1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/hugetlb.h>
40 #include <linux/pagemap.h>
41 #include <linux/smp.h>
42 #include <linux/page-flags.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bit_spinlock.h>
45 #include <linux/rcupdate.h>
46 #include <linux/limits.h>
47 #include <linux/export.h>
48 #include <linux/mutex.h>
49 #include <linux/rbtree.h>
50 #include <linux/slab.h>
51 #include <linux/swap.h>
52 #include <linux/swapops.h>
53 #include <linux/spinlock.h>
54 #include <linux/eventfd.h>
55 #include <linux/poll.h>
56 #include <linux/sort.h>
58 #include <linux/seq_file.h>
59 #include <linux/vmpressure.h>
60 #include <linux/mm_inline.h>
61 #include <linux/swap_cgroup.h>
62 #include <linux/cpu.h>
63 #include <linux/oom.h>
64 #include <linux/lockdep.h>
65 #include <linux/file.h>
66 #include <linux/tracehook.h>
72 #include <linux/uaccess.h>
74 #include <trace/events/vmscan.h>
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
86 /* Kernel memory accounting disabled? */
87 static bool cgroup_memory_nokmem;
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 int do_swap_account __read_mostly;
93 #define do_swap_account 0
96 /* Whether legacy memory+swap accounting is active */
97 static bool do_memsw_account(void)
99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
102 static const char * const mem_cgroup_stat_names[] = {
112 static const char * const mem_cgroup_events_names[] = {
119 static const char * const mem_cgroup_lru_names[] = {
127 #define THRESHOLDS_EVENTS_TARGET 128
128 #define SOFTLIMIT_EVENTS_TARGET 1024
129 #define NUMAINFO_EVENTS_TARGET 1024
132 * Cgroups above their limits are maintained in a RB-Tree, independent of
133 * their hierarchy representation
136 struct mem_cgroup_tree_per_node {
137 struct rb_root rb_root;
141 struct mem_cgroup_tree {
142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
148 struct mem_cgroup_eventfd_list {
149 struct list_head list;
150 struct eventfd_ctx *eventfd;
154 * cgroup_event represents events which userspace want to receive.
156 struct mem_cgroup_event {
158 * memcg which the event belongs to.
160 struct mem_cgroup *memcg;
162 * eventfd to signal userspace about the event.
164 struct eventfd_ctx *eventfd;
166 * Each of these stored in a list by the cgroup.
168 struct list_head list;
170 * register_event() callback will be used to add new userspace
171 * waiter for changes related to this event. Use eventfd_signal()
172 * on eventfd to send notification to userspace.
174 int (*register_event)(struct mem_cgroup *memcg,
175 struct eventfd_ctx *eventfd, const char *args);
177 * unregister_event() callback will be called when userspace closes
178 * the eventfd or on cgroup removing. This callback must be set,
179 * if you want provide notification functionality.
181 void (*unregister_event)(struct mem_cgroup *memcg,
182 struct eventfd_ctx *eventfd);
184 * All fields below needed to unregister event when
185 * userspace closes eventfd.
188 wait_queue_head_t *wqh;
190 struct work_struct remove;
193 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
194 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196 /* Stuffs for move charges at task migration. */
198 * Types of charges to be moved.
200 #define MOVE_ANON 0x1U
201 #define MOVE_FILE 0x2U
202 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
204 /* "mc" and its members are protected by cgroup_mutex */
205 static struct move_charge_struct {
206 spinlock_t lock; /* for from, to */
207 struct mm_struct *mm;
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
211 unsigned long precharge;
212 unsigned long moved_charge;
213 unsigned long moved_swap;
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230 MEM_CGROUP_CHARGE_TYPE_ANON,
231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 /* for encoding cft->private value on file */
245 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
246 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
247 #define MEMFILE_ATTR(val) ((val) & 0xffff)
248 /* Used for OOM nofiier */
249 #define OOM_CONTROL (0)
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
266 return (memcg == root_mem_cgroup);
271 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
272 * The main reason for not using cgroup id for this:
273 * this works better in sparse environments, where we have a lot of memcgs,
274 * but only a few kmem-limited. Or also, if we have, for instance, 200
275 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
276 * 200 entry array for that.
278 * The current size of the caches array is stored in memcg_nr_cache_ids. It
279 * will double each time we have to increase it.
281 static DEFINE_IDA(memcg_cache_ida);
282 int memcg_nr_cache_ids;
284 /* Protects memcg_nr_cache_ids */
285 static DECLARE_RWSEM(memcg_cache_ids_sem);
287 void memcg_get_cache_ids(void)
289 down_read(&memcg_cache_ids_sem);
292 void memcg_put_cache_ids(void)
294 up_read(&memcg_cache_ids_sem);
298 * MIN_SIZE is different than 1, because we would like to avoid going through
299 * the alloc/free process all the time. In a small machine, 4 kmem-limited
300 * cgroups is a reasonable guess. In the future, it could be a parameter or
301 * tunable, but that is strictly not necessary.
303 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
304 * this constant directly from cgroup, but it is understandable that this is
305 * better kept as an internal representation in cgroup.c. In any case, the
306 * cgrp_id space is not getting any smaller, and we don't have to necessarily
307 * increase ours as well if it increases.
309 #define MEMCG_CACHES_MIN_SIZE 4
310 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313 * A lot of the calls to the cache allocation functions are expected to be
314 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
315 * conditional to this static branch, we'll have to allow modules that does
316 * kmem_cache_alloc and the such to see this symbol as well
318 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
319 EXPORT_SYMBOL(memcg_kmem_enabled_key);
321 struct workqueue_struct *memcg_kmem_cache_wq;
323 #endif /* !CONFIG_SLOB */
326 * mem_cgroup_css_from_page - css of the memcg associated with a page
327 * @page: page of interest
329 * If memcg is bound to the default hierarchy, css of the memcg associated
330 * with @page is returned. The returned css remains associated with @page
331 * until it is released.
333 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
336 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
338 struct mem_cgroup *memcg;
340 memcg = page->mem_cgroup;
342 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
343 memcg = root_mem_cgroup;
349 * page_cgroup_ino - return inode number of the memcg a page is charged to
352 * Look up the closest online ancestor of the memory cgroup @page is charged to
353 * and return its inode number or 0 if @page is not charged to any cgroup. It
354 * is safe to call this function without holding a reference to @page.
356 * Note, this function is inherently racy, because there is nothing to prevent
357 * the cgroup inode from getting torn down and potentially reallocated a moment
358 * after page_cgroup_ino() returns, so it only should be used by callers that
359 * do not care (such as procfs interfaces).
361 ino_t page_cgroup_ino(struct page *page)
363 struct mem_cgroup *memcg;
364 unsigned long ino = 0;
367 memcg = READ_ONCE(page->mem_cgroup);
368 while (memcg && !(memcg->css.flags & CSS_ONLINE))
369 memcg = parent_mem_cgroup(memcg);
371 ino = cgroup_ino(memcg->css.cgroup);
376 static struct mem_cgroup_per_node *
377 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
379 int nid = page_to_nid(page);
381 return memcg->nodeinfo[nid];
384 static struct mem_cgroup_tree_per_node *
385 soft_limit_tree_node(int nid)
387 return soft_limit_tree.rb_tree_per_node[nid];
390 static struct mem_cgroup_tree_per_node *
391 soft_limit_tree_from_page(struct page *page)
393 int nid = page_to_nid(page);
395 return soft_limit_tree.rb_tree_per_node[nid];
398 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
399 struct mem_cgroup_tree_per_node *mctz,
400 unsigned long new_usage_in_excess)
402 struct rb_node **p = &mctz->rb_root.rb_node;
403 struct rb_node *parent = NULL;
404 struct mem_cgroup_per_node *mz_node;
409 mz->usage_in_excess = new_usage_in_excess;
410 if (!mz->usage_in_excess)
414 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
416 if (mz->usage_in_excess < mz_node->usage_in_excess)
419 * We can't avoid mem cgroups that are over their soft
420 * limit by the same amount
422 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
425 rb_link_node(&mz->tree_node, parent, p);
426 rb_insert_color(&mz->tree_node, &mctz->rb_root);
430 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
431 struct mem_cgroup_tree_per_node *mctz)
435 rb_erase(&mz->tree_node, &mctz->rb_root);
439 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 struct mem_cgroup_tree_per_node *mctz)
444 spin_lock_irqsave(&mctz->lock, flags);
445 __mem_cgroup_remove_exceeded(mz, mctz);
446 spin_unlock_irqrestore(&mctz->lock, flags);
449 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
451 unsigned long nr_pages = page_counter_read(&memcg->memory);
452 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
453 unsigned long excess = 0;
455 if (nr_pages > soft_limit)
456 excess = nr_pages - soft_limit;
461 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
463 unsigned long excess;
464 struct mem_cgroup_per_node *mz;
465 struct mem_cgroup_tree_per_node *mctz;
467 mctz = soft_limit_tree_from_page(page);
469 * Necessary to update all ancestors when hierarchy is used.
470 * because their event counter is not touched.
472 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
473 mz = mem_cgroup_page_nodeinfo(memcg, page);
474 excess = soft_limit_excess(memcg);
476 * We have to update the tree if mz is on RB-tree or
477 * mem is over its softlimit.
479 if (excess || mz->on_tree) {
482 spin_lock_irqsave(&mctz->lock, flags);
483 /* if on-tree, remove it */
485 __mem_cgroup_remove_exceeded(mz, mctz);
487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops.
490 __mem_cgroup_insert_exceeded(mz, mctz, excess);
491 spin_unlock_irqrestore(&mctz->lock, flags);
496 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
498 struct mem_cgroup_tree_per_node *mctz;
499 struct mem_cgroup_per_node *mz;
503 mz = mem_cgroup_nodeinfo(memcg, nid);
504 mctz = soft_limit_tree_node(nid);
505 mem_cgroup_remove_exceeded(mz, mctz);
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
512 struct rb_node *rightmost = NULL;
513 struct mem_cgroup_per_node *mz;
517 rightmost = rb_last(&mctz->rb_root);
519 goto done; /* Nothing to reclaim from */
521 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
527 __mem_cgroup_remove_exceeded(mz, mctz);
528 if (!soft_limit_excess(mz->memcg) ||
529 !css_tryget_online(&mz->memcg->css))
535 static struct mem_cgroup_per_node *
536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
538 struct mem_cgroup_per_node *mz;
540 spin_lock_irq(&mctz->lock);
541 mz = __mem_cgroup_largest_soft_limit_node(mctz);
542 spin_unlock_irq(&mctz->lock);
547 * Return page count for single (non recursive) @memcg.
549 * Implementation Note: reading percpu statistics for memcg.
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronization of counter in memcg's counter.
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threshold and synchronization as vmstat[] should be
568 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
573 /* Per-cpu values can be negative, use a signed accumulator */
574 for_each_possible_cpu(cpu)
575 val += per_cpu(memcg->stat->count[idx], cpu);
577 * Summing races with updates, so val may be negative. Avoid exposing
578 * transient negative values.
585 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
586 enum mem_cgroup_events_index idx)
588 unsigned long val = 0;
591 for_each_possible_cpu(cpu)
592 val += per_cpu(memcg->stat->events[idx], cpu);
596 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
598 bool compound, int nr_pages)
601 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
602 * counted as CACHE even if it's on ANON LRU.
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
608 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
612 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
617 /* pagein of a big page is an event. So, ignore page size */
619 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
621 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
622 nr_pages = -nr_pages; /* for event */
625 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
628 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
629 int nid, unsigned int lru_mask)
631 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
632 unsigned long nr = 0;
635 VM_BUG_ON((unsigned)nid >= nr_node_ids);
638 if (!(BIT(lru) & lru_mask))
640 nr += mem_cgroup_get_lru_size(lruvec, lru);
645 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
646 unsigned int lru_mask)
648 unsigned long nr = 0;
651 for_each_node_state(nid, N_MEMORY)
652 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
656 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
657 enum mem_cgroup_events_target target)
659 unsigned long val, next;
661 val = __this_cpu_read(memcg->stat->nr_page_events);
662 next = __this_cpu_read(memcg->stat->targets[target]);
663 /* from time_after() in jiffies.h */
664 if ((long)next - (long)val < 0) {
666 case MEM_CGROUP_TARGET_THRESH:
667 next = val + THRESHOLDS_EVENTS_TARGET;
669 case MEM_CGROUP_TARGET_SOFTLIMIT:
670 next = val + SOFTLIMIT_EVENTS_TARGET;
672 case MEM_CGROUP_TARGET_NUMAINFO:
673 next = val + NUMAINFO_EVENTS_TARGET;
678 __this_cpu_write(memcg->stat->targets[target], next);
685 * Check events in order.
688 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
690 /* threshold event is triggered in finer grain than soft limit */
691 if (unlikely(mem_cgroup_event_ratelimit(memcg,
692 MEM_CGROUP_TARGET_THRESH))) {
694 bool do_numainfo __maybe_unused;
696 do_softlimit = mem_cgroup_event_ratelimit(memcg,
697 MEM_CGROUP_TARGET_SOFTLIMIT);
699 do_numainfo = mem_cgroup_event_ratelimit(memcg,
700 MEM_CGROUP_TARGET_NUMAINFO);
702 mem_cgroup_threshold(memcg);
703 if (unlikely(do_softlimit))
704 mem_cgroup_update_tree(memcg, page);
706 if (unlikely(do_numainfo))
707 atomic_inc(&memcg->numainfo_events);
712 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
722 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
724 EXPORT_SYMBOL(mem_cgroup_from_task);
726 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
728 struct mem_cgroup *memcg = NULL;
733 * Page cache insertions can happen withou an
734 * actual mm context, e.g. during disk probing
735 * on boot, loopback IO, acct() writes etc.
738 memcg = root_mem_cgroup;
740 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
741 if (unlikely(!memcg))
742 memcg = root_mem_cgroup;
744 } while (!css_tryget_online(&memcg->css));
750 * mem_cgroup_iter - iterate over memory cgroup hierarchy
751 * @root: hierarchy root
752 * @prev: previously returned memcg, NULL on first invocation
753 * @reclaim: cookie for shared reclaim walks, NULL for full walks
755 * Returns references to children of the hierarchy below @root, or
756 * @root itself, or %NULL after a full round-trip.
758 * Caller must pass the return value in @prev on subsequent
759 * invocations for reference counting, or use mem_cgroup_iter_break()
760 * to cancel a hierarchy walk before the round-trip is complete.
762 * Reclaimers can specify a zone and a priority level in @reclaim to
763 * divide up the memcgs in the hierarchy among all concurrent
764 * reclaimers operating on the same zone and priority.
766 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
767 struct mem_cgroup *prev,
768 struct mem_cgroup_reclaim_cookie *reclaim)
770 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
771 struct cgroup_subsys_state *css = NULL;
772 struct mem_cgroup *memcg = NULL;
773 struct mem_cgroup *pos = NULL;
775 if (mem_cgroup_disabled())
779 root = root_mem_cgroup;
781 if (prev && !reclaim)
784 if (!root->use_hierarchy && root != root_mem_cgroup) {
793 struct mem_cgroup_per_node *mz;
795 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
796 iter = &mz->iter[reclaim->priority];
798 if (prev && reclaim->generation != iter->generation)
802 pos = READ_ONCE(iter->position);
803 if (!pos || css_tryget(&pos->css))
806 * css reference reached zero, so iter->position will
807 * be cleared by ->css_released. However, we should not
808 * rely on this happening soon, because ->css_released
809 * is called from a work queue, and by busy-waiting we
810 * might block it. So we clear iter->position right
813 (void)cmpxchg(&iter->position, pos, NULL);
821 css = css_next_descendant_pre(css, &root->css);
824 * Reclaimers share the hierarchy walk, and a
825 * new one might jump in right at the end of
826 * the hierarchy - make sure they see at least
827 * one group and restart from the beginning.
835 * Verify the css and acquire a reference. The root
836 * is provided by the caller, so we know it's alive
837 * and kicking, and don't take an extra reference.
839 memcg = mem_cgroup_from_css(css);
841 if (css == &root->css)
852 * The position could have already been updated by a competing
853 * thread, so check that the value hasn't changed since we read
854 * it to avoid reclaiming from the same cgroup twice.
856 (void)cmpxchg(&iter->position, pos, memcg);
864 reclaim->generation = iter->generation;
870 if (prev && prev != root)
877 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
878 * @root: hierarchy root
879 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
881 void mem_cgroup_iter_break(struct mem_cgroup *root,
882 struct mem_cgroup *prev)
885 root = root_mem_cgroup;
886 if (prev && prev != root)
890 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
892 struct mem_cgroup *memcg = dead_memcg;
893 struct mem_cgroup_reclaim_iter *iter;
894 struct mem_cgroup_per_node *mz;
898 while ((memcg = parent_mem_cgroup(memcg))) {
900 mz = mem_cgroup_nodeinfo(memcg, nid);
901 for (i = 0; i <= DEF_PRIORITY; i++) {
903 cmpxchg(&iter->position,
911 * Iteration constructs for visiting all cgroups (under a tree). If
912 * loops are exited prematurely (break), mem_cgroup_iter_break() must
913 * be used for reference counting.
915 #define for_each_mem_cgroup_tree(iter, root) \
916 for (iter = mem_cgroup_iter(root, NULL, NULL); \
918 iter = mem_cgroup_iter(root, iter, NULL))
920 #define for_each_mem_cgroup(iter) \
921 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
923 iter = mem_cgroup_iter(NULL, iter, NULL))
926 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
927 * @memcg: hierarchy root
928 * @fn: function to call for each task
929 * @arg: argument passed to @fn
931 * This function iterates over tasks attached to @memcg or to any of its
932 * descendants and calls @fn for each task. If @fn returns a non-zero
933 * value, the function breaks the iteration loop and returns the value.
934 * Otherwise, it will iterate over all tasks and return 0.
936 * This function must not be called for the root memory cgroup.
938 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
939 int (*fn)(struct task_struct *, void *), void *arg)
941 struct mem_cgroup *iter;
944 BUG_ON(memcg == root_mem_cgroup);
946 for_each_mem_cgroup_tree(iter, memcg) {
947 struct css_task_iter it;
948 struct task_struct *task;
950 css_task_iter_start(&iter->css, &it);
951 while (!ret && (task = css_task_iter_next(&it)))
953 css_task_iter_end(&it);
955 mem_cgroup_iter_break(memcg, iter);
963 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
965 * @zone: zone of the page
967 * This function is only safe when following the LRU page isolation
968 * and putback protocol: the LRU lock must be held, and the page must
969 * either be PageLRU() or the caller must have isolated/allocated it.
971 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
973 struct mem_cgroup_per_node *mz;
974 struct mem_cgroup *memcg;
975 struct lruvec *lruvec;
977 if (mem_cgroup_disabled()) {
978 lruvec = &pgdat->lruvec;
982 memcg = page->mem_cgroup;
984 * Swapcache readahead pages are added to the LRU - and
985 * possibly migrated - before they are charged.
988 memcg = root_mem_cgroup;
990 mz = mem_cgroup_page_nodeinfo(memcg, page);
991 lruvec = &mz->lruvec;
994 * Since a node can be onlined after the mem_cgroup was created,
995 * we have to be prepared to initialize lruvec->zone here;
996 * and if offlined then reonlined, we need to reinitialize it.
998 if (unlikely(lruvec->pgdat != pgdat))
999 lruvec->pgdat = pgdat;
1004 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1005 * @lruvec: mem_cgroup per zone lru vector
1006 * @lru: index of lru list the page is sitting on
1007 * @zid: zone id of the accounted pages
1008 * @nr_pages: positive when adding or negative when removing
1010 * This function must be called under lru_lock, just before a page is added
1011 * to or just after a page is removed from an lru list (that ordering being
1012 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1014 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1015 int zid, int nr_pages)
1017 struct mem_cgroup_per_node *mz;
1018 unsigned long *lru_size;
1021 if (mem_cgroup_disabled())
1024 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1025 lru_size = &mz->lru_zone_size[zid][lru];
1028 *lru_size += nr_pages;
1031 if (WARN_ONCE(size < 0,
1032 "%s(%p, %d, %d): lru_size %ld\n",
1033 __func__, lruvec, lru, nr_pages, size)) {
1039 *lru_size += nr_pages;
1042 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1044 struct mem_cgroup *task_memcg;
1045 struct task_struct *p;
1048 p = find_lock_task_mm(task);
1050 task_memcg = get_mem_cgroup_from_mm(p->mm);
1054 * All threads may have already detached their mm's, but the oom
1055 * killer still needs to detect if they have already been oom
1056 * killed to prevent needlessly killing additional tasks.
1059 task_memcg = mem_cgroup_from_task(task);
1060 css_get(&task_memcg->css);
1063 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1064 css_put(&task_memcg->css);
1069 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1070 * @memcg: the memory cgroup
1072 * Returns the maximum amount of memory @mem can be charged with, in
1075 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1077 unsigned long margin = 0;
1078 unsigned long count;
1079 unsigned long limit;
1081 count = page_counter_read(&memcg->memory);
1082 limit = READ_ONCE(memcg->memory.limit);
1084 margin = limit - count;
1086 if (do_memsw_account()) {
1087 count = page_counter_read(&memcg->memsw);
1088 limit = READ_ONCE(memcg->memsw.limit);
1090 margin = min(margin, limit - count);
1099 * A routine for checking "mem" is under move_account() or not.
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1114 spin_lock(&mc.lock);
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1123 spin_unlock(&mc.lock);
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1136 finish_wait(&mc.waitq, &wait);
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1154 struct mem_cgroup *iter;
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1164 pr_info("Memory limit reached of cgroup ");
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1206 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1209 struct mem_cgroup *iter;
1211 for_each_mem_cgroup_tree(iter, memcg)
1217 * Return the memory (and swap, if configured) limit for a memcg.
1219 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1221 unsigned long limit;
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1239 struct oom_control oc = {
1243 .gfp_mask = gfp_mask,
1248 mutex_lock(&oom_lock);
1249 ret = out_of_memory(&oc);
1250 mutex_unlock(&oom_lock);
1254 #if MAX_NUMNODES > 1
1257 * test_mem_cgroup_node_reclaimable
1258 * @memcg: the target memcg
1259 * @nid: the node ID to be checked.
1260 * @noswap : specify true here if the user wants flle only information.
1262 * This function returns whether the specified memcg contains any
1263 * reclaimable pages on a node. Returns true if there are any reclaimable
1264 * pages in the node.
1266 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1267 int nid, bool noswap)
1269 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1271 if (noswap || !total_swap_pages)
1273 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1280 * Always updating the nodemask is not very good - even if we have an empty
1281 * list or the wrong list here, we can start from some node and traverse all
1282 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1285 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1289 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1290 * pagein/pageout changes since the last update.
1292 if (!atomic_read(&memcg->numainfo_events))
1294 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1297 /* make a nodemask where this memcg uses memory from */
1298 memcg->scan_nodes = node_states[N_MEMORY];
1300 for_each_node_mask(nid, node_states[N_MEMORY]) {
1302 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1303 node_clear(nid, memcg->scan_nodes);
1306 atomic_set(&memcg->numainfo_events, 0);
1307 atomic_set(&memcg->numainfo_updating, 0);
1311 * Selecting a node where we start reclaim from. Because what we need is just
1312 * reducing usage counter, start from anywhere is O,K. Considering
1313 * memory reclaim from current node, there are pros. and cons.
1315 * Freeing memory from current node means freeing memory from a node which
1316 * we'll use or we've used. So, it may make LRU bad. And if several threads
1317 * hit limits, it will see a contention on a node. But freeing from remote
1318 * node means more costs for memory reclaim because of memory latency.
1320 * Now, we use round-robin. Better algorithm is welcomed.
1322 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1326 mem_cgroup_may_update_nodemask(memcg);
1327 node = memcg->last_scanned_node;
1329 node = next_node_in(node, memcg->scan_nodes);
1331 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1332 * last time it really checked all the LRUs due to rate limiting.
1333 * Fallback to the current node in that case for simplicity.
1335 if (unlikely(node == MAX_NUMNODES))
1336 node = numa_node_id();
1338 memcg->last_scanned_node = node;
1342 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1348 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1351 unsigned long *total_scanned)
1353 struct mem_cgroup *victim = NULL;
1356 unsigned long excess;
1357 unsigned long nr_scanned;
1358 struct mem_cgroup_reclaim_cookie reclaim = {
1363 excess = soft_limit_excess(root_memcg);
1366 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1371 * If we have not been able to reclaim
1372 * anything, it might because there are
1373 * no reclaimable pages under this hierarchy
1378 * We want to do more targeted reclaim.
1379 * excess >> 2 is not to excessive so as to
1380 * reclaim too much, nor too less that we keep
1381 * coming back to reclaim from this cgroup
1383 if (total >= (excess >> 2) ||
1384 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1389 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1390 pgdat, &nr_scanned);
1391 *total_scanned += nr_scanned;
1392 if (!soft_limit_excess(root_memcg))
1395 mem_cgroup_iter_break(root_memcg, victim);
1399 #ifdef CONFIG_LOCKDEP
1400 static struct lockdep_map memcg_oom_lock_dep_map = {
1401 .name = "memcg_oom_lock",
1405 static DEFINE_SPINLOCK(memcg_oom_lock);
1408 * Check OOM-Killer is already running under our hierarchy.
1409 * If someone is running, return false.
1411 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1413 struct mem_cgroup *iter, *failed = NULL;
1415 spin_lock(&memcg_oom_lock);
1417 for_each_mem_cgroup_tree(iter, memcg) {
1418 if (iter->oom_lock) {
1420 * this subtree of our hierarchy is already locked
1421 * so we cannot give a lock.
1424 mem_cgroup_iter_break(memcg, iter);
1427 iter->oom_lock = true;
1432 * OK, we failed to lock the whole subtree so we have
1433 * to clean up what we set up to the failing subtree
1435 for_each_mem_cgroup_tree(iter, memcg) {
1436 if (iter == failed) {
1437 mem_cgroup_iter_break(memcg, iter);
1440 iter->oom_lock = false;
1443 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1445 spin_unlock(&memcg_oom_lock);
1450 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1452 struct mem_cgroup *iter;
1454 spin_lock(&memcg_oom_lock);
1455 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1456 for_each_mem_cgroup_tree(iter, memcg)
1457 iter->oom_lock = false;
1458 spin_unlock(&memcg_oom_lock);
1461 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1463 struct mem_cgroup *iter;
1465 spin_lock(&memcg_oom_lock);
1466 for_each_mem_cgroup_tree(iter, memcg)
1468 spin_unlock(&memcg_oom_lock);
1471 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1473 struct mem_cgroup *iter;
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1479 spin_lock(&memcg_oom_lock);
1480 for_each_mem_cgroup_tree(iter, memcg)
1481 if (iter->under_oom > 0)
1483 spin_unlock(&memcg_oom_lock);
1486 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1488 struct oom_wait_info {
1489 struct mem_cgroup *memcg;
1493 static int memcg_oom_wake_function(wait_queue_t *wait,
1494 unsigned mode, int sync, void *arg)
1496 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1497 struct mem_cgroup *oom_wait_memcg;
1498 struct oom_wait_info *oom_wait_info;
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501 oom_wait_memcg = oom_wait_info->memcg;
1503 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1504 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1506 return autoremove_wake_function(wait, mode, sync, arg);
1509 static void memcg_oom_recover(struct mem_cgroup *memcg)
1512 * For the following lockless ->under_oom test, the only required
1513 * guarantee is that it must see the state asserted by an OOM when
1514 * this function is called as a result of userland actions
1515 * triggered by the notification of the OOM. This is trivially
1516 * achieved by invoking mem_cgroup_mark_under_oom() before
1517 * triggering notification.
1519 if (memcg && memcg->under_oom)
1520 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1523 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1525 if (!current->memcg_may_oom)
1528 * We are in the middle of the charge context here, so we
1529 * don't want to block when potentially sitting on a callstack
1530 * that holds all kinds of filesystem and mm locks.
1532 * Also, the caller may handle a failed allocation gracefully
1533 * (like optional page cache readahead) and so an OOM killer
1534 * invocation might not even be necessary.
1536 * That's why we don't do anything here except remember the
1537 * OOM context and then deal with it at the end of the page
1538 * fault when the stack is unwound, the locks are released,
1539 * and when we know whether the fault was overall successful.
1541 css_get(&memcg->css);
1542 current->memcg_in_oom = memcg;
1543 current->memcg_oom_gfp_mask = mask;
1544 current->memcg_oom_order = order;
1548 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1549 * @handle: actually kill/wait or just clean up the OOM state
1551 * This has to be called at the end of a page fault if the memcg OOM
1552 * handler was enabled.
1554 * Memcg supports userspace OOM handling where failed allocations must
1555 * sleep on a waitqueue until the userspace task resolves the
1556 * situation. Sleeping directly in the charge context with all kinds
1557 * of locks held is not a good idea, instead we remember an OOM state
1558 * in the task and mem_cgroup_oom_synchronize() has to be called at
1559 * the end of the page fault to complete the OOM handling.
1561 * Returns %true if an ongoing memcg OOM situation was detected and
1562 * completed, %false otherwise.
1564 bool mem_cgroup_oom_synchronize(bool handle)
1566 struct mem_cgroup *memcg = current->memcg_in_oom;
1567 struct oom_wait_info owait;
1570 /* OOM is global, do not handle */
1577 owait.memcg = memcg;
1578 owait.wait.flags = 0;
1579 owait.wait.func = memcg_oom_wake_function;
1580 owait.wait.private = current;
1581 INIT_LIST_HEAD(&owait.wait.task_list);
1583 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1584 mem_cgroup_mark_under_oom(memcg);
1586 locked = mem_cgroup_oom_trylock(memcg);
1589 mem_cgroup_oom_notify(memcg);
1591 if (locked && !memcg->oom_kill_disable) {
1592 mem_cgroup_unmark_under_oom(memcg);
1593 finish_wait(&memcg_oom_waitq, &owait.wait);
1594 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1595 current->memcg_oom_order);
1598 mem_cgroup_unmark_under_oom(memcg);
1599 finish_wait(&memcg_oom_waitq, &owait.wait);
1603 mem_cgroup_oom_unlock(memcg);
1605 * There is no guarantee that an OOM-lock contender
1606 * sees the wakeups triggered by the OOM kill
1607 * uncharges. Wake any sleepers explicitely.
1609 memcg_oom_recover(memcg);
1612 current->memcg_in_oom = NULL;
1613 css_put(&memcg->css);
1618 * lock_page_memcg - lock a page->mem_cgroup binding
1621 * This function protects unlocked LRU pages from being moved to
1622 * another cgroup and stabilizes their page->mem_cgroup binding.
1624 void lock_page_memcg(struct page *page)
1626 struct mem_cgroup *memcg;
1627 unsigned long flags;
1630 * The RCU lock is held throughout the transaction. The fast
1631 * path can get away without acquiring the memcg->move_lock
1632 * because page moving starts with an RCU grace period.
1636 if (mem_cgroup_disabled())
1639 memcg = page->mem_cgroup;
1640 if (unlikely(!memcg))
1643 if (atomic_read(&memcg->moving_account) <= 0)
1646 spin_lock_irqsave(&memcg->move_lock, flags);
1647 if (memcg != page->mem_cgroup) {
1648 spin_unlock_irqrestore(&memcg->move_lock, flags);
1653 * When charge migration first begins, we can have locked and
1654 * unlocked page stat updates happening concurrently. Track
1655 * the task who has the lock for unlock_page_memcg().
1657 memcg->move_lock_task = current;
1658 memcg->move_lock_flags = flags;
1662 EXPORT_SYMBOL(lock_page_memcg);
1665 * unlock_page_memcg - unlock a page->mem_cgroup binding
1668 void unlock_page_memcg(struct page *page)
1670 struct mem_cgroup *memcg = page->mem_cgroup;
1672 if (memcg && memcg->move_lock_task == current) {
1673 unsigned long flags = memcg->move_lock_flags;
1675 memcg->move_lock_task = NULL;
1676 memcg->move_lock_flags = 0;
1678 spin_unlock_irqrestore(&memcg->move_lock, flags);
1683 EXPORT_SYMBOL(unlock_page_memcg);
1686 * size of first charge trial. "32" comes from vmscan.c's magic value.
1687 * TODO: maybe necessary to use big numbers in big irons.
1689 #define CHARGE_BATCH 32U
1690 struct memcg_stock_pcp {
1691 struct mem_cgroup *cached; /* this never be root cgroup */
1692 unsigned int nr_pages;
1693 struct work_struct work;
1694 unsigned long flags;
1695 #define FLUSHING_CACHED_CHARGE 0
1697 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1698 static DEFINE_MUTEX(percpu_charge_mutex);
1701 * consume_stock: Try to consume stocked charge on this cpu.
1702 * @memcg: memcg to consume from.
1703 * @nr_pages: how many pages to charge.
1705 * The charges will only happen if @memcg matches the current cpu's memcg
1706 * stock, and at least @nr_pages are available in that stock. Failure to
1707 * service an allocation will refill the stock.
1709 * returns true if successful, false otherwise.
1711 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1713 struct memcg_stock_pcp *stock;
1714 unsigned long flags;
1717 if (nr_pages > CHARGE_BATCH)
1720 local_irq_save(flags);
1722 stock = this_cpu_ptr(&memcg_stock);
1723 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1724 stock->nr_pages -= nr_pages;
1728 local_irq_restore(flags);
1734 * Returns stocks cached in percpu and reset cached information.
1736 static void drain_stock(struct memcg_stock_pcp *stock)
1738 struct mem_cgroup *old = stock->cached;
1740 if (stock->nr_pages) {
1741 page_counter_uncharge(&old->memory, stock->nr_pages);
1742 if (do_memsw_account())
1743 page_counter_uncharge(&old->memsw, stock->nr_pages);
1744 css_put_many(&old->css, stock->nr_pages);
1745 stock->nr_pages = 0;
1747 stock->cached = NULL;
1750 static void drain_local_stock(struct work_struct *dummy)
1752 struct memcg_stock_pcp *stock;
1753 unsigned long flags;
1755 local_irq_save(flags);
1757 stock = this_cpu_ptr(&memcg_stock);
1759 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1761 local_irq_restore(flags);
1765 * Cache charges(val) to local per_cpu area.
1766 * This will be consumed by consume_stock() function, later.
1768 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1770 struct memcg_stock_pcp *stock;
1771 unsigned long flags;
1773 local_irq_save(flags);
1775 stock = this_cpu_ptr(&memcg_stock);
1776 if (stock->cached != memcg) { /* reset if necessary */
1778 stock->cached = memcg;
1780 stock->nr_pages += nr_pages;
1782 local_irq_restore(flags);
1786 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1787 * of the hierarchy under it.
1789 static void drain_all_stock(struct mem_cgroup *root_memcg)
1793 /* If someone's already draining, avoid adding running more workers. */
1794 if (!mutex_trylock(&percpu_charge_mutex))
1796 /* Notify other cpus that system-wide "drain" is running */
1799 for_each_online_cpu(cpu) {
1800 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1801 struct mem_cgroup *memcg;
1803 memcg = stock->cached;
1804 if (!memcg || !stock->nr_pages)
1806 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1808 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1810 drain_local_stock(&stock->work);
1812 schedule_work_on(cpu, &stock->work);
1817 mutex_unlock(&percpu_charge_mutex);
1820 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1822 struct memcg_stock_pcp *stock;
1824 stock = &per_cpu(memcg_stock, cpu);
1829 static void reclaim_high(struct mem_cgroup *memcg,
1830 unsigned int nr_pages,
1834 if (page_counter_read(&memcg->memory) <= memcg->high)
1836 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1837 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1838 } while ((memcg = parent_mem_cgroup(memcg)));
1841 static void high_work_func(struct work_struct *work)
1843 struct mem_cgroup *memcg;
1845 memcg = container_of(work, struct mem_cgroup, high_work);
1846 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1850 * Scheduled by try_charge() to be executed from the userland return path
1851 * and reclaims memory over the high limit.
1853 void mem_cgroup_handle_over_high(void)
1855 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1856 struct mem_cgroup *memcg;
1858 if (likely(!nr_pages))
1861 memcg = get_mem_cgroup_from_mm(current->mm);
1862 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1863 css_put(&memcg->css);
1864 current->memcg_nr_pages_over_high = 0;
1867 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1868 unsigned int nr_pages)
1870 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1871 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1872 struct mem_cgroup *mem_over_limit;
1873 struct page_counter *counter;
1874 unsigned long nr_reclaimed;
1875 bool may_swap = true;
1876 bool drained = false;
1878 if (mem_cgroup_is_root(memcg))
1881 if (consume_stock(memcg, nr_pages))
1884 if (!do_memsw_account() ||
1885 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1886 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1888 if (do_memsw_account())
1889 page_counter_uncharge(&memcg->memsw, batch);
1890 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1892 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1896 if (batch > nr_pages) {
1902 * Unlike in global OOM situations, memcg is not in a physical
1903 * memory shortage. Allow dying and OOM-killed tasks to
1904 * bypass the last charges so that they can exit quickly and
1905 * free their memory.
1907 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1908 fatal_signal_pending(current) ||
1909 current->flags & PF_EXITING))
1913 * Prevent unbounded recursion when reclaim operations need to
1914 * allocate memory. This might exceed the limits temporarily,
1915 * but we prefer facilitating memory reclaim and getting back
1916 * under the limit over triggering OOM kills in these cases.
1918 if (unlikely(current->flags & PF_MEMALLOC))
1921 if (unlikely(task_in_memcg_oom(current)))
1924 if (!gfpflags_allow_blocking(gfp_mask))
1927 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1929 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1930 gfp_mask, may_swap);
1932 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1936 drain_all_stock(mem_over_limit);
1941 if (gfp_mask & __GFP_NORETRY)
1944 * Even though the limit is exceeded at this point, reclaim
1945 * may have been able to free some pages. Retry the charge
1946 * before killing the task.
1948 * Only for regular pages, though: huge pages are rather
1949 * unlikely to succeed so close to the limit, and we fall back
1950 * to regular pages anyway in case of failure.
1952 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1955 * At task move, charge accounts can be doubly counted. So, it's
1956 * better to wait until the end of task_move if something is going on.
1958 if (mem_cgroup_wait_acct_move(mem_over_limit))
1964 if (gfp_mask & __GFP_NOFAIL)
1967 if (fatal_signal_pending(current))
1970 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1972 mem_cgroup_oom(mem_over_limit, gfp_mask,
1973 get_order(nr_pages * PAGE_SIZE));
1975 if (!(gfp_mask & __GFP_NOFAIL))
1979 * The allocation either can't fail or will lead to more memory
1980 * being freed very soon. Allow memory usage go over the limit
1981 * temporarily by force charging it.
1983 page_counter_charge(&memcg->memory, nr_pages);
1984 if (do_memsw_account())
1985 page_counter_charge(&memcg->memsw, nr_pages);
1986 css_get_many(&memcg->css, nr_pages);
1991 css_get_many(&memcg->css, batch);
1992 if (batch > nr_pages)
1993 refill_stock(memcg, batch - nr_pages);
1996 * If the hierarchy is above the normal consumption range, schedule
1997 * reclaim on returning to userland. We can perform reclaim here
1998 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1999 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2000 * not recorded as it most likely matches current's and won't
2001 * change in the meantime. As high limit is checked again before
2002 * reclaim, the cost of mismatch is negligible.
2005 if (page_counter_read(&memcg->memory) > memcg->high) {
2006 /* Don't bother a random interrupted task */
2007 if (in_interrupt()) {
2008 schedule_work(&memcg->high_work);
2011 current->memcg_nr_pages_over_high += batch;
2012 set_notify_resume(current);
2015 } while ((memcg = parent_mem_cgroup(memcg)));
2020 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2022 if (mem_cgroup_is_root(memcg))
2025 page_counter_uncharge(&memcg->memory, nr_pages);
2026 if (do_memsw_account())
2027 page_counter_uncharge(&memcg->memsw, nr_pages);
2029 css_put_many(&memcg->css, nr_pages);
2032 static void lock_page_lru(struct page *page, int *isolated)
2034 struct zone *zone = page_zone(page);
2036 spin_lock_irq(zone_lru_lock(zone));
2037 if (PageLRU(page)) {
2038 struct lruvec *lruvec;
2040 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2042 del_page_from_lru_list(page, lruvec, page_lru(page));
2048 static void unlock_page_lru(struct page *page, int isolated)
2050 struct zone *zone = page_zone(page);
2053 struct lruvec *lruvec;
2055 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2056 VM_BUG_ON_PAGE(PageLRU(page), page);
2058 add_page_to_lru_list(page, lruvec, page_lru(page));
2060 spin_unlock_irq(zone_lru_lock(zone));
2063 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2068 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2071 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2072 * may already be on some other mem_cgroup's LRU. Take care of it.
2075 lock_page_lru(page, &isolated);
2078 * Nobody should be changing or seriously looking at
2079 * page->mem_cgroup at this point:
2081 * - the page is uncharged
2083 * - the page is off-LRU
2085 * - an anonymous fault has exclusive page access, except for
2086 * a locked page table
2088 * - a page cache insertion, a swapin fault, or a migration
2089 * have the page locked
2091 page->mem_cgroup = memcg;
2094 unlock_page_lru(page, isolated);
2098 static int memcg_alloc_cache_id(void)
2103 id = ida_simple_get(&memcg_cache_ida,
2104 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2108 if (id < memcg_nr_cache_ids)
2112 * There's no space for the new id in memcg_caches arrays,
2113 * so we have to grow them.
2115 down_write(&memcg_cache_ids_sem);
2117 size = 2 * (id + 1);
2118 if (size < MEMCG_CACHES_MIN_SIZE)
2119 size = MEMCG_CACHES_MIN_SIZE;
2120 else if (size > MEMCG_CACHES_MAX_SIZE)
2121 size = MEMCG_CACHES_MAX_SIZE;
2123 err = memcg_update_all_caches(size);
2125 err = memcg_update_all_list_lrus(size);
2127 memcg_nr_cache_ids = size;
2129 up_write(&memcg_cache_ids_sem);
2132 ida_simple_remove(&memcg_cache_ida, id);
2138 static void memcg_free_cache_id(int id)
2140 ida_simple_remove(&memcg_cache_ida, id);
2143 struct memcg_kmem_cache_create_work {
2144 struct mem_cgroup *memcg;
2145 struct kmem_cache *cachep;
2146 struct work_struct work;
2149 static void memcg_kmem_cache_create_func(struct work_struct *w)
2151 struct memcg_kmem_cache_create_work *cw =
2152 container_of(w, struct memcg_kmem_cache_create_work, work);
2153 struct mem_cgroup *memcg = cw->memcg;
2154 struct kmem_cache *cachep = cw->cachep;
2156 memcg_create_kmem_cache(memcg, cachep);
2158 css_put(&memcg->css);
2163 * Enqueue the creation of a per-memcg kmem_cache.
2165 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2166 struct kmem_cache *cachep)
2168 struct memcg_kmem_cache_create_work *cw;
2170 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2174 css_get(&memcg->css);
2177 cw->cachep = cachep;
2178 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2180 queue_work(memcg_kmem_cache_wq, &cw->work);
2183 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2184 struct kmem_cache *cachep)
2187 * We need to stop accounting when we kmalloc, because if the
2188 * corresponding kmalloc cache is not yet created, the first allocation
2189 * in __memcg_schedule_kmem_cache_create will recurse.
2191 * However, it is better to enclose the whole function. Depending on
2192 * the debugging options enabled, INIT_WORK(), for instance, can
2193 * trigger an allocation. This too, will make us recurse. Because at
2194 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2195 * the safest choice is to do it like this, wrapping the whole function.
2197 current->memcg_kmem_skip_account = 1;
2198 __memcg_schedule_kmem_cache_create(memcg, cachep);
2199 current->memcg_kmem_skip_account = 0;
2202 static inline bool memcg_kmem_bypass(void)
2204 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2210 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2211 * @cachep: the original global kmem cache
2213 * Return the kmem_cache we're supposed to use for a slab allocation.
2214 * We try to use the current memcg's version of the cache.
2216 * If the cache does not exist yet, if we are the first user of it, we
2217 * create it asynchronously in a workqueue and let the current allocation
2218 * go through with the original cache.
2220 * This function takes a reference to the cache it returns to assure it
2221 * won't get destroyed while we are working with it. Once the caller is
2222 * done with it, memcg_kmem_put_cache() must be called to release the
2225 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2227 struct mem_cgroup *memcg;
2228 struct kmem_cache *memcg_cachep;
2231 VM_BUG_ON(!is_root_cache(cachep));
2233 if (memcg_kmem_bypass())
2236 if (current->memcg_kmem_skip_account)
2239 memcg = get_mem_cgroup_from_mm(current->mm);
2240 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2244 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2245 if (likely(memcg_cachep))
2246 return memcg_cachep;
2249 * If we are in a safe context (can wait, and not in interrupt
2250 * context), we could be be predictable and return right away.
2251 * This would guarantee that the allocation being performed
2252 * already belongs in the new cache.
2254 * However, there are some clashes that can arrive from locking.
2255 * For instance, because we acquire the slab_mutex while doing
2256 * memcg_create_kmem_cache, this means no further allocation
2257 * could happen with the slab_mutex held. So it's better to
2260 memcg_schedule_kmem_cache_create(memcg, cachep);
2262 css_put(&memcg->css);
2267 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2268 * @cachep: the cache returned by memcg_kmem_get_cache
2270 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2272 if (!is_root_cache(cachep))
2273 css_put(&cachep->memcg_params.memcg->css);
2277 * memcg_kmem_charge: charge a kmem page
2278 * @page: page to charge
2279 * @gfp: reclaim mode
2280 * @order: allocation order
2281 * @memcg: memory cgroup to charge
2283 * Returns 0 on success, an error code on failure.
2285 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2286 struct mem_cgroup *memcg)
2288 unsigned int nr_pages = 1 << order;
2289 struct page_counter *counter;
2292 ret = try_charge(memcg, gfp, nr_pages);
2296 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2297 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2298 cancel_charge(memcg, nr_pages);
2302 page->mem_cgroup = memcg;
2308 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2309 * @page: page to charge
2310 * @gfp: reclaim mode
2311 * @order: allocation order
2313 * Returns 0 on success, an error code on failure.
2315 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2317 struct mem_cgroup *memcg;
2320 if (memcg_kmem_bypass())
2323 memcg = get_mem_cgroup_from_mm(current->mm);
2324 if (!mem_cgroup_is_root(memcg)) {
2325 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2327 __SetPageKmemcg(page);
2329 css_put(&memcg->css);
2333 * memcg_kmem_uncharge: uncharge a kmem page
2334 * @page: page to uncharge
2335 * @order: allocation order
2337 void memcg_kmem_uncharge(struct page *page, int order)
2339 struct mem_cgroup *memcg = page->mem_cgroup;
2340 unsigned int nr_pages = 1 << order;
2345 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2347 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2348 page_counter_uncharge(&memcg->kmem, nr_pages);
2350 page_counter_uncharge(&memcg->memory, nr_pages);
2351 if (do_memsw_account())
2352 page_counter_uncharge(&memcg->memsw, nr_pages);
2354 page->mem_cgroup = NULL;
2356 /* slab pages do not have PageKmemcg flag set */
2357 if (PageKmemcg(page))
2358 __ClearPageKmemcg(page);
2360 css_put_many(&memcg->css, nr_pages);
2362 #endif /* !CONFIG_SLOB */
2364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2367 * Because tail pages are not marked as "used", set it. We're under
2368 * zone_lru_lock and migration entries setup in all page mappings.
2370 void mem_cgroup_split_huge_fixup(struct page *head)
2374 if (mem_cgroup_disabled())
2377 for (i = 1; i < HPAGE_PMD_NR; i++)
2378 head[i].mem_cgroup = head->mem_cgroup;
2380 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2383 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2385 #ifdef CONFIG_MEMCG_SWAP
2386 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2389 int val = (charge) ? 1 : -1;
2390 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2394 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2395 * @entry: swap entry to be moved
2396 * @from: mem_cgroup which the entry is moved from
2397 * @to: mem_cgroup which the entry is moved to
2399 * It succeeds only when the swap_cgroup's record for this entry is the same
2400 * as the mem_cgroup's id of @from.
2402 * Returns 0 on success, -EINVAL on failure.
2404 * The caller must have charged to @to, IOW, called page_counter_charge() about
2405 * both res and memsw, and called css_get().
2407 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2408 struct mem_cgroup *from, struct mem_cgroup *to)
2410 unsigned short old_id, new_id;
2412 old_id = mem_cgroup_id(from);
2413 new_id = mem_cgroup_id(to);
2415 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2416 mem_cgroup_swap_statistics(from, false);
2417 mem_cgroup_swap_statistics(to, true);
2423 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2424 struct mem_cgroup *from, struct mem_cgroup *to)
2430 static DEFINE_MUTEX(memcg_limit_mutex);
2432 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2433 unsigned long limit)
2435 unsigned long curusage;
2436 unsigned long oldusage;
2437 bool enlarge = false;
2442 * For keeping hierarchical_reclaim simple, how long we should retry
2443 * is depends on callers. We set our retry-count to be function
2444 * of # of children which we should visit in this loop.
2446 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2447 mem_cgroup_count_children(memcg);
2449 oldusage = page_counter_read(&memcg->memory);
2452 if (signal_pending(current)) {
2457 mutex_lock(&memcg_limit_mutex);
2458 if (limit > memcg->memsw.limit) {
2459 mutex_unlock(&memcg_limit_mutex);
2463 if (limit > memcg->memory.limit)
2465 ret = page_counter_limit(&memcg->memory, limit);
2466 mutex_unlock(&memcg_limit_mutex);
2471 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2473 curusage = page_counter_read(&memcg->memory);
2474 /* Usage is reduced ? */
2475 if (curusage >= oldusage)
2478 oldusage = curusage;
2479 } while (retry_count);
2481 if (!ret && enlarge)
2482 memcg_oom_recover(memcg);
2487 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2488 unsigned long limit)
2490 unsigned long curusage;
2491 unsigned long oldusage;
2492 bool enlarge = false;
2496 /* see mem_cgroup_resize_res_limit */
2497 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2498 mem_cgroup_count_children(memcg);
2500 oldusage = page_counter_read(&memcg->memsw);
2503 if (signal_pending(current)) {
2508 mutex_lock(&memcg_limit_mutex);
2509 if (limit < memcg->memory.limit) {
2510 mutex_unlock(&memcg_limit_mutex);
2514 if (limit > memcg->memsw.limit)
2516 ret = page_counter_limit(&memcg->memsw, limit);
2517 mutex_unlock(&memcg_limit_mutex);
2522 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2524 curusage = page_counter_read(&memcg->memsw);
2525 /* Usage is reduced ? */
2526 if (curusage >= oldusage)
2529 oldusage = curusage;
2530 } while (retry_count);
2532 if (!ret && enlarge)
2533 memcg_oom_recover(memcg);
2538 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2540 unsigned long *total_scanned)
2542 unsigned long nr_reclaimed = 0;
2543 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2544 unsigned long reclaimed;
2546 struct mem_cgroup_tree_per_node *mctz;
2547 unsigned long excess;
2548 unsigned long nr_scanned;
2553 mctz = soft_limit_tree_node(pgdat->node_id);
2556 * Do not even bother to check the largest node if the root
2557 * is empty. Do it lockless to prevent lock bouncing. Races
2558 * are acceptable as soft limit is best effort anyway.
2560 if (RB_EMPTY_ROOT(&mctz->rb_root))
2564 * This loop can run a while, specially if mem_cgroup's continuously
2565 * keep exceeding their soft limit and putting the system under
2572 mz = mem_cgroup_largest_soft_limit_node(mctz);
2577 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2578 gfp_mask, &nr_scanned);
2579 nr_reclaimed += reclaimed;
2580 *total_scanned += nr_scanned;
2581 spin_lock_irq(&mctz->lock);
2582 __mem_cgroup_remove_exceeded(mz, mctz);
2585 * If we failed to reclaim anything from this memory cgroup
2586 * it is time to move on to the next cgroup
2590 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592 excess = soft_limit_excess(mz->memcg);
2594 * One school of thought says that we should not add
2595 * back the node to the tree if reclaim returns 0.
2596 * But our reclaim could return 0, simply because due
2597 * to priority we are exposing a smaller subset of
2598 * memory to reclaim from. Consider this as a longer
2601 /* If excess == 0, no tree ops */
2602 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2603 spin_unlock_irq(&mctz->lock);
2604 css_put(&mz->memcg->css);
2607 * Could not reclaim anything and there are no more
2608 * mem cgroups to try or we seem to be looping without
2609 * reclaiming anything.
2611 if (!nr_reclaimed &&
2613 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 } while (!nr_reclaimed);
2617 css_put(&next_mz->memcg->css);
2618 return nr_reclaimed;
2622 * Test whether @memcg has children, dead or alive. Note that this
2623 * function doesn't care whether @memcg has use_hierarchy enabled and
2624 * returns %true if there are child csses according to the cgroup
2625 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2627 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2632 ret = css_next_child(NULL, &memcg->css);
2638 * Reclaims as many pages from the given memcg as possible.
2640 * Caller is responsible for holding css reference for memcg.
2642 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2644 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2646 /* we call try-to-free pages for make this cgroup empty */
2647 lru_add_drain_all();
2648 /* try to free all pages in this cgroup */
2649 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 if (signal_pending(current))
2655 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2659 /* maybe some writeback is necessary */
2660 congestion_wait(BLK_RW_ASYNC, HZ/10);
2668 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2669 char *buf, size_t nbytes,
2672 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2674 if (mem_cgroup_is_root(memcg))
2676 return mem_cgroup_force_empty(memcg) ?: nbytes;
2679 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 return mem_cgroup_from_css(css)->use_hierarchy;
2685 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2686 struct cftype *cft, u64 val)
2689 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2690 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2692 if (memcg->use_hierarchy == val)
2696 * If parent's use_hierarchy is set, we can't make any modifications
2697 * in the child subtrees. If it is unset, then the change can
2698 * occur, provided the current cgroup has no children.
2700 * For the root cgroup, parent_mem is NULL, we allow value to be
2701 * set if there are no children.
2703 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2704 (val == 1 || val == 0)) {
2705 if (!memcg_has_children(memcg))
2706 memcg->use_hierarchy = val;
2715 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2717 struct mem_cgroup *iter;
2720 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2722 for_each_mem_cgroup_tree(iter, memcg) {
2723 for (i = 0; i < MEMCG_NR_STAT; i++)
2724 stat[i] += mem_cgroup_read_stat(iter, i);
2728 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2730 struct mem_cgroup *iter;
2733 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2735 for_each_mem_cgroup_tree(iter, memcg) {
2736 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2737 events[i] += mem_cgroup_read_events(iter, i);
2741 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2743 unsigned long val = 0;
2745 if (mem_cgroup_is_root(memcg)) {
2746 struct mem_cgroup *iter;
2748 for_each_mem_cgroup_tree(iter, memcg) {
2749 val += mem_cgroup_read_stat(iter,
2750 MEM_CGROUP_STAT_CACHE);
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_RSS);
2754 val += mem_cgroup_read_stat(iter,
2755 MEM_CGROUP_STAT_SWAP);
2759 val = page_counter_read(&memcg->memory);
2761 val = page_counter_read(&memcg->memsw);
2774 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2778 struct page_counter *counter;
2780 switch (MEMFILE_TYPE(cft->private)) {
2782 counter = &memcg->memory;
2785 counter = &memcg->memsw;
2788 counter = &memcg->kmem;
2791 counter = &memcg->tcpmem;
2797 switch (MEMFILE_ATTR(cft->private)) {
2799 if (counter == &memcg->memory)
2800 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2801 if (counter == &memcg->memsw)
2802 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2803 return (u64)page_counter_read(counter) * PAGE_SIZE;
2805 return (u64)counter->limit * PAGE_SIZE;
2807 return (u64)counter->watermark * PAGE_SIZE;
2809 return counter->failcnt;
2810 case RES_SOFT_LIMIT:
2811 return (u64)memcg->soft_limit * PAGE_SIZE;
2818 static int memcg_online_kmem(struct mem_cgroup *memcg)
2822 if (cgroup_memory_nokmem)
2825 BUG_ON(memcg->kmemcg_id >= 0);
2826 BUG_ON(memcg->kmem_state);
2828 memcg_id = memcg_alloc_cache_id();
2832 static_branch_inc(&memcg_kmem_enabled_key);
2834 * A memory cgroup is considered kmem-online as soon as it gets
2835 * kmemcg_id. Setting the id after enabling static branching will
2836 * guarantee no one starts accounting before all call sites are
2839 memcg->kmemcg_id = memcg_id;
2840 memcg->kmem_state = KMEM_ONLINE;
2841 INIT_LIST_HEAD(&memcg->kmem_caches);
2846 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848 struct cgroup_subsys_state *css;
2849 struct mem_cgroup *parent, *child;
2852 if (memcg->kmem_state != KMEM_ONLINE)
2855 * Clear the online state before clearing memcg_caches array
2856 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2857 * guarantees that no cache will be created for this cgroup
2858 * after we are done (see memcg_create_kmem_cache()).
2860 memcg->kmem_state = KMEM_ALLOCATED;
2862 memcg_deactivate_kmem_caches(memcg);
2864 kmemcg_id = memcg->kmemcg_id;
2865 BUG_ON(kmemcg_id < 0);
2867 parent = parent_mem_cgroup(memcg);
2869 parent = root_mem_cgroup;
2872 * Change kmemcg_id of this cgroup and all its descendants to the
2873 * parent's id, and then move all entries from this cgroup's list_lrus
2874 * to ones of the parent. After we have finished, all list_lrus
2875 * corresponding to this cgroup are guaranteed to remain empty. The
2876 * ordering is imposed by list_lru_node->lock taken by
2877 * memcg_drain_all_list_lrus().
2879 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2889 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2891 memcg_free_cache_id(kmemcg_id);
2894 static void memcg_free_kmem(struct mem_cgroup *memcg)
2896 /* css_alloc() failed, offlining didn't happen */
2897 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2898 memcg_offline_kmem(memcg);
2900 if (memcg->kmem_state == KMEM_ALLOCATED) {
2901 memcg_destroy_kmem_caches(memcg);
2902 static_branch_dec(&memcg_kmem_enabled_key);
2903 WARN_ON(page_counter_read(&memcg->kmem));
2907 static int memcg_online_kmem(struct mem_cgroup *memcg)
2911 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2914 static void memcg_free_kmem(struct mem_cgroup *memcg)
2917 #endif /* !CONFIG_SLOB */
2919 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2920 unsigned long limit)
2924 mutex_lock(&memcg_limit_mutex);
2925 ret = page_counter_limit(&memcg->kmem, limit);
2926 mutex_unlock(&memcg_limit_mutex);
2930 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2934 mutex_lock(&memcg_limit_mutex);
2936 ret = page_counter_limit(&memcg->tcpmem, limit);
2940 if (!memcg->tcpmem_active) {
2942 * The active flag needs to be written after the static_key
2943 * update. This is what guarantees that the socket activation
2944 * function is the last one to run. See mem_cgroup_sk_alloc()
2945 * for details, and note that we don't mark any socket as
2946 * belonging to this memcg until that flag is up.
2948 * We need to do this, because static_keys will span multiple
2949 * sites, but we can't control their order. If we mark a socket
2950 * as accounted, but the accounting functions are not patched in
2951 * yet, we'll lose accounting.
2953 * We never race with the readers in mem_cgroup_sk_alloc(),
2954 * because when this value change, the code to process it is not
2957 static_branch_inc(&memcg_sockets_enabled_key);
2958 memcg->tcpmem_active = true;
2961 mutex_unlock(&memcg_limit_mutex);
2966 * The user of this function is...
2969 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2970 char *buf, size_t nbytes, loff_t off)
2972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2973 unsigned long nr_pages;
2976 buf = strstrip(buf);
2977 ret = page_counter_memparse(buf, "-1", &nr_pages);
2981 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2983 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2987 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2992 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2995 ret = memcg_update_kmem_limit(memcg, nr_pages);
2998 ret = memcg_update_tcp_limit(memcg, nr_pages);
3002 case RES_SOFT_LIMIT:
3003 memcg->soft_limit = nr_pages;
3007 return ret ?: nbytes;
3010 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3011 size_t nbytes, loff_t off)
3013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014 struct page_counter *counter;
3016 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 counter = &memcg->memory;
3021 counter = &memcg->memsw;
3024 counter = &memcg->kmem;
3027 counter = &memcg->tcpmem;
3033 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035 page_counter_reset_watermark(counter);
3038 counter->failcnt = 0;
3047 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3050 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3054 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3055 struct cftype *cft, u64 val)
3057 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3059 if (val & ~MOVE_MASK)
3063 * No kind of locking is needed in here, because ->can_attach() will
3064 * check this value once in the beginning of the process, and then carry
3065 * on with stale data. This means that changes to this value will only
3066 * affect task migrations starting after the change.
3068 memcg->move_charge_at_immigrate = val;
3072 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3073 struct cftype *cft, u64 val)
3080 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3084 unsigned int lru_mask;
3087 static const struct numa_stat stats[] = {
3088 { "total", LRU_ALL },
3089 { "file", LRU_ALL_FILE },
3090 { "anon", LRU_ALL_ANON },
3091 { "unevictable", BIT(LRU_UNEVICTABLE) },
3093 const struct numa_stat *stat;
3096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3098 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3100 seq_printf(m, "%s=%lu", stat->name, nr);
3101 for_each_node_state(nid, N_MEMORY) {
3102 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3104 seq_printf(m, " N%d=%lu", nid, nr);
3109 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110 struct mem_cgroup *iter;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3115 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3118 for_each_mem_cgroup_tree(iter, memcg)
3119 nr += mem_cgroup_node_nr_lru_pages(
3120 iter, nid, stat->lru_mask);
3121 seq_printf(m, " N%d=%lu", nid, nr);
3128 #endif /* CONFIG_NUMA */
3130 static int memcg_stat_show(struct seq_file *m, void *v)
3132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3133 unsigned long memory, memsw;
3134 struct mem_cgroup *mi;
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3138 MEM_CGROUP_STAT_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3140 MEM_CGROUP_EVENTS_NSTATS);
3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3144 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3146 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3147 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3150 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3151 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3152 mem_cgroup_read_events(memcg, i));
3154 for (i = 0; i < NR_LRU_LISTS; i++)
3155 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3156 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158 /* Hierarchical information */
3159 memory = memsw = PAGE_COUNTER_MAX;
3160 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3161 memory = min(memory, mi->memory.limit);
3162 memsw = min(memsw, mi->memsw.limit);
3164 seq_printf(m, "hierarchical_memory_limit %llu\n",
3165 (u64)memory * PAGE_SIZE);
3166 if (do_memsw_account())
3167 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3168 (u64)memsw * PAGE_SIZE);
3170 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171 unsigned long long val = 0;
3173 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175 for_each_mem_cgroup_tree(mi, memcg)
3176 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3177 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3181 unsigned long long val = 0;
3183 for_each_mem_cgroup_tree(mi, memcg)
3184 val += mem_cgroup_read_events(mi, i);
3185 seq_printf(m, "total_%s %llu\n",
3186 mem_cgroup_events_names[i], val);
3189 for (i = 0; i < NR_LRU_LISTS; i++) {
3190 unsigned long long val = 0;
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3194 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3197 #ifdef CONFIG_DEBUG_VM
3200 struct mem_cgroup_per_node *mz;
3201 struct zone_reclaim_stat *rstat;
3202 unsigned long recent_rotated[2] = {0, 0};
3203 unsigned long recent_scanned[2] = {0, 0};
3205 for_each_online_pgdat(pgdat) {
3206 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3207 rstat = &mz->lruvec.reclaim_stat;
3209 recent_rotated[0] += rstat->recent_rotated[0];
3210 recent_rotated[1] += rstat->recent_rotated[1];
3211 recent_scanned[0] += rstat->recent_scanned[0];
3212 recent_scanned[1] += rstat->recent_scanned[1];
3214 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3215 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3216 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3217 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3224 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3227 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3229 return mem_cgroup_swappiness(memcg);
3232 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3233 struct cftype *cft, u64 val)
3235 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3241 memcg->swappiness = val;
3243 vm_swappiness = val;
3248 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250 struct mem_cgroup_threshold_ary *t;
3251 unsigned long usage;
3256 t = rcu_dereference(memcg->thresholds.primary);
3258 t = rcu_dereference(memcg->memsw_thresholds.primary);
3263 usage = mem_cgroup_usage(memcg, swap);
3266 * current_threshold points to threshold just below or equal to usage.
3267 * If it's not true, a threshold was crossed after last
3268 * call of __mem_cgroup_threshold().
3270 i = t->current_threshold;
3273 * Iterate backward over array of thresholds starting from
3274 * current_threshold and check if a threshold is crossed.
3275 * If none of thresholds below usage is crossed, we read
3276 * only one element of the array here.
3278 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3279 eventfd_signal(t->entries[i].eventfd, 1);
3281 /* i = current_threshold + 1 */
3285 * Iterate forward over array of thresholds starting from
3286 * current_threshold+1 and check if a threshold is crossed.
3287 * If none of thresholds above usage is crossed, we read
3288 * only one element of the array here.
3290 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3291 eventfd_signal(t->entries[i].eventfd, 1);
3293 /* Update current_threshold */
3294 t->current_threshold = i - 1;
3299 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3302 __mem_cgroup_threshold(memcg, false);
3303 if (do_memsw_account())
3304 __mem_cgroup_threshold(memcg, true);
3306 memcg = parent_mem_cgroup(memcg);
3310 static int compare_thresholds(const void *a, const void *b)
3312 const struct mem_cgroup_threshold *_a = a;
3313 const struct mem_cgroup_threshold *_b = b;
3315 if (_a->threshold > _b->threshold)
3318 if (_a->threshold < _b->threshold)
3324 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3326 struct mem_cgroup_eventfd_list *ev;
3328 spin_lock(&memcg_oom_lock);
3330 list_for_each_entry(ev, &memcg->oom_notify, list)
3331 eventfd_signal(ev->eventfd, 1);
3333 spin_unlock(&memcg_oom_lock);
3337 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3339 struct mem_cgroup *iter;
3341 for_each_mem_cgroup_tree(iter, memcg)
3342 mem_cgroup_oom_notify_cb(iter);
3345 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3346 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348 struct mem_cgroup_thresholds *thresholds;
3349 struct mem_cgroup_threshold_ary *new;
3350 unsigned long threshold;
3351 unsigned long usage;
3354 ret = page_counter_memparse(args, "-1", &threshold);
3358 mutex_lock(&memcg->thresholds_lock);
3361 thresholds = &memcg->thresholds;
3362 usage = mem_cgroup_usage(memcg, false);
3363 } else if (type == _MEMSWAP) {
3364 thresholds = &memcg->memsw_thresholds;
3365 usage = mem_cgroup_usage(memcg, true);
3369 /* Check if a threshold crossed before adding a new one */
3370 if (thresholds->primary)
3371 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375 /* Allocate memory for new array of thresholds */
3376 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3384 /* Copy thresholds (if any) to new array */
3385 if (thresholds->primary) {
3386 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3387 sizeof(struct mem_cgroup_threshold));
3390 /* Add new threshold */
3391 new->entries[size - 1].eventfd = eventfd;
3392 new->entries[size - 1].threshold = threshold;
3394 /* Sort thresholds. Registering of new threshold isn't time-critical */
3395 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3396 compare_thresholds, NULL);
3398 /* Find current threshold */
3399 new->current_threshold = -1;
3400 for (i = 0; i < size; i++) {
3401 if (new->entries[i].threshold <= usage) {
3403 * new->current_threshold will not be used until
3404 * rcu_assign_pointer(), so it's safe to increment
3407 ++new->current_threshold;
3412 /* Free old spare buffer and save old primary buffer as spare */
3413 kfree(thresholds->spare);
3414 thresholds->spare = thresholds->primary;
3416 rcu_assign_pointer(thresholds->primary, new);
3418 /* To be sure that nobody uses thresholds */
3422 mutex_unlock(&memcg->thresholds_lock);
3427 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3428 struct eventfd_ctx *eventfd, const char *args)
3430 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3433 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3434 struct eventfd_ctx *eventfd, const char *args)
3436 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3439 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3440 struct eventfd_ctx *eventfd, enum res_type type)
3442 struct mem_cgroup_thresholds *thresholds;
3443 struct mem_cgroup_threshold_ary *new;
3444 unsigned long usage;
3447 mutex_lock(&memcg->thresholds_lock);
3450 thresholds = &memcg->thresholds;
3451 usage = mem_cgroup_usage(memcg, false);
3452 } else if (type == _MEMSWAP) {
3453 thresholds = &memcg->memsw_thresholds;
3454 usage = mem_cgroup_usage(memcg, true);
3458 if (!thresholds->primary)
3461 /* Check if a threshold crossed before removing */
3462 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464 /* Calculate new number of threshold */
3466 for (i = 0; i < thresholds->primary->size; i++) {
3467 if (thresholds->primary->entries[i].eventfd != eventfd)
3471 new = thresholds->spare;
3473 /* Set thresholds array to NULL if we don't have thresholds */
3482 /* Copy thresholds and find current threshold */
3483 new->current_threshold = -1;
3484 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3485 if (thresholds->primary->entries[i].eventfd == eventfd)
3488 new->entries[j] = thresholds->primary->entries[i];
3489 if (new->entries[j].threshold <= usage) {
3491 * new->current_threshold will not be used
3492 * until rcu_assign_pointer(), so it's safe to increment
3495 ++new->current_threshold;
3501 /* Swap primary and spare array */
3502 thresholds->spare = thresholds->primary;
3504 rcu_assign_pointer(thresholds->primary, new);
3506 /* To be sure that nobody uses thresholds */
3509 /* If all events are unregistered, free the spare array */
3511 kfree(thresholds->spare);
3512 thresholds->spare = NULL;
3515 mutex_unlock(&memcg->thresholds_lock);
3518 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3519 struct eventfd_ctx *eventfd)
3521 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3524 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3525 struct eventfd_ctx *eventfd)
3527 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3530 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3531 struct eventfd_ctx *eventfd, const char *args)
3533 struct mem_cgroup_eventfd_list *event;
3535 event = kmalloc(sizeof(*event), GFP_KERNEL);
3539 spin_lock(&memcg_oom_lock);
3541 event->eventfd = eventfd;
3542 list_add(&event->list, &memcg->oom_notify);
3544 /* already in OOM ? */
3545 if (memcg->under_oom)
3546 eventfd_signal(eventfd, 1);
3547 spin_unlock(&memcg_oom_lock);
3552 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3553 struct eventfd_ctx *eventfd)
3555 struct mem_cgroup_eventfd_list *ev, *tmp;
3557 spin_lock(&memcg_oom_lock);
3559 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3560 if (ev->eventfd == eventfd) {
3561 list_del(&ev->list);
3566 spin_unlock(&memcg_oom_lock);
3569 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3574 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3578 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3579 struct cftype *cft, u64 val)
3581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3583 /* cannot set to root cgroup and only 0 and 1 are allowed */
3584 if (!css->parent || !((val == 0) || (val == 1)))
3587 memcg->oom_kill_disable = val;
3589 memcg_oom_recover(memcg);
3594 #ifdef CONFIG_CGROUP_WRITEBACK
3596 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598 return &memcg->cgwb_list;
3601 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603 return wb_domain_init(&memcg->cgwb_domain, gfp);
3606 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608 wb_domain_exit(&memcg->cgwb_domain);
3611 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613 wb_domain_size_changed(&memcg->cgwb_domain);
3616 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620 if (!memcg->css.parent)
3623 return &memcg->cgwb_domain;
3627 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3628 * @wb: bdi_writeback in question
3629 * @pfilepages: out parameter for number of file pages
3630 * @pheadroom: out parameter for number of allocatable pages according to memcg
3631 * @pdirty: out parameter for number of dirty pages
3632 * @pwriteback: out parameter for number of pages under writeback
3634 * Determine the numbers of file, headroom, dirty, and writeback pages in
3635 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3636 * is a bit more involved.
3638 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3639 * headroom is calculated as the lowest headroom of itself and the
3640 * ancestors. Note that this doesn't consider the actual amount of
3641 * available memory in the system. The caller should further cap
3642 * *@pheadroom accordingly.
3644 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3645 unsigned long *pheadroom, unsigned long *pdirty,
3646 unsigned long *pwriteback)
3648 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3649 struct mem_cgroup *parent;
3651 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653 /* this should eventually include NR_UNSTABLE_NFS */
3654 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3655 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3656 (1 << LRU_ACTIVE_FILE));
3657 *pheadroom = PAGE_COUNTER_MAX;
3659 while ((parent = parent_mem_cgroup(memcg))) {
3660 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3661 unsigned long used = page_counter_read(&memcg->memory);
3663 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3668 #else /* CONFIG_CGROUP_WRITEBACK */
3670 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3675 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3679 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3683 #endif /* CONFIG_CGROUP_WRITEBACK */
3686 * DO NOT USE IN NEW FILES.
3688 * "cgroup.event_control" implementation.
3690 * This is way over-engineered. It tries to support fully configurable
3691 * events for each user. Such level of flexibility is completely
3692 * unnecessary especially in the light of the planned unified hierarchy.
3694 * Please deprecate this and replace with something simpler if at all
3699 * Unregister event and free resources.
3701 * Gets called from workqueue.
3703 static void memcg_event_remove(struct work_struct *work)
3705 struct mem_cgroup_event *event =
3706 container_of(work, struct mem_cgroup_event, remove);
3707 struct mem_cgroup *memcg = event->memcg;
3709 remove_wait_queue(event->wqh, &event->wait);
3711 event->unregister_event(memcg, event->eventfd);
3713 /* Notify userspace the event is going away. */
3714 eventfd_signal(event->eventfd, 1);
3716 eventfd_ctx_put(event->eventfd);
3718 css_put(&memcg->css);
3722 * Gets called on POLLHUP on eventfd when user closes it.
3724 * Called with wqh->lock held and interrupts disabled.
3726 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3727 int sync, void *key)
3729 struct mem_cgroup_event *event =
3730 container_of(wait, struct mem_cgroup_event, wait);
3731 struct mem_cgroup *memcg = event->memcg;
3732 unsigned long flags = (unsigned long)key;
3734 if (flags & POLLHUP) {
3736 * If the event has been detached at cgroup removal, we
3737 * can simply return knowing the other side will cleanup
3740 * We can't race against event freeing since the other
3741 * side will require wqh->lock via remove_wait_queue(),
3744 spin_lock(&memcg->event_list_lock);
3745 if (!list_empty(&event->list)) {
3746 list_del_init(&event->list);
3748 * We are in atomic context, but cgroup_event_remove()
3749 * may sleep, so we have to call it in workqueue.
3751 schedule_work(&event->remove);
3753 spin_unlock(&memcg->event_list_lock);
3759 static void memcg_event_ptable_queue_proc(struct file *file,
3760 wait_queue_head_t *wqh, poll_table *pt)
3762 struct mem_cgroup_event *event =
3763 container_of(pt, struct mem_cgroup_event, pt);
3766 add_wait_queue(wqh, &event->wait);
3770 * DO NOT USE IN NEW FILES.
3772 * Parse input and register new cgroup event handler.
3774 * Input must be in format '<event_fd> <control_fd> <args>'.
3775 * Interpretation of args is defined by control file implementation.
3777 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3778 char *buf, size_t nbytes, loff_t off)
3780 struct cgroup_subsys_state *css = of_css(of);
3781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3782 struct mem_cgroup_event *event;
3783 struct cgroup_subsys_state *cfile_css;
3784 unsigned int efd, cfd;
3791 buf = strstrip(buf);
3793 efd = simple_strtoul(buf, &endp, 10);
3798 cfd = simple_strtoul(buf, &endp, 10);
3799 if ((*endp != ' ') && (*endp != '\0'))
3803 event = kzalloc(sizeof(*event), GFP_KERNEL);
3807 event->memcg = memcg;
3808 INIT_LIST_HEAD(&event->list);
3809 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3810 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3811 INIT_WORK(&event->remove, memcg_event_remove);
3819 event->eventfd = eventfd_ctx_fileget(efile.file);
3820 if (IS_ERR(event->eventfd)) {
3821 ret = PTR_ERR(event->eventfd);
3828 goto out_put_eventfd;
3831 /* the process need read permission on control file */
3832 /* AV: shouldn't we check that it's been opened for read instead? */
3833 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3838 * Determine the event callbacks and set them in @event. This used
3839 * to be done via struct cftype but cgroup core no longer knows
3840 * about these events. The following is crude but the whole thing
3841 * is for compatibility anyway.
3843 * DO NOT ADD NEW FILES.
3845 name = cfile.file->f_path.dentry->d_name.name;
3847 if (!strcmp(name, "memory.usage_in_bytes")) {
3848 event->register_event = mem_cgroup_usage_register_event;
3849 event->unregister_event = mem_cgroup_usage_unregister_event;
3850 } else if (!strcmp(name, "memory.oom_control")) {
3851 event->register_event = mem_cgroup_oom_register_event;
3852 event->unregister_event = mem_cgroup_oom_unregister_event;
3853 } else if (!strcmp(name, "memory.pressure_level")) {
3854 event->register_event = vmpressure_register_event;
3855 event->unregister_event = vmpressure_unregister_event;
3856 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3857 event->register_event = memsw_cgroup_usage_register_event;
3858 event->unregister_event = memsw_cgroup_usage_unregister_event;
3865 * Verify @cfile should belong to @css. Also, remaining events are
3866 * automatically removed on cgroup destruction but the removal is
3867 * asynchronous, so take an extra ref on @css.
3869 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3870 &memory_cgrp_subsys);
3872 if (IS_ERR(cfile_css))
3874 if (cfile_css != css) {
3879 ret = event->register_event(memcg, event->eventfd, buf);
3883 efile.file->f_op->poll(efile.file, &event->pt);
3885 spin_lock(&memcg->event_list_lock);
3886 list_add(&event->list, &memcg->event_list);
3887 spin_unlock(&memcg->event_list_lock);
3899 eventfd_ctx_put(event->eventfd);
3908 static struct cftype mem_cgroup_legacy_files[] = {
3910 .name = "usage_in_bytes",
3911 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3912 .read_u64 = mem_cgroup_read_u64,
3915 .name = "max_usage_in_bytes",
3916 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3917 .write = mem_cgroup_reset,
3918 .read_u64 = mem_cgroup_read_u64,
3921 .name = "limit_in_bytes",
3922 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3923 .write = mem_cgroup_write,
3924 .read_u64 = mem_cgroup_read_u64,
3927 .name = "soft_limit_in_bytes",
3928 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3929 .write = mem_cgroup_write,
3930 .read_u64 = mem_cgroup_read_u64,
3934 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3935 .write = mem_cgroup_reset,
3936 .read_u64 = mem_cgroup_read_u64,
3940 .seq_show = memcg_stat_show,
3943 .name = "force_empty",
3944 .write = mem_cgroup_force_empty_write,
3947 .name = "use_hierarchy",
3948 .write_u64 = mem_cgroup_hierarchy_write,
3949 .read_u64 = mem_cgroup_hierarchy_read,
3952 .name = "cgroup.event_control", /* XXX: for compat */
3953 .write = memcg_write_event_control,
3954 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3957 .name = "swappiness",
3958 .read_u64 = mem_cgroup_swappiness_read,
3959 .write_u64 = mem_cgroup_swappiness_write,
3962 .name = "move_charge_at_immigrate",
3963 .read_u64 = mem_cgroup_move_charge_read,
3964 .write_u64 = mem_cgroup_move_charge_write,
3967 .name = "oom_control",
3968 .seq_show = mem_cgroup_oom_control_read,
3969 .write_u64 = mem_cgroup_oom_control_write,
3970 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3973 .name = "pressure_level",
3977 .name = "numa_stat",
3978 .seq_show = memcg_numa_stat_show,
3982 .name = "kmem.limit_in_bytes",
3983 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3984 .write = mem_cgroup_write,
3985 .read_u64 = mem_cgroup_read_u64,
3988 .name = "kmem.usage_in_bytes",
3989 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3990 .read_u64 = mem_cgroup_read_u64,
3993 .name = "kmem.failcnt",
3994 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3995 .write = mem_cgroup_reset,
3996 .read_u64 = mem_cgroup_read_u64,
3999 .name = "kmem.max_usage_in_bytes",
4000 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4001 .write = mem_cgroup_reset,
4002 .read_u64 = mem_cgroup_read_u64,
4004 #ifdef CONFIG_SLABINFO
4006 .name = "kmem.slabinfo",
4007 .seq_start = memcg_slab_start,
4008 .seq_next = memcg_slab_next,
4009 .seq_stop = memcg_slab_stop,
4010 .seq_show = memcg_slab_show,
4014 .name = "kmem.tcp.limit_in_bytes",
4015 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4016 .write = mem_cgroup_write,
4017 .read_u64 = mem_cgroup_read_u64,
4020 .name = "kmem.tcp.usage_in_bytes",
4021 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4022 .read_u64 = mem_cgroup_read_u64,
4025 .name = "kmem.tcp.failcnt",
4026 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4027 .write = mem_cgroup_reset,
4028 .read_u64 = mem_cgroup_read_u64,
4031 .name = "kmem.tcp.max_usage_in_bytes",
4032 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4033 .write = mem_cgroup_reset,
4034 .read_u64 = mem_cgroup_read_u64,
4036 { }, /* terminate */
4040 * Private memory cgroup IDR
4042 * Swap-out records and page cache shadow entries need to store memcg
4043 * references in constrained space, so we maintain an ID space that is
4044 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4045 * memory-controlled cgroups to 64k.
4047 * However, there usually are many references to the oflline CSS after
4048 * the cgroup has been destroyed, such as page cache or reclaimable
4049 * slab objects, that don't need to hang on to the ID. We want to keep
4050 * those dead CSS from occupying IDs, or we might quickly exhaust the
4051 * relatively small ID space and prevent the creation of new cgroups
4052 * even when there are much fewer than 64k cgroups - possibly none.
4054 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4055 * be freed and recycled when it's no longer needed, which is usually
4056 * when the CSS is offlined.
4058 * The only exception to that are records of swapped out tmpfs/shmem
4059 * pages that need to be attributed to live ancestors on swapin. But
4060 * those references are manageable from userspace.
4063 static DEFINE_IDR(mem_cgroup_idr);
4065 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4067 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4068 atomic_add(n, &memcg->id.ref);
4071 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4073 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4074 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4075 idr_remove(&mem_cgroup_idr, memcg->id.id);
4078 /* Memcg ID pins CSS */
4079 css_put(&memcg->css);
4083 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4085 mem_cgroup_id_get_many(memcg, 1);
4088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4090 mem_cgroup_id_put_many(memcg, 1);
4094 * mem_cgroup_from_id - look up a memcg from a memcg id
4095 * @id: the memcg id to look up
4097 * Caller must hold rcu_read_lock().
4099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4101 WARN_ON_ONCE(!rcu_read_lock_held());
4102 return idr_find(&mem_cgroup_idr, id);
4105 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4107 struct mem_cgroup_per_node *pn;
4110 * This routine is called against possible nodes.
4111 * But it's BUG to call kmalloc() against offline node.
4113 * TODO: this routine can waste much memory for nodes which will
4114 * never be onlined. It's better to use memory hotplug callback
4117 if (!node_state(node, N_NORMAL_MEMORY))
4119 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4123 lruvec_init(&pn->lruvec);
4124 pn->usage_in_excess = 0;
4125 pn->on_tree = false;
4128 memcg->nodeinfo[node] = pn;
4132 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4134 kfree(memcg->nodeinfo[node]);
4137 static void mem_cgroup_free(struct mem_cgroup *memcg)
4141 memcg_wb_domain_exit(memcg);
4143 free_mem_cgroup_per_node_info(memcg, node);
4144 free_percpu(memcg->stat);
4148 static struct mem_cgroup *mem_cgroup_alloc(void)
4150 struct mem_cgroup *memcg;
4154 size = sizeof(struct mem_cgroup);
4155 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4157 memcg = kzalloc(size, GFP_KERNEL);
4161 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4162 1, MEM_CGROUP_ID_MAX,
4164 if (memcg->id.id < 0)
4167 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4172 if (alloc_mem_cgroup_per_node_info(memcg, node))
4175 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4178 INIT_WORK(&memcg->high_work, high_work_func);
4179 memcg->last_scanned_node = MAX_NUMNODES;
4180 INIT_LIST_HEAD(&memcg->oom_notify);
4181 mutex_init(&memcg->thresholds_lock);
4182 spin_lock_init(&memcg->move_lock);
4183 vmpressure_init(&memcg->vmpressure);
4184 INIT_LIST_HEAD(&memcg->event_list);
4185 spin_lock_init(&memcg->event_list_lock);
4186 memcg->socket_pressure = jiffies;
4188 memcg->kmemcg_id = -1;
4190 #ifdef CONFIG_CGROUP_WRITEBACK
4191 INIT_LIST_HEAD(&memcg->cgwb_list);
4193 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4196 if (memcg->id.id > 0)
4197 idr_remove(&mem_cgroup_idr, memcg->id.id);
4198 mem_cgroup_free(memcg);
4202 static struct cgroup_subsys_state * __ref
4203 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4205 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4206 struct mem_cgroup *memcg;
4207 long error = -ENOMEM;
4209 memcg = mem_cgroup_alloc();
4211 return ERR_PTR(error);
4213 memcg->high = PAGE_COUNTER_MAX;
4214 memcg->soft_limit = PAGE_COUNTER_MAX;
4216 memcg->swappiness = mem_cgroup_swappiness(parent);
4217 memcg->oom_kill_disable = parent->oom_kill_disable;
4219 if (parent && parent->use_hierarchy) {
4220 memcg->use_hierarchy = true;
4221 page_counter_init(&memcg->memory, &parent->memory);
4222 page_counter_init(&memcg->swap, &parent->swap);
4223 page_counter_init(&memcg->memsw, &parent->memsw);
4224 page_counter_init(&memcg->kmem, &parent->kmem);
4225 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4227 page_counter_init(&memcg->memory, NULL);
4228 page_counter_init(&memcg->swap, NULL);
4229 page_counter_init(&memcg->memsw, NULL);
4230 page_counter_init(&memcg->kmem, NULL);
4231 page_counter_init(&memcg->tcpmem, NULL);
4233 * Deeper hierachy with use_hierarchy == false doesn't make
4234 * much sense so let cgroup subsystem know about this
4235 * unfortunate state in our controller.
4237 if (parent != root_mem_cgroup)
4238 memory_cgrp_subsys.broken_hierarchy = true;
4241 /* The following stuff does not apply to the root */
4243 root_mem_cgroup = memcg;
4247 error = memcg_online_kmem(memcg);
4251 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4252 static_branch_inc(&memcg_sockets_enabled_key);
4256 mem_cgroup_free(memcg);
4257 return ERR_PTR(-ENOMEM);
4260 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4262 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4264 /* Online state pins memcg ID, memcg ID pins CSS */
4265 atomic_set(&memcg->id.ref, 1);
4270 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273 struct mem_cgroup_event *event, *tmp;
4276 * Unregister events and notify userspace.
4277 * Notify userspace about cgroup removing only after rmdir of cgroup
4278 * directory to avoid race between userspace and kernelspace.
4280 spin_lock(&memcg->event_list_lock);
4281 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4282 list_del_init(&event->list);
4283 schedule_work(&event->remove);
4285 spin_unlock(&memcg->event_list_lock);
4287 memcg_offline_kmem(memcg);
4288 wb_memcg_offline(memcg);
4290 mem_cgroup_id_put(memcg);
4293 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4297 invalidate_reclaim_iterators(memcg);
4300 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4304 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4305 static_branch_dec(&memcg_sockets_enabled_key);
4307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4308 static_branch_dec(&memcg_sockets_enabled_key);
4310 vmpressure_cleanup(&memcg->vmpressure);
4311 cancel_work_sync(&memcg->high_work);
4312 mem_cgroup_remove_from_trees(memcg);
4313 memcg_free_kmem(memcg);
4314 mem_cgroup_free(memcg);
4318 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4319 * @css: the target css
4321 * Reset the states of the mem_cgroup associated with @css. This is
4322 * invoked when the userland requests disabling on the default hierarchy
4323 * but the memcg is pinned through dependency. The memcg should stop
4324 * applying policies and should revert to the vanilla state as it may be
4325 * made visible again.
4327 * The current implementation only resets the essential configurations.
4328 * This needs to be expanded to cover all the visible parts.
4330 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4332 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4334 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4335 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4336 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4337 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4338 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4340 memcg->high = PAGE_COUNTER_MAX;
4341 memcg->soft_limit = PAGE_COUNTER_MAX;
4342 memcg_wb_domain_size_changed(memcg);
4346 /* Handlers for move charge at task migration. */
4347 static int mem_cgroup_do_precharge(unsigned long count)
4351 /* Try a single bulk charge without reclaim first, kswapd may wake */
4352 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4354 mc.precharge += count;
4358 /* Try charges one by one with reclaim, but do not retry */
4360 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4374 enum mc_target_type {
4380 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4381 unsigned long addr, pte_t ptent)
4383 struct page *page = vm_normal_page(vma, addr, ptent);
4385 if (!page || !page_mapped(page))
4387 if (PageAnon(page)) {
4388 if (!(mc.flags & MOVE_ANON))
4391 if (!(mc.flags & MOVE_FILE))
4394 if (!get_page_unless_zero(page))
4401 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4402 pte_t ptent, swp_entry_t *entry)
4404 struct page *page = NULL;
4405 swp_entry_t ent = pte_to_swp_entry(ptent);
4407 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4410 * Because lookup_swap_cache() updates some statistics counter,
4411 * we call find_get_page() with swapper_space directly.
4413 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4414 if (do_memsw_account())
4415 entry->val = ent.val;
4420 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4421 pte_t ptent, swp_entry_t *entry)
4427 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4428 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4430 struct page *page = NULL;
4431 struct address_space *mapping;
4434 if (!vma->vm_file) /* anonymous vma */
4436 if (!(mc.flags & MOVE_FILE))
4439 mapping = vma->vm_file->f_mapping;
4440 pgoff = linear_page_index(vma, addr);
4442 /* page is moved even if it's not RSS of this task(page-faulted). */
4444 /* shmem/tmpfs may report page out on swap: account for that too. */
4445 if (shmem_mapping(mapping)) {
4446 page = find_get_entry(mapping, pgoff);
4447 if (radix_tree_exceptional_entry(page)) {
4448 swp_entry_t swp = radix_to_swp_entry(page);
4449 if (do_memsw_account())
4451 page = find_get_page(swap_address_space(swp),
4455 page = find_get_page(mapping, pgoff);
4457 page = find_get_page(mapping, pgoff);
4463 * mem_cgroup_move_account - move account of the page
4465 * @compound: charge the page as compound or small page
4466 * @from: mem_cgroup which the page is moved from.
4467 * @to: mem_cgroup which the page is moved to. @from != @to.
4469 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4471 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4474 static int mem_cgroup_move_account(struct page *page,
4476 struct mem_cgroup *from,
4477 struct mem_cgroup *to)
4479 unsigned long flags;
4480 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4484 VM_BUG_ON(from == to);
4485 VM_BUG_ON_PAGE(PageLRU(page), page);
4486 VM_BUG_ON(compound && !PageTransHuge(page));
4489 * Prevent mem_cgroup_migrate() from looking at
4490 * page->mem_cgroup of its source page while we change it.
4493 if (!trylock_page(page))
4497 if (page->mem_cgroup != from)
4500 anon = PageAnon(page);
4502 spin_lock_irqsave(&from->move_lock, flags);
4504 if (!anon && page_mapped(page)) {
4505 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4507 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4512 * move_lock grabbed above and caller set from->moving_account, so
4513 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4514 * So mapping should be stable for dirty pages.
4516 if (!anon && PageDirty(page)) {
4517 struct address_space *mapping = page_mapping(page);
4519 if (mapping_cap_account_dirty(mapping)) {
4520 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4522 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4527 if (PageWriteback(page)) {
4528 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4530 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4535 * It is safe to change page->mem_cgroup here because the page
4536 * is referenced, charged, and isolated - we can't race with
4537 * uncharging, charging, migration, or LRU putback.
4540 /* caller should have done css_get */
4541 page->mem_cgroup = to;
4542 spin_unlock_irqrestore(&from->move_lock, flags);
4546 local_irq_disable();
4547 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548 memcg_check_events(to, page);
4549 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550 memcg_check_events(from, page);
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 * move charge. if @target is not NULL, the page is stored in target->page
4569 * with extra refcnt got(Callers should handle it).
4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 * target for charge migration. if @target is not NULL, the entry is stored
4574 * Called with pte lock held.
4577 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4578 unsigned long addr, pte_t ptent, union mc_target *target)
4580 struct page *page = NULL;
4581 enum mc_target_type ret = MC_TARGET_NONE;
4582 swp_entry_t ent = { .val = 0 };
4584 if (pte_present(ptent))
4585 page = mc_handle_present_pte(vma, addr, ptent);
4586 else if (is_swap_pte(ptent))
4587 page = mc_handle_swap_pte(vma, ptent, &ent);
4588 else if (pte_none(ptent))
4589 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4591 if (!page && !ent.val)
4595 * Do only loose check w/o serialization.
4596 * mem_cgroup_move_account() checks the page is valid or
4597 * not under LRU exclusion.
4599 if (page->mem_cgroup == mc.from) {
4600 ret = MC_TARGET_PAGE;
4602 target->page = page;
4604 if (!ret || !target)
4607 /* There is a swap entry and a page doesn't exist or isn't charged */
4608 if (ent.val && !ret &&
4609 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4610 ret = MC_TARGET_SWAP;
4617 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4619 * We don't consider swapping or file mapped pages because THP does not
4620 * support them for now.
4621 * Caller should make sure that pmd_trans_huge(pmd) is true.
4623 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4624 unsigned long addr, pmd_t pmd, union mc_target *target)
4626 struct page *page = NULL;
4627 enum mc_target_type ret = MC_TARGET_NONE;
4629 page = pmd_page(pmd);
4630 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4631 if (!(mc.flags & MOVE_ANON))
4633 if (page->mem_cgroup == mc.from) {
4634 ret = MC_TARGET_PAGE;
4637 target->page = page;
4643 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4644 unsigned long addr, pmd_t pmd, union mc_target *target)
4646 return MC_TARGET_NONE;
4650 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4651 unsigned long addr, unsigned long end,
4652 struct mm_walk *walk)
4654 struct vm_area_struct *vma = walk->vma;
4658 ptl = pmd_trans_huge_lock(pmd, vma);
4660 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4661 mc.precharge += HPAGE_PMD_NR;
4666 if (pmd_trans_unstable(pmd))
4668 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4669 for (; addr != end; pte++, addr += PAGE_SIZE)
4670 if (get_mctgt_type(vma, addr, *pte, NULL))
4671 mc.precharge++; /* increment precharge temporarily */
4672 pte_unmap_unlock(pte - 1, ptl);
4678 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4680 unsigned long precharge;
4682 struct mm_walk mem_cgroup_count_precharge_walk = {
4683 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4686 down_read(&mm->mmap_sem);
4687 walk_page_range(0, mm->highest_vm_end,
4688 &mem_cgroup_count_precharge_walk);
4689 up_read(&mm->mmap_sem);
4691 precharge = mc.precharge;
4697 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4699 unsigned long precharge = mem_cgroup_count_precharge(mm);
4701 VM_BUG_ON(mc.moving_task);
4702 mc.moving_task = current;
4703 return mem_cgroup_do_precharge(precharge);
4706 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4707 static void __mem_cgroup_clear_mc(void)
4709 struct mem_cgroup *from = mc.from;
4710 struct mem_cgroup *to = mc.to;
4712 /* we must uncharge all the leftover precharges from mc.to */
4714 cancel_charge(mc.to, mc.precharge);
4718 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4719 * we must uncharge here.
4721 if (mc.moved_charge) {
4722 cancel_charge(mc.from, mc.moved_charge);
4723 mc.moved_charge = 0;
4725 /* we must fixup refcnts and charges */
4726 if (mc.moved_swap) {
4727 /* uncharge swap account from the old cgroup */
4728 if (!mem_cgroup_is_root(mc.from))
4729 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4731 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4734 * we charged both to->memory and to->memsw, so we
4735 * should uncharge to->memory.
4737 if (!mem_cgroup_is_root(mc.to))
4738 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4740 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4741 css_put_many(&mc.to->css, mc.moved_swap);
4745 memcg_oom_recover(from);
4746 memcg_oom_recover(to);
4747 wake_up_all(&mc.waitq);
4750 static void mem_cgroup_clear_mc(void)
4752 struct mm_struct *mm = mc.mm;
4755 * we must clear moving_task before waking up waiters at the end of
4758 mc.moving_task = NULL;
4759 __mem_cgroup_clear_mc();
4760 spin_lock(&mc.lock);
4764 spin_unlock(&mc.lock);
4769 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4771 struct cgroup_subsys_state *css;
4772 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4773 struct mem_cgroup *from;
4774 struct task_struct *leader, *p;
4775 struct mm_struct *mm;
4776 unsigned long move_flags;
4779 /* charge immigration isn't supported on the default hierarchy */
4780 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4784 * Multi-process migrations only happen on the default hierarchy
4785 * where charge immigration is not used. Perform charge
4786 * immigration if @tset contains a leader and whine if there are
4790 cgroup_taskset_for_each_leader(leader, css, tset) {
4793 memcg = mem_cgroup_from_css(css);
4799 * We are now commited to this value whatever it is. Changes in this
4800 * tunable will only affect upcoming migrations, not the current one.
4801 * So we need to save it, and keep it going.
4803 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4807 from = mem_cgroup_from_task(p);
4809 VM_BUG_ON(from == memcg);
4811 mm = get_task_mm(p);
4814 /* We move charges only when we move a owner of the mm */
4815 if (mm->owner == p) {
4818 VM_BUG_ON(mc.precharge);
4819 VM_BUG_ON(mc.moved_charge);
4820 VM_BUG_ON(mc.moved_swap);
4822 spin_lock(&mc.lock);
4826 mc.flags = move_flags;
4827 spin_unlock(&mc.lock);
4828 /* We set mc.moving_task later */
4830 ret = mem_cgroup_precharge_mc(mm);
4832 mem_cgroup_clear_mc();
4839 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4842 mem_cgroup_clear_mc();
4845 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4846 unsigned long addr, unsigned long end,
4847 struct mm_walk *walk)
4850 struct vm_area_struct *vma = walk->vma;
4853 enum mc_target_type target_type;
4854 union mc_target target;
4857 ptl = pmd_trans_huge_lock(pmd, vma);
4859 if (mc.precharge < HPAGE_PMD_NR) {
4863 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4864 if (target_type == MC_TARGET_PAGE) {
4866 if (!isolate_lru_page(page)) {
4867 if (!mem_cgroup_move_account(page, true,
4869 mc.precharge -= HPAGE_PMD_NR;
4870 mc.moved_charge += HPAGE_PMD_NR;
4872 putback_lru_page(page);
4880 if (pmd_trans_unstable(pmd))
4883 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4884 for (; addr != end; addr += PAGE_SIZE) {
4885 pte_t ptent = *(pte++);
4891 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4892 case MC_TARGET_PAGE:
4895 * We can have a part of the split pmd here. Moving it
4896 * can be done but it would be too convoluted so simply
4897 * ignore such a partial THP and keep it in original
4898 * memcg. There should be somebody mapping the head.
4900 if (PageTransCompound(page))
4902 if (isolate_lru_page(page))
4904 if (!mem_cgroup_move_account(page, false,
4907 /* we uncharge from mc.from later. */
4910 putback_lru_page(page);
4911 put: /* get_mctgt_type() gets the page */
4914 case MC_TARGET_SWAP:
4916 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4918 /* we fixup refcnts and charges later. */
4926 pte_unmap_unlock(pte - 1, ptl);
4931 * We have consumed all precharges we got in can_attach().
4932 * We try charge one by one, but don't do any additional
4933 * charges to mc.to if we have failed in charge once in attach()
4936 ret = mem_cgroup_do_precharge(1);
4944 static void mem_cgroup_move_charge(void)
4946 struct mm_walk mem_cgroup_move_charge_walk = {
4947 .pmd_entry = mem_cgroup_move_charge_pte_range,
4951 lru_add_drain_all();
4953 * Signal lock_page_memcg() to take the memcg's move_lock
4954 * while we're moving its pages to another memcg. Then wait
4955 * for already started RCU-only updates to finish.
4957 atomic_inc(&mc.from->moving_account);
4960 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4962 * Someone who are holding the mmap_sem might be waiting in
4963 * waitq. So we cancel all extra charges, wake up all waiters,
4964 * and retry. Because we cancel precharges, we might not be able
4965 * to move enough charges, but moving charge is a best-effort
4966 * feature anyway, so it wouldn't be a big problem.
4968 __mem_cgroup_clear_mc();
4973 * When we have consumed all precharges and failed in doing
4974 * additional charge, the page walk just aborts.
4976 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4978 up_read(&mc.mm->mmap_sem);
4979 atomic_dec(&mc.from->moving_account);
4982 static void mem_cgroup_move_task(void)
4985 mem_cgroup_move_charge();
4986 mem_cgroup_clear_mc();
4989 #else /* !CONFIG_MMU */
4990 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4994 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4997 static void mem_cgroup_move_task(void)
5003 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5004 * to verify whether we're attached to the default hierarchy on each mount
5007 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5010 * use_hierarchy is forced on the default hierarchy. cgroup core
5011 * guarantees that @root doesn't have any children, so turning it
5012 * on for the root memcg is enough.
5014 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5015 root_mem_cgroup->use_hierarchy = true;
5017 root_mem_cgroup->use_hierarchy = false;
5020 static u64 memory_current_read(struct cgroup_subsys_state *css,
5023 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5025 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5028 static int memory_low_show(struct seq_file *m, void *v)
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031 unsigned long low = READ_ONCE(memcg->low);
5033 if (low == PAGE_COUNTER_MAX)
5034 seq_puts(m, "max\n");
5036 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5041 static ssize_t memory_low_write(struct kernfs_open_file *of,
5042 char *buf, size_t nbytes, loff_t off)
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5048 buf = strstrip(buf);
5049 err = page_counter_memparse(buf, "max", &low);
5058 static int memory_high_show(struct seq_file *m, void *v)
5060 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5061 unsigned long high = READ_ONCE(memcg->high);
5063 if (high == PAGE_COUNTER_MAX)
5064 seq_puts(m, "max\n");
5066 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5071 static ssize_t memory_high_write(struct kernfs_open_file *of,
5072 char *buf, size_t nbytes, loff_t off)
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5075 unsigned long nr_pages;
5079 buf = strstrip(buf);
5080 err = page_counter_memparse(buf, "max", &high);
5086 nr_pages = page_counter_read(&memcg->memory);
5087 if (nr_pages > high)
5088 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5091 memcg_wb_domain_size_changed(memcg);
5095 static int memory_max_show(struct seq_file *m, void *v)
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098 unsigned long max = READ_ONCE(memcg->memory.limit);
5100 if (max == PAGE_COUNTER_MAX)
5101 seq_puts(m, "max\n");
5103 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5108 static ssize_t memory_max_write(struct kernfs_open_file *of,
5109 char *buf, size_t nbytes, loff_t off)
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5113 bool drained = false;
5117 buf = strstrip(buf);
5118 err = page_counter_memparse(buf, "max", &max);
5122 xchg(&memcg->memory.limit, max);
5125 unsigned long nr_pages = page_counter_read(&memcg->memory);
5127 if (nr_pages <= max)
5130 if (signal_pending(current)) {
5136 drain_all_stock(memcg);
5142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5148 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5153 memcg_wb_domain_size_changed(memcg);
5157 static int memory_events_show(struct seq_file *m, void *v)
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5161 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5162 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5163 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5164 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5169 static int memory_stat_show(struct seq_file *m, void *v)
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 unsigned long stat[MEMCG_NR_STAT];
5173 unsigned long events[MEMCG_NR_EVENTS];
5177 * Provide statistics on the state of the memory subsystem as
5178 * well as cumulative event counters that show past behavior.
5180 * This list is ordered following a combination of these gradients:
5181 * 1) generic big picture -> specifics and details
5182 * 2) reflecting userspace activity -> reflecting kernel heuristics
5184 * Current memory state:
5187 tree_stat(memcg, stat);
5188 tree_events(memcg, events);
5190 seq_printf(m, "anon %llu\n",
5191 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5192 seq_printf(m, "file %llu\n",
5193 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5194 seq_printf(m, "kernel_stack %llu\n",
5195 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5196 seq_printf(m, "slab %llu\n",
5197 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5198 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5199 seq_printf(m, "sock %llu\n",
5200 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5202 seq_printf(m, "file_mapped %llu\n",
5203 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5204 seq_printf(m, "file_dirty %llu\n",
5205 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5206 seq_printf(m, "file_writeback %llu\n",
5207 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5209 for (i = 0; i < NR_LRU_LISTS; i++) {
5210 struct mem_cgroup *mi;
5211 unsigned long val = 0;
5213 for_each_mem_cgroup_tree(mi, memcg)
5214 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5215 seq_printf(m, "%s %llu\n",
5216 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5219 seq_printf(m, "slab_reclaimable %llu\n",
5220 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5221 seq_printf(m, "slab_unreclaimable %llu\n",
5222 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5224 /* Accumulated memory events */
5226 seq_printf(m, "pgfault %lu\n",
5227 events[MEM_CGROUP_EVENTS_PGFAULT]);
5228 seq_printf(m, "pgmajfault %lu\n",
5229 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5234 static struct cftype memory_files[] = {
5237 .flags = CFTYPE_NOT_ON_ROOT,
5238 .read_u64 = memory_current_read,
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = memory_low_show,
5244 .write = memory_low_write,
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_high_show,
5250 .write = memory_high_write,
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_max_show,
5256 .write = memory_max_write,
5260 .flags = CFTYPE_NOT_ON_ROOT,
5261 .file_offset = offsetof(struct mem_cgroup, events_file),
5262 .seq_show = memory_events_show,
5266 .flags = CFTYPE_NOT_ON_ROOT,
5267 .seq_show = memory_stat_show,
5272 struct cgroup_subsys memory_cgrp_subsys = {
5273 .css_alloc = mem_cgroup_css_alloc,
5274 .css_online = mem_cgroup_css_online,
5275 .css_offline = mem_cgroup_css_offline,
5276 .css_released = mem_cgroup_css_released,
5277 .css_free = mem_cgroup_css_free,
5278 .css_reset = mem_cgroup_css_reset,
5279 .can_attach = mem_cgroup_can_attach,
5280 .cancel_attach = mem_cgroup_cancel_attach,
5281 .post_attach = mem_cgroup_move_task,
5282 .bind = mem_cgroup_bind,
5283 .dfl_cftypes = memory_files,
5284 .legacy_cftypes = mem_cgroup_legacy_files,
5289 * mem_cgroup_low - check if memory consumption is below the normal range
5290 * @root: the highest ancestor to consider
5291 * @memcg: the memory cgroup to check
5293 * Returns %true if memory consumption of @memcg, and that of all
5294 * configurable ancestors up to @root, is below the normal range.
5296 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5298 if (mem_cgroup_disabled())
5302 * The toplevel group doesn't have a configurable range, so
5303 * it's never low when looked at directly, and it is not
5304 * considered an ancestor when assessing the hierarchy.
5307 if (memcg == root_mem_cgroup)
5310 if (page_counter_read(&memcg->memory) >= memcg->low)
5313 while (memcg != root) {
5314 memcg = parent_mem_cgroup(memcg);
5316 if (memcg == root_mem_cgroup)
5319 if (page_counter_read(&memcg->memory) >= memcg->low)
5326 * mem_cgroup_try_charge - try charging a page
5327 * @page: page to charge
5328 * @mm: mm context of the victim
5329 * @gfp_mask: reclaim mode
5330 * @memcgp: charged memcg return
5331 * @compound: charge the page as compound or small page
5333 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5334 * pages according to @gfp_mask if necessary.
5336 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5337 * Otherwise, an error code is returned.
5339 * After page->mapping has been set up, the caller must finalize the
5340 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5341 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5343 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5344 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5347 struct mem_cgroup *memcg = NULL;
5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5351 if (mem_cgroup_disabled())
5354 if (PageSwapCache(page)) {
5356 * Every swap fault against a single page tries to charge the
5357 * page, bail as early as possible. shmem_unuse() encounters
5358 * already charged pages, too. The USED bit is protected by
5359 * the page lock, which serializes swap cache removal, which
5360 * in turn serializes uncharging.
5362 VM_BUG_ON_PAGE(!PageLocked(page), page);
5363 if (page->mem_cgroup)
5366 if (do_swap_account) {
5367 swp_entry_t ent = { .val = page_private(page), };
5368 unsigned short id = lookup_swap_cgroup_id(ent);
5371 memcg = mem_cgroup_from_id(id);
5372 if (memcg && !css_tryget_online(&memcg->css))
5379 memcg = get_mem_cgroup_from_mm(mm);
5381 ret = try_charge(memcg, gfp_mask, nr_pages);
5383 css_put(&memcg->css);
5390 * mem_cgroup_commit_charge - commit a page charge
5391 * @page: page to charge
5392 * @memcg: memcg to charge the page to
5393 * @lrucare: page might be on LRU already
5394 * @compound: charge the page as compound or small page
5396 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5397 * after page->mapping has been set up. This must happen atomically
5398 * as part of the page instantiation, i.e. under the page table lock
5399 * for anonymous pages, under the page lock for page and swap cache.
5401 * In addition, the page must not be on the LRU during the commit, to
5402 * prevent racing with task migration. If it might be, use @lrucare.
5404 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5406 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5407 bool lrucare, bool compound)
5409 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5411 VM_BUG_ON_PAGE(!page->mapping, page);
5412 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5414 if (mem_cgroup_disabled())
5417 * Swap faults will attempt to charge the same page multiple
5418 * times. But reuse_swap_page() might have removed the page
5419 * from swapcache already, so we can't check PageSwapCache().
5424 commit_charge(page, memcg, lrucare);
5426 local_irq_disable();
5427 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5428 memcg_check_events(memcg, page);
5431 if (do_memsw_account() && PageSwapCache(page)) {
5432 swp_entry_t entry = { .val = page_private(page) };
5434 * The swap entry might not get freed for a long time,
5435 * let's not wait for it. The page already received a
5436 * memory+swap charge, drop the swap entry duplicate.
5438 mem_cgroup_uncharge_swap(entry);
5443 * mem_cgroup_cancel_charge - cancel a page charge
5444 * @page: page to charge
5445 * @memcg: memcg to charge the page to
5446 * @compound: charge the page as compound or small page
5448 * Cancel a charge transaction started by mem_cgroup_try_charge().
5450 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5455 if (mem_cgroup_disabled())
5458 * Swap faults will attempt to charge the same page multiple
5459 * times. But reuse_swap_page() might have removed the page
5460 * from swapcache already, so we can't check PageSwapCache().
5465 cancel_charge(memcg, nr_pages);
5468 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5469 unsigned long nr_anon, unsigned long nr_file,
5470 unsigned long nr_huge, unsigned long nr_kmem,
5471 struct page *dummy_page)
5473 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5474 unsigned long flags;
5476 if (!mem_cgroup_is_root(memcg)) {
5477 page_counter_uncharge(&memcg->memory, nr_pages);
5478 if (do_memsw_account())
5479 page_counter_uncharge(&memcg->memsw, nr_pages);
5480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5481 page_counter_uncharge(&memcg->kmem, nr_kmem);
5482 memcg_oom_recover(memcg);
5485 local_irq_save(flags);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5489 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 memcg_check_events(memcg, dummy_page);
5492 local_irq_restore(flags);
5494 if (!mem_cgroup_is_root(memcg))
5495 css_put_many(&memcg->css, nr_pages);
5498 static void uncharge_list(struct list_head *page_list)
5500 struct mem_cgroup *memcg = NULL;
5501 unsigned long nr_anon = 0;
5502 unsigned long nr_file = 0;
5503 unsigned long nr_huge = 0;
5504 unsigned long nr_kmem = 0;
5505 unsigned long pgpgout = 0;
5506 struct list_head *next;
5510 * Note that the list can be a single page->lru; hence the
5511 * do-while loop instead of a simple list_for_each_entry().
5513 next = page_list->next;
5515 page = list_entry(next, struct page, lru);
5516 next = page->lru.next;
5518 VM_BUG_ON_PAGE(PageLRU(page), page);
5519 VM_BUG_ON_PAGE(page_count(page), page);
5521 if (!page->mem_cgroup)
5525 * Nobody should be changing or seriously looking at
5526 * page->mem_cgroup at this point, we have fully
5527 * exclusive access to the page.
5530 if (memcg != page->mem_cgroup) {
5532 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5533 nr_huge, nr_kmem, page);
5534 pgpgout = nr_anon = nr_file =
5535 nr_huge = nr_kmem = 0;
5537 memcg = page->mem_cgroup;
5540 if (!PageKmemcg(page)) {
5541 unsigned int nr_pages = 1;
5543 if (PageTransHuge(page)) {
5544 nr_pages <<= compound_order(page);
5545 nr_huge += nr_pages;
5548 nr_anon += nr_pages;
5550 nr_file += nr_pages;
5553 nr_kmem += 1 << compound_order(page);
5554 __ClearPageKmemcg(page);
5557 page->mem_cgroup = NULL;
5558 } while (next != page_list);
5561 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5562 nr_huge, nr_kmem, page);
5566 * mem_cgroup_uncharge - uncharge a page
5567 * @page: page to uncharge
5569 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5570 * mem_cgroup_commit_charge().
5572 void mem_cgroup_uncharge(struct page *page)
5574 if (mem_cgroup_disabled())
5577 /* Don't touch page->lru of any random page, pre-check: */
5578 if (!page->mem_cgroup)
5581 INIT_LIST_HEAD(&page->lru);
5582 uncharge_list(&page->lru);
5586 * mem_cgroup_uncharge_list - uncharge a list of page
5587 * @page_list: list of pages to uncharge
5589 * Uncharge a list of pages previously charged with
5590 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5592 void mem_cgroup_uncharge_list(struct list_head *page_list)
5594 if (mem_cgroup_disabled())
5597 if (!list_empty(page_list))
5598 uncharge_list(page_list);
5602 * mem_cgroup_migrate - charge a page's replacement
5603 * @oldpage: currently circulating page
5604 * @newpage: replacement page
5606 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5607 * be uncharged upon free.
5609 * Both pages must be locked, @newpage->mapping must be set up.
5611 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5613 struct mem_cgroup *memcg;
5614 unsigned int nr_pages;
5616 unsigned long flags;
5618 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5619 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5620 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5621 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5624 if (mem_cgroup_disabled())
5627 /* Page cache replacement: new page already charged? */
5628 if (newpage->mem_cgroup)
5631 /* Swapcache readahead pages can get replaced before being charged */
5632 memcg = oldpage->mem_cgroup;
5636 /* Force-charge the new page. The old one will be freed soon */
5637 compound = PageTransHuge(newpage);
5638 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5640 page_counter_charge(&memcg->memory, nr_pages);
5641 if (do_memsw_account())
5642 page_counter_charge(&memcg->memsw, nr_pages);
5643 css_get_many(&memcg->css, nr_pages);
5645 commit_charge(newpage, memcg, false);
5647 local_irq_save(flags);
5648 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5649 memcg_check_events(memcg, newpage);
5650 local_irq_restore(flags);
5653 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5654 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5656 void mem_cgroup_sk_alloc(struct sock *sk)
5658 struct mem_cgroup *memcg;
5660 if (!mem_cgroup_sockets_enabled)
5664 * Socket cloning can throw us here with sk_memcg already
5665 * filled. It won't however, necessarily happen from
5666 * process context. So the test for root memcg given
5667 * the current task's memcg won't help us in this case.
5669 * Respecting the original socket's memcg is a better
5670 * decision in this case.
5673 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5674 css_get(&sk->sk_memcg->css);
5679 memcg = mem_cgroup_from_task(current);
5680 if (memcg == root_mem_cgroup)
5682 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5684 if (css_tryget_online(&memcg->css))
5685 sk->sk_memcg = memcg;
5690 void mem_cgroup_sk_free(struct sock *sk)
5693 css_put(&sk->sk_memcg->css);
5697 * mem_cgroup_charge_skmem - charge socket memory
5698 * @memcg: memcg to charge
5699 * @nr_pages: number of pages to charge
5701 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5702 * @memcg's configured limit, %false if the charge had to be forced.
5704 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5706 gfp_t gfp_mask = GFP_KERNEL;
5708 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5709 struct page_counter *fail;
5711 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5712 memcg->tcpmem_pressure = 0;
5715 page_counter_charge(&memcg->tcpmem, nr_pages);
5716 memcg->tcpmem_pressure = 1;
5720 /* Don't block in the packet receive path */
5722 gfp_mask = GFP_NOWAIT;
5724 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5726 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5729 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5734 * mem_cgroup_uncharge_skmem - uncharge socket memory
5735 * @memcg - memcg to uncharge
5736 * @nr_pages - number of pages to uncharge
5738 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5741 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5745 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5747 page_counter_uncharge(&memcg->memory, nr_pages);
5748 css_put_many(&memcg->css, nr_pages);
5751 static int __init cgroup_memory(char *s)
5755 while ((token = strsep(&s, ",")) != NULL) {
5758 if (!strcmp(token, "nosocket"))
5759 cgroup_memory_nosocket = true;
5760 if (!strcmp(token, "nokmem"))
5761 cgroup_memory_nokmem = true;
5765 __setup("cgroup.memory=", cgroup_memory);
5768 * subsys_initcall() for memory controller.
5770 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5771 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5772 * basically everything that doesn't depend on a specific mem_cgroup structure
5773 * should be initialized from here.
5775 static int __init mem_cgroup_init(void)
5781 * Kmem cache creation is mostly done with the slab_mutex held,
5782 * so use a workqueue with limited concurrency to avoid stalling
5783 * all worker threads in case lots of cgroups are created and
5784 * destroyed simultaneously.
5786 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5787 BUG_ON(!memcg_kmem_cache_wq);
5790 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5791 memcg_hotplug_cpu_dead);
5793 for_each_possible_cpu(cpu)
5794 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5797 for_each_node(node) {
5798 struct mem_cgroup_tree_per_node *rtpn;
5800 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5801 node_online(node) ? node : NUMA_NO_NODE);
5803 rtpn->rb_root = RB_ROOT;
5804 spin_lock_init(&rtpn->lock);
5805 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5810 subsys_initcall(mem_cgroup_init);
5812 #ifdef CONFIG_MEMCG_SWAP
5813 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5815 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5817 * The root cgroup cannot be destroyed, so it's refcount must
5820 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5824 memcg = parent_mem_cgroup(memcg);
5826 memcg = root_mem_cgroup;
5832 * mem_cgroup_swapout - transfer a memsw charge to swap
5833 * @page: page whose memsw charge to transfer
5834 * @entry: swap entry to move the charge to
5836 * Transfer the memsw charge of @page to @entry.
5838 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5840 struct mem_cgroup *memcg, *swap_memcg;
5841 unsigned short oldid;
5843 VM_BUG_ON_PAGE(PageLRU(page), page);
5844 VM_BUG_ON_PAGE(page_count(page), page);
5846 if (!do_memsw_account())
5849 memcg = page->mem_cgroup;
5851 /* Readahead page, never charged */
5856 * In case the memcg owning these pages has been offlined and doesn't
5857 * have an ID allocated to it anymore, charge the closest online
5858 * ancestor for the swap instead and transfer the memory+swap charge.
5860 swap_memcg = mem_cgroup_id_get_online(memcg);
5861 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5862 VM_BUG_ON_PAGE(oldid, page);
5863 mem_cgroup_swap_statistics(swap_memcg, true);
5865 page->mem_cgroup = NULL;
5867 if (!mem_cgroup_is_root(memcg))
5868 page_counter_uncharge(&memcg->memory, 1);
5870 if (memcg != swap_memcg) {
5871 if (!mem_cgroup_is_root(swap_memcg))
5872 page_counter_charge(&swap_memcg->memsw, 1);
5873 page_counter_uncharge(&memcg->memsw, 1);
5877 * Interrupts should be disabled here because the caller holds the
5878 * mapping->tree_lock lock which is taken with interrupts-off. It is
5879 * important here to have the interrupts disabled because it is the
5880 * only synchronisation we have for udpating the per-CPU variables.
5882 VM_BUG_ON(!irqs_disabled());
5883 mem_cgroup_charge_statistics(memcg, page, false, -1);
5884 memcg_check_events(memcg, page);
5886 if (!mem_cgroup_is_root(memcg))
5887 css_put(&memcg->css);
5891 * mem_cgroup_try_charge_swap - try charging a swap entry
5892 * @page: page being added to swap
5893 * @entry: swap entry to charge
5895 * Try to charge @entry to the memcg that @page belongs to.
5897 * Returns 0 on success, -ENOMEM on failure.
5899 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5901 struct mem_cgroup *memcg;
5902 struct page_counter *counter;
5903 unsigned short oldid;
5905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5908 memcg = page->mem_cgroup;
5910 /* Readahead page, never charged */
5914 memcg = mem_cgroup_id_get_online(memcg);
5916 if (!mem_cgroup_is_root(memcg) &&
5917 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5918 mem_cgroup_id_put(memcg);
5922 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5923 VM_BUG_ON_PAGE(oldid, page);
5924 mem_cgroup_swap_statistics(memcg, true);
5930 * mem_cgroup_uncharge_swap - uncharge a swap entry
5931 * @entry: swap entry to uncharge
5933 * Drop the swap charge associated with @entry.
5935 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5937 struct mem_cgroup *memcg;
5940 if (!do_swap_account)
5943 id = swap_cgroup_record(entry, 0);
5945 memcg = mem_cgroup_from_id(id);
5947 if (!mem_cgroup_is_root(memcg)) {
5948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5949 page_counter_uncharge(&memcg->swap, 1);
5951 page_counter_uncharge(&memcg->memsw, 1);
5953 mem_cgroup_swap_statistics(memcg, false);
5954 mem_cgroup_id_put(memcg);
5959 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5961 long nr_swap_pages = get_nr_swap_pages();
5963 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964 return nr_swap_pages;
5965 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5966 nr_swap_pages = min_t(long, nr_swap_pages,
5967 READ_ONCE(memcg->swap.limit) -
5968 page_counter_read(&memcg->swap));
5969 return nr_swap_pages;
5972 bool mem_cgroup_swap_full(struct page *page)
5974 struct mem_cgroup *memcg;
5976 VM_BUG_ON_PAGE(!PageLocked(page), page);
5980 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5983 memcg = page->mem_cgroup;
5987 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5988 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5994 /* for remember boot option*/
5995 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5996 static int really_do_swap_account __initdata = 1;
5998 static int really_do_swap_account __initdata;
6001 static int __init enable_swap_account(char *s)
6003 if (!strcmp(s, "1"))
6004 really_do_swap_account = 1;
6005 else if (!strcmp(s, "0"))
6006 really_do_swap_account = 0;
6009 __setup("swapaccount=", enable_swap_account);
6011 static u64 swap_current_read(struct cgroup_subsys_state *css,
6014 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6016 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6019 static int swap_max_show(struct seq_file *m, void *v)
6021 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6022 unsigned long max = READ_ONCE(memcg->swap.limit);
6024 if (max == PAGE_COUNTER_MAX)
6025 seq_puts(m, "max\n");
6027 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6032 static ssize_t swap_max_write(struct kernfs_open_file *of,
6033 char *buf, size_t nbytes, loff_t off)
6035 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6039 buf = strstrip(buf);
6040 err = page_counter_memparse(buf, "max", &max);
6044 mutex_lock(&memcg_limit_mutex);
6045 err = page_counter_limit(&memcg->swap, max);
6046 mutex_unlock(&memcg_limit_mutex);
6053 static struct cftype swap_files[] = {
6055 .name = "swap.current",
6056 .flags = CFTYPE_NOT_ON_ROOT,
6057 .read_u64 = swap_current_read,
6061 .flags = CFTYPE_NOT_ON_ROOT,
6062 .seq_show = swap_max_show,
6063 .write = swap_max_write,
6068 static struct cftype memsw_cgroup_files[] = {
6070 .name = "memsw.usage_in_bytes",
6071 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6072 .read_u64 = mem_cgroup_read_u64,
6075 .name = "memsw.max_usage_in_bytes",
6076 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6077 .write = mem_cgroup_reset,
6078 .read_u64 = mem_cgroup_read_u64,
6081 .name = "memsw.limit_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6083 .write = mem_cgroup_write,
6084 .read_u64 = mem_cgroup_read_u64,
6087 .name = "memsw.failcnt",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6089 .write = mem_cgroup_reset,
6090 .read_u64 = mem_cgroup_read_u64,
6092 { }, /* terminate */
6095 static int __init mem_cgroup_swap_init(void)
6097 if (!mem_cgroup_disabled() && really_do_swap_account) {
6098 do_swap_account = 1;
6099 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6101 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6102 memsw_cgroup_files));
6106 subsys_initcall(mem_cgroup_swap_init);
6108 #endif /* CONFIG_MEMCG_SWAP */