lkdtm/bugs: Switch from 1-element array to flexible array
[platform/kernel/linux-rpi.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112
113 struct mem_cgroup_tree_per_node {
114         struct rb_root rb_root;
115         struct rb_node *rb_rightmost;
116         spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127         struct list_head list;
128         struct eventfd_ctx *eventfd;
129 };
130
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135         /*
136          * memcg which the event belongs to.
137          */
138         struct mem_cgroup *memcg;
139         /*
140          * eventfd to signal userspace about the event.
141          */
142         struct eventfd_ctx *eventfd;
143         /*
144          * Each of these stored in a list by the cgroup.
145          */
146         struct list_head list;
147         /*
148          * register_event() callback will be used to add new userspace
149          * waiter for changes related to this event.  Use eventfd_signal()
150          * on eventfd to send notification to userspace.
151          */
152         int (*register_event)(struct mem_cgroup *memcg,
153                               struct eventfd_ctx *eventfd, const char *args);
154         /*
155          * unregister_event() callback will be called when userspace closes
156          * the eventfd or on cgroup removing.  This callback must be set,
157          * if you want provide notification functionality.
158          */
159         void (*unregister_event)(struct mem_cgroup *memcg,
160                                  struct eventfd_ctx *eventfd);
161         /*
162          * All fields below needed to unregister event when
163          * userspace closes eventfd.
164          */
165         poll_table pt;
166         wait_queue_head_t *wqh;
167         wait_queue_entry_t wait;
168         struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON       0x1U
179 #define MOVE_FILE       0x2U
180 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184         spinlock_t        lock; /* for from, to */
185         struct mm_struct  *mm;
186         struct mem_cgroup *from;
187         struct mem_cgroup *to;
188         unsigned long flags;
189         unsigned long precharge;
190         unsigned long moved_charge;
191         unsigned long moved_swap;
192         struct task_struct *moving_task;        /* a task moving charges */
193         wait_queue_head_t waitq;                /* a waitq for other context */
194 } mc = {
195         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208         _MEM,
209         _MEMSWAP,
210         _KMEM,
211         _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
217
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)            \
224         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
225              iter != NULL;                              \
226              iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter)                       \
229         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool task_is_dying(void)
234 {
235         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236                 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242         if (!memcg)
243                 memcg = root_mem_cgroup;
244         return &memcg->vmpressure;
245 }
246
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249         return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
255 bool mem_cgroup_kmem_disabled(void)
256 {
257         return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261                                       unsigned int nr_pages);
262
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266         unsigned int nr_bytes;
267         unsigned int nr_pages;
268         unsigned long flags;
269
270         /*
271          * At this point all allocated objects are freed, and
272          * objcg->nr_charged_bytes can't have an arbitrary byte value.
273          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274          *
275          * The following sequence can lead to it:
276          * 1) CPU0: objcg == stock->cached_objcg
277          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278          *          PAGE_SIZE bytes are charged
279          * 3) CPU1: a process from another memcg is allocating something,
280          *          the stock if flushed,
281          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282          * 5) CPU0: we do release this object,
283          *          92 bytes are added to stock->nr_bytes
284          * 6) CPU0: stock is flushed,
285          *          92 bytes are added to objcg->nr_charged_bytes
286          *
287          * In the result, nr_charged_bytes == PAGE_SIZE.
288          * This page will be uncharged in obj_cgroup_release().
289          */
290         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292         nr_pages = nr_bytes >> PAGE_SHIFT;
293
294         if (nr_pages)
295                 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297         spin_lock_irqsave(&objcg_lock, flags);
298         list_del(&objcg->list);
299         spin_unlock_irqrestore(&objcg_lock, flags);
300
301         percpu_ref_exit(ref);
302         kfree_rcu(objcg, rcu);
303 }
304
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307         struct obj_cgroup *objcg;
308         int ret;
309
310         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311         if (!objcg)
312                 return NULL;
313
314         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315                               GFP_KERNEL);
316         if (ret) {
317                 kfree(objcg);
318                 return NULL;
319         }
320         INIT_LIST_HEAD(&objcg->list);
321         return objcg;
322 }
323
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325                                   struct mem_cgroup *parent)
326 {
327         struct obj_cgroup *objcg, *iter;
328
329         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331         spin_lock_irq(&objcg_lock);
332
333         /* 1) Ready to reparent active objcg. */
334         list_add(&objcg->list, &memcg->objcg_list);
335         /* 2) Reparent active objcg and already reparented objcgs to parent. */
336         list_for_each_entry(iter, &memcg->objcg_list, list)
337                 WRITE_ONCE(iter->memcg, parent);
338         /* 3) Move already reparented objcgs to the parent's list */
339         list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341         spin_unlock_irq(&objcg_lock);
342
343         percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372         struct mem_cgroup *memcg = folio_memcg(folio);
373
374         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375                 memcg = root_mem_cgroup;
376
377         return &memcg->css;
378 }
379
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395         struct mem_cgroup *memcg;
396         unsigned long ino = 0;
397
398         rcu_read_lock();
399         /* page_folio() is racy here, but the entire function is racy anyway */
400         memcg = folio_memcg_check(page_folio(page));
401
402         while (memcg && !(memcg->css.flags & CSS_ONLINE))
403                 memcg = parent_mem_cgroup(memcg);
404         if (memcg)
405                 ino = cgroup_ino(memcg->css.cgroup);
406         rcu_read_unlock();
407         return ino;
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411                                          struct mem_cgroup_tree_per_node *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_node *mz_node;
417         bool rightmost = true;
418
419         if (mz->on_tree)
420                 return;
421
422         mz->usage_in_excess = new_usage_in_excess;
423         if (!mz->usage_in_excess)
424                 return;
425         while (*p) {
426                 parent = *p;
427                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428                                         tree_node);
429                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430                         p = &(*p)->rb_left;
431                         rightmost = false;
432                 } else {
433                         p = &(*p)->rb_right;
434                 }
435         }
436
437         if (rightmost)
438                 mctz->rb_rightmost = &mz->tree_node;
439
440         rb_link_node(&mz->tree_node, parent, p);
441         rb_insert_color(&mz->tree_node, &mctz->rb_root);
442         mz->on_tree = true;
443 }
444
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446                                          struct mem_cgroup_tree_per_node *mctz)
447 {
448         if (!mz->on_tree)
449                 return;
450
451         if (&mz->tree_node == mctz->rb_rightmost)
452                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454         rb_erase(&mz->tree_node, &mctz->rb_root);
455         mz->on_tree = false;
456 }
457
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459                                        struct mem_cgroup_tree_per_node *mctz)
460 {
461         unsigned long flags;
462
463         spin_lock_irqsave(&mctz->lock, flags);
464         __mem_cgroup_remove_exceeded(mz, mctz);
465         spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470         unsigned long nr_pages = page_counter_read(&memcg->memory);
471         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472         unsigned long excess = 0;
473
474         if (nr_pages > soft_limit)
475                 excess = nr_pages - soft_limit;
476
477         return excess;
478 }
479
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482         unsigned long excess;
483         struct mem_cgroup_per_node *mz;
484         struct mem_cgroup_tree_per_node *mctz;
485
486         if (lru_gen_enabled()) {
487                 if (soft_limit_excess(memcg))
488                         lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
489                 return;
490         }
491
492         mctz = soft_limit_tree.rb_tree_per_node[nid];
493         if (!mctz)
494                 return;
495         /*
496          * Necessary to update all ancestors when hierarchy is used.
497          * because their event counter is not touched.
498          */
499         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500                 mz = memcg->nodeinfo[nid];
501                 excess = soft_limit_excess(memcg);
502                 /*
503                  * We have to update the tree if mz is on RB-tree or
504                  * mem is over its softlimit.
505                  */
506                 if (excess || mz->on_tree) {
507                         unsigned long flags;
508
509                         spin_lock_irqsave(&mctz->lock, flags);
510                         /* if on-tree, remove it */
511                         if (mz->on_tree)
512                                 __mem_cgroup_remove_exceeded(mz, mctz);
513                         /*
514                          * Insert again. mz->usage_in_excess will be updated.
515                          * If excess is 0, no tree ops.
516                          */
517                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
518                         spin_unlock_irqrestore(&mctz->lock, flags);
519                 }
520         }
521 }
522
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525         struct mem_cgroup_tree_per_node *mctz;
526         struct mem_cgroup_per_node *mz;
527         int nid;
528
529         for_each_node(nid) {
530                 mz = memcg->nodeinfo[nid];
531                 mctz = soft_limit_tree.rb_tree_per_node[nid];
532                 if (mctz)
533                         mem_cgroup_remove_exceeded(mz, mctz);
534         }
535 }
536
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540         struct mem_cgroup_per_node *mz;
541
542 retry:
543         mz = NULL;
544         if (!mctz->rb_rightmost)
545                 goto done;              /* Nothing to reclaim from */
546
547         mz = rb_entry(mctz->rb_rightmost,
548                       struct mem_cgroup_per_node, tree_node);
549         /*
550          * Remove the node now but someone else can add it back,
551          * we will to add it back at the end of reclaim to its correct
552          * position in the tree.
553          */
554         __mem_cgroup_remove_exceeded(mz, mctz);
555         if (!soft_limit_excess(mz->memcg) ||
556             !css_tryget(&mz->memcg->css))
557                 goto retry;
558 done:
559         return mz;
560 }
561
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565         struct mem_cgroup_per_node *mz;
566
567         spin_lock_irq(&mctz->lock);
568         mz = __mem_cgroup_largest_soft_limit_node(mctz);
569         spin_unlock_irq(&mctz->lock);
570         return mz;
571 }
572
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605         preempt_disable_nested();
606         VM_WARN_ON_IRQS_ENABLED();
607 }
608
609 static void __memcg_stats_lock(void)
610 {
611         preempt_disable_nested();
612 }
613
614 static void memcg_stats_unlock(void)
615 {
616         preempt_enable_nested();
617 }
618
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621         unsigned int x;
622
623         if (!val)
624                 return;
625
626         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628         x = __this_cpu_add_return(stats_updates, abs(val));
629         if (x > MEMCG_CHARGE_BATCH) {
630                 /*
631                  * If stats_flush_threshold exceeds the threshold
632                  * (>num_online_cpus()), cgroup stats update will be triggered
633                  * in __mem_cgroup_flush_stats(). Increasing this var further
634                  * is redundant and simply adds overhead in atomic update.
635                  */
636                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638                 __this_cpu_write(stats_updates, 0);
639         }
640 }
641
642 static void do_flush_stats(bool atomic)
643 {
644         /*
645          * We always flush the entire tree, so concurrent flushers can just
646          * skip. This avoids a thundering herd problem on the rstat global lock
647          * from memcg flushers (e.g. reclaim, refault, etc).
648          */
649         if (atomic_read(&stats_flush_ongoing) ||
650             atomic_xchg(&stats_flush_ongoing, 1))
651                 return;
652
653         WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655         if (atomic)
656                 cgroup_rstat_flush_atomic(root_mem_cgroup->css.cgroup);
657         else
658                 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
659
660         atomic_set(&stats_flush_threshold, 0);
661         atomic_set(&stats_flush_ongoing, 0);
662 }
663
664 static bool should_flush_stats(void)
665 {
666         return atomic_read(&stats_flush_threshold) > num_online_cpus();
667 }
668
669 void mem_cgroup_flush_stats(void)
670 {
671         if (should_flush_stats())
672                 do_flush_stats(false);
673 }
674
675 void mem_cgroup_flush_stats_atomic(void)
676 {
677         if (should_flush_stats())
678                 do_flush_stats(true);
679 }
680
681 void mem_cgroup_flush_stats_ratelimited(void)
682 {
683         if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
684                 mem_cgroup_flush_stats();
685 }
686
687 static void flush_memcg_stats_dwork(struct work_struct *w)
688 {
689         /*
690          * Always flush here so that flushing in latency-sensitive paths is
691          * as cheap as possible.
692          */
693         do_flush_stats(false);
694         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
695 }
696
697 /* Subset of vm_event_item to report for memcg event stats */
698 static const unsigned int memcg_vm_event_stat[] = {
699         PGPGIN,
700         PGPGOUT,
701         PGSCAN_KSWAPD,
702         PGSCAN_DIRECT,
703         PGSCAN_KHUGEPAGED,
704         PGSTEAL_KSWAPD,
705         PGSTEAL_DIRECT,
706         PGSTEAL_KHUGEPAGED,
707         PGFAULT,
708         PGMAJFAULT,
709         PGREFILL,
710         PGACTIVATE,
711         PGDEACTIVATE,
712         PGLAZYFREE,
713         PGLAZYFREED,
714 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
715         ZSWPIN,
716         ZSWPOUT,
717 #endif
718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
719         THP_FAULT_ALLOC,
720         THP_COLLAPSE_ALLOC,
721 #endif
722 };
723
724 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
725 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
726
727 static void init_memcg_events(void)
728 {
729         int i;
730
731         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
732                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
733 }
734
735 static inline int memcg_events_index(enum vm_event_item idx)
736 {
737         return mem_cgroup_events_index[idx] - 1;
738 }
739
740 struct memcg_vmstats_percpu {
741         /* Local (CPU and cgroup) page state & events */
742         long                    state[MEMCG_NR_STAT];
743         unsigned long           events[NR_MEMCG_EVENTS];
744
745         /* Delta calculation for lockless upward propagation */
746         long                    state_prev[MEMCG_NR_STAT];
747         unsigned long           events_prev[NR_MEMCG_EVENTS];
748
749         /* Cgroup1: threshold notifications & softlimit tree updates */
750         unsigned long           nr_page_events;
751         unsigned long           targets[MEM_CGROUP_NTARGETS];
752 };
753
754 struct memcg_vmstats {
755         /* Aggregated (CPU and subtree) page state & events */
756         long                    state[MEMCG_NR_STAT];
757         unsigned long           events[NR_MEMCG_EVENTS];
758
759         /* Pending child counts during tree propagation */
760         long                    state_pending[MEMCG_NR_STAT];
761         unsigned long           events_pending[NR_MEMCG_EVENTS];
762 };
763
764 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
765 {
766         long x = READ_ONCE(memcg->vmstats->state[idx]);
767 #ifdef CONFIG_SMP
768         if (x < 0)
769                 x = 0;
770 #endif
771         return x;
772 }
773
774 /**
775  * __mod_memcg_state - update cgroup memory statistics
776  * @memcg: the memory cgroup
777  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
778  * @val: delta to add to the counter, can be negative
779  */
780 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
781 {
782         if (mem_cgroup_disabled())
783                 return;
784
785         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
786         memcg_rstat_updated(memcg, val);
787 }
788
789 /* idx can be of type enum memcg_stat_item or node_stat_item. */
790 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
791 {
792         long x = 0;
793         int cpu;
794
795         for_each_possible_cpu(cpu)
796                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
797 #ifdef CONFIG_SMP
798         if (x < 0)
799                 x = 0;
800 #endif
801         return x;
802 }
803
804 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
805                               int val)
806 {
807         struct mem_cgroup_per_node *pn;
808         struct mem_cgroup *memcg;
809
810         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
811         memcg = pn->memcg;
812
813         /*
814          * The caller from rmap relay on disabled preemption becase they never
815          * update their counter from in-interrupt context. For these two
816          * counters we check that the update is never performed from an
817          * interrupt context while other caller need to have disabled interrupt.
818          */
819         __memcg_stats_lock();
820         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
821                 switch (idx) {
822                 case NR_ANON_MAPPED:
823                 case NR_FILE_MAPPED:
824                 case NR_ANON_THPS:
825                 case NR_SHMEM_PMDMAPPED:
826                 case NR_FILE_PMDMAPPED:
827                         WARN_ON_ONCE(!in_task());
828                         break;
829                 default:
830                         VM_WARN_ON_IRQS_ENABLED();
831                 }
832         }
833
834         /* Update memcg */
835         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
836
837         /* Update lruvec */
838         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
839
840         memcg_rstat_updated(memcg, val);
841         memcg_stats_unlock();
842 }
843
844 /**
845  * __mod_lruvec_state - update lruvec memory statistics
846  * @lruvec: the lruvec
847  * @idx: the stat item
848  * @val: delta to add to the counter, can be negative
849  *
850  * The lruvec is the intersection of the NUMA node and a cgroup. This
851  * function updates the all three counters that are affected by a
852  * change of state at this level: per-node, per-cgroup, per-lruvec.
853  */
854 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
855                         int val)
856 {
857         /* Update node */
858         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
859
860         /* Update memcg and lruvec */
861         if (!mem_cgroup_disabled())
862                 __mod_memcg_lruvec_state(lruvec, idx, val);
863 }
864
865 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
866                              int val)
867 {
868         struct page *head = compound_head(page); /* rmap on tail pages */
869         struct mem_cgroup *memcg;
870         pg_data_t *pgdat = page_pgdat(page);
871         struct lruvec *lruvec;
872
873         rcu_read_lock();
874         memcg = page_memcg(head);
875         /* Untracked pages have no memcg, no lruvec. Update only the node */
876         if (!memcg) {
877                 rcu_read_unlock();
878                 __mod_node_page_state(pgdat, idx, val);
879                 return;
880         }
881
882         lruvec = mem_cgroup_lruvec(memcg, pgdat);
883         __mod_lruvec_state(lruvec, idx, val);
884         rcu_read_unlock();
885 }
886 EXPORT_SYMBOL(__mod_lruvec_page_state);
887
888 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
889 {
890         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
891         struct mem_cgroup *memcg;
892         struct lruvec *lruvec;
893
894         rcu_read_lock();
895         memcg = mem_cgroup_from_slab_obj(p);
896
897         /*
898          * Untracked pages have no memcg, no lruvec. Update only the
899          * node. If we reparent the slab objects to the root memcg,
900          * when we free the slab object, we need to update the per-memcg
901          * vmstats to keep it correct for the root memcg.
902          */
903         if (!memcg) {
904                 __mod_node_page_state(pgdat, idx, val);
905         } else {
906                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
907                 __mod_lruvec_state(lruvec, idx, val);
908         }
909         rcu_read_unlock();
910 }
911
912 /**
913  * __count_memcg_events - account VM events in a cgroup
914  * @memcg: the memory cgroup
915  * @idx: the event item
916  * @count: the number of events that occurred
917  */
918 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
919                           unsigned long count)
920 {
921         int index = memcg_events_index(idx);
922
923         if (mem_cgroup_disabled() || index < 0)
924                 return;
925
926         memcg_stats_lock();
927         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
928         memcg_rstat_updated(memcg, count);
929         memcg_stats_unlock();
930 }
931
932 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
933 {
934         int index = memcg_events_index(event);
935
936         if (index < 0)
937                 return 0;
938         return READ_ONCE(memcg->vmstats->events[index]);
939 }
940
941 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
942 {
943         long x = 0;
944         int cpu;
945         int index = memcg_events_index(event);
946
947         if (index < 0)
948                 return 0;
949
950         for_each_possible_cpu(cpu)
951                 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
952         return x;
953 }
954
955 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
956                                          int nr_pages)
957 {
958         /* pagein of a big page is an event. So, ignore page size */
959         if (nr_pages > 0)
960                 __count_memcg_events(memcg, PGPGIN, 1);
961         else {
962                 __count_memcg_events(memcg, PGPGOUT, 1);
963                 nr_pages = -nr_pages; /* for event */
964         }
965
966         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
967 }
968
969 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
970                                        enum mem_cgroup_events_target target)
971 {
972         unsigned long val, next;
973
974         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
975         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
976         /* from time_after() in jiffies.h */
977         if ((long)(next - val) < 0) {
978                 switch (target) {
979                 case MEM_CGROUP_TARGET_THRESH:
980                         next = val + THRESHOLDS_EVENTS_TARGET;
981                         break;
982                 case MEM_CGROUP_TARGET_SOFTLIMIT:
983                         next = val + SOFTLIMIT_EVENTS_TARGET;
984                         break;
985                 default:
986                         break;
987                 }
988                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
989                 return true;
990         }
991         return false;
992 }
993
994 /*
995  * Check events in order.
996  *
997  */
998 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
999 {
1000         if (IS_ENABLED(CONFIG_PREEMPT_RT))
1001                 return;
1002
1003         /* threshold event is triggered in finer grain than soft limit */
1004         if (unlikely(mem_cgroup_event_ratelimit(memcg,
1005                                                 MEM_CGROUP_TARGET_THRESH))) {
1006                 bool do_softlimit;
1007
1008                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
1010                 mem_cgroup_threshold(memcg);
1011                 if (unlikely(do_softlimit))
1012                         mem_cgroup_update_tree(memcg, nid);
1013         }
1014 }
1015
1016 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1017 {
1018         /*
1019          * mm_update_next_owner() may clear mm->owner to NULL
1020          * if it races with swapoff, page migration, etc.
1021          * So this can be called with p == NULL.
1022          */
1023         if (unlikely(!p))
1024                 return NULL;
1025
1026         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1027 }
1028 EXPORT_SYMBOL(mem_cgroup_from_task);
1029
1030 static __always_inline struct mem_cgroup *active_memcg(void)
1031 {
1032         if (!in_task())
1033                 return this_cpu_read(int_active_memcg);
1034         else
1035                 return current->active_memcg;
1036 }
1037
1038 /**
1039  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1040  * @mm: mm from which memcg should be extracted. It can be NULL.
1041  *
1042  * Obtain a reference on mm->memcg and returns it if successful. If mm
1043  * is NULL, then the memcg is chosen as follows:
1044  * 1) The active memcg, if set.
1045  * 2) current->mm->memcg, if available
1046  * 3) root memcg
1047  * If mem_cgroup is disabled, NULL is returned.
1048  */
1049 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1050 {
1051         struct mem_cgroup *memcg;
1052
1053         if (mem_cgroup_disabled())
1054                 return NULL;
1055
1056         /*
1057          * Page cache insertions can happen without an
1058          * actual mm context, e.g. during disk probing
1059          * on boot, loopback IO, acct() writes etc.
1060          *
1061          * No need to css_get on root memcg as the reference
1062          * counting is disabled on the root level in the
1063          * cgroup core. See CSS_NO_REF.
1064          */
1065         if (unlikely(!mm)) {
1066                 memcg = active_memcg();
1067                 if (unlikely(memcg)) {
1068                         /* remote memcg must hold a ref */
1069                         css_get(&memcg->css);
1070                         return memcg;
1071                 }
1072                 mm = current->mm;
1073                 if (unlikely(!mm))
1074                         return root_mem_cgroup;
1075         }
1076
1077         rcu_read_lock();
1078         do {
1079                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1080                 if (unlikely(!memcg))
1081                         memcg = root_mem_cgroup;
1082         } while (!css_tryget(&memcg->css));
1083         rcu_read_unlock();
1084         return memcg;
1085 }
1086 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1087
1088 static __always_inline bool memcg_kmem_bypass(void)
1089 {
1090         /* Allow remote memcg charging from any context. */
1091         if (unlikely(active_memcg()))
1092                 return false;
1093
1094         /* Memcg to charge can't be determined. */
1095         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1096                 return true;
1097
1098         return false;
1099 }
1100
1101 /**
1102  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1103  * @root: hierarchy root
1104  * @prev: previously returned memcg, NULL on first invocation
1105  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1106  *
1107  * Returns references to children of the hierarchy below @root, or
1108  * @root itself, or %NULL after a full round-trip.
1109  *
1110  * Caller must pass the return value in @prev on subsequent
1111  * invocations for reference counting, or use mem_cgroup_iter_break()
1112  * to cancel a hierarchy walk before the round-trip is complete.
1113  *
1114  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1115  * in the hierarchy among all concurrent reclaimers operating on the
1116  * same node.
1117  */
1118 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1119                                    struct mem_cgroup *prev,
1120                                    struct mem_cgroup_reclaim_cookie *reclaim)
1121 {
1122         struct mem_cgroup_reclaim_iter *iter;
1123         struct cgroup_subsys_state *css = NULL;
1124         struct mem_cgroup *memcg = NULL;
1125         struct mem_cgroup *pos = NULL;
1126
1127         if (mem_cgroup_disabled())
1128                 return NULL;
1129
1130         if (!root)
1131                 root = root_mem_cgroup;
1132
1133         rcu_read_lock();
1134
1135         if (reclaim) {
1136                 struct mem_cgroup_per_node *mz;
1137
1138                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1139                 iter = &mz->iter;
1140
1141                 /*
1142                  * On start, join the current reclaim iteration cycle.
1143                  * Exit when a concurrent walker completes it.
1144                  */
1145                 if (!prev)
1146                         reclaim->generation = iter->generation;
1147                 else if (reclaim->generation != iter->generation)
1148                         goto out_unlock;
1149
1150                 while (1) {
1151                         pos = READ_ONCE(iter->position);
1152                         if (!pos || css_tryget(&pos->css))
1153                                 break;
1154                         /*
1155                          * css reference reached zero, so iter->position will
1156                          * be cleared by ->css_released. However, we should not
1157                          * rely on this happening soon, because ->css_released
1158                          * is called from a work queue, and by busy-waiting we
1159                          * might block it. So we clear iter->position right
1160                          * away.
1161                          */
1162                         (void)cmpxchg(&iter->position, pos, NULL);
1163                 }
1164         } else if (prev) {
1165                 pos = prev;
1166         }
1167
1168         if (pos)
1169                 css = &pos->css;
1170
1171         for (;;) {
1172                 css = css_next_descendant_pre(css, &root->css);
1173                 if (!css) {
1174                         /*
1175                          * Reclaimers share the hierarchy walk, and a
1176                          * new one might jump in right at the end of
1177                          * the hierarchy - make sure they see at least
1178                          * one group and restart from the beginning.
1179                          */
1180                         if (!prev)
1181                                 continue;
1182                         break;
1183                 }
1184
1185                 /*
1186                  * Verify the css and acquire a reference.  The root
1187                  * is provided by the caller, so we know it's alive
1188                  * and kicking, and don't take an extra reference.
1189                  */
1190                 if (css == &root->css || css_tryget(css)) {
1191                         memcg = mem_cgroup_from_css(css);
1192                         break;
1193                 }
1194         }
1195
1196         if (reclaim) {
1197                 /*
1198                  * The position could have already been updated by a competing
1199                  * thread, so check that the value hasn't changed since we read
1200                  * it to avoid reclaiming from the same cgroup twice.
1201                  */
1202                 (void)cmpxchg(&iter->position, pos, memcg);
1203
1204                 if (pos)
1205                         css_put(&pos->css);
1206
1207                 if (!memcg)
1208                         iter->generation++;
1209         }
1210
1211 out_unlock:
1212         rcu_read_unlock();
1213         if (prev && prev != root)
1214                 css_put(&prev->css);
1215
1216         return memcg;
1217 }
1218
1219 /**
1220  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221  * @root: hierarchy root
1222  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223  */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225                            struct mem_cgroup *prev)
1226 {
1227         if (!root)
1228                 root = root_mem_cgroup;
1229         if (prev && prev != root)
1230                 css_put(&prev->css);
1231 }
1232
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234                                         struct mem_cgroup *dead_memcg)
1235 {
1236         struct mem_cgroup_reclaim_iter *iter;
1237         struct mem_cgroup_per_node *mz;
1238         int nid;
1239
1240         for_each_node(nid) {
1241                 mz = from->nodeinfo[nid];
1242                 iter = &mz->iter;
1243                 cmpxchg(&iter->position, dead_memcg, NULL);
1244         }
1245 }
1246
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249         struct mem_cgroup *memcg = dead_memcg;
1250         struct mem_cgroup *last;
1251
1252         do {
1253                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254                 last = memcg;
1255         } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257         /*
1258          * When cgroup1 non-hierarchy mode is used,
1259          * parent_mem_cgroup() does not walk all the way up to the
1260          * cgroup root (root_mem_cgroup). So we have to handle
1261          * dead_memcg from cgroup root separately.
1262          */
1263         if (!mem_cgroup_is_root(last))
1264                 __invalidate_reclaim_iterators(root_mem_cgroup,
1265                                                 dead_memcg);
1266 }
1267
1268 /**
1269  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270  * @memcg: hierarchy root
1271  * @fn: function to call for each task
1272  * @arg: argument passed to @fn
1273  *
1274  * This function iterates over tasks attached to @memcg or to any of its
1275  * descendants and calls @fn for each task. If @fn returns a non-zero
1276  * value, the function breaks the iteration loop and returns the value.
1277  * Otherwise, it will iterate over all tasks and return 0.
1278  *
1279  * This function must not be called for the root memory cgroup.
1280  */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282                           int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284         struct mem_cgroup *iter;
1285         int ret = 0;
1286
1287         BUG_ON(mem_cgroup_is_root(memcg));
1288
1289         for_each_mem_cgroup_tree(iter, memcg) {
1290                 struct css_task_iter it;
1291                 struct task_struct *task;
1292
1293                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294                 while (!ret && (task = css_task_iter_next(&it)))
1295                         ret = fn(task, arg);
1296                 css_task_iter_end(&it);
1297                 if (ret) {
1298                         mem_cgroup_iter_break(memcg, iter);
1299                         break;
1300                 }
1301         }
1302         return ret;
1303 }
1304
1305 #ifdef CONFIG_DEBUG_VM
1306 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1307 {
1308         struct mem_cgroup *memcg;
1309
1310         if (mem_cgroup_disabled())
1311                 return;
1312
1313         memcg = folio_memcg(folio);
1314
1315         if (!memcg)
1316                 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1317         else
1318                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1319 }
1320 #endif
1321
1322 /**
1323  * folio_lruvec_lock - Lock the lruvec for a folio.
1324  * @folio: Pointer to the folio.
1325  *
1326  * These functions are safe to use under any of the following conditions:
1327  * - folio locked
1328  * - folio_test_lru false
1329  * - folio_memcg_lock()
1330  * - folio frozen (refcount of 0)
1331  *
1332  * Return: The lruvec this folio is on with its lock held.
1333  */
1334 struct lruvec *folio_lruvec_lock(struct folio *folio)
1335 {
1336         struct lruvec *lruvec = folio_lruvec(folio);
1337
1338         spin_lock(&lruvec->lru_lock);
1339         lruvec_memcg_debug(lruvec, folio);
1340
1341         return lruvec;
1342 }
1343
1344 /**
1345  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1346  * @folio: Pointer to the folio.
1347  *
1348  * These functions are safe to use under any of the following conditions:
1349  * - folio locked
1350  * - folio_test_lru false
1351  * - folio_memcg_lock()
1352  * - folio frozen (refcount of 0)
1353  *
1354  * Return: The lruvec this folio is on with its lock held and interrupts
1355  * disabled.
1356  */
1357 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1358 {
1359         struct lruvec *lruvec = folio_lruvec(folio);
1360
1361         spin_lock_irq(&lruvec->lru_lock);
1362         lruvec_memcg_debug(lruvec, folio);
1363
1364         return lruvec;
1365 }
1366
1367 /**
1368  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1369  * @folio: Pointer to the folio.
1370  * @flags: Pointer to irqsave flags.
1371  *
1372  * These functions are safe to use under any of the following conditions:
1373  * - folio locked
1374  * - folio_test_lru false
1375  * - folio_memcg_lock()
1376  * - folio frozen (refcount of 0)
1377  *
1378  * Return: The lruvec this folio is on with its lock held and interrupts
1379  * disabled.
1380  */
1381 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1382                 unsigned long *flags)
1383 {
1384         struct lruvec *lruvec = folio_lruvec(folio);
1385
1386         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1387         lruvec_memcg_debug(lruvec, folio);
1388
1389         return lruvec;
1390 }
1391
1392 /**
1393  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1394  * @lruvec: mem_cgroup per zone lru vector
1395  * @lru: index of lru list the page is sitting on
1396  * @zid: zone id of the accounted pages
1397  * @nr_pages: positive when adding or negative when removing
1398  *
1399  * This function must be called under lru_lock, just before a page is added
1400  * to or just after a page is removed from an lru list.
1401  */
1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403                                 int zid, int nr_pages)
1404 {
1405         struct mem_cgroup_per_node *mz;
1406         unsigned long *lru_size;
1407         long size;
1408
1409         if (mem_cgroup_disabled())
1410                 return;
1411
1412         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1413         lru_size = &mz->lru_zone_size[zid][lru];
1414
1415         if (nr_pages < 0)
1416                 *lru_size += nr_pages;
1417
1418         size = *lru_size;
1419         if (WARN_ONCE(size < 0,
1420                 "%s(%p, %d, %d): lru_size %ld\n",
1421                 __func__, lruvec, lru, nr_pages, size)) {
1422                 VM_BUG_ON(1);
1423                 *lru_size = 0;
1424         }
1425
1426         if (nr_pages > 0)
1427                 *lru_size += nr_pages;
1428 }
1429
1430 /**
1431  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1432  * @memcg: the memory cgroup
1433  *
1434  * Returns the maximum amount of memory @mem can be charged with, in
1435  * pages.
1436  */
1437 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1438 {
1439         unsigned long margin = 0;
1440         unsigned long count;
1441         unsigned long limit;
1442
1443         count = page_counter_read(&memcg->memory);
1444         limit = READ_ONCE(memcg->memory.max);
1445         if (count < limit)
1446                 margin = limit - count;
1447
1448         if (do_memsw_account()) {
1449                 count = page_counter_read(&memcg->memsw);
1450                 limit = READ_ONCE(memcg->memsw.max);
1451                 if (count < limit)
1452                         margin = min(margin, limit - count);
1453                 else
1454                         margin = 0;
1455         }
1456
1457         return margin;
1458 }
1459
1460 /*
1461  * A routine for checking "mem" is under move_account() or not.
1462  *
1463  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1464  * moving cgroups. This is for waiting at high-memory pressure
1465  * caused by "move".
1466  */
1467 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1468 {
1469         struct mem_cgroup *from;
1470         struct mem_cgroup *to;
1471         bool ret = false;
1472         /*
1473          * Unlike task_move routines, we access mc.to, mc.from not under
1474          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1475          */
1476         spin_lock(&mc.lock);
1477         from = mc.from;
1478         to = mc.to;
1479         if (!from)
1480                 goto unlock;
1481
1482         ret = mem_cgroup_is_descendant(from, memcg) ||
1483                 mem_cgroup_is_descendant(to, memcg);
1484 unlock:
1485         spin_unlock(&mc.lock);
1486         return ret;
1487 }
1488
1489 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1490 {
1491         if (mc.moving_task && current != mc.moving_task) {
1492                 if (mem_cgroup_under_move(memcg)) {
1493                         DEFINE_WAIT(wait);
1494                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1495                         /* moving charge context might have finished. */
1496                         if (mc.moving_task)
1497                                 schedule();
1498                         finish_wait(&mc.waitq, &wait);
1499                         return true;
1500                 }
1501         }
1502         return false;
1503 }
1504
1505 struct memory_stat {
1506         const char *name;
1507         unsigned int idx;
1508 };
1509
1510 static const struct memory_stat memory_stats[] = {
1511         { "anon",                       NR_ANON_MAPPED                  },
1512         { "file",                       NR_FILE_PAGES                   },
1513         { "kernel",                     MEMCG_KMEM                      },
1514         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1515         { "pagetables",                 NR_PAGETABLE                    },
1516         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1517         { "percpu",                     MEMCG_PERCPU_B                  },
1518         { "sock",                       MEMCG_SOCK                      },
1519         { "vmalloc",                    MEMCG_VMALLOC                   },
1520         { "shmem",                      NR_SHMEM                        },
1521 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1522         { "zswap",                      MEMCG_ZSWAP_B                   },
1523         { "zswapped",                   MEMCG_ZSWAPPED                  },
1524 #endif
1525         { "file_mapped",                NR_FILE_MAPPED                  },
1526         { "file_dirty",                 NR_FILE_DIRTY                   },
1527         { "file_writeback",             NR_WRITEBACK                    },
1528 #ifdef CONFIG_SWAP
1529         { "swapcached",                 NR_SWAPCACHE                    },
1530 #endif
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532         { "anon_thp",                   NR_ANON_THPS                    },
1533         { "file_thp",                   NR_FILE_THPS                    },
1534         { "shmem_thp",                  NR_SHMEM_THPS                   },
1535 #endif
1536         { "inactive_anon",              NR_INACTIVE_ANON                },
1537         { "active_anon",                NR_ACTIVE_ANON                  },
1538         { "inactive_file",              NR_INACTIVE_FILE                },
1539         { "active_file",                NR_ACTIVE_FILE                  },
1540         { "unevictable",                NR_UNEVICTABLE                  },
1541         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1542         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1543
1544         /* The memory events */
1545         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1546         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1547         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1548         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1549         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1550         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1551         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1552 };
1553
1554 /* Translate stat items to the correct unit for memory.stat output */
1555 static int memcg_page_state_unit(int item)
1556 {
1557         switch (item) {
1558         case MEMCG_PERCPU_B:
1559         case MEMCG_ZSWAP_B:
1560         case NR_SLAB_RECLAIMABLE_B:
1561         case NR_SLAB_UNRECLAIMABLE_B:
1562         case WORKINGSET_REFAULT_ANON:
1563         case WORKINGSET_REFAULT_FILE:
1564         case WORKINGSET_ACTIVATE_ANON:
1565         case WORKINGSET_ACTIVATE_FILE:
1566         case WORKINGSET_RESTORE_ANON:
1567         case WORKINGSET_RESTORE_FILE:
1568         case WORKINGSET_NODERECLAIM:
1569                 return 1;
1570         case NR_KERNEL_STACK_KB:
1571                 return SZ_1K;
1572         default:
1573                 return PAGE_SIZE;
1574         }
1575 }
1576
1577 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1578                                                     int item)
1579 {
1580         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1581 }
1582
1583 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1584 {
1585         struct seq_buf s;
1586         int i;
1587
1588         seq_buf_init(&s, buf, bufsize);
1589
1590         /*
1591          * Provide statistics on the state of the memory subsystem as
1592          * well as cumulative event counters that show past behavior.
1593          *
1594          * This list is ordered following a combination of these gradients:
1595          * 1) generic big picture -> specifics and details
1596          * 2) reflecting userspace activity -> reflecting kernel heuristics
1597          *
1598          * Current memory state:
1599          */
1600         mem_cgroup_flush_stats();
1601
1602         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1603                 u64 size;
1604
1605                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1606                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1607
1608                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1609                         size += memcg_page_state_output(memcg,
1610                                                         NR_SLAB_RECLAIMABLE_B);
1611                         seq_buf_printf(&s, "slab %llu\n", size);
1612                 }
1613         }
1614
1615         /* Accumulated memory events */
1616         seq_buf_printf(&s, "pgscan %lu\n",
1617                        memcg_events(memcg, PGSCAN_KSWAPD) +
1618                        memcg_events(memcg, PGSCAN_DIRECT) +
1619                        memcg_events(memcg, PGSCAN_KHUGEPAGED));
1620         seq_buf_printf(&s, "pgsteal %lu\n",
1621                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1622                        memcg_events(memcg, PGSTEAL_DIRECT) +
1623                        memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1624
1625         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1626                 if (memcg_vm_event_stat[i] == PGPGIN ||
1627                     memcg_vm_event_stat[i] == PGPGOUT)
1628                         continue;
1629
1630                 seq_buf_printf(&s, "%s %lu\n",
1631                                vm_event_name(memcg_vm_event_stat[i]),
1632                                memcg_events(memcg, memcg_vm_event_stat[i]));
1633         }
1634
1635         /* The above should easily fit into one page */
1636         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1637 }
1638
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641  * mem_cgroup_print_oom_context: Print OOM information relevant to
1642  * memory controller.
1643  * @memcg: The memory cgroup that went over limit
1644  * @p: Task that is going to be killed
1645  *
1646  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1647  * enabled
1648  */
1649 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1650 {
1651         rcu_read_lock();
1652
1653         if (memcg) {
1654                 pr_cont(",oom_memcg=");
1655                 pr_cont_cgroup_path(memcg->css.cgroup);
1656         } else
1657                 pr_cont(",global_oom");
1658         if (p) {
1659                 pr_cont(",task_memcg=");
1660                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1661         }
1662         rcu_read_unlock();
1663 }
1664
1665 /**
1666  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1667  * memory controller.
1668  * @memcg: The memory cgroup that went over limit
1669  */
1670 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1671 {
1672         /* Use static buffer, for the caller is holding oom_lock. */
1673         static char buf[PAGE_SIZE];
1674
1675         lockdep_assert_held(&oom_lock);
1676
1677         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1678                 K((u64)page_counter_read(&memcg->memory)),
1679                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1680         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1681                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1682                         K((u64)page_counter_read(&memcg->swap)),
1683                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1684         else {
1685                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1686                         K((u64)page_counter_read(&memcg->memsw)),
1687                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1688                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1689                         K((u64)page_counter_read(&memcg->kmem)),
1690                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1691         }
1692
1693         pr_info("Memory cgroup stats for ");
1694         pr_cont_cgroup_path(memcg->css.cgroup);
1695         pr_cont(":");
1696         memory_stat_format(memcg, buf, sizeof(buf));
1697         pr_info("%s", buf);
1698 }
1699
1700 /*
1701  * Return the memory (and swap, if configured) limit for a memcg.
1702  */
1703 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1704 {
1705         unsigned long max = READ_ONCE(memcg->memory.max);
1706
1707         if (do_memsw_account()) {
1708                 if (mem_cgroup_swappiness(memcg)) {
1709                         /* Calculate swap excess capacity from memsw limit */
1710                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1711
1712                         max += min(swap, (unsigned long)total_swap_pages);
1713                 }
1714         } else {
1715                 if (mem_cgroup_swappiness(memcg))
1716                         max += min(READ_ONCE(memcg->swap.max),
1717                                    (unsigned long)total_swap_pages);
1718         }
1719         return max;
1720 }
1721
1722 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1723 {
1724         return page_counter_read(&memcg->memory);
1725 }
1726
1727 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1728                                      int order)
1729 {
1730         struct oom_control oc = {
1731                 .zonelist = NULL,
1732                 .nodemask = NULL,
1733                 .memcg = memcg,
1734                 .gfp_mask = gfp_mask,
1735                 .order = order,
1736         };
1737         bool ret = true;
1738
1739         if (mutex_lock_killable(&oom_lock))
1740                 return true;
1741
1742         if (mem_cgroup_margin(memcg) >= (1 << order))
1743                 goto unlock;
1744
1745         /*
1746          * A few threads which were not waiting at mutex_lock_killable() can
1747          * fail to bail out. Therefore, check again after holding oom_lock.
1748          */
1749         ret = task_is_dying() || out_of_memory(&oc);
1750
1751 unlock:
1752         mutex_unlock(&oom_lock);
1753         return ret;
1754 }
1755
1756 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1757                                    pg_data_t *pgdat,
1758                                    gfp_t gfp_mask,
1759                                    unsigned long *total_scanned)
1760 {
1761         struct mem_cgroup *victim = NULL;
1762         int total = 0;
1763         int loop = 0;
1764         unsigned long excess;
1765         unsigned long nr_scanned;
1766         struct mem_cgroup_reclaim_cookie reclaim = {
1767                 .pgdat = pgdat,
1768         };
1769
1770         excess = soft_limit_excess(root_memcg);
1771
1772         while (1) {
1773                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1774                 if (!victim) {
1775                         loop++;
1776                         if (loop >= 2) {
1777                                 /*
1778                                  * If we have not been able to reclaim
1779                                  * anything, it might because there are
1780                                  * no reclaimable pages under this hierarchy
1781                                  */
1782                                 if (!total)
1783                                         break;
1784                                 /*
1785                                  * We want to do more targeted reclaim.
1786                                  * excess >> 2 is not to excessive so as to
1787                                  * reclaim too much, nor too less that we keep
1788                                  * coming back to reclaim from this cgroup
1789                                  */
1790                                 if (total >= (excess >> 2) ||
1791                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1792                                         break;
1793                         }
1794                         continue;
1795                 }
1796                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1797                                         pgdat, &nr_scanned);
1798                 *total_scanned += nr_scanned;
1799                 if (!soft_limit_excess(root_memcg))
1800                         break;
1801         }
1802         mem_cgroup_iter_break(root_memcg, victim);
1803         return total;
1804 }
1805
1806 #ifdef CONFIG_LOCKDEP
1807 static struct lockdep_map memcg_oom_lock_dep_map = {
1808         .name = "memcg_oom_lock",
1809 };
1810 #endif
1811
1812 static DEFINE_SPINLOCK(memcg_oom_lock);
1813
1814 /*
1815  * Check OOM-Killer is already running under our hierarchy.
1816  * If someone is running, return false.
1817  */
1818 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1819 {
1820         struct mem_cgroup *iter, *failed = NULL;
1821
1822         spin_lock(&memcg_oom_lock);
1823
1824         for_each_mem_cgroup_tree(iter, memcg) {
1825                 if (iter->oom_lock) {
1826                         /*
1827                          * this subtree of our hierarchy is already locked
1828                          * so we cannot give a lock.
1829                          */
1830                         failed = iter;
1831                         mem_cgroup_iter_break(memcg, iter);
1832                         break;
1833                 } else
1834                         iter->oom_lock = true;
1835         }
1836
1837         if (failed) {
1838                 /*
1839                  * OK, we failed to lock the whole subtree so we have
1840                  * to clean up what we set up to the failing subtree
1841                  */
1842                 for_each_mem_cgroup_tree(iter, memcg) {
1843                         if (iter == failed) {
1844                                 mem_cgroup_iter_break(memcg, iter);
1845                                 break;
1846                         }
1847                         iter->oom_lock = false;
1848                 }
1849         } else
1850                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1851
1852         spin_unlock(&memcg_oom_lock);
1853
1854         return !failed;
1855 }
1856
1857 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1858 {
1859         struct mem_cgroup *iter;
1860
1861         spin_lock(&memcg_oom_lock);
1862         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1863         for_each_mem_cgroup_tree(iter, memcg)
1864                 iter->oom_lock = false;
1865         spin_unlock(&memcg_oom_lock);
1866 }
1867
1868 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1869 {
1870         struct mem_cgroup *iter;
1871
1872         spin_lock(&memcg_oom_lock);
1873         for_each_mem_cgroup_tree(iter, memcg)
1874                 iter->under_oom++;
1875         spin_unlock(&memcg_oom_lock);
1876 }
1877
1878 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1879 {
1880         struct mem_cgroup *iter;
1881
1882         /*
1883          * Be careful about under_oom underflows because a child memcg
1884          * could have been added after mem_cgroup_mark_under_oom.
1885          */
1886         spin_lock(&memcg_oom_lock);
1887         for_each_mem_cgroup_tree(iter, memcg)
1888                 if (iter->under_oom > 0)
1889                         iter->under_oom--;
1890         spin_unlock(&memcg_oom_lock);
1891 }
1892
1893 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1894
1895 struct oom_wait_info {
1896         struct mem_cgroup *memcg;
1897         wait_queue_entry_t      wait;
1898 };
1899
1900 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1901         unsigned mode, int sync, void *arg)
1902 {
1903         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1904         struct mem_cgroup *oom_wait_memcg;
1905         struct oom_wait_info *oom_wait_info;
1906
1907         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1908         oom_wait_memcg = oom_wait_info->memcg;
1909
1910         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1911             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1912                 return 0;
1913         return autoremove_wake_function(wait, mode, sync, arg);
1914 }
1915
1916 static void memcg_oom_recover(struct mem_cgroup *memcg)
1917 {
1918         /*
1919          * For the following lockless ->under_oom test, the only required
1920          * guarantee is that it must see the state asserted by an OOM when
1921          * this function is called as a result of userland actions
1922          * triggered by the notification of the OOM.  This is trivially
1923          * achieved by invoking mem_cgroup_mark_under_oom() before
1924          * triggering notification.
1925          */
1926         if (memcg && memcg->under_oom)
1927                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1928 }
1929
1930 /*
1931  * Returns true if successfully killed one or more processes. Though in some
1932  * corner cases it can return true even without killing any process.
1933  */
1934 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1935 {
1936         bool locked, ret;
1937
1938         if (order > PAGE_ALLOC_COSTLY_ORDER)
1939                 return false;
1940
1941         memcg_memory_event(memcg, MEMCG_OOM);
1942
1943         /*
1944          * We are in the middle of the charge context here, so we
1945          * don't want to block when potentially sitting on a callstack
1946          * that holds all kinds of filesystem and mm locks.
1947          *
1948          * cgroup1 allows disabling the OOM killer and waiting for outside
1949          * handling until the charge can succeed; remember the context and put
1950          * the task to sleep at the end of the page fault when all locks are
1951          * released.
1952          *
1953          * On the other hand, in-kernel OOM killer allows for an async victim
1954          * memory reclaim (oom_reaper) and that means that we are not solely
1955          * relying on the oom victim to make a forward progress and we can
1956          * invoke the oom killer here.
1957          *
1958          * Please note that mem_cgroup_out_of_memory might fail to find a
1959          * victim and then we have to bail out from the charge path.
1960          */
1961         if (READ_ONCE(memcg->oom_kill_disable)) {
1962                 if (current->in_user_fault) {
1963                         css_get(&memcg->css);
1964                         current->memcg_in_oom = memcg;
1965                         current->memcg_oom_gfp_mask = mask;
1966                         current->memcg_oom_order = order;
1967                 }
1968                 return false;
1969         }
1970
1971         mem_cgroup_mark_under_oom(memcg);
1972
1973         locked = mem_cgroup_oom_trylock(memcg);
1974
1975         if (locked)
1976                 mem_cgroup_oom_notify(memcg);
1977
1978         mem_cgroup_unmark_under_oom(memcg);
1979         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1980
1981         if (locked)
1982                 mem_cgroup_oom_unlock(memcg);
1983
1984         return ret;
1985 }
1986
1987 /**
1988  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1989  * @handle: actually kill/wait or just clean up the OOM state
1990  *
1991  * This has to be called at the end of a page fault if the memcg OOM
1992  * handler was enabled.
1993  *
1994  * Memcg supports userspace OOM handling where failed allocations must
1995  * sleep on a waitqueue until the userspace task resolves the
1996  * situation.  Sleeping directly in the charge context with all kinds
1997  * of locks held is not a good idea, instead we remember an OOM state
1998  * in the task and mem_cgroup_oom_synchronize() has to be called at
1999  * the end of the page fault to complete the OOM handling.
2000  *
2001  * Returns %true if an ongoing memcg OOM situation was detected and
2002  * completed, %false otherwise.
2003  */
2004 bool mem_cgroup_oom_synchronize(bool handle)
2005 {
2006         struct mem_cgroup *memcg = current->memcg_in_oom;
2007         struct oom_wait_info owait;
2008         bool locked;
2009
2010         /* OOM is global, do not handle */
2011         if (!memcg)
2012                 return false;
2013
2014         if (!handle)
2015                 goto cleanup;
2016
2017         owait.memcg = memcg;
2018         owait.wait.flags = 0;
2019         owait.wait.func = memcg_oom_wake_function;
2020         owait.wait.private = current;
2021         INIT_LIST_HEAD(&owait.wait.entry);
2022
2023         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2024         mem_cgroup_mark_under_oom(memcg);
2025
2026         locked = mem_cgroup_oom_trylock(memcg);
2027
2028         if (locked)
2029                 mem_cgroup_oom_notify(memcg);
2030
2031         if (locked && !READ_ONCE(memcg->oom_kill_disable)) {
2032                 mem_cgroup_unmark_under_oom(memcg);
2033                 finish_wait(&memcg_oom_waitq, &owait.wait);
2034                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2035                                          current->memcg_oom_order);
2036         } else {
2037                 schedule();
2038                 mem_cgroup_unmark_under_oom(memcg);
2039                 finish_wait(&memcg_oom_waitq, &owait.wait);
2040         }
2041
2042         if (locked) {
2043                 mem_cgroup_oom_unlock(memcg);
2044                 /*
2045                  * There is no guarantee that an OOM-lock contender
2046                  * sees the wakeups triggered by the OOM kill
2047                  * uncharges.  Wake any sleepers explicitly.
2048                  */
2049                 memcg_oom_recover(memcg);
2050         }
2051 cleanup:
2052         current->memcg_in_oom = NULL;
2053         css_put(&memcg->css);
2054         return true;
2055 }
2056
2057 /**
2058  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2059  * @victim: task to be killed by the OOM killer
2060  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2061  *
2062  * Returns a pointer to a memory cgroup, which has to be cleaned up
2063  * by killing all belonging OOM-killable tasks.
2064  *
2065  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2066  */
2067 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2068                                             struct mem_cgroup *oom_domain)
2069 {
2070         struct mem_cgroup *oom_group = NULL;
2071         struct mem_cgroup *memcg;
2072
2073         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2074                 return NULL;
2075
2076         if (!oom_domain)
2077                 oom_domain = root_mem_cgroup;
2078
2079         rcu_read_lock();
2080
2081         memcg = mem_cgroup_from_task(victim);
2082         if (mem_cgroup_is_root(memcg))
2083                 goto out;
2084
2085         /*
2086          * If the victim task has been asynchronously moved to a different
2087          * memory cgroup, we might end up killing tasks outside oom_domain.
2088          * In this case it's better to ignore memory.group.oom.
2089          */
2090         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2091                 goto out;
2092
2093         /*
2094          * Traverse the memory cgroup hierarchy from the victim task's
2095          * cgroup up to the OOMing cgroup (or root) to find the
2096          * highest-level memory cgroup with oom.group set.
2097          */
2098         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2099                 if (READ_ONCE(memcg->oom_group))
2100                         oom_group = memcg;
2101
2102                 if (memcg == oom_domain)
2103                         break;
2104         }
2105
2106         if (oom_group)
2107                 css_get(&oom_group->css);
2108 out:
2109         rcu_read_unlock();
2110
2111         return oom_group;
2112 }
2113
2114 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2115 {
2116         pr_info("Tasks in ");
2117         pr_cont_cgroup_path(memcg->css.cgroup);
2118         pr_cont(" are going to be killed due to memory.oom.group set\n");
2119 }
2120
2121 /**
2122  * folio_memcg_lock - Bind a folio to its memcg.
2123  * @folio: The folio.
2124  *
2125  * This function prevents unlocked LRU folios from being moved to
2126  * another cgroup.
2127  *
2128  * It ensures lifetime of the bound memcg.  The caller is responsible
2129  * for the lifetime of the folio.
2130  */
2131 void folio_memcg_lock(struct folio *folio)
2132 {
2133         struct mem_cgroup *memcg;
2134         unsigned long flags;
2135
2136         /*
2137          * The RCU lock is held throughout the transaction.  The fast
2138          * path can get away without acquiring the memcg->move_lock
2139          * because page moving starts with an RCU grace period.
2140          */
2141         rcu_read_lock();
2142
2143         if (mem_cgroup_disabled())
2144                 return;
2145 again:
2146         memcg = folio_memcg(folio);
2147         if (unlikely(!memcg))
2148                 return;
2149
2150 #ifdef CONFIG_PROVE_LOCKING
2151         local_irq_save(flags);
2152         might_lock(&memcg->move_lock);
2153         local_irq_restore(flags);
2154 #endif
2155
2156         if (atomic_read(&memcg->moving_account) <= 0)
2157                 return;
2158
2159         spin_lock_irqsave(&memcg->move_lock, flags);
2160         if (memcg != folio_memcg(folio)) {
2161                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2162                 goto again;
2163         }
2164
2165         /*
2166          * When charge migration first begins, we can have multiple
2167          * critical sections holding the fast-path RCU lock and one
2168          * holding the slowpath move_lock. Track the task who has the
2169          * move_lock for unlock_page_memcg().
2170          */
2171         memcg->move_lock_task = current;
2172         memcg->move_lock_flags = flags;
2173 }
2174
2175 void lock_page_memcg(struct page *page)
2176 {
2177         folio_memcg_lock(page_folio(page));
2178 }
2179
2180 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2181 {
2182         if (memcg && memcg->move_lock_task == current) {
2183                 unsigned long flags = memcg->move_lock_flags;
2184
2185                 memcg->move_lock_task = NULL;
2186                 memcg->move_lock_flags = 0;
2187
2188                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2189         }
2190
2191         rcu_read_unlock();
2192 }
2193
2194 /**
2195  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2196  * @folio: The folio.
2197  *
2198  * This releases the binding created by folio_memcg_lock().  This does
2199  * not change the accounting of this folio to its memcg, but it does
2200  * permit others to change it.
2201  */
2202 void folio_memcg_unlock(struct folio *folio)
2203 {
2204         __folio_memcg_unlock(folio_memcg(folio));
2205 }
2206
2207 void unlock_page_memcg(struct page *page)
2208 {
2209         folio_memcg_unlock(page_folio(page));
2210 }
2211
2212 struct memcg_stock_pcp {
2213         local_lock_t stock_lock;
2214         struct mem_cgroup *cached; /* this never be root cgroup */
2215         unsigned int nr_pages;
2216
2217 #ifdef CONFIG_MEMCG_KMEM
2218         struct obj_cgroup *cached_objcg;
2219         struct pglist_data *cached_pgdat;
2220         unsigned int nr_bytes;
2221         int nr_slab_reclaimable_b;
2222         int nr_slab_unreclaimable_b;
2223 #endif
2224
2225         struct work_struct work;
2226         unsigned long flags;
2227 #define FLUSHING_CACHED_CHARGE  0
2228 };
2229 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2230         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2231 };
2232 static DEFINE_MUTEX(percpu_charge_mutex);
2233
2234 #ifdef CONFIG_MEMCG_KMEM
2235 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2236 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2237                                      struct mem_cgroup *root_memcg);
2238 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2239
2240 #else
2241 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2242 {
2243         return NULL;
2244 }
2245 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2246                                      struct mem_cgroup *root_memcg)
2247 {
2248         return false;
2249 }
2250 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2251 {
2252 }
2253 #endif
2254
2255 /**
2256  * consume_stock: Try to consume stocked charge on this cpu.
2257  * @memcg: memcg to consume from.
2258  * @nr_pages: how many pages to charge.
2259  *
2260  * The charges will only happen if @memcg matches the current cpu's memcg
2261  * stock, and at least @nr_pages are available in that stock.  Failure to
2262  * service an allocation will refill the stock.
2263  *
2264  * returns true if successful, false otherwise.
2265  */
2266 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2267 {
2268         struct memcg_stock_pcp *stock;
2269         unsigned long flags;
2270         bool ret = false;
2271
2272         if (nr_pages > MEMCG_CHARGE_BATCH)
2273                 return ret;
2274
2275         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2276
2277         stock = this_cpu_ptr(&memcg_stock);
2278         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2279                 stock->nr_pages -= nr_pages;
2280                 ret = true;
2281         }
2282
2283         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2284
2285         return ret;
2286 }
2287
2288 /*
2289  * Returns stocks cached in percpu and reset cached information.
2290  */
2291 static void drain_stock(struct memcg_stock_pcp *stock)
2292 {
2293         struct mem_cgroup *old = stock->cached;
2294
2295         if (!old)
2296                 return;
2297
2298         if (stock->nr_pages) {
2299                 page_counter_uncharge(&old->memory, stock->nr_pages);
2300                 if (do_memsw_account())
2301                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2302                 stock->nr_pages = 0;
2303         }
2304
2305         css_put(&old->css);
2306         stock->cached = NULL;
2307 }
2308
2309 static void drain_local_stock(struct work_struct *dummy)
2310 {
2311         struct memcg_stock_pcp *stock;
2312         struct obj_cgroup *old = NULL;
2313         unsigned long flags;
2314
2315         /*
2316          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2317          * drain_stock races is that we always operate on local CPU stock
2318          * here with IRQ disabled
2319          */
2320         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2321
2322         stock = this_cpu_ptr(&memcg_stock);
2323         old = drain_obj_stock(stock);
2324         drain_stock(stock);
2325         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2326
2327         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328         if (old)
2329                 obj_cgroup_put(old);
2330 }
2331
2332 /*
2333  * Cache charges(val) to local per_cpu area.
2334  * This will be consumed by consume_stock() function, later.
2335  */
2336 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2337 {
2338         struct memcg_stock_pcp *stock;
2339
2340         stock = this_cpu_ptr(&memcg_stock);
2341         if (stock->cached != memcg) { /* reset if necessary */
2342                 drain_stock(stock);
2343                 css_get(&memcg->css);
2344                 stock->cached = memcg;
2345         }
2346         stock->nr_pages += nr_pages;
2347
2348         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2349                 drain_stock(stock);
2350 }
2351
2352 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2353 {
2354         unsigned long flags;
2355
2356         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2357         __refill_stock(memcg, nr_pages);
2358         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2359 }
2360
2361 /*
2362  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2363  * of the hierarchy under it.
2364  */
2365 static void drain_all_stock(struct mem_cgroup *root_memcg)
2366 {
2367         int cpu, curcpu;
2368
2369         /* If someone's already draining, avoid adding running more workers. */
2370         if (!mutex_trylock(&percpu_charge_mutex))
2371                 return;
2372         /*
2373          * Notify other cpus that system-wide "drain" is running
2374          * We do not care about races with the cpu hotplug because cpu down
2375          * as well as workers from this path always operate on the local
2376          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2377          */
2378         migrate_disable();
2379         curcpu = smp_processor_id();
2380         for_each_online_cpu(cpu) {
2381                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2382                 struct mem_cgroup *memcg;
2383                 bool flush = false;
2384
2385                 rcu_read_lock();
2386                 memcg = stock->cached;
2387                 if (memcg && stock->nr_pages &&
2388                     mem_cgroup_is_descendant(memcg, root_memcg))
2389                         flush = true;
2390                 else if (obj_stock_flush_required(stock, root_memcg))
2391                         flush = true;
2392                 rcu_read_unlock();
2393
2394                 if (flush &&
2395                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2396                         if (cpu == curcpu)
2397                                 drain_local_stock(&stock->work);
2398                         else if (!cpu_is_isolated(cpu))
2399                                 schedule_work_on(cpu, &stock->work);
2400                 }
2401         }
2402         migrate_enable();
2403         mutex_unlock(&percpu_charge_mutex);
2404 }
2405
2406 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2407 {
2408         struct memcg_stock_pcp *stock;
2409
2410         stock = &per_cpu(memcg_stock, cpu);
2411         drain_stock(stock);
2412
2413         return 0;
2414 }
2415
2416 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2417                                   unsigned int nr_pages,
2418                                   gfp_t gfp_mask)
2419 {
2420         unsigned long nr_reclaimed = 0;
2421
2422         do {
2423                 unsigned long pflags;
2424
2425                 if (page_counter_read(&memcg->memory) <=
2426                     READ_ONCE(memcg->memory.high))
2427                         continue;
2428
2429                 memcg_memory_event(memcg, MEMCG_HIGH);
2430
2431                 psi_memstall_enter(&pflags);
2432                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2433                                                         gfp_mask,
2434                                                         MEMCG_RECLAIM_MAY_SWAP);
2435                 psi_memstall_leave(&pflags);
2436         } while ((memcg = parent_mem_cgroup(memcg)) &&
2437                  !mem_cgroup_is_root(memcg));
2438
2439         return nr_reclaimed;
2440 }
2441
2442 static void high_work_func(struct work_struct *work)
2443 {
2444         struct mem_cgroup *memcg;
2445
2446         memcg = container_of(work, struct mem_cgroup, high_work);
2447         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2448 }
2449
2450 /*
2451  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2452  * enough to still cause a significant slowdown in most cases, while still
2453  * allowing diagnostics and tracing to proceed without becoming stuck.
2454  */
2455 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2456
2457 /*
2458  * When calculating the delay, we use these either side of the exponentiation to
2459  * maintain precision and scale to a reasonable number of jiffies (see the table
2460  * below.
2461  *
2462  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2463  *   overage ratio to a delay.
2464  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2465  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2466  *   to produce a reasonable delay curve.
2467  *
2468  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2469  * reasonable delay curve compared to precision-adjusted overage, not
2470  * penalising heavily at first, but still making sure that growth beyond the
2471  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2472  * example, with a high of 100 megabytes:
2473  *
2474  *  +-------+------------------------+
2475  *  | usage | time to allocate in ms |
2476  *  +-------+------------------------+
2477  *  | 100M  |                      0 |
2478  *  | 101M  |                      6 |
2479  *  | 102M  |                     25 |
2480  *  | 103M  |                     57 |
2481  *  | 104M  |                    102 |
2482  *  | 105M  |                    159 |
2483  *  | 106M  |                    230 |
2484  *  | 107M  |                    313 |
2485  *  | 108M  |                    409 |
2486  *  | 109M  |                    518 |
2487  *  | 110M  |                    639 |
2488  *  | 111M  |                    774 |
2489  *  | 112M  |                    921 |
2490  *  | 113M  |                   1081 |
2491  *  | 114M  |                   1254 |
2492  *  | 115M  |                   1439 |
2493  *  | 116M  |                   1638 |
2494  *  | 117M  |                   1849 |
2495  *  | 118M  |                   2000 |
2496  *  | 119M  |                   2000 |
2497  *  | 120M  |                   2000 |
2498  *  +-------+------------------------+
2499  */
2500  #define MEMCG_DELAY_PRECISION_SHIFT 20
2501  #define MEMCG_DELAY_SCALING_SHIFT 14
2502
2503 static u64 calculate_overage(unsigned long usage, unsigned long high)
2504 {
2505         u64 overage;
2506
2507         if (usage <= high)
2508                 return 0;
2509
2510         /*
2511          * Prevent division by 0 in overage calculation by acting as if
2512          * it was a threshold of 1 page
2513          */
2514         high = max(high, 1UL);
2515
2516         overage = usage - high;
2517         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2518         return div64_u64(overage, high);
2519 }
2520
2521 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2522 {
2523         u64 overage, max_overage = 0;
2524
2525         do {
2526                 overage = calculate_overage(page_counter_read(&memcg->memory),
2527                                             READ_ONCE(memcg->memory.high));
2528                 max_overage = max(overage, max_overage);
2529         } while ((memcg = parent_mem_cgroup(memcg)) &&
2530                  !mem_cgroup_is_root(memcg));
2531
2532         return max_overage;
2533 }
2534
2535 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2536 {
2537         u64 overage, max_overage = 0;
2538
2539         do {
2540                 overage = calculate_overage(page_counter_read(&memcg->swap),
2541                                             READ_ONCE(memcg->swap.high));
2542                 if (overage)
2543                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2544                 max_overage = max(overage, max_overage);
2545         } while ((memcg = parent_mem_cgroup(memcg)) &&
2546                  !mem_cgroup_is_root(memcg));
2547
2548         return max_overage;
2549 }
2550
2551 /*
2552  * Get the number of jiffies that we should penalise a mischievous cgroup which
2553  * is exceeding its memory.high by checking both it and its ancestors.
2554  */
2555 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2556                                           unsigned int nr_pages,
2557                                           u64 max_overage)
2558 {
2559         unsigned long penalty_jiffies;
2560
2561         if (!max_overage)
2562                 return 0;
2563
2564         /*
2565          * We use overage compared to memory.high to calculate the number of
2566          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2567          * fairly lenient on small overages, and increasingly harsh when the
2568          * memcg in question makes it clear that it has no intention of stopping
2569          * its crazy behaviour, so we exponentially increase the delay based on
2570          * overage amount.
2571          */
2572         penalty_jiffies = max_overage * max_overage * HZ;
2573         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2574         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2575
2576         /*
2577          * Factor in the task's own contribution to the overage, such that four
2578          * N-sized allocations are throttled approximately the same as one
2579          * 4N-sized allocation.
2580          *
2581          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2582          * larger the current charge patch is than that.
2583          */
2584         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2585 }
2586
2587 /*
2588  * Scheduled by try_charge() to be executed from the userland return path
2589  * and reclaims memory over the high limit.
2590  */
2591 void mem_cgroup_handle_over_high(void)
2592 {
2593         unsigned long penalty_jiffies;
2594         unsigned long pflags;
2595         unsigned long nr_reclaimed;
2596         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2597         int nr_retries = MAX_RECLAIM_RETRIES;
2598         struct mem_cgroup *memcg;
2599         bool in_retry = false;
2600
2601         if (likely(!nr_pages))
2602                 return;
2603
2604         memcg = get_mem_cgroup_from_mm(current->mm);
2605         current->memcg_nr_pages_over_high = 0;
2606
2607 retry_reclaim:
2608         /*
2609          * The allocating task should reclaim at least the batch size, but for
2610          * subsequent retries we only want to do what's necessary to prevent oom
2611          * or breaching resource isolation.
2612          *
2613          * This is distinct from memory.max or page allocator behaviour because
2614          * memory.high is currently batched, whereas memory.max and the page
2615          * allocator run every time an allocation is made.
2616          */
2617         nr_reclaimed = reclaim_high(memcg,
2618                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2619                                     GFP_KERNEL);
2620
2621         /*
2622          * memory.high is breached and reclaim is unable to keep up. Throttle
2623          * allocators proactively to slow down excessive growth.
2624          */
2625         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2626                                                mem_find_max_overage(memcg));
2627
2628         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2629                                                 swap_find_max_overage(memcg));
2630
2631         /*
2632          * Clamp the max delay per usermode return so as to still keep the
2633          * application moving forwards and also permit diagnostics, albeit
2634          * extremely slowly.
2635          */
2636         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2637
2638         /*
2639          * Don't sleep if the amount of jiffies this memcg owes us is so low
2640          * that it's not even worth doing, in an attempt to be nice to those who
2641          * go only a small amount over their memory.high value and maybe haven't
2642          * been aggressively reclaimed enough yet.
2643          */
2644         if (penalty_jiffies <= HZ / 100)
2645                 goto out;
2646
2647         /*
2648          * If reclaim is making forward progress but we're still over
2649          * memory.high, we want to encourage that rather than doing allocator
2650          * throttling.
2651          */
2652         if (nr_reclaimed || nr_retries--) {
2653                 in_retry = true;
2654                 goto retry_reclaim;
2655         }
2656
2657         /*
2658          * If we exit early, we're guaranteed to die (since
2659          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2660          * need to account for any ill-begotten jiffies to pay them off later.
2661          */
2662         psi_memstall_enter(&pflags);
2663         schedule_timeout_killable(penalty_jiffies);
2664         psi_memstall_leave(&pflags);
2665
2666 out:
2667         css_put(&memcg->css);
2668 }
2669
2670 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2671                         unsigned int nr_pages)
2672 {
2673         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2674         int nr_retries = MAX_RECLAIM_RETRIES;
2675         struct mem_cgroup *mem_over_limit;
2676         struct page_counter *counter;
2677         unsigned long nr_reclaimed;
2678         bool passed_oom = false;
2679         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2680         bool drained = false;
2681         bool raised_max_event = false;
2682         unsigned long pflags;
2683
2684 retry:
2685         if (consume_stock(memcg, nr_pages))
2686                 return 0;
2687
2688         if (!do_memsw_account() ||
2689             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2690                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2691                         goto done_restock;
2692                 if (do_memsw_account())
2693                         page_counter_uncharge(&memcg->memsw, batch);
2694                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2695         } else {
2696                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2697                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2698         }
2699
2700         if (batch > nr_pages) {
2701                 batch = nr_pages;
2702                 goto retry;
2703         }
2704
2705         /*
2706          * Prevent unbounded recursion when reclaim operations need to
2707          * allocate memory. This might exceed the limits temporarily,
2708          * but we prefer facilitating memory reclaim and getting back
2709          * under the limit over triggering OOM kills in these cases.
2710          */
2711         if (unlikely(current->flags & PF_MEMALLOC))
2712                 goto force;
2713
2714         if (unlikely(task_in_memcg_oom(current)))
2715                 goto nomem;
2716
2717         if (!gfpflags_allow_blocking(gfp_mask))
2718                 goto nomem;
2719
2720         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2721         raised_max_event = true;
2722
2723         psi_memstall_enter(&pflags);
2724         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2725                                                     gfp_mask, reclaim_options);
2726         psi_memstall_leave(&pflags);
2727
2728         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2729                 goto retry;
2730
2731         if (!drained) {
2732                 drain_all_stock(mem_over_limit);
2733                 drained = true;
2734                 goto retry;
2735         }
2736
2737         if (gfp_mask & __GFP_NORETRY)
2738                 goto nomem;
2739         /*
2740          * Even though the limit is exceeded at this point, reclaim
2741          * may have been able to free some pages.  Retry the charge
2742          * before killing the task.
2743          *
2744          * Only for regular pages, though: huge pages are rather
2745          * unlikely to succeed so close to the limit, and we fall back
2746          * to regular pages anyway in case of failure.
2747          */
2748         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2749                 goto retry;
2750         /*
2751          * At task move, charge accounts can be doubly counted. So, it's
2752          * better to wait until the end of task_move if something is going on.
2753          */
2754         if (mem_cgroup_wait_acct_move(mem_over_limit))
2755                 goto retry;
2756
2757         if (nr_retries--)
2758                 goto retry;
2759
2760         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2761                 goto nomem;
2762
2763         /* Avoid endless loop for tasks bypassed by the oom killer */
2764         if (passed_oom && task_is_dying())
2765                 goto nomem;
2766
2767         /*
2768          * keep retrying as long as the memcg oom killer is able to make
2769          * a forward progress or bypass the charge if the oom killer
2770          * couldn't make any progress.
2771          */
2772         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2773                            get_order(nr_pages * PAGE_SIZE))) {
2774                 passed_oom = true;
2775                 nr_retries = MAX_RECLAIM_RETRIES;
2776                 goto retry;
2777         }
2778 nomem:
2779         /*
2780          * Memcg doesn't have a dedicated reserve for atomic
2781          * allocations. But like the global atomic pool, we need to
2782          * put the burden of reclaim on regular allocation requests
2783          * and let these go through as privileged allocations.
2784          */
2785         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2786                 return -ENOMEM;
2787 force:
2788         /*
2789          * If the allocation has to be enforced, don't forget to raise
2790          * a MEMCG_MAX event.
2791          */
2792         if (!raised_max_event)
2793                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2794
2795         /*
2796          * The allocation either can't fail or will lead to more memory
2797          * being freed very soon.  Allow memory usage go over the limit
2798          * temporarily by force charging it.
2799          */
2800         page_counter_charge(&memcg->memory, nr_pages);
2801         if (do_memsw_account())
2802                 page_counter_charge(&memcg->memsw, nr_pages);
2803
2804         return 0;
2805
2806 done_restock:
2807         if (batch > nr_pages)
2808                 refill_stock(memcg, batch - nr_pages);
2809
2810         /*
2811          * If the hierarchy is above the normal consumption range, schedule
2812          * reclaim on returning to userland.  We can perform reclaim here
2813          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2814          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2815          * not recorded as it most likely matches current's and won't
2816          * change in the meantime.  As high limit is checked again before
2817          * reclaim, the cost of mismatch is negligible.
2818          */
2819         do {
2820                 bool mem_high, swap_high;
2821
2822                 mem_high = page_counter_read(&memcg->memory) >
2823                         READ_ONCE(memcg->memory.high);
2824                 swap_high = page_counter_read(&memcg->swap) >
2825                         READ_ONCE(memcg->swap.high);
2826
2827                 /* Don't bother a random interrupted task */
2828                 if (!in_task()) {
2829                         if (mem_high) {
2830                                 schedule_work(&memcg->high_work);
2831                                 break;
2832                         }
2833                         continue;
2834                 }
2835
2836                 if (mem_high || swap_high) {
2837                         /*
2838                          * The allocating tasks in this cgroup will need to do
2839                          * reclaim or be throttled to prevent further growth
2840                          * of the memory or swap footprints.
2841                          *
2842                          * Target some best-effort fairness between the tasks,
2843                          * and distribute reclaim work and delay penalties
2844                          * based on how much each task is actually allocating.
2845                          */
2846                         current->memcg_nr_pages_over_high += batch;
2847                         set_notify_resume(current);
2848                         break;
2849                 }
2850         } while ((memcg = parent_mem_cgroup(memcg)));
2851
2852         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2853             !(current->flags & PF_MEMALLOC) &&
2854             gfpflags_allow_blocking(gfp_mask)) {
2855                 mem_cgroup_handle_over_high();
2856         }
2857         return 0;
2858 }
2859
2860 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2861                              unsigned int nr_pages)
2862 {
2863         if (mem_cgroup_is_root(memcg))
2864                 return 0;
2865
2866         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2867 }
2868
2869 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2870 {
2871         if (mem_cgroup_is_root(memcg))
2872                 return;
2873
2874         page_counter_uncharge(&memcg->memory, nr_pages);
2875         if (do_memsw_account())
2876                 page_counter_uncharge(&memcg->memsw, nr_pages);
2877 }
2878
2879 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2880 {
2881         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2882         /*
2883          * Any of the following ensures page's memcg stability:
2884          *
2885          * - the page lock
2886          * - LRU isolation
2887          * - lock_page_memcg()
2888          * - exclusive reference
2889          * - mem_cgroup_trylock_pages()
2890          */
2891         folio->memcg_data = (unsigned long)memcg;
2892 }
2893
2894 #ifdef CONFIG_MEMCG_KMEM
2895 /*
2896  * The allocated objcg pointers array is not accounted directly.
2897  * Moreover, it should not come from DMA buffer and is not readily
2898  * reclaimable. So those GFP bits should be masked off.
2899  */
2900 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2901
2902 /*
2903  * mod_objcg_mlstate() may be called with irq enabled, so
2904  * mod_memcg_lruvec_state() should be used.
2905  */
2906 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2907                                      struct pglist_data *pgdat,
2908                                      enum node_stat_item idx, int nr)
2909 {
2910         struct mem_cgroup *memcg;
2911         struct lruvec *lruvec;
2912
2913         rcu_read_lock();
2914         memcg = obj_cgroup_memcg(objcg);
2915         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2916         mod_memcg_lruvec_state(lruvec, idx, nr);
2917         rcu_read_unlock();
2918 }
2919
2920 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2921                                  gfp_t gfp, bool new_slab)
2922 {
2923         unsigned int objects = objs_per_slab(s, slab);
2924         unsigned long memcg_data;
2925         void *vec;
2926
2927         gfp &= ~OBJCGS_CLEAR_MASK;
2928         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2929                            slab_nid(slab));
2930         if (!vec)
2931                 return -ENOMEM;
2932
2933         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2934         if (new_slab) {
2935                 /*
2936                  * If the slab is brand new and nobody can yet access its
2937                  * memcg_data, no synchronization is required and memcg_data can
2938                  * be simply assigned.
2939                  */
2940                 slab->memcg_data = memcg_data;
2941         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2942                 /*
2943                  * If the slab is already in use, somebody can allocate and
2944                  * assign obj_cgroups in parallel. In this case the existing
2945                  * objcg vector should be reused.
2946                  */
2947                 kfree(vec);
2948                 return 0;
2949         }
2950
2951         kmemleak_not_leak(vec);
2952         return 0;
2953 }
2954
2955 static __always_inline
2956 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2957 {
2958         /*
2959          * Slab objects are accounted individually, not per-page.
2960          * Memcg membership data for each individual object is saved in
2961          * slab->memcg_data.
2962          */
2963         if (folio_test_slab(folio)) {
2964                 struct obj_cgroup **objcgs;
2965                 struct slab *slab;
2966                 unsigned int off;
2967
2968                 slab = folio_slab(folio);
2969                 objcgs = slab_objcgs(slab);
2970                 if (!objcgs)
2971                         return NULL;
2972
2973                 off = obj_to_index(slab->slab_cache, slab, p);
2974                 if (objcgs[off])
2975                         return obj_cgroup_memcg(objcgs[off]);
2976
2977                 return NULL;
2978         }
2979
2980         /*
2981          * folio_memcg_check() is used here, because in theory we can encounter
2982          * a folio where the slab flag has been cleared already, but
2983          * slab->memcg_data has not been freed yet
2984          * folio_memcg_check() will guarantee that a proper memory
2985          * cgroup pointer or NULL will be returned.
2986          */
2987         return folio_memcg_check(folio);
2988 }
2989
2990 /*
2991  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992  *
2993  * A passed kernel object can be a slab object, vmalloc object or a generic
2994  * kernel page, so different mechanisms for getting the memory cgroup pointer
2995  * should be used.
2996  *
2997  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2998  * can not know for sure how the kernel object is implemented.
2999  * mem_cgroup_from_obj() can be safely used in such cases.
3000  *
3001  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3002  * cgroup_mutex, etc.
3003  */
3004 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3005 {
3006         struct folio *folio;
3007
3008         if (mem_cgroup_disabled())
3009                 return NULL;
3010
3011         if (unlikely(is_vmalloc_addr(p)))
3012                 folio = page_folio(vmalloc_to_page(p));
3013         else
3014                 folio = virt_to_folio(p);
3015
3016         return mem_cgroup_from_obj_folio(folio, p);
3017 }
3018
3019 /*
3020  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3021  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3022  * allocated using vmalloc().
3023  *
3024  * A passed kernel object must be a slab object or a generic kernel page.
3025  *
3026  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3027  * cgroup_mutex, etc.
3028  */
3029 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3030 {
3031         if (mem_cgroup_disabled())
3032                 return NULL;
3033
3034         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3035 }
3036
3037 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3038 {
3039         struct obj_cgroup *objcg = NULL;
3040
3041         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3042                 objcg = rcu_dereference(memcg->objcg);
3043                 if (objcg && obj_cgroup_tryget(objcg))
3044                         break;
3045                 objcg = NULL;
3046         }
3047         return objcg;
3048 }
3049
3050 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3051 {
3052         struct obj_cgroup *objcg = NULL;
3053         struct mem_cgroup *memcg;
3054
3055         if (memcg_kmem_bypass())
3056                 return NULL;
3057
3058         rcu_read_lock();
3059         if (unlikely(active_memcg()))
3060                 memcg = active_memcg();
3061         else
3062                 memcg = mem_cgroup_from_task(current);
3063         objcg = __get_obj_cgroup_from_memcg(memcg);
3064         rcu_read_unlock();
3065         return objcg;
3066 }
3067
3068 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3069 {
3070         struct obj_cgroup *objcg;
3071
3072         if (!memcg_kmem_online())
3073                 return NULL;
3074
3075         if (PageMemcgKmem(page)) {
3076                 objcg = __folio_objcg(page_folio(page));
3077                 obj_cgroup_get(objcg);
3078         } else {
3079                 struct mem_cgroup *memcg;
3080
3081                 rcu_read_lock();
3082                 memcg = __folio_memcg(page_folio(page));
3083                 if (memcg)
3084                         objcg = __get_obj_cgroup_from_memcg(memcg);
3085                 else
3086                         objcg = NULL;
3087                 rcu_read_unlock();
3088         }
3089         return objcg;
3090 }
3091
3092 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3093 {
3094         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3095         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3096                 if (nr_pages > 0)
3097                         page_counter_charge(&memcg->kmem, nr_pages);
3098                 else
3099                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3100         }
3101 }
3102
3103
3104 /*
3105  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3106  * @objcg: object cgroup to uncharge
3107  * @nr_pages: number of pages to uncharge
3108  */
3109 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3110                                       unsigned int nr_pages)
3111 {
3112         struct mem_cgroup *memcg;
3113
3114         memcg = get_mem_cgroup_from_objcg(objcg);
3115
3116         memcg_account_kmem(memcg, -nr_pages);
3117         refill_stock(memcg, nr_pages);
3118
3119         css_put(&memcg->css);
3120 }
3121
3122 /*
3123  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3124  * @objcg: object cgroup to charge
3125  * @gfp: reclaim mode
3126  * @nr_pages: number of pages to charge
3127  *
3128  * Returns 0 on success, an error code on failure.
3129  */
3130 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3131                                    unsigned int nr_pages)
3132 {
3133         struct mem_cgroup *memcg;
3134         int ret;
3135
3136         memcg = get_mem_cgroup_from_objcg(objcg);
3137
3138         ret = try_charge_memcg(memcg, gfp, nr_pages);
3139         if (ret)
3140                 goto out;
3141
3142         memcg_account_kmem(memcg, nr_pages);
3143 out:
3144         css_put(&memcg->css);
3145
3146         return ret;
3147 }
3148
3149 /**
3150  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3151  * @page: page to charge
3152  * @gfp: reclaim mode
3153  * @order: allocation order
3154  *
3155  * Returns 0 on success, an error code on failure.
3156  */
3157 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3158 {
3159         struct obj_cgroup *objcg;
3160         int ret = 0;
3161
3162         objcg = get_obj_cgroup_from_current();
3163         if (objcg) {
3164                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3165                 if (!ret) {
3166                         page->memcg_data = (unsigned long)objcg |
3167                                 MEMCG_DATA_KMEM;
3168                         return 0;
3169                 }
3170                 obj_cgroup_put(objcg);
3171         }
3172         return ret;
3173 }
3174
3175 /**
3176  * __memcg_kmem_uncharge_page: uncharge a kmem page
3177  * @page: page to uncharge
3178  * @order: allocation order
3179  */
3180 void __memcg_kmem_uncharge_page(struct page *page, int order)
3181 {
3182         struct folio *folio = page_folio(page);
3183         struct obj_cgroup *objcg;
3184         unsigned int nr_pages = 1 << order;
3185
3186         if (!folio_memcg_kmem(folio))
3187                 return;
3188
3189         objcg = __folio_objcg(folio);
3190         obj_cgroup_uncharge_pages(objcg, nr_pages);
3191         folio->memcg_data = 0;
3192         obj_cgroup_put(objcg);
3193 }
3194
3195 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3196                      enum node_stat_item idx, int nr)
3197 {
3198         struct memcg_stock_pcp *stock;
3199         struct obj_cgroup *old = NULL;
3200         unsigned long flags;
3201         int *bytes;
3202
3203         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3204         stock = this_cpu_ptr(&memcg_stock);
3205
3206         /*
3207          * Save vmstat data in stock and skip vmstat array update unless
3208          * accumulating over a page of vmstat data or when pgdat or idx
3209          * changes.
3210          */
3211         if (stock->cached_objcg != objcg) {
3212                 old = drain_obj_stock(stock);
3213                 obj_cgroup_get(objcg);
3214                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3215                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3216                 stock->cached_objcg = objcg;
3217                 stock->cached_pgdat = pgdat;
3218         } else if (stock->cached_pgdat != pgdat) {
3219                 /* Flush the existing cached vmstat data */
3220                 struct pglist_data *oldpg = stock->cached_pgdat;
3221
3222                 if (stock->nr_slab_reclaimable_b) {
3223                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3224                                           stock->nr_slab_reclaimable_b);
3225                         stock->nr_slab_reclaimable_b = 0;
3226                 }
3227                 if (stock->nr_slab_unreclaimable_b) {
3228                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3229                                           stock->nr_slab_unreclaimable_b);
3230                         stock->nr_slab_unreclaimable_b = 0;
3231                 }
3232                 stock->cached_pgdat = pgdat;
3233         }
3234
3235         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3236                                                : &stock->nr_slab_unreclaimable_b;
3237         /*
3238          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3239          * cached locally at least once before pushing it out.
3240          */
3241         if (!*bytes) {
3242                 *bytes = nr;
3243                 nr = 0;
3244         } else {
3245                 *bytes += nr;
3246                 if (abs(*bytes) > PAGE_SIZE) {
3247                         nr = *bytes;
3248                         *bytes = 0;
3249                 } else {
3250                         nr = 0;
3251                 }
3252         }
3253         if (nr)
3254                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3255
3256         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3257         if (old)
3258                 obj_cgroup_put(old);
3259 }
3260
3261 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3262 {
3263         struct memcg_stock_pcp *stock;
3264         unsigned long flags;
3265         bool ret = false;
3266
3267         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3268
3269         stock = this_cpu_ptr(&memcg_stock);
3270         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3271                 stock->nr_bytes -= nr_bytes;
3272                 ret = true;
3273         }
3274
3275         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3276
3277         return ret;
3278 }
3279
3280 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3281 {
3282         struct obj_cgroup *old = stock->cached_objcg;
3283
3284         if (!old)
3285                 return NULL;
3286
3287         if (stock->nr_bytes) {
3288                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3289                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3290
3291                 if (nr_pages) {
3292                         struct mem_cgroup *memcg;
3293
3294                         memcg = get_mem_cgroup_from_objcg(old);
3295
3296                         memcg_account_kmem(memcg, -nr_pages);
3297                         __refill_stock(memcg, nr_pages);
3298
3299                         css_put(&memcg->css);
3300                 }
3301
3302                 /*
3303                  * The leftover is flushed to the centralized per-memcg value.
3304                  * On the next attempt to refill obj stock it will be moved
3305                  * to a per-cpu stock (probably, on an other CPU), see
3306                  * refill_obj_stock().
3307                  *
3308                  * How often it's flushed is a trade-off between the memory
3309                  * limit enforcement accuracy and potential CPU contention,
3310                  * so it might be changed in the future.
3311                  */
3312                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3313                 stock->nr_bytes = 0;
3314         }
3315
3316         /*
3317          * Flush the vmstat data in current stock
3318          */
3319         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3320                 if (stock->nr_slab_reclaimable_b) {
3321                         mod_objcg_mlstate(old, stock->cached_pgdat,
3322                                           NR_SLAB_RECLAIMABLE_B,
3323                                           stock->nr_slab_reclaimable_b);
3324                         stock->nr_slab_reclaimable_b = 0;
3325                 }
3326                 if (stock->nr_slab_unreclaimable_b) {
3327                         mod_objcg_mlstate(old, stock->cached_pgdat,
3328                                           NR_SLAB_UNRECLAIMABLE_B,
3329                                           stock->nr_slab_unreclaimable_b);
3330                         stock->nr_slab_unreclaimable_b = 0;
3331                 }
3332                 stock->cached_pgdat = NULL;
3333         }
3334
3335         stock->cached_objcg = NULL;
3336         /*
3337          * The `old' objects needs to be released by the caller via
3338          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3339          */
3340         return old;
3341 }
3342
3343 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3344                                      struct mem_cgroup *root_memcg)
3345 {
3346         struct mem_cgroup *memcg;
3347
3348         if (stock->cached_objcg) {
3349                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3350                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3351                         return true;
3352         }
3353
3354         return false;
3355 }
3356
3357 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3358                              bool allow_uncharge)
3359 {
3360         struct memcg_stock_pcp *stock;
3361         struct obj_cgroup *old = NULL;
3362         unsigned long flags;
3363         unsigned int nr_pages = 0;
3364
3365         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3366
3367         stock = this_cpu_ptr(&memcg_stock);
3368         if (stock->cached_objcg != objcg) { /* reset if necessary */
3369                 old = drain_obj_stock(stock);
3370                 obj_cgroup_get(objcg);
3371                 stock->cached_objcg = objcg;
3372                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3373                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3374                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3375         }
3376         stock->nr_bytes += nr_bytes;
3377
3378         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3379                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3380                 stock->nr_bytes &= (PAGE_SIZE - 1);
3381         }
3382
3383         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3384         if (old)
3385                 obj_cgroup_put(old);
3386
3387         if (nr_pages)
3388                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3389 }
3390
3391 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3392 {
3393         unsigned int nr_pages, nr_bytes;
3394         int ret;
3395
3396         if (consume_obj_stock(objcg, size))
3397                 return 0;
3398
3399         /*
3400          * In theory, objcg->nr_charged_bytes can have enough
3401          * pre-charged bytes to satisfy the allocation. However,
3402          * flushing objcg->nr_charged_bytes requires two atomic
3403          * operations, and objcg->nr_charged_bytes can't be big.
3404          * The shared objcg->nr_charged_bytes can also become a
3405          * performance bottleneck if all tasks of the same memcg are
3406          * trying to update it. So it's better to ignore it and try
3407          * grab some new pages. The stock's nr_bytes will be flushed to
3408          * objcg->nr_charged_bytes later on when objcg changes.
3409          *
3410          * The stock's nr_bytes may contain enough pre-charged bytes
3411          * to allow one less page from being charged, but we can't rely
3412          * on the pre-charged bytes not being changed outside of
3413          * consume_obj_stock() or refill_obj_stock(). So ignore those
3414          * pre-charged bytes as well when charging pages. To avoid a
3415          * page uncharge right after a page charge, we set the
3416          * allow_uncharge flag to false when calling refill_obj_stock()
3417          * to temporarily allow the pre-charged bytes to exceed the page
3418          * size limit. The maximum reachable value of the pre-charged
3419          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3420          * race.
3421          */
3422         nr_pages = size >> PAGE_SHIFT;
3423         nr_bytes = size & (PAGE_SIZE - 1);
3424
3425         if (nr_bytes)
3426                 nr_pages += 1;
3427
3428         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3429         if (!ret && nr_bytes)
3430                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3431
3432         return ret;
3433 }
3434
3435 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3436 {
3437         refill_obj_stock(objcg, size, true);
3438 }
3439
3440 #endif /* CONFIG_MEMCG_KMEM */
3441
3442 /*
3443  * Because page_memcg(head) is not set on tails, set it now.
3444  */
3445 void split_page_memcg(struct page *head, unsigned int nr)
3446 {
3447         struct folio *folio = page_folio(head);
3448         struct mem_cgroup *memcg = folio_memcg(folio);
3449         int i;
3450
3451         if (mem_cgroup_disabled() || !memcg)
3452                 return;
3453
3454         for (i = 1; i < nr; i++)
3455                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3456
3457         if (folio_memcg_kmem(folio))
3458                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3459         else
3460                 css_get_many(&memcg->css, nr - 1);
3461 }
3462
3463 #ifdef CONFIG_SWAP
3464 /**
3465  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3466  * @entry: swap entry to be moved
3467  * @from:  mem_cgroup which the entry is moved from
3468  * @to:  mem_cgroup which the entry is moved to
3469  *
3470  * It succeeds only when the swap_cgroup's record for this entry is the same
3471  * as the mem_cgroup's id of @from.
3472  *
3473  * Returns 0 on success, -EINVAL on failure.
3474  *
3475  * The caller must have charged to @to, IOW, called page_counter_charge() about
3476  * both res and memsw, and called css_get().
3477  */
3478 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3479                                 struct mem_cgroup *from, struct mem_cgroup *to)
3480 {
3481         unsigned short old_id, new_id;
3482
3483         old_id = mem_cgroup_id(from);
3484         new_id = mem_cgroup_id(to);
3485
3486         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3487                 mod_memcg_state(from, MEMCG_SWAP, -1);
3488                 mod_memcg_state(to, MEMCG_SWAP, 1);
3489                 return 0;
3490         }
3491         return -EINVAL;
3492 }
3493 #else
3494 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3495                                 struct mem_cgroup *from, struct mem_cgroup *to)
3496 {
3497         return -EINVAL;
3498 }
3499 #endif
3500
3501 static DEFINE_MUTEX(memcg_max_mutex);
3502
3503 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3504                                  unsigned long max, bool memsw)
3505 {
3506         bool enlarge = false;
3507         bool drained = false;
3508         int ret;
3509         bool limits_invariant;
3510         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3511
3512         do {
3513                 if (signal_pending(current)) {
3514                         ret = -EINTR;
3515                         break;
3516                 }
3517
3518                 mutex_lock(&memcg_max_mutex);
3519                 /*
3520                  * Make sure that the new limit (memsw or memory limit) doesn't
3521                  * break our basic invariant rule memory.max <= memsw.max.
3522                  */
3523                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3524                                            max <= memcg->memsw.max;
3525                 if (!limits_invariant) {
3526                         mutex_unlock(&memcg_max_mutex);
3527                         ret = -EINVAL;
3528                         break;
3529                 }
3530                 if (max > counter->max)
3531                         enlarge = true;
3532                 ret = page_counter_set_max(counter, max);
3533                 mutex_unlock(&memcg_max_mutex);
3534
3535                 if (!ret)
3536                         break;
3537
3538                 if (!drained) {
3539                         drain_all_stock(memcg);
3540                         drained = true;
3541                         continue;
3542                 }
3543
3544                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3545                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3546                         ret = -EBUSY;
3547                         break;
3548                 }
3549         } while (true);
3550
3551         if (!ret && enlarge)
3552                 memcg_oom_recover(memcg);
3553
3554         return ret;
3555 }
3556
3557 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3558                                             gfp_t gfp_mask,
3559                                             unsigned long *total_scanned)
3560 {
3561         unsigned long nr_reclaimed = 0;
3562         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3563         unsigned long reclaimed;
3564         int loop = 0;
3565         struct mem_cgroup_tree_per_node *mctz;
3566         unsigned long excess;
3567
3568         if (lru_gen_enabled())
3569                 return 0;
3570
3571         if (order > 0)
3572                 return 0;
3573
3574         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3575
3576         /*
3577          * Do not even bother to check the largest node if the root
3578          * is empty. Do it lockless to prevent lock bouncing. Races
3579          * are acceptable as soft limit is best effort anyway.
3580          */
3581         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3582                 return 0;
3583
3584         /*
3585          * This loop can run a while, specially if mem_cgroup's continuously
3586          * keep exceeding their soft limit and putting the system under
3587          * pressure
3588          */
3589         do {
3590                 if (next_mz)
3591                         mz = next_mz;
3592                 else
3593                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3594                 if (!mz)
3595                         break;
3596
3597                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3598                                                     gfp_mask, total_scanned);
3599                 nr_reclaimed += reclaimed;
3600                 spin_lock_irq(&mctz->lock);
3601
3602                 /*
3603                  * If we failed to reclaim anything from this memory cgroup
3604                  * it is time to move on to the next cgroup
3605                  */
3606                 next_mz = NULL;
3607                 if (!reclaimed)
3608                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3609
3610                 excess = soft_limit_excess(mz->memcg);
3611                 /*
3612                  * One school of thought says that we should not add
3613                  * back the node to the tree if reclaim returns 0.
3614                  * But our reclaim could return 0, simply because due
3615                  * to priority we are exposing a smaller subset of
3616                  * memory to reclaim from. Consider this as a longer
3617                  * term TODO.
3618                  */
3619                 /* If excess == 0, no tree ops */
3620                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3621                 spin_unlock_irq(&mctz->lock);
3622                 css_put(&mz->memcg->css);
3623                 loop++;
3624                 /*
3625                  * Could not reclaim anything and there are no more
3626                  * mem cgroups to try or we seem to be looping without
3627                  * reclaiming anything.
3628                  */
3629                 if (!nr_reclaimed &&
3630                         (next_mz == NULL ||
3631                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3632                         break;
3633         } while (!nr_reclaimed);
3634         if (next_mz)
3635                 css_put(&next_mz->memcg->css);
3636         return nr_reclaimed;
3637 }
3638
3639 /*
3640  * Reclaims as many pages from the given memcg as possible.
3641  *
3642  * Caller is responsible for holding css reference for memcg.
3643  */
3644 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3645 {
3646         int nr_retries = MAX_RECLAIM_RETRIES;
3647
3648         /* we call try-to-free pages for make this cgroup empty */
3649         lru_add_drain_all();
3650
3651         drain_all_stock(memcg);
3652
3653         /* try to free all pages in this cgroup */
3654         while (nr_retries && page_counter_read(&memcg->memory)) {
3655                 if (signal_pending(current))
3656                         return -EINTR;
3657
3658                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3659                                                   MEMCG_RECLAIM_MAY_SWAP))
3660                         nr_retries--;
3661         }
3662
3663         return 0;
3664 }
3665
3666 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3667                                             char *buf, size_t nbytes,
3668                                             loff_t off)
3669 {
3670         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3671
3672         if (mem_cgroup_is_root(memcg))
3673                 return -EINVAL;
3674         return mem_cgroup_force_empty(memcg) ?: nbytes;
3675 }
3676
3677 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3678                                      struct cftype *cft)
3679 {
3680         return 1;
3681 }
3682
3683 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3684                                       struct cftype *cft, u64 val)
3685 {
3686         if (val == 1)
3687                 return 0;
3688
3689         pr_warn_once("Non-hierarchical mode is deprecated. "
3690                      "Please report your usecase to linux-mm@kvack.org if you "
3691                      "depend on this functionality.\n");
3692
3693         return -EINVAL;
3694 }
3695
3696 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3697 {
3698         unsigned long val;
3699
3700         if (mem_cgroup_is_root(memcg)) {
3701                 /*
3702                  * We can reach here from irq context through:
3703                  * uncharge_batch()
3704                  * |--memcg_check_events()
3705                  *    |--mem_cgroup_threshold()
3706                  *       |--__mem_cgroup_threshold()
3707                  *          |--mem_cgroup_usage
3708                  *
3709                  * rstat flushing is an expensive operation that should not be
3710                  * done from irq context; use stale stats in this case.
3711                  * Arguably, usage threshold events are not reliable on the root
3712                  * memcg anyway since its usage is ill-defined.
3713                  *
3714                  * Additionally, other call paths through memcg_check_events()
3715                  * disable irqs, so make sure we are flushing stats atomically.
3716                  */
3717                 if (in_task())
3718                         mem_cgroup_flush_stats_atomic();
3719                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3720                         memcg_page_state(memcg, NR_ANON_MAPPED);
3721                 if (swap)
3722                         val += memcg_page_state(memcg, MEMCG_SWAP);
3723         } else {
3724                 if (!swap)
3725                         val = page_counter_read(&memcg->memory);
3726                 else
3727                         val = page_counter_read(&memcg->memsw);
3728         }
3729         return val;
3730 }
3731
3732 enum {
3733         RES_USAGE,
3734         RES_LIMIT,
3735         RES_MAX_USAGE,
3736         RES_FAILCNT,
3737         RES_SOFT_LIMIT,
3738 };
3739
3740 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3741                                struct cftype *cft)
3742 {
3743         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3744         struct page_counter *counter;
3745
3746         switch (MEMFILE_TYPE(cft->private)) {
3747         case _MEM:
3748                 counter = &memcg->memory;
3749                 break;
3750         case _MEMSWAP:
3751                 counter = &memcg->memsw;
3752                 break;
3753         case _KMEM:
3754                 counter = &memcg->kmem;
3755                 break;
3756         case _TCP:
3757                 counter = &memcg->tcpmem;
3758                 break;
3759         default:
3760                 BUG();
3761         }
3762
3763         switch (MEMFILE_ATTR(cft->private)) {
3764         case RES_USAGE:
3765                 if (counter == &memcg->memory)
3766                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3767                 if (counter == &memcg->memsw)
3768                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3769                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3770         case RES_LIMIT:
3771                 return (u64)counter->max * PAGE_SIZE;
3772         case RES_MAX_USAGE:
3773                 return (u64)counter->watermark * PAGE_SIZE;
3774         case RES_FAILCNT:
3775                 return counter->failcnt;
3776         case RES_SOFT_LIMIT:
3777                 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3778         default:
3779                 BUG();
3780         }
3781 }
3782
3783 /*
3784  * This function doesn't do anything useful. Its only job is to provide a read
3785  * handler for a file so that cgroup_file_mode() will add read permissions.
3786  */
3787 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3788                                      __always_unused void *v)
3789 {
3790         return -EINVAL;
3791 }
3792
3793 #ifdef CONFIG_MEMCG_KMEM
3794 static int memcg_online_kmem(struct mem_cgroup *memcg)
3795 {
3796         struct obj_cgroup *objcg;
3797
3798         if (mem_cgroup_kmem_disabled())
3799                 return 0;
3800
3801         if (unlikely(mem_cgroup_is_root(memcg)))
3802                 return 0;
3803
3804         objcg = obj_cgroup_alloc();
3805         if (!objcg)
3806                 return -ENOMEM;
3807
3808         objcg->memcg = memcg;
3809         rcu_assign_pointer(memcg->objcg, objcg);
3810
3811         static_branch_enable(&memcg_kmem_online_key);
3812
3813         memcg->kmemcg_id = memcg->id.id;
3814
3815         return 0;
3816 }
3817
3818 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3819 {
3820         struct mem_cgroup *parent;
3821
3822         if (mem_cgroup_kmem_disabled())
3823                 return;
3824
3825         if (unlikely(mem_cgroup_is_root(memcg)))
3826                 return;
3827
3828         parent = parent_mem_cgroup(memcg);
3829         if (!parent)
3830                 parent = root_mem_cgroup;
3831
3832         memcg_reparent_objcgs(memcg, parent);
3833
3834         /*
3835          * After we have finished memcg_reparent_objcgs(), all list_lrus
3836          * corresponding to this cgroup are guaranteed to remain empty.
3837          * The ordering is imposed by list_lru_node->lock taken by
3838          * memcg_reparent_list_lrus().
3839          */
3840         memcg_reparent_list_lrus(memcg, parent);
3841 }
3842 #else
3843 static int memcg_online_kmem(struct mem_cgroup *memcg)
3844 {
3845         return 0;
3846 }
3847 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3848 {
3849 }
3850 #endif /* CONFIG_MEMCG_KMEM */
3851
3852 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3853 {
3854         int ret;
3855
3856         mutex_lock(&memcg_max_mutex);
3857
3858         ret = page_counter_set_max(&memcg->tcpmem, max);
3859         if (ret)
3860                 goto out;
3861
3862         if (!memcg->tcpmem_active) {
3863                 /*
3864                  * The active flag needs to be written after the static_key
3865                  * update. This is what guarantees that the socket activation
3866                  * function is the last one to run. See mem_cgroup_sk_alloc()
3867                  * for details, and note that we don't mark any socket as
3868                  * belonging to this memcg until that flag is up.
3869                  *
3870                  * We need to do this, because static_keys will span multiple
3871                  * sites, but we can't control their order. If we mark a socket
3872                  * as accounted, but the accounting functions are not patched in
3873                  * yet, we'll lose accounting.
3874                  *
3875                  * We never race with the readers in mem_cgroup_sk_alloc(),
3876                  * because when this value change, the code to process it is not
3877                  * patched in yet.
3878                  */
3879                 static_branch_inc(&memcg_sockets_enabled_key);
3880                 memcg->tcpmem_active = true;
3881         }
3882 out:
3883         mutex_unlock(&memcg_max_mutex);
3884         return ret;
3885 }
3886
3887 /*
3888  * The user of this function is...
3889  * RES_LIMIT.
3890  */
3891 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3892                                 char *buf, size_t nbytes, loff_t off)
3893 {
3894         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3895         unsigned long nr_pages;
3896         int ret;
3897
3898         buf = strstrip(buf);
3899         ret = page_counter_memparse(buf, "-1", &nr_pages);
3900         if (ret)
3901                 return ret;
3902
3903         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3904         case RES_LIMIT:
3905                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3906                         ret = -EINVAL;
3907                         break;
3908                 }
3909                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3910                 case _MEM:
3911                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3912                         break;
3913                 case _MEMSWAP:
3914                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3915                         break;
3916                 case _KMEM:
3917                         /* kmem.limit_in_bytes is deprecated. */
3918                         ret = -EOPNOTSUPP;
3919                         break;
3920                 case _TCP:
3921                         ret = memcg_update_tcp_max(memcg, nr_pages);
3922                         break;
3923                 }
3924                 break;
3925         case RES_SOFT_LIMIT:
3926                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3927                         ret = -EOPNOTSUPP;
3928                 } else {
3929                         WRITE_ONCE(memcg->soft_limit, nr_pages);
3930                         ret = 0;
3931                 }
3932                 break;
3933         }
3934         return ret ?: nbytes;
3935 }
3936
3937 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3938                                 size_t nbytes, loff_t off)
3939 {
3940         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3941         struct page_counter *counter;
3942
3943         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3944         case _MEM:
3945                 counter = &memcg->memory;
3946                 break;
3947         case _MEMSWAP:
3948                 counter = &memcg->memsw;
3949                 break;
3950         case _KMEM:
3951                 counter = &memcg->kmem;
3952                 break;
3953         case _TCP:
3954                 counter = &memcg->tcpmem;
3955                 break;
3956         default:
3957                 BUG();
3958         }
3959
3960         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3961         case RES_MAX_USAGE:
3962                 page_counter_reset_watermark(counter);
3963                 break;
3964         case RES_FAILCNT:
3965                 counter->failcnt = 0;
3966                 break;
3967         default:
3968                 BUG();
3969         }
3970
3971         return nbytes;
3972 }
3973
3974 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3975                                         struct cftype *cft)
3976 {
3977         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3978 }
3979
3980 #ifdef CONFIG_MMU
3981 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3982                                         struct cftype *cft, u64 val)
3983 {
3984         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3985
3986         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3987                      "Please report your usecase to linux-mm@kvack.org if you "
3988                      "depend on this functionality.\n");
3989
3990         if (val & ~MOVE_MASK)
3991                 return -EINVAL;
3992
3993         /*
3994          * No kind of locking is needed in here, because ->can_attach() will
3995          * check this value once in the beginning of the process, and then carry
3996          * on with stale data. This means that changes to this value will only
3997          * affect task migrations starting after the change.
3998          */
3999         memcg->move_charge_at_immigrate = val;
4000         return 0;
4001 }
4002 #else
4003 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4004                                         struct cftype *cft, u64 val)
4005 {
4006         return -ENOSYS;
4007 }
4008 #endif
4009
4010 #ifdef CONFIG_NUMA
4011
4012 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4013 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4014 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
4015
4016 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4017                                 int nid, unsigned int lru_mask, bool tree)
4018 {
4019         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4020         unsigned long nr = 0;
4021         enum lru_list lru;
4022
4023         VM_BUG_ON((unsigned)nid >= nr_node_ids);
4024
4025         for_each_lru(lru) {
4026                 if (!(BIT(lru) & lru_mask))
4027                         continue;
4028                 if (tree)
4029                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4030                 else
4031                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4032         }
4033         return nr;
4034 }
4035
4036 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4037                                              unsigned int lru_mask,
4038                                              bool tree)
4039 {
4040         unsigned long nr = 0;
4041         enum lru_list lru;
4042
4043         for_each_lru(lru) {
4044                 if (!(BIT(lru) & lru_mask))
4045                         continue;
4046                 if (tree)
4047                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4048                 else
4049                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4050         }
4051         return nr;
4052 }
4053
4054 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4055 {
4056         struct numa_stat {
4057                 const char *name;
4058                 unsigned int lru_mask;
4059         };
4060
4061         static const struct numa_stat stats[] = {
4062                 { "total", LRU_ALL },
4063                 { "file", LRU_ALL_FILE },
4064                 { "anon", LRU_ALL_ANON },
4065                 { "unevictable", BIT(LRU_UNEVICTABLE) },
4066         };
4067         const struct numa_stat *stat;
4068         int nid;
4069         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4070
4071         mem_cgroup_flush_stats();
4072
4073         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4074                 seq_printf(m, "%s=%lu", stat->name,
4075                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4076                                                    false));
4077                 for_each_node_state(nid, N_MEMORY)
4078                         seq_printf(m, " N%d=%lu", nid,
4079                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4080                                                         stat->lru_mask, false));
4081                 seq_putc(m, '\n');
4082         }
4083
4084         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4085
4086                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4087                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4088                                                    true));
4089                 for_each_node_state(nid, N_MEMORY)
4090                         seq_printf(m, " N%d=%lu", nid,
4091                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4092                                                         stat->lru_mask, true));
4093                 seq_putc(m, '\n');
4094         }
4095
4096         return 0;
4097 }
4098 #endif /* CONFIG_NUMA */
4099
4100 static const unsigned int memcg1_stats[] = {
4101         NR_FILE_PAGES,
4102         NR_ANON_MAPPED,
4103 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4104         NR_ANON_THPS,
4105 #endif
4106         NR_SHMEM,
4107         NR_FILE_MAPPED,
4108         NR_FILE_DIRTY,
4109         NR_WRITEBACK,
4110         WORKINGSET_REFAULT_ANON,
4111         WORKINGSET_REFAULT_FILE,
4112         MEMCG_SWAP,
4113 };
4114
4115 static const char *const memcg1_stat_names[] = {
4116         "cache",
4117         "rss",
4118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4119         "rss_huge",
4120 #endif
4121         "shmem",
4122         "mapped_file",
4123         "dirty",
4124         "writeback",
4125         "workingset_refault_anon",
4126         "workingset_refault_file",
4127         "swap",
4128 };
4129
4130 /* Universal VM events cgroup1 shows, original sort order */
4131 static const unsigned int memcg1_events[] = {
4132         PGPGIN,
4133         PGPGOUT,
4134         PGFAULT,
4135         PGMAJFAULT,
4136 };
4137
4138 static int memcg_stat_show(struct seq_file *m, void *v)
4139 {
4140         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4141         unsigned long memory, memsw;
4142         struct mem_cgroup *mi;
4143         unsigned int i;
4144
4145         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4146
4147         mem_cgroup_flush_stats();
4148
4149         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4150                 unsigned long nr;
4151
4152                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4153                         continue;
4154                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4155                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4156                            nr * memcg_page_state_unit(memcg1_stats[i]));
4157         }
4158
4159         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4160                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4161                            memcg_events_local(memcg, memcg1_events[i]));
4162
4163         for (i = 0; i < NR_LRU_LISTS; i++)
4164                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4165                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4166                            PAGE_SIZE);
4167
4168         /* Hierarchical information */
4169         memory = memsw = PAGE_COUNTER_MAX;
4170         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4171                 memory = min(memory, READ_ONCE(mi->memory.max));
4172                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4173         }
4174         seq_printf(m, "hierarchical_memory_limit %llu\n",
4175                    (u64)memory * PAGE_SIZE);
4176         if (do_memsw_account())
4177                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4178                            (u64)memsw * PAGE_SIZE);
4179
4180         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4181                 unsigned long nr;
4182
4183                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4184                         continue;
4185                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4186                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4187                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4188         }
4189
4190         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4191                 seq_printf(m, "total_%s %llu\n",
4192                            vm_event_name(memcg1_events[i]),
4193                            (u64)memcg_events(memcg, memcg1_events[i]));
4194
4195         for (i = 0; i < NR_LRU_LISTS; i++)
4196                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4197                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4198                            PAGE_SIZE);
4199
4200 #ifdef CONFIG_DEBUG_VM
4201         {
4202                 pg_data_t *pgdat;
4203                 struct mem_cgroup_per_node *mz;
4204                 unsigned long anon_cost = 0;
4205                 unsigned long file_cost = 0;
4206
4207                 for_each_online_pgdat(pgdat) {
4208                         mz = memcg->nodeinfo[pgdat->node_id];
4209
4210                         anon_cost += mz->lruvec.anon_cost;
4211                         file_cost += mz->lruvec.file_cost;
4212                 }
4213                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4214                 seq_printf(m, "file_cost %lu\n", file_cost);
4215         }
4216 #endif
4217
4218         return 0;
4219 }
4220
4221 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4222                                       struct cftype *cft)
4223 {
4224         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4225
4226         return mem_cgroup_swappiness(memcg);
4227 }
4228
4229 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4230                                        struct cftype *cft, u64 val)
4231 {
4232         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4233
4234         if (val > 200)
4235                 return -EINVAL;
4236
4237         if (!mem_cgroup_is_root(memcg))
4238                 WRITE_ONCE(memcg->swappiness, val);
4239         else
4240                 WRITE_ONCE(vm_swappiness, val);
4241
4242         return 0;
4243 }
4244
4245 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4246 {
4247         struct mem_cgroup_threshold_ary *t;
4248         unsigned long usage;
4249         int i;
4250
4251         rcu_read_lock();
4252         if (!swap)
4253                 t = rcu_dereference(memcg->thresholds.primary);
4254         else
4255                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4256
4257         if (!t)
4258                 goto unlock;
4259
4260         usage = mem_cgroup_usage(memcg, swap);
4261
4262         /*
4263          * current_threshold points to threshold just below or equal to usage.
4264          * If it's not true, a threshold was crossed after last
4265          * call of __mem_cgroup_threshold().
4266          */
4267         i = t->current_threshold;
4268
4269         /*
4270          * Iterate backward over array of thresholds starting from
4271          * current_threshold and check if a threshold is crossed.
4272          * If none of thresholds below usage is crossed, we read
4273          * only one element of the array here.
4274          */
4275         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4276                 eventfd_signal(t->entries[i].eventfd, 1);
4277
4278         /* i = current_threshold + 1 */
4279         i++;
4280
4281         /*
4282          * Iterate forward over array of thresholds starting from
4283          * current_threshold+1 and check if a threshold is crossed.
4284          * If none of thresholds above usage is crossed, we read
4285          * only one element of the array here.
4286          */
4287         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4288                 eventfd_signal(t->entries[i].eventfd, 1);
4289
4290         /* Update current_threshold */
4291         t->current_threshold = i - 1;
4292 unlock:
4293         rcu_read_unlock();
4294 }
4295
4296 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4297 {
4298         while (memcg) {
4299                 __mem_cgroup_threshold(memcg, false);
4300                 if (do_memsw_account())
4301                         __mem_cgroup_threshold(memcg, true);
4302
4303                 memcg = parent_mem_cgroup(memcg);
4304         }
4305 }
4306
4307 static int compare_thresholds(const void *a, const void *b)
4308 {
4309         const struct mem_cgroup_threshold *_a = a;
4310         const struct mem_cgroup_threshold *_b = b;
4311
4312         if (_a->threshold > _b->threshold)
4313                 return 1;
4314
4315         if (_a->threshold < _b->threshold)
4316                 return -1;
4317
4318         return 0;
4319 }
4320
4321 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4322 {
4323         struct mem_cgroup_eventfd_list *ev;
4324
4325         spin_lock(&memcg_oom_lock);
4326
4327         list_for_each_entry(ev, &memcg->oom_notify, list)
4328                 eventfd_signal(ev->eventfd, 1);
4329
4330         spin_unlock(&memcg_oom_lock);
4331         return 0;
4332 }
4333
4334 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4335 {
4336         struct mem_cgroup *iter;
4337
4338         for_each_mem_cgroup_tree(iter, memcg)
4339                 mem_cgroup_oom_notify_cb(iter);
4340 }
4341
4342 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4343         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4344 {
4345         struct mem_cgroup_thresholds *thresholds;
4346         struct mem_cgroup_threshold_ary *new;
4347         unsigned long threshold;
4348         unsigned long usage;
4349         int i, size, ret;
4350
4351         ret = page_counter_memparse(args, "-1", &threshold);
4352         if (ret)
4353                 return ret;
4354
4355         mutex_lock(&memcg->thresholds_lock);
4356
4357         if (type == _MEM) {
4358                 thresholds = &memcg->thresholds;
4359                 usage = mem_cgroup_usage(memcg, false);
4360         } else if (type == _MEMSWAP) {
4361                 thresholds = &memcg->memsw_thresholds;
4362                 usage = mem_cgroup_usage(memcg, true);
4363         } else
4364                 BUG();
4365
4366         /* Check if a threshold crossed before adding a new one */
4367         if (thresholds->primary)
4368                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4369
4370         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4371
4372         /* Allocate memory for new array of thresholds */
4373         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4374         if (!new) {
4375                 ret = -ENOMEM;
4376                 goto unlock;
4377         }
4378         new->size = size;
4379
4380         /* Copy thresholds (if any) to new array */
4381         if (thresholds->primary)
4382                 memcpy(new->entries, thresholds->primary->entries,
4383                        flex_array_size(new, entries, size - 1));
4384
4385         /* Add new threshold */
4386         new->entries[size - 1].eventfd = eventfd;
4387         new->entries[size - 1].threshold = threshold;
4388
4389         /* Sort thresholds. Registering of new threshold isn't time-critical */
4390         sort(new->entries, size, sizeof(*new->entries),
4391                         compare_thresholds, NULL);
4392
4393         /* Find current threshold */
4394         new->current_threshold = -1;
4395         for (i = 0; i < size; i++) {
4396                 if (new->entries[i].threshold <= usage) {
4397                         /*
4398                          * new->current_threshold will not be used until
4399                          * rcu_assign_pointer(), so it's safe to increment
4400                          * it here.
4401                          */
4402                         ++new->current_threshold;
4403                 } else
4404                         break;
4405         }
4406
4407         /* Free old spare buffer and save old primary buffer as spare */
4408         kfree(thresholds->spare);
4409         thresholds->spare = thresholds->primary;
4410
4411         rcu_assign_pointer(thresholds->primary, new);
4412
4413         /* To be sure that nobody uses thresholds */
4414         synchronize_rcu();
4415
4416 unlock:
4417         mutex_unlock(&memcg->thresholds_lock);
4418
4419         return ret;
4420 }
4421
4422 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4423         struct eventfd_ctx *eventfd, const char *args)
4424 {
4425         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4426 }
4427
4428 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4429         struct eventfd_ctx *eventfd, const char *args)
4430 {
4431         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4432 }
4433
4434 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4435         struct eventfd_ctx *eventfd, enum res_type type)
4436 {
4437         struct mem_cgroup_thresholds *thresholds;
4438         struct mem_cgroup_threshold_ary *new;
4439         unsigned long usage;
4440         int i, j, size, entries;
4441
4442         mutex_lock(&memcg->thresholds_lock);
4443
4444         if (type == _MEM) {
4445                 thresholds = &memcg->thresholds;
4446                 usage = mem_cgroup_usage(memcg, false);
4447         } else if (type == _MEMSWAP) {
4448                 thresholds = &memcg->memsw_thresholds;
4449                 usage = mem_cgroup_usage(memcg, true);
4450         } else
4451                 BUG();
4452
4453         if (!thresholds->primary)
4454                 goto unlock;
4455
4456         /* Check if a threshold crossed before removing */
4457         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4458
4459         /* Calculate new number of threshold */
4460         size = entries = 0;
4461         for (i = 0; i < thresholds->primary->size; i++) {
4462                 if (thresholds->primary->entries[i].eventfd != eventfd)
4463                         size++;
4464                 else
4465                         entries++;
4466         }
4467
4468         new = thresholds->spare;
4469
4470         /* If no items related to eventfd have been cleared, nothing to do */
4471         if (!entries)
4472                 goto unlock;
4473
4474         /* Set thresholds array to NULL if we don't have thresholds */
4475         if (!size) {
4476                 kfree(new);
4477                 new = NULL;
4478                 goto swap_buffers;
4479         }
4480
4481         new->size = size;
4482
4483         /* Copy thresholds and find current threshold */
4484         new->current_threshold = -1;
4485         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4486                 if (thresholds->primary->entries[i].eventfd == eventfd)
4487                         continue;
4488
4489                 new->entries[j] = thresholds->primary->entries[i];
4490                 if (new->entries[j].threshold <= usage) {
4491                         /*
4492                          * new->current_threshold will not be used
4493                          * until rcu_assign_pointer(), so it's safe to increment
4494                          * it here.
4495                          */
4496                         ++new->current_threshold;
4497                 }
4498                 j++;
4499         }
4500
4501 swap_buffers:
4502         /* Swap primary and spare array */
4503         thresholds->spare = thresholds->primary;
4504
4505         rcu_assign_pointer(thresholds->primary, new);
4506
4507         /* To be sure that nobody uses thresholds */
4508         synchronize_rcu();
4509
4510         /* If all events are unregistered, free the spare array */
4511         if (!new) {
4512                 kfree(thresholds->spare);
4513                 thresholds->spare = NULL;
4514         }
4515 unlock:
4516         mutex_unlock(&memcg->thresholds_lock);
4517 }
4518
4519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4520         struct eventfd_ctx *eventfd)
4521 {
4522         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4523 }
4524
4525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4526         struct eventfd_ctx *eventfd)
4527 {
4528         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4529 }
4530
4531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4532         struct eventfd_ctx *eventfd, const char *args)
4533 {
4534         struct mem_cgroup_eventfd_list *event;
4535
4536         event = kmalloc(sizeof(*event), GFP_KERNEL);
4537         if (!event)
4538                 return -ENOMEM;
4539
4540         spin_lock(&memcg_oom_lock);
4541
4542         event->eventfd = eventfd;
4543         list_add(&event->list, &memcg->oom_notify);
4544
4545         /* already in OOM ? */
4546         if (memcg->under_oom)
4547                 eventfd_signal(eventfd, 1);
4548         spin_unlock(&memcg_oom_lock);
4549
4550         return 0;
4551 }
4552
4553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4554         struct eventfd_ctx *eventfd)
4555 {
4556         struct mem_cgroup_eventfd_list *ev, *tmp;
4557
4558         spin_lock(&memcg_oom_lock);
4559
4560         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4561                 if (ev->eventfd == eventfd) {
4562                         list_del(&ev->list);
4563                         kfree(ev);
4564                 }
4565         }
4566
4567         spin_unlock(&memcg_oom_lock);
4568 }
4569
4570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4571 {
4572         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4573
4574         seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4575         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4576         seq_printf(sf, "oom_kill %lu\n",
4577                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4578         return 0;
4579 }
4580
4581 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4582         struct cftype *cft, u64 val)
4583 {
4584         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4585
4586         /* cannot set to root cgroup and only 0 and 1 are allowed */
4587         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4588                 return -EINVAL;
4589
4590         WRITE_ONCE(memcg->oom_kill_disable, val);
4591         if (!val)
4592                 memcg_oom_recover(memcg);
4593
4594         return 0;
4595 }
4596
4597 #ifdef CONFIG_CGROUP_WRITEBACK
4598
4599 #include <trace/events/writeback.h>
4600
4601 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4602 {
4603         return wb_domain_init(&memcg->cgwb_domain, gfp);
4604 }
4605
4606 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4607 {
4608         wb_domain_exit(&memcg->cgwb_domain);
4609 }
4610
4611 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4612 {
4613         wb_domain_size_changed(&memcg->cgwb_domain);
4614 }
4615
4616 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4617 {
4618         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4619
4620         if (!memcg->css.parent)
4621                 return NULL;
4622
4623         return &memcg->cgwb_domain;
4624 }
4625
4626 /**
4627  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4628  * @wb: bdi_writeback in question
4629  * @pfilepages: out parameter for number of file pages
4630  * @pheadroom: out parameter for number of allocatable pages according to memcg
4631  * @pdirty: out parameter for number of dirty pages
4632  * @pwriteback: out parameter for number of pages under writeback
4633  *
4634  * Determine the numbers of file, headroom, dirty, and writeback pages in
4635  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4636  * is a bit more involved.
4637  *
4638  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4639  * headroom is calculated as the lowest headroom of itself and the
4640  * ancestors.  Note that this doesn't consider the actual amount of
4641  * available memory in the system.  The caller should further cap
4642  * *@pheadroom accordingly.
4643  */
4644 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4645                          unsigned long *pheadroom, unsigned long *pdirty,
4646                          unsigned long *pwriteback)
4647 {
4648         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4649         struct mem_cgroup *parent;
4650
4651         /*
4652          * wb_writeback() takes a spinlock and calls
4653          * wb_over_bg_thresh()->mem_cgroup_wb_stats(). Do not sleep.
4654          */
4655         mem_cgroup_flush_stats_atomic();
4656
4657         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4658         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4659         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4660                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4661
4662         *pheadroom = PAGE_COUNTER_MAX;
4663         while ((parent = parent_mem_cgroup(memcg))) {
4664                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4665                                             READ_ONCE(memcg->memory.high));
4666                 unsigned long used = page_counter_read(&memcg->memory);
4667
4668                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4669                 memcg = parent;
4670         }
4671 }
4672
4673 /*
4674  * Foreign dirty flushing
4675  *
4676  * There's an inherent mismatch between memcg and writeback.  The former
4677  * tracks ownership per-page while the latter per-inode.  This was a
4678  * deliberate design decision because honoring per-page ownership in the
4679  * writeback path is complicated, may lead to higher CPU and IO overheads
4680  * and deemed unnecessary given that write-sharing an inode across
4681  * different cgroups isn't a common use-case.
4682  *
4683  * Combined with inode majority-writer ownership switching, this works well
4684  * enough in most cases but there are some pathological cases.  For
4685  * example, let's say there are two cgroups A and B which keep writing to
4686  * different but confined parts of the same inode.  B owns the inode and
4687  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4688  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4689  * triggering background writeback.  A will be slowed down without a way to
4690  * make writeback of the dirty pages happen.
4691  *
4692  * Conditions like the above can lead to a cgroup getting repeatedly and
4693  * severely throttled after making some progress after each
4694  * dirty_expire_interval while the underlying IO device is almost
4695  * completely idle.
4696  *
4697  * Solving this problem completely requires matching the ownership tracking
4698  * granularities between memcg and writeback in either direction.  However,
4699  * the more egregious behaviors can be avoided by simply remembering the
4700  * most recent foreign dirtying events and initiating remote flushes on
4701  * them when local writeback isn't enough to keep the memory clean enough.
4702  *
4703  * The following two functions implement such mechanism.  When a foreign
4704  * page - a page whose memcg and writeback ownerships don't match - is
4705  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4706  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4707  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4708  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4709  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4710  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4711  * limited to MEMCG_CGWB_FRN_CNT.
4712  *
4713  * The mechanism only remembers IDs and doesn't hold any object references.
4714  * As being wrong occasionally doesn't matter, updates and accesses to the
4715  * records are lockless and racy.
4716  */
4717 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4718                                              struct bdi_writeback *wb)
4719 {
4720         struct mem_cgroup *memcg = folio_memcg(folio);
4721         struct memcg_cgwb_frn *frn;
4722         u64 now = get_jiffies_64();
4723         u64 oldest_at = now;
4724         int oldest = -1;
4725         int i;
4726
4727         trace_track_foreign_dirty(folio, wb);
4728
4729         /*
4730          * Pick the slot to use.  If there is already a slot for @wb, keep
4731          * using it.  If not replace the oldest one which isn't being
4732          * written out.
4733          */
4734         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4735                 frn = &memcg->cgwb_frn[i];
4736                 if (frn->bdi_id == wb->bdi->id &&
4737                     frn->memcg_id == wb->memcg_css->id)
4738                         break;
4739                 if (time_before64(frn->at, oldest_at) &&
4740                     atomic_read(&frn->done.cnt) == 1) {
4741                         oldest = i;
4742                         oldest_at = frn->at;
4743                 }
4744         }
4745
4746         if (i < MEMCG_CGWB_FRN_CNT) {
4747                 /*
4748                  * Re-using an existing one.  Update timestamp lazily to
4749                  * avoid making the cacheline hot.  We want them to be
4750                  * reasonably up-to-date and significantly shorter than
4751                  * dirty_expire_interval as that's what expires the record.
4752                  * Use the shorter of 1s and dirty_expire_interval / 8.
4753                  */
4754                 unsigned long update_intv =
4755                         min_t(unsigned long, HZ,
4756                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4757
4758                 if (time_before64(frn->at, now - update_intv))
4759                         frn->at = now;
4760         } else if (oldest >= 0) {
4761                 /* replace the oldest free one */
4762                 frn = &memcg->cgwb_frn[oldest];
4763                 frn->bdi_id = wb->bdi->id;
4764                 frn->memcg_id = wb->memcg_css->id;
4765                 frn->at = now;
4766         }
4767 }
4768
4769 /* issue foreign writeback flushes for recorded foreign dirtying events */
4770 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4771 {
4772         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4773         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4774         u64 now = jiffies_64;
4775         int i;
4776
4777         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4778                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4779
4780                 /*
4781                  * If the record is older than dirty_expire_interval,
4782                  * writeback on it has already started.  No need to kick it
4783                  * off again.  Also, don't start a new one if there's
4784                  * already one in flight.
4785                  */
4786                 if (time_after64(frn->at, now - intv) &&
4787                     atomic_read(&frn->done.cnt) == 1) {
4788                         frn->at = 0;
4789                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4790                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4791                                                WB_REASON_FOREIGN_FLUSH,
4792                                                &frn->done);
4793                 }
4794         }
4795 }
4796
4797 #else   /* CONFIG_CGROUP_WRITEBACK */
4798
4799 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4800 {
4801         return 0;
4802 }
4803
4804 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4805 {
4806 }
4807
4808 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4809 {
4810 }
4811
4812 #endif  /* CONFIG_CGROUP_WRITEBACK */
4813
4814 /*
4815  * DO NOT USE IN NEW FILES.
4816  *
4817  * "cgroup.event_control" implementation.
4818  *
4819  * This is way over-engineered.  It tries to support fully configurable
4820  * events for each user.  Such level of flexibility is completely
4821  * unnecessary especially in the light of the planned unified hierarchy.
4822  *
4823  * Please deprecate this and replace with something simpler if at all
4824  * possible.
4825  */
4826
4827 /*
4828  * Unregister event and free resources.
4829  *
4830  * Gets called from workqueue.
4831  */
4832 static void memcg_event_remove(struct work_struct *work)
4833 {
4834         struct mem_cgroup_event *event =
4835                 container_of(work, struct mem_cgroup_event, remove);
4836         struct mem_cgroup *memcg = event->memcg;
4837
4838         remove_wait_queue(event->wqh, &event->wait);
4839
4840         event->unregister_event(memcg, event->eventfd);
4841
4842         /* Notify userspace the event is going away. */
4843         eventfd_signal(event->eventfd, 1);
4844
4845         eventfd_ctx_put(event->eventfd);
4846         kfree(event);
4847         css_put(&memcg->css);
4848 }
4849
4850 /*
4851  * Gets called on EPOLLHUP on eventfd when user closes it.
4852  *
4853  * Called with wqh->lock held and interrupts disabled.
4854  */
4855 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4856                             int sync, void *key)
4857 {
4858         struct mem_cgroup_event *event =
4859                 container_of(wait, struct mem_cgroup_event, wait);
4860         struct mem_cgroup *memcg = event->memcg;
4861         __poll_t flags = key_to_poll(key);
4862
4863         if (flags & EPOLLHUP) {
4864                 /*
4865                  * If the event has been detached at cgroup removal, we
4866                  * can simply return knowing the other side will cleanup
4867                  * for us.
4868                  *
4869                  * We can't race against event freeing since the other
4870                  * side will require wqh->lock via remove_wait_queue(),
4871                  * which we hold.
4872                  */
4873                 spin_lock(&memcg->event_list_lock);
4874                 if (!list_empty(&event->list)) {
4875                         list_del_init(&event->list);
4876                         /*
4877                          * We are in atomic context, but cgroup_event_remove()
4878                          * may sleep, so we have to call it in workqueue.
4879                          */
4880                         schedule_work(&event->remove);
4881                 }
4882                 spin_unlock(&memcg->event_list_lock);
4883         }
4884
4885         return 0;
4886 }
4887
4888 static void memcg_event_ptable_queue_proc(struct file *file,
4889                 wait_queue_head_t *wqh, poll_table *pt)
4890 {
4891         struct mem_cgroup_event *event =
4892                 container_of(pt, struct mem_cgroup_event, pt);
4893
4894         event->wqh = wqh;
4895         add_wait_queue(wqh, &event->wait);
4896 }
4897
4898 /*
4899  * DO NOT USE IN NEW FILES.
4900  *
4901  * Parse input and register new cgroup event handler.
4902  *
4903  * Input must be in format '<event_fd> <control_fd> <args>'.
4904  * Interpretation of args is defined by control file implementation.
4905  */
4906 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4907                                          char *buf, size_t nbytes, loff_t off)
4908 {
4909         struct cgroup_subsys_state *css = of_css(of);
4910         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4911         struct mem_cgroup_event *event;
4912         struct cgroup_subsys_state *cfile_css;
4913         unsigned int efd, cfd;
4914         struct fd efile;
4915         struct fd cfile;
4916         struct dentry *cdentry;
4917         const char *name;
4918         char *endp;
4919         int ret;
4920
4921         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4922                 return -EOPNOTSUPP;
4923
4924         buf = strstrip(buf);
4925
4926         efd = simple_strtoul(buf, &endp, 10);
4927         if (*endp != ' ')
4928                 return -EINVAL;
4929         buf = endp + 1;
4930
4931         cfd = simple_strtoul(buf, &endp, 10);
4932         if ((*endp != ' ') && (*endp != '\0'))
4933                 return -EINVAL;
4934         buf = endp + 1;
4935
4936         event = kzalloc(sizeof(*event), GFP_KERNEL);
4937         if (!event)
4938                 return -ENOMEM;
4939
4940         event->memcg = memcg;
4941         INIT_LIST_HEAD(&event->list);
4942         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4943         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4944         INIT_WORK(&event->remove, memcg_event_remove);
4945
4946         efile = fdget(efd);
4947         if (!efile.file) {
4948                 ret = -EBADF;
4949                 goto out_kfree;
4950         }
4951
4952         event->eventfd = eventfd_ctx_fileget(efile.file);
4953         if (IS_ERR(event->eventfd)) {
4954                 ret = PTR_ERR(event->eventfd);
4955                 goto out_put_efile;
4956         }
4957
4958         cfile = fdget(cfd);
4959         if (!cfile.file) {
4960                 ret = -EBADF;
4961                 goto out_put_eventfd;
4962         }
4963
4964         /* the process need read permission on control file */
4965         /* AV: shouldn't we check that it's been opened for read instead? */
4966         ret = file_permission(cfile.file, MAY_READ);
4967         if (ret < 0)
4968                 goto out_put_cfile;
4969
4970         /*
4971          * The control file must be a regular cgroup1 file. As a regular cgroup
4972          * file can't be renamed, it's safe to access its name afterwards.
4973          */
4974         cdentry = cfile.file->f_path.dentry;
4975         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4976                 ret = -EINVAL;
4977                 goto out_put_cfile;
4978         }
4979
4980         /*
4981          * Determine the event callbacks and set them in @event.  This used
4982          * to be done via struct cftype but cgroup core no longer knows
4983          * about these events.  The following is crude but the whole thing
4984          * is for compatibility anyway.
4985          *
4986          * DO NOT ADD NEW FILES.
4987          */
4988         name = cdentry->d_name.name;
4989
4990         if (!strcmp(name, "memory.usage_in_bytes")) {
4991                 event->register_event = mem_cgroup_usage_register_event;
4992                 event->unregister_event = mem_cgroup_usage_unregister_event;
4993         } else if (!strcmp(name, "memory.oom_control")) {
4994                 event->register_event = mem_cgroup_oom_register_event;
4995                 event->unregister_event = mem_cgroup_oom_unregister_event;
4996         } else if (!strcmp(name, "memory.pressure_level")) {
4997                 event->register_event = vmpressure_register_event;
4998                 event->unregister_event = vmpressure_unregister_event;
4999         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5000                 event->register_event = memsw_cgroup_usage_register_event;
5001                 event->unregister_event = memsw_cgroup_usage_unregister_event;
5002         } else {
5003                 ret = -EINVAL;
5004                 goto out_put_cfile;
5005         }
5006
5007         /*
5008          * Verify @cfile should belong to @css.  Also, remaining events are
5009          * automatically removed on cgroup destruction but the removal is
5010          * asynchronous, so take an extra ref on @css.
5011          */
5012         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5013                                                &memory_cgrp_subsys);
5014         ret = -EINVAL;
5015         if (IS_ERR(cfile_css))
5016                 goto out_put_cfile;
5017         if (cfile_css != css) {
5018                 css_put(cfile_css);
5019                 goto out_put_cfile;
5020         }
5021
5022         ret = event->register_event(memcg, event->eventfd, buf);
5023         if (ret)
5024                 goto out_put_css;
5025
5026         vfs_poll(efile.file, &event->pt);
5027
5028         spin_lock_irq(&memcg->event_list_lock);
5029         list_add(&event->list, &memcg->event_list);
5030         spin_unlock_irq(&memcg->event_list_lock);
5031
5032         fdput(cfile);
5033         fdput(efile);
5034
5035         return nbytes;
5036
5037 out_put_css:
5038         css_put(css);
5039 out_put_cfile:
5040         fdput(cfile);
5041 out_put_eventfd:
5042         eventfd_ctx_put(event->eventfd);
5043 out_put_efile:
5044         fdput(efile);
5045 out_kfree:
5046         kfree(event);
5047
5048         return ret;
5049 }
5050
5051 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5052 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5053 {
5054         /*
5055          * Deprecated.
5056          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5057          */
5058         return 0;
5059 }
5060 #endif
5061
5062 static struct cftype mem_cgroup_legacy_files[] = {
5063         {
5064                 .name = "usage_in_bytes",
5065                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5066                 .read_u64 = mem_cgroup_read_u64,
5067         },
5068         {
5069                 .name = "max_usage_in_bytes",
5070                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5071                 .write = mem_cgroup_reset,
5072                 .read_u64 = mem_cgroup_read_u64,
5073         },
5074         {
5075                 .name = "limit_in_bytes",
5076                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5077                 .write = mem_cgroup_write,
5078                 .read_u64 = mem_cgroup_read_u64,
5079         },
5080         {
5081                 .name = "soft_limit_in_bytes",
5082                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5083                 .write = mem_cgroup_write,
5084                 .read_u64 = mem_cgroup_read_u64,
5085         },
5086         {
5087                 .name = "failcnt",
5088                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5089                 .write = mem_cgroup_reset,
5090                 .read_u64 = mem_cgroup_read_u64,
5091         },
5092         {
5093                 .name = "stat",
5094                 .seq_show = memcg_stat_show,
5095         },
5096         {
5097                 .name = "force_empty",
5098                 .write = mem_cgroup_force_empty_write,
5099         },
5100         {
5101                 .name = "use_hierarchy",
5102                 .write_u64 = mem_cgroup_hierarchy_write,
5103                 .read_u64 = mem_cgroup_hierarchy_read,
5104         },
5105         {
5106                 .name = "cgroup.event_control",         /* XXX: for compat */
5107                 .write = memcg_write_event_control,
5108                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5109         },
5110         {
5111                 .name = "swappiness",
5112                 .read_u64 = mem_cgroup_swappiness_read,
5113                 .write_u64 = mem_cgroup_swappiness_write,
5114         },
5115         {
5116                 .name = "move_charge_at_immigrate",
5117                 .read_u64 = mem_cgroup_move_charge_read,
5118                 .write_u64 = mem_cgroup_move_charge_write,
5119         },
5120         {
5121                 .name = "oom_control",
5122                 .seq_show = mem_cgroup_oom_control_read,
5123                 .write_u64 = mem_cgroup_oom_control_write,
5124         },
5125         {
5126                 .name = "pressure_level",
5127                 .seq_show = mem_cgroup_dummy_seq_show,
5128         },
5129 #ifdef CONFIG_NUMA
5130         {
5131                 .name = "numa_stat",
5132                 .seq_show = memcg_numa_stat_show,
5133         },
5134 #endif
5135         {
5136                 .name = "kmem.limit_in_bytes",
5137                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5138                 .write = mem_cgroup_write,
5139                 .read_u64 = mem_cgroup_read_u64,
5140         },
5141         {
5142                 .name = "kmem.usage_in_bytes",
5143                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5144                 .read_u64 = mem_cgroup_read_u64,
5145         },
5146         {
5147                 .name = "kmem.failcnt",
5148                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5149                 .write = mem_cgroup_reset,
5150                 .read_u64 = mem_cgroup_read_u64,
5151         },
5152         {
5153                 .name = "kmem.max_usage_in_bytes",
5154                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5155                 .write = mem_cgroup_reset,
5156                 .read_u64 = mem_cgroup_read_u64,
5157         },
5158 #if defined(CONFIG_MEMCG_KMEM) && \
5159         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5160         {
5161                 .name = "kmem.slabinfo",
5162                 .seq_show = mem_cgroup_slab_show,
5163         },
5164 #endif
5165         {
5166                 .name = "kmem.tcp.limit_in_bytes",
5167                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5168                 .write = mem_cgroup_write,
5169                 .read_u64 = mem_cgroup_read_u64,
5170         },
5171         {
5172                 .name = "kmem.tcp.usage_in_bytes",
5173                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5174                 .read_u64 = mem_cgroup_read_u64,
5175         },
5176         {
5177                 .name = "kmem.tcp.failcnt",
5178                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5179                 .write = mem_cgroup_reset,
5180                 .read_u64 = mem_cgroup_read_u64,
5181         },
5182         {
5183                 .name = "kmem.tcp.max_usage_in_bytes",
5184                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5185                 .write = mem_cgroup_reset,
5186                 .read_u64 = mem_cgroup_read_u64,
5187         },
5188         { },    /* terminate */
5189 };
5190
5191 /*
5192  * Private memory cgroup IDR
5193  *
5194  * Swap-out records and page cache shadow entries need to store memcg
5195  * references in constrained space, so we maintain an ID space that is
5196  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5197  * memory-controlled cgroups to 64k.
5198  *
5199  * However, there usually are many references to the offline CSS after
5200  * the cgroup has been destroyed, such as page cache or reclaimable
5201  * slab objects, that don't need to hang on to the ID. We want to keep
5202  * those dead CSS from occupying IDs, or we might quickly exhaust the
5203  * relatively small ID space and prevent the creation of new cgroups
5204  * even when there are much fewer than 64k cgroups - possibly none.
5205  *
5206  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5207  * be freed and recycled when it's no longer needed, which is usually
5208  * when the CSS is offlined.
5209  *
5210  * The only exception to that are records of swapped out tmpfs/shmem
5211  * pages that need to be attributed to live ancestors on swapin. But
5212  * those references are manageable from userspace.
5213  */
5214
5215 static DEFINE_IDR(mem_cgroup_idr);
5216
5217 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5218 {
5219         if (memcg->id.id > 0) {
5220                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5221                 memcg->id.id = 0;
5222         }
5223 }
5224
5225 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5226                                                   unsigned int n)
5227 {
5228         refcount_add(n, &memcg->id.ref);
5229 }
5230
5231 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5232 {
5233         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5234                 mem_cgroup_id_remove(memcg);
5235
5236                 /* Memcg ID pins CSS */
5237                 css_put(&memcg->css);
5238         }
5239 }
5240
5241 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5242 {
5243         mem_cgroup_id_put_many(memcg, 1);
5244 }
5245
5246 /**
5247  * mem_cgroup_from_id - look up a memcg from a memcg id
5248  * @id: the memcg id to look up
5249  *
5250  * Caller must hold rcu_read_lock().
5251  */
5252 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5253 {
5254         WARN_ON_ONCE(!rcu_read_lock_held());
5255         return idr_find(&mem_cgroup_idr, id);
5256 }
5257
5258 #ifdef CONFIG_SHRINKER_DEBUG
5259 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5260 {
5261         struct cgroup *cgrp;
5262         struct cgroup_subsys_state *css;
5263         struct mem_cgroup *memcg;
5264
5265         cgrp = cgroup_get_from_id(ino);
5266         if (IS_ERR(cgrp))
5267                 return ERR_CAST(cgrp);
5268
5269         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5270         if (css)
5271                 memcg = container_of(css, struct mem_cgroup, css);
5272         else
5273                 memcg = ERR_PTR(-ENOENT);
5274
5275         cgroup_put(cgrp);
5276
5277         return memcg;
5278 }
5279 #endif
5280
5281 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5282 {
5283         struct mem_cgroup_per_node *pn;
5284
5285         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5286         if (!pn)
5287                 return 1;
5288
5289         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5290                                                    GFP_KERNEL_ACCOUNT);
5291         if (!pn->lruvec_stats_percpu) {
5292                 kfree(pn);
5293                 return 1;
5294         }
5295
5296         lruvec_init(&pn->lruvec);
5297         pn->memcg = memcg;
5298
5299         memcg->nodeinfo[node] = pn;
5300         return 0;
5301 }
5302
5303 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5304 {
5305         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5306
5307         if (!pn)
5308                 return;
5309
5310         free_percpu(pn->lruvec_stats_percpu);
5311         kfree(pn);
5312 }
5313
5314 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5315 {
5316         int node;
5317
5318         for_each_node(node)
5319                 free_mem_cgroup_per_node_info(memcg, node);
5320         kfree(memcg->vmstats);
5321         free_percpu(memcg->vmstats_percpu);
5322         kfree(memcg);
5323 }
5324
5325 static void mem_cgroup_free(struct mem_cgroup *memcg)
5326 {
5327         lru_gen_exit_memcg(memcg);
5328         memcg_wb_domain_exit(memcg);
5329         __mem_cgroup_free(memcg);
5330 }
5331
5332 static struct mem_cgroup *mem_cgroup_alloc(void)
5333 {
5334         struct mem_cgroup *memcg;
5335         int node;
5336         int __maybe_unused i;
5337         long error = -ENOMEM;
5338
5339         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5340         if (!memcg)
5341                 return ERR_PTR(error);
5342
5343         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5344                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5345         if (memcg->id.id < 0) {
5346                 error = memcg->id.id;
5347                 goto fail;
5348         }
5349
5350         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5351         if (!memcg->vmstats)
5352                 goto fail;
5353
5354         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5355                                                  GFP_KERNEL_ACCOUNT);
5356         if (!memcg->vmstats_percpu)
5357                 goto fail;
5358
5359         for_each_node(node)
5360                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5361                         goto fail;
5362
5363         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5364                 goto fail;
5365
5366         INIT_WORK(&memcg->high_work, high_work_func);
5367         INIT_LIST_HEAD(&memcg->oom_notify);
5368         mutex_init(&memcg->thresholds_lock);
5369         spin_lock_init(&memcg->move_lock);
5370         vmpressure_init(&memcg->vmpressure);
5371         INIT_LIST_HEAD(&memcg->event_list);
5372         spin_lock_init(&memcg->event_list_lock);
5373         memcg->socket_pressure = jiffies;
5374 #ifdef CONFIG_MEMCG_KMEM
5375         memcg->kmemcg_id = -1;
5376         INIT_LIST_HEAD(&memcg->objcg_list);
5377 #endif
5378 #ifdef CONFIG_CGROUP_WRITEBACK
5379         INIT_LIST_HEAD(&memcg->cgwb_list);
5380         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5381                 memcg->cgwb_frn[i].done =
5382                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5383 #endif
5384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5385         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5386         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5387         memcg->deferred_split_queue.split_queue_len = 0;
5388 #endif
5389         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5390         lru_gen_init_memcg(memcg);
5391         return memcg;
5392 fail:
5393         mem_cgroup_id_remove(memcg);
5394         __mem_cgroup_free(memcg);
5395         return ERR_PTR(error);
5396 }
5397
5398 static struct cgroup_subsys_state * __ref
5399 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5400 {
5401         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5402         struct mem_cgroup *memcg, *old_memcg;
5403
5404         old_memcg = set_active_memcg(parent);
5405         memcg = mem_cgroup_alloc();
5406         set_active_memcg(old_memcg);
5407         if (IS_ERR(memcg))
5408                 return ERR_CAST(memcg);
5409
5410         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5411         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5412 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5413         memcg->zswap_max = PAGE_COUNTER_MAX;
5414 #endif
5415         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5416         if (parent) {
5417                 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5418                 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5419
5420                 page_counter_init(&memcg->memory, &parent->memory);
5421                 page_counter_init(&memcg->swap, &parent->swap);
5422                 page_counter_init(&memcg->kmem, &parent->kmem);
5423                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5424         } else {
5425                 init_memcg_events();
5426                 page_counter_init(&memcg->memory, NULL);
5427                 page_counter_init(&memcg->swap, NULL);
5428                 page_counter_init(&memcg->kmem, NULL);
5429                 page_counter_init(&memcg->tcpmem, NULL);
5430
5431                 root_mem_cgroup = memcg;
5432                 return &memcg->css;
5433         }
5434
5435         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5436                 static_branch_inc(&memcg_sockets_enabled_key);
5437
5438 #if defined(CONFIG_MEMCG_KMEM)
5439         if (!cgroup_memory_nobpf)
5440                 static_branch_inc(&memcg_bpf_enabled_key);
5441 #endif
5442
5443         return &memcg->css;
5444 }
5445
5446 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5447 {
5448         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5449
5450         if (memcg_online_kmem(memcg))
5451                 goto remove_id;
5452
5453         /*
5454          * A memcg must be visible for expand_shrinker_info()
5455          * by the time the maps are allocated. So, we allocate maps
5456          * here, when for_each_mem_cgroup() can't skip it.
5457          */
5458         if (alloc_shrinker_info(memcg))
5459                 goto offline_kmem;
5460
5461         /* Online state pins memcg ID, memcg ID pins CSS */
5462         refcount_set(&memcg->id.ref, 1);
5463         css_get(css);
5464
5465         if (unlikely(mem_cgroup_is_root(memcg)))
5466                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5467                                    2UL*HZ);
5468         lru_gen_online_memcg(memcg);
5469         return 0;
5470 offline_kmem:
5471         memcg_offline_kmem(memcg);
5472 remove_id:
5473         mem_cgroup_id_remove(memcg);
5474         return -ENOMEM;
5475 }
5476
5477 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5478 {
5479         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5480         struct mem_cgroup_event *event, *tmp;
5481
5482         /*
5483          * Unregister events and notify userspace.
5484          * Notify userspace about cgroup removing only after rmdir of cgroup
5485          * directory to avoid race between userspace and kernelspace.
5486          */
5487         spin_lock_irq(&memcg->event_list_lock);
5488         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5489                 list_del_init(&event->list);
5490                 schedule_work(&event->remove);
5491         }
5492         spin_unlock_irq(&memcg->event_list_lock);
5493
5494         page_counter_set_min(&memcg->memory, 0);
5495         page_counter_set_low(&memcg->memory, 0);
5496
5497         memcg_offline_kmem(memcg);
5498         reparent_shrinker_deferred(memcg);
5499         wb_memcg_offline(memcg);
5500         lru_gen_offline_memcg(memcg);
5501
5502         drain_all_stock(memcg);
5503
5504         mem_cgroup_id_put(memcg);
5505 }
5506
5507 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5508 {
5509         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5510
5511         invalidate_reclaim_iterators(memcg);
5512         lru_gen_release_memcg(memcg);
5513 }
5514
5515 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5516 {
5517         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5518         int __maybe_unused i;
5519
5520 #ifdef CONFIG_CGROUP_WRITEBACK
5521         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5522                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5523 #endif
5524         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5525                 static_branch_dec(&memcg_sockets_enabled_key);
5526
5527         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5528                 static_branch_dec(&memcg_sockets_enabled_key);
5529
5530 #if defined(CONFIG_MEMCG_KMEM)
5531         if (!cgroup_memory_nobpf)
5532                 static_branch_dec(&memcg_bpf_enabled_key);
5533 #endif
5534
5535         vmpressure_cleanup(&memcg->vmpressure);
5536         cancel_work_sync(&memcg->high_work);
5537         mem_cgroup_remove_from_trees(memcg);
5538         free_shrinker_info(memcg);
5539         mem_cgroup_free(memcg);
5540 }
5541
5542 /**
5543  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5544  * @css: the target css
5545  *
5546  * Reset the states of the mem_cgroup associated with @css.  This is
5547  * invoked when the userland requests disabling on the default hierarchy
5548  * but the memcg is pinned through dependency.  The memcg should stop
5549  * applying policies and should revert to the vanilla state as it may be
5550  * made visible again.
5551  *
5552  * The current implementation only resets the essential configurations.
5553  * This needs to be expanded to cover all the visible parts.
5554  */
5555 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5556 {
5557         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5558
5559         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5560         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5561         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5562         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5563         page_counter_set_min(&memcg->memory, 0);
5564         page_counter_set_low(&memcg->memory, 0);
5565         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5566         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5567         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5568         memcg_wb_domain_size_changed(memcg);
5569 }
5570
5571 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5572 {
5573         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5574         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5575         struct memcg_vmstats_percpu *statc;
5576         long delta, v;
5577         int i, nid;
5578
5579         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5580
5581         for (i = 0; i < MEMCG_NR_STAT; i++) {
5582                 /*
5583                  * Collect the aggregated propagation counts of groups
5584                  * below us. We're in a per-cpu loop here and this is
5585                  * a global counter, so the first cycle will get them.
5586                  */
5587                 delta = memcg->vmstats->state_pending[i];
5588                 if (delta)
5589                         memcg->vmstats->state_pending[i] = 0;
5590
5591                 /* Add CPU changes on this level since the last flush */
5592                 v = READ_ONCE(statc->state[i]);
5593                 if (v != statc->state_prev[i]) {
5594                         delta += v - statc->state_prev[i];
5595                         statc->state_prev[i] = v;
5596                 }
5597
5598                 if (!delta)
5599                         continue;
5600
5601                 /* Aggregate counts on this level and propagate upwards */
5602                 memcg->vmstats->state[i] += delta;
5603                 if (parent)
5604                         parent->vmstats->state_pending[i] += delta;
5605         }
5606
5607         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5608                 delta = memcg->vmstats->events_pending[i];
5609                 if (delta)
5610                         memcg->vmstats->events_pending[i] = 0;
5611
5612                 v = READ_ONCE(statc->events[i]);
5613                 if (v != statc->events_prev[i]) {
5614                         delta += v - statc->events_prev[i];
5615                         statc->events_prev[i] = v;
5616                 }
5617
5618                 if (!delta)
5619                         continue;
5620
5621                 memcg->vmstats->events[i] += delta;
5622                 if (parent)
5623                         parent->vmstats->events_pending[i] += delta;
5624         }
5625
5626         for_each_node_state(nid, N_MEMORY) {
5627                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5628                 struct mem_cgroup_per_node *ppn = NULL;
5629                 struct lruvec_stats_percpu *lstatc;
5630
5631                 if (parent)
5632                         ppn = parent->nodeinfo[nid];
5633
5634                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5635
5636                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5637                         delta = pn->lruvec_stats.state_pending[i];
5638                         if (delta)
5639                                 pn->lruvec_stats.state_pending[i] = 0;
5640
5641                         v = READ_ONCE(lstatc->state[i]);
5642                         if (v != lstatc->state_prev[i]) {
5643                                 delta += v - lstatc->state_prev[i];
5644                                 lstatc->state_prev[i] = v;
5645                         }
5646
5647                         if (!delta)
5648                                 continue;
5649
5650                         pn->lruvec_stats.state[i] += delta;
5651                         if (ppn)
5652                                 ppn->lruvec_stats.state_pending[i] += delta;
5653                 }
5654         }
5655 }
5656
5657 #ifdef CONFIG_MMU
5658 /* Handlers for move charge at task migration. */
5659 static int mem_cgroup_do_precharge(unsigned long count)
5660 {
5661         int ret;
5662
5663         /* Try a single bulk charge without reclaim first, kswapd may wake */
5664         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5665         if (!ret) {
5666                 mc.precharge += count;
5667                 return ret;
5668         }
5669
5670         /* Try charges one by one with reclaim, but do not retry */
5671         while (count--) {
5672                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5673                 if (ret)
5674                         return ret;
5675                 mc.precharge++;
5676                 cond_resched();
5677         }
5678         return 0;
5679 }
5680
5681 union mc_target {
5682         struct page     *page;
5683         swp_entry_t     ent;
5684 };
5685
5686 enum mc_target_type {
5687         MC_TARGET_NONE = 0,
5688         MC_TARGET_PAGE,
5689         MC_TARGET_SWAP,
5690         MC_TARGET_DEVICE,
5691 };
5692
5693 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5694                                                 unsigned long addr, pte_t ptent)
5695 {
5696         struct page *page = vm_normal_page(vma, addr, ptent);
5697
5698         if (!page || !page_mapped(page))
5699                 return NULL;
5700         if (PageAnon(page)) {
5701                 if (!(mc.flags & MOVE_ANON))
5702                         return NULL;
5703         } else {
5704                 if (!(mc.flags & MOVE_FILE))
5705                         return NULL;
5706         }
5707         if (!get_page_unless_zero(page))
5708                 return NULL;
5709
5710         return page;
5711 }
5712
5713 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5714 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5715                         pte_t ptent, swp_entry_t *entry)
5716 {
5717         struct page *page = NULL;
5718         swp_entry_t ent = pte_to_swp_entry(ptent);
5719
5720         if (!(mc.flags & MOVE_ANON))
5721                 return NULL;
5722
5723         /*
5724          * Handle device private pages that are not accessible by the CPU, but
5725          * stored as special swap entries in the page table.
5726          */
5727         if (is_device_private_entry(ent)) {
5728                 page = pfn_swap_entry_to_page(ent);
5729                 if (!get_page_unless_zero(page))
5730                         return NULL;
5731                 return page;
5732         }
5733
5734         if (non_swap_entry(ent))
5735                 return NULL;
5736
5737         /*
5738          * Because swap_cache_get_folio() updates some statistics counter,
5739          * we call find_get_page() with swapper_space directly.
5740          */
5741         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5742         entry->val = ent.val;
5743
5744         return page;
5745 }
5746 #else
5747 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5748                         pte_t ptent, swp_entry_t *entry)
5749 {
5750         return NULL;
5751 }
5752 #endif
5753
5754 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5755                         unsigned long addr, pte_t ptent)
5756 {
5757         unsigned long index;
5758         struct folio *folio;
5759
5760         if (!vma->vm_file) /* anonymous vma */
5761                 return NULL;
5762         if (!(mc.flags & MOVE_FILE))
5763                 return NULL;
5764
5765         /* folio is moved even if it's not RSS of this task(page-faulted). */
5766         /* shmem/tmpfs may report page out on swap: account for that too. */
5767         index = linear_page_index(vma, addr);
5768         folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5769         if (IS_ERR(folio))
5770                 return NULL;
5771         return folio_file_page(folio, index);
5772 }
5773
5774 /**
5775  * mem_cgroup_move_account - move account of the page
5776  * @page: the page
5777  * @compound: charge the page as compound or small page
5778  * @from: mem_cgroup which the page is moved from.
5779  * @to: mem_cgroup which the page is moved to. @from != @to.
5780  *
5781  * The page must be locked and not on the LRU.
5782  *
5783  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5784  * from old cgroup.
5785  */
5786 static int mem_cgroup_move_account(struct page *page,
5787                                    bool compound,
5788                                    struct mem_cgroup *from,
5789                                    struct mem_cgroup *to)
5790 {
5791         struct folio *folio = page_folio(page);
5792         struct lruvec *from_vec, *to_vec;
5793         struct pglist_data *pgdat;
5794         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5795         int nid, ret;
5796
5797         VM_BUG_ON(from == to);
5798         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5799         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5800         VM_BUG_ON(compound && !folio_test_large(folio));
5801
5802         ret = -EINVAL;
5803         if (folio_memcg(folio) != from)
5804                 goto out;
5805
5806         pgdat = folio_pgdat(folio);
5807         from_vec = mem_cgroup_lruvec(from, pgdat);
5808         to_vec = mem_cgroup_lruvec(to, pgdat);
5809
5810         folio_memcg_lock(folio);
5811
5812         if (folio_test_anon(folio)) {
5813                 if (folio_mapped(folio)) {
5814                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5815                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5816                         if (folio_test_transhuge(folio)) {
5817                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5818                                                    -nr_pages);
5819                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5820                                                    nr_pages);
5821                         }
5822                 }
5823         } else {
5824                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5825                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5826
5827                 if (folio_test_swapbacked(folio)) {
5828                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5829                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5830                 }
5831
5832                 if (folio_mapped(folio)) {
5833                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5834                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5835                 }
5836
5837                 if (folio_test_dirty(folio)) {
5838                         struct address_space *mapping = folio_mapping(folio);
5839
5840                         if (mapping_can_writeback(mapping)) {
5841                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5842                                                    -nr_pages);
5843                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5844                                                    nr_pages);
5845                         }
5846                 }
5847         }
5848
5849 #ifdef CONFIG_SWAP
5850         if (folio_test_swapcache(folio)) {
5851                 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5852                 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5853         }
5854 #endif
5855         if (folio_test_writeback(folio)) {
5856                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5857                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5858         }
5859
5860         /*
5861          * All state has been migrated, let's switch to the new memcg.
5862          *
5863          * It is safe to change page's memcg here because the page
5864          * is referenced, charged, isolated, and locked: we can't race
5865          * with (un)charging, migration, LRU putback, or anything else
5866          * that would rely on a stable page's memory cgroup.
5867          *
5868          * Note that lock_page_memcg is a memcg lock, not a page lock,
5869          * to save space. As soon as we switch page's memory cgroup to a
5870          * new memcg that isn't locked, the above state can change
5871          * concurrently again. Make sure we're truly done with it.
5872          */
5873         smp_mb();
5874
5875         css_get(&to->css);
5876         css_put(&from->css);
5877
5878         folio->memcg_data = (unsigned long)to;
5879
5880         __folio_memcg_unlock(from);
5881
5882         ret = 0;
5883         nid = folio_nid(folio);
5884
5885         local_irq_disable();
5886         mem_cgroup_charge_statistics(to, nr_pages);
5887         memcg_check_events(to, nid);
5888         mem_cgroup_charge_statistics(from, -nr_pages);
5889         memcg_check_events(from, nid);
5890         local_irq_enable();
5891 out:
5892         return ret;
5893 }
5894
5895 /**
5896  * get_mctgt_type - get target type of moving charge
5897  * @vma: the vma the pte to be checked belongs
5898  * @addr: the address corresponding to the pte to be checked
5899  * @ptent: the pte to be checked
5900  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5901  *
5902  * Returns
5903  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5904  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5905  *     move charge. if @target is not NULL, the page is stored in target->page
5906  *     with extra refcnt got(Callers should handle it).
5907  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5908  *     target for charge migration. if @target is not NULL, the entry is stored
5909  *     in target->ent.
5910  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5911  *   thus not on the lru.
5912  *     For now we such page is charge like a regular page would be as for all
5913  *     intent and purposes it is just special memory taking the place of a
5914  *     regular page.
5915  *
5916  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5917  *
5918  * Called with pte lock held.
5919  */
5920
5921 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5922                 unsigned long addr, pte_t ptent, union mc_target *target)
5923 {
5924         struct page *page = NULL;
5925         enum mc_target_type ret = MC_TARGET_NONE;
5926         swp_entry_t ent = { .val = 0 };
5927
5928         if (pte_present(ptent))
5929                 page = mc_handle_present_pte(vma, addr, ptent);
5930         else if (pte_none_mostly(ptent))
5931                 /*
5932                  * PTE markers should be treated as a none pte here, separated
5933                  * from other swap handling below.
5934                  */
5935                 page = mc_handle_file_pte(vma, addr, ptent);
5936         else if (is_swap_pte(ptent))
5937                 page = mc_handle_swap_pte(vma, ptent, &ent);
5938
5939         if (target && page) {
5940                 if (!trylock_page(page)) {
5941                         put_page(page);
5942                         return ret;
5943                 }
5944                 /*
5945                  * page_mapped() must be stable during the move. This
5946                  * pte is locked, so if it's present, the page cannot
5947                  * become unmapped. If it isn't, we have only partial
5948                  * control over the mapped state: the page lock will
5949                  * prevent new faults against pagecache and swapcache,
5950                  * so an unmapped page cannot become mapped. However,
5951                  * if the page is already mapped elsewhere, it can
5952                  * unmap, and there is nothing we can do about it.
5953                  * Alas, skip moving the page in this case.
5954                  */
5955                 if (!pte_present(ptent) && page_mapped(page)) {
5956                         unlock_page(page);
5957                         put_page(page);
5958                         return ret;
5959                 }
5960         }
5961
5962         if (!page && !ent.val)
5963                 return ret;
5964         if (page) {
5965                 /*
5966                  * Do only loose check w/o serialization.
5967                  * mem_cgroup_move_account() checks the page is valid or
5968                  * not under LRU exclusion.
5969                  */
5970                 if (page_memcg(page) == mc.from) {
5971                         ret = MC_TARGET_PAGE;
5972                         if (is_device_private_page(page) ||
5973                             is_device_coherent_page(page))
5974                                 ret = MC_TARGET_DEVICE;
5975                         if (target)
5976                                 target->page = page;
5977                 }
5978                 if (!ret || !target) {
5979                         if (target)
5980                                 unlock_page(page);
5981                         put_page(page);
5982                 }
5983         }
5984         /*
5985          * There is a swap entry and a page doesn't exist or isn't charged.
5986          * But we cannot move a tail-page in a THP.
5987          */
5988         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5989             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5990                 ret = MC_TARGET_SWAP;
5991                 if (target)
5992                         target->ent = ent;
5993         }
5994         return ret;
5995 }
5996
5997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5998 /*
5999  * We don't consider PMD mapped swapping or file mapped pages because THP does
6000  * not support them for now.
6001  * Caller should make sure that pmd_trans_huge(pmd) is true.
6002  */
6003 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6004                 unsigned long addr, pmd_t pmd, union mc_target *target)
6005 {
6006         struct page *page = NULL;
6007         enum mc_target_type ret = MC_TARGET_NONE;
6008
6009         if (unlikely(is_swap_pmd(pmd))) {
6010                 VM_BUG_ON(thp_migration_supported() &&
6011                                   !is_pmd_migration_entry(pmd));
6012                 return ret;
6013         }
6014         page = pmd_page(pmd);
6015         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6016         if (!(mc.flags & MOVE_ANON))
6017                 return ret;
6018         if (page_memcg(page) == mc.from) {
6019                 ret = MC_TARGET_PAGE;
6020                 if (target) {
6021                         get_page(page);
6022                         if (!trylock_page(page)) {
6023                                 put_page(page);
6024                                 return MC_TARGET_NONE;
6025                         }
6026                         target->page = page;
6027                 }
6028         }
6029         return ret;
6030 }
6031 #else
6032 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6033                 unsigned long addr, pmd_t pmd, union mc_target *target)
6034 {
6035         return MC_TARGET_NONE;
6036 }
6037 #endif
6038
6039 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6040                                         unsigned long addr, unsigned long end,
6041                                         struct mm_walk *walk)
6042 {
6043         struct vm_area_struct *vma = walk->vma;
6044         pte_t *pte;
6045         spinlock_t *ptl;
6046
6047         ptl = pmd_trans_huge_lock(pmd, vma);
6048         if (ptl) {
6049                 /*
6050                  * Note their can not be MC_TARGET_DEVICE for now as we do not
6051                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6052                  * this might change.
6053                  */
6054                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6055                         mc.precharge += HPAGE_PMD_NR;
6056                 spin_unlock(ptl);
6057                 return 0;
6058         }
6059
6060         if (pmd_trans_unstable(pmd))
6061                 return 0;
6062         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6063         for (; addr != end; pte++, addr += PAGE_SIZE)
6064                 if (get_mctgt_type(vma, addr, *pte, NULL))
6065                         mc.precharge++; /* increment precharge temporarily */
6066         pte_unmap_unlock(pte - 1, ptl);
6067         cond_resched();
6068
6069         return 0;
6070 }
6071
6072 static const struct mm_walk_ops precharge_walk_ops = {
6073         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
6074 };
6075
6076 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6077 {
6078         unsigned long precharge;
6079
6080         mmap_read_lock(mm);
6081         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6082         mmap_read_unlock(mm);
6083
6084         precharge = mc.precharge;
6085         mc.precharge = 0;
6086
6087         return precharge;
6088 }
6089
6090 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6091 {
6092         unsigned long precharge = mem_cgroup_count_precharge(mm);
6093
6094         VM_BUG_ON(mc.moving_task);
6095         mc.moving_task = current;
6096         return mem_cgroup_do_precharge(precharge);
6097 }
6098
6099 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6100 static void __mem_cgroup_clear_mc(void)
6101 {
6102         struct mem_cgroup *from = mc.from;
6103         struct mem_cgroup *to = mc.to;
6104
6105         /* we must uncharge all the leftover precharges from mc.to */
6106         if (mc.precharge) {
6107                 cancel_charge(mc.to, mc.precharge);
6108                 mc.precharge = 0;
6109         }
6110         /*
6111          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6112          * we must uncharge here.
6113          */
6114         if (mc.moved_charge) {
6115                 cancel_charge(mc.from, mc.moved_charge);
6116                 mc.moved_charge = 0;
6117         }
6118         /* we must fixup refcnts and charges */
6119         if (mc.moved_swap) {
6120                 /* uncharge swap account from the old cgroup */
6121                 if (!mem_cgroup_is_root(mc.from))
6122                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6123
6124                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6125
6126                 /*
6127                  * we charged both to->memory and to->memsw, so we
6128                  * should uncharge to->memory.
6129                  */
6130                 if (!mem_cgroup_is_root(mc.to))
6131                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6132
6133                 mc.moved_swap = 0;
6134         }
6135         memcg_oom_recover(from);
6136         memcg_oom_recover(to);
6137         wake_up_all(&mc.waitq);
6138 }
6139
6140 static void mem_cgroup_clear_mc(void)
6141 {
6142         struct mm_struct *mm = mc.mm;
6143
6144         /*
6145          * we must clear moving_task before waking up waiters at the end of
6146          * task migration.
6147          */
6148         mc.moving_task = NULL;
6149         __mem_cgroup_clear_mc();
6150         spin_lock(&mc.lock);
6151         mc.from = NULL;
6152         mc.to = NULL;
6153         mc.mm = NULL;
6154         spin_unlock(&mc.lock);
6155
6156         mmput(mm);
6157 }
6158
6159 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6160 {
6161         struct cgroup_subsys_state *css;
6162         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6163         struct mem_cgroup *from;
6164         struct task_struct *leader, *p;
6165         struct mm_struct *mm;
6166         unsigned long move_flags;
6167         int ret = 0;
6168
6169         /* charge immigration isn't supported on the default hierarchy */
6170         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6171                 return 0;
6172
6173         /*
6174          * Multi-process migrations only happen on the default hierarchy
6175          * where charge immigration is not used.  Perform charge
6176          * immigration if @tset contains a leader and whine if there are
6177          * multiple.
6178          */
6179         p = NULL;
6180         cgroup_taskset_for_each_leader(leader, css, tset) {
6181                 WARN_ON_ONCE(p);
6182                 p = leader;
6183                 memcg = mem_cgroup_from_css(css);
6184         }
6185         if (!p)
6186                 return 0;
6187
6188         /*
6189          * We are now committed to this value whatever it is. Changes in this
6190          * tunable will only affect upcoming migrations, not the current one.
6191          * So we need to save it, and keep it going.
6192          */
6193         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6194         if (!move_flags)
6195                 return 0;
6196
6197         from = mem_cgroup_from_task(p);
6198
6199         VM_BUG_ON(from == memcg);
6200
6201         mm = get_task_mm(p);
6202         if (!mm)
6203                 return 0;
6204         /* We move charges only when we move a owner of the mm */
6205         if (mm->owner == p) {
6206                 VM_BUG_ON(mc.from);
6207                 VM_BUG_ON(mc.to);
6208                 VM_BUG_ON(mc.precharge);
6209                 VM_BUG_ON(mc.moved_charge);
6210                 VM_BUG_ON(mc.moved_swap);
6211
6212                 spin_lock(&mc.lock);
6213                 mc.mm = mm;
6214                 mc.from = from;
6215                 mc.to = memcg;
6216                 mc.flags = move_flags;
6217                 spin_unlock(&mc.lock);
6218                 /* We set mc.moving_task later */
6219
6220                 ret = mem_cgroup_precharge_mc(mm);
6221                 if (ret)
6222                         mem_cgroup_clear_mc();
6223         } else {
6224                 mmput(mm);
6225         }
6226         return ret;
6227 }
6228
6229 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6230 {
6231         if (mc.to)
6232                 mem_cgroup_clear_mc();
6233 }
6234
6235 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6236                                 unsigned long addr, unsigned long end,
6237                                 struct mm_walk *walk)
6238 {
6239         int ret = 0;
6240         struct vm_area_struct *vma = walk->vma;
6241         pte_t *pte;
6242         spinlock_t *ptl;
6243         enum mc_target_type target_type;
6244         union mc_target target;
6245         struct page *page;
6246
6247         ptl = pmd_trans_huge_lock(pmd, vma);
6248         if (ptl) {
6249                 if (mc.precharge < HPAGE_PMD_NR) {
6250                         spin_unlock(ptl);
6251                         return 0;
6252                 }
6253                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6254                 if (target_type == MC_TARGET_PAGE) {
6255                         page = target.page;
6256                         if (isolate_lru_page(page)) {
6257                                 if (!mem_cgroup_move_account(page, true,
6258                                                              mc.from, mc.to)) {
6259                                         mc.precharge -= HPAGE_PMD_NR;
6260                                         mc.moved_charge += HPAGE_PMD_NR;
6261                                 }
6262                                 putback_lru_page(page);
6263                         }
6264                         unlock_page(page);
6265                         put_page(page);
6266                 } else if (target_type == MC_TARGET_DEVICE) {
6267                         page = target.page;
6268                         if (!mem_cgroup_move_account(page, true,
6269                                                      mc.from, mc.to)) {
6270                                 mc.precharge -= HPAGE_PMD_NR;
6271                                 mc.moved_charge += HPAGE_PMD_NR;
6272                         }
6273                         unlock_page(page);
6274                         put_page(page);
6275                 }
6276                 spin_unlock(ptl);
6277                 return 0;
6278         }
6279
6280         if (pmd_trans_unstable(pmd))
6281                 return 0;
6282 retry:
6283         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6284         for (; addr != end; addr += PAGE_SIZE) {
6285                 pte_t ptent = *(pte++);
6286                 bool device = false;
6287                 swp_entry_t ent;
6288
6289                 if (!mc.precharge)
6290                         break;
6291
6292                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6293                 case MC_TARGET_DEVICE:
6294                         device = true;
6295                         fallthrough;
6296                 case MC_TARGET_PAGE:
6297                         page = target.page;
6298                         /*
6299                          * We can have a part of the split pmd here. Moving it
6300                          * can be done but it would be too convoluted so simply
6301                          * ignore such a partial THP and keep it in original
6302                          * memcg. There should be somebody mapping the head.
6303                          */
6304                         if (PageTransCompound(page))
6305                                 goto put;
6306                         if (!device && !isolate_lru_page(page))
6307                                 goto put;
6308                         if (!mem_cgroup_move_account(page, false,
6309                                                 mc.from, mc.to)) {
6310                                 mc.precharge--;
6311                                 /* we uncharge from mc.from later. */
6312                                 mc.moved_charge++;
6313                         }
6314                         if (!device)
6315                                 putback_lru_page(page);
6316 put:                    /* get_mctgt_type() gets & locks the page */
6317                         unlock_page(page);
6318                         put_page(page);
6319                         break;
6320                 case MC_TARGET_SWAP:
6321                         ent = target.ent;
6322                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6323                                 mc.precharge--;
6324                                 mem_cgroup_id_get_many(mc.to, 1);
6325                                 /* we fixup other refcnts and charges later. */
6326                                 mc.moved_swap++;
6327                         }
6328                         break;
6329                 default:
6330                         break;
6331                 }
6332         }
6333         pte_unmap_unlock(pte - 1, ptl);
6334         cond_resched();
6335
6336         if (addr != end) {
6337                 /*
6338                  * We have consumed all precharges we got in can_attach().
6339                  * We try charge one by one, but don't do any additional
6340                  * charges to mc.to if we have failed in charge once in attach()
6341                  * phase.
6342                  */
6343                 ret = mem_cgroup_do_precharge(1);
6344                 if (!ret)
6345                         goto retry;
6346         }
6347
6348         return ret;
6349 }
6350
6351 static const struct mm_walk_ops charge_walk_ops = {
6352         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6353 };
6354
6355 static void mem_cgroup_move_charge(void)
6356 {
6357         lru_add_drain_all();
6358         /*
6359          * Signal lock_page_memcg() to take the memcg's move_lock
6360          * while we're moving its pages to another memcg. Then wait
6361          * for already started RCU-only updates to finish.
6362          */
6363         atomic_inc(&mc.from->moving_account);
6364         synchronize_rcu();
6365 retry:
6366         if (unlikely(!mmap_read_trylock(mc.mm))) {
6367                 /*
6368                  * Someone who are holding the mmap_lock might be waiting in
6369                  * waitq. So we cancel all extra charges, wake up all waiters,
6370                  * and retry. Because we cancel precharges, we might not be able
6371                  * to move enough charges, but moving charge is a best-effort
6372                  * feature anyway, so it wouldn't be a big problem.
6373                  */
6374                 __mem_cgroup_clear_mc();
6375                 cond_resched();
6376                 goto retry;
6377         }
6378         /*
6379          * When we have consumed all precharges and failed in doing
6380          * additional charge, the page walk just aborts.
6381          */
6382         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6383         mmap_read_unlock(mc.mm);
6384         atomic_dec(&mc.from->moving_account);
6385 }
6386
6387 static void mem_cgroup_move_task(void)
6388 {
6389         if (mc.to) {
6390                 mem_cgroup_move_charge();
6391                 mem_cgroup_clear_mc();
6392         }
6393 }
6394 #else   /* !CONFIG_MMU */
6395 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6396 {
6397         return 0;
6398 }
6399 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6400 {
6401 }
6402 static void mem_cgroup_move_task(void)
6403 {
6404 }
6405 #endif
6406
6407 #ifdef CONFIG_LRU_GEN
6408 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6409 {
6410         struct task_struct *task;
6411         struct cgroup_subsys_state *css;
6412
6413         /* find the first leader if there is any */
6414         cgroup_taskset_for_each_leader(task, css, tset)
6415                 break;
6416
6417         if (!task)
6418                 return;
6419
6420         task_lock(task);
6421         if (task->mm && READ_ONCE(task->mm->owner) == task)
6422                 lru_gen_migrate_mm(task->mm);
6423         task_unlock(task);
6424 }
6425 #else
6426 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6427 {
6428 }
6429 #endif /* CONFIG_LRU_GEN */
6430
6431 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6432 {
6433         if (value == PAGE_COUNTER_MAX)
6434                 seq_puts(m, "max\n");
6435         else
6436                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6437
6438         return 0;
6439 }
6440
6441 static u64 memory_current_read(struct cgroup_subsys_state *css,
6442                                struct cftype *cft)
6443 {
6444         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6445
6446         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6447 }
6448
6449 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6450                             struct cftype *cft)
6451 {
6452         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6453
6454         return (u64)memcg->memory.watermark * PAGE_SIZE;
6455 }
6456
6457 static int memory_min_show(struct seq_file *m, void *v)
6458 {
6459         return seq_puts_memcg_tunable(m,
6460                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6461 }
6462
6463 static ssize_t memory_min_write(struct kernfs_open_file *of,
6464                                 char *buf, size_t nbytes, loff_t off)
6465 {
6466         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6467         unsigned long min;
6468         int err;
6469
6470         buf = strstrip(buf);
6471         err = page_counter_memparse(buf, "max", &min);
6472         if (err)
6473                 return err;
6474
6475         page_counter_set_min(&memcg->memory, min);
6476
6477         return nbytes;
6478 }
6479
6480 static int memory_low_show(struct seq_file *m, void *v)
6481 {
6482         return seq_puts_memcg_tunable(m,
6483                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6484 }
6485
6486 static ssize_t memory_low_write(struct kernfs_open_file *of,
6487                                 char *buf, size_t nbytes, loff_t off)
6488 {
6489         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6490         unsigned long low;
6491         int err;
6492
6493         buf = strstrip(buf);
6494         err = page_counter_memparse(buf, "max", &low);
6495         if (err)
6496                 return err;
6497
6498         page_counter_set_low(&memcg->memory, low);
6499
6500         return nbytes;
6501 }
6502
6503 static int memory_high_show(struct seq_file *m, void *v)
6504 {
6505         return seq_puts_memcg_tunable(m,
6506                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6507 }
6508
6509 static ssize_t memory_high_write(struct kernfs_open_file *of,
6510                                  char *buf, size_t nbytes, loff_t off)
6511 {
6512         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6513         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6514         bool drained = false;
6515         unsigned long high;
6516         int err;
6517
6518         buf = strstrip(buf);
6519         err = page_counter_memparse(buf, "max", &high);
6520         if (err)
6521                 return err;
6522
6523         page_counter_set_high(&memcg->memory, high);
6524
6525         for (;;) {
6526                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6527                 unsigned long reclaimed;
6528
6529                 if (nr_pages <= high)
6530                         break;
6531
6532                 if (signal_pending(current))
6533                         break;
6534
6535                 if (!drained) {
6536                         drain_all_stock(memcg);
6537                         drained = true;
6538                         continue;
6539                 }
6540
6541                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6542                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6543
6544                 if (!reclaimed && !nr_retries--)
6545                         break;
6546         }
6547
6548         memcg_wb_domain_size_changed(memcg);
6549         return nbytes;
6550 }
6551
6552 static int memory_max_show(struct seq_file *m, void *v)
6553 {
6554         return seq_puts_memcg_tunable(m,
6555                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6556 }
6557
6558 static ssize_t memory_max_write(struct kernfs_open_file *of,
6559                                 char *buf, size_t nbytes, loff_t off)
6560 {
6561         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6562         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6563         bool drained = false;
6564         unsigned long max;
6565         int err;
6566
6567         buf = strstrip(buf);
6568         err = page_counter_memparse(buf, "max", &max);
6569         if (err)
6570                 return err;
6571
6572         xchg(&memcg->memory.max, max);
6573
6574         for (;;) {
6575                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6576
6577                 if (nr_pages <= max)
6578                         break;
6579
6580                 if (signal_pending(current))
6581                         break;
6582
6583                 if (!drained) {
6584                         drain_all_stock(memcg);
6585                         drained = true;
6586                         continue;
6587                 }
6588
6589                 if (nr_reclaims) {
6590                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6591                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6592                                 nr_reclaims--;
6593                         continue;
6594                 }
6595
6596                 memcg_memory_event(memcg, MEMCG_OOM);
6597                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6598                         break;
6599         }
6600
6601         memcg_wb_domain_size_changed(memcg);
6602         return nbytes;
6603 }
6604
6605 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6606 {
6607         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6608         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6609         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6610         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6611         seq_printf(m, "oom_kill %lu\n",
6612                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6613         seq_printf(m, "oom_group_kill %lu\n",
6614                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6615 }
6616
6617 static int memory_events_show(struct seq_file *m, void *v)
6618 {
6619         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6620
6621         __memory_events_show(m, memcg->memory_events);
6622         return 0;
6623 }
6624
6625 static int memory_events_local_show(struct seq_file *m, void *v)
6626 {
6627         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6628
6629         __memory_events_show(m, memcg->memory_events_local);
6630         return 0;
6631 }
6632
6633 static int memory_stat_show(struct seq_file *m, void *v)
6634 {
6635         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6636         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6637
6638         if (!buf)
6639                 return -ENOMEM;
6640         memory_stat_format(memcg, buf, PAGE_SIZE);
6641         seq_puts(m, buf);
6642         kfree(buf);
6643         return 0;
6644 }
6645
6646 #ifdef CONFIG_NUMA
6647 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6648                                                      int item)
6649 {
6650         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6651 }
6652
6653 static int memory_numa_stat_show(struct seq_file *m, void *v)
6654 {
6655         int i;
6656         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6657
6658         mem_cgroup_flush_stats();
6659
6660         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6661                 int nid;
6662
6663                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6664                         continue;
6665
6666                 seq_printf(m, "%s", memory_stats[i].name);
6667                 for_each_node_state(nid, N_MEMORY) {
6668                         u64 size;
6669                         struct lruvec *lruvec;
6670
6671                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6672                         size = lruvec_page_state_output(lruvec,
6673                                                         memory_stats[i].idx);
6674                         seq_printf(m, " N%d=%llu", nid, size);
6675                 }
6676                 seq_putc(m, '\n');
6677         }
6678
6679         return 0;
6680 }
6681 #endif
6682
6683 static int memory_oom_group_show(struct seq_file *m, void *v)
6684 {
6685         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6686
6687         seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6688
6689         return 0;
6690 }
6691
6692 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6693                                       char *buf, size_t nbytes, loff_t off)
6694 {
6695         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6696         int ret, oom_group;
6697
6698         buf = strstrip(buf);
6699         if (!buf)
6700                 return -EINVAL;
6701
6702         ret = kstrtoint(buf, 0, &oom_group);
6703         if (ret)
6704                 return ret;
6705
6706         if (oom_group != 0 && oom_group != 1)
6707                 return -EINVAL;
6708
6709         WRITE_ONCE(memcg->oom_group, oom_group);
6710
6711         return nbytes;
6712 }
6713
6714 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6715                               size_t nbytes, loff_t off)
6716 {
6717         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6718         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6719         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6720         unsigned int reclaim_options;
6721         int err;
6722
6723         buf = strstrip(buf);
6724         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6725         if (err)
6726                 return err;
6727
6728         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6729         while (nr_reclaimed < nr_to_reclaim) {
6730                 unsigned long reclaimed;
6731
6732                 if (signal_pending(current))
6733                         return -EINTR;
6734
6735                 /*
6736                  * This is the final attempt, drain percpu lru caches in the
6737                  * hope of introducing more evictable pages for
6738                  * try_to_free_mem_cgroup_pages().
6739                  */
6740                 if (!nr_retries)
6741                         lru_add_drain_all();
6742
6743                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6744                                                 nr_to_reclaim - nr_reclaimed,
6745                                                 GFP_KERNEL, reclaim_options);
6746
6747                 if (!reclaimed && !nr_retries--)
6748                         return -EAGAIN;
6749
6750                 nr_reclaimed += reclaimed;
6751         }
6752
6753         return nbytes;
6754 }
6755
6756 static struct cftype memory_files[] = {
6757         {
6758                 .name = "current",
6759                 .flags = CFTYPE_NOT_ON_ROOT,
6760                 .read_u64 = memory_current_read,
6761         },
6762         {
6763                 .name = "peak",
6764                 .flags = CFTYPE_NOT_ON_ROOT,
6765                 .read_u64 = memory_peak_read,
6766         },
6767         {
6768                 .name = "min",
6769                 .flags = CFTYPE_NOT_ON_ROOT,
6770                 .seq_show = memory_min_show,
6771                 .write = memory_min_write,
6772         },
6773         {
6774                 .name = "low",
6775                 .flags = CFTYPE_NOT_ON_ROOT,
6776                 .seq_show = memory_low_show,
6777                 .write = memory_low_write,
6778         },
6779         {
6780                 .name = "high",
6781                 .flags = CFTYPE_NOT_ON_ROOT,
6782                 .seq_show = memory_high_show,
6783                 .write = memory_high_write,
6784         },
6785         {
6786                 .name = "max",
6787                 .flags = CFTYPE_NOT_ON_ROOT,
6788                 .seq_show = memory_max_show,
6789                 .write = memory_max_write,
6790         },
6791         {
6792                 .name = "events",
6793                 .flags = CFTYPE_NOT_ON_ROOT,
6794                 .file_offset = offsetof(struct mem_cgroup, events_file),
6795                 .seq_show = memory_events_show,
6796         },
6797         {
6798                 .name = "events.local",
6799                 .flags = CFTYPE_NOT_ON_ROOT,
6800                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6801                 .seq_show = memory_events_local_show,
6802         },
6803         {
6804                 .name = "stat",
6805                 .seq_show = memory_stat_show,
6806         },
6807 #ifdef CONFIG_NUMA
6808         {
6809                 .name = "numa_stat",
6810                 .seq_show = memory_numa_stat_show,
6811         },
6812 #endif
6813         {
6814                 .name = "oom.group",
6815                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6816                 .seq_show = memory_oom_group_show,
6817                 .write = memory_oom_group_write,
6818         },
6819         {
6820                 .name = "reclaim",
6821                 .flags = CFTYPE_NS_DELEGATABLE,
6822                 .write = memory_reclaim,
6823         },
6824         { }     /* terminate */
6825 };
6826
6827 struct cgroup_subsys memory_cgrp_subsys = {
6828         .css_alloc = mem_cgroup_css_alloc,
6829         .css_online = mem_cgroup_css_online,
6830         .css_offline = mem_cgroup_css_offline,
6831         .css_released = mem_cgroup_css_released,
6832         .css_free = mem_cgroup_css_free,
6833         .css_reset = mem_cgroup_css_reset,
6834         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6835         .can_attach = mem_cgroup_can_attach,
6836         .attach = mem_cgroup_attach,
6837         .cancel_attach = mem_cgroup_cancel_attach,
6838         .post_attach = mem_cgroup_move_task,
6839         .dfl_cftypes = memory_files,
6840         .legacy_cftypes = mem_cgroup_legacy_files,
6841         .early_init = 0,
6842 };
6843
6844 /*
6845  * This function calculates an individual cgroup's effective
6846  * protection which is derived from its own memory.min/low, its
6847  * parent's and siblings' settings, as well as the actual memory
6848  * distribution in the tree.
6849  *
6850  * The following rules apply to the effective protection values:
6851  *
6852  * 1. At the first level of reclaim, effective protection is equal to
6853  *    the declared protection in memory.min and memory.low.
6854  *
6855  * 2. To enable safe delegation of the protection configuration, at
6856  *    subsequent levels the effective protection is capped to the
6857  *    parent's effective protection.
6858  *
6859  * 3. To make complex and dynamic subtrees easier to configure, the
6860  *    user is allowed to overcommit the declared protection at a given
6861  *    level. If that is the case, the parent's effective protection is
6862  *    distributed to the children in proportion to how much protection
6863  *    they have declared and how much of it they are utilizing.
6864  *
6865  *    This makes distribution proportional, but also work-conserving:
6866  *    if one cgroup claims much more protection than it uses memory,
6867  *    the unused remainder is available to its siblings.
6868  *
6869  * 4. Conversely, when the declared protection is undercommitted at a
6870  *    given level, the distribution of the larger parental protection
6871  *    budget is NOT proportional. A cgroup's protection from a sibling
6872  *    is capped to its own memory.min/low setting.
6873  *
6874  * 5. However, to allow protecting recursive subtrees from each other
6875  *    without having to declare each individual cgroup's fixed share
6876  *    of the ancestor's claim to protection, any unutilized -
6877  *    "floating" - protection from up the tree is distributed in
6878  *    proportion to each cgroup's *usage*. This makes the protection
6879  *    neutral wrt sibling cgroups and lets them compete freely over
6880  *    the shared parental protection budget, but it protects the
6881  *    subtree as a whole from neighboring subtrees.
6882  *
6883  * Note that 4. and 5. are not in conflict: 4. is about protecting
6884  * against immediate siblings whereas 5. is about protecting against
6885  * neighboring subtrees.
6886  */
6887 static unsigned long effective_protection(unsigned long usage,
6888                                           unsigned long parent_usage,
6889                                           unsigned long setting,
6890                                           unsigned long parent_effective,
6891                                           unsigned long siblings_protected)
6892 {
6893         unsigned long protected;
6894         unsigned long ep;
6895
6896         protected = min(usage, setting);
6897         /*
6898          * If all cgroups at this level combined claim and use more
6899          * protection then what the parent affords them, distribute
6900          * shares in proportion to utilization.
6901          *
6902          * We are using actual utilization rather than the statically
6903          * claimed protection in order to be work-conserving: claimed
6904          * but unused protection is available to siblings that would
6905          * otherwise get a smaller chunk than what they claimed.
6906          */
6907         if (siblings_protected > parent_effective)
6908                 return protected * parent_effective / siblings_protected;
6909
6910         /*
6911          * Ok, utilized protection of all children is within what the
6912          * parent affords them, so we know whatever this child claims
6913          * and utilizes is effectively protected.
6914          *
6915          * If there is unprotected usage beyond this value, reclaim
6916          * will apply pressure in proportion to that amount.
6917          *
6918          * If there is unutilized protection, the cgroup will be fully
6919          * shielded from reclaim, but we do return a smaller value for
6920          * protection than what the group could enjoy in theory. This
6921          * is okay. With the overcommit distribution above, effective
6922          * protection is always dependent on how memory is actually
6923          * consumed among the siblings anyway.
6924          */
6925         ep = protected;
6926
6927         /*
6928          * If the children aren't claiming (all of) the protection
6929          * afforded to them by the parent, distribute the remainder in
6930          * proportion to the (unprotected) memory of each cgroup. That
6931          * way, cgroups that aren't explicitly prioritized wrt each
6932          * other compete freely over the allowance, but they are
6933          * collectively protected from neighboring trees.
6934          *
6935          * We're using unprotected memory for the weight so that if
6936          * some cgroups DO claim explicit protection, we don't protect
6937          * the same bytes twice.
6938          *
6939          * Check both usage and parent_usage against the respective
6940          * protected values. One should imply the other, but they
6941          * aren't read atomically - make sure the division is sane.
6942          */
6943         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6944                 return ep;
6945         if (parent_effective > siblings_protected &&
6946             parent_usage > siblings_protected &&
6947             usage > protected) {
6948                 unsigned long unclaimed;
6949
6950                 unclaimed = parent_effective - siblings_protected;
6951                 unclaimed *= usage - protected;
6952                 unclaimed /= parent_usage - siblings_protected;
6953
6954                 ep += unclaimed;
6955         }
6956
6957         return ep;
6958 }
6959
6960 /**
6961  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6962  * @root: the top ancestor of the sub-tree being checked
6963  * @memcg: the memory cgroup to check
6964  *
6965  * WARNING: This function is not stateless! It can only be used as part
6966  *          of a top-down tree iteration, not for isolated queries.
6967  */
6968 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6969                                      struct mem_cgroup *memcg)
6970 {
6971         unsigned long usage, parent_usage;
6972         struct mem_cgroup *parent;
6973
6974         if (mem_cgroup_disabled())
6975                 return;
6976
6977         if (!root)
6978                 root = root_mem_cgroup;
6979
6980         /*
6981          * Effective values of the reclaim targets are ignored so they
6982          * can be stale. Have a look at mem_cgroup_protection for more
6983          * details.
6984          * TODO: calculation should be more robust so that we do not need
6985          * that special casing.
6986          */
6987         if (memcg == root)
6988                 return;
6989
6990         usage = page_counter_read(&memcg->memory);
6991         if (!usage)
6992                 return;
6993
6994         parent = parent_mem_cgroup(memcg);
6995
6996         if (parent == root) {
6997                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6998                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6999                 return;
7000         }
7001
7002         parent_usage = page_counter_read(&parent->memory);
7003
7004         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7005                         READ_ONCE(memcg->memory.min),
7006                         READ_ONCE(parent->memory.emin),
7007                         atomic_long_read(&parent->memory.children_min_usage)));
7008
7009         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7010                         READ_ONCE(memcg->memory.low),
7011                         READ_ONCE(parent->memory.elow),
7012                         atomic_long_read(&parent->memory.children_low_usage)));
7013 }
7014
7015 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7016                         gfp_t gfp)
7017 {
7018         long nr_pages = folio_nr_pages(folio);
7019         int ret;
7020
7021         ret = try_charge(memcg, gfp, nr_pages);
7022         if (ret)
7023                 goto out;
7024
7025         css_get(&memcg->css);
7026         commit_charge(folio, memcg);
7027
7028         local_irq_disable();
7029         mem_cgroup_charge_statistics(memcg, nr_pages);
7030         memcg_check_events(memcg, folio_nid(folio));
7031         local_irq_enable();
7032 out:
7033         return ret;
7034 }
7035
7036 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7037 {
7038         struct mem_cgroup *memcg;
7039         int ret;
7040
7041         memcg = get_mem_cgroup_from_mm(mm);
7042         ret = charge_memcg(folio, memcg, gfp);
7043         css_put(&memcg->css);
7044
7045         return ret;
7046 }
7047
7048 /**
7049  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7050  * @folio: folio to charge.
7051  * @mm: mm context of the victim
7052  * @gfp: reclaim mode
7053  * @entry: swap entry for which the folio is allocated
7054  *
7055  * This function charges a folio allocated for swapin. Please call this before
7056  * adding the folio to the swapcache.
7057  *
7058  * Returns 0 on success. Otherwise, an error code is returned.
7059  */
7060 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7061                                   gfp_t gfp, swp_entry_t entry)
7062 {
7063         struct mem_cgroup *memcg;
7064         unsigned short id;
7065         int ret;
7066
7067         if (mem_cgroup_disabled())
7068                 return 0;
7069
7070         id = lookup_swap_cgroup_id(entry);
7071         rcu_read_lock();
7072         memcg = mem_cgroup_from_id(id);
7073         if (!memcg || !css_tryget_online(&memcg->css))
7074                 memcg = get_mem_cgroup_from_mm(mm);
7075         rcu_read_unlock();
7076
7077         ret = charge_memcg(folio, memcg, gfp);
7078
7079         css_put(&memcg->css);
7080         return ret;
7081 }
7082
7083 /*
7084  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7085  * @entry: swap entry for which the page is charged
7086  *
7087  * Call this function after successfully adding the charged page to swapcache.
7088  *
7089  * Note: This function assumes the page for which swap slot is being uncharged
7090  * is order 0 page.
7091  */
7092 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7093 {
7094         /*
7095          * Cgroup1's unified memory+swap counter has been charged with the
7096          * new swapcache page, finish the transfer by uncharging the swap
7097          * slot. The swap slot would also get uncharged when it dies, but
7098          * it can stick around indefinitely and we'd count the page twice
7099          * the entire time.
7100          *
7101          * Cgroup2 has separate resource counters for memory and swap,
7102          * so this is a non-issue here. Memory and swap charge lifetimes
7103          * correspond 1:1 to page and swap slot lifetimes: we charge the
7104          * page to memory here, and uncharge swap when the slot is freed.
7105          */
7106         if (!mem_cgroup_disabled() && do_memsw_account()) {
7107                 /*
7108                  * The swap entry might not get freed for a long time,
7109                  * let's not wait for it.  The page already received a
7110                  * memory+swap charge, drop the swap entry duplicate.
7111                  */
7112                 mem_cgroup_uncharge_swap(entry, 1);
7113         }
7114 }
7115
7116 struct uncharge_gather {
7117         struct mem_cgroup *memcg;
7118         unsigned long nr_memory;
7119         unsigned long pgpgout;
7120         unsigned long nr_kmem;
7121         int nid;
7122 };
7123
7124 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7125 {
7126         memset(ug, 0, sizeof(*ug));
7127 }
7128
7129 static void uncharge_batch(const struct uncharge_gather *ug)
7130 {
7131         unsigned long flags;
7132
7133         if (ug->nr_memory) {
7134                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7135                 if (do_memsw_account())
7136                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7137                 if (ug->nr_kmem)
7138                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7139                 memcg_oom_recover(ug->memcg);
7140         }
7141
7142         local_irq_save(flags);
7143         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7144         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7145         memcg_check_events(ug->memcg, ug->nid);
7146         local_irq_restore(flags);
7147
7148         /* drop reference from uncharge_folio */
7149         css_put(&ug->memcg->css);
7150 }
7151
7152 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7153 {
7154         long nr_pages;
7155         struct mem_cgroup *memcg;
7156         struct obj_cgroup *objcg;
7157
7158         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7159
7160         /*
7161          * Nobody should be changing or seriously looking at
7162          * folio memcg or objcg at this point, we have fully
7163          * exclusive access to the folio.
7164          */
7165         if (folio_memcg_kmem(folio)) {
7166                 objcg = __folio_objcg(folio);
7167                 /*
7168                  * This get matches the put at the end of the function and
7169                  * kmem pages do not hold memcg references anymore.
7170                  */
7171                 memcg = get_mem_cgroup_from_objcg(objcg);
7172         } else {
7173                 memcg = __folio_memcg(folio);
7174         }
7175
7176         if (!memcg)
7177                 return;
7178
7179         if (ug->memcg != memcg) {
7180                 if (ug->memcg) {
7181                         uncharge_batch(ug);
7182                         uncharge_gather_clear(ug);
7183                 }
7184                 ug->memcg = memcg;
7185                 ug->nid = folio_nid(folio);
7186
7187                 /* pairs with css_put in uncharge_batch */
7188                 css_get(&memcg->css);
7189         }
7190
7191         nr_pages = folio_nr_pages(folio);
7192
7193         if (folio_memcg_kmem(folio)) {
7194                 ug->nr_memory += nr_pages;
7195                 ug->nr_kmem += nr_pages;
7196
7197                 folio->memcg_data = 0;
7198                 obj_cgroup_put(objcg);
7199         } else {
7200                 /* LRU pages aren't accounted at the root level */
7201                 if (!mem_cgroup_is_root(memcg))
7202                         ug->nr_memory += nr_pages;
7203                 ug->pgpgout++;
7204
7205                 folio->memcg_data = 0;
7206         }
7207
7208         css_put(&memcg->css);
7209 }
7210
7211 void __mem_cgroup_uncharge(struct folio *folio)
7212 {
7213         struct uncharge_gather ug;
7214
7215         /* Don't touch folio->lru of any random page, pre-check: */
7216         if (!folio_memcg(folio))
7217                 return;
7218
7219         uncharge_gather_clear(&ug);
7220         uncharge_folio(folio, &ug);
7221         uncharge_batch(&ug);
7222 }
7223
7224 /**
7225  * __mem_cgroup_uncharge_list - uncharge a list of page
7226  * @page_list: list of pages to uncharge
7227  *
7228  * Uncharge a list of pages previously charged with
7229  * __mem_cgroup_charge().
7230  */
7231 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7232 {
7233         struct uncharge_gather ug;
7234         struct folio *folio;
7235
7236         uncharge_gather_clear(&ug);
7237         list_for_each_entry(folio, page_list, lru)
7238                 uncharge_folio(folio, &ug);
7239         if (ug.memcg)
7240                 uncharge_batch(&ug);
7241 }
7242
7243 /**
7244  * mem_cgroup_migrate - Charge a folio's replacement.
7245  * @old: Currently circulating folio.
7246  * @new: Replacement folio.
7247  *
7248  * Charge @new as a replacement folio for @old. @old will
7249  * be uncharged upon free.
7250  *
7251  * Both folios must be locked, @new->mapping must be set up.
7252  */
7253 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7254 {
7255         struct mem_cgroup *memcg;
7256         long nr_pages = folio_nr_pages(new);
7257         unsigned long flags;
7258
7259         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7260         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7261         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7262         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7263
7264         if (mem_cgroup_disabled())
7265                 return;
7266
7267         /* Page cache replacement: new folio already charged? */
7268         if (folio_memcg(new))
7269                 return;
7270
7271         memcg = folio_memcg(old);
7272         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7273         if (!memcg)
7274                 return;
7275
7276         /* Force-charge the new page. The old one will be freed soon */
7277         if (!mem_cgroup_is_root(memcg)) {
7278                 page_counter_charge(&memcg->memory, nr_pages);
7279                 if (do_memsw_account())
7280                         page_counter_charge(&memcg->memsw, nr_pages);
7281         }
7282
7283         css_get(&memcg->css);
7284         commit_charge(new, memcg);
7285
7286         local_irq_save(flags);
7287         mem_cgroup_charge_statistics(memcg, nr_pages);
7288         memcg_check_events(memcg, folio_nid(new));
7289         local_irq_restore(flags);
7290 }
7291
7292 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7293 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7294
7295 void mem_cgroup_sk_alloc(struct sock *sk)
7296 {
7297         struct mem_cgroup *memcg;
7298
7299         if (!mem_cgroup_sockets_enabled)
7300                 return;
7301
7302         /* Do not associate the sock with unrelated interrupted task's memcg. */
7303         if (!in_task())
7304                 return;
7305
7306         rcu_read_lock();
7307         memcg = mem_cgroup_from_task(current);
7308         if (mem_cgroup_is_root(memcg))
7309                 goto out;
7310         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7311                 goto out;
7312         if (css_tryget(&memcg->css))
7313                 sk->sk_memcg = memcg;
7314 out:
7315         rcu_read_unlock();
7316 }
7317
7318 void mem_cgroup_sk_free(struct sock *sk)
7319 {
7320         if (sk->sk_memcg)
7321                 css_put(&sk->sk_memcg->css);
7322 }
7323
7324 /**
7325  * mem_cgroup_charge_skmem - charge socket memory
7326  * @memcg: memcg to charge
7327  * @nr_pages: number of pages to charge
7328  * @gfp_mask: reclaim mode
7329  *
7330  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7331  * @memcg's configured limit, %false if it doesn't.
7332  */
7333 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7334                              gfp_t gfp_mask)
7335 {
7336         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7337                 struct page_counter *fail;
7338
7339                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7340                         memcg->tcpmem_pressure = 0;
7341                         return true;
7342                 }
7343                 memcg->tcpmem_pressure = 1;
7344                 if (gfp_mask & __GFP_NOFAIL) {
7345                         page_counter_charge(&memcg->tcpmem, nr_pages);
7346                         return true;
7347                 }
7348                 return false;
7349         }
7350
7351         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7352                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7353                 return true;
7354         }
7355
7356         return false;
7357 }
7358
7359 /**
7360  * mem_cgroup_uncharge_skmem - uncharge socket memory
7361  * @memcg: memcg to uncharge
7362  * @nr_pages: number of pages to uncharge
7363  */
7364 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7365 {
7366         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7367                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7368                 return;
7369         }
7370
7371         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7372
7373         refill_stock(memcg, nr_pages);
7374 }
7375
7376 static int __init cgroup_memory(char *s)
7377 {
7378         char *token;
7379
7380         while ((token = strsep(&s, ",")) != NULL) {
7381                 if (!*token)
7382                         continue;
7383                 if (!strcmp(token, "nosocket"))
7384                         cgroup_memory_nosocket = true;
7385                 if (!strcmp(token, "nokmem"))
7386                         cgroup_memory_nokmem = true;
7387                 if (!strcmp(token, "nobpf"))
7388                         cgroup_memory_nobpf = true;
7389         }
7390         return 1;
7391 }
7392 __setup("cgroup.memory=", cgroup_memory);
7393
7394 /*
7395  * subsys_initcall() for memory controller.
7396  *
7397  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7398  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7399  * basically everything that doesn't depend on a specific mem_cgroup structure
7400  * should be initialized from here.
7401  */
7402 static int __init mem_cgroup_init(void)
7403 {
7404         int cpu, node;
7405
7406         /*
7407          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7408          * used for per-memcg-per-cpu caching of per-node statistics. In order
7409          * to work fine, we should make sure that the overfill threshold can't
7410          * exceed S32_MAX / PAGE_SIZE.
7411          */
7412         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7413
7414         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7415                                   memcg_hotplug_cpu_dead);
7416
7417         for_each_possible_cpu(cpu)
7418                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7419                           drain_local_stock);
7420
7421         for_each_node(node) {
7422                 struct mem_cgroup_tree_per_node *rtpn;
7423
7424                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7425                                     node_online(node) ? node : NUMA_NO_NODE);
7426
7427                 rtpn->rb_root = RB_ROOT;
7428                 rtpn->rb_rightmost = NULL;
7429                 spin_lock_init(&rtpn->lock);
7430                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7431         }
7432
7433         return 0;
7434 }
7435 subsys_initcall(mem_cgroup_init);
7436
7437 #ifdef CONFIG_SWAP
7438 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7439 {
7440         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7441                 /*
7442                  * The root cgroup cannot be destroyed, so it's refcount must
7443                  * always be >= 1.
7444                  */
7445                 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7446                         VM_BUG_ON(1);
7447                         break;
7448                 }
7449                 memcg = parent_mem_cgroup(memcg);
7450                 if (!memcg)
7451                         memcg = root_mem_cgroup;
7452         }
7453         return memcg;
7454 }
7455
7456 /**
7457  * mem_cgroup_swapout - transfer a memsw charge to swap
7458  * @folio: folio whose memsw charge to transfer
7459  * @entry: swap entry to move the charge to
7460  *
7461  * Transfer the memsw charge of @folio to @entry.
7462  */
7463 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7464 {
7465         struct mem_cgroup *memcg, *swap_memcg;
7466         unsigned int nr_entries;
7467         unsigned short oldid;
7468
7469         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7470         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7471
7472         if (mem_cgroup_disabled())
7473                 return;
7474
7475         if (!do_memsw_account())
7476                 return;
7477
7478         memcg = folio_memcg(folio);
7479
7480         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7481         if (!memcg)
7482                 return;
7483
7484         /*
7485          * In case the memcg owning these pages has been offlined and doesn't
7486          * have an ID allocated to it anymore, charge the closest online
7487          * ancestor for the swap instead and transfer the memory+swap charge.
7488          */
7489         swap_memcg = mem_cgroup_id_get_online(memcg);
7490         nr_entries = folio_nr_pages(folio);
7491         /* Get references for the tail pages, too */
7492         if (nr_entries > 1)
7493                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7494         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7495                                    nr_entries);
7496         VM_BUG_ON_FOLIO(oldid, folio);
7497         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7498
7499         folio->memcg_data = 0;
7500
7501         if (!mem_cgroup_is_root(memcg))
7502                 page_counter_uncharge(&memcg->memory, nr_entries);
7503
7504         if (memcg != swap_memcg) {
7505                 if (!mem_cgroup_is_root(swap_memcg))
7506                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7507                 page_counter_uncharge(&memcg->memsw, nr_entries);
7508         }
7509
7510         /*
7511          * Interrupts should be disabled here because the caller holds the
7512          * i_pages lock which is taken with interrupts-off. It is
7513          * important here to have the interrupts disabled because it is the
7514          * only synchronisation we have for updating the per-CPU variables.
7515          */
7516         memcg_stats_lock();
7517         mem_cgroup_charge_statistics(memcg, -nr_entries);
7518         memcg_stats_unlock();
7519         memcg_check_events(memcg, folio_nid(folio));
7520
7521         css_put(&memcg->css);
7522 }
7523
7524 /**
7525  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7526  * @folio: folio being added to swap
7527  * @entry: swap entry to charge
7528  *
7529  * Try to charge @folio's memcg for the swap space at @entry.
7530  *
7531  * Returns 0 on success, -ENOMEM on failure.
7532  */
7533 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7534 {
7535         unsigned int nr_pages = folio_nr_pages(folio);
7536         struct page_counter *counter;
7537         struct mem_cgroup *memcg;
7538         unsigned short oldid;
7539
7540         if (do_memsw_account())
7541                 return 0;
7542
7543         memcg = folio_memcg(folio);
7544
7545         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7546         if (!memcg)
7547                 return 0;
7548
7549         if (!entry.val) {
7550                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7551                 return 0;
7552         }
7553
7554         memcg = mem_cgroup_id_get_online(memcg);
7555
7556         if (!mem_cgroup_is_root(memcg) &&
7557             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7558                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7559                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7560                 mem_cgroup_id_put(memcg);
7561                 return -ENOMEM;
7562         }
7563
7564         /* Get references for the tail pages, too */
7565         if (nr_pages > 1)
7566                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7567         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7568         VM_BUG_ON_FOLIO(oldid, folio);
7569         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7570
7571         return 0;
7572 }
7573
7574 /**
7575  * __mem_cgroup_uncharge_swap - uncharge swap space
7576  * @entry: swap entry to uncharge
7577  * @nr_pages: the amount of swap space to uncharge
7578  */
7579 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7580 {
7581         struct mem_cgroup *memcg;
7582         unsigned short id;
7583
7584         if (mem_cgroup_disabled())
7585                 return;
7586
7587         id = swap_cgroup_record(entry, 0, nr_pages);
7588         rcu_read_lock();
7589         memcg = mem_cgroup_from_id(id);
7590         if (memcg) {
7591                 if (!mem_cgroup_is_root(memcg)) {
7592                         if (do_memsw_account())
7593                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7594                         else
7595                                 page_counter_uncharge(&memcg->swap, nr_pages);
7596                 }
7597                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7598                 mem_cgroup_id_put_many(memcg, nr_pages);
7599         }
7600         rcu_read_unlock();
7601 }
7602
7603 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7604 {
7605         long nr_swap_pages = get_nr_swap_pages();
7606
7607         if (mem_cgroup_disabled() || do_memsw_account())
7608                 return nr_swap_pages;
7609         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7610                 nr_swap_pages = min_t(long, nr_swap_pages,
7611                                       READ_ONCE(memcg->swap.max) -
7612                                       page_counter_read(&memcg->swap));
7613         return nr_swap_pages;
7614 }
7615
7616 bool mem_cgroup_swap_full(struct folio *folio)
7617 {
7618         struct mem_cgroup *memcg;
7619
7620         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7621
7622         if (vm_swap_full())
7623                 return true;
7624         if (do_memsw_account())
7625                 return false;
7626
7627         memcg = folio_memcg(folio);
7628         if (!memcg)
7629                 return false;
7630
7631         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7632                 unsigned long usage = page_counter_read(&memcg->swap);
7633
7634                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7635                     usage * 2 >= READ_ONCE(memcg->swap.max))
7636                         return true;
7637         }
7638
7639         return false;
7640 }
7641
7642 static int __init setup_swap_account(char *s)
7643 {
7644         pr_warn_once("The swapaccount= commandline option is deprecated. "
7645                      "Please report your usecase to linux-mm@kvack.org if you "
7646                      "depend on this functionality.\n");
7647         return 1;
7648 }
7649 __setup("swapaccount=", setup_swap_account);
7650
7651 static u64 swap_current_read(struct cgroup_subsys_state *css,
7652                              struct cftype *cft)
7653 {
7654         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7655
7656         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7657 }
7658
7659 static int swap_high_show(struct seq_file *m, void *v)
7660 {
7661         return seq_puts_memcg_tunable(m,
7662                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7663 }
7664
7665 static ssize_t swap_high_write(struct kernfs_open_file *of,
7666                                char *buf, size_t nbytes, loff_t off)
7667 {
7668         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7669         unsigned long high;
7670         int err;
7671
7672         buf = strstrip(buf);
7673         err = page_counter_memparse(buf, "max", &high);
7674         if (err)
7675                 return err;
7676
7677         page_counter_set_high(&memcg->swap, high);
7678
7679         return nbytes;
7680 }
7681
7682 static int swap_max_show(struct seq_file *m, void *v)
7683 {
7684         return seq_puts_memcg_tunable(m,
7685                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7686 }
7687
7688 static ssize_t swap_max_write(struct kernfs_open_file *of,
7689                               char *buf, size_t nbytes, loff_t off)
7690 {
7691         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7692         unsigned long max;
7693         int err;
7694
7695         buf = strstrip(buf);
7696         err = page_counter_memparse(buf, "max", &max);
7697         if (err)
7698                 return err;
7699
7700         xchg(&memcg->swap.max, max);
7701
7702         return nbytes;
7703 }
7704
7705 static int swap_events_show(struct seq_file *m, void *v)
7706 {
7707         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7708
7709         seq_printf(m, "high %lu\n",
7710                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7711         seq_printf(m, "max %lu\n",
7712                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7713         seq_printf(m, "fail %lu\n",
7714                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7715
7716         return 0;
7717 }
7718
7719 static struct cftype swap_files[] = {
7720         {
7721                 .name = "swap.current",
7722                 .flags = CFTYPE_NOT_ON_ROOT,
7723                 .read_u64 = swap_current_read,
7724         },
7725         {
7726                 .name = "swap.high",
7727                 .flags = CFTYPE_NOT_ON_ROOT,
7728                 .seq_show = swap_high_show,
7729                 .write = swap_high_write,
7730         },
7731         {
7732                 .name = "swap.max",
7733                 .flags = CFTYPE_NOT_ON_ROOT,
7734                 .seq_show = swap_max_show,
7735                 .write = swap_max_write,
7736         },
7737         {
7738                 .name = "swap.events",
7739                 .flags = CFTYPE_NOT_ON_ROOT,
7740                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7741                 .seq_show = swap_events_show,
7742         },
7743         { }     /* terminate */
7744 };
7745
7746 static struct cftype memsw_files[] = {
7747         {
7748                 .name = "memsw.usage_in_bytes",
7749                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7750                 .read_u64 = mem_cgroup_read_u64,
7751         },
7752         {
7753                 .name = "memsw.max_usage_in_bytes",
7754                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7755                 .write = mem_cgroup_reset,
7756                 .read_u64 = mem_cgroup_read_u64,
7757         },
7758         {
7759                 .name = "memsw.limit_in_bytes",
7760                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7761                 .write = mem_cgroup_write,
7762                 .read_u64 = mem_cgroup_read_u64,
7763         },
7764         {
7765                 .name = "memsw.failcnt",
7766                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7767                 .write = mem_cgroup_reset,
7768                 .read_u64 = mem_cgroup_read_u64,
7769         },
7770         { },    /* terminate */
7771 };
7772
7773 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7774 /**
7775  * obj_cgroup_may_zswap - check if this cgroup can zswap
7776  * @objcg: the object cgroup
7777  *
7778  * Check if the hierarchical zswap limit has been reached.
7779  *
7780  * This doesn't check for specific headroom, and it is not atomic
7781  * either. But with zswap, the size of the allocation is only known
7782  * once compression has occured, and this optimistic pre-check avoids
7783  * spending cycles on compression when there is already no room left
7784  * or zswap is disabled altogether somewhere in the hierarchy.
7785  */
7786 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7787 {
7788         struct mem_cgroup *memcg, *original_memcg;
7789         bool ret = true;
7790
7791         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7792                 return true;
7793
7794         original_memcg = get_mem_cgroup_from_objcg(objcg);
7795         for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7796              memcg = parent_mem_cgroup(memcg)) {
7797                 unsigned long max = READ_ONCE(memcg->zswap_max);
7798                 unsigned long pages;
7799
7800                 if (max == PAGE_COUNTER_MAX)
7801                         continue;
7802                 if (max == 0) {
7803                         ret = false;
7804                         break;
7805                 }
7806
7807                 cgroup_rstat_flush(memcg->css.cgroup);
7808                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7809                 if (pages < max)
7810                         continue;
7811                 ret = false;
7812                 break;
7813         }
7814         mem_cgroup_put(original_memcg);
7815         return ret;
7816 }
7817
7818 /**
7819  * obj_cgroup_charge_zswap - charge compression backend memory
7820  * @objcg: the object cgroup
7821  * @size: size of compressed object
7822  *
7823  * This forces the charge after obj_cgroup_may_swap() allowed
7824  * compression and storage in zwap for this cgroup to go ahead.
7825  */
7826 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7827 {
7828         struct mem_cgroup *memcg;
7829
7830         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7831                 return;
7832
7833         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7834
7835         /* PF_MEMALLOC context, charging must succeed */
7836         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7837                 VM_WARN_ON_ONCE(1);
7838
7839         rcu_read_lock();
7840         memcg = obj_cgroup_memcg(objcg);
7841         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7842         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7843         rcu_read_unlock();
7844 }
7845
7846 /**
7847  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7848  * @objcg: the object cgroup
7849  * @size: size of compressed object
7850  *
7851  * Uncharges zswap memory on page in.
7852  */
7853 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7854 {
7855         struct mem_cgroup *memcg;
7856
7857         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7858                 return;
7859
7860         obj_cgroup_uncharge(objcg, size);
7861
7862         rcu_read_lock();
7863         memcg = obj_cgroup_memcg(objcg);
7864         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7865         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7866         rcu_read_unlock();
7867 }
7868
7869 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7870                               struct cftype *cft)
7871 {
7872         cgroup_rstat_flush(css->cgroup);
7873         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7874 }
7875
7876 static int zswap_max_show(struct seq_file *m, void *v)
7877 {
7878         return seq_puts_memcg_tunable(m,
7879                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7880 }
7881
7882 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7883                                char *buf, size_t nbytes, loff_t off)
7884 {
7885         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7886         unsigned long max;
7887         int err;
7888
7889         buf = strstrip(buf);
7890         err = page_counter_memparse(buf, "max", &max);
7891         if (err)
7892                 return err;
7893
7894         xchg(&memcg->zswap_max, max);
7895
7896         return nbytes;
7897 }
7898
7899 static struct cftype zswap_files[] = {
7900         {
7901                 .name = "zswap.current",
7902                 .flags = CFTYPE_NOT_ON_ROOT,
7903                 .read_u64 = zswap_current_read,
7904         },
7905         {
7906                 .name = "zswap.max",
7907                 .flags = CFTYPE_NOT_ON_ROOT,
7908                 .seq_show = zswap_max_show,
7909                 .write = zswap_max_write,
7910         },
7911         { }     /* terminate */
7912 };
7913 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7914
7915 static int __init mem_cgroup_swap_init(void)
7916 {
7917         if (mem_cgroup_disabled())
7918                 return 0;
7919
7920         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7921         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7922 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7923         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7924 #endif
7925         return 0;
7926 }
7927 subsys_initcall(mem_cgroup_swap_init);
7928
7929 #endif /* CONFIG_SWAP */