         pgdat = folio_pgdat(folio);
5814         from_vec = mem_cgroup_lruvec(from, pgdat);
5815         to_vec = mem_cgroup_lruvec(to, pgdat);
5816
5817         folio_memcg_lock(folio);
5818
5819         if (folio_test_anon(folio)) {
5820                 if (folio_mapped(folio)) {
5821                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5822                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5823                         if (folio_test_pmd_mappable(folio)) {
5824                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5825                                                    -nr_pages);
5826                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5827                                                    nr_pages);
5828                         }
5829                 }
5830         } else {
5831                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5832                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5833
5834                 if (folio_test_swapbacked(folio)) {
5835                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5836                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5837                 }
5838
5839                 if (folio_mapped(folio)) {
5840                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5841                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5842                 }
5843
5844                 if (folio_test_dirty(folio)) {
5845                         struct address_space *mapping = folio_mapping(folio);
5846
5847                         if (mapping_can_writeback(mapping)) {
5848                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5849                                                    -nr_pages);
5850                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5851                                                    nr_pages);
5852                         }
5853                 }
5854         }
5855
5856 #ifdef CONFIG_SWAP
5857         if (folio_test_swapcache(folio)) {
5858                 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5859                 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5860         }
5861 #endif
5862         if (folio_test_writeback(folio)) {
5863                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5864                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5865         }
5866
5867         /*
5868          * All state has been migrated, let's switch to the new memcg.
5869          *
5870          * It is safe to change page's memcg here because the page
5871          * is referenced, charged, isolated, and locked: we can't race
5872          * with (un)charging, migration, LRU putback, or anything else
5873          * that would rely on a stable page's memory cgroup.
5874          *
5875          * Note that folio_memcg_lock is a memcg lock, not a page lock,
5876          * to save space. As soon as we switch page's memory cgroup to a
5877          * new memcg that isn't locked, the above state can change
5878          * concurrently again. Make sure we're truly done with it.
5879          */
5880         smp_mb();
5881
5882         css_get(&to->css);
5883         css_put(&from->css);
5884
5885         folio->memcg_data = (unsigned long)to;
5886
5887         __folio_memcg_unlock(from);
5888
5889         ret = 0;
5890         nid = folio_nid(folio);
5891
5892         local_irq_disable();
5893         mem_cgroup_charge_statistics(to, nr_pages);
5894         memcg_check_events(to, nid);
5895         mem_cgroup_charge_statistics(from, -nr_pages);
5896         memcg_check_events(from, nid);
5897         local_irq_enable();
5898 out:
5899         return ret;
5900 }
5901
5902 /**
5903  * get_mctgt_type - get target type of moving charge
5904  * @vma: the vma the pte to be checked belongs
5905  * @addr: the address corresponding to the pte to be checked
5906  * @ptent: the pte to be checked
5907  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5908  *
5909  * Context: Called with pte lock held.
5910  * Return:
5911  * * MC_TARGET_NONE - If the pte is not a target for move charge.
5912  * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5913  *   move charge. If @target is not NULL, the page is stored in target->page
5914  *   with extra refcnt taken (Caller should release it).
5915  * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5916  *   target for charge migration.  If @target is not NULL, the entry is
5917  *   stored in target->ent.
5918  * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5919  *   thus not on the lru.  For now such page is charged like a regular page
5920  *   would be as it is just special memory taking the place of a regular page.
5921  *   See Documentations/vm/hmm.txt and include/linux/hmm.h
5922  */
5923 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5924                 unsigned long addr, pte_t ptent, union mc_target *target)
5925 {
5926         struct page *page = NULL;
5927         enum mc_target_type ret = MC_TARGET_NONE;
5928         swp_entry_t ent = { .val = 0 };
5929
5930         if (pte_present(ptent))
5931                 page = mc_handle_present_pte(vma, addr, ptent);
5932         else if (pte_none_mostly(ptent))
5933                 /*
5934                  * PTE markers should be treated as a none pte here, separated
5935                  * from other swap handling below.
5936                  */
5937                 page = mc_handle_file_pte(vma, addr, ptent);
5938         else if (is_swap_pte(ptent))
5939                 page = mc_handle_swap_pte(vma, ptent, &ent);
5940
5941         if (target && page) {
5942                 if (!trylock_page(page)) {
5943                         put_page(page);
5944                         return ret;
5945                 }
5946                 /*
5947                  * page_mapped() must be stable during the move. This
5948                  * pte is locked, so if it's present, the page cannot
5949                  * become unmapped. If it isn't, we have only partial
5950                  * control over the mapped state: the page lock will
5951                  * prevent new faults against pagecache and swapcache,
5952                  * so an unmapped page cannot become mapped. However,
5953                  * if the page is already mapped elsewhere, it can
5954                  * unmap, and there is nothing we can do about it.
5955                  * Alas, skip moving the page in this case.
5956                  */
5957                 if (!pte_present(ptent) && page_mapped(page)) {
5958                         unlock_page(page);
5959                         put_page(page);
5960                         return ret;
5961                 }
5962         }
5963
5964         if (!page && !ent.val)
5965                 return ret;
5966         if (page) {
5967                 /*
5968                  * Do only loose check w/o serialization.
5969                  * mem_cgroup_move_account() checks the page is valid or
5970                  * not under LRU exclusion.
5971                  */
5972                 if (page_memcg(page) == mc.from) {
5973                         ret = MC_TARGET_PAGE;
5974                         if (is_device_private_page(page) ||
5975                             is_device_coherent_page(page))
5976                                 ret = MC_TARGET_DEVICE;
5977                         if (target)
5978                                 target->page = page;
5979                 }
5980                 if (!ret || !target) {
5981                         if (target)
5982                                 unlock_page(page);
5983                         put_page(page);
5984                 }
5985         }
5986         /*
5987          * There is a swap entry and a page doesn't exist or isn't charged.
5988          * But we cannot move a tail-page in a THP.
5989          */
5990         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5991             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5992                 ret = MC_TARGET_SWAP;
5993                 if (target)
5994                         target->ent = ent;
5995         }
5996         return ret;
5997 }
5998
5999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6000 /*
6001  * We don't consider PMD mapped swapping or file mapped pages because THP does
6002  * not support them for now.
6003  * Caller should make sure that pmd_trans_huge(pmd) is true.
6004  */
6005 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6006                 unsigned long addr, pmd_t pmd, union mc_target *target)
6007 {
6008         struct page *page = NULL;
6009         enum mc_target_type ret = MC_TARGET_NONE;
6010
6011         if (unlikely(is_swap_pmd(pmd))) {
6012                 VM_BUG_ON(thp_migration_supported() &&
6013                                   !is_pmd_migration_entry(pmd));
6014                 return ret;
6015         }
6016         page = pmd_page(pmd);
6017         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6018         if (!(mc.flags & MOVE_ANON))
6019                 return ret;
6020         if (page_memcg(page) == mc.from) {
6021                 ret = MC_TARGET_PAGE;
6022                 if (target) {
6023                         get_page(page);
6024                         if (!trylock_page(page)) {
6025                                 put_page(page);
6026                                 return MC_TARGET_NONE;
6027                         }
6028                         target->page = page;
6029                 }
6030         }
6031         return ret;
6032 }
6033 #else
6034 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6035                 unsigned long addr, pmd_t pmd, union mc_target *target)
6036 {
6037         return MC_TARGET_NONE;
6038 }
6039 #endif
6040
6041 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6042                                         unsigned long addr, unsigned long end,
6043                                         struct mm_walk *walk)
6044 {
6045         struct vm_area_struct *vma = walk->vma;
6046         pte_t *pte;
6047         spinlock_t *ptl;
6048
6049         ptl = pmd_trans_huge_lock(pmd, vma);
6050         if (ptl) {
6051                 /*
6052                  * Note their can not be MC_TARGET_DEVICE for now as we do not
6053                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6054                  * this might change.
6055                  */
6056                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6057                         mc.precharge += HPAGE_PMD_NR;
6058                 spin_unlock(ptl);
6059                 return 0;
6060         }
6061
6062         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6063         if (!pte)
6064                 return 0;
6065         for (; addr != end; pte++, addr += PAGE_SIZE)
6066                 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6067                         mc.precharge++; /* increment precharge temporarily */
6068         pte_unmap_unlock(pte - 1, ptl);
6069         cond_resched();
6070
6071         return 0;
6072 }
6073
6074 static const struct mm_walk_ops precharge_walk_ops = {
6075         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
6076         .walk_lock      = PGWALK_RDLOCK,
6077 };
6078
6079 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6080 {
6081         unsigned long precharge;
6082
6083         mmap_read_lock(mm);
6084         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6085         mmap_read_unlock(mm);
6086
6087         precharge = mc.precharge;
6088         mc.precharge = 0;
6089
6090         return precharge;
6091 }
6092
6093 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6094 {
6095         unsigned long precharge = mem_cgroup_count_precharge(mm);
6096
6097         VM_BUG_ON(mc.moving_task);
6098         mc.moving_task = current;
6099         return mem_cgroup_do_precharge(precharge);
6100 }
6101
6102 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6103 static void __mem_cgroup_clear_mc(void)
6104 {
6105         struct mem_cgroup *from = mc.from;
6106         struct mem_cgroup *to = mc.to;
6107
6108         /* we must uncharge all the leftover precharges from mc.to */
6109         if (mc.precharge) {
6110                 cancel_charge(mc.to, mc.precharge);
6111                 mc.precharge = 0;
6112         }
6113         /*
6114          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6115          * we must uncharge here.
6116          */
6117         if (mc.moved_charge) {
6118                 cancel_charge(mc.from, mc.moved_charge);
6119                 mc.moved_charge = 0;
6120         }
6121         /* we must fixup refcnts and charges */
6122         if (mc.moved_swap) {
6123                 /* uncharge swap account from the old cgroup */
6124                 if (!mem_cgroup_is_root(mc.from))
6125                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6126
6127                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6128
6129                 /*
6130                  * we charged both to->memory and to->memsw, so we
6131                  * should uncharge to->memory.
6132                  */
6133                 if (!mem_cgroup_is_root(mc.to))
6134                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6135
6136                 mc.moved_swap = 0;
6137         }
6138         memcg_oom_recover(from);
6139         memcg_oom_recover(to);
6140         wake_up_all(&mc.waitq);
6141 }
6142
6143 static void mem_cgroup_clear_mc(void)
6144 {
6145         struct mm_struct *mm = mc.mm;
6146
6147         /*
6148          * we must clear moving_task before waking up waiters at the end of
6149          * task migration.
6150          */
6151         mc.moving_task = NULL;
6152         __mem_cgroup_clear_mc();
6153         spin_lock(&mc.lock);
6154         mc.from = NULL;
6155         mc.to = NULL;
6156         mc.mm = NULL;
6157         spin_unlock(&mc.lock);
6158
6159         mmput(mm);
6160 }
6161
6162 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6163 {
6164         struct cgroup_subsys_state *css;
6165         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6166         struct mem_cgroup *from;
6167         struct task_struct *leader, *p;
6168         struct mm_struct *mm;
6169         unsigned long move_flags;
6170         int ret = 0;
6171
6172         /* charge immigration isn't supported on the default hierarchy */
6173         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6174                 return 0;
6175
6176         /*
6177          * Multi-process migrations only happen on the default hierarchy
6178          * where charge immigration is not used.  Perform charge
6179          * immigration if @tset contains a leader and whine if there are
6180          * multiple.
6181          */
6182         p = NULL;
6183         cgroup_taskset_for_each_leader(leader, css, tset) {
6184                 WARN_ON_ONCE(p);
6185                 p = leader;
6186                 memcg = mem_cgroup_from_css(css);
6187         }
6188         if (!p)
6189                 return 0;
6190
6191         /*
6192          * We are now committed to this value whatever it is. Changes in this
6193          * tunable will only affect upcoming migrations, not the current one.
6194          * So we need to save it, and keep it going.
6195          */
6196         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6197         if (!move_flags)
6198                 return 0;
6199
6200         from = mem_cgroup_from_task(p);
6201
6202         VM_BUG_ON(from == memcg);
6203
6204         mm = get_task_mm(p);
6205         if (!mm)
6206                 return 0;
6207         /* We move charges only when we move a owner of the mm */
6208         if (mm->owner == p) {
6209                 VM_BUG_ON(mc.from);
6210                 VM_BUG_ON(mc.to);
6211                 VM_BUG_ON(mc.precharge);
6212                 VM_BUG_ON(mc.moved_charge);
6213                 VM_BUG_ON(mc.moved_swap);
6214
6215                 spin_lock(&mc.lock);
6216                 mc.mm = mm;
6217                 mc.from = from;
6218                 mc.to = memcg;
6219                 mc.flags = move_flags;
6220                 spin_unlock(&mc.lock);
6221                 /* We set mc.moving_task later */
6222
6223                 ret = mem_cgroup_precharge_mc(mm);
6224                 if (ret)
6225                         mem_cgroup_clear_mc();
6226         } else {
6227                 mmput(mm);
6228         }
6229         return ret;
6230 }
6231
6232 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6233 {
6234         if (mc.to)
6235                 mem_cgroup_clear_mc();
6236 }
6237
6238 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6239                                 unsigned long addr, unsigned long end,
6240                                 struct mm_walk *walk)
6241 {
6242         int ret = 0;
6243         struct vm_area_struct *vma = walk->vma;
6244         pte_t *pte;
6245         spinlock_t *ptl;
6246         enum mc_target_type target_type;
6247         union mc_target target;
6248         struct page *page;
6249
6250         ptl = pmd_trans_huge_lock(pmd, vma);
6251         if (ptl) {
6252                 if (mc.precharge < HPAGE_PMD_NR) {
6253                         spin_unlock(ptl);
6254                         return 0;
6255                 }
6256                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6257                 if (target_type == MC_TARGET_PAGE) {
6258                         page = target.page;
6259                         if (isolate_lru_page(page)) {
6260                                 if (!mem_cgroup_move_account(page, true,
6261                                                              mc.from, mc.to)) {
6262                                         mc.precharge -= HPAGE_PMD_NR;
6263                                         mc.moved_charge += HPAGE_PMD_NR;
6264                                 }
6265                                 putback_lru_page(page);
6266                         }
6267                         unlock_page(page);
6268                         put_page(page);
6269                 } else if (target_type == MC_TARGET_DEVICE) {
6270                         page = target.page;
6271                         if (!mem_cgroup_move_account(page, true,
6272                                                      mc.from, mc.to)) {
6273                                 mc.precharge -= HPAGE_PMD_NR;
6274                                 mc.moved_charge += HPAGE_PMD_NR;
6275                         }
6276                         unlock_page(page);
6277                         put_page(page);
6278                 }
6279                 spin_unlock(ptl);
6280                 return 0;
6281         }
6282
6283 retry:
6284         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6285         if (!pte)
6286                 return 0;
6287         for (; addr != end; addr += PAGE_SIZE) {
6288                 pte_t ptent = ptep_get(pte++);
6289                 bool device = false;
6290                 swp_entry_t ent;
6291
6292                 if (!mc.precharge)
6293                         break;
6294
6295                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6296                 case MC_TARGET_DEVICE:
6297                         device = true;
6298                         fallthrough;
6299                 case MC_TARGET_PAGE:
6300                         page = target.page;
6301                         /*
6302                          * We can have a part of the split pmd here. Moving it
6303                          * can be done but it would be too convoluted so simply
6304                          * ignore such a partial THP and keep it in original
6305                          * memcg. There should be somebody mapping the head.
6306                          */
6307                         if (PageTransCompound(page))
6308                                 goto put;
6309                         if (!device && !isolate_lru_page(page))
6310                                 goto put;
6311                         if (!mem_cgroup_move_account(page, false,
6312                                                 mc.from, mc.to)) {
6313                                 mc.precharge--;
6314                                 /* we uncharge from mc.from later. */
6315                                 mc.moved_charge++;
6316                         }
6317                         if (!device)
6318                                 putback_lru_page(page);
6319 put:                    /* get_mctgt_type() gets & locks the page */
6320                         unlock_page(page);
6321                         put_page(page);
6322                         break;
6323                 case MC_TARGET_SWAP:
6324                         ent = target.ent;
6325                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6326                                 mc.precharge--;
6327                                 mem_cgroup_id_get_many(mc.to, 1);
6328                                 /* we fixup other refcnts and charges later. */
6329                                 mc.moved_swap++;
6330                         }
6331                         break;
6332                 default:
6333                         break;
6334                 }
6335         }
6336         pte_unmap_unlock(pte - 1, ptl);
6337         cond_resched();
6338
6339         if (addr != end) {
6340                 /*
6341                  * We have consumed all precharges we got in can_attach().
6342                  * We try charge one by one, but don't do any additional
6343                  * charges to mc.to if we have failed in charge once in attach()
6344                  * phase.
6345                  */
6346                 ret = mem_cgroup_do_precharge(1);
6347                 if (!ret)
6348                         goto retry;
6349         }
6350
6351         return ret;
6352 }
6353
6354 static const struct mm_walk_ops charge_walk_ops = {
6355         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6356         .walk_lock      = PGWALK_RDLOCK,
6357 };
6358
6359 static void mem_cgroup_move_charge(void)
6360 {
6361         lru_add_drain_all();
6362         /*
6363          * Signal folio_memcg_lock() to take the memcg's move_lock
6364          * while we're moving its pages to another memcg. Then wait
6365          * for already started RCU-only updates to finish.
6366          */
6367         atomic_inc(&mc.from->moving_account);
6368         synchronize_rcu();
6369 retry:
6370         if (unlikely(!mmap_read_trylock(mc.mm))) {
6371                 /*
6372                  * Someone who are holding the mmap_lock might be waiting in
6373                  * waitq. So we cancel all extra charges, wake up all waiters,
6374                  * and retry. Because we cancel precharges, we might not be able
6375                  * to move enough charges, but moving charge is a best-effort
6376                  * feature anyway, so it wouldn't be a big problem.
6377                  */
6378                 __mem_cgroup_clear_mc();
6379                 cond_resched();
6380                 goto retry;
6381         }
6382         /*
6383          * When we have consumed all precharges and failed in doing
6384          * additional charge, the page walk just aborts.
6385          */
6386         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6387         mmap_read_unlock(mc.mm);
6388         atomic_dec(&mc.from->moving_account);
6389 }
6390
6391 static void mem_cgroup_move_task(void)
6392 {
6393         if (mc.to) {
6394                 mem_cgroup_move_charge();
6395                 mem_cgroup_clear_mc();
6396         }
6397 }
6398 #else   /* !CONFIG_MMU */
6399 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6400 {
6401         return 0;
6402 }
6403 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6404 {
6405 }
6406 static void mem_cgroup_move_task(void)
6407 {
6408 }
6409 #endif
6410
6411 #ifdef CONFIG_LRU_GEN
6412 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6413 {
6414         struct task_struct *task;
6415         struct cgroup_subsys_state *css;
6416
6417         /* find the first leader if there is any */
6418         cgroup_taskset_for_each_leader(task, css, tset)
6419                 break;
6420
6421         if (!task)
6422                 return;
6423
6424         task_lock(task);
6425         if (task->mm && READ_ONCE(task->mm->owner) == task)
6426                 lru_gen_migrate_mm(task->mm);
6427         task_unlock(task);
6428 }
6429 #else
6430 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6431 {
6432 }
6433 #endif /* CONFIG_LRU_GEN */
6434
6435 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6436 {
6437         if (value == PAGE_COUNTER_MAX)
6438                 seq_puts(m, "max\n");
6439         else
6440                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6441
6442         return 0;
6443 }
6444
6445 static u64 memory_current_read(struct cgroup_subsys_state *css,
6446                                struct cftype *cft)
6447 {
6448         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6449
6450         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6451 }
6452
6453 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6454                             struct cftype *cft)
6455 {
6456         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6457
6458         return (u64)memcg->memory.watermark * PAGE_SIZE;
6459 }
6460
6461 static int memory_min_show(struct seq_file *m, void *v)
6462 {
6463         return seq_puts_memcg_tunable(m,
6464                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6465 }
6466
6467 static ssize_t memory_min_write(struct kernfs_open_file *of,
6468                                 char *buf, size_t nbytes, loff_t off)
6469 {
6470         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6471         unsigned long min;
6472         int err;
6473
6474         buf = strstrip(buf);
6475         err = page_counter_memparse(buf, "max", &min);
6476         if (err)
6477                 return err;
6478
6479         page_counter_set_min(&memcg->memory, min);
6480
6481         return nbytes;
6482 }
6483
6484 static int memory_low_show(struct seq_file *m, void *v)
6485 {
6486         return seq_puts_memcg_tunable(m,
6487                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6488 }
6489
6490 static ssize_t memory_low_write(struct kernfs_open_file *of,
6491                                 char *buf, size_t nbytes, loff_t off)
6492 {
6493         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6494         unsigned long low;
6495         int err;
6496
6497         buf = strstrip(buf);
6498         err = page_counter_memparse(buf, "max", &low);
6499         if (err)
6500                 return err;
6501
6502         page_counter_set_low(&memcg->memory, low);
6503
6504         return nbytes;
6505 }
6506
6507 static int memory_high_show(struct seq_file *m, void *v)
6508 {
6509         return seq_puts_memcg_tunable(m,
6510                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6511 }
6512
6513 static ssize_t memory_high_write(struct kernfs_open_file *of,
6514                                  char *buf, size_t nbytes, loff_t off)
6515 {
6516         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6517         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6518         bool drained = false;
6519         unsigned long high;
6520         int err;
6521
6522         buf = strstrip(buf);
6523         err = page_counter_memparse(buf, "max", &high);
6524         if (err)
6525                 return err;
6526
6527         page_counter_set_high(&memcg->memory, high);
6528
6529         for (;;) {
6530                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6531                 unsigned long reclaimed;
6532
6533                 if (nr_pages <= high)
6534                         break;
6535
6536                 if (signal_pending(current))
6537                         break;
6538
6539                 if (!drained) {
6540                         drain_all_stock(memcg);
6541                         drained = true;
6542                         continue;
6543                 }
6544
6545                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6546                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6547
6548                 if (!reclaimed && !nr_retries--)
6549                         break;
6550         }
6551
6552         memcg_wb_domain_size_changed(memcg);
6553         return nbytes;
6554 }
6555
6556 static int memory_max_show(struct seq_file *m, void *v)
6557 {
6558         return seq_puts_memcg_tunable(m,
6559                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6560 }
6561
6562 static ssize_t memory_max_write(struct kernfs_open_file *of,
6563                                 char *buf, size_t nbytes, loff_t off)
6564 {
6565         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6566         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6567         bool drained = false;
6568         unsigned long max;
6569         int err;
6570
6571         buf = strstrip(buf);
6572         err = page_counter_memparse(buf, "max", &max);
6573         if (err)
6574                 return err;
6575
6576         xchg(&memcg->memory.max, max);
6577
6578         for (;;) {
6579                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6580
6581                 if (nr_pages <= max)
6582                         break;
6583
6584                 if (signal_pending(current))
6585                         break;
6586
6587                 if (!drained) {
6588                         drain_all_stock(memcg);
6589                         drained = true;
6590                         continue;
6591                 }
6592
6593                 if (nr_reclaims) {
6594                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6595                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6596                                 nr_reclaims--;
6597                         continue;
6598                 }
6599
6600                 memcg_memory_event(memcg, MEMCG_OOM);
6601                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6602                         break;
6603         }
6604
6605         memcg_wb_domain_size_changed(memcg);
6606         return nbytes;
6607 }
6608
6609 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6610 {
6611         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6612         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6613         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6614         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6615         seq_printf(m, "oom_kill %lu\n",
6616                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6617         seq_printf(m, "oom_group_kill %lu\n",
6618                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6619 }
6620
6621 static int memory_events_show(struct seq_file *m, void *v)
6622 {
6623         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6624
6625         __memory_events_show(m, memcg->memory_events);
6626         return 0;
6627 }
6628
6629 static int memory_events_local_show(struct seq_file *m, void *v)
6630 {
6631         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6632
6633         __memory_events_show(m, memcg->memory_events_local);
6634         return 0;
6635 }
6636
6637 static int memory_stat_show(struct seq_file *m, void *v)
6638 {
6639         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6640         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6641         struct seq_buf s;
6642
6643         if (!buf)
6644                 return -ENOMEM;
6645         seq_buf_init(&s, buf, PAGE_SIZE);
6646         memory_stat_format(memcg, &s);
6647         seq_puts(m, buf);
6648         kfree(buf);
6649         return 0;
6650 }
6651
6652 #ifdef CONFIG_NUMA
6653 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6654                                                      int item)
6655 {
6656         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6657 }
6658
6659 static int memory_numa_stat_show(struct seq_file *m, void *v)
6660 {
6661         int i;
6662         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6663
6664         mem_cgroup_flush_stats();
6665
6666         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6667                 int nid;
6668
6669                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6670                         continue;
6671
6672                 seq_printf(m, "%s", memory_stats[i].name);
6673                 for_each_node_state(nid, N_MEMORY) {
6674                         u64 size;
6675                         struct lruvec *lruvec;
6676
6677                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6678                         size = lruvec_page_state_output(lruvec,
6679                                                         memory_stats[i].idx);
6680                         seq_printf(m, " N%d=%llu", nid, size);
6681                 }
6682                 seq_putc(m, '\n');
6683         }
6684
6685         return 0;
6686 }
6687 #endif
6688
6689 static int memory_oom_group_show(struct seq_file *m, void *v)
6690 {
6691         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6692
6693         seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6694
6695         return 0;
6696 }
6697
6698 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6699                                       char *buf, size_t nbytes, loff_t off)
6700 {
6701         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6702         int ret, oom_group;
6703
6704         buf = strstrip(buf);
6705         if (!buf)
6706                 return -EINVAL;
6707
6708         ret = kstrtoint(buf, 0, &oom_group);
6709         if (ret)
6710                 return ret;
6711
6712         if (oom_group != 0 && oom_group != 1)
6713                 return -EINVAL;
6714
6715         WRITE_ONCE(memcg->oom_group, oom_group);
6716
6717         return nbytes;
6718 }
6719
6720 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6721                               size_t nbytes, loff_t off)
6722 {
6723         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6724         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6725         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6726         unsigned int reclaim_options;
6727         int err;
6728
6729         buf = strstrip(buf);
6730         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6731         if (err)
6732                 return err;
6733
6734         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6735         while (nr_reclaimed < nr_to_reclaim) {
6736                 unsigned long reclaimed;
6737
6738                 if (signal_pending(current))
6739                         return -EINTR;
6740
6741                 /*
6742                  * This is the final attempt, drain percpu lru caches in the
6743                  * hope of introducing more evictable pages for
6744                  * try_to_free_mem_cgroup_pages().
6745                  */
6746                 if (!nr_retries)
6747                         lru_add_drain_all();
6748
6749                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6750                                         min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6751                                         GFP_KERNEL, reclaim_options);
6752
6753                 if (!reclaimed && !nr_retries--)
6754                         return -EAGAIN;
6755
6756                 nr_reclaimed += reclaimed;
6757         }
6758
6759         return nbytes;
6760 }
6761
6762 static struct cftype memory_files[] = {
6763         {
6764                 .name = "current",
6765                 .flags = CFTYPE_NOT_ON_ROOT,
6766                 .read_u64 = memory_current_read,
6767         },
6768         {
6769                 .name = "peak",
6770                 .flags = CFTYPE_NOT_ON_ROOT,
6771                 .read_u64 = memory_peak_read,
6772         },
6773         {
6774                 .name = "min",
6775                 .flags = CFTYPE_NOT_ON_ROOT,
6776                 .seq_show = memory_min_show,
6777                 .write = memory_min_write,
6778         },
6779         {
6780                 .name = "low",
6781                 .flags = CFTYPE_NOT_ON_ROOT,
6782                 .seq_show = memory_low_show,
6783                 .write = memory_low_write,
6784         },
6785         {
6786                 .name = "high",
6787                 .flags = CFTYPE_NOT_ON_ROOT,
6788                 .seq_show = memory_high_show,
6789                 .write = memory_high_write,
6790         },
6791         {
6792                 .name = "max",
6793                 .flags = CFTYPE_NOT_ON_ROOT,
6794                 .seq_show = memory_max_show,
6795                 .write = memory_max_write,
6796         },
6797         {
6798                 .name = "events",
6799                 .flags = CFTYPE_NOT_ON_ROOT,
6800                 .file_offset = offsetof(struct mem_cgroup, events_file),
6801                 .seq_show = memory_events_show,
6802         },
6803         {
6804                 .name = "events.local",
6805                 .flags = CFTYPE_NOT_ON_ROOT,
6806                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6807                 .seq_show = memory_events_local_show,
6808         },
6809         {
6810                 .name = "stat",
6811                 .seq_show = memory_stat_show,
6812         },
6813 #ifdef CONFIG_NUMA
6814         {
6815                 .name = "numa_stat",
6816                 .seq_show = memory_numa_stat_show,
6817         },
6818 #endif
6819         {
6820                 .name = "oom.group",
6821                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6822                 .seq_show = memory_oom_group_show,
6823                 .write = memory_oom_group_write,
6824         },
6825         {
6826                 .name = "reclaim",
6827                 .flags = CFTYPE_NS_DELEGATABLE,
6828                 .write = memory_reclaim,
6829         },
6830         { }     /* terminate */
6831 };
6832
6833 struct cgroup_subsys memory_cgrp_subsys = {
6834         .css_alloc = mem_cgroup_css_alloc,
6835         .css_online = mem_cgroup_css_online,
6836         .css_offline = mem_cgroup_css_offline,
6837         .css_released = mem_cgroup_css_released,
6838         .css_free = mem_cgroup_css_free,
6839         .css_reset = mem_cgroup_css_reset,
6840         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6841         .can_attach = mem_cgroup_can_attach,
6842         .attach = mem_cgroup_attach,
6843         .cancel_attach = mem_cgroup_cancel_attach,
6844         .post_attach = mem_cgroup_move_task,
6845         .dfl_cftypes = memory_files,
6846         .legacy_cftypes = mem_cgroup_legacy_files,
6847         .early_init = 0,
6848 };
6849
6850 /*
6851  * This function calculates an individual cgroup's effective
6852  * protection which is derived from its own memory.min/low, its
6853  * parent's and siblings' settings, as well as the actual memory
6854  * distribution in the tree.
6855  *
6856  * The following rules apply to the effective protection values:
6857  *
6858  * 1. At the first level of reclaim, effective protection is equal to
6859  *    the declared protection in memory.min and memory.low.
6860  *
6861  * 2. To enable safe delegation of the protection configuration, at
6862  *    subsequent levels the effective protection is capped to the
6863  *    parent's effective protection.
6864  *
6865  * 3. To make complex and dynamic subtrees easier to configure, the
6866  *    user is allowed to overcommit the declared protection at a given
6867  *    level. If that is the case, the parent's effective protection is
6868  *    distributed to the children in proportion to how much protection
6869  *    they have declared and how much of it they are utilizing.
6870  *
6871  *    This makes distribution proportional, but also work-conserving:
6872  *    if one cgroup claims much more protection than it uses memory,
6873  *    the unused remainder is available to its siblings.
6874  *
6875  * 4. Conversely, when the declared protection is undercommitted at a
6876  *    given level, the distribution of the larger parental protection
6877  *    budget is NOT proportional. A cgroup's protection from a sibling
6878  *    is capped to its own memory.min/low setting.
6879  *
6880  * 5. However, to allow protecting recursive subtrees from each other
6881  *    without having to declare each individual cgroup's fixed share
6882  *    of the ancestor's claim to protection, any unutilized -
6883  *    "floating" - protection from up the tree is distributed in
6884  *    proportion to each cgroup's *usage*. This makes the protection
6885  *    neutral wrt sibling cgroups and lets them compete freely over
6886  *    the shared parental protection budget, but it protects the
6887  *    subtree as a whole from neighboring subtrees.
6888  *
6889  * Note that 4. and 5. are not in conflict: 4. is about protecting
6890  * against immediate siblings whereas 5. is about protecting against
6891  * neighboring subtrees.
6892  */
6893 static unsigned long effective_protection(unsigned long usage,
6894                                           unsigned long parent_usage,
6895                                           unsigned long setting,
6896                                           unsigned long parent_effective,
6897                                           unsigned long siblings_protected)
6898 {
6899         unsigned long protected;
6900         unsigned long ep;
6901
6902         protected = min(usage, setting);
6903         /*
6904          * If all cgroups at this level combined claim and use more
6905          * protection than what the parent affords them, distribute
6906          * shares in proportion to utilization.
6907          *
6908          * We are using actual utilization rather than the statically
6909          * claimed protection in order to be work-conserving: claimed
6910          * but unused protection is available to siblings that would
6911          * otherwise get a smaller chunk than what they claimed.
6912          */
6913         if (siblings_protected > parent_effective)
6914                 return protected * parent_effective / siblings_protected;
6915
6916         /*
6917          * Ok, utilized protection of all children is within what the
6918          * parent affords them, so we know whatever this child claims
6919          * and utilizes is effectively protected.
6920          *
6921          * If there is unprotected usage beyond this value, reclaim
6922          * will apply pressure in proportion to that amount.
6923          *
6924          * If there is unutilized protection, the cgroup will be fully
6925          * shielded from reclaim, but we do return a smaller value for
6926          * protection than what the group could enjoy in theory. This
6927          * is okay. With the overcommit distribution above, effective
6928          * protection is always dependent on how memory is actually
6929          * consumed among the siblings anyway.
6930          */
6931         ep = protected;
6932
6933         /*
6934          * If the children aren't claiming (all of) the protection
6935          * afforded to them by the parent, distribute the remainder in
6936          * proportion to the (unprotected) memory of each cgroup. That
6937          * way, cgroups that aren't explicitly prioritized wrt each
6938          * other compete freely over the allowance, but they are
6939          * collectively protected from neighboring trees.
6940          *
6941          * We're using unprotected memory for the weight so that if
6942          * some cgroups DO claim explicit protection, we don't protect
6943          * the same bytes twice.
6944          *
6945          * Check both usage and parent_usage against the respective
6946          * protected values. One should imply the other, but they
6947          * aren't read atomically - make sure the division is sane.
6948          */
6949         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6950                 return ep;
6951         if (parent_effective > siblings_protected &&
6952             parent_usage > siblings_protected &&
6953             usage > protected) {
6954                 unsigned long unclaimed;
6955
6956                 unclaimed = parent_effective - siblings_protected;
6957                 unclaimed *= usage - protected;
6958                 unclaimed /= parent_usage - siblings_protected;
6959
6960                 ep += unclaimed;
6961         }
6962
6963         return ep;
6964 }
6965
6966 /**
6967  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6968  * @root: the top ancestor of the sub-tree being checked
6969  * @memcg: the memory cgroup to check
6970  *
6971  * WARNING: This function is not stateless! It can only be used as part
6972  *          of a top-down tree iteration, not for isolated queries.
6973  */
6974 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6975                                      struct mem_cgroup *memcg)
6976 {
6977         unsigned long usage, parent_usage;
6978         struct mem_cgroup *parent;
6979
6980         if (mem_cgroup_disabled())
6981                 return;
6982
6983         if (!root)
6984                 root = root_mem_cgroup;
6985
6986         /*
6987          * Effective values of the reclaim targets are ignored so they
6988          * can be stale. Have a look at mem_cgroup_protection for more
6989          * details.
6990          * TODO: calculation should be more robust so that we do not need
6991          * that special casing.
6992          */
6993         if (memcg == root)
6994                 return;
6995
6996         usage = page_counter_read(&memcg->memory);
6997         if (!usage)
6998                 return;
6999
7000         parent = parent_mem_cgroup(memcg);
7001
7002         if (parent == root) {
7003                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7004                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7005                 return;
7006         }
7007
7008         parent_usage = page_counter_read(&parent->memory);
7009
7010         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7011                         READ_ONCE(memcg->memory.min),
7012                         READ_ONCE(parent->memory.emin),
7013                         atomic_long_read(&parent->memory.children_min_usage)));
7014
7015         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7016                         READ_ONCE(memcg->memory.low),
7017                         READ_ONCE(parent->memory.elow),
7018                         atomic_long_read(&parent->memory.children_low_usage)));
7019 }
7020
7021 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7022                         gfp_t gfp)
7023 {
7024         long nr_pages = folio_nr_pages(folio);
7025         int ret;
7026
7027         ret = try_charge(memcg, gfp, nr_pages);
7028         if (ret)
7029                 goto out;
7030
7031         css_get(&memcg->css);
7032         commit_charge(folio, memcg);
7033
7034         local_irq_disable();
7035         mem_cgroup_charge_statistics(memcg, nr_pages);
7036         memcg_check_events(memcg, folio_nid(folio));
7037         local_irq_enable();
7038 out:
7039         return ret;
7040 }
7041
7042 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7043 {
7044         struct mem_cgroup *memcg;
7045         int ret;
7046
7047         memcg = get_mem_cgroup_from_mm(mm);
7048         ret = charge_memcg(folio, memcg, gfp);
7049         css_put(&memcg->css);
7050
7051         return ret;
7052 }
7053
7054 /**
7055  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7056  * @folio: folio to charge.
7057  * @mm: mm context of the victim
7058  * @gfp: reclaim mode
7059  * @entry: swap entry for which the folio is allocated
7060  *
7061  * This function charges a folio allocated for swapin. Please call this before
7062  * adding the folio to the swapcache.
7063  *
7064  * Returns 0 on success. Otherwise, an error code is returned.
7065  */
7066 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7067                                   gfp_t gfp, swp_entry_t entry)
7068 {
7069         struct mem_cgroup *memcg;
7070         unsigned short id;
7071         int ret;
7072
7073         if (mem_cgroup_disabled())
7074                 return 0;
7075
7076         id = lookup_swap_cgroup_id(entry);
7077         rcu_read_lock();
7078         memcg = mem_cgroup_from_id(id);
7079         if (!memcg || !css_tryget_online(&memcg->css))
7080                 memcg = get_mem_cgroup_from_mm(mm);
7081         rcu_read_unlock();
7082
7083         ret = charge_memcg(folio, memcg, gfp);
7084
7085         css_put(&memcg->css);
7086         return ret;
7087 }
7088
7089 /*
7090  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7091  * @entry: swap entry for which the page is charged
7092  *
7093  * Call this function after successfully adding the charged page to swapcache.
7094  *
7095  * Note: This function assumes the page for which swap slot is being uncharged
7096  * is order 0 page.
7097  */
7098 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7099 {
7100         /*
7101          * Cgroup1's unified memory+swap counter has been charged with the
7102          * new swapcache page, finish the transfer by uncharging the swap
7103          * slot. The swap slot would also get uncharged when it dies, but
7104          * it can stick around indefinitely and we'd count the page twice
7105          * the entire time.
7106          *
7107          * Cgroup2 has separate resource counters for memory and swap,
7108          * so this is a non-issue here. Memory and swap charge lifetimes
7109          * correspond 1:1 to page and swap slot lifetimes: we charge the
7110          * page to memory here, and uncharge swap when the slot is freed.
7111          */
7112         if (!mem_cgroup_disabled() && do_memsw_account()) {
7113                 /*
7114                  * The swap entry might not get freed for a long time,
7115                  * let's not wait for it.  The page already received a
7116                  * memory+swap charge, drop the swap entry duplicate.
7117                  */
7118                 mem_cgroup_uncharge_swap(entry, 1);
7119         }
7120 }
7121
7122 struct uncharge_gather {
7123         struct mem_cgroup *memcg;
7124         unsigned long nr_memory;
7125         unsigned long pgpgout;
7126         unsigned long nr_kmem;
7127         int nid;
7128 };
7129
7130 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7131 {
7132         memset(ug, 0, sizeof(*ug));
7133 }
7134
7135 static void uncharge_batch(const struct uncharge_gather *ug)
7136 {
7137         unsigned long flags;
7138
7139         if (ug->nr_memory) {
7140                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7141                 if (do_memsw_account())
7142                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7143                 if (ug->nr_kmem)
7144                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7145                 memcg_oom_recover(ug->memcg);
7146         }
7147
7148         local_irq_save(flags);
7149         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7150         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7151         memcg_check_events(ug->memcg, ug->nid);
7152         local_irq_restore(flags);
7153
7154         /* drop reference from uncharge_folio */
7155         css_put(&ug->memcg->css);
7156 }
7157
7158 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7159 {
7160         long nr_pages;
7161         struct mem_cgroup *memcg;
7162         struct obj_cgroup *objcg;
7163
7164         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7165
7166         /*
7167          * Nobody should be changing or seriously looking at
7168          * folio memcg or objcg at this point, we have fully
7169          * exclusive access to the folio.
7170          */
7171         if (folio_memcg_kmem(folio)) {
7172                 objcg = __folio_objcg(folio);
7173                 /*
7174                  * This get matches the put at the end of the function and
7175                  * kmem pages do not hold memcg references anymore.
7176                  */
7177                 memcg = get_mem_cgroup_from_objcg(objcg);
7178         } else {
7179                 memcg = __folio_memcg(folio);
7180         }
7181
7182         if (!memcg)
7183                 return;
7184
7185         if (ug->memcg != memcg) {
7186                 if (ug->memcg) {
7187                         uncharge_batch(ug);
7188                         uncharge_gather_clear(ug);
7189                 }
7190                 ug->memcg = memcg;
7191                 ug->nid = folio_nid(folio);
7192
7193                 /* pairs with css_put in uncharge_batch */
7194                 css_get(&memcg->css);
7195         }
7196
7197         nr_pages = folio_nr_pages(folio);
7198
7199         if (folio_memcg_kmem(folio)) {
7200                 ug->nr_memory += nr_pages;
7201                 ug->nr_kmem += nr_pages;
7202
7203                 folio->memcg_data = 0;
7204                 obj_cgroup_put(objcg);
7205         } else {
7206                 /* LRU pages aren't accounted at the root level */
7207                 if (!mem_cgroup_is_root(memcg))
7208                         ug->nr_memory += nr_pages;
7209                 ug->pgpgout++;
7210
7211                 folio->memcg_data = 0;
7212         }
7213
7214         css_put(&memcg->css);
7215 }
7216
7217 void __mem_cgroup_uncharge(struct folio *folio)
7218 {
7219         struct uncharge_gather ug;
7220
7221         /* Don't touch folio->lru of any random page, pre-check: */
7222         if (!folio_memcg(folio))
7223                 return;
7224
7225         uncharge_gather_clear(&ug);
7226         uncharge_folio(folio, &ug);
7227         uncharge_batch(&ug);
7228 }
7229
7230 /**
7231  * __mem_cgroup_uncharge_list - uncharge a list of page
7232  * @page_list: list of pages to uncharge
7233  *
7234  * Uncharge a list of pages previously charged with
7235  * __mem_cgroup_charge().
7236  */
7237 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7238 {
7239         struct uncharge_gather ug;
7240         struct folio *folio;
7241
7242         uncharge_gather_clear(&ug);
7243         list_for_each_entry(folio, page_list, lru)
7244                 uncharge_folio(folio, &ug);
7245         if (ug.memcg)
7246                 uncharge_batch(&ug);
7247 }
7248
7249 /**
7250  * mem_cgroup_migrate - Charge a folio's replacement.
7251  * @old: Currently circulating folio.
7252  * @new: Replacement folio.
7253  *
7254  * Charge @new as a replacement folio for @old. @old will
7255  * be uncharged upon free.
7256  *
7257  * Both folios must be locked, @new->mapping must be set up.
7258  */
7259 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7260 {
7261         struct mem_cgroup *memcg;
7262         long nr_pages = folio_nr_pages(new);
7263         unsigned long flags;
7264
7265         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7266         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7267         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7268         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7269
7270         if (mem_cgroup_disabled())
7271                 return;
7272
7273         /* Page cache replacement: new folio already charged? */
7274         if (folio_memcg(new))
7275                 return;
7276
7277         memcg = folio_memcg(old);
7278         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7279         if (!memcg)
7280                 return;
7281
7282         /* Force-charge the new page. The old one will be freed soon */
7283         if (!mem_cgroup_is_root(memcg)) {
7284                 page_counter_charge(&memcg->memory, nr_pages);
7285                 if (do_memsw_account())
7286                         page_counter_charge(&memcg->memsw, nr_pages);
7287         }
7288
7289         css_get(&memcg->css);
7290         commit_charge(new, memcg);
7291
7292         local_irq_save(flags);
7293         mem_cgroup_charge_statistics(memcg, nr_pages);
7294         memcg_check_events(memcg, folio_nid(new));
7295         local_irq_restore(flags);
7296 }
7297
7298 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7299 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7300
7301 void mem_cgroup_sk_alloc(struct sock *sk)
7302 {
7303         struct mem_cgroup *memcg;
7304
7305         if (!mem_cgroup_sockets_enabled)
7306                 return;
7307
7308         /* Do not associate the sock with unrelated interrupted task's memcg. */
7309         if (!in_task())
7310                 return;
7311
7312         rcu_read_lock();
7313         memcg = mem_cgroup_from_task(current);
7314         if (mem_cgroup_is_root(memcg))
7315                 goto out;
7316         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7317                 goto out;
7318         if (css_tryget(&memcg->css))
7319                 sk->sk_memcg = memcg;
7320 out:
7321         rcu_read_unlock();
7322 }
7323
7324 void mem_cgroup_sk_free(struct sock *sk)
7325 {
7326         if (sk->sk_memcg)
7327                 css_put(&sk->sk_memcg->css);
7328 }
7329
7330 /**
7331  * mem_cgroup_charge_skmem - charge socket memory
7332  * @memcg: memcg to charge
7333  * @nr_pages: number of pages to charge
7334  * @gfp_mask: reclaim mode
7335  *
7336  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7337  * @memcg's configured limit, %false if it doesn't.
7338  */
7339 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7340                              gfp_t gfp_mask)
7341 {
7342         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7343                 struct page_counter *fail;
7344
7345                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7346                         memcg->tcpmem_pressure = 0;
7347                         return true;
7348                 }
7349                 memcg->tcpmem_pressure = 1;
7350                 if (gfp_mask & __GFP_NOFAIL) {
7351                         page_counter_charge(&memcg->tcpmem, nr_pages);
7352                         return true;
7353                 }
7354                 return false;
7355         }
7356
7357         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7358                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7359                 return true;
7360         }
7361
7362         return false;
7363 }
7364
7365 /**
7366  * mem_cgroup_uncharge_skmem - uncharge socket memory
7367  * @memcg: memcg to uncharge
7368  * @nr_pages: number of pages to uncharge
7369  */
7370 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7371 {
7372         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7373                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7374                 return;
7375         }
7376
7377         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7378
7379         refill_stock(memcg, nr_pages);
7380 }
7381
7382 static int __init cgroup_memory(char *s)
7383 {
7384         char *token;
7385
7386         while ((token = strsep(&s, ",")) != NULL) {
7387                 if (!*token)
7388                         continue;
7389                 if (!strcmp(token, "nosocket"))
7390                         cgroup_memory_nosocket = true;
7391                 if (!strcmp(token, "nokmem"))
7392                         cgroup_memory_nokmem = true;
7393                 if (!strcmp(token, "nobpf"))
7394                         cgroup_memory_nobpf = true;
7395         }
7396         return 1;
7397 }
7398 __setup("cgroup.memory=", cgroup_memory);
7399
7400 /*
7401  * subsys_initcall() for memory controller.
7402  *
7403  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7404  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7405  * basically everything that doesn't depend on a specific mem_cgroup structure
7406  * should be initialized from here.
7407  */
7408 static int __init mem_cgroup_init(void)
7409 {
7410         int cpu, node;
7411
7412         /*
7413          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7414          * used for per-memcg-per-cpu caching of per-node statistics. In order
7415          * to work fine, we should make sure that the overfill threshold can't
7416          * exceed S32_MAX / PAGE_SIZE.
7417          */
7418         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7419
7420         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7421                                   memcg_hotplug_cpu_dead);
7422
7423         for_each_possible_cpu(cpu)
7424                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7425                           drain_local_stock);
7426
7427         for_each_node(node) {
7428                 struct mem_cgroup_tree_per_node *rtpn;
7429
7430                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7431
7432                 rtpn->rb_root = RB_ROOT;
7433                 rtpn->rb_rightmost = NULL;
7434                 spin_lock_init(&rtpn->lock);
7435                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7436         }
7437
7438         return 0;
7439 }
7440 subsys_initcall(mem_cgroup_init);
7441
7442 #ifdef CONFIG_SWAP
7443 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7444 {
7445         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7446                 /*
7447                  * The root cgroup cannot be destroyed, so it's refcount must
7448                  * always be >= 1.
7449                  */
7450                 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7451                         VM_BUG_ON(1);
7452                         break;
7453                 }
7454                 memcg = parent_mem_cgroup(memcg);
7455                 if (!memcg)
7456                         memcg = root_mem_cgroup;
7457         }
7458         return memcg;
7459 }
7460
7461 /**
7462  * mem_cgroup_swapout - transfer a memsw charge to swap
7463  * @folio: folio whose memsw charge to transfer
7464  * @entry: swap entry to move the charge to
7465  *
7466  * Transfer the memsw charge of @folio to @entry.
7467  */
7468 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7469 {
7470         struct mem_cgroup *memcg, *swap_memcg;
7471         unsigned int nr_entries;
7472         unsigned short oldid;
7473
7474         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7475         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7476
7477         if (mem_cgroup_disabled())
7478                 return;
7479
7480         if (!do_memsw_account())
7481                 return;
7482
7483         memcg = folio_memcg(folio);
7484
7485         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7486         if (!memcg)
7487                 return;
7488
7489         /*
7490          * In case the memcg owning these pages has been offlined and doesn't
7491          * have an ID allocated to it anymore, charge the closest online
7492          * ancestor for the swap instead and transfer the memory+swap charge.
7493          */
7494         swap_memcg = mem_cgroup_id_get_online(memcg);
7495         nr_entries = folio_nr_pages(folio);
7496         /* Get references for the tail pages, too */
7497         if (nr_entries > 1)
7498                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7499         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7500                                    nr_entries);
7501         VM_BUG_ON_FOLIO(oldid, folio);
7502         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7503
7504         folio->memcg_data = 0;
7505
7506         if (!mem_cgroup_is_root(memcg))
7507                 page_counter_uncharge(&memcg->memory, nr_entries);
7508
7509         if (memcg != swap_memcg) {
7510                 if (!mem_cgroup_is_root(swap_memcg))
7511                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7512                 page_counter_uncharge(&memcg->memsw, nr_entries);
7513         }
7514
7515         /*
7516          * Interrupts should be disabled here because the caller holds the
7517          * i_pages lock which is taken with interrupts-off. It is
7518          * important here to have the interrupts disabled because it is the
7519          * only synchronisation we have for updating the per-CPU variables.
7520          */
7521         memcg_stats_lock();
7522         mem_cgroup_charge_statistics(memcg, -nr_entries);
7523         memcg_stats_unlock();
7524         memcg_check_events(memcg, folio_nid(folio));
7525
7526         css_put(&memcg->css);
7527 }
7528
7529 /**
7530  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7531  * @folio: folio being added to swap
7532  * @entry: swap entry to charge
7533  *
7534  * Try to charge @folio's memcg for the swap space at @entry.
7535  *
7536  * Returns 0 on success, -ENOMEM on failure.
7537  */
7538 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7539 {
7540         unsigned int nr_pages = folio_nr_pages(folio);
7541         struct page_counter *counter;
7542         struct mem_cgroup *memcg;
7543         unsigned short oldid;
7544
7545         if (do_memsw_account())
7546                 return 0;
7547
7548         memcg = folio_memcg(folio);
7549
7550         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7551         if (!memcg)
7552                 return 0;
7553
7554         if (!entry.val) {
7555                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7556                 return 0;
7557         }
7558
7559         memcg = mem_cgroup_id_get_online(memcg);
7560
7561         if (!mem_cgroup_is_root(memcg) &&
7562             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7563                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7564                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7565                 mem_cgroup_id_put(memcg);
7566                 return -ENOMEM;
7567         }
7568
7569         /* Get references for the tail pages, too */
7570         if (nr_pages > 1)
7571                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7572         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7573         VM_BUG_ON_FOLIO(oldid, folio);
7574         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7575
7576         return 0;
7577 }
7578
7579 /**
7580  * __mem_cgroup_uncharge_swap - uncharge swap space
7581  * @entry: swap entry to uncharge
7582  * @nr_pages: the amount of swap space to uncharge
7583  */
7584 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7585 {
7586         struct mem_cgroup *memcg;
7587         unsigned short id;
7588
7589         id = swap_cgroup_record(entry, 0, nr_pages);
7590         rcu_read_lock();
7591         memcg = mem_cgroup_from_id(id);
7592         if (memcg) {
7593                 if (!mem_cgroup_is_root(memcg)) {
7594                         if (do_memsw_account())
7595                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7596                         else
7597                                 page_counter_uncharge(&memcg->swap, nr_pages);
7598                 }
7599                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7600                 mem_cgroup_id_put_many(memcg, nr_pages);
7601         }
7602         rcu_read_unlock();
7603 }
7604
7605 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7606 {
7607         long nr_swap_pages = get_nr_swap_pages();
7608
7609         if (mem_cgroup_disabled() || do_memsw_account())
7610                 return nr_swap_pages;
7611         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7612                 nr_swap_pages = min_t(long, nr_swap_pages,
7613                                       READ_ONCE(memcg->swap.max) -
7614                                       page_counter_read(&memcg->swap));
7615         return nr_swap_pages;
7616 }
7617
7618 bool mem_cgroup_swap_full(struct folio *folio)
7619 {
7620         struct mem_cgroup *memcg;
7621
7622         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7623
7624         if (vm_swap_full())
7625                 return true;
7626         if (do_memsw_account())
7627                 return false;
7628
7629         memcg = folio_memcg(folio);
7630         if (!memcg)
7631                 return false;
7632
7633         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7634                 unsigned long usage = page_counter_read(&memcg->swap);
7635
7636                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7637                     usage * 2 >= READ_ONCE(memcg->swap.max))
7638                         return true;
7639         }
7640
7641         return false;
7642 }
7643
7644 static int __init setup_swap_account(char *s)
7645 {
7646         pr_warn_once("The swapaccount= commandline option is deprecated. "
7647                      "Please report your usecase to linux-mm@kvack.org if you "
7648                      "depend on this functionality.\n");
7649         return 1;
7650 }
7651 __setup("swapaccount=", setup_swap_account);
7652
7653 static u64 swap_current_read(struct cgroup_subsys_state *css,
7654                              struct cftype *cft)
7655 {
7656         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7657
7658         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7659 }
7660
7661 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7662                           struct cftype *cft)
7663 {
7664         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7665
7666         return (u64)memcg->swap.watermark * PAGE_SIZE;
7667 }
7668
7669 static int swap_high_show(struct seq_file *m, void *v)
7670 {
7671         return seq_puts_memcg_tunable(m,
7672                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7673 }
7674
7675 static ssize_t swap_high_write(struct kernfs_open_file *of,
7676                                char *buf, size_t nbytes, loff_t off)
7677 {
7678         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7679         unsigned long high;
7680         int err;
7681
7682         buf = strstrip(buf);
7683         err = page_counter_memparse(buf, "max", &high);
7684         if (err)
7685                 return err;
7686
7687         page_counter_set_high(&memcg->swap, high);
7688
7689         return nbytes;
7690 }
7691
7692 static int swap_max_show(struct seq_file *m, void *v)
7693 {
7694         return seq_puts_memcg_tunable(m,
7695                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7696 }
7697
7698 static ssize_t swap_max_write(struct kernfs_open_file *of,
7699                               char *buf, size_t nbytes, loff_t off)
7700 {
7701         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7702         unsigned long max;
7703         int err;
7704
7705         buf = strstrip(buf);
7706         err = page_counter_memparse(buf, "max", &max);
7707         if (err)
7708                 return err;
7709
7710         xchg(&memcg->swap.max, max);
7711
7712         return nbytes;
7713 }
7714
7715 static int swap_events_show(struct seq_file *m, void *v)
7716 {
7717         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7718
7719         seq_printf(m, "high %lu\n",
7720                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7721         seq_printf(m, "max %lu\n",
7722                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7723         seq_printf(m, "fail %lu\n",
7724                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7725
7726         return 0;
7727 }
7728
7729 static struct cftype swap_files[] = {
7730         {
7731                 .name = "swap.current",
7732                 .flags = CFTYPE_NOT_ON_ROOT,
7733                 .read_u64 = swap_current_read,
7734         },
7735         {
7736                 .name = "swap.high",
7737                 .flags = CFTYPE_NOT_ON_ROOT,
7738                 .seq_show = swap_high_show,
7739                 .write = swap_high_write,
7740         },
7741         {
7742                 .name = "swap.max",
7743                 .flags = CFTYPE_NOT_ON_ROOT,
7744                 .seq_show = swap_max_show,
7745                 .write = swap_max_write,
7746         },
7747         {
7748                 .name = "swap.peak",
7749                 .flags = CFTYPE_NOT_ON_ROOT,
7750                 .read_u64 = swap_peak_read,
7751         },
7752         {
7753                 .name = "swap.events",
7754                 .flags = CFTYPE_NOT_ON_ROOT,
7755                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7756                 .seq_show = swap_events_show,
7757         },
7758         { }     /* terminate */
7759 };
7760
7761 static struct cftype memsw_files[] = {
7762         {
7763                 .name = "memsw.usage_in_bytes",
7764                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7765                 .read_u64 = mem_cgroup_read_u64,
7766         },
7767         {
7768                 .name = "memsw.max_usage_in_bytes",
7769                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7770                 .write = mem_cgroup_reset,
7771                 .read_u64 = mem_cgroup_read_u64,
7772         },
7773         {
7774                 .name = "memsw.limit_in_bytes",
7775                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7776                 .write = mem_cgroup_write,
7777                 .read_u64 = mem_cgroup_read_u64,
7778         },
7779         {
7780                 .name = "memsw.failcnt",
7781                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7782                 .write = mem_cgroup_reset,
7783                 .read_u64 = mem_cgroup_read_u64,
7784         },
7785 #if defined(CONFIG_MEMCG) && defined(CONFIG_SWAP)
7786         {
7787                 .name = "force_reclaim",
7788                 .write_u64 = mem_cgroup_force_reclaim,
7789         },
7790 #endif
7791         { },    /* terminate */
7792 };
7793
7794 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7795 /**
7796  * obj_cgroup_may_zswap - check if this cgroup can zswap
7797  * @objcg: the object cgroup
7798  *
7799  * Check if the hierarchical zswap limit has been reached.
7800  *
7801  * This doesn't check for specific headroom, and it is not atomic
7802  * either. But with zswap, the size of the allocation is only known
7803  * once compression has occured, and this optimistic pre-check avoids
7804  * spending cycles on compression when there is already no room left
7805  * or zswap is disabled altogether somewhere in the hierarchy.
7806  */
7807 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7808 {
7809         struct mem_cgroup *memcg, *original_memcg;
7810         bool ret = true;
7811
7812         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7813                 return true;
7814
7815         original_memcg = get_mem_cgroup_from_objcg(objcg);
7816         for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7817              memcg = parent_mem_cgroup(memcg)) {
7818                 unsigned long max = READ_ONCE(memcg->zswap_max);
7819                 unsigned long pages;
7820
7821                 if (max == PAGE_COUNTER_MAX)
7822                         continue;
7823                 if (max == 0) {
7824                         ret = false;
7825                         break;
7826                 }
7827
7828                 cgroup_rstat_flush(memcg->css.cgroup);
7829                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7830                 if (pages < max)
7831                         continue;
7832                 ret = false;
7833                 break;
7834         }
7835         mem_cgroup_put(original_memcg);
7836         return ret;
7837 }
7838
7839 /**
7840  * obj_cgroup_charge_zswap - charge compression backend memory
7841  * @objcg: the object cgroup
7842  * @size: size of compressed object
7843  *
7844  * This forces the charge after obj_cgroup_may_zswap() allowed
7845  * compression and storage in zwap for this cgroup to go ahead.
7846  */
7847 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7848 {
7849         struct mem_cgroup *memcg;
7850
7851         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7852                 return;
7853
7854         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7855
7856         /* PF_MEMALLOC context, charging must succeed */
7857         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7858                 VM_WARN_ON_ONCE(1);
7859
7860         rcu_read_lock();
7861         memcg = obj_cgroup_memcg(objcg);
7862         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7863         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7864         rcu_read_unlock();
7865 }
7866
7867 /**
7868  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7869  * @objcg: the object cgroup
7870  * @size: size of compressed object
7871  *
7872  * Uncharges zswap memory on page in.
7873  */
7874 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7875 {
7876         struct mem_cgroup *memcg;
7877
7878         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7879                 return;
7880
7881         obj_cgroup_uncharge(objcg, size);
7882
7883         rcu_read_lock();
7884         memcg = obj_cgroup_memcg(objcg);
7885         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7886         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7887         rcu_read_unlock();
7888 }
7889
7890 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7891                               struct cftype *cft)
7892 {
7893         cgroup_rstat_flush(css->cgroup);
7894         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7895 }
7896
7897 static int zswap_max_show(struct seq_file *m, void *v)
7898 {
7899         return seq_puts_memcg_tunable(m,
7900                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7901 }
7902
7903 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7904                                char *buf, size_t nbytes, loff_t off)
7905 {
7906         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7907         unsigned long max;
7908         int err;
7909
7910         buf = strstrip(buf);
7911         err = page_counter_memparse(buf, "max", &max);
7912         if (err)
7913                 return err;
7914
7915         xchg(&memcg->zswap_max, max);
7916
7917         return nbytes;
7918 }
7919
7920 static struct cftype zswap_files[] = {
7921         {
7922                 .name = "zswap.current",
7923                 .flags = CFTYPE_NOT_ON_ROOT,
7924                 .read_u64 = zswap_current_read,
7925         },
7926         {
7927                 .name = "zswap.max",
7928                 .flags = CFTYPE_NOT_ON_ROOT,
7929                 .seq_show = zswap_max_show,
7930                 .write = zswap_max_write,
7931         },
7932         { }     /* terminate */
7933 };
7934 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7935
7936 static int __init mem_cgroup_swap_init(void)
7937 {
7938         if (mem_cgroup_disabled())
7939                 return 0;
7940
7941         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7942         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7943 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7944         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7945 #endif
7946         return 0;
7947 }
7948 subsys_initcall(mem_cgroup_swap_init);
7949
7950 #endif /* CONFIG_SWAP */