usb: cdns3: add hibernation pm notifier to set roothub wakeup
[platform/kernel/linux-starfive.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108
109 struct mem_cgroup_tree_per_node {
110         struct rb_root rb_root;
111         struct rb_node *rb_rightmost;
112         spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123         struct list_head list;
124         struct eventfd_ctx *eventfd;
125 };
126
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131         /*
132          * memcg which the event belongs to.
133          */
134         struct mem_cgroup *memcg;
135         /*
136          * eventfd to signal userspace about the event.
137          */
138         struct eventfd_ctx *eventfd;
139         /*
140          * Each of these stored in a list by the cgroup.
141          */
142         struct list_head list;
143         /*
144          * register_event() callback will be used to add new userspace
145          * waiter for changes related to this event.  Use eventfd_signal()
146          * on eventfd to send notification to userspace.
147          */
148         int (*register_event)(struct mem_cgroup *memcg,
149                               struct eventfd_ctx *eventfd, const char *args);
150         /*
151          * unregister_event() callback will be called when userspace closes
152          * the eventfd or on cgroup removing.  This callback must be set,
153          * if you want provide notification functionality.
154          */
155         void (*unregister_event)(struct mem_cgroup *memcg,
156                                  struct eventfd_ctx *eventfd);
157         /*
158          * All fields below needed to unregister event when
159          * userspace closes eventfd.
160          */
161         poll_table pt;
162         wait_queue_head_t *wqh;
163         wait_queue_entry_t wait;
164         struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON       0x1U
175 #define MOVE_FILE       0x2U
176 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180         spinlock_t        lock; /* for from, to */
181         struct mm_struct  *mm;
182         struct mem_cgroup *from;
183         struct mem_cgroup *to;
184         unsigned long flags;
185         unsigned long precharge;
186         unsigned long moved_charge;
187         unsigned long moved_swap;
188         struct task_struct *moving_task;        /* a task moving charges */
189         wait_queue_head_t waitq;                /* a waitq for other context */
190 } mc = {
191         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 /* for encoding cft->private value on file */
203 enum res_type {
204         _MEM,
205         _MEMSWAP,
206         _KMEM,
207         _TCP,
208 };
209
210 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
211 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
212 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
213
214 /*
215  * Iteration constructs for visiting all cgroups (under a tree).  If
216  * loops are exited prematurely (break), mem_cgroup_iter_break() must
217  * be used for reference counting.
218  */
219 #define for_each_mem_cgroup_tree(iter, root)            \
220         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
221              iter != NULL;                              \
222              iter = mem_cgroup_iter(root, iter, NULL))
223
224 #define for_each_mem_cgroup(iter)                       \
225         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
226              iter != NULL;                              \
227              iter = mem_cgroup_iter(NULL, iter, NULL))
228
229 static inline bool task_is_dying(void)
230 {
231         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
232                 (current->flags & PF_EXITING);
233 }
234
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238         if (!memcg)
239                 memcg = root_mem_cgroup;
240         return &memcg->vmpressure;
241 }
242
243 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
244 {
245         return container_of(vmpr, struct mem_cgroup, vmpressure);
246 }
247
248 #ifdef CONFIG_MEMCG_KMEM
249 static DEFINE_SPINLOCK(objcg_lock);
250
251 bool mem_cgroup_kmem_disabled(void)
252 {
253         return cgroup_memory_nokmem;
254 }
255
256 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
257                                       unsigned int nr_pages);
258
259 static void obj_cgroup_release(struct percpu_ref *ref)
260 {
261         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
262         unsigned int nr_bytes;
263         unsigned int nr_pages;
264         unsigned long flags;
265
266         /*
267          * At this point all allocated objects are freed, and
268          * objcg->nr_charged_bytes can't have an arbitrary byte value.
269          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270          *
271          * The following sequence can lead to it:
272          * 1) CPU0: objcg == stock->cached_objcg
273          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274          *          PAGE_SIZE bytes are charged
275          * 3) CPU1: a process from another memcg is allocating something,
276          *          the stock if flushed,
277          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
278          * 5) CPU0: we do release this object,
279          *          92 bytes are added to stock->nr_bytes
280          * 6) CPU0: stock is flushed,
281          *          92 bytes are added to objcg->nr_charged_bytes
282          *
283          * In the result, nr_charged_bytes == PAGE_SIZE.
284          * This page will be uncharged in obj_cgroup_release().
285          */
286         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288         nr_pages = nr_bytes >> PAGE_SHIFT;
289
290         if (nr_pages)
291                 obj_cgroup_uncharge_pages(objcg, nr_pages);
292
293         spin_lock_irqsave(&objcg_lock, flags);
294         list_del(&objcg->list);
295         spin_unlock_irqrestore(&objcg_lock, flags);
296
297         percpu_ref_exit(ref);
298         kfree_rcu(objcg, rcu);
299 }
300
301 static struct obj_cgroup *obj_cgroup_alloc(void)
302 {
303         struct obj_cgroup *objcg;
304         int ret;
305
306         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307         if (!objcg)
308                 return NULL;
309
310         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311                               GFP_KERNEL);
312         if (ret) {
313                 kfree(objcg);
314                 return NULL;
315         }
316         INIT_LIST_HEAD(&objcg->list);
317         return objcg;
318 }
319
320 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321                                   struct mem_cgroup *parent)
322 {
323         struct obj_cgroup *objcg, *iter;
324
325         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326
327         spin_lock_irq(&objcg_lock);
328
329         /* 1) Ready to reparent active objcg. */
330         list_add(&objcg->list, &memcg->objcg_list);
331         /* 2) Reparent active objcg and already reparented objcgs to parent. */
332         list_for_each_entry(iter, &memcg->objcg_list, list)
333                 WRITE_ONCE(iter->memcg, parent);
334         /* 3) Move already reparented objcgs to the parent's list */
335         list_splice(&memcg->objcg_list, &parent->objcg_list);
336
337         spin_unlock_irq(&objcg_lock);
338
339         percpu_ref_kill(&objcg->refcnt);
340 }
341
342 /*
343  * A lot of the calls to the cache allocation functions are expected to be
344  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
345  * conditional to this static branch, we'll have to allow modules that does
346  * kmem_cache_alloc and the such to see this symbol as well
347  */
348 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
349 EXPORT_SYMBOL(memcg_kmem_enabled_key);
350 #endif
351
352 /**
353  * mem_cgroup_css_from_page - css of the memcg associated with a page
354  * @page: page of interest
355  *
356  * If memcg is bound to the default hierarchy, css of the memcg associated
357  * with @page is returned.  The returned css remains associated with @page
358  * until it is released.
359  *
360  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
361  * is returned.
362  */
363 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
364 {
365         struct mem_cgroup *memcg;
366
367         memcg = page_memcg(page);
368
369         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
370                 memcg = root_mem_cgroup;
371
372         return &memcg->css;
373 }
374
375 /**
376  * page_cgroup_ino - return inode number of the memcg a page is charged to
377  * @page: the page
378  *
379  * Look up the closest online ancestor of the memory cgroup @page is charged to
380  * and return its inode number or 0 if @page is not charged to any cgroup. It
381  * is safe to call this function without holding a reference to @page.
382  *
383  * Note, this function is inherently racy, because there is nothing to prevent
384  * the cgroup inode from getting torn down and potentially reallocated a moment
385  * after page_cgroup_ino() returns, so it only should be used by callers that
386  * do not care (such as procfs interfaces).
387  */
388 ino_t page_cgroup_ino(struct page *page)
389 {
390         struct mem_cgroup *memcg;
391         unsigned long ino = 0;
392
393         rcu_read_lock();
394         memcg = page_memcg_check(page);
395
396         while (memcg && !(memcg->css.flags & CSS_ONLINE))
397                 memcg = parent_mem_cgroup(memcg);
398         if (memcg)
399                 ino = cgroup_ino(memcg->css.cgroup);
400         rcu_read_unlock();
401         return ino;
402 }
403
404 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
405                                          struct mem_cgroup_tree_per_node *mctz,
406                                          unsigned long new_usage_in_excess)
407 {
408         struct rb_node **p = &mctz->rb_root.rb_node;
409         struct rb_node *parent = NULL;
410         struct mem_cgroup_per_node *mz_node;
411         bool rightmost = true;
412
413         if (mz->on_tree)
414                 return;
415
416         mz->usage_in_excess = new_usage_in_excess;
417         if (!mz->usage_in_excess)
418                 return;
419         while (*p) {
420                 parent = *p;
421                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
422                                         tree_node);
423                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
424                         p = &(*p)->rb_left;
425                         rightmost = false;
426                 } else {
427                         p = &(*p)->rb_right;
428                 }
429         }
430
431         if (rightmost)
432                 mctz->rb_rightmost = &mz->tree_node;
433
434         rb_link_node(&mz->tree_node, parent, p);
435         rb_insert_color(&mz->tree_node, &mctz->rb_root);
436         mz->on_tree = true;
437 }
438
439 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440                                          struct mem_cgroup_tree_per_node *mctz)
441 {
442         if (!mz->on_tree)
443                 return;
444
445         if (&mz->tree_node == mctz->rb_rightmost)
446                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
447
448         rb_erase(&mz->tree_node, &mctz->rb_root);
449         mz->on_tree = false;
450 }
451
452 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
453                                        struct mem_cgroup_tree_per_node *mctz)
454 {
455         unsigned long flags;
456
457         spin_lock_irqsave(&mctz->lock, flags);
458         __mem_cgroup_remove_exceeded(mz, mctz);
459         spin_unlock_irqrestore(&mctz->lock, flags);
460 }
461
462 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463 {
464         unsigned long nr_pages = page_counter_read(&memcg->memory);
465         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
466         unsigned long excess = 0;
467
468         if (nr_pages > soft_limit)
469                 excess = nr_pages - soft_limit;
470
471         return excess;
472 }
473
474 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
475 {
476         unsigned long excess;
477         struct mem_cgroup_per_node *mz;
478         struct mem_cgroup_tree_per_node *mctz;
479
480         mctz = soft_limit_tree.rb_tree_per_node[nid];
481         if (!mctz)
482                 return;
483         /*
484          * Necessary to update all ancestors when hierarchy is used.
485          * because their event counter is not touched.
486          */
487         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
488                 mz = memcg->nodeinfo[nid];
489                 excess = soft_limit_excess(memcg);
490                 /*
491                  * We have to update the tree if mz is on RB-tree or
492                  * mem is over its softlimit.
493                  */
494                 if (excess || mz->on_tree) {
495                         unsigned long flags;
496
497                         spin_lock_irqsave(&mctz->lock, flags);
498                         /* if on-tree, remove it */
499                         if (mz->on_tree)
500                                 __mem_cgroup_remove_exceeded(mz, mctz);
501                         /*
502                          * Insert again. mz->usage_in_excess will be updated.
503                          * If excess is 0, no tree ops.
504                          */
505                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
506                         spin_unlock_irqrestore(&mctz->lock, flags);
507                 }
508         }
509 }
510
511 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512 {
513         struct mem_cgroup_tree_per_node *mctz;
514         struct mem_cgroup_per_node *mz;
515         int nid;
516
517         for_each_node(nid) {
518                 mz = memcg->nodeinfo[nid];
519                 mctz = soft_limit_tree.rb_tree_per_node[nid];
520                 if (mctz)
521                         mem_cgroup_remove_exceeded(mz, mctz);
522         }
523 }
524
525 static struct mem_cgroup_per_node *
526 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
527 {
528         struct mem_cgroup_per_node *mz;
529
530 retry:
531         mz = NULL;
532         if (!mctz->rb_rightmost)
533                 goto done;              /* Nothing to reclaim from */
534
535         mz = rb_entry(mctz->rb_rightmost,
536                       struct mem_cgroup_per_node, tree_node);
537         /*
538          * Remove the node now but someone else can add it back,
539          * we will to add it back at the end of reclaim to its correct
540          * position in the tree.
541          */
542         __mem_cgroup_remove_exceeded(mz, mctz);
543         if (!soft_limit_excess(mz->memcg) ||
544             !css_tryget(&mz->memcg->css))
545                 goto retry;
546 done:
547         return mz;
548 }
549
550 static struct mem_cgroup_per_node *
551 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
552 {
553         struct mem_cgroup_per_node *mz;
554
555         spin_lock_irq(&mctz->lock);
556         mz = __mem_cgroup_largest_soft_limit_node(mctz);
557         spin_unlock_irq(&mctz->lock);
558         return mz;
559 }
560
561 /*
562  * memcg and lruvec stats flushing
563  *
564  * Many codepaths leading to stats update or read are performance sensitive and
565  * adding stats flushing in such codepaths is not desirable. So, to optimize the
566  * flushing the kernel does:
567  *
568  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
569  *    rstat update tree grow unbounded.
570  *
571  * 2) Flush the stats synchronously on reader side only when there are more than
572  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
573  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
574  *    only for 2 seconds due to (1).
575  */
576 static void flush_memcg_stats_dwork(struct work_struct *w);
577 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
578 static DEFINE_SPINLOCK(stats_flush_lock);
579 static DEFINE_PER_CPU(unsigned int, stats_updates);
580 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
581 static u64 flush_next_time;
582
583 #define FLUSH_TIME (2UL*HZ)
584
585 /*
586  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
587  * not rely on this as part of an acquired spinlock_t lock. These functions are
588  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
589  * is sufficient.
590  */
591 static void memcg_stats_lock(void)
592 {
593         preempt_disable_nested();
594         VM_WARN_ON_IRQS_ENABLED();
595 }
596
597 static void __memcg_stats_lock(void)
598 {
599         preempt_disable_nested();
600 }
601
602 static void memcg_stats_unlock(void)
603 {
604         preempt_enable_nested();
605 }
606
607 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
608 {
609         unsigned int x;
610
611         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
612
613         x = __this_cpu_add_return(stats_updates, abs(val));
614         if (x > MEMCG_CHARGE_BATCH) {
615                 /*
616                  * If stats_flush_threshold exceeds the threshold
617                  * (>num_online_cpus()), cgroup stats update will be triggered
618                  * in __mem_cgroup_flush_stats(). Increasing this var further
619                  * is redundant and simply adds overhead in atomic update.
620                  */
621                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
622                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
623                 __this_cpu_write(stats_updates, 0);
624         }
625 }
626
627 static void __mem_cgroup_flush_stats(void)
628 {
629         unsigned long flag;
630
631         if (!spin_trylock_irqsave(&stats_flush_lock, flag))
632                 return;
633
634         flush_next_time = jiffies_64 + 2*FLUSH_TIME;
635         cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
636         atomic_set(&stats_flush_threshold, 0);
637         spin_unlock_irqrestore(&stats_flush_lock, flag);
638 }
639
640 void mem_cgroup_flush_stats(void)
641 {
642         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
643                 __mem_cgroup_flush_stats();
644 }
645
646 void mem_cgroup_flush_stats_delayed(void)
647 {
648         if (time_after64(jiffies_64, flush_next_time))
649                 mem_cgroup_flush_stats();
650 }
651
652 static void flush_memcg_stats_dwork(struct work_struct *w)
653 {
654         __mem_cgroup_flush_stats();
655         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
656 }
657
658 /* Subset of vm_event_item to report for memcg event stats */
659 static const unsigned int memcg_vm_event_stat[] = {
660         PGPGIN,
661         PGPGOUT,
662         PGSCAN_KSWAPD,
663         PGSCAN_DIRECT,
664         PGSTEAL_KSWAPD,
665         PGSTEAL_DIRECT,
666         PGFAULT,
667         PGMAJFAULT,
668         PGREFILL,
669         PGACTIVATE,
670         PGDEACTIVATE,
671         PGLAZYFREE,
672         PGLAZYFREED,
673 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
674         ZSWPIN,
675         ZSWPOUT,
676 #endif
677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
678         THP_FAULT_ALLOC,
679         THP_COLLAPSE_ALLOC,
680 #endif
681 };
682
683 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
684 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
685
686 static void init_memcg_events(void)
687 {
688         int i;
689
690         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
691                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
692 }
693
694 static inline int memcg_events_index(enum vm_event_item idx)
695 {
696         return mem_cgroup_events_index[idx] - 1;
697 }
698
699 struct memcg_vmstats_percpu {
700         /* Local (CPU and cgroup) page state & events */
701         long                    state[MEMCG_NR_STAT];
702         unsigned long           events[NR_MEMCG_EVENTS];
703
704         /* Delta calculation for lockless upward propagation */
705         long                    state_prev[MEMCG_NR_STAT];
706         unsigned long           events_prev[NR_MEMCG_EVENTS];
707
708         /* Cgroup1: threshold notifications & softlimit tree updates */
709         unsigned long           nr_page_events;
710         unsigned long           targets[MEM_CGROUP_NTARGETS];
711 };
712
713 struct memcg_vmstats {
714         /* Aggregated (CPU and subtree) page state & events */
715         long                    state[MEMCG_NR_STAT];
716         unsigned long           events[NR_MEMCG_EVENTS];
717
718         /* Pending child counts during tree propagation */
719         long                    state_pending[MEMCG_NR_STAT];
720         unsigned long           events_pending[NR_MEMCG_EVENTS];
721 };
722
723 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
724 {
725         long x = READ_ONCE(memcg->vmstats->state[idx]);
726 #ifdef CONFIG_SMP
727         if (x < 0)
728                 x = 0;
729 #endif
730         return x;
731 }
732
733 /**
734  * __mod_memcg_state - update cgroup memory statistics
735  * @memcg: the memory cgroup
736  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
737  * @val: delta to add to the counter, can be negative
738  */
739 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
740 {
741         if (mem_cgroup_disabled())
742                 return;
743
744         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
745         memcg_rstat_updated(memcg, val);
746 }
747
748 /* idx can be of type enum memcg_stat_item or node_stat_item. */
749 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
750 {
751         long x = 0;
752         int cpu;
753
754         for_each_possible_cpu(cpu)
755                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
756 #ifdef CONFIG_SMP
757         if (x < 0)
758                 x = 0;
759 #endif
760         return x;
761 }
762
763 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
764                               int val)
765 {
766         struct mem_cgroup_per_node *pn;
767         struct mem_cgroup *memcg;
768
769         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
770         memcg = pn->memcg;
771
772         /*
773          * The caller from rmap relay on disabled preemption becase they never
774          * update their counter from in-interrupt context. For these two
775          * counters we check that the update is never performed from an
776          * interrupt context while other caller need to have disabled interrupt.
777          */
778         __memcg_stats_lock();
779         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
780                 switch (idx) {
781                 case NR_ANON_MAPPED:
782                 case NR_FILE_MAPPED:
783                 case NR_ANON_THPS:
784                 case NR_SHMEM_PMDMAPPED:
785                 case NR_FILE_PMDMAPPED:
786                         WARN_ON_ONCE(!in_task());
787                         break;
788                 default:
789                         VM_WARN_ON_IRQS_ENABLED();
790                 }
791         }
792
793         /* Update memcg */
794         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
795
796         /* Update lruvec */
797         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
798
799         memcg_rstat_updated(memcg, val);
800         memcg_stats_unlock();
801 }
802
803 /**
804  * __mod_lruvec_state - update lruvec memory statistics
805  * @lruvec: the lruvec
806  * @idx: the stat item
807  * @val: delta to add to the counter, can be negative
808  *
809  * The lruvec is the intersection of the NUMA node and a cgroup. This
810  * function updates the all three counters that are affected by a
811  * change of state at this level: per-node, per-cgroup, per-lruvec.
812  */
813 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
814                         int val)
815 {
816         /* Update node */
817         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
818
819         /* Update memcg and lruvec */
820         if (!mem_cgroup_disabled())
821                 __mod_memcg_lruvec_state(lruvec, idx, val);
822 }
823
824 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
825                              int val)
826 {
827         struct page *head = compound_head(page); /* rmap on tail pages */
828         struct mem_cgroup *memcg;
829         pg_data_t *pgdat = page_pgdat(page);
830         struct lruvec *lruvec;
831
832         rcu_read_lock();
833         memcg = page_memcg(head);
834         /* Untracked pages have no memcg, no lruvec. Update only the node */
835         if (!memcg) {
836                 rcu_read_unlock();
837                 __mod_node_page_state(pgdat, idx, val);
838                 return;
839         }
840
841         lruvec = mem_cgroup_lruvec(memcg, pgdat);
842         __mod_lruvec_state(lruvec, idx, val);
843         rcu_read_unlock();
844 }
845 EXPORT_SYMBOL(__mod_lruvec_page_state);
846
847 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
848 {
849         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
850         struct mem_cgroup *memcg;
851         struct lruvec *lruvec;
852
853         rcu_read_lock();
854         memcg = mem_cgroup_from_slab_obj(p);
855
856         /*
857          * Untracked pages have no memcg, no lruvec. Update only the
858          * node. If we reparent the slab objects to the root memcg,
859          * when we free the slab object, we need to update the per-memcg
860          * vmstats to keep it correct for the root memcg.
861          */
862         if (!memcg) {
863                 __mod_node_page_state(pgdat, idx, val);
864         } else {
865                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
866                 __mod_lruvec_state(lruvec, idx, val);
867         }
868         rcu_read_unlock();
869 }
870
871 /**
872  * __count_memcg_events - account VM events in a cgroup
873  * @memcg: the memory cgroup
874  * @idx: the event item
875  * @count: the number of events that occurred
876  */
877 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
878                           unsigned long count)
879 {
880         int index = memcg_events_index(idx);
881
882         if (mem_cgroup_disabled() || index < 0)
883                 return;
884
885         memcg_stats_lock();
886         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
887         memcg_rstat_updated(memcg, count);
888         memcg_stats_unlock();
889 }
890
891 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
892 {
893         int index = memcg_events_index(event);
894
895         if (index < 0)
896                 return 0;
897         return READ_ONCE(memcg->vmstats->events[index]);
898 }
899
900 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
901 {
902         long x = 0;
903         int cpu;
904         int index = memcg_events_index(event);
905
906         if (index < 0)
907                 return 0;
908
909         for_each_possible_cpu(cpu)
910                 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
911         return x;
912 }
913
914 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
915                                          int nr_pages)
916 {
917         /* pagein of a big page is an event. So, ignore page size */
918         if (nr_pages > 0)
919                 __count_memcg_events(memcg, PGPGIN, 1);
920         else {
921                 __count_memcg_events(memcg, PGPGOUT, 1);
922                 nr_pages = -nr_pages; /* for event */
923         }
924
925         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
926 }
927
928 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
929                                        enum mem_cgroup_events_target target)
930 {
931         unsigned long val, next;
932
933         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
934         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
935         /* from time_after() in jiffies.h */
936         if ((long)(next - val) < 0) {
937                 switch (target) {
938                 case MEM_CGROUP_TARGET_THRESH:
939                         next = val + THRESHOLDS_EVENTS_TARGET;
940                         break;
941                 case MEM_CGROUP_TARGET_SOFTLIMIT:
942                         next = val + SOFTLIMIT_EVENTS_TARGET;
943                         break;
944                 default:
945                         break;
946                 }
947                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
948                 return true;
949         }
950         return false;
951 }
952
953 /*
954  * Check events in order.
955  *
956  */
957 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
958 {
959         if (IS_ENABLED(CONFIG_PREEMPT_RT))
960                 return;
961
962         /* threshold event is triggered in finer grain than soft limit */
963         if (unlikely(mem_cgroup_event_ratelimit(memcg,
964                                                 MEM_CGROUP_TARGET_THRESH))) {
965                 bool do_softlimit;
966
967                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
968                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
969                 mem_cgroup_threshold(memcg);
970                 if (unlikely(do_softlimit))
971                         mem_cgroup_update_tree(memcg, nid);
972         }
973 }
974
975 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
976 {
977         /*
978          * mm_update_next_owner() may clear mm->owner to NULL
979          * if it races with swapoff, page migration, etc.
980          * So this can be called with p == NULL.
981          */
982         if (unlikely(!p))
983                 return NULL;
984
985         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
986 }
987 EXPORT_SYMBOL(mem_cgroup_from_task);
988
989 static __always_inline struct mem_cgroup *active_memcg(void)
990 {
991         if (!in_task())
992                 return this_cpu_read(int_active_memcg);
993         else
994                 return current->active_memcg;
995 }
996
997 /**
998  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
999  * @mm: mm from which memcg should be extracted. It can be NULL.
1000  *
1001  * Obtain a reference on mm->memcg and returns it if successful. If mm
1002  * is NULL, then the memcg is chosen as follows:
1003  * 1) The active memcg, if set.
1004  * 2) current->mm->memcg, if available
1005  * 3) root memcg
1006  * If mem_cgroup is disabled, NULL is returned.
1007  */
1008 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1009 {
1010         struct mem_cgroup *memcg;
1011
1012         if (mem_cgroup_disabled())
1013                 return NULL;
1014
1015         /*
1016          * Page cache insertions can happen without an
1017          * actual mm context, e.g. during disk probing
1018          * on boot, loopback IO, acct() writes etc.
1019          *
1020          * No need to css_get on root memcg as the reference
1021          * counting is disabled on the root level in the
1022          * cgroup core. See CSS_NO_REF.
1023          */
1024         if (unlikely(!mm)) {
1025                 memcg = active_memcg();
1026                 if (unlikely(memcg)) {
1027                         /* remote memcg must hold a ref */
1028                         css_get(&memcg->css);
1029                         return memcg;
1030                 }
1031                 mm = current->mm;
1032                 if (unlikely(!mm))
1033                         return root_mem_cgroup;
1034         }
1035
1036         rcu_read_lock();
1037         do {
1038                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1039                 if (unlikely(!memcg))
1040                         memcg = root_mem_cgroup;
1041         } while (!css_tryget(&memcg->css));
1042         rcu_read_unlock();
1043         return memcg;
1044 }
1045 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1046
1047 static __always_inline bool memcg_kmem_bypass(void)
1048 {
1049         /* Allow remote memcg charging from any context. */
1050         if (unlikely(active_memcg()))
1051                 return false;
1052
1053         /* Memcg to charge can't be determined. */
1054         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1055                 return true;
1056
1057         return false;
1058 }
1059
1060 /**
1061  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1062  * @root: hierarchy root
1063  * @prev: previously returned memcg, NULL on first invocation
1064  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1065  *
1066  * Returns references to children of the hierarchy below @root, or
1067  * @root itself, or %NULL after a full round-trip.
1068  *
1069  * Caller must pass the return value in @prev on subsequent
1070  * invocations for reference counting, or use mem_cgroup_iter_break()
1071  * to cancel a hierarchy walk before the round-trip is complete.
1072  *
1073  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1074  * in the hierarchy among all concurrent reclaimers operating on the
1075  * same node.
1076  */
1077 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1078                                    struct mem_cgroup *prev,
1079                                    struct mem_cgroup_reclaim_cookie *reclaim)
1080 {
1081         struct mem_cgroup_reclaim_iter *iter;
1082         struct cgroup_subsys_state *css = NULL;
1083         struct mem_cgroup *memcg = NULL;
1084         struct mem_cgroup *pos = NULL;
1085
1086         if (mem_cgroup_disabled())
1087                 return NULL;
1088
1089         if (!root)
1090                 root = root_mem_cgroup;
1091
1092         rcu_read_lock();
1093
1094         if (reclaim) {
1095                 struct mem_cgroup_per_node *mz;
1096
1097                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1098                 iter = &mz->iter;
1099
1100                 /*
1101                  * On start, join the current reclaim iteration cycle.
1102                  * Exit when a concurrent walker completes it.
1103                  */
1104                 if (!prev)
1105                         reclaim->generation = iter->generation;
1106                 else if (reclaim->generation != iter->generation)
1107                         goto out_unlock;
1108
1109                 while (1) {
1110                         pos = READ_ONCE(iter->position);
1111                         if (!pos || css_tryget(&pos->css))
1112                                 break;
1113                         /*
1114                          * css reference reached zero, so iter->position will
1115                          * be cleared by ->css_released. However, we should not
1116                          * rely on this happening soon, because ->css_released
1117                          * is called from a work queue, and by busy-waiting we
1118                          * might block it. So we clear iter->position right
1119                          * away.
1120                          */
1121                         (void)cmpxchg(&iter->position, pos, NULL);
1122                 }
1123         } else if (prev) {
1124                 pos = prev;
1125         }
1126
1127         if (pos)
1128                 css = &pos->css;
1129
1130         for (;;) {
1131                 css = css_next_descendant_pre(css, &root->css);
1132                 if (!css) {
1133                         /*
1134                          * Reclaimers share the hierarchy walk, and a
1135                          * new one might jump in right at the end of
1136                          * the hierarchy - make sure they see at least
1137                          * one group and restart from the beginning.
1138                          */
1139                         if (!prev)
1140                                 continue;
1141                         break;
1142                 }
1143
1144                 /*
1145                  * Verify the css and acquire a reference.  The root
1146                  * is provided by the caller, so we know it's alive
1147                  * and kicking, and don't take an extra reference.
1148                  */
1149                 if (css == &root->css || css_tryget(css)) {
1150                         memcg = mem_cgroup_from_css(css);
1151                         break;
1152                 }
1153         }
1154
1155         if (reclaim) {
1156                 /*
1157                  * The position could have already been updated by a competing
1158                  * thread, so check that the value hasn't changed since we read
1159                  * it to avoid reclaiming from the same cgroup twice.
1160                  */
1161                 (void)cmpxchg(&iter->position, pos, memcg);
1162
1163                 if (pos)
1164                         css_put(&pos->css);
1165
1166                 if (!memcg)
1167                         iter->generation++;
1168         }
1169
1170 out_unlock:
1171         rcu_read_unlock();
1172         if (prev && prev != root)
1173                 css_put(&prev->css);
1174
1175         return memcg;
1176 }
1177
1178 /**
1179  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180  * @root: hierarchy root
1181  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182  */
1183 void mem_cgroup_iter_break(struct mem_cgroup *root,
1184                            struct mem_cgroup *prev)
1185 {
1186         if (!root)
1187                 root = root_mem_cgroup;
1188         if (prev && prev != root)
1189                 css_put(&prev->css);
1190 }
1191
1192 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1193                                         struct mem_cgroup *dead_memcg)
1194 {
1195         struct mem_cgroup_reclaim_iter *iter;
1196         struct mem_cgroup_per_node *mz;
1197         int nid;
1198
1199         for_each_node(nid) {
1200                 mz = from->nodeinfo[nid];
1201                 iter = &mz->iter;
1202                 cmpxchg(&iter->position, dead_memcg, NULL);
1203         }
1204 }
1205
1206 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1207 {
1208         struct mem_cgroup *memcg = dead_memcg;
1209         struct mem_cgroup *last;
1210
1211         do {
1212                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1213                 last = memcg;
1214         } while ((memcg = parent_mem_cgroup(memcg)));
1215
1216         /*
1217          * When cgroup1 non-hierarchy mode is used,
1218          * parent_mem_cgroup() does not walk all the way up to the
1219          * cgroup root (root_mem_cgroup). So we have to handle
1220          * dead_memcg from cgroup root separately.
1221          */
1222         if (last != root_mem_cgroup)
1223                 __invalidate_reclaim_iterators(root_mem_cgroup,
1224                                                 dead_memcg);
1225 }
1226
1227 /**
1228  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1229  * @memcg: hierarchy root
1230  * @fn: function to call for each task
1231  * @arg: argument passed to @fn
1232  *
1233  * This function iterates over tasks attached to @memcg or to any of its
1234  * descendants and calls @fn for each task. If @fn returns a non-zero
1235  * value, the function breaks the iteration loop and returns the value.
1236  * Otherwise, it will iterate over all tasks and return 0.
1237  *
1238  * This function must not be called for the root memory cgroup.
1239  */
1240 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1241                           int (*fn)(struct task_struct *, void *), void *arg)
1242 {
1243         struct mem_cgroup *iter;
1244         int ret = 0;
1245
1246         BUG_ON(memcg == root_mem_cgroup);
1247
1248         for_each_mem_cgroup_tree(iter, memcg) {
1249                 struct css_task_iter it;
1250                 struct task_struct *task;
1251
1252                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1253                 while (!ret && (task = css_task_iter_next(&it)))
1254                         ret = fn(task, arg);
1255                 css_task_iter_end(&it);
1256                 if (ret) {
1257                         mem_cgroup_iter_break(memcg, iter);
1258                         break;
1259                 }
1260         }
1261         return ret;
1262 }
1263
1264 #ifdef CONFIG_DEBUG_VM
1265 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1266 {
1267         struct mem_cgroup *memcg;
1268
1269         if (mem_cgroup_disabled())
1270                 return;
1271
1272         memcg = folio_memcg(folio);
1273
1274         if (!memcg)
1275                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1276         else
1277                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1278 }
1279 #endif
1280
1281 /**
1282  * folio_lruvec_lock - Lock the lruvec for a folio.
1283  * @folio: Pointer to the folio.
1284  *
1285  * These functions are safe to use under any of the following conditions:
1286  * - folio locked
1287  * - folio_test_lru false
1288  * - folio_memcg_lock()
1289  * - folio frozen (refcount of 0)
1290  *
1291  * Return: The lruvec this folio is on with its lock held.
1292  */
1293 struct lruvec *folio_lruvec_lock(struct folio *folio)
1294 {
1295         struct lruvec *lruvec = folio_lruvec(folio);
1296
1297         spin_lock(&lruvec->lru_lock);
1298         lruvec_memcg_debug(lruvec, folio);
1299
1300         return lruvec;
1301 }
1302
1303 /**
1304  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1305  * @folio: Pointer to the folio.
1306  *
1307  * These functions are safe to use under any of the following conditions:
1308  * - folio locked
1309  * - folio_test_lru false
1310  * - folio_memcg_lock()
1311  * - folio frozen (refcount of 0)
1312  *
1313  * Return: The lruvec this folio is on with its lock held and interrupts
1314  * disabled.
1315  */
1316 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1317 {
1318         struct lruvec *lruvec = folio_lruvec(folio);
1319
1320         spin_lock_irq(&lruvec->lru_lock);
1321         lruvec_memcg_debug(lruvec, folio);
1322
1323         return lruvec;
1324 }
1325
1326 /**
1327  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1328  * @folio: Pointer to the folio.
1329  * @flags: Pointer to irqsave flags.
1330  *
1331  * These functions are safe to use under any of the following conditions:
1332  * - folio locked
1333  * - folio_test_lru false
1334  * - folio_memcg_lock()
1335  * - folio frozen (refcount of 0)
1336  *
1337  * Return: The lruvec this folio is on with its lock held and interrupts
1338  * disabled.
1339  */
1340 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1341                 unsigned long *flags)
1342 {
1343         struct lruvec *lruvec = folio_lruvec(folio);
1344
1345         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1346         lruvec_memcg_debug(lruvec, folio);
1347
1348         return lruvec;
1349 }
1350
1351 /**
1352  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1353  * @lruvec: mem_cgroup per zone lru vector
1354  * @lru: index of lru list the page is sitting on
1355  * @zid: zone id of the accounted pages
1356  * @nr_pages: positive when adding or negative when removing
1357  *
1358  * This function must be called under lru_lock, just before a page is added
1359  * to or just after a page is removed from an lru list.
1360  */
1361 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1362                                 int zid, int nr_pages)
1363 {
1364         struct mem_cgroup_per_node *mz;
1365         unsigned long *lru_size;
1366         long size;
1367
1368         if (mem_cgroup_disabled())
1369                 return;
1370
1371         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1372         lru_size = &mz->lru_zone_size[zid][lru];
1373
1374         if (nr_pages < 0)
1375                 *lru_size += nr_pages;
1376
1377         size = *lru_size;
1378         if (WARN_ONCE(size < 0,
1379                 "%s(%p, %d, %d): lru_size %ld\n",
1380                 __func__, lruvec, lru, nr_pages, size)) {
1381                 VM_BUG_ON(1);
1382                 *lru_size = 0;
1383         }
1384
1385         if (nr_pages > 0)
1386                 *lru_size += nr_pages;
1387 }
1388
1389 /**
1390  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1391  * @memcg: the memory cgroup
1392  *
1393  * Returns the maximum amount of memory @mem can be charged with, in
1394  * pages.
1395  */
1396 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1397 {
1398         unsigned long margin = 0;
1399         unsigned long count;
1400         unsigned long limit;
1401
1402         count = page_counter_read(&memcg->memory);
1403         limit = READ_ONCE(memcg->memory.max);
1404         if (count < limit)
1405                 margin = limit - count;
1406
1407         if (do_memsw_account()) {
1408                 count = page_counter_read(&memcg->memsw);
1409                 limit = READ_ONCE(memcg->memsw.max);
1410                 if (count < limit)
1411                         margin = min(margin, limit - count);
1412                 else
1413                         margin = 0;
1414         }
1415
1416         return margin;
1417 }
1418
1419 /*
1420  * A routine for checking "mem" is under move_account() or not.
1421  *
1422  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1423  * moving cgroups. This is for waiting at high-memory pressure
1424  * caused by "move".
1425  */
1426 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1427 {
1428         struct mem_cgroup *from;
1429         struct mem_cgroup *to;
1430         bool ret = false;
1431         /*
1432          * Unlike task_move routines, we access mc.to, mc.from not under
1433          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1434          */
1435         spin_lock(&mc.lock);
1436         from = mc.from;
1437         to = mc.to;
1438         if (!from)
1439                 goto unlock;
1440
1441         ret = mem_cgroup_is_descendant(from, memcg) ||
1442                 mem_cgroup_is_descendant(to, memcg);
1443 unlock:
1444         spin_unlock(&mc.lock);
1445         return ret;
1446 }
1447
1448 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1449 {
1450         if (mc.moving_task && current != mc.moving_task) {
1451                 if (mem_cgroup_under_move(memcg)) {
1452                         DEFINE_WAIT(wait);
1453                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1454                         /* moving charge context might have finished. */
1455                         if (mc.moving_task)
1456                                 schedule();
1457                         finish_wait(&mc.waitq, &wait);
1458                         return true;
1459                 }
1460         }
1461         return false;
1462 }
1463
1464 struct memory_stat {
1465         const char *name;
1466         unsigned int idx;
1467 };
1468
1469 static const struct memory_stat memory_stats[] = {
1470         { "anon",                       NR_ANON_MAPPED                  },
1471         { "file",                       NR_FILE_PAGES                   },
1472         { "kernel",                     MEMCG_KMEM                      },
1473         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1474         { "pagetables",                 NR_PAGETABLE                    },
1475         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1476         { "percpu",                     MEMCG_PERCPU_B                  },
1477         { "sock",                       MEMCG_SOCK                      },
1478         { "vmalloc",                    MEMCG_VMALLOC                   },
1479         { "shmem",                      NR_SHMEM                        },
1480 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1481         { "zswap",                      MEMCG_ZSWAP_B                   },
1482         { "zswapped",                   MEMCG_ZSWAPPED                  },
1483 #endif
1484         { "file_mapped",                NR_FILE_MAPPED                  },
1485         { "file_dirty",                 NR_FILE_DIRTY                   },
1486         { "file_writeback",             NR_WRITEBACK                    },
1487 #ifdef CONFIG_SWAP
1488         { "swapcached",                 NR_SWAPCACHE                    },
1489 #endif
1490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1491         { "anon_thp",                   NR_ANON_THPS                    },
1492         { "file_thp",                   NR_FILE_THPS                    },
1493         { "shmem_thp",                  NR_SHMEM_THPS                   },
1494 #endif
1495         { "inactive_anon",              NR_INACTIVE_ANON                },
1496         { "active_anon",                NR_ACTIVE_ANON                  },
1497         { "inactive_file",              NR_INACTIVE_FILE                },
1498         { "active_file",                NR_ACTIVE_FILE                  },
1499         { "unevictable",                NR_UNEVICTABLE                  },
1500         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1501         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1502
1503         /* The memory events */
1504         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1505         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1506         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1507         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1508         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1509         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1510         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1511 };
1512
1513 /* Translate stat items to the correct unit for memory.stat output */
1514 static int memcg_page_state_unit(int item)
1515 {
1516         switch (item) {
1517         case MEMCG_PERCPU_B:
1518         case MEMCG_ZSWAP_B:
1519         case NR_SLAB_RECLAIMABLE_B:
1520         case NR_SLAB_UNRECLAIMABLE_B:
1521         case WORKINGSET_REFAULT_ANON:
1522         case WORKINGSET_REFAULT_FILE:
1523         case WORKINGSET_ACTIVATE_ANON:
1524         case WORKINGSET_ACTIVATE_FILE:
1525         case WORKINGSET_RESTORE_ANON:
1526         case WORKINGSET_RESTORE_FILE:
1527         case WORKINGSET_NODERECLAIM:
1528                 return 1;
1529         case NR_KERNEL_STACK_KB:
1530                 return SZ_1K;
1531         default:
1532                 return PAGE_SIZE;
1533         }
1534 }
1535
1536 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1537                                                     int item)
1538 {
1539         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1540 }
1541
1542 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1543 {
1544         struct seq_buf s;
1545         int i;
1546
1547         seq_buf_init(&s, buf, bufsize);
1548
1549         /*
1550          * Provide statistics on the state of the memory subsystem as
1551          * well as cumulative event counters that show past behavior.
1552          *
1553          * This list is ordered following a combination of these gradients:
1554          * 1) generic big picture -> specifics and details
1555          * 2) reflecting userspace activity -> reflecting kernel heuristics
1556          *
1557          * Current memory state:
1558          */
1559         mem_cgroup_flush_stats();
1560
1561         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1562                 u64 size;
1563
1564                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1565                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1566
1567                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1568                         size += memcg_page_state_output(memcg,
1569                                                         NR_SLAB_RECLAIMABLE_B);
1570                         seq_buf_printf(&s, "slab %llu\n", size);
1571                 }
1572         }
1573
1574         /* Accumulated memory events */
1575         seq_buf_printf(&s, "pgscan %lu\n",
1576                        memcg_events(memcg, PGSCAN_KSWAPD) +
1577                        memcg_events(memcg, PGSCAN_DIRECT));
1578         seq_buf_printf(&s, "pgsteal %lu\n",
1579                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1580                        memcg_events(memcg, PGSTEAL_DIRECT));
1581
1582         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1583                 if (memcg_vm_event_stat[i] == PGPGIN ||
1584                     memcg_vm_event_stat[i] == PGPGOUT)
1585                         continue;
1586
1587                 seq_buf_printf(&s, "%s %lu\n",
1588                                vm_event_name(memcg_vm_event_stat[i]),
1589                                memcg_events(memcg, memcg_vm_event_stat[i]));
1590         }
1591
1592         /* The above should easily fit into one page */
1593         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1594 }
1595
1596 #define K(x) ((x) << (PAGE_SHIFT-10))
1597 /**
1598  * mem_cgroup_print_oom_context: Print OOM information relevant to
1599  * memory controller.
1600  * @memcg: The memory cgroup that went over limit
1601  * @p: Task that is going to be killed
1602  *
1603  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1604  * enabled
1605  */
1606 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1607 {
1608         rcu_read_lock();
1609
1610         if (memcg) {
1611                 pr_cont(",oom_memcg=");
1612                 pr_cont_cgroup_path(memcg->css.cgroup);
1613         } else
1614                 pr_cont(",global_oom");
1615         if (p) {
1616                 pr_cont(",task_memcg=");
1617                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1618         }
1619         rcu_read_unlock();
1620 }
1621
1622 /**
1623  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1624  * memory controller.
1625  * @memcg: The memory cgroup that went over limit
1626  */
1627 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1628 {
1629         /* Use static buffer, for the caller is holding oom_lock. */
1630         static char buf[PAGE_SIZE];
1631
1632         lockdep_assert_held(&oom_lock);
1633
1634         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1635                 K((u64)page_counter_read(&memcg->memory)),
1636                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1637         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1638                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1639                         K((u64)page_counter_read(&memcg->swap)),
1640                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1641         else {
1642                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643                         K((u64)page_counter_read(&memcg->memsw)),
1644                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1645                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1646                         K((u64)page_counter_read(&memcg->kmem)),
1647                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1648         }
1649
1650         pr_info("Memory cgroup stats for ");
1651         pr_cont_cgroup_path(memcg->css.cgroup);
1652         pr_cont(":");
1653         memory_stat_format(memcg, buf, sizeof(buf));
1654         pr_info("%s", buf);
1655 }
1656
1657 /*
1658  * Return the memory (and swap, if configured) limit for a memcg.
1659  */
1660 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1661 {
1662         unsigned long max = READ_ONCE(memcg->memory.max);
1663
1664         if (do_memsw_account()) {
1665                 if (mem_cgroup_swappiness(memcg)) {
1666                         /* Calculate swap excess capacity from memsw limit */
1667                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1668
1669                         max += min(swap, (unsigned long)total_swap_pages);
1670                 }
1671         } else {
1672                 if (mem_cgroup_swappiness(memcg))
1673                         max += min(READ_ONCE(memcg->swap.max),
1674                                    (unsigned long)total_swap_pages);
1675         }
1676         return max;
1677 }
1678
1679 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1680 {
1681         return page_counter_read(&memcg->memory);
1682 }
1683
1684 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1685                                      int order)
1686 {
1687         struct oom_control oc = {
1688                 .zonelist = NULL,
1689                 .nodemask = NULL,
1690                 .memcg = memcg,
1691                 .gfp_mask = gfp_mask,
1692                 .order = order,
1693         };
1694         bool ret = true;
1695
1696         if (mutex_lock_killable(&oom_lock))
1697                 return true;
1698
1699         if (mem_cgroup_margin(memcg) >= (1 << order))
1700                 goto unlock;
1701
1702         /*
1703          * A few threads which were not waiting at mutex_lock_killable() can
1704          * fail to bail out. Therefore, check again after holding oom_lock.
1705          */
1706         ret = task_is_dying() || out_of_memory(&oc);
1707
1708 unlock:
1709         mutex_unlock(&oom_lock);
1710         return ret;
1711 }
1712
1713 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714                                    pg_data_t *pgdat,
1715                                    gfp_t gfp_mask,
1716                                    unsigned long *total_scanned)
1717 {
1718         struct mem_cgroup *victim = NULL;
1719         int total = 0;
1720         int loop = 0;
1721         unsigned long excess;
1722         unsigned long nr_scanned;
1723         struct mem_cgroup_reclaim_cookie reclaim = {
1724                 .pgdat = pgdat,
1725         };
1726
1727         excess = soft_limit_excess(root_memcg);
1728
1729         while (1) {
1730                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1731                 if (!victim) {
1732                         loop++;
1733                         if (loop >= 2) {
1734                                 /*
1735                                  * If we have not been able to reclaim
1736                                  * anything, it might because there are
1737                                  * no reclaimable pages under this hierarchy
1738                                  */
1739                                 if (!total)
1740                                         break;
1741                                 /*
1742                                  * We want to do more targeted reclaim.
1743                                  * excess >> 2 is not to excessive so as to
1744                                  * reclaim too much, nor too less that we keep
1745                                  * coming back to reclaim from this cgroup
1746                                  */
1747                                 if (total >= (excess >> 2) ||
1748                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1749                                         break;
1750                         }
1751                         continue;
1752                 }
1753                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1754                                         pgdat, &nr_scanned);
1755                 *total_scanned += nr_scanned;
1756                 if (!soft_limit_excess(root_memcg))
1757                         break;
1758         }
1759         mem_cgroup_iter_break(root_memcg, victim);
1760         return total;
1761 }
1762
1763 #ifdef CONFIG_LOCKDEP
1764 static struct lockdep_map memcg_oom_lock_dep_map = {
1765         .name = "memcg_oom_lock",
1766 };
1767 #endif
1768
1769 static DEFINE_SPINLOCK(memcg_oom_lock);
1770
1771 /*
1772  * Check OOM-Killer is already running under our hierarchy.
1773  * If someone is running, return false.
1774  */
1775 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1776 {
1777         struct mem_cgroup *iter, *failed = NULL;
1778
1779         spin_lock(&memcg_oom_lock);
1780
1781         for_each_mem_cgroup_tree(iter, memcg) {
1782                 if (iter->oom_lock) {
1783                         /*
1784                          * this subtree of our hierarchy is already locked
1785                          * so we cannot give a lock.
1786                          */
1787                         failed = iter;
1788                         mem_cgroup_iter_break(memcg, iter);
1789                         break;
1790                 } else
1791                         iter->oom_lock = true;
1792         }
1793
1794         if (failed) {
1795                 /*
1796                  * OK, we failed to lock the whole subtree so we have
1797                  * to clean up what we set up to the failing subtree
1798                  */
1799                 for_each_mem_cgroup_tree(iter, memcg) {
1800                         if (iter == failed) {
1801                                 mem_cgroup_iter_break(memcg, iter);
1802                                 break;
1803                         }
1804                         iter->oom_lock = false;
1805                 }
1806         } else
1807                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1808
1809         spin_unlock(&memcg_oom_lock);
1810
1811         return !failed;
1812 }
1813
1814 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1815 {
1816         struct mem_cgroup *iter;
1817
1818         spin_lock(&memcg_oom_lock);
1819         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1820         for_each_mem_cgroup_tree(iter, memcg)
1821                 iter->oom_lock = false;
1822         spin_unlock(&memcg_oom_lock);
1823 }
1824
1825 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1826 {
1827         struct mem_cgroup *iter;
1828
1829         spin_lock(&memcg_oom_lock);
1830         for_each_mem_cgroup_tree(iter, memcg)
1831                 iter->under_oom++;
1832         spin_unlock(&memcg_oom_lock);
1833 }
1834
1835 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1836 {
1837         struct mem_cgroup *iter;
1838
1839         /*
1840          * Be careful about under_oom underflows because a child memcg
1841          * could have been added after mem_cgroup_mark_under_oom.
1842          */
1843         spin_lock(&memcg_oom_lock);
1844         for_each_mem_cgroup_tree(iter, memcg)
1845                 if (iter->under_oom > 0)
1846                         iter->under_oom--;
1847         spin_unlock(&memcg_oom_lock);
1848 }
1849
1850 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1851
1852 struct oom_wait_info {
1853         struct mem_cgroup *memcg;
1854         wait_queue_entry_t      wait;
1855 };
1856
1857 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1858         unsigned mode, int sync, void *arg)
1859 {
1860         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1861         struct mem_cgroup *oom_wait_memcg;
1862         struct oom_wait_info *oom_wait_info;
1863
1864         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1865         oom_wait_memcg = oom_wait_info->memcg;
1866
1867         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1868             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1869                 return 0;
1870         return autoremove_wake_function(wait, mode, sync, arg);
1871 }
1872
1873 static void memcg_oom_recover(struct mem_cgroup *memcg)
1874 {
1875         /*
1876          * For the following lockless ->under_oom test, the only required
1877          * guarantee is that it must see the state asserted by an OOM when
1878          * this function is called as a result of userland actions
1879          * triggered by the notification of the OOM.  This is trivially
1880          * achieved by invoking mem_cgroup_mark_under_oom() before
1881          * triggering notification.
1882          */
1883         if (memcg && memcg->under_oom)
1884                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1885 }
1886
1887 /*
1888  * Returns true if successfully killed one or more processes. Though in some
1889  * corner cases it can return true even without killing any process.
1890  */
1891 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1892 {
1893         bool locked, ret;
1894
1895         if (order > PAGE_ALLOC_COSTLY_ORDER)
1896                 return false;
1897
1898         memcg_memory_event(memcg, MEMCG_OOM);
1899
1900         /*
1901          * We are in the middle of the charge context here, so we
1902          * don't want to block when potentially sitting on a callstack
1903          * that holds all kinds of filesystem and mm locks.
1904          *
1905          * cgroup1 allows disabling the OOM killer and waiting for outside
1906          * handling until the charge can succeed; remember the context and put
1907          * the task to sleep at the end of the page fault when all locks are
1908          * released.
1909          *
1910          * On the other hand, in-kernel OOM killer allows for an async victim
1911          * memory reclaim (oom_reaper) and that means that we are not solely
1912          * relying on the oom victim to make a forward progress and we can
1913          * invoke the oom killer here.
1914          *
1915          * Please note that mem_cgroup_out_of_memory might fail to find a
1916          * victim and then we have to bail out from the charge path.
1917          */
1918         if (memcg->oom_kill_disable) {
1919                 if (current->in_user_fault) {
1920                         css_get(&memcg->css);
1921                         current->memcg_in_oom = memcg;
1922                         current->memcg_oom_gfp_mask = mask;
1923                         current->memcg_oom_order = order;
1924                 }
1925                 return false;
1926         }
1927
1928         mem_cgroup_mark_under_oom(memcg);
1929
1930         locked = mem_cgroup_oom_trylock(memcg);
1931
1932         if (locked)
1933                 mem_cgroup_oom_notify(memcg);
1934
1935         mem_cgroup_unmark_under_oom(memcg);
1936         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1937
1938         if (locked)
1939                 mem_cgroup_oom_unlock(memcg);
1940
1941         return ret;
1942 }
1943
1944 /**
1945  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1946  * @handle: actually kill/wait or just clean up the OOM state
1947  *
1948  * This has to be called at the end of a page fault if the memcg OOM
1949  * handler was enabled.
1950  *
1951  * Memcg supports userspace OOM handling where failed allocations must
1952  * sleep on a waitqueue until the userspace task resolves the
1953  * situation.  Sleeping directly in the charge context with all kinds
1954  * of locks held is not a good idea, instead we remember an OOM state
1955  * in the task and mem_cgroup_oom_synchronize() has to be called at
1956  * the end of the page fault to complete the OOM handling.
1957  *
1958  * Returns %true if an ongoing memcg OOM situation was detected and
1959  * completed, %false otherwise.
1960  */
1961 bool mem_cgroup_oom_synchronize(bool handle)
1962 {
1963         struct mem_cgroup *memcg = current->memcg_in_oom;
1964         struct oom_wait_info owait;
1965         bool locked;
1966
1967         /* OOM is global, do not handle */
1968         if (!memcg)
1969                 return false;
1970
1971         if (!handle)
1972                 goto cleanup;
1973
1974         owait.memcg = memcg;
1975         owait.wait.flags = 0;
1976         owait.wait.func = memcg_oom_wake_function;
1977         owait.wait.private = current;
1978         INIT_LIST_HEAD(&owait.wait.entry);
1979
1980         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1981         mem_cgroup_mark_under_oom(memcg);
1982
1983         locked = mem_cgroup_oom_trylock(memcg);
1984
1985         if (locked)
1986                 mem_cgroup_oom_notify(memcg);
1987
1988         if (locked && !memcg->oom_kill_disable) {
1989                 mem_cgroup_unmark_under_oom(memcg);
1990                 finish_wait(&memcg_oom_waitq, &owait.wait);
1991                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1992                                          current->memcg_oom_order);
1993         } else {
1994                 schedule();
1995                 mem_cgroup_unmark_under_oom(memcg);
1996                 finish_wait(&memcg_oom_waitq, &owait.wait);
1997         }
1998
1999         if (locked) {
2000                 mem_cgroup_oom_unlock(memcg);
2001                 /*
2002                  * There is no guarantee that an OOM-lock contender
2003                  * sees the wakeups triggered by the OOM kill
2004                  * uncharges.  Wake any sleepers explicitly.
2005                  */
2006                 memcg_oom_recover(memcg);
2007         }
2008 cleanup:
2009         current->memcg_in_oom = NULL;
2010         css_put(&memcg->css);
2011         return true;
2012 }
2013
2014 /**
2015  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2016  * @victim: task to be killed by the OOM killer
2017  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2018  *
2019  * Returns a pointer to a memory cgroup, which has to be cleaned up
2020  * by killing all belonging OOM-killable tasks.
2021  *
2022  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2023  */
2024 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2025                                             struct mem_cgroup *oom_domain)
2026 {
2027         struct mem_cgroup *oom_group = NULL;
2028         struct mem_cgroup *memcg;
2029
2030         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2031                 return NULL;
2032
2033         if (!oom_domain)
2034                 oom_domain = root_mem_cgroup;
2035
2036         rcu_read_lock();
2037
2038         memcg = mem_cgroup_from_task(victim);
2039         if (memcg == root_mem_cgroup)
2040                 goto out;
2041
2042         /*
2043          * If the victim task has been asynchronously moved to a different
2044          * memory cgroup, we might end up killing tasks outside oom_domain.
2045          * In this case it's better to ignore memory.group.oom.
2046          */
2047         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2048                 goto out;
2049
2050         /*
2051          * Traverse the memory cgroup hierarchy from the victim task's
2052          * cgroup up to the OOMing cgroup (or root) to find the
2053          * highest-level memory cgroup with oom.group set.
2054          */
2055         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2056                 if (memcg->oom_group)
2057                         oom_group = memcg;
2058
2059                 if (memcg == oom_domain)
2060                         break;
2061         }
2062
2063         if (oom_group)
2064                 css_get(&oom_group->css);
2065 out:
2066         rcu_read_unlock();
2067
2068         return oom_group;
2069 }
2070
2071 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2072 {
2073         pr_info("Tasks in ");
2074         pr_cont_cgroup_path(memcg->css.cgroup);
2075         pr_cont(" are going to be killed due to memory.oom.group set\n");
2076 }
2077
2078 /**
2079  * folio_memcg_lock - Bind a folio to its memcg.
2080  * @folio: The folio.
2081  *
2082  * This function prevents unlocked LRU folios from being moved to
2083  * another cgroup.
2084  *
2085  * It ensures lifetime of the bound memcg.  The caller is responsible
2086  * for the lifetime of the folio.
2087  */
2088 void folio_memcg_lock(struct folio *folio)
2089 {
2090         struct mem_cgroup *memcg;
2091         unsigned long flags;
2092
2093         /*
2094          * The RCU lock is held throughout the transaction.  The fast
2095          * path can get away without acquiring the memcg->move_lock
2096          * because page moving starts with an RCU grace period.
2097          */
2098         rcu_read_lock();
2099
2100         if (mem_cgroup_disabled())
2101                 return;
2102 again:
2103         memcg = folio_memcg(folio);
2104         if (unlikely(!memcg))
2105                 return;
2106
2107 #ifdef CONFIG_PROVE_LOCKING
2108         local_irq_save(flags);
2109         might_lock(&memcg->move_lock);
2110         local_irq_restore(flags);
2111 #endif
2112
2113         if (atomic_read(&memcg->moving_account) <= 0)
2114                 return;
2115
2116         spin_lock_irqsave(&memcg->move_lock, flags);
2117         if (memcg != folio_memcg(folio)) {
2118                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2119                 goto again;
2120         }
2121
2122         /*
2123          * When charge migration first begins, we can have multiple
2124          * critical sections holding the fast-path RCU lock and one
2125          * holding the slowpath move_lock. Track the task who has the
2126          * move_lock for unlock_page_memcg().
2127          */
2128         memcg->move_lock_task = current;
2129         memcg->move_lock_flags = flags;
2130 }
2131
2132 void lock_page_memcg(struct page *page)
2133 {
2134         folio_memcg_lock(page_folio(page));
2135 }
2136
2137 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2138 {
2139         if (memcg && memcg->move_lock_task == current) {
2140                 unsigned long flags = memcg->move_lock_flags;
2141
2142                 memcg->move_lock_task = NULL;
2143                 memcg->move_lock_flags = 0;
2144
2145                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2146         }
2147
2148         rcu_read_unlock();
2149 }
2150
2151 /**
2152  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2153  * @folio: The folio.
2154  *
2155  * This releases the binding created by folio_memcg_lock().  This does
2156  * not change the accounting of this folio to its memcg, but it does
2157  * permit others to change it.
2158  */
2159 void folio_memcg_unlock(struct folio *folio)
2160 {
2161         __folio_memcg_unlock(folio_memcg(folio));
2162 }
2163
2164 void unlock_page_memcg(struct page *page)
2165 {
2166         folio_memcg_unlock(page_folio(page));
2167 }
2168
2169 struct memcg_stock_pcp {
2170         local_lock_t stock_lock;
2171         struct mem_cgroup *cached; /* this never be root cgroup */
2172         unsigned int nr_pages;
2173
2174 #ifdef CONFIG_MEMCG_KMEM
2175         struct obj_cgroup *cached_objcg;
2176         struct pglist_data *cached_pgdat;
2177         unsigned int nr_bytes;
2178         int nr_slab_reclaimable_b;
2179         int nr_slab_unreclaimable_b;
2180 #endif
2181
2182         struct work_struct work;
2183         unsigned long flags;
2184 #define FLUSHING_CACHED_CHARGE  0
2185 };
2186 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2187         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2188 };
2189 static DEFINE_MUTEX(percpu_charge_mutex);
2190
2191 #ifdef CONFIG_MEMCG_KMEM
2192 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2193 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2194                                      struct mem_cgroup *root_memcg);
2195 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2196
2197 #else
2198 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2199 {
2200         return NULL;
2201 }
2202 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2203                                      struct mem_cgroup *root_memcg)
2204 {
2205         return false;
2206 }
2207 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2208 {
2209 }
2210 #endif
2211
2212 /**
2213  * consume_stock: Try to consume stocked charge on this cpu.
2214  * @memcg: memcg to consume from.
2215  * @nr_pages: how many pages to charge.
2216  *
2217  * The charges will only happen if @memcg matches the current cpu's memcg
2218  * stock, and at least @nr_pages are available in that stock.  Failure to
2219  * service an allocation will refill the stock.
2220  *
2221  * returns true if successful, false otherwise.
2222  */
2223 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2224 {
2225         struct memcg_stock_pcp *stock;
2226         unsigned long flags;
2227         bool ret = false;
2228
2229         if (nr_pages > MEMCG_CHARGE_BATCH)
2230                 return ret;
2231
2232         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2233
2234         stock = this_cpu_ptr(&memcg_stock);
2235         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2236                 stock->nr_pages -= nr_pages;
2237                 ret = true;
2238         }
2239
2240         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2241
2242         return ret;
2243 }
2244
2245 /*
2246  * Returns stocks cached in percpu and reset cached information.
2247  */
2248 static void drain_stock(struct memcg_stock_pcp *stock)
2249 {
2250         struct mem_cgroup *old = stock->cached;
2251
2252         if (!old)
2253                 return;
2254
2255         if (stock->nr_pages) {
2256                 page_counter_uncharge(&old->memory, stock->nr_pages);
2257                 if (do_memsw_account())
2258                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2259                 stock->nr_pages = 0;
2260         }
2261
2262         css_put(&old->css);
2263         stock->cached = NULL;
2264 }
2265
2266 static void drain_local_stock(struct work_struct *dummy)
2267 {
2268         struct memcg_stock_pcp *stock;
2269         struct obj_cgroup *old = NULL;
2270         unsigned long flags;
2271
2272         /*
2273          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2274          * drain_stock races is that we always operate on local CPU stock
2275          * here with IRQ disabled
2276          */
2277         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2278
2279         stock = this_cpu_ptr(&memcg_stock);
2280         old = drain_obj_stock(stock);
2281         drain_stock(stock);
2282         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2283
2284         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2285         if (old)
2286                 obj_cgroup_put(old);
2287 }
2288
2289 /*
2290  * Cache charges(val) to local per_cpu area.
2291  * This will be consumed by consume_stock() function, later.
2292  */
2293 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2294 {
2295         struct memcg_stock_pcp *stock;
2296
2297         stock = this_cpu_ptr(&memcg_stock);
2298         if (stock->cached != memcg) { /* reset if necessary */
2299                 drain_stock(stock);
2300                 css_get(&memcg->css);
2301                 stock->cached = memcg;
2302         }
2303         stock->nr_pages += nr_pages;
2304
2305         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2306                 drain_stock(stock);
2307 }
2308
2309 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2310 {
2311         unsigned long flags;
2312
2313         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2314         __refill_stock(memcg, nr_pages);
2315         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2316 }
2317
2318 /*
2319  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2320  * of the hierarchy under it.
2321  */
2322 static void drain_all_stock(struct mem_cgroup *root_memcg)
2323 {
2324         int cpu, curcpu;
2325
2326         /* If someone's already draining, avoid adding running more workers. */
2327         if (!mutex_trylock(&percpu_charge_mutex))
2328                 return;
2329         /*
2330          * Notify other cpus that system-wide "drain" is running
2331          * We do not care about races with the cpu hotplug because cpu down
2332          * as well as workers from this path always operate on the local
2333          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2334          */
2335         migrate_disable();
2336         curcpu = smp_processor_id();
2337         for_each_online_cpu(cpu) {
2338                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2339                 struct mem_cgroup *memcg;
2340                 bool flush = false;
2341
2342                 rcu_read_lock();
2343                 memcg = stock->cached;
2344                 if (memcg && stock->nr_pages &&
2345                     mem_cgroup_is_descendant(memcg, root_memcg))
2346                         flush = true;
2347                 else if (obj_stock_flush_required(stock, root_memcg))
2348                         flush = true;
2349                 rcu_read_unlock();
2350
2351                 if (flush &&
2352                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2353                         if (cpu == curcpu)
2354                                 drain_local_stock(&stock->work);
2355                         else
2356                                 schedule_work_on(cpu, &stock->work);
2357                 }
2358         }
2359         migrate_enable();
2360         mutex_unlock(&percpu_charge_mutex);
2361 }
2362
2363 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2364 {
2365         struct memcg_stock_pcp *stock;
2366
2367         stock = &per_cpu(memcg_stock, cpu);
2368         drain_stock(stock);
2369
2370         return 0;
2371 }
2372
2373 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2374                                   unsigned int nr_pages,
2375                                   gfp_t gfp_mask)
2376 {
2377         unsigned long nr_reclaimed = 0;
2378
2379         do {
2380                 unsigned long pflags;
2381
2382                 if (page_counter_read(&memcg->memory) <=
2383                     READ_ONCE(memcg->memory.high))
2384                         continue;
2385
2386                 memcg_memory_event(memcg, MEMCG_HIGH);
2387
2388                 psi_memstall_enter(&pflags);
2389                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2390                                                         gfp_mask,
2391                                                         MEMCG_RECLAIM_MAY_SWAP);
2392                 psi_memstall_leave(&pflags);
2393         } while ((memcg = parent_mem_cgroup(memcg)) &&
2394                  !mem_cgroup_is_root(memcg));
2395
2396         return nr_reclaimed;
2397 }
2398
2399 static void high_work_func(struct work_struct *work)
2400 {
2401         struct mem_cgroup *memcg;
2402
2403         memcg = container_of(work, struct mem_cgroup, high_work);
2404         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2405 }
2406
2407 /*
2408  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2409  * enough to still cause a significant slowdown in most cases, while still
2410  * allowing diagnostics and tracing to proceed without becoming stuck.
2411  */
2412 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2413
2414 /*
2415  * When calculating the delay, we use these either side of the exponentiation to
2416  * maintain precision and scale to a reasonable number of jiffies (see the table
2417  * below.
2418  *
2419  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2420  *   overage ratio to a delay.
2421  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2422  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2423  *   to produce a reasonable delay curve.
2424  *
2425  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2426  * reasonable delay curve compared to precision-adjusted overage, not
2427  * penalising heavily at first, but still making sure that growth beyond the
2428  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2429  * example, with a high of 100 megabytes:
2430  *
2431  *  +-------+------------------------+
2432  *  | usage | time to allocate in ms |
2433  *  +-------+------------------------+
2434  *  | 100M  |                      0 |
2435  *  | 101M  |                      6 |
2436  *  | 102M  |                     25 |
2437  *  | 103M  |                     57 |
2438  *  | 104M  |                    102 |
2439  *  | 105M  |                    159 |
2440  *  | 106M  |                    230 |
2441  *  | 107M  |                    313 |
2442  *  | 108M  |                    409 |
2443  *  | 109M  |                    518 |
2444  *  | 110M  |                    639 |
2445  *  | 111M  |                    774 |
2446  *  | 112M  |                    921 |
2447  *  | 113M  |                   1081 |
2448  *  | 114M  |                   1254 |
2449  *  | 115M  |                   1439 |
2450  *  | 116M  |                   1638 |
2451  *  | 117M  |                   1849 |
2452  *  | 118M  |                   2000 |
2453  *  | 119M  |                   2000 |
2454  *  | 120M  |                   2000 |
2455  *  +-------+------------------------+
2456  */
2457  #define MEMCG_DELAY_PRECISION_SHIFT 20
2458  #define MEMCG_DELAY_SCALING_SHIFT 14
2459
2460 static u64 calculate_overage(unsigned long usage, unsigned long high)
2461 {
2462         u64 overage;
2463
2464         if (usage <= high)
2465                 return 0;
2466
2467         /*
2468          * Prevent division by 0 in overage calculation by acting as if
2469          * it was a threshold of 1 page
2470          */
2471         high = max(high, 1UL);
2472
2473         overage = usage - high;
2474         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2475         return div64_u64(overage, high);
2476 }
2477
2478 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2479 {
2480         u64 overage, max_overage = 0;
2481
2482         do {
2483                 overage = calculate_overage(page_counter_read(&memcg->memory),
2484                                             READ_ONCE(memcg->memory.high));
2485                 max_overage = max(overage, max_overage);
2486         } while ((memcg = parent_mem_cgroup(memcg)) &&
2487                  !mem_cgroup_is_root(memcg));
2488
2489         return max_overage;
2490 }
2491
2492 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2493 {
2494         u64 overage, max_overage = 0;
2495
2496         do {
2497                 overage = calculate_overage(page_counter_read(&memcg->swap),
2498                                             READ_ONCE(memcg->swap.high));
2499                 if (overage)
2500                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2501                 max_overage = max(overage, max_overage);
2502         } while ((memcg = parent_mem_cgroup(memcg)) &&
2503                  !mem_cgroup_is_root(memcg));
2504
2505         return max_overage;
2506 }
2507
2508 /*
2509  * Get the number of jiffies that we should penalise a mischievous cgroup which
2510  * is exceeding its memory.high by checking both it and its ancestors.
2511  */
2512 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2513                                           unsigned int nr_pages,
2514                                           u64 max_overage)
2515 {
2516         unsigned long penalty_jiffies;
2517
2518         if (!max_overage)
2519                 return 0;
2520
2521         /*
2522          * We use overage compared to memory.high to calculate the number of
2523          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2524          * fairly lenient on small overages, and increasingly harsh when the
2525          * memcg in question makes it clear that it has no intention of stopping
2526          * its crazy behaviour, so we exponentially increase the delay based on
2527          * overage amount.
2528          */
2529         penalty_jiffies = max_overage * max_overage * HZ;
2530         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2531         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2532
2533         /*
2534          * Factor in the task's own contribution to the overage, such that four
2535          * N-sized allocations are throttled approximately the same as one
2536          * 4N-sized allocation.
2537          *
2538          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2539          * larger the current charge patch is than that.
2540          */
2541         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2542 }
2543
2544 /*
2545  * Scheduled by try_charge() to be executed from the userland return path
2546  * and reclaims memory over the high limit.
2547  */
2548 void mem_cgroup_handle_over_high(void)
2549 {
2550         unsigned long penalty_jiffies;
2551         unsigned long pflags;
2552         unsigned long nr_reclaimed;
2553         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2554         int nr_retries = MAX_RECLAIM_RETRIES;
2555         struct mem_cgroup *memcg;
2556         bool in_retry = false;
2557
2558         if (likely(!nr_pages))
2559                 return;
2560
2561         memcg = get_mem_cgroup_from_mm(current->mm);
2562         current->memcg_nr_pages_over_high = 0;
2563
2564 retry_reclaim:
2565         /*
2566          * The allocating task should reclaim at least the batch size, but for
2567          * subsequent retries we only want to do what's necessary to prevent oom
2568          * or breaching resource isolation.
2569          *
2570          * This is distinct from memory.max or page allocator behaviour because
2571          * memory.high is currently batched, whereas memory.max and the page
2572          * allocator run every time an allocation is made.
2573          */
2574         nr_reclaimed = reclaim_high(memcg,
2575                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2576                                     GFP_KERNEL);
2577
2578         /*
2579          * memory.high is breached and reclaim is unable to keep up. Throttle
2580          * allocators proactively to slow down excessive growth.
2581          */
2582         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2583                                                mem_find_max_overage(memcg));
2584
2585         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2586                                                 swap_find_max_overage(memcg));
2587
2588         /*
2589          * Clamp the max delay per usermode return so as to still keep the
2590          * application moving forwards and also permit diagnostics, albeit
2591          * extremely slowly.
2592          */
2593         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2594
2595         /*
2596          * Don't sleep if the amount of jiffies this memcg owes us is so low
2597          * that it's not even worth doing, in an attempt to be nice to those who
2598          * go only a small amount over their memory.high value and maybe haven't
2599          * been aggressively reclaimed enough yet.
2600          */
2601         if (penalty_jiffies <= HZ / 100)
2602                 goto out;
2603
2604         /*
2605          * If reclaim is making forward progress but we're still over
2606          * memory.high, we want to encourage that rather than doing allocator
2607          * throttling.
2608          */
2609         if (nr_reclaimed || nr_retries--) {
2610                 in_retry = true;
2611                 goto retry_reclaim;
2612         }
2613
2614         /*
2615          * If we exit early, we're guaranteed to die (since
2616          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2617          * need to account for any ill-begotten jiffies to pay them off later.
2618          */
2619         psi_memstall_enter(&pflags);
2620         schedule_timeout_killable(penalty_jiffies);
2621         psi_memstall_leave(&pflags);
2622
2623 out:
2624         css_put(&memcg->css);
2625 }
2626
2627 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2628                         unsigned int nr_pages)
2629 {
2630         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2631         int nr_retries = MAX_RECLAIM_RETRIES;
2632         struct mem_cgroup *mem_over_limit;
2633         struct page_counter *counter;
2634         unsigned long nr_reclaimed;
2635         bool passed_oom = false;
2636         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2637         bool drained = false;
2638         bool raised_max_event = false;
2639         unsigned long pflags;
2640
2641 retry:
2642         if (consume_stock(memcg, nr_pages))
2643                 return 0;
2644
2645         if (!do_memsw_account() ||
2646             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2647                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2648                         goto done_restock;
2649                 if (do_memsw_account())
2650                         page_counter_uncharge(&memcg->memsw, batch);
2651                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2652         } else {
2653                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2654                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2655         }
2656
2657         if (batch > nr_pages) {
2658                 batch = nr_pages;
2659                 goto retry;
2660         }
2661
2662         /*
2663          * Prevent unbounded recursion when reclaim operations need to
2664          * allocate memory. This might exceed the limits temporarily,
2665          * but we prefer facilitating memory reclaim and getting back
2666          * under the limit over triggering OOM kills in these cases.
2667          */
2668         if (unlikely(current->flags & PF_MEMALLOC))
2669                 goto force;
2670
2671         if (unlikely(task_in_memcg_oom(current)))
2672                 goto nomem;
2673
2674         if (!gfpflags_allow_blocking(gfp_mask))
2675                 goto nomem;
2676
2677         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2678         raised_max_event = true;
2679
2680         psi_memstall_enter(&pflags);
2681         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2682                                                     gfp_mask, reclaim_options);
2683         psi_memstall_leave(&pflags);
2684
2685         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2686                 goto retry;
2687
2688         if (!drained) {
2689                 drain_all_stock(mem_over_limit);
2690                 drained = true;
2691                 goto retry;
2692         }
2693
2694         if (gfp_mask & __GFP_NORETRY)
2695                 goto nomem;
2696         /*
2697          * Even though the limit is exceeded at this point, reclaim
2698          * may have been able to free some pages.  Retry the charge
2699          * before killing the task.
2700          *
2701          * Only for regular pages, though: huge pages are rather
2702          * unlikely to succeed so close to the limit, and we fall back
2703          * to regular pages anyway in case of failure.
2704          */
2705         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2706                 goto retry;
2707         /*
2708          * At task move, charge accounts can be doubly counted. So, it's
2709          * better to wait until the end of task_move if something is going on.
2710          */
2711         if (mem_cgroup_wait_acct_move(mem_over_limit))
2712                 goto retry;
2713
2714         if (nr_retries--)
2715                 goto retry;
2716
2717         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2718                 goto nomem;
2719
2720         /* Avoid endless loop for tasks bypassed by the oom killer */
2721         if (passed_oom && task_is_dying())
2722                 goto nomem;
2723
2724         /*
2725          * keep retrying as long as the memcg oom killer is able to make
2726          * a forward progress or bypass the charge if the oom killer
2727          * couldn't make any progress.
2728          */
2729         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2730                            get_order(nr_pages * PAGE_SIZE))) {
2731                 passed_oom = true;
2732                 nr_retries = MAX_RECLAIM_RETRIES;
2733                 goto retry;
2734         }
2735 nomem:
2736         /*
2737          * Memcg doesn't have a dedicated reserve for atomic
2738          * allocations. But like the global atomic pool, we need to
2739          * put the burden of reclaim on regular allocation requests
2740          * and let these go through as privileged allocations.
2741          */
2742         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2743                 return -ENOMEM;
2744 force:
2745         /*
2746          * If the allocation has to be enforced, don't forget to raise
2747          * a MEMCG_MAX event.
2748          */
2749         if (!raised_max_event)
2750                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2751
2752         /*
2753          * The allocation either can't fail or will lead to more memory
2754          * being freed very soon.  Allow memory usage go over the limit
2755          * temporarily by force charging it.
2756          */
2757         page_counter_charge(&memcg->memory, nr_pages);
2758         if (do_memsw_account())
2759                 page_counter_charge(&memcg->memsw, nr_pages);
2760
2761         return 0;
2762
2763 done_restock:
2764         if (batch > nr_pages)
2765                 refill_stock(memcg, batch - nr_pages);
2766
2767         /*
2768          * If the hierarchy is above the normal consumption range, schedule
2769          * reclaim on returning to userland.  We can perform reclaim here
2770          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2771          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2772          * not recorded as it most likely matches current's and won't
2773          * change in the meantime.  As high limit is checked again before
2774          * reclaim, the cost of mismatch is negligible.
2775          */
2776         do {
2777                 bool mem_high, swap_high;
2778
2779                 mem_high = page_counter_read(&memcg->memory) >
2780                         READ_ONCE(memcg->memory.high);
2781                 swap_high = page_counter_read(&memcg->swap) >
2782                         READ_ONCE(memcg->swap.high);
2783
2784                 /* Don't bother a random interrupted task */
2785                 if (!in_task()) {
2786                         if (mem_high) {
2787                                 schedule_work(&memcg->high_work);
2788                                 break;
2789                         }
2790                         continue;
2791                 }
2792
2793                 if (mem_high || swap_high) {
2794                         /*
2795                          * The allocating tasks in this cgroup will need to do
2796                          * reclaim or be throttled to prevent further growth
2797                          * of the memory or swap footprints.
2798                          *
2799                          * Target some best-effort fairness between the tasks,
2800                          * and distribute reclaim work and delay penalties
2801                          * based on how much each task is actually allocating.
2802                          */
2803                         current->memcg_nr_pages_over_high += batch;
2804                         set_notify_resume(current);
2805                         break;
2806                 }
2807         } while ((memcg = parent_mem_cgroup(memcg)));
2808
2809         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2810             !(current->flags & PF_MEMALLOC) &&
2811             gfpflags_allow_blocking(gfp_mask)) {
2812                 mem_cgroup_handle_over_high();
2813         }
2814         return 0;
2815 }
2816
2817 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2818                              unsigned int nr_pages)
2819 {
2820         if (mem_cgroup_is_root(memcg))
2821                 return 0;
2822
2823         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2824 }
2825
2826 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2827 {
2828         if (mem_cgroup_is_root(memcg))
2829                 return;
2830
2831         page_counter_uncharge(&memcg->memory, nr_pages);
2832         if (do_memsw_account())
2833                 page_counter_uncharge(&memcg->memsw, nr_pages);
2834 }
2835
2836 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2837 {
2838         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2839         /*
2840          * Any of the following ensures page's memcg stability:
2841          *
2842          * - the page lock
2843          * - LRU isolation
2844          * - lock_page_memcg()
2845          * - exclusive reference
2846          * - mem_cgroup_trylock_pages()
2847          */
2848         folio->memcg_data = (unsigned long)memcg;
2849 }
2850
2851 #ifdef CONFIG_MEMCG_KMEM
2852 /*
2853  * The allocated objcg pointers array is not accounted directly.
2854  * Moreover, it should not come from DMA buffer and is not readily
2855  * reclaimable. So those GFP bits should be masked off.
2856  */
2857 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2858
2859 /*
2860  * mod_objcg_mlstate() may be called with irq enabled, so
2861  * mod_memcg_lruvec_state() should be used.
2862  */
2863 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2864                                      struct pglist_data *pgdat,
2865                                      enum node_stat_item idx, int nr)
2866 {
2867         struct mem_cgroup *memcg;
2868         struct lruvec *lruvec;
2869
2870         rcu_read_lock();
2871         memcg = obj_cgroup_memcg(objcg);
2872         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2873         mod_memcg_lruvec_state(lruvec, idx, nr);
2874         rcu_read_unlock();
2875 }
2876
2877 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2878                                  gfp_t gfp, bool new_slab)
2879 {
2880         unsigned int objects = objs_per_slab(s, slab);
2881         unsigned long memcg_data;
2882         void *vec;
2883
2884         gfp &= ~OBJCGS_CLEAR_MASK;
2885         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2886                            slab_nid(slab));
2887         if (!vec)
2888                 return -ENOMEM;
2889
2890         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2891         if (new_slab) {
2892                 /*
2893                  * If the slab is brand new and nobody can yet access its
2894                  * memcg_data, no synchronization is required and memcg_data can
2895                  * be simply assigned.
2896                  */
2897                 slab->memcg_data = memcg_data;
2898         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2899                 /*
2900                  * If the slab is already in use, somebody can allocate and
2901                  * assign obj_cgroups in parallel. In this case the existing
2902                  * objcg vector should be reused.
2903                  */
2904                 kfree(vec);
2905                 return 0;
2906         }
2907
2908         kmemleak_not_leak(vec);
2909         return 0;
2910 }
2911
2912 static __always_inline
2913 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2914 {
2915         /*
2916          * Slab objects are accounted individually, not per-page.
2917          * Memcg membership data for each individual object is saved in
2918          * slab->memcg_data.
2919          */
2920         if (folio_test_slab(folio)) {
2921                 struct obj_cgroup **objcgs;
2922                 struct slab *slab;
2923                 unsigned int off;
2924
2925                 slab = folio_slab(folio);
2926                 objcgs = slab_objcgs(slab);
2927                 if (!objcgs)
2928                         return NULL;
2929
2930                 off = obj_to_index(slab->slab_cache, slab, p);
2931                 if (objcgs[off])
2932                         return obj_cgroup_memcg(objcgs[off]);
2933
2934                 return NULL;
2935         }
2936
2937         /*
2938          * page_memcg_check() is used here, because in theory we can encounter
2939          * a folio where the slab flag has been cleared already, but
2940          * slab->memcg_data has not been freed yet
2941          * page_memcg_check(page) will guarantee that a proper memory
2942          * cgroup pointer or NULL will be returned.
2943          */
2944         return page_memcg_check(folio_page(folio, 0));
2945 }
2946
2947 /*
2948  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2949  *
2950  * A passed kernel object can be a slab object, vmalloc object or a generic
2951  * kernel page, so different mechanisms for getting the memory cgroup pointer
2952  * should be used.
2953  *
2954  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2955  * can not know for sure how the kernel object is implemented.
2956  * mem_cgroup_from_obj() can be safely used in such cases.
2957  *
2958  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2959  * cgroup_mutex, etc.
2960  */
2961 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2962 {
2963         struct folio *folio;
2964
2965         if (mem_cgroup_disabled())
2966                 return NULL;
2967
2968         if (unlikely(is_vmalloc_addr(p)))
2969                 folio = page_folio(vmalloc_to_page(p));
2970         else
2971                 folio = virt_to_folio(p);
2972
2973         return mem_cgroup_from_obj_folio(folio, p);
2974 }
2975
2976 /*
2977  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2978  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2979  * allocated using vmalloc().
2980  *
2981  * A passed kernel object must be a slab object or a generic kernel page.
2982  *
2983  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2984  * cgroup_mutex, etc.
2985  */
2986 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2987 {
2988         if (mem_cgroup_disabled())
2989                 return NULL;
2990
2991         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2992 }
2993
2994 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2995 {
2996         struct obj_cgroup *objcg = NULL;
2997
2998         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2999                 objcg = rcu_dereference(memcg->objcg);
3000                 if (objcg && obj_cgroup_tryget(objcg))
3001                         break;
3002                 objcg = NULL;
3003         }
3004         return objcg;
3005 }
3006
3007 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3008 {
3009         struct obj_cgroup *objcg = NULL;
3010         struct mem_cgroup *memcg;
3011
3012         if (memcg_kmem_bypass())
3013                 return NULL;
3014
3015         rcu_read_lock();
3016         if (unlikely(active_memcg()))
3017                 memcg = active_memcg();
3018         else
3019                 memcg = mem_cgroup_from_task(current);
3020         objcg = __get_obj_cgroup_from_memcg(memcg);
3021         rcu_read_unlock();
3022         return objcg;
3023 }
3024
3025 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3026 {
3027         struct obj_cgroup *objcg;
3028
3029         if (!memcg_kmem_enabled())
3030                 return NULL;
3031
3032         if (PageMemcgKmem(page)) {
3033                 objcg = __folio_objcg(page_folio(page));
3034                 obj_cgroup_get(objcg);
3035         } else {
3036                 struct mem_cgroup *memcg;
3037
3038                 rcu_read_lock();
3039                 memcg = __folio_memcg(page_folio(page));
3040                 if (memcg)
3041                         objcg = __get_obj_cgroup_from_memcg(memcg);
3042                 else
3043                         objcg = NULL;
3044                 rcu_read_unlock();
3045         }
3046         return objcg;
3047 }
3048
3049 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3050 {
3051         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3052         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3053                 if (nr_pages > 0)
3054                         page_counter_charge(&memcg->kmem, nr_pages);
3055                 else
3056                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3057         }
3058 }
3059
3060
3061 /*
3062  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3063  * @objcg: object cgroup to uncharge
3064  * @nr_pages: number of pages to uncharge
3065  */
3066 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3067                                       unsigned int nr_pages)
3068 {
3069         struct mem_cgroup *memcg;
3070
3071         memcg = get_mem_cgroup_from_objcg(objcg);
3072
3073         memcg_account_kmem(memcg, -nr_pages);
3074         refill_stock(memcg, nr_pages);
3075
3076         css_put(&memcg->css);
3077 }
3078
3079 /*
3080  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3081  * @objcg: object cgroup to charge
3082  * @gfp: reclaim mode
3083  * @nr_pages: number of pages to charge
3084  *
3085  * Returns 0 on success, an error code on failure.
3086  */
3087 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3088                                    unsigned int nr_pages)
3089 {
3090         struct mem_cgroup *memcg;
3091         int ret;
3092
3093         memcg = get_mem_cgroup_from_objcg(objcg);
3094
3095         ret = try_charge_memcg(memcg, gfp, nr_pages);
3096         if (ret)
3097                 goto out;
3098
3099         memcg_account_kmem(memcg, nr_pages);
3100 out:
3101         css_put(&memcg->css);
3102
3103         return ret;
3104 }
3105
3106 /**
3107  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3108  * @page: page to charge
3109  * @gfp: reclaim mode
3110  * @order: allocation order
3111  *
3112  * Returns 0 on success, an error code on failure.
3113  */
3114 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3115 {
3116         struct obj_cgroup *objcg;
3117         int ret = 0;
3118
3119         objcg = get_obj_cgroup_from_current();
3120         if (objcg) {
3121                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3122                 if (!ret) {
3123                         page->memcg_data = (unsigned long)objcg |
3124                                 MEMCG_DATA_KMEM;
3125                         return 0;
3126                 }
3127                 obj_cgroup_put(objcg);
3128         }
3129         return ret;
3130 }
3131
3132 /**
3133  * __memcg_kmem_uncharge_page: uncharge a kmem page
3134  * @page: page to uncharge
3135  * @order: allocation order
3136  */
3137 void __memcg_kmem_uncharge_page(struct page *page, int order)
3138 {
3139         struct folio *folio = page_folio(page);
3140         struct obj_cgroup *objcg;
3141         unsigned int nr_pages = 1 << order;
3142
3143         if (!folio_memcg_kmem(folio))
3144                 return;
3145
3146         objcg = __folio_objcg(folio);
3147         obj_cgroup_uncharge_pages(objcg, nr_pages);
3148         folio->memcg_data = 0;
3149         obj_cgroup_put(objcg);
3150 }
3151
3152 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3153                      enum node_stat_item idx, int nr)
3154 {
3155         struct memcg_stock_pcp *stock;
3156         struct obj_cgroup *old = NULL;
3157         unsigned long flags;
3158         int *bytes;
3159
3160         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3161         stock = this_cpu_ptr(&memcg_stock);
3162
3163         /*
3164          * Save vmstat data in stock and skip vmstat array update unless
3165          * accumulating over a page of vmstat data or when pgdat or idx
3166          * changes.
3167          */
3168         if (stock->cached_objcg != objcg) {
3169                 old = drain_obj_stock(stock);
3170                 obj_cgroup_get(objcg);
3171                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3172                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3173                 stock->cached_objcg = objcg;
3174                 stock->cached_pgdat = pgdat;
3175         } else if (stock->cached_pgdat != pgdat) {
3176                 /* Flush the existing cached vmstat data */
3177                 struct pglist_data *oldpg = stock->cached_pgdat;
3178
3179                 if (stock->nr_slab_reclaimable_b) {
3180                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3181                                           stock->nr_slab_reclaimable_b);
3182                         stock->nr_slab_reclaimable_b = 0;
3183                 }
3184                 if (stock->nr_slab_unreclaimable_b) {
3185                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3186                                           stock->nr_slab_unreclaimable_b);
3187                         stock->nr_slab_unreclaimable_b = 0;
3188                 }
3189                 stock->cached_pgdat = pgdat;
3190         }
3191
3192         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3193                                                : &stock->nr_slab_unreclaimable_b;
3194         /*
3195          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3196          * cached locally at least once before pushing it out.
3197          */
3198         if (!*bytes) {
3199                 *bytes = nr;
3200                 nr = 0;
3201         } else {
3202                 *bytes += nr;
3203                 if (abs(*bytes) > PAGE_SIZE) {
3204                         nr = *bytes;
3205                         *bytes = 0;
3206                 } else {
3207                         nr = 0;
3208                 }
3209         }
3210         if (nr)
3211                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3212
3213         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3214         if (old)
3215                 obj_cgroup_put(old);
3216 }
3217
3218 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3219 {
3220         struct memcg_stock_pcp *stock;
3221         unsigned long flags;
3222         bool ret = false;
3223
3224         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3225
3226         stock = this_cpu_ptr(&memcg_stock);
3227         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3228                 stock->nr_bytes -= nr_bytes;
3229                 ret = true;
3230         }
3231
3232         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3233
3234         return ret;
3235 }
3236
3237 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3238 {
3239         struct obj_cgroup *old = stock->cached_objcg;
3240
3241         if (!old)
3242                 return NULL;
3243
3244         if (stock->nr_bytes) {
3245                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3246                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3247
3248                 if (nr_pages) {
3249                         struct mem_cgroup *memcg;
3250
3251                         memcg = get_mem_cgroup_from_objcg(old);
3252
3253                         memcg_account_kmem(memcg, -nr_pages);
3254                         __refill_stock(memcg, nr_pages);
3255
3256                         css_put(&memcg->css);
3257                 }
3258
3259                 /*
3260                  * The leftover is flushed to the centralized per-memcg value.
3261                  * On the next attempt to refill obj stock it will be moved
3262                  * to a per-cpu stock (probably, on an other CPU), see
3263                  * refill_obj_stock().
3264                  *
3265                  * How often it's flushed is a trade-off between the memory
3266                  * limit enforcement accuracy and potential CPU contention,
3267                  * so it might be changed in the future.
3268                  */
3269                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3270                 stock->nr_bytes = 0;
3271         }
3272
3273         /*
3274          * Flush the vmstat data in current stock
3275          */
3276         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3277                 if (stock->nr_slab_reclaimable_b) {
3278                         mod_objcg_mlstate(old, stock->cached_pgdat,
3279                                           NR_SLAB_RECLAIMABLE_B,
3280                                           stock->nr_slab_reclaimable_b);
3281                         stock->nr_slab_reclaimable_b = 0;
3282                 }
3283                 if (stock->nr_slab_unreclaimable_b) {
3284                         mod_objcg_mlstate(old, stock->cached_pgdat,
3285                                           NR_SLAB_UNRECLAIMABLE_B,
3286                                           stock->nr_slab_unreclaimable_b);
3287                         stock->nr_slab_unreclaimable_b = 0;
3288                 }
3289                 stock->cached_pgdat = NULL;
3290         }
3291
3292         stock->cached_objcg = NULL;
3293         /*
3294          * The `old' objects needs to be released by the caller via
3295          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3296          */
3297         return old;
3298 }
3299
3300 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3301                                      struct mem_cgroup *root_memcg)
3302 {
3303         struct mem_cgroup *memcg;
3304
3305         if (stock->cached_objcg) {
3306                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3307                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3308                         return true;
3309         }
3310
3311         return false;
3312 }
3313
3314 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3315                              bool allow_uncharge)
3316 {
3317         struct memcg_stock_pcp *stock;
3318         struct obj_cgroup *old = NULL;
3319         unsigned long flags;
3320         unsigned int nr_pages = 0;
3321
3322         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3323
3324         stock = this_cpu_ptr(&memcg_stock);
3325         if (stock->cached_objcg != objcg) { /* reset if necessary */
3326                 old = drain_obj_stock(stock);
3327                 obj_cgroup_get(objcg);
3328                 stock->cached_objcg = objcg;
3329                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3330                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3331                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3332         }
3333         stock->nr_bytes += nr_bytes;
3334
3335         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3336                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3337                 stock->nr_bytes &= (PAGE_SIZE - 1);
3338         }
3339
3340         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3341         if (old)
3342                 obj_cgroup_put(old);
3343
3344         if (nr_pages)
3345                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3346 }
3347
3348 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3349 {
3350         unsigned int nr_pages, nr_bytes;
3351         int ret;
3352
3353         if (consume_obj_stock(objcg, size))
3354                 return 0;
3355
3356         /*
3357          * In theory, objcg->nr_charged_bytes can have enough
3358          * pre-charged bytes to satisfy the allocation. However,
3359          * flushing objcg->nr_charged_bytes requires two atomic
3360          * operations, and objcg->nr_charged_bytes can't be big.
3361          * The shared objcg->nr_charged_bytes can also become a
3362          * performance bottleneck if all tasks of the same memcg are
3363          * trying to update it. So it's better to ignore it and try
3364          * grab some new pages. The stock's nr_bytes will be flushed to
3365          * objcg->nr_charged_bytes later on when objcg changes.
3366          *
3367          * The stock's nr_bytes may contain enough pre-charged bytes
3368          * to allow one less page from being charged, but we can't rely
3369          * on the pre-charged bytes not being changed outside of
3370          * consume_obj_stock() or refill_obj_stock(). So ignore those
3371          * pre-charged bytes as well when charging pages. To avoid a
3372          * page uncharge right after a page charge, we set the
3373          * allow_uncharge flag to false when calling refill_obj_stock()
3374          * to temporarily allow the pre-charged bytes to exceed the page
3375          * size limit. The maximum reachable value of the pre-charged
3376          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3377          * race.
3378          */
3379         nr_pages = size >> PAGE_SHIFT;
3380         nr_bytes = size & (PAGE_SIZE - 1);
3381
3382         if (nr_bytes)
3383                 nr_pages += 1;
3384
3385         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3386         if (!ret && nr_bytes)
3387                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3388
3389         return ret;
3390 }
3391
3392 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3393 {
3394         refill_obj_stock(objcg, size, true);
3395 }
3396
3397 #endif /* CONFIG_MEMCG_KMEM */
3398
3399 /*
3400  * Because page_memcg(head) is not set on tails, set it now.
3401  */
3402 void split_page_memcg(struct page *head, unsigned int nr)
3403 {
3404         struct folio *folio = page_folio(head);
3405         struct mem_cgroup *memcg = folio_memcg(folio);
3406         int i;
3407
3408         if (mem_cgroup_disabled() || !memcg)
3409                 return;
3410
3411         for (i = 1; i < nr; i++)
3412                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3413
3414         if (folio_memcg_kmem(folio))
3415                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3416         else
3417                 css_get_many(&memcg->css, nr - 1);
3418 }
3419
3420 #ifdef CONFIG_SWAP
3421 /**
3422  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3423  * @entry: swap entry to be moved
3424  * @from:  mem_cgroup which the entry is moved from
3425  * @to:  mem_cgroup which the entry is moved to
3426  *
3427  * It succeeds only when the swap_cgroup's record for this entry is the same
3428  * as the mem_cgroup's id of @from.
3429  *
3430  * Returns 0 on success, -EINVAL on failure.
3431  *
3432  * The caller must have charged to @to, IOW, called page_counter_charge() about
3433  * both res and memsw, and called css_get().
3434  */
3435 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3436                                 struct mem_cgroup *from, struct mem_cgroup *to)
3437 {
3438         unsigned short old_id, new_id;
3439
3440         old_id = mem_cgroup_id(from);
3441         new_id = mem_cgroup_id(to);
3442
3443         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3444                 mod_memcg_state(from, MEMCG_SWAP, -1);
3445                 mod_memcg_state(to, MEMCG_SWAP, 1);
3446                 return 0;
3447         }
3448         return -EINVAL;
3449 }
3450 #else
3451 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3452                                 struct mem_cgroup *from, struct mem_cgroup *to)
3453 {
3454         return -EINVAL;
3455 }
3456 #endif
3457
3458 static DEFINE_MUTEX(memcg_max_mutex);
3459
3460 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3461                                  unsigned long max, bool memsw)
3462 {
3463         bool enlarge = false;
3464         bool drained = false;
3465         int ret;
3466         bool limits_invariant;
3467         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3468
3469         do {
3470                 if (signal_pending(current)) {
3471                         ret = -EINTR;
3472                         break;
3473                 }
3474
3475                 mutex_lock(&memcg_max_mutex);
3476                 /*
3477                  * Make sure that the new limit (memsw or memory limit) doesn't
3478                  * break our basic invariant rule memory.max <= memsw.max.
3479                  */
3480                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3481                                            max <= memcg->memsw.max;
3482                 if (!limits_invariant) {
3483                         mutex_unlock(&memcg_max_mutex);
3484                         ret = -EINVAL;
3485                         break;
3486                 }
3487                 if (max > counter->max)
3488                         enlarge = true;
3489                 ret = page_counter_set_max(counter, max);
3490                 mutex_unlock(&memcg_max_mutex);
3491
3492                 if (!ret)
3493                         break;
3494
3495                 if (!drained) {
3496                         drain_all_stock(memcg);
3497                         drained = true;
3498                         continue;
3499                 }
3500
3501                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3502                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3503                         ret = -EBUSY;
3504                         break;
3505                 }
3506         } while (true);
3507
3508         if (!ret && enlarge)
3509                 memcg_oom_recover(memcg);
3510
3511         return ret;
3512 }
3513
3514 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3515                                             gfp_t gfp_mask,
3516                                             unsigned long *total_scanned)
3517 {
3518         unsigned long nr_reclaimed = 0;
3519         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3520         unsigned long reclaimed;
3521         int loop = 0;
3522         struct mem_cgroup_tree_per_node *mctz;
3523         unsigned long excess;
3524
3525         if (order > 0)
3526                 return 0;
3527
3528         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3529
3530         /*
3531          * Do not even bother to check the largest node if the root
3532          * is empty. Do it lockless to prevent lock bouncing. Races
3533          * are acceptable as soft limit is best effort anyway.
3534          */
3535         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3536                 return 0;
3537
3538         /*
3539          * This loop can run a while, specially if mem_cgroup's continuously
3540          * keep exceeding their soft limit and putting the system under
3541          * pressure
3542          */
3543         do {
3544                 if (next_mz)
3545                         mz = next_mz;
3546                 else
3547                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3548                 if (!mz)
3549                         break;
3550
3551                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3552                                                     gfp_mask, total_scanned);
3553                 nr_reclaimed += reclaimed;
3554                 spin_lock_irq(&mctz->lock);
3555
3556                 /*
3557                  * If we failed to reclaim anything from this memory cgroup
3558                  * it is time to move on to the next cgroup
3559                  */
3560                 next_mz = NULL;
3561                 if (!reclaimed)
3562                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3563
3564                 excess = soft_limit_excess(mz->memcg);
3565                 /*
3566                  * One school of thought says that we should not add
3567                  * back the node to the tree if reclaim returns 0.
3568                  * But our reclaim could return 0, simply because due
3569                  * to priority we are exposing a smaller subset of
3570                  * memory to reclaim from. Consider this as a longer
3571                  * term TODO.
3572                  */
3573                 /* If excess == 0, no tree ops */
3574                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3575                 spin_unlock_irq(&mctz->lock);
3576                 css_put(&mz->memcg->css);
3577                 loop++;
3578                 /*
3579                  * Could not reclaim anything and there are no more
3580                  * mem cgroups to try or we seem to be looping without
3581                  * reclaiming anything.
3582                  */
3583                 if (!nr_reclaimed &&
3584                         (next_mz == NULL ||
3585                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3586                         break;
3587         } while (!nr_reclaimed);
3588         if (next_mz)
3589                 css_put(&next_mz->memcg->css);
3590         return nr_reclaimed;
3591 }
3592
3593 /*
3594  * Reclaims as many pages from the given memcg as possible.
3595  *
3596  * Caller is responsible for holding css reference for memcg.
3597  */
3598 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3599 {
3600         int nr_retries = MAX_RECLAIM_RETRIES;
3601
3602         /* we call try-to-free pages for make this cgroup empty */
3603         lru_add_drain_all();
3604
3605         drain_all_stock(memcg);
3606
3607         /* try to free all pages in this cgroup */
3608         while (nr_retries && page_counter_read(&memcg->memory)) {
3609                 if (signal_pending(current))
3610                         return -EINTR;
3611
3612                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3613                                                   MEMCG_RECLAIM_MAY_SWAP))
3614                         nr_retries--;
3615         }
3616
3617         return 0;
3618 }
3619
3620 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3621                                             char *buf, size_t nbytes,
3622                                             loff_t off)
3623 {
3624         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3625
3626         if (mem_cgroup_is_root(memcg))
3627                 return -EINVAL;
3628         return mem_cgroup_force_empty(memcg) ?: nbytes;
3629 }
3630
3631 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3632                                      struct cftype *cft)
3633 {
3634         return 1;
3635 }
3636
3637 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3638                                       struct cftype *cft, u64 val)
3639 {
3640         if (val == 1)
3641                 return 0;
3642
3643         pr_warn_once("Non-hierarchical mode is deprecated. "
3644                      "Please report your usecase to linux-mm@kvack.org if you "
3645                      "depend on this functionality.\n");
3646
3647         return -EINVAL;
3648 }
3649
3650 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3651 {
3652         unsigned long val;
3653
3654         if (mem_cgroup_is_root(memcg)) {
3655                 mem_cgroup_flush_stats();
3656                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3657                         memcg_page_state(memcg, NR_ANON_MAPPED);
3658                 if (swap)
3659                         val += memcg_page_state(memcg, MEMCG_SWAP);
3660         } else {
3661                 if (!swap)
3662                         val = page_counter_read(&memcg->memory);
3663                 else
3664                         val = page_counter_read(&memcg->memsw);
3665         }
3666         return val;
3667 }
3668
3669 enum {
3670         RES_USAGE,
3671         RES_LIMIT,
3672         RES_MAX_USAGE,
3673         RES_FAILCNT,
3674         RES_SOFT_LIMIT,
3675 };
3676
3677 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3678                                struct cftype *cft)
3679 {
3680         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3681         struct page_counter *counter;
3682
3683         switch (MEMFILE_TYPE(cft->private)) {
3684         case _MEM:
3685                 counter = &memcg->memory;
3686                 break;
3687         case _MEMSWAP:
3688                 counter = &memcg->memsw;
3689                 break;
3690         case _KMEM:
3691                 counter = &memcg->kmem;
3692                 break;
3693         case _TCP:
3694                 counter = &memcg->tcpmem;
3695                 break;
3696         default:
3697                 BUG();
3698         }
3699
3700         switch (MEMFILE_ATTR(cft->private)) {
3701         case RES_USAGE:
3702                 if (counter == &memcg->memory)
3703                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3704                 if (counter == &memcg->memsw)
3705                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3706                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3707         case RES_LIMIT:
3708                 return (u64)counter->max * PAGE_SIZE;
3709         case RES_MAX_USAGE:
3710                 return (u64)counter->watermark * PAGE_SIZE;
3711         case RES_FAILCNT:
3712                 return counter->failcnt;
3713         case RES_SOFT_LIMIT:
3714                 return (u64)memcg->soft_limit * PAGE_SIZE;
3715         default:
3716                 BUG();
3717         }
3718 }
3719
3720 #ifdef CONFIG_MEMCG_KMEM
3721 static int memcg_online_kmem(struct mem_cgroup *memcg)
3722 {
3723         struct obj_cgroup *objcg;
3724
3725         if (mem_cgroup_kmem_disabled())
3726                 return 0;
3727
3728         if (unlikely(mem_cgroup_is_root(memcg)))
3729                 return 0;
3730
3731         objcg = obj_cgroup_alloc();
3732         if (!objcg)
3733                 return -ENOMEM;
3734
3735         objcg->memcg = memcg;
3736         rcu_assign_pointer(memcg->objcg, objcg);
3737
3738         static_branch_enable(&memcg_kmem_enabled_key);
3739
3740         memcg->kmemcg_id = memcg->id.id;
3741
3742         return 0;
3743 }
3744
3745 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3746 {
3747         struct mem_cgroup *parent;
3748
3749         if (mem_cgroup_kmem_disabled())
3750                 return;
3751
3752         if (unlikely(mem_cgroup_is_root(memcg)))
3753                 return;
3754
3755         parent = parent_mem_cgroup(memcg);
3756         if (!parent)
3757                 parent = root_mem_cgroup;
3758
3759         memcg_reparent_objcgs(memcg, parent);
3760
3761         /*
3762          * After we have finished memcg_reparent_objcgs(), all list_lrus
3763          * corresponding to this cgroup are guaranteed to remain empty.
3764          * The ordering is imposed by list_lru_node->lock taken by
3765          * memcg_reparent_list_lrus().
3766          */
3767         memcg_reparent_list_lrus(memcg, parent);
3768 }
3769 #else
3770 static int memcg_online_kmem(struct mem_cgroup *memcg)
3771 {
3772         return 0;
3773 }
3774 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3775 {
3776 }
3777 #endif /* CONFIG_MEMCG_KMEM */
3778
3779 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3780 {
3781         int ret;
3782
3783         mutex_lock(&memcg_max_mutex);
3784
3785         ret = page_counter_set_max(&memcg->tcpmem, max);
3786         if (ret)
3787                 goto out;
3788
3789         if (!memcg->tcpmem_active) {
3790                 /*
3791                  * The active flag needs to be written after the static_key
3792                  * update. This is what guarantees that the socket activation
3793                  * function is the last one to run. See mem_cgroup_sk_alloc()
3794                  * for details, and note that we don't mark any socket as
3795                  * belonging to this memcg until that flag is up.
3796                  *
3797                  * We need to do this, because static_keys will span multiple
3798                  * sites, but we can't control their order. If we mark a socket
3799                  * as accounted, but the accounting functions are not patched in
3800                  * yet, we'll lose accounting.
3801                  *
3802                  * We never race with the readers in mem_cgroup_sk_alloc(),
3803                  * because when this value change, the code to process it is not
3804                  * patched in yet.
3805                  */
3806                 static_branch_inc(&memcg_sockets_enabled_key);
3807                 memcg->tcpmem_active = true;
3808         }
3809 out:
3810         mutex_unlock(&memcg_max_mutex);
3811         return ret;
3812 }
3813
3814 /*
3815  * The user of this function is...
3816  * RES_LIMIT.
3817  */
3818 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3819                                 char *buf, size_t nbytes, loff_t off)
3820 {
3821         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3822         unsigned long nr_pages;
3823         int ret;
3824
3825         buf = strstrip(buf);
3826         ret = page_counter_memparse(buf, "-1", &nr_pages);
3827         if (ret)
3828                 return ret;
3829
3830         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3831         case RES_LIMIT:
3832                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3833                         ret = -EINVAL;
3834                         break;
3835                 }
3836                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3837                 case _MEM:
3838                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3839                         break;
3840                 case _MEMSWAP:
3841                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3842                         break;
3843                 case _KMEM:
3844                         /* kmem.limit_in_bytes is deprecated. */
3845                         ret = -EOPNOTSUPP;
3846                         break;
3847                 case _TCP:
3848                         ret = memcg_update_tcp_max(memcg, nr_pages);
3849                         break;
3850                 }
3851                 break;
3852         case RES_SOFT_LIMIT:
3853                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3854                         ret = -EOPNOTSUPP;
3855                 } else {
3856                         memcg->soft_limit = nr_pages;
3857                         ret = 0;
3858                 }
3859                 break;
3860         }
3861         return ret ?: nbytes;
3862 }
3863
3864 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3865                                 size_t nbytes, loff_t off)
3866 {
3867         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3868         struct page_counter *counter;
3869
3870         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3871         case _MEM:
3872                 counter = &memcg->memory;
3873                 break;
3874         case _MEMSWAP:
3875                 counter = &memcg->memsw;
3876                 break;
3877         case _KMEM:
3878                 counter = &memcg->kmem;
3879                 break;
3880         case _TCP:
3881                 counter = &memcg->tcpmem;
3882                 break;
3883         default:
3884                 BUG();
3885         }
3886
3887         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3888         case RES_MAX_USAGE:
3889                 page_counter_reset_watermark(counter);
3890                 break;
3891         case RES_FAILCNT:
3892                 counter->failcnt = 0;
3893                 break;
3894         default:
3895                 BUG();
3896         }
3897
3898         return nbytes;
3899 }
3900
3901 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3902                                         struct cftype *cft)
3903 {
3904         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3905 }
3906
3907 #ifdef CONFIG_MMU
3908 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3909                                         struct cftype *cft, u64 val)
3910 {
3911         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3912
3913         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3914                      "Please report your usecase to linux-mm@kvack.org if you "
3915                      "depend on this functionality.\n");
3916
3917         if (val & ~MOVE_MASK)
3918                 return -EINVAL;
3919
3920         /*
3921          * No kind of locking is needed in here, because ->can_attach() will
3922          * check this value once in the beginning of the process, and then carry
3923          * on with stale data. This means that changes to this value will only
3924          * affect task migrations starting after the change.
3925          */
3926         memcg->move_charge_at_immigrate = val;
3927         return 0;
3928 }
3929 #else
3930 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3931                                         struct cftype *cft, u64 val)
3932 {
3933         return -ENOSYS;
3934 }
3935 #endif
3936
3937 #ifdef CONFIG_NUMA
3938
3939 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3940 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3941 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3942
3943 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3944                                 int nid, unsigned int lru_mask, bool tree)
3945 {
3946         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3947         unsigned long nr = 0;
3948         enum lru_list lru;
3949
3950         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3951
3952         for_each_lru(lru) {
3953                 if (!(BIT(lru) & lru_mask))
3954                         continue;
3955                 if (tree)
3956                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3957                 else
3958                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3959         }
3960         return nr;
3961 }
3962
3963 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3964                                              unsigned int lru_mask,
3965                                              bool tree)
3966 {
3967         unsigned long nr = 0;
3968         enum lru_list lru;
3969
3970         for_each_lru(lru) {
3971                 if (!(BIT(lru) & lru_mask))
3972                         continue;
3973                 if (tree)
3974                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3975                 else
3976                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3977         }
3978         return nr;
3979 }
3980
3981 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3982 {
3983         struct numa_stat {
3984                 const char *name;
3985                 unsigned int lru_mask;
3986         };
3987
3988         static const struct numa_stat stats[] = {
3989                 { "total", LRU_ALL },
3990                 { "file", LRU_ALL_FILE },
3991                 { "anon", LRU_ALL_ANON },
3992                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3993         };
3994         const struct numa_stat *stat;
3995         int nid;
3996         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3997
3998         mem_cgroup_flush_stats();
3999
4000         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4001                 seq_printf(m, "%s=%lu", stat->name,
4002                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4003                                                    false));
4004                 for_each_node_state(nid, N_MEMORY)
4005                         seq_printf(m, " N%d=%lu", nid,
4006                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4007                                                         stat->lru_mask, false));
4008                 seq_putc(m, '\n');
4009         }
4010
4011         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4012
4013                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4014                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015                                                    true));
4016                 for_each_node_state(nid, N_MEMORY)
4017                         seq_printf(m, " N%d=%lu", nid,
4018                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4019                                                         stat->lru_mask, true));
4020                 seq_putc(m, '\n');
4021         }
4022
4023         return 0;
4024 }
4025 #endif /* CONFIG_NUMA */
4026
4027 static const unsigned int memcg1_stats[] = {
4028         NR_FILE_PAGES,
4029         NR_ANON_MAPPED,
4030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031         NR_ANON_THPS,
4032 #endif
4033         NR_SHMEM,
4034         NR_FILE_MAPPED,
4035         NR_FILE_DIRTY,
4036         NR_WRITEBACK,
4037         WORKINGSET_REFAULT_ANON,
4038         WORKINGSET_REFAULT_FILE,
4039         MEMCG_SWAP,
4040 };
4041
4042 static const char *const memcg1_stat_names[] = {
4043         "cache",
4044         "rss",
4045 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4046         "rss_huge",
4047 #endif
4048         "shmem",
4049         "mapped_file",
4050         "dirty",
4051         "writeback",
4052         "workingset_refault_anon",
4053         "workingset_refault_file",
4054         "swap",
4055 };
4056
4057 /* Universal VM events cgroup1 shows, original sort order */
4058 static const unsigned int memcg1_events[] = {
4059         PGPGIN,
4060         PGPGOUT,
4061         PGFAULT,
4062         PGMAJFAULT,
4063 };
4064
4065 static int memcg_stat_show(struct seq_file *m, void *v)
4066 {
4067         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4068         unsigned long memory, memsw;
4069         struct mem_cgroup *mi;
4070         unsigned int i;
4071
4072         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4073
4074         mem_cgroup_flush_stats();
4075
4076         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4077                 unsigned long nr;
4078
4079                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4080                         continue;
4081                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4082                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4083                            nr * memcg_page_state_unit(memcg1_stats[i]));
4084         }
4085
4086         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4087                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4088                            memcg_events_local(memcg, memcg1_events[i]));
4089
4090         for (i = 0; i < NR_LRU_LISTS; i++)
4091                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4092                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4093                            PAGE_SIZE);
4094
4095         /* Hierarchical information */
4096         memory = memsw = PAGE_COUNTER_MAX;
4097         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4098                 memory = min(memory, READ_ONCE(mi->memory.max));
4099                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4100         }
4101         seq_printf(m, "hierarchical_memory_limit %llu\n",
4102                    (u64)memory * PAGE_SIZE);
4103         if (do_memsw_account())
4104                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4105                            (u64)memsw * PAGE_SIZE);
4106
4107         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4108                 unsigned long nr;
4109
4110                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4111                         continue;
4112                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4113                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4114                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4115         }
4116
4117         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4118                 seq_printf(m, "total_%s %llu\n",
4119                            vm_event_name(memcg1_events[i]),
4120                            (u64)memcg_events(memcg, memcg1_events[i]));
4121
4122         for (i = 0; i < NR_LRU_LISTS; i++)
4123                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4124                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4125                            PAGE_SIZE);
4126
4127 #ifdef CONFIG_DEBUG_VM
4128         {
4129                 pg_data_t *pgdat;
4130                 struct mem_cgroup_per_node *mz;
4131                 unsigned long anon_cost = 0;
4132                 unsigned long file_cost = 0;
4133
4134                 for_each_online_pgdat(pgdat) {
4135                         mz = memcg->nodeinfo[pgdat->node_id];
4136
4137                         anon_cost += mz->lruvec.anon_cost;
4138                         file_cost += mz->lruvec.file_cost;
4139                 }
4140                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4141                 seq_printf(m, "file_cost %lu\n", file_cost);
4142         }
4143 #endif
4144
4145         return 0;
4146 }
4147
4148 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4149                                       struct cftype *cft)
4150 {
4151         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4152
4153         return mem_cgroup_swappiness(memcg);
4154 }
4155
4156 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4157                                        struct cftype *cft, u64 val)
4158 {
4159         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4160
4161         if (val > 200)
4162                 return -EINVAL;
4163
4164         if (!mem_cgroup_is_root(memcg))
4165                 memcg->swappiness = val;
4166         else
4167                 vm_swappiness = val;
4168
4169         return 0;
4170 }
4171
4172 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4173 {
4174         struct mem_cgroup_threshold_ary *t;
4175         unsigned long usage;
4176         int i;
4177
4178         rcu_read_lock();
4179         if (!swap)
4180                 t = rcu_dereference(memcg->thresholds.primary);
4181         else
4182                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4183
4184         if (!t)
4185                 goto unlock;
4186
4187         usage = mem_cgroup_usage(memcg, swap);
4188
4189         /*
4190          * current_threshold points to threshold just below or equal to usage.
4191          * If it's not true, a threshold was crossed after last
4192          * call of __mem_cgroup_threshold().
4193          */
4194         i = t->current_threshold;
4195
4196         /*
4197          * Iterate backward over array of thresholds starting from
4198          * current_threshold and check if a threshold is crossed.
4199          * If none of thresholds below usage is crossed, we read
4200          * only one element of the array here.
4201          */
4202         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4203                 eventfd_signal(t->entries[i].eventfd, 1);
4204
4205         /* i = current_threshold + 1 */
4206         i++;
4207
4208         /*
4209          * Iterate forward over array of thresholds starting from
4210          * current_threshold+1 and check if a threshold is crossed.
4211          * If none of thresholds above usage is crossed, we read
4212          * only one element of the array here.
4213          */
4214         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4215                 eventfd_signal(t->entries[i].eventfd, 1);
4216
4217         /* Update current_threshold */
4218         t->current_threshold = i - 1;
4219 unlock:
4220         rcu_read_unlock();
4221 }
4222
4223 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4224 {
4225         while (memcg) {
4226                 __mem_cgroup_threshold(memcg, false);
4227                 if (do_memsw_account())
4228                         __mem_cgroup_threshold(memcg, true);
4229
4230                 memcg = parent_mem_cgroup(memcg);
4231         }
4232 }
4233
4234 static int compare_thresholds(const void *a, const void *b)
4235 {
4236         const struct mem_cgroup_threshold *_a = a;
4237         const struct mem_cgroup_threshold *_b = b;
4238
4239         if (_a->threshold > _b->threshold)
4240                 return 1;
4241
4242         if (_a->threshold < _b->threshold)
4243                 return -1;
4244
4245         return 0;
4246 }
4247
4248 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4249 {
4250         struct mem_cgroup_eventfd_list *ev;
4251
4252         spin_lock(&memcg_oom_lock);
4253
4254         list_for_each_entry(ev, &memcg->oom_notify, list)
4255                 eventfd_signal(ev->eventfd, 1);
4256
4257         spin_unlock(&memcg_oom_lock);
4258         return 0;
4259 }
4260
4261 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4262 {
4263         struct mem_cgroup *iter;
4264
4265         for_each_mem_cgroup_tree(iter, memcg)
4266                 mem_cgroup_oom_notify_cb(iter);
4267 }
4268
4269 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4270         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4271 {
4272         struct mem_cgroup_thresholds *thresholds;
4273         struct mem_cgroup_threshold_ary *new;
4274         unsigned long threshold;
4275         unsigned long usage;
4276         int i, size, ret;
4277
4278         ret = page_counter_memparse(args, "-1", &threshold);
4279         if (ret)
4280                 return ret;
4281
4282         mutex_lock(&memcg->thresholds_lock);
4283
4284         if (type == _MEM) {
4285                 thresholds = &memcg->thresholds;
4286                 usage = mem_cgroup_usage(memcg, false);
4287         } else if (type == _MEMSWAP) {
4288                 thresholds = &memcg->memsw_thresholds;
4289                 usage = mem_cgroup_usage(memcg, true);
4290         } else
4291                 BUG();
4292
4293         /* Check if a threshold crossed before adding a new one */
4294         if (thresholds->primary)
4295                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4296
4297         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4298
4299         /* Allocate memory for new array of thresholds */
4300         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4301         if (!new) {
4302                 ret = -ENOMEM;
4303                 goto unlock;
4304         }
4305         new->size = size;
4306
4307         /* Copy thresholds (if any) to new array */
4308         if (thresholds->primary)
4309                 memcpy(new->entries, thresholds->primary->entries,
4310                        flex_array_size(new, entries, size - 1));
4311
4312         /* Add new threshold */
4313         new->entries[size - 1].eventfd = eventfd;
4314         new->entries[size - 1].threshold = threshold;
4315
4316         /* Sort thresholds. Registering of new threshold isn't time-critical */
4317         sort(new->entries, size, sizeof(*new->entries),
4318                         compare_thresholds, NULL);
4319
4320         /* Find current threshold */
4321         new->current_threshold = -1;
4322         for (i = 0; i < size; i++) {
4323                 if (new->entries[i].threshold <= usage) {
4324                         /*
4325                          * new->current_threshold will not be used until
4326                          * rcu_assign_pointer(), so it's safe to increment
4327                          * it here.
4328                          */
4329                         ++new->current_threshold;
4330                 } else
4331                         break;
4332         }
4333
4334         /* Free old spare buffer and save old primary buffer as spare */
4335         kfree(thresholds->spare);
4336         thresholds->spare = thresholds->primary;
4337
4338         rcu_assign_pointer(thresholds->primary, new);
4339
4340         /* To be sure that nobody uses thresholds */
4341         synchronize_rcu();
4342
4343 unlock:
4344         mutex_unlock(&memcg->thresholds_lock);
4345
4346         return ret;
4347 }
4348
4349 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4350         struct eventfd_ctx *eventfd, const char *args)
4351 {
4352         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4353 }
4354
4355 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4356         struct eventfd_ctx *eventfd, const char *args)
4357 {
4358         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4359 }
4360
4361 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4362         struct eventfd_ctx *eventfd, enum res_type type)
4363 {
4364         struct mem_cgroup_thresholds *thresholds;
4365         struct mem_cgroup_threshold_ary *new;
4366         unsigned long usage;
4367         int i, j, size, entries;
4368
4369         mutex_lock(&memcg->thresholds_lock);
4370
4371         if (type == _MEM) {
4372                 thresholds = &memcg->thresholds;
4373                 usage = mem_cgroup_usage(memcg, false);
4374         } else if (type == _MEMSWAP) {
4375                 thresholds = &memcg->memsw_thresholds;
4376                 usage = mem_cgroup_usage(memcg, true);
4377         } else
4378                 BUG();
4379
4380         if (!thresholds->primary)
4381                 goto unlock;
4382
4383         /* Check if a threshold crossed before removing */
4384         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4385
4386         /* Calculate new number of threshold */
4387         size = entries = 0;
4388         for (i = 0; i < thresholds->primary->size; i++) {
4389                 if (thresholds->primary->entries[i].eventfd != eventfd)
4390                         size++;
4391                 else
4392                         entries++;
4393         }
4394
4395         new = thresholds->spare;
4396
4397         /* If no items related to eventfd have been cleared, nothing to do */
4398         if (!entries)
4399                 goto unlock;
4400
4401         /* Set thresholds array to NULL if we don't have thresholds */
4402         if (!size) {
4403                 kfree(new);
4404                 new = NULL;
4405                 goto swap_buffers;
4406         }
4407
4408         new->size = size;
4409
4410         /* Copy thresholds and find current threshold */
4411         new->current_threshold = -1;
4412         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4413                 if (thresholds->primary->entries[i].eventfd == eventfd)
4414                         continue;
4415
4416                 new->entries[j] = thresholds->primary->entries[i];
4417                 if (new->entries[j].threshold <= usage) {
4418                         /*
4419                          * new->current_threshold will not be used
4420                          * until rcu_assign_pointer(), so it's safe to increment
4421                          * it here.
4422                          */
4423                         ++new->current_threshold;
4424                 }
4425                 j++;
4426         }
4427
4428 swap_buffers:
4429         /* Swap primary and spare array */
4430         thresholds->spare = thresholds->primary;
4431
4432         rcu_assign_pointer(thresholds->primary, new);
4433
4434         /* To be sure that nobody uses thresholds */
4435         synchronize_rcu();
4436
4437         /* If all events are unregistered, free the spare array */
4438         if (!new) {
4439                 kfree(thresholds->spare);
4440                 thresholds->spare = NULL;
4441         }
4442 unlock:
4443         mutex_unlock(&memcg->thresholds_lock);
4444 }
4445
4446 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4447         struct eventfd_ctx *eventfd)
4448 {
4449         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4450 }
4451
4452 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4453         struct eventfd_ctx *eventfd)
4454 {
4455         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4456 }
4457
4458 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4459         struct eventfd_ctx *eventfd, const char *args)
4460 {
4461         struct mem_cgroup_eventfd_list *event;
4462
4463         event = kmalloc(sizeof(*event), GFP_KERNEL);
4464         if (!event)
4465                 return -ENOMEM;
4466
4467         spin_lock(&memcg_oom_lock);
4468
4469         event->eventfd = eventfd;
4470         list_add(&event->list, &memcg->oom_notify);
4471
4472         /* already in OOM ? */
4473         if (memcg->under_oom)
4474                 eventfd_signal(eventfd, 1);
4475         spin_unlock(&memcg_oom_lock);
4476
4477         return 0;
4478 }
4479
4480 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4481         struct eventfd_ctx *eventfd)
4482 {
4483         struct mem_cgroup_eventfd_list *ev, *tmp;
4484
4485         spin_lock(&memcg_oom_lock);
4486
4487         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4488                 if (ev->eventfd == eventfd) {
4489                         list_del(&ev->list);
4490                         kfree(ev);
4491                 }
4492         }
4493
4494         spin_unlock(&memcg_oom_lock);
4495 }
4496
4497 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4498 {
4499         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4500
4501         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4502         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4503         seq_printf(sf, "oom_kill %lu\n",
4504                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4505         return 0;
4506 }
4507
4508 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4509         struct cftype *cft, u64 val)
4510 {
4511         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512
4513         /* cannot set to root cgroup and only 0 and 1 are allowed */
4514         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4515                 return -EINVAL;
4516
4517         memcg->oom_kill_disable = val;
4518         if (!val)
4519                 memcg_oom_recover(memcg);
4520
4521         return 0;
4522 }
4523
4524 #ifdef CONFIG_CGROUP_WRITEBACK
4525
4526 #include <trace/events/writeback.h>
4527
4528 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4529 {
4530         return wb_domain_init(&memcg->cgwb_domain, gfp);
4531 }
4532
4533 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4534 {
4535         wb_domain_exit(&memcg->cgwb_domain);
4536 }
4537
4538 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4539 {
4540         wb_domain_size_changed(&memcg->cgwb_domain);
4541 }
4542
4543 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4544 {
4545         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546
4547         if (!memcg->css.parent)
4548                 return NULL;
4549
4550         return &memcg->cgwb_domain;
4551 }
4552
4553 /**
4554  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4555  * @wb: bdi_writeback in question
4556  * @pfilepages: out parameter for number of file pages
4557  * @pheadroom: out parameter for number of allocatable pages according to memcg
4558  * @pdirty: out parameter for number of dirty pages
4559  * @pwriteback: out parameter for number of pages under writeback
4560  *
4561  * Determine the numbers of file, headroom, dirty, and writeback pages in
4562  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4563  * is a bit more involved.
4564  *
4565  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4566  * headroom is calculated as the lowest headroom of itself and the
4567  * ancestors.  Note that this doesn't consider the actual amount of
4568  * available memory in the system.  The caller should further cap
4569  * *@pheadroom accordingly.
4570  */
4571 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4572                          unsigned long *pheadroom, unsigned long *pdirty,
4573                          unsigned long *pwriteback)
4574 {
4575         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4576         struct mem_cgroup *parent;
4577
4578         mem_cgroup_flush_stats();
4579
4580         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4581         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4582         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4583                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4584
4585         *pheadroom = PAGE_COUNTER_MAX;
4586         while ((parent = parent_mem_cgroup(memcg))) {
4587                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4588                                             READ_ONCE(memcg->memory.high));
4589                 unsigned long used = page_counter_read(&memcg->memory);
4590
4591                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4592                 memcg = parent;
4593         }
4594 }
4595
4596 /*
4597  * Foreign dirty flushing
4598  *
4599  * There's an inherent mismatch between memcg and writeback.  The former
4600  * tracks ownership per-page while the latter per-inode.  This was a
4601  * deliberate design decision because honoring per-page ownership in the
4602  * writeback path is complicated, may lead to higher CPU and IO overheads
4603  * and deemed unnecessary given that write-sharing an inode across
4604  * different cgroups isn't a common use-case.
4605  *
4606  * Combined with inode majority-writer ownership switching, this works well
4607  * enough in most cases but there are some pathological cases.  For
4608  * example, let's say there are two cgroups A and B which keep writing to
4609  * different but confined parts of the same inode.  B owns the inode and
4610  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4611  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4612  * triggering background writeback.  A will be slowed down without a way to
4613  * make writeback of the dirty pages happen.
4614  *
4615  * Conditions like the above can lead to a cgroup getting repeatedly and
4616  * severely throttled after making some progress after each
4617  * dirty_expire_interval while the underlying IO device is almost
4618  * completely idle.
4619  *
4620  * Solving this problem completely requires matching the ownership tracking
4621  * granularities between memcg and writeback in either direction.  However,
4622  * the more egregious behaviors can be avoided by simply remembering the
4623  * most recent foreign dirtying events and initiating remote flushes on
4624  * them when local writeback isn't enough to keep the memory clean enough.
4625  *
4626  * The following two functions implement such mechanism.  When a foreign
4627  * page - a page whose memcg and writeback ownerships don't match - is
4628  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4629  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4630  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4631  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4632  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4633  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4634  * limited to MEMCG_CGWB_FRN_CNT.
4635  *
4636  * The mechanism only remembers IDs and doesn't hold any object references.
4637  * As being wrong occasionally doesn't matter, updates and accesses to the
4638  * records are lockless and racy.
4639  */
4640 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4641                                              struct bdi_writeback *wb)
4642 {
4643         struct mem_cgroup *memcg = folio_memcg(folio);
4644         struct memcg_cgwb_frn *frn;
4645         u64 now = get_jiffies_64();
4646         u64 oldest_at = now;
4647         int oldest = -1;
4648         int i;
4649
4650         trace_track_foreign_dirty(folio, wb);
4651
4652         /*
4653          * Pick the slot to use.  If there is already a slot for @wb, keep
4654          * using it.  If not replace the oldest one which isn't being
4655          * written out.
4656          */
4657         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4658                 frn = &memcg->cgwb_frn[i];
4659                 if (frn->bdi_id == wb->bdi->id &&
4660                     frn->memcg_id == wb->memcg_css->id)
4661                         break;
4662                 if (time_before64(frn->at, oldest_at) &&
4663                     atomic_read(&frn->done.cnt) == 1) {
4664                         oldest = i;
4665                         oldest_at = frn->at;
4666                 }
4667         }
4668
4669         if (i < MEMCG_CGWB_FRN_CNT) {
4670                 /*
4671                  * Re-using an existing one.  Update timestamp lazily to
4672                  * avoid making the cacheline hot.  We want them to be
4673                  * reasonably up-to-date and significantly shorter than
4674                  * dirty_expire_interval as that's what expires the record.
4675                  * Use the shorter of 1s and dirty_expire_interval / 8.
4676                  */
4677                 unsigned long update_intv =
4678                         min_t(unsigned long, HZ,
4679                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4680
4681                 if (time_before64(frn->at, now - update_intv))
4682                         frn->at = now;
4683         } else if (oldest >= 0) {
4684                 /* replace the oldest free one */
4685                 frn = &memcg->cgwb_frn[oldest];
4686                 frn->bdi_id = wb->bdi->id;
4687                 frn->memcg_id = wb->memcg_css->id;
4688                 frn->at = now;
4689         }
4690 }
4691
4692 /* issue foreign writeback flushes for recorded foreign dirtying events */
4693 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4694 {
4695         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4696         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4697         u64 now = jiffies_64;
4698         int i;
4699
4700         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4701                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4702
4703                 /*
4704                  * If the record is older than dirty_expire_interval,
4705                  * writeback on it has already started.  No need to kick it
4706                  * off again.  Also, don't start a new one if there's
4707                  * already one in flight.
4708                  */
4709                 if (time_after64(frn->at, now - intv) &&
4710                     atomic_read(&frn->done.cnt) == 1) {
4711                         frn->at = 0;
4712                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4713                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4714                                                WB_REASON_FOREIGN_FLUSH,
4715                                                &frn->done);
4716                 }
4717         }
4718 }
4719
4720 #else   /* CONFIG_CGROUP_WRITEBACK */
4721
4722 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4723 {
4724         return 0;
4725 }
4726
4727 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4728 {
4729 }
4730
4731 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4732 {
4733 }
4734
4735 #endif  /* CONFIG_CGROUP_WRITEBACK */
4736
4737 /*
4738  * DO NOT USE IN NEW FILES.
4739  *
4740  * "cgroup.event_control" implementation.
4741  *
4742  * This is way over-engineered.  It tries to support fully configurable
4743  * events for each user.  Such level of flexibility is completely
4744  * unnecessary especially in the light of the planned unified hierarchy.
4745  *
4746  * Please deprecate this and replace with something simpler if at all
4747  * possible.
4748  */
4749
4750 /*
4751  * Unregister event and free resources.
4752  *
4753  * Gets called from workqueue.
4754  */
4755 static void memcg_event_remove(struct work_struct *work)
4756 {
4757         struct mem_cgroup_event *event =
4758                 container_of(work, struct mem_cgroup_event, remove);
4759         struct mem_cgroup *memcg = event->memcg;
4760
4761         remove_wait_queue(event->wqh, &event->wait);
4762
4763         event->unregister_event(memcg, event->eventfd);
4764
4765         /* Notify userspace the event is going away. */
4766         eventfd_signal(event->eventfd, 1);
4767
4768         eventfd_ctx_put(event->eventfd);
4769         kfree(event);
4770         css_put(&memcg->css);
4771 }
4772
4773 /*
4774  * Gets called on EPOLLHUP on eventfd when user closes it.
4775  *
4776  * Called with wqh->lock held and interrupts disabled.
4777  */
4778 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4779                             int sync, void *key)
4780 {
4781         struct mem_cgroup_event *event =
4782                 container_of(wait, struct mem_cgroup_event, wait);
4783         struct mem_cgroup *memcg = event->memcg;
4784         __poll_t flags = key_to_poll(key);
4785
4786         if (flags & EPOLLHUP) {
4787                 /*
4788                  * If the event has been detached at cgroup removal, we
4789                  * can simply return knowing the other side will cleanup
4790                  * for us.
4791                  *
4792                  * We can't race against event freeing since the other
4793                  * side will require wqh->lock via remove_wait_queue(),
4794                  * which we hold.
4795                  */
4796                 spin_lock(&memcg->event_list_lock);
4797                 if (!list_empty(&event->list)) {
4798                         list_del_init(&event->list);
4799                         /*
4800                          * We are in atomic context, but cgroup_event_remove()
4801                          * may sleep, so we have to call it in workqueue.
4802                          */
4803                         schedule_work(&event->remove);
4804                 }
4805                 spin_unlock(&memcg->event_list_lock);
4806         }
4807
4808         return 0;
4809 }
4810
4811 static void memcg_event_ptable_queue_proc(struct file *file,
4812                 wait_queue_head_t *wqh, poll_table *pt)
4813 {
4814         struct mem_cgroup_event *event =
4815                 container_of(pt, struct mem_cgroup_event, pt);
4816
4817         event->wqh = wqh;
4818         add_wait_queue(wqh, &event->wait);
4819 }
4820
4821 /*
4822  * DO NOT USE IN NEW FILES.
4823  *
4824  * Parse input and register new cgroup event handler.
4825  *
4826  * Input must be in format '<event_fd> <control_fd> <args>'.
4827  * Interpretation of args is defined by control file implementation.
4828  */
4829 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4830                                          char *buf, size_t nbytes, loff_t off)
4831 {
4832         struct cgroup_subsys_state *css = of_css(of);
4833         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4834         struct mem_cgroup_event *event;
4835         struct cgroup_subsys_state *cfile_css;
4836         unsigned int efd, cfd;
4837         struct fd efile;
4838         struct fd cfile;
4839         struct dentry *cdentry;
4840         const char *name;
4841         char *endp;
4842         int ret;
4843
4844         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4845                 return -EOPNOTSUPP;
4846
4847         buf = strstrip(buf);
4848
4849         efd = simple_strtoul(buf, &endp, 10);
4850         if (*endp != ' ')
4851                 return -EINVAL;
4852         buf = endp + 1;
4853
4854         cfd = simple_strtoul(buf, &endp, 10);
4855         if ((*endp != ' ') && (*endp != '\0'))
4856                 return -EINVAL;
4857         buf = endp + 1;
4858
4859         event = kzalloc(sizeof(*event), GFP_KERNEL);
4860         if (!event)
4861                 return -ENOMEM;
4862
4863         event->memcg = memcg;
4864         INIT_LIST_HEAD(&event->list);
4865         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4866         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4867         INIT_WORK(&event->remove, memcg_event_remove);
4868
4869         efile = fdget(efd);
4870         if (!efile.file) {
4871                 ret = -EBADF;
4872                 goto out_kfree;
4873         }
4874
4875         event->eventfd = eventfd_ctx_fileget(efile.file);
4876         if (IS_ERR(event->eventfd)) {
4877                 ret = PTR_ERR(event->eventfd);
4878                 goto out_put_efile;
4879         }
4880
4881         cfile = fdget(cfd);
4882         if (!cfile.file) {
4883                 ret = -EBADF;
4884                 goto out_put_eventfd;
4885         }
4886
4887         /* the process need read permission on control file */
4888         /* AV: shouldn't we check that it's been opened for read instead? */
4889         ret = file_permission(cfile.file, MAY_READ);
4890         if (ret < 0)
4891                 goto out_put_cfile;
4892
4893         /*
4894          * The control file must be a regular cgroup1 file. As a regular cgroup
4895          * file can't be renamed, it's safe to access its name afterwards.
4896          */
4897         cdentry = cfile.file->f_path.dentry;
4898         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4899                 ret = -EINVAL;
4900                 goto out_put_cfile;
4901         }
4902
4903         /*
4904          * Determine the event callbacks and set them in @event.  This used
4905          * to be done via struct cftype but cgroup core no longer knows
4906          * about these events.  The following is crude but the whole thing
4907          * is for compatibility anyway.
4908          *
4909          * DO NOT ADD NEW FILES.
4910          */
4911         name = cdentry->d_name.name;
4912
4913         if (!strcmp(name, "memory.usage_in_bytes")) {
4914                 event->register_event = mem_cgroup_usage_register_event;
4915                 event->unregister_event = mem_cgroup_usage_unregister_event;
4916         } else if (!strcmp(name, "memory.oom_control")) {
4917                 event->register_event = mem_cgroup_oom_register_event;
4918                 event->unregister_event = mem_cgroup_oom_unregister_event;
4919         } else if (!strcmp(name, "memory.pressure_level")) {
4920                 event->register_event = vmpressure_register_event;
4921                 event->unregister_event = vmpressure_unregister_event;
4922         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4923                 event->register_event = memsw_cgroup_usage_register_event;
4924                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4925         } else {
4926                 ret = -EINVAL;
4927                 goto out_put_cfile;
4928         }
4929
4930         /*
4931          * Verify @cfile should belong to @css.  Also, remaining events are
4932          * automatically removed on cgroup destruction but the removal is
4933          * asynchronous, so take an extra ref on @css.
4934          */
4935         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4936                                                &memory_cgrp_subsys);
4937         ret = -EINVAL;
4938         if (IS_ERR(cfile_css))
4939                 goto out_put_cfile;
4940         if (cfile_css != css) {
4941                 css_put(cfile_css);
4942                 goto out_put_cfile;
4943         }
4944
4945         ret = event->register_event(memcg, event->eventfd, buf);
4946         if (ret)
4947                 goto out_put_css;
4948
4949         vfs_poll(efile.file, &event->pt);
4950
4951         spin_lock_irq(&memcg->event_list_lock);
4952         list_add(&event->list, &memcg->event_list);
4953         spin_unlock_irq(&memcg->event_list_lock);
4954
4955         fdput(cfile);
4956         fdput(efile);
4957
4958         return nbytes;
4959
4960 out_put_css:
4961         css_put(css);
4962 out_put_cfile:
4963         fdput(cfile);
4964 out_put_eventfd:
4965         eventfd_ctx_put(event->eventfd);
4966 out_put_efile:
4967         fdput(efile);
4968 out_kfree:
4969         kfree(event);
4970
4971         return ret;
4972 }
4973
4974 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4975 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4976 {
4977         /*
4978          * Deprecated.
4979          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4980          */
4981         return 0;
4982 }
4983 #endif
4984
4985 static struct cftype mem_cgroup_legacy_files[] = {
4986         {
4987                 .name = "usage_in_bytes",
4988                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4989                 .read_u64 = mem_cgroup_read_u64,
4990         },
4991         {
4992                 .name = "max_usage_in_bytes",
4993                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4994                 .write = mem_cgroup_reset,
4995                 .read_u64 = mem_cgroup_read_u64,
4996         },
4997         {
4998                 .name = "limit_in_bytes",
4999                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5000                 .write = mem_cgroup_write,
5001                 .read_u64 = mem_cgroup_read_u64,
5002         },
5003         {
5004                 .name = "soft_limit_in_bytes",
5005                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5006                 .write = mem_cgroup_write,
5007                 .read_u64 = mem_cgroup_read_u64,
5008         },
5009         {
5010                 .name = "failcnt",
5011                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5012                 .write = mem_cgroup_reset,
5013                 .read_u64 = mem_cgroup_read_u64,
5014         },
5015         {
5016                 .name = "stat",
5017                 .seq_show = memcg_stat_show,
5018         },
5019         {
5020                 .name = "force_empty",
5021                 .write = mem_cgroup_force_empty_write,
5022         },
5023         {
5024                 .name = "use_hierarchy",
5025                 .write_u64 = mem_cgroup_hierarchy_write,
5026                 .read_u64 = mem_cgroup_hierarchy_read,
5027         },
5028         {
5029                 .name = "cgroup.event_control",         /* XXX: for compat */
5030                 .write = memcg_write_event_control,
5031                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5032         },
5033         {
5034                 .name = "swappiness",
5035                 .read_u64 = mem_cgroup_swappiness_read,
5036                 .write_u64 = mem_cgroup_swappiness_write,
5037         },
5038         {
5039                 .name = "move_charge_at_immigrate",
5040                 .read_u64 = mem_cgroup_move_charge_read,
5041                 .write_u64 = mem_cgroup_move_charge_write,
5042         },
5043         {
5044                 .name = "oom_control",
5045                 .seq_show = mem_cgroup_oom_control_read,
5046                 .write_u64 = mem_cgroup_oom_control_write,
5047         },
5048         {
5049                 .name = "pressure_level",
5050         },
5051 #ifdef CONFIG_NUMA
5052         {
5053                 .name = "numa_stat",
5054                 .seq_show = memcg_numa_stat_show,
5055         },
5056 #endif
5057         {
5058                 .name = "kmem.limit_in_bytes",
5059                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5060                 .write = mem_cgroup_write,
5061                 .read_u64 = mem_cgroup_read_u64,
5062         },
5063         {
5064                 .name = "kmem.usage_in_bytes",
5065                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5066                 .read_u64 = mem_cgroup_read_u64,
5067         },
5068         {
5069                 .name = "kmem.failcnt",
5070                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5071                 .write = mem_cgroup_reset,
5072                 .read_u64 = mem_cgroup_read_u64,
5073         },
5074         {
5075                 .name = "kmem.max_usage_in_bytes",
5076                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5077                 .write = mem_cgroup_reset,
5078                 .read_u64 = mem_cgroup_read_u64,
5079         },
5080 #if defined(CONFIG_MEMCG_KMEM) && \
5081         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5082         {
5083                 .name = "kmem.slabinfo",
5084                 .seq_show = mem_cgroup_slab_show,
5085         },
5086 #endif
5087         {
5088                 .name = "kmem.tcp.limit_in_bytes",
5089                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5090                 .write = mem_cgroup_write,
5091                 .read_u64 = mem_cgroup_read_u64,
5092         },
5093         {
5094                 .name = "kmem.tcp.usage_in_bytes",
5095                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5096                 .read_u64 = mem_cgroup_read_u64,
5097         },
5098         {
5099                 .name = "kmem.tcp.failcnt",
5100                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5101                 .write = mem_cgroup_reset,
5102                 .read_u64 = mem_cgroup_read_u64,
5103         },
5104         {
5105                 .name = "kmem.tcp.max_usage_in_bytes",
5106                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5107                 .write = mem_cgroup_reset,
5108                 .read_u64 = mem_cgroup_read_u64,
5109         },
5110         { },    /* terminate */
5111 };
5112
5113 /*
5114  * Private memory cgroup IDR
5115  *
5116  * Swap-out records and page cache shadow entries need to store memcg
5117  * references in constrained space, so we maintain an ID space that is
5118  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5119  * memory-controlled cgroups to 64k.
5120  *
5121  * However, there usually are many references to the offline CSS after
5122  * the cgroup has been destroyed, such as page cache or reclaimable
5123  * slab objects, that don't need to hang on to the ID. We want to keep
5124  * those dead CSS from occupying IDs, or we might quickly exhaust the
5125  * relatively small ID space and prevent the creation of new cgroups
5126  * even when there are much fewer than 64k cgroups - possibly none.
5127  *
5128  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5129  * be freed and recycled when it's no longer needed, which is usually
5130  * when the CSS is offlined.
5131  *
5132  * The only exception to that are records of swapped out tmpfs/shmem
5133  * pages that need to be attributed to live ancestors on swapin. But
5134  * those references are manageable from userspace.
5135  */
5136
5137 static DEFINE_IDR(mem_cgroup_idr);
5138
5139 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5140 {
5141         if (memcg->id.id > 0) {
5142                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5143                 memcg->id.id = 0;
5144         }
5145 }
5146
5147 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5148                                                   unsigned int n)
5149 {
5150         refcount_add(n, &memcg->id.ref);
5151 }
5152
5153 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5154 {
5155         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5156                 mem_cgroup_id_remove(memcg);
5157
5158                 /* Memcg ID pins CSS */
5159                 css_put(&memcg->css);
5160         }
5161 }
5162
5163 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5164 {
5165         mem_cgroup_id_put_many(memcg, 1);
5166 }
5167
5168 /**
5169  * mem_cgroup_from_id - look up a memcg from a memcg id
5170  * @id: the memcg id to look up
5171  *
5172  * Caller must hold rcu_read_lock().
5173  */
5174 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5175 {
5176         WARN_ON_ONCE(!rcu_read_lock_held());
5177         return idr_find(&mem_cgroup_idr, id);
5178 }
5179
5180 #ifdef CONFIG_SHRINKER_DEBUG
5181 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5182 {
5183         struct cgroup *cgrp;
5184         struct cgroup_subsys_state *css;
5185         struct mem_cgroup *memcg;
5186
5187         cgrp = cgroup_get_from_id(ino);
5188         if (IS_ERR(cgrp))
5189                 return ERR_CAST(cgrp);
5190
5191         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5192         if (css)
5193                 memcg = container_of(css, struct mem_cgroup, css);
5194         else
5195                 memcg = ERR_PTR(-ENOENT);
5196
5197         cgroup_put(cgrp);
5198
5199         return memcg;
5200 }
5201 #endif
5202
5203 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5204 {
5205         struct mem_cgroup_per_node *pn;
5206
5207         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5208         if (!pn)
5209                 return 1;
5210
5211         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5212                                                    GFP_KERNEL_ACCOUNT);
5213         if (!pn->lruvec_stats_percpu) {
5214                 kfree(pn);
5215                 return 1;
5216         }
5217
5218         lruvec_init(&pn->lruvec);
5219         pn->memcg = memcg;
5220
5221         memcg->nodeinfo[node] = pn;
5222         return 0;
5223 }
5224
5225 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5226 {
5227         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5228
5229         if (!pn)
5230                 return;
5231
5232         free_percpu(pn->lruvec_stats_percpu);
5233         kfree(pn);
5234 }
5235
5236 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5237 {
5238         int node;
5239
5240         for_each_node(node)
5241                 free_mem_cgroup_per_node_info(memcg, node);
5242         kfree(memcg->vmstats);
5243         free_percpu(memcg->vmstats_percpu);
5244         kfree(memcg);
5245 }
5246
5247 static void mem_cgroup_free(struct mem_cgroup *memcg)
5248 {
5249         lru_gen_exit_memcg(memcg);
5250         memcg_wb_domain_exit(memcg);
5251         __mem_cgroup_free(memcg);
5252 }
5253
5254 static struct mem_cgroup *mem_cgroup_alloc(void)
5255 {
5256         struct mem_cgroup *memcg;
5257         int node;
5258         int __maybe_unused i;
5259         long error = -ENOMEM;
5260
5261         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5262         if (!memcg)
5263                 return ERR_PTR(error);
5264
5265         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5266                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5267         if (memcg->id.id < 0) {
5268                 error = memcg->id.id;
5269                 goto fail;
5270         }
5271
5272         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5273         if (!memcg->vmstats)
5274                 goto fail;
5275
5276         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5277                                                  GFP_KERNEL_ACCOUNT);
5278         if (!memcg->vmstats_percpu)
5279                 goto fail;
5280
5281         for_each_node(node)
5282                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5283                         goto fail;
5284
5285         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5286                 goto fail;
5287
5288         INIT_WORK(&memcg->high_work, high_work_func);
5289         INIT_LIST_HEAD(&memcg->oom_notify);
5290         mutex_init(&memcg->thresholds_lock);
5291         spin_lock_init(&memcg->move_lock);
5292         vmpressure_init(&memcg->vmpressure);
5293         INIT_LIST_HEAD(&memcg->event_list);
5294         spin_lock_init(&memcg->event_list_lock);
5295         memcg->socket_pressure = jiffies;
5296 #ifdef CONFIG_MEMCG_KMEM
5297         memcg->kmemcg_id = -1;
5298         INIT_LIST_HEAD(&memcg->objcg_list);
5299 #endif
5300 #ifdef CONFIG_CGROUP_WRITEBACK
5301         INIT_LIST_HEAD(&memcg->cgwb_list);
5302         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5303                 memcg->cgwb_frn[i].done =
5304                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5305 #endif
5306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5307         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5308         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5309         memcg->deferred_split_queue.split_queue_len = 0;
5310 #endif
5311         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5312         lru_gen_init_memcg(memcg);
5313         return memcg;
5314 fail:
5315         mem_cgroup_id_remove(memcg);
5316         __mem_cgroup_free(memcg);
5317         return ERR_PTR(error);
5318 }
5319
5320 static struct cgroup_subsys_state * __ref
5321 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5322 {
5323         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5324         struct mem_cgroup *memcg, *old_memcg;
5325
5326         old_memcg = set_active_memcg(parent);
5327         memcg = mem_cgroup_alloc();
5328         set_active_memcg(old_memcg);
5329         if (IS_ERR(memcg))
5330                 return ERR_CAST(memcg);
5331
5332         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5333         memcg->soft_limit = PAGE_COUNTER_MAX;
5334 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5335         memcg->zswap_max = PAGE_COUNTER_MAX;
5336 #endif
5337         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5338         if (parent) {
5339                 memcg->swappiness = mem_cgroup_swappiness(parent);
5340                 memcg->oom_kill_disable = parent->oom_kill_disable;
5341
5342                 page_counter_init(&memcg->memory, &parent->memory);
5343                 page_counter_init(&memcg->swap, &parent->swap);
5344                 page_counter_init(&memcg->kmem, &parent->kmem);
5345                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5346         } else {
5347                 init_memcg_events();
5348                 page_counter_init(&memcg->memory, NULL);
5349                 page_counter_init(&memcg->swap, NULL);
5350                 page_counter_init(&memcg->kmem, NULL);
5351                 page_counter_init(&memcg->tcpmem, NULL);
5352
5353                 root_mem_cgroup = memcg;
5354                 return &memcg->css;
5355         }
5356
5357         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5358                 static_branch_inc(&memcg_sockets_enabled_key);
5359
5360         return &memcg->css;
5361 }
5362
5363 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5364 {
5365         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366
5367         if (memcg_online_kmem(memcg))
5368                 goto remove_id;
5369
5370         /*
5371          * A memcg must be visible for expand_shrinker_info()
5372          * by the time the maps are allocated. So, we allocate maps
5373          * here, when for_each_mem_cgroup() can't skip it.
5374          */
5375         if (alloc_shrinker_info(memcg))
5376                 goto offline_kmem;
5377
5378         /* Online state pins memcg ID, memcg ID pins CSS */
5379         refcount_set(&memcg->id.ref, 1);
5380         css_get(css);
5381
5382         if (unlikely(mem_cgroup_is_root(memcg)))
5383                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5384                                    2UL*HZ);
5385         return 0;
5386 offline_kmem:
5387         memcg_offline_kmem(memcg);
5388 remove_id:
5389         mem_cgroup_id_remove(memcg);
5390         return -ENOMEM;
5391 }
5392
5393 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5394 {
5395         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396         struct mem_cgroup_event *event, *tmp;
5397
5398         /*
5399          * Unregister events and notify userspace.
5400          * Notify userspace about cgroup removing only after rmdir of cgroup
5401          * directory to avoid race between userspace and kernelspace.
5402          */
5403         spin_lock_irq(&memcg->event_list_lock);
5404         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5405                 list_del_init(&event->list);
5406                 schedule_work(&event->remove);
5407         }
5408         spin_unlock_irq(&memcg->event_list_lock);
5409
5410         page_counter_set_min(&memcg->memory, 0);
5411         page_counter_set_low(&memcg->memory, 0);
5412
5413         memcg_offline_kmem(memcg);
5414         reparent_shrinker_deferred(memcg);
5415         wb_memcg_offline(memcg);
5416
5417         drain_all_stock(memcg);
5418
5419         mem_cgroup_id_put(memcg);
5420 }
5421
5422 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5423 {
5424         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5425
5426         invalidate_reclaim_iterators(memcg);
5427 }
5428
5429 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5430 {
5431         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432         int __maybe_unused i;
5433
5434 #ifdef CONFIG_CGROUP_WRITEBACK
5435         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5436                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5437 #endif
5438         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5439                 static_branch_dec(&memcg_sockets_enabled_key);
5440
5441         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5442                 static_branch_dec(&memcg_sockets_enabled_key);
5443
5444         vmpressure_cleanup(&memcg->vmpressure);
5445         cancel_work_sync(&memcg->high_work);
5446         mem_cgroup_remove_from_trees(memcg);
5447         free_shrinker_info(memcg);
5448         mem_cgroup_free(memcg);
5449 }
5450
5451 /**
5452  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5453  * @css: the target css
5454  *
5455  * Reset the states of the mem_cgroup associated with @css.  This is
5456  * invoked when the userland requests disabling on the default hierarchy
5457  * but the memcg is pinned through dependency.  The memcg should stop
5458  * applying policies and should revert to the vanilla state as it may be
5459  * made visible again.
5460  *
5461  * The current implementation only resets the essential configurations.
5462  * This needs to be expanded to cover all the visible parts.
5463  */
5464 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5465 {
5466         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5467
5468         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5469         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5470         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5471         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5472         page_counter_set_min(&memcg->memory, 0);
5473         page_counter_set_low(&memcg->memory, 0);
5474         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5475         memcg->soft_limit = PAGE_COUNTER_MAX;
5476         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5477         memcg_wb_domain_size_changed(memcg);
5478 }
5479
5480 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5481 {
5482         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5484         struct memcg_vmstats_percpu *statc;
5485         long delta, v;
5486         int i, nid;
5487
5488         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5489
5490         for (i = 0; i < MEMCG_NR_STAT; i++) {
5491                 /*
5492                  * Collect the aggregated propagation counts of groups
5493                  * below us. We're in a per-cpu loop here and this is
5494                  * a global counter, so the first cycle will get them.
5495                  */
5496                 delta = memcg->vmstats->state_pending[i];
5497                 if (delta)
5498                         memcg->vmstats->state_pending[i] = 0;
5499
5500                 /* Add CPU changes on this level since the last flush */
5501                 v = READ_ONCE(statc->state[i]);
5502                 if (v != statc->state_prev[i]) {
5503                         delta += v - statc->state_prev[i];
5504                         statc->state_prev[i] = v;
5505                 }
5506
5507                 if (!delta)
5508                         continue;
5509
5510                 /* Aggregate counts on this level and propagate upwards */
5511                 memcg->vmstats->state[i] += delta;
5512                 if (parent)
5513                         parent->vmstats->state_pending[i] += delta;
5514         }
5515
5516         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5517                 delta = memcg->vmstats->events_pending[i];
5518                 if (delta)
5519                         memcg->vmstats->events_pending[i] = 0;
5520
5521                 v = READ_ONCE(statc->events[i]);
5522                 if (v != statc->events_prev[i]) {
5523                         delta += v - statc->events_prev[i];
5524                         statc->events_prev[i] = v;
5525                 }
5526
5527                 if (!delta)
5528                         continue;
5529
5530                 memcg->vmstats->events[i] += delta;
5531                 if (parent)
5532                         parent->vmstats->events_pending[i] += delta;
5533         }
5534
5535         for_each_node_state(nid, N_MEMORY) {
5536                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5537                 struct mem_cgroup_per_node *ppn = NULL;
5538                 struct lruvec_stats_percpu *lstatc;
5539
5540                 if (parent)
5541                         ppn = parent->nodeinfo[nid];
5542
5543                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5544
5545                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5546                         delta = pn->lruvec_stats.state_pending[i];
5547                         if (delta)
5548                                 pn->lruvec_stats.state_pending[i] = 0;
5549
5550                         v = READ_ONCE(lstatc->state[i]);
5551                         if (v != lstatc->state_prev[i]) {
5552                                 delta += v - lstatc->state_prev[i];
5553                                 lstatc->state_prev[i] = v;
5554                         }
5555
5556                         if (!delta)
5557                                 continue;
5558
5559                         pn->lruvec_stats.state[i] += delta;
5560                         if (ppn)
5561                                 ppn->lruvec_stats.state_pending[i] += delta;
5562                 }
5563         }
5564 }
5565
5566 #ifdef CONFIG_MMU
5567 /* Handlers for move charge at task migration. */
5568 static int mem_cgroup_do_precharge(unsigned long count)
5569 {
5570         int ret;
5571
5572         /* Try a single bulk charge without reclaim first, kswapd may wake */
5573         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5574         if (!ret) {
5575                 mc.precharge += count;
5576                 return ret;
5577         }
5578
5579         /* Try charges one by one with reclaim, but do not retry */
5580         while (count--) {
5581                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5582                 if (ret)
5583                         return ret;
5584                 mc.precharge++;
5585                 cond_resched();
5586         }
5587         return 0;
5588 }
5589
5590 union mc_target {
5591         struct page     *page;
5592         swp_entry_t     ent;
5593 };
5594
5595 enum mc_target_type {
5596         MC_TARGET_NONE = 0,
5597         MC_TARGET_PAGE,
5598         MC_TARGET_SWAP,
5599         MC_TARGET_DEVICE,
5600 };
5601
5602 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5603                                                 unsigned long addr, pte_t ptent)
5604 {
5605         struct page *page = vm_normal_page(vma, addr, ptent);
5606
5607         if (!page || !page_mapped(page))
5608                 return NULL;
5609         if (PageAnon(page)) {
5610                 if (!(mc.flags & MOVE_ANON))
5611                         return NULL;
5612         } else {
5613                 if (!(mc.flags & MOVE_FILE))
5614                         return NULL;
5615         }
5616         if (!get_page_unless_zero(page))
5617                 return NULL;
5618
5619         return page;
5620 }
5621
5622 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5623 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5624                         pte_t ptent, swp_entry_t *entry)
5625 {
5626         struct page *page = NULL;
5627         swp_entry_t ent = pte_to_swp_entry(ptent);
5628
5629         if (!(mc.flags & MOVE_ANON))
5630                 return NULL;
5631
5632         /*
5633          * Handle device private pages that are not accessible by the CPU, but
5634          * stored as special swap entries in the page table.
5635          */
5636         if (is_device_private_entry(ent)) {
5637                 page = pfn_swap_entry_to_page(ent);
5638                 if (!get_page_unless_zero(page))
5639                         return NULL;
5640                 return page;
5641         }
5642
5643         if (non_swap_entry(ent))
5644                 return NULL;
5645
5646         /*
5647          * Because swap_cache_get_folio() updates some statistics counter,
5648          * we call find_get_page() with swapper_space directly.
5649          */
5650         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5651         entry->val = ent.val;
5652
5653         return page;
5654 }
5655 #else
5656 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5657                         pte_t ptent, swp_entry_t *entry)
5658 {
5659         return NULL;
5660 }
5661 #endif
5662
5663 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5664                         unsigned long addr, pte_t ptent)
5665 {
5666         if (!vma->vm_file) /* anonymous vma */
5667                 return NULL;
5668         if (!(mc.flags & MOVE_FILE))
5669                 return NULL;
5670
5671         /* page is moved even if it's not RSS of this task(page-faulted). */
5672         /* shmem/tmpfs may report page out on swap: account for that too. */
5673         return find_get_incore_page(vma->vm_file->f_mapping,
5674                         linear_page_index(vma, addr));
5675 }
5676
5677 /**
5678  * mem_cgroup_move_account - move account of the page
5679  * @page: the page
5680  * @compound: charge the page as compound or small page
5681  * @from: mem_cgroup which the page is moved from.
5682  * @to: mem_cgroup which the page is moved to. @from != @to.
5683  *
5684  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5685  *
5686  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5687  * from old cgroup.
5688  */
5689 static int mem_cgroup_move_account(struct page *page,
5690                                    bool compound,
5691                                    struct mem_cgroup *from,
5692                                    struct mem_cgroup *to)
5693 {
5694         struct folio *folio = page_folio(page);
5695         struct lruvec *from_vec, *to_vec;
5696         struct pglist_data *pgdat;
5697         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5698         int nid, ret;
5699
5700         VM_BUG_ON(from == to);
5701         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5702         VM_BUG_ON(compound && !folio_test_large(folio));
5703
5704         /*
5705          * Prevent mem_cgroup_migrate() from looking at
5706          * page's memory cgroup of its source page while we change it.
5707          */
5708         ret = -EBUSY;
5709         if (!folio_trylock(folio))
5710                 goto out;
5711
5712         ret = -EINVAL;
5713         if (folio_memcg(folio) != from)
5714                 goto out_unlock;
5715
5716         pgdat = folio_pgdat(folio);
5717         from_vec = mem_cgroup_lruvec(from, pgdat);
5718         to_vec = mem_cgroup_lruvec(to, pgdat);
5719
5720         folio_memcg_lock(folio);
5721
5722         if (folio_test_anon(folio)) {
5723                 if (folio_mapped(folio)) {
5724                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5725                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5726                         if (folio_test_transhuge(folio)) {
5727                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5728                                                    -nr_pages);
5729                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5730                                                    nr_pages);
5731                         }
5732                 }
5733         } else {
5734                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5735                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5736
5737                 if (folio_test_swapbacked(folio)) {
5738                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5739                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5740                 }
5741
5742                 if (folio_mapped(folio)) {
5743                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5744                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5745                 }
5746
5747                 if (folio_test_dirty(folio)) {
5748                         struct address_space *mapping = folio_mapping(folio);
5749
5750                         if (mapping_can_writeback(mapping)) {
5751                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5752                                                    -nr_pages);
5753                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5754                                                    nr_pages);
5755                         }
5756                 }
5757         }
5758
5759         if (folio_test_writeback(folio)) {
5760                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5761                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5762         }
5763
5764         /*
5765          * All state has been migrated, let's switch to the new memcg.
5766          *
5767          * It is safe to change page's memcg here because the page
5768          * is referenced, charged, isolated, and locked: we can't race
5769          * with (un)charging, migration, LRU putback, or anything else
5770          * that would rely on a stable page's memory cgroup.
5771          *
5772          * Note that lock_page_memcg is a memcg lock, not a page lock,
5773          * to save space. As soon as we switch page's memory cgroup to a
5774          * new memcg that isn't locked, the above state can change
5775          * concurrently again. Make sure we're truly done with it.
5776          */
5777         smp_mb();
5778
5779         css_get(&to->css);
5780         css_put(&from->css);
5781
5782         folio->memcg_data = (unsigned long)to;
5783
5784         __folio_memcg_unlock(from);
5785
5786         ret = 0;
5787         nid = folio_nid(folio);
5788
5789         local_irq_disable();
5790         mem_cgroup_charge_statistics(to, nr_pages);
5791         memcg_check_events(to, nid);
5792         mem_cgroup_charge_statistics(from, -nr_pages);
5793         memcg_check_events(from, nid);
5794         local_irq_enable();
5795 out_unlock:
5796         folio_unlock(folio);
5797 out:
5798         return ret;
5799 }
5800
5801 /**
5802  * get_mctgt_type - get target type of moving charge
5803  * @vma: the vma the pte to be checked belongs
5804  * @addr: the address corresponding to the pte to be checked
5805  * @ptent: the pte to be checked
5806  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5807  *
5808  * Returns
5809  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5810  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5811  *     move charge. if @target is not NULL, the page is stored in target->page
5812  *     with extra refcnt got(Callers should handle it).
5813  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5814  *     target for charge migration. if @target is not NULL, the entry is stored
5815  *     in target->ent.
5816  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5817  *   thus not on the lru.
5818  *     For now we such page is charge like a regular page would be as for all
5819  *     intent and purposes it is just special memory taking the place of a
5820  *     regular page.
5821  *
5822  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5823  *
5824  * Called with pte lock held.
5825  */
5826
5827 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5828                 unsigned long addr, pte_t ptent, union mc_target *target)
5829 {
5830         struct page *page = NULL;
5831         enum mc_target_type ret = MC_TARGET_NONE;
5832         swp_entry_t ent = { .val = 0 };
5833
5834         if (pte_present(ptent))
5835                 page = mc_handle_present_pte(vma, addr, ptent);
5836         else if (pte_none_mostly(ptent))
5837                 /*
5838                  * PTE markers should be treated as a none pte here, separated
5839                  * from other swap handling below.
5840                  */
5841                 page = mc_handle_file_pte(vma, addr, ptent);
5842         else if (is_swap_pte(ptent))
5843                 page = mc_handle_swap_pte(vma, ptent, &ent);
5844
5845         if (!page && !ent.val)
5846                 return ret;
5847         if (page) {
5848                 /*
5849                  * Do only loose check w/o serialization.
5850                  * mem_cgroup_move_account() checks the page is valid or
5851                  * not under LRU exclusion.
5852                  */
5853                 if (page_memcg(page) == mc.from) {
5854                         ret = MC_TARGET_PAGE;
5855                         if (is_device_private_page(page) ||
5856                             is_device_coherent_page(page))
5857                                 ret = MC_TARGET_DEVICE;
5858                         if (target)
5859                                 target->page = page;
5860                 }
5861                 if (!ret || !target)
5862                         put_page(page);
5863         }
5864         /*
5865          * There is a swap entry and a page doesn't exist or isn't charged.
5866          * But we cannot move a tail-page in a THP.
5867          */
5868         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5869             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5870                 ret = MC_TARGET_SWAP;
5871                 if (target)
5872                         target->ent = ent;
5873         }
5874         return ret;
5875 }
5876
5877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5878 /*
5879  * We don't consider PMD mapped swapping or file mapped pages because THP does
5880  * not support them for now.
5881  * Caller should make sure that pmd_trans_huge(pmd) is true.
5882  */
5883 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5884                 unsigned long addr, pmd_t pmd, union mc_target *target)
5885 {
5886         struct page *page = NULL;
5887         enum mc_target_type ret = MC_TARGET_NONE;
5888
5889         if (unlikely(is_swap_pmd(pmd))) {
5890                 VM_BUG_ON(thp_migration_supported() &&
5891                                   !is_pmd_migration_entry(pmd));
5892                 return ret;
5893         }
5894         page = pmd_page(pmd);
5895         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5896         if (!(mc.flags & MOVE_ANON))
5897                 return ret;
5898         if (page_memcg(page) == mc.from) {
5899                 ret = MC_TARGET_PAGE;
5900                 if (target) {
5901                         get_page(page);
5902                         target->page = page;
5903                 }
5904         }
5905         return ret;
5906 }
5907 #else
5908 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5909                 unsigned long addr, pmd_t pmd, union mc_target *target)
5910 {
5911         return MC_TARGET_NONE;
5912 }
5913 #endif
5914
5915 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5916                                         unsigned long addr, unsigned long end,
5917                                         struct mm_walk *walk)
5918 {
5919         struct vm_area_struct *vma = walk->vma;
5920         pte_t *pte;
5921         spinlock_t *ptl;
5922
5923         ptl = pmd_trans_huge_lock(pmd, vma);
5924         if (ptl) {
5925                 /*
5926                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5927                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5928                  * this might change.
5929                  */
5930                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5931                         mc.precharge += HPAGE_PMD_NR;
5932                 spin_unlock(ptl);
5933                 return 0;
5934         }
5935
5936         if (pmd_trans_unstable(pmd))
5937                 return 0;
5938         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5939         for (; addr != end; pte++, addr += PAGE_SIZE)
5940                 if (get_mctgt_type(vma, addr, *pte, NULL))
5941                         mc.precharge++; /* increment precharge temporarily */
5942         pte_unmap_unlock(pte - 1, ptl);
5943         cond_resched();
5944
5945         return 0;
5946 }
5947
5948 static const struct mm_walk_ops precharge_walk_ops = {
5949         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5950 };
5951
5952 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5953 {
5954         unsigned long precharge;
5955
5956         mmap_read_lock(mm);
5957         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
5958         mmap_read_unlock(mm);
5959
5960         precharge = mc.precharge;
5961         mc.precharge = 0;
5962
5963         return precharge;
5964 }
5965
5966 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5967 {
5968         unsigned long precharge = mem_cgroup_count_precharge(mm);
5969
5970         VM_BUG_ON(mc.moving_task);
5971         mc.moving_task = current;
5972         return mem_cgroup_do_precharge(precharge);
5973 }
5974
5975 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5976 static void __mem_cgroup_clear_mc(void)
5977 {
5978         struct mem_cgroup *from = mc.from;
5979         struct mem_cgroup *to = mc.to;
5980
5981         /* we must uncharge all the leftover precharges from mc.to */
5982         if (mc.precharge) {
5983                 cancel_charge(mc.to, mc.precharge);
5984                 mc.precharge = 0;
5985         }
5986         /*
5987          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5988          * we must uncharge here.
5989          */
5990         if (mc.moved_charge) {
5991                 cancel_charge(mc.from, mc.moved_charge);
5992                 mc.moved_charge = 0;
5993         }
5994         /* we must fixup refcnts and charges */
5995         if (mc.moved_swap) {
5996                 /* uncharge swap account from the old cgroup */
5997                 if (!mem_cgroup_is_root(mc.from))
5998                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5999
6000                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6001
6002                 /*
6003                  * we charged both to->memory and to->memsw, so we
6004                  * should uncharge to->memory.
6005                  */
6006                 if (!mem_cgroup_is_root(mc.to))
6007                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6008
6009                 mc.moved_swap = 0;
6010         }
6011         memcg_oom_recover(from);
6012         memcg_oom_recover(to);
6013         wake_up_all(&mc.waitq);
6014 }
6015
6016 static void mem_cgroup_clear_mc(void)
6017 {
6018         struct mm_struct *mm = mc.mm;
6019
6020         /*
6021          * we must clear moving_task before waking up waiters at the end of
6022          * task migration.
6023          */
6024         mc.moving_task = NULL;
6025         __mem_cgroup_clear_mc();
6026         spin_lock(&mc.lock);
6027         mc.from = NULL;
6028         mc.to = NULL;
6029         mc.mm = NULL;
6030         spin_unlock(&mc.lock);
6031
6032         mmput(mm);
6033 }
6034
6035 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6036 {
6037         struct cgroup_subsys_state *css;
6038         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6039         struct mem_cgroup *from;
6040         struct task_struct *leader, *p;
6041         struct mm_struct *mm;
6042         unsigned long move_flags;
6043         int ret = 0;
6044
6045         /* charge immigration isn't supported on the default hierarchy */
6046         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6047                 return 0;
6048
6049         /*
6050          * Multi-process migrations only happen on the default hierarchy
6051          * where charge immigration is not used.  Perform charge
6052          * immigration if @tset contains a leader and whine if there are
6053          * multiple.
6054          */
6055         p = NULL;
6056         cgroup_taskset_for_each_leader(leader, css, tset) {
6057                 WARN_ON_ONCE(p);
6058                 p = leader;
6059                 memcg = mem_cgroup_from_css(css);
6060         }
6061         if (!p)
6062                 return 0;
6063
6064         /*
6065          * We are now committed to this value whatever it is. Changes in this
6066          * tunable will only affect upcoming migrations, not the current one.
6067          * So we need to save it, and keep it going.
6068          */
6069         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6070         if (!move_flags)
6071                 return 0;
6072
6073         from = mem_cgroup_from_task(p);
6074
6075         VM_BUG_ON(from == memcg);
6076
6077         mm = get_task_mm(p);
6078         if (!mm)
6079                 return 0;
6080         /* We move charges only when we move a owner of the mm */
6081         if (mm->owner == p) {
6082                 VM_BUG_ON(mc.from);
6083                 VM_BUG_ON(mc.to);
6084                 VM_BUG_ON(mc.precharge);
6085                 VM_BUG_ON(mc.moved_charge);
6086                 VM_BUG_ON(mc.moved_swap);
6087
6088                 spin_lock(&mc.lock);
6089                 mc.mm = mm;
6090                 mc.from = from;
6091                 mc.to = memcg;
6092                 mc.flags = move_flags;
6093                 spin_unlock(&mc.lock);
6094                 /* We set mc.moving_task later */
6095
6096                 ret = mem_cgroup_precharge_mc(mm);
6097                 if (ret)
6098                         mem_cgroup_clear_mc();
6099         } else {
6100                 mmput(mm);
6101         }
6102         return ret;
6103 }
6104
6105 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6106 {
6107         if (mc.to)
6108                 mem_cgroup_clear_mc();
6109 }
6110
6111 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6112                                 unsigned long addr, unsigned long end,
6113                                 struct mm_walk *walk)
6114 {
6115         int ret = 0;
6116         struct vm_area_struct *vma = walk->vma;
6117         pte_t *pte;
6118         spinlock_t *ptl;
6119         enum mc_target_type target_type;
6120         union mc_target target;
6121         struct page *page;
6122
6123         ptl = pmd_trans_huge_lock(pmd, vma);
6124         if (ptl) {
6125                 if (mc.precharge < HPAGE_PMD_NR) {
6126                         spin_unlock(ptl);
6127                         return 0;
6128                 }
6129                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6130                 if (target_type == MC_TARGET_PAGE) {
6131                         page = target.page;
6132                         if (!isolate_lru_page(page)) {
6133                                 if (!mem_cgroup_move_account(page, true,
6134                                                              mc.from, mc.to)) {
6135                                         mc.precharge -= HPAGE_PMD_NR;
6136                                         mc.moved_charge += HPAGE_PMD_NR;
6137                                 }
6138                                 putback_lru_page(page);
6139                         }
6140                         put_page(page);
6141                 } else if (target_type == MC_TARGET_DEVICE) {
6142                         page = target.page;
6143                         if (!mem_cgroup_move_account(page, true,
6144                                                      mc.from, mc.to)) {
6145                                 mc.precharge -= HPAGE_PMD_NR;
6146                                 mc.moved_charge += HPAGE_PMD_NR;
6147                         }
6148                         put_page(page);
6149                 }
6150                 spin_unlock(ptl);
6151                 return 0;
6152         }
6153
6154         if (pmd_trans_unstable(pmd))
6155                 return 0;
6156 retry:
6157         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6158         for (; addr != end; addr += PAGE_SIZE) {
6159                 pte_t ptent = *(pte++);
6160                 bool device = false;
6161                 swp_entry_t ent;
6162
6163                 if (!mc.precharge)
6164                         break;
6165
6166                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6167                 case MC_TARGET_DEVICE:
6168                         device = true;
6169                         fallthrough;
6170                 case MC_TARGET_PAGE:
6171                         page = target.page;
6172                         /*
6173                          * We can have a part of the split pmd here. Moving it
6174                          * can be done but it would be too convoluted so simply
6175                          * ignore such a partial THP and keep it in original
6176                          * memcg. There should be somebody mapping the head.
6177                          */
6178                         if (PageTransCompound(page))
6179                                 goto put;
6180                         if (!device && isolate_lru_page(page))
6181                                 goto put;
6182                         if (!mem_cgroup_move_account(page, false,
6183                                                 mc.from, mc.to)) {
6184                                 mc.precharge--;
6185                                 /* we uncharge from mc.from later. */
6186                                 mc.moved_charge++;
6187                         }
6188                         if (!device)
6189                                 putback_lru_page(page);
6190 put:                    /* get_mctgt_type() gets the page */
6191                         put_page(page);
6192                         break;
6193                 case MC_TARGET_SWAP:
6194                         ent = target.ent;
6195                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6196                                 mc.precharge--;
6197                                 mem_cgroup_id_get_many(mc.to, 1);
6198                                 /* we fixup other refcnts and charges later. */
6199                                 mc.moved_swap++;
6200                         }
6201                         break;
6202                 default:
6203                         break;
6204                 }
6205         }
6206         pte_unmap_unlock(pte - 1, ptl);
6207         cond_resched();
6208
6209         if (addr != end) {
6210                 /*
6211                  * We have consumed all precharges we got in can_attach().
6212                  * We try charge one by one, but don't do any additional
6213                  * charges to mc.to if we have failed in charge once in attach()
6214                  * phase.
6215                  */
6216                 ret = mem_cgroup_do_precharge(1);
6217                 if (!ret)
6218                         goto retry;
6219         }
6220
6221         return ret;
6222 }
6223
6224 static const struct mm_walk_ops charge_walk_ops = {
6225         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6226 };
6227
6228 static void mem_cgroup_move_charge(void)
6229 {
6230         lru_add_drain_all();
6231         /*
6232          * Signal lock_page_memcg() to take the memcg's move_lock
6233          * while we're moving its pages to another memcg. Then wait
6234          * for already started RCU-only updates to finish.
6235          */
6236         atomic_inc(&mc.from->moving_account);
6237         synchronize_rcu();
6238 retry:
6239         if (unlikely(!mmap_read_trylock(mc.mm))) {
6240                 /*
6241                  * Someone who are holding the mmap_lock might be waiting in
6242                  * waitq. So we cancel all extra charges, wake up all waiters,
6243                  * and retry. Because we cancel precharges, we might not be able
6244                  * to move enough charges, but moving charge is a best-effort
6245                  * feature anyway, so it wouldn't be a big problem.
6246                  */
6247                 __mem_cgroup_clear_mc();
6248                 cond_resched();
6249                 goto retry;
6250         }
6251         /*
6252          * When we have consumed all precharges and failed in doing
6253          * additional charge, the page walk just aborts.
6254          */
6255         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6256         mmap_read_unlock(mc.mm);
6257         atomic_dec(&mc.from->moving_account);
6258 }
6259
6260 static void mem_cgroup_move_task(void)
6261 {
6262         if (mc.to) {
6263                 mem_cgroup_move_charge();
6264                 mem_cgroup_clear_mc();
6265         }
6266 }
6267 #else   /* !CONFIG_MMU */
6268 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6269 {
6270         return 0;
6271 }
6272 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6273 {
6274 }
6275 static void mem_cgroup_move_task(void)
6276 {
6277 }
6278 #endif
6279
6280 #ifdef CONFIG_LRU_GEN
6281 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6282 {
6283         struct task_struct *task;
6284         struct cgroup_subsys_state *css;
6285
6286         /* find the first leader if there is any */
6287         cgroup_taskset_for_each_leader(task, css, tset)
6288                 break;
6289
6290         if (!task)
6291                 return;
6292
6293         task_lock(task);
6294         if (task->mm && READ_ONCE(task->mm->owner) == task)
6295                 lru_gen_migrate_mm(task->mm);
6296         task_unlock(task);
6297 }
6298 #else
6299 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6300 {
6301 }
6302 #endif /* CONFIG_LRU_GEN */
6303
6304 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6305 {
6306         if (value == PAGE_COUNTER_MAX)
6307                 seq_puts(m, "max\n");
6308         else
6309                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6310
6311         return 0;
6312 }
6313
6314 static u64 memory_current_read(struct cgroup_subsys_state *css,
6315                                struct cftype *cft)
6316 {
6317         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6318
6319         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6320 }
6321
6322 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6323                             struct cftype *cft)
6324 {
6325         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6326
6327         return (u64)memcg->memory.watermark * PAGE_SIZE;
6328 }
6329
6330 static int memory_min_show(struct seq_file *m, void *v)
6331 {
6332         return seq_puts_memcg_tunable(m,
6333                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6334 }
6335
6336 static ssize_t memory_min_write(struct kernfs_open_file *of,
6337                                 char *buf, size_t nbytes, loff_t off)
6338 {
6339         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6340         unsigned long min;
6341         int err;
6342
6343         buf = strstrip(buf);
6344         err = page_counter_memparse(buf, "max", &min);
6345         if (err)
6346                 return err;
6347
6348         page_counter_set_min(&memcg->memory, min);
6349
6350         return nbytes;
6351 }
6352
6353 static int memory_low_show(struct seq_file *m, void *v)
6354 {
6355         return seq_puts_memcg_tunable(m,
6356                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6357 }
6358
6359 static ssize_t memory_low_write(struct kernfs_open_file *of,
6360                                 char *buf, size_t nbytes, loff_t off)
6361 {
6362         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6363         unsigned long low;
6364         int err;
6365
6366         buf = strstrip(buf);
6367         err = page_counter_memparse(buf, "max", &low);
6368         if (err)
6369                 return err;
6370
6371         page_counter_set_low(&memcg->memory, low);
6372
6373         return nbytes;
6374 }
6375
6376 static int memory_high_show(struct seq_file *m, void *v)
6377 {
6378         return seq_puts_memcg_tunable(m,
6379                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6380 }
6381
6382 static ssize_t memory_high_write(struct kernfs_open_file *of,
6383                                  char *buf, size_t nbytes, loff_t off)
6384 {
6385         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6386         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6387         bool drained = false;
6388         unsigned long high;
6389         int err;
6390
6391         buf = strstrip(buf);
6392         err = page_counter_memparse(buf, "max", &high);
6393         if (err)
6394                 return err;
6395
6396         page_counter_set_high(&memcg->memory, high);
6397
6398         for (;;) {
6399                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6400                 unsigned long reclaimed;
6401
6402                 if (nr_pages <= high)
6403                         break;
6404
6405                 if (signal_pending(current))
6406                         break;
6407
6408                 if (!drained) {
6409                         drain_all_stock(memcg);
6410                         drained = true;
6411                         continue;
6412                 }
6413
6414                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6415                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6416
6417                 if (!reclaimed && !nr_retries--)
6418                         break;
6419         }
6420
6421         memcg_wb_domain_size_changed(memcg);
6422         return nbytes;
6423 }
6424
6425 static int memory_max_show(struct seq_file *m, void *v)
6426 {
6427         return seq_puts_memcg_tunable(m,
6428                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6429 }
6430
6431 static ssize_t memory_max_write(struct kernfs_open_file *of,
6432                                 char *buf, size_t nbytes, loff_t off)
6433 {
6434         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6435         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6436         bool drained = false;
6437         unsigned long max;
6438         int err;
6439
6440         buf = strstrip(buf);
6441         err = page_counter_memparse(buf, "max", &max);
6442         if (err)
6443                 return err;
6444
6445         xchg(&memcg->memory.max, max);
6446
6447         for (;;) {
6448                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6449
6450                 if (nr_pages <= max)
6451                         break;
6452
6453                 if (signal_pending(current))
6454                         break;
6455
6456                 if (!drained) {
6457                         drain_all_stock(memcg);
6458                         drained = true;
6459                         continue;
6460                 }
6461
6462                 if (nr_reclaims) {
6463                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6464                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6465                                 nr_reclaims--;
6466                         continue;
6467                 }
6468
6469                 memcg_memory_event(memcg, MEMCG_OOM);
6470                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6471                         break;
6472         }
6473
6474         memcg_wb_domain_size_changed(memcg);
6475         return nbytes;
6476 }
6477
6478 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6479 {
6480         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6481         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6482         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6483         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6484         seq_printf(m, "oom_kill %lu\n",
6485                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6486         seq_printf(m, "oom_group_kill %lu\n",
6487                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6488 }
6489
6490 static int memory_events_show(struct seq_file *m, void *v)
6491 {
6492         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6493
6494         __memory_events_show(m, memcg->memory_events);
6495         return 0;
6496 }
6497
6498 static int memory_events_local_show(struct seq_file *m, void *v)
6499 {
6500         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6501
6502         __memory_events_show(m, memcg->memory_events_local);
6503         return 0;
6504 }
6505
6506 static int memory_stat_show(struct seq_file *m, void *v)
6507 {
6508         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6509         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6510
6511         if (!buf)
6512                 return -ENOMEM;
6513         memory_stat_format(memcg, buf, PAGE_SIZE);
6514         seq_puts(m, buf);
6515         kfree(buf);
6516         return 0;
6517 }
6518
6519 #ifdef CONFIG_NUMA
6520 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6521                                                      int item)
6522 {
6523         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6524 }
6525
6526 static int memory_numa_stat_show(struct seq_file *m, void *v)
6527 {
6528         int i;
6529         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6530
6531         mem_cgroup_flush_stats();
6532
6533         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6534                 int nid;
6535
6536                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6537                         continue;
6538
6539                 seq_printf(m, "%s", memory_stats[i].name);
6540                 for_each_node_state(nid, N_MEMORY) {
6541                         u64 size;
6542                         struct lruvec *lruvec;
6543
6544                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6545                         size = lruvec_page_state_output(lruvec,
6546                                                         memory_stats[i].idx);
6547                         seq_printf(m, " N%d=%llu", nid, size);
6548                 }
6549                 seq_putc(m, '\n');
6550         }
6551
6552         return 0;
6553 }
6554 #endif
6555
6556 static int memory_oom_group_show(struct seq_file *m, void *v)
6557 {
6558         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6559
6560         seq_printf(m, "%d\n", memcg->oom_group);
6561
6562         return 0;
6563 }
6564
6565 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6566                                       char *buf, size_t nbytes, loff_t off)
6567 {
6568         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6569         int ret, oom_group;
6570
6571         buf = strstrip(buf);
6572         if (!buf)
6573                 return -EINVAL;
6574
6575         ret = kstrtoint(buf, 0, &oom_group);
6576         if (ret)
6577                 return ret;
6578
6579         if (oom_group != 0 && oom_group != 1)
6580                 return -EINVAL;
6581
6582         memcg->oom_group = oom_group;
6583
6584         return nbytes;
6585 }
6586
6587 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6588                               size_t nbytes, loff_t off)
6589 {
6590         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6591         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6592         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6593         unsigned int reclaim_options;
6594         int err;
6595
6596         buf = strstrip(buf);
6597         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6598         if (err)
6599                 return err;
6600
6601         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6602         while (nr_reclaimed < nr_to_reclaim) {
6603                 unsigned long reclaimed;
6604
6605                 if (signal_pending(current))
6606                         return -EINTR;
6607
6608                 /*
6609                  * This is the final attempt, drain percpu lru caches in the
6610                  * hope of introducing more evictable pages for
6611                  * try_to_free_mem_cgroup_pages().
6612                  */
6613                 if (!nr_retries)
6614                         lru_add_drain_all();
6615
6616                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6617                                                 nr_to_reclaim - nr_reclaimed,
6618                                                 GFP_KERNEL, reclaim_options);
6619
6620                 if (!reclaimed && !nr_retries--)
6621                         return -EAGAIN;
6622
6623                 nr_reclaimed += reclaimed;
6624         }
6625
6626         return nbytes;
6627 }
6628
6629 static struct cftype memory_files[] = {
6630         {
6631                 .name = "current",
6632                 .flags = CFTYPE_NOT_ON_ROOT,
6633                 .read_u64 = memory_current_read,
6634         },
6635         {
6636                 .name = "peak",
6637                 .flags = CFTYPE_NOT_ON_ROOT,
6638                 .read_u64 = memory_peak_read,
6639         },
6640         {
6641                 .name = "min",
6642                 .flags = CFTYPE_NOT_ON_ROOT,
6643                 .seq_show = memory_min_show,
6644                 .write = memory_min_write,
6645         },
6646         {
6647                 .name = "low",
6648                 .flags = CFTYPE_NOT_ON_ROOT,
6649                 .seq_show = memory_low_show,
6650                 .write = memory_low_write,
6651         },
6652         {
6653                 .name = "high",
6654                 .flags = CFTYPE_NOT_ON_ROOT,
6655                 .seq_show = memory_high_show,
6656                 .write = memory_high_write,
6657         },
6658         {
6659                 .name = "max",
6660                 .flags = CFTYPE_NOT_ON_ROOT,
6661                 .seq_show = memory_max_show,
6662                 .write = memory_max_write,
6663         },
6664         {
6665                 .name = "events",
6666                 .flags = CFTYPE_NOT_ON_ROOT,
6667                 .file_offset = offsetof(struct mem_cgroup, events_file),
6668                 .seq_show = memory_events_show,
6669         },
6670         {
6671                 .name = "events.local",
6672                 .flags = CFTYPE_NOT_ON_ROOT,
6673                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6674                 .seq_show = memory_events_local_show,
6675         },
6676         {
6677                 .name = "stat",
6678                 .seq_show = memory_stat_show,
6679         },
6680 #ifdef CONFIG_NUMA
6681         {
6682                 .name = "numa_stat",
6683                 .seq_show = memory_numa_stat_show,
6684         },
6685 #endif
6686         {
6687                 .name = "oom.group",
6688                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6689                 .seq_show = memory_oom_group_show,
6690                 .write = memory_oom_group_write,
6691         },
6692         {
6693                 .name = "reclaim",
6694                 .flags = CFTYPE_NS_DELEGATABLE,
6695                 .write = memory_reclaim,
6696         },
6697         { }     /* terminate */
6698 };
6699
6700 struct cgroup_subsys memory_cgrp_subsys = {
6701         .css_alloc = mem_cgroup_css_alloc,
6702         .css_online = mem_cgroup_css_online,
6703         .css_offline = mem_cgroup_css_offline,
6704         .css_released = mem_cgroup_css_released,
6705         .css_free = mem_cgroup_css_free,
6706         .css_reset = mem_cgroup_css_reset,
6707         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6708         .can_attach = mem_cgroup_can_attach,
6709         .attach = mem_cgroup_attach,
6710         .cancel_attach = mem_cgroup_cancel_attach,
6711         .post_attach = mem_cgroup_move_task,
6712         .dfl_cftypes = memory_files,
6713         .legacy_cftypes = mem_cgroup_legacy_files,
6714         .early_init = 0,
6715 };
6716
6717 /*
6718  * This function calculates an individual cgroup's effective
6719  * protection which is derived from its own memory.min/low, its
6720  * parent's and siblings' settings, as well as the actual memory
6721  * distribution in the tree.
6722  *
6723  * The following rules apply to the effective protection values:
6724  *
6725  * 1. At the first level of reclaim, effective protection is equal to
6726  *    the declared protection in memory.min and memory.low.
6727  *
6728  * 2. To enable safe delegation of the protection configuration, at
6729  *    subsequent levels the effective protection is capped to the
6730  *    parent's effective protection.
6731  *
6732  * 3. To make complex and dynamic subtrees easier to configure, the
6733  *    user is allowed to overcommit the declared protection at a given
6734  *    level. If that is the case, the parent's effective protection is
6735  *    distributed to the children in proportion to how much protection
6736  *    they have declared and how much of it they are utilizing.
6737  *
6738  *    This makes distribution proportional, but also work-conserving:
6739  *    if one cgroup claims much more protection than it uses memory,
6740  *    the unused remainder is available to its siblings.
6741  *
6742  * 4. Conversely, when the declared protection is undercommitted at a
6743  *    given level, the distribution of the larger parental protection
6744  *    budget is NOT proportional. A cgroup's protection from a sibling
6745  *    is capped to its own memory.min/low setting.
6746  *
6747  * 5. However, to allow protecting recursive subtrees from each other
6748  *    without having to declare each individual cgroup's fixed share
6749  *    of the ancestor's claim to protection, any unutilized -
6750  *    "floating" - protection from up the tree is distributed in
6751  *    proportion to each cgroup's *usage*. This makes the protection
6752  *    neutral wrt sibling cgroups and lets them compete freely over
6753  *    the shared parental protection budget, but it protects the
6754  *    subtree as a whole from neighboring subtrees.
6755  *
6756  * Note that 4. and 5. are not in conflict: 4. is about protecting
6757  * against immediate siblings whereas 5. is about protecting against
6758  * neighboring subtrees.
6759  */
6760 static unsigned long effective_protection(unsigned long usage,
6761                                           unsigned long parent_usage,
6762                                           unsigned long setting,
6763                                           unsigned long parent_effective,
6764                                           unsigned long siblings_protected)
6765 {
6766         unsigned long protected;
6767         unsigned long ep;
6768
6769         protected = min(usage, setting);
6770         /*
6771          * If all cgroups at this level combined claim and use more
6772          * protection then what the parent affords them, distribute
6773          * shares in proportion to utilization.
6774          *
6775          * We are using actual utilization rather than the statically
6776          * claimed protection in order to be work-conserving: claimed
6777          * but unused protection is available to siblings that would
6778          * otherwise get a smaller chunk than what they claimed.
6779          */
6780         if (siblings_protected > parent_effective)
6781                 return protected * parent_effective / siblings_protected;
6782
6783         /*
6784          * Ok, utilized protection of all children is within what the
6785          * parent affords them, so we know whatever this child claims
6786          * and utilizes is effectively protected.
6787          *
6788          * If there is unprotected usage beyond this value, reclaim
6789          * will apply pressure in proportion to that amount.
6790          *
6791          * If there is unutilized protection, the cgroup will be fully
6792          * shielded from reclaim, but we do return a smaller value for
6793          * protection than what the group could enjoy in theory. This
6794          * is okay. With the overcommit distribution above, effective
6795          * protection is always dependent on how memory is actually
6796          * consumed among the siblings anyway.
6797          */
6798         ep = protected;
6799
6800         /*
6801          * If the children aren't claiming (all of) the protection
6802          * afforded to them by the parent, distribute the remainder in
6803          * proportion to the (unprotected) memory of each cgroup. That
6804          * way, cgroups that aren't explicitly prioritized wrt each
6805          * other compete freely over the allowance, but they are
6806          * collectively protected from neighboring trees.
6807          *
6808          * We're using unprotected memory for the weight so that if
6809          * some cgroups DO claim explicit protection, we don't protect
6810          * the same bytes twice.
6811          *
6812          * Check both usage and parent_usage against the respective
6813          * protected values. One should imply the other, but they
6814          * aren't read atomically - make sure the division is sane.
6815          */
6816         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6817                 return ep;
6818         if (parent_effective > siblings_protected &&
6819             parent_usage > siblings_protected &&
6820             usage > protected) {
6821                 unsigned long unclaimed;
6822
6823                 unclaimed = parent_effective - siblings_protected;
6824                 unclaimed *= usage - protected;
6825                 unclaimed /= parent_usage - siblings_protected;
6826
6827                 ep += unclaimed;
6828         }
6829
6830         return ep;
6831 }
6832
6833 /**
6834  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6835  * @root: the top ancestor of the sub-tree being checked
6836  * @memcg: the memory cgroup to check
6837  *
6838  * WARNING: This function is not stateless! It can only be used as part
6839  *          of a top-down tree iteration, not for isolated queries.
6840  */
6841 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6842                                      struct mem_cgroup *memcg)
6843 {
6844         unsigned long usage, parent_usage;
6845         struct mem_cgroup *parent;
6846
6847         if (mem_cgroup_disabled())
6848                 return;
6849
6850         if (!root)
6851                 root = root_mem_cgroup;
6852
6853         /*
6854          * Effective values of the reclaim targets are ignored so they
6855          * can be stale. Have a look at mem_cgroup_protection for more
6856          * details.
6857          * TODO: calculation should be more robust so that we do not need
6858          * that special casing.
6859          */
6860         if (memcg == root)
6861                 return;
6862
6863         usage = page_counter_read(&memcg->memory);
6864         if (!usage)
6865                 return;
6866
6867         parent = parent_mem_cgroup(memcg);
6868
6869         if (parent == root) {
6870                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6871                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6872                 return;
6873         }
6874
6875         parent_usage = page_counter_read(&parent->memory);
6876
6877         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6878                         READ_ONCE(memcg->memory.min),
6879                         READ_ONCE(parent->memory.emin),
6880                         atomic_long_read(&parent->memory.children_min_usage)));
6881
6882         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6883                         READ_ONCE(memcg->memory.low),
6884                         READ_ONCE(parent->memory.elow),
6885                         atomic_long_read(&parent->memory.children_low_usage)));
6886 }
6887
6888 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6889                         gfp_t gfp)
6890 {
6891         long nr_pages = folio_nr_pages(folio);
6892         int ret;
6893
6894         ret = try_charge(memcg, gfp, nr_pages);
6895         if (ret)
6896                 goto out;
6897
6898         css_get(&memcg->css);
6899         commit_charge(folio, memcg);
6900
6901         local_irq_disable();
6902         mem_cgroup_charge_statistics(memcg, nr_pages);
6903         memcg_check_events(memcg, folio_nid(folio));
6904         local_irq_enable();
6905 out:
6906         return ret;
6907 }
6908
6909 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6910 {
6911         struct mem_cgroup *memcg;
6912         int ret;
6913
6914         memcg = get_mem_cgroup_from_mm(mm);
6915         ret = charge_memcg(folio, memcg, gfp);
6916         css_put(&memcg->css);
6917
6918         return ret;
6919 }
6920
6921 /**
6922  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6923  * @folio: folio to charge.
6924  * @mm: mm context of the victim
6925  * @gfp: reclaim mode
6926  * @entry: swap entry for which the folio is allocated
6927  *
6928  * This function charges a folio allocated for swapin. Please call this before
6929  * adding the folio to the swapcache.
6930  *
6931  * Returns 0 on success. Otherwise, an error code is returned.
6932  */
6933 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
6934                                   gfp_t gfp, swp_entry_t entry)
6935 {
6936         struct mem_cgroup *memcg;
6937         unsigned short id;
6938         int ret;
6939
6940         if (mem_cgroup_disabled())
6941                 return 0;
6942
6943         id = lookup_swap_cgroup_id(entry);
6944         rcu_read_lock();
6945         memcg = mem_cgroup_from_id(id);
6946         if (!memcg || !css_tryget_online(&memcg->css))
6947                 memcg = get_mem_cgroup_from_mm(mm);
6948         rcu_read_unlock();
6949
6950         ret = charge_memcg(folio, memcg, gfp);
6951
6952         css_put(&memcg->css);
6953         return ret;
6954 }
6955
6956 /*
6957  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6958  * @entry: swap entry for which the page is charged
6959  *
6960  * Call this function after successfully adding the charged page to swapcache.
6961  *
6962  * Note: This function assumes the page for which swap slot is being uncharged
6963  * is order 0 page.
6964  */
6965 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6966 {
6967         /*
6968          * Cgroup1's unified memory+swap counter has been charged with the
6969          * new swapcache page, finish the transfer by uncharging the swap
6970          * slot. The swap slot would also get uncharged when it dies, but
6971          * it can stick around indefinitely and we'd count the page twice
6972          * the entire time.
6973          *
6974          * Cgroup2 has separate resource counters for memory and swap,
6975          * so this is a non-issue here. Memory and swap charge lifetimes
6976          * correspond 1:1 to page and swap slot lifetimes: we charge the
6977          * page to memory here, and uncharge swap when the slot is freed.
6978          */
6979         if (!mem_cgroup_disabled() && do_memsw_account()) {
6980                 /*
6981                  * The swap entry might not get freed for a long time,
6982                  * let's not wait for it.  The page already received a
6983                  * memory+swap charge, drop the swap entry duplicate.
6984                  */
6985                 mem_cgroup_uncharge_swap(entry, 1);
6986         }
6987 }
6988
6989 struct uncharge_gather {
6990         struct mem_cgroup *memcg;
6991         unsigned long nr_memory;
6992         unsigned long pgpgout;
6993         unsigned long nr_kmem;
6994         int nid;
6995 };
6996
6997 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6998 {
6999         memset(ug, 0, sizeof(*ug));
7000 }
7001
7002 static void uncharge_batch(const struct uncharge_gather *ug)
7003 {
7004         unsigned long flags;
7005
7006         if (ug->nr_memory) {
7007                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7008                 if (do_memsw_account())
7009                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7010                 if (ug->nr_kmem)
7011                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7012                 memcg_oom_recover(ug->memcg);
7013         }
7014
7015         local_irq_save(flags);
7016         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7017         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7018         memcg_check_events(ug->memcg, ug->nid);
7019         local_irq_restore(flags);
7020
7021         /* drop reference from uncharge_folio */
7022         css_put(&ug->memcg->css);
7023 }
7024
7025 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7026 {
7027         long nr_pages;
7028         struct mem_cgroup *memcg;
7029         struct obj_cgroup *objcg;
7030
7031         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7032
7033         /*
7034          * Nobody should be changing or seriously looking at
7035          * folio memcg or objcg at this point, we have fully
7036          * exclusive access to the folio.
7037          */
7038         if (folio_memcg_kmem(folio)) {
7039                 objcg = __folio_objcg(folio);
7040                 /*
7041                  * This get matches the put at the end of the function and
7042                  * kmem pages do not hold memcg references anymore.
7043                  */
7044                 memcg = get_mem_cgroup_from_objcg(objcg);
7045         } else {
7046                 memcg = __folio_memcg(folio);
7047         }
7048
7049         if (!memcg)
7050                 return;
7051
7052         if (ug->memcg != memcg) {
7053                 if (ug->memcg) {
7054                         uncharge_batch(ug);
7055                         uncharge_gather_clear(ug);
7056                 }
7057                 ug->memcg = memcg;
7058                 ug->nid = folio_nid(folio);
7059
7060                 /* pairs with css_put in uncharge_batch */
7061                 css_get(&memcg->css);
7062         }
7063
7064         nr_pages = folio_nr_pages(folio);
7065
7066         if (folio_memcg_kmem(folio)) {
7067                 ug->nr_memory += nr_pages;
7068                 ug->nr_kmem += nr_pages;
7069
7070                 folio->memcg_data = 0;
7071                 obj_cgroup_put(objcg);
7072         } else {
7073                 /* LRU pages aren't accounted at the root level */
7074                 if (!mem_cgroup_is_root(memcg))
7075                         ug->nr_memory += nr_pages;
7076                 ug->pgpgout++;
7077
7078                 folio->memcg_data = 0;
7079         }
7080
7081         css_put(&memcg->css);
7082 }
7083
7084 void __mem_cgroup_uncharge(struct folio *folio)
7085 {
7086         struct uncharge_gather ug;
7087
7088         /* Don't touch folio->lru of any random page, pre-check: */
7089         if (!folio_memcg(folio))
7090                 return;
7091
7092         uncharge_gather_clear(&ug);
7093         uncharge_folio(folio, &ug);
7094         uncharge_batch(&ug);
7095 }
7096
7097 /**
7098  * __mem_cgroup_uncharge_list - uncharge a list of page
7099  * @page_list: list of pages to uncharge
7100  *
7101  * Uncharge a list of pages previously charged with
7102  * __mem_cgroup_charge().
7103  */
7104 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7105 {
7106         struct uncharge_gather ug;
7107         struct folio *folio;
7108
7109         uncharge_gather_clear(&ug);
7110         list_for_each_entry(folio, page_list, lru)
7111                 uncharge_folio(folio, &ug);
7112         if (ug.memcg)
7113                 uncharge_batch(&ug);
7114 }
7115
7116 /**
7117  * mem_cgroup_migrate - Charge a folio's replacement.
7118  * @old: Currently circulating folio.
7119  * @new: Replacement folio.
7120  *
7121  * Charge @new as a replacement folio for @old. @old will
7122  * be uncharged upon free.
7123  *
7124  * Both folios must be locked, @new->mapping must be set up.
7125  */
7126 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7127 {
7128         struct mem_cgroup *memcg;
7129         long nr_pages = folio_nr_pages(new);
7130         unsigned long flags;
7131
7132         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7133         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7134         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7135         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7136
7137         if (mem_cgroup_disabled())
7138                 return;
7139
7140         /* Page cache replacement: new folio already charged? */
7141         if (folio_memcg(new))
7142                 return;
7143
7144         memcg = folio_memcg(old);
7145         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7146         if (!memcg)
7147                 return;
7148
7149         /* Force-charge the new page. The old one will be freed soon */
7150         if (!mem_cgroup_is_root(memcg)) {
7151                 page_counter_charge(&memcg->memory, nr_pages);
7152                 if (do_memsw_account())
7153                         page_counter_charge(&memcg->memsw, nr_pages);
7154         }
7155
7156         css_get(&memcg->css);
7157         commit_charge(new, memcg);
7158
7159         local_irq_save(flags);
7160         mem_cgroup_charge_statistics(memcg, nr_pages);
7161         memcg_check_events(memcg, folio_nid(new));
7162         local_irq_restore(flags);
7163 }
7164
7165 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7166 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7167
7168 void mem_cgroup_sk_alloc(struct sock *sk)
7169 {
7170         struct mem_cgroup *memcg;
7171
7172         if (!mem_cgroup_sockets_enabled)
7173                 return;
7174
7175         /* Do not associate the sock with unrelated interrupted task's memcg. */
7176         if (!in_task())
7177                 return;
7178
7179         rcu_read_lock();
7180         memcg = mem_cgroup_from_task(current);
7181         if (memcg == root_mem_cgroup)
7182                 goto out;
7183         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7184                 goto out;
7185         if (css_tryget(&memcg->css))
7186                 sk->sk_memcg = memcg;
7187 out:
7188         rcu_read_unlock();
7189 }
7190
7191 void mem_cgroup_sk_free(struct sock *sk)
7192 {
7193         if (sk->sk_memcg)
7194                 css_put(&sk->sk_memcg->css);
7195 }
7196
7197 /**
7198  * mem_cgroup_charge_skmem - charge socket memory
7199  * @memcg: memcg to charge
7200  * @nr_pages: number of pages to charge
7201  * @gfp_mask: reclaim mode
7202  *
7203  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7204  * @memcg's configured limit, %false if it doesn't.
7205  */
7206 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7207                              gfp_t gfp_mask)
7208 {
7209         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7210                 struct page_counter *fail;
7211
7212                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7213                         memcg->tcpmem_pressure = 0;
7214                         return true;
7215                 }
7216                 memcg->tcpmem_pressure = 1;
7217                 if (gfp_mask & __GFP_NOFAIL) {
7218                         page_counter_charge(&memcg->tcpmem, nr_pages);
7219                         return true;
7220                 }
7221                 return false;
7222         }
7223
7224         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7225                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7226                 return true;
7227         }
7228
7229         return false;
7230 }
7231
7232 /**
7233  * mem_cgroup_uncharge_skmem - uncharge socket memory
7234  * @memcg: memcg to uncharge
7235  * @nr_pages: number of pages to uncharge
7236  */
7237 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7238 {
7239         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7240                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7241                 return;
7242         }
7243
7244         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7245
7246         refill_stock(memcg, nr_pages);
7247 }
7248
7249 static int __init cgroup_memory(char *s)
7250 {
7251         char *token;
7252
7253         while ((token = strsep(&s, ",")) != NULL) {
7254                 if (!*token)
7255                         continue;
7256                 if (!strcmp(token, "nosocket"))
7257                         cgroup_memory_nosocket = true;
7258                 if (!strcmp(token, "nokmem"))
7259                         cgroup_memory_nokmem = true;
7260         }
7261         return 1;
7262 }
7263 __setup("cgroup.memory=", cgroup_memory);
7264
7265 /*
7266  * subsys_initcall() for memory controller.
7267  *
7268  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7269  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7270  * basically everything that doesn't depend on a specific mem_cgroup structure
7271  * should be initialized from here.
7272  */
7273 static int __init mem_cgroup_init(void)
7274 {
7275         int cpu, node;
7276
7277         /*
7278          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7279          * used for per-memcg-per-cpu caching of per-node statistics. In order
7280          * to work fine, we should make sure that the overfill threshold can't
7281          * exceed S32_MAX / PAGE_SIZE.
7282          */
7283         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7284
7285         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7286                                   memcg_hotplug_cpu_dead);
7287
7288         for_each_possible_cpu(cpu)
7289                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7290                           drain_local_stock);
7291
7292         for_each_node(node) {
7293                 struct mem_cgroup_tree_per_node *rtpn;
7294
7295                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7296                                     node_online(node) ? node : NUMA_NO_NODE);
7297
7298                 rtpn->rb_root = RB_ROOT;
7299                 rtpn->rb_rightmost = NULL;
7300                 spin_lock_init(&rtpn->lock);
7301                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7302         }
7303
7304         return 0;
7305 }
7306 subsys_initcall(mem_cgroup_init);
7307
7308 #ifdef CONFIG_SWAP
7309 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7310 {
7311         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7312                 /*
7313                  * The root cgroup cannot be destroyed, so it's refcount must
7314                  * always be >= 1.
7315                  */
7316                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7317                         VM_BUG_ON(1);
7318                         break;
7319                 }
7320                 memcg = parent_mem_cgroup(memcg);
7321                 if (!memcg)
7322                         memcg = root_mem_cgroup;
7323         }
7324         return memcg;
7325 }
7326
7327 /**
7328  * mem_cgroup_swapout - transfer a memsw charge to swap
7329  * @folio: folio whose memsw charge to transfer
7330  * @entry: swap entry to move the charge to
7331  *
7332  * Transfer the memsw charge of @folio to @entry.
7333  */
7334 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7335 {
7336         struct mem_cgroup *memcg, *swap_memcg;
7337         unsigned int nr_entries;
7338         unsigned short oldid;
7339
7340         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7341         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7342
7343         if (mem_cgroup_disabled())
7344                 return;
7345
7346         if (!do_memsw_account())
7347                 return;
7348
7349         memcg = folio_memcg(folio);
7350
7351         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7352         if (!memcg)
7353                 return;
7354
7355         /*
7356          * In case the memcg owning these pages has been offlined and doesn't
7357          * have an ID allocated to it anymore, charge the closest online
7358          * ancestor for the swap instead and transfer the memory+swap charge.
7359          */
7360         swap_memcg = mem_cgroup_id_get_online(memcg);
7361         nr_entries = folio_nr_pages(folio);
7362         /* Get references for the tail pages, too */
7363         if (nr_entries > 1)
7364                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7365         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7366                                    nr_entries);
7367         VM_BUG_ON_FOLIO(oldid, folio);
7368         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7369
7370         folio->memcg_data = 0;
7371
7372         if (!mem_cgroup_is_root(memcg))
7373                 page_counter_uncharge(&memcg->memory, nr_entries);
7374
7375         if (memcg != swap_memcg) {
7376                 if (!mem_cgroup_is_root(swap_memcg))
7377                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7378                 page_counter_uncharge(&memcg->memsw, nr_entries);
7379         }
7380
7381         /*
7382          * Interrupts should be disabled here because the caller holds the
7383          * i_pages lock which is taken with interrupts-off. It is
7384          * important here to have the interrupts disabled because it is the
7385          * only synchronisation we have for updating the per-CPU variables.
7386          */
7387         memcg_stats_lock();
7388         mem_cgroup_charge_statistics(memcg, -nr_entries);
7389         memcg_stats_unlock();
7390         memcg_check_events(memcg, folio_nid(folio));
7391
7392         css_put(&memcg->css);
7393 }
7394
7395 /**
7396  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7397  * @folio: folio being added to swap
7398  * @entry: swap entry to charge
7399  *
7400  * Try to charge @folio's memcg for the swap space at @entry.
7401  *
7402  * Returns 0 on success, -ENOMEM on failure.
7403  */
7404 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7405 {
7406         unsigned int nr_pages = folio_nr_pages(folio);
7407         struct page_counter *counter;
7408         struct mem_cgroup *memcg;
7409         unsigned short oldid;
7410
7411         if (do_memsw_account())
7412                 return 0;
7413
7414         memcg = folio_memcg(folio);
7415
7416         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7417         if (!memcg)
7418                 return 0;
7419
7420         if (!entry.val) {
7421                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7422                 return 0;
7423         }
7424
7425         memcg = mem_cgroup_id_get_online(memcg);
7426
7427         if (!mem_cgroup_is_root(memcg) &&
7428             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7429                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7430                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7431                 mem_cgroup_id_put(memcg);
7432                 return -ENOMEM;
7433         }
7434
7435         /* Get references for the tail pages, too */
7436         if (nr_pages > 1)
7437                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7438         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7439         VM_BUG_ON_FOLIO(oldid, folio);
7440         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7441
7442         return 0;
7443 }
7444
7445 /**
7446  * __mem_cgroup_uncharge_swap - uncharge swap space
7447  * @entry: swap entry to uncharge
7448  * @nr_pages: the amount of swap space to uncharge
7449  */
7450 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7451 {
7452         struct mem_cgroup *memcg;
7453         unsigned short id;
7454
7455         if (mem_cgroup_disabled())
7456                 return;
7457
7458         id = swap_cgroup_record(entry, 0, nr_pages);
7459         rcu_read_lock();
7460         memcg = mem_cgroup_from_id(id);
7461         if (memcg) {
7462                 if (!mem_cgroup_is_root(memcg)) {
7463                         if (do_memsw_account())
7464                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7465                         else
7466                                 page_counter_uncharge(&memcg->swap, nr_pages);
7467                 }
7468                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7469                 mem_cgroup_id_put_many(memcg, nr_pages);
7470         }
7471         rcu_read_unlock();
7472 }
7473
7474 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7475 {
7476         long nr_swap_pages = get_nr_swap_pages();
7477
7478         if (mem_cgroup_disabled() || do_memsw_account())
7479                 return nr_swap_pages;
7480         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7481                 nr_swap_pages = min_t(long, nr_swap_pages,
7482                                       READ_ONCE(memcg->swap.max) -
7483                                       page_counter_read(&memcg->swap));
7484         return nr_swap_pages;
7485 }
7486
7487 bool mem_cgroup_swap_full(struct folio *folio)
7488 {
7489         struct mem_cgroup *memcg;
7490
7491         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7492
7493         if (vm_swap_full())
7494                 return true;
7495         if (do_memsw_account())
7496                 return false;
7497
7498         memcg = folio_memcg(folio);
7499         if (!memcg)
7500                 return false;
7501
7502         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7503                 unsigned long usage = page_counter_read(&memcg->swap);
7504
7505                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7506                     usage * 2 >= READ_ONCE(memcg->swap.max))
7507                         return true;
7508         }
7509
7510         return false;
7511 }
7512
7513 static int __init setup_swap_account(char *s)
7514 {
7515         pr_warn_once("The swapaccount= commandline option is deprecated. "
7516                      "Please report your usecase to linux-mm@kvack.org if you "
7517                      "depend on this functionality.\n");
7518         return 1;
7519 }
7520 __setup("swapaccount=", setup_swap_account);
7521
7522 static u64 swap_current_read(struct cgroup_subsys_state *css,
7523                              struct cftype *cft)
7524 {
7525         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7526
7527         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7528 }
7529
7530 static int swap_high_show(struct seq_file *m, void *v)
7531 {
7532         return seq_puts_memcg_tunable(m,
7533                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7534 }
7535
7536 static ssize_t swap_high_write(struct kernfs_open_file *of,
7537                                char *buf, size_t nbytes, loff_t off)
7538 {
7539         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7540         unsigned long high;
7541         int err;
7542
7543         buf = strstrip(buf);
7544         err = page_counter_memparse(buf, "max", &high);
7545         if (err)
7546                 return err;
7547
7548         page_counter_set_high(&memcg->swap, high);
7549
7550         return nbytes;
7551 }
7552
7553 static int swap_max_show(struct seq_file *m, void *v)
7554 {
7555         return seq_puts_memcg_tunable(m,
7556                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7557 }
7558
7559 static ssize_t swap_max_write(struct kernfs_open_file *of,
7560                               char *buf, size_t nbytes, loff_t off)
7561 {
7562         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7563         unsigned long max;
7564         int err;
7565
7566         buf = strstrip(buf);
7567         err = page_counter_memparse(buf, "max", &max);
7568         if (err)
7569                 return err;
7570
7571         xchg(&memcg->swap.max, max);
7572
7573         return nbytes;
7574 }
7575
7576 static int swap_events_show(struct seq_file *m, void *v)
7577 {
7578         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7579
7580         seq_printf(m, "high %lu\n",
7581                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7582         seq_printf(m, "max %lu\n",
7583                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7584         seq_printf(m, "fail %lu\n",
7585                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7586
7587         return 0;
7588 }
7589
7590 static struct cftype swap_files[] = {
7591         {
7592                 .name = "swap.current",
7593                 .flags = CFTYPE_NOT_ON_ROOT,
7594                 .read_u64 = swap_current_read,
7595         },
7596         {
7597                 .name = "swap.high",
7598                 .flags = CFTYPE_NOT_ON_ROOT,
7599                 .seq_show = swap_high_show,
7600                 .write = swap_high_write,
7601         },
7602         {
7603                 .name = "swap.max",
7604                 .flags = CFTYPE_NOT_ON_ROOT,
7605                 .seq_show = swap_max_show,
7606                 .write = swap_max_write,
7607         },
7608         {
7609                 .name = "swap.events",
7610                 .flags = CFTYPE_NOT_ON_ROOT,
7611                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7612                 .seq_show = swap_events_show,
7613         },
7614         { }     /* terminate */
7615 };
7616
7617 static struct cftype memsw_files[] = {
7618         {
7619                 .name = "memsw.usage_in_bytes",
7620                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7621                 .read_u64 = mem_cgroup_read_u64,
7622         },
7623         {
7624                 .name = "memsw.max_usage_in_bytes",
7625                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7626                 .write = mem_cgroup_reset,
7627                 .read_u64 = mem_cgroup_read_u64,
7628         },
7629         {
7630                 .name = "memsw.limit_in_bytes",
7631                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7632                 .write = mem_cgroup_write,
7633                 .read_u64 = mem_cgroup_read_u64,
7634         },
7635         {
7636                 .name = "memsw.failcnt",
7637                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7638                 .write = mem_cgroup_reset,
7639                 .read_u64 = mem_cgroup_read_u64,
7640         },
7641         { },    /* terminate */
7642 };
7643
7644 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7645 /**
7646  * obj_cgroup_may_zswap - check if this cgroup can zswap
7647  * @objcg: the object cgroup
7648  *
7649  * Check if the hierarchical zswap limit has been reached.
7650  *
7651  * This doesn't check for specific headroom, and it is not atomic
7652  * either. But with zswap, the size of the allocation is only known
7653  * once compression has occured, and this optimistic pre-check avoids
7654  * spending cycles on compression when there is already no room left
7655  * or zswap is disabled altogether somewhere in the hierarchy.
7656  */
7657 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7658 {
7659         struct mem_cgroup *memcg, *original_memcg;
7660         bool ret = true;
7661
7662         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7663                 return true;
7664
7665         original_memcg = get_mem_cgroup_from_objcg(objcg);
7666         for (memcg = original_memcg; memcg != root_mem_cgroup;
7667              memcg = parent_mem_cgroup(memcg)) {
7668                 unsigned long max = READ_ONCE(memcg->zswap_max);
7669                 unsigned long pages;
7670
7671                 if (max == PAGE_COUNTER_MAX)
7672                         continue;
7673                 if (max == 0) {
7674                         ret = false;
7675                         break;
7676                 }
7677
7678                 cgroup_rstat_flush(memcg->css.cgroup);
7679                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7680                 if (pages < max)
7681                         continue;
7682                 ret = false;
7683                 break;
7684         }
7685         mem_cgroup_put(original_memcg);
7686         return ret;
7687 }
7688
7689 /**
7690  * obj_cgroup_charge_zswap - charge compression backend memory
7691  * @objcg: the object cgroup
7692  * @size: size of compressed object
7693  *
7694  * This forces the charge after obj_cgroup_may_swap() allowed
7695  * compression and storage in zwap for this cgroup to go ahead.
7696  */
7697 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7698 {
7699         struct mem_cgroup *memcg;
7700
7701         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7702                 return;
7703
7704         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7705
7706         /* PF_MEMALLOC context, charging must succeed */
7707         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7708                 VM_WARN_ON_ONCE(1);
7709
7710         rcu_read_lock();
7711         memcg = obj_cgroup_memcg(objcg);
7712         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7713         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7714         rcu_read_unlock();
7715 }
7716
7717 /**
7718  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7719  * @objcg: the object cgroup
7720  * @size: size of compressed object
7721  *
7722  * Uncharges zswap memory on page in.
7723  */
7724 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7725 {
7726         struct mem_cgroup *memcg;
7727
7728         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7729                 return;
7730
7731         obj_cgroup_uncharge(objcg, size);
7732
7733         rcu_read_lock();
7734         memcg = obj_cgroup_memcg(objcg);
7735         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7736         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7737         rcu_read_unlock();
7738 }
7739
7740 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7741                               struct cftype *cft)
7742 {
7743         cgroup_rstat_flush(css->cgroup);
7744         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7745 }
7746
7747 static int zswap_max_show(struct seq_file *m, void *v)
7748 {
7749         return seq_puts_memcg_tunable(m,
7750                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7751 }
7752
7753 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7754                                char *buf, size_t nbytes, loff_t off)
7755 {
7756         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7757         unsigned long max;
7758         int err;
7759
7760         buf = strstrip(buf);
7761         err = page_counter_memparse(buf, "max", &max);
7762         if (err)
7763                 return err;
7764
7765         xchg(&memcg->zswap_max, max);
7766
7767         return nbytes;
7768 }
7769
7770 static struct cftype zswap_files[] = {
7771         {
7772                 .name = "zswap.current",
7773                 .flags = CFTYPE_NOT_ON_ROOT,
7774                 .read_u64 = zswap_current_read,
7775         },
7776         {
7777                 .name = "zswap.max",
7778                 .flags = CFTYPE_NOT_ON_ROOT,
7779                 .seq_show = zswap_max_show,
7780                 .write = zswap_max_write,
7781         },
7782         { }     /* terminate */
7783 };
7784 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7785
7786 static int __init mem_cgroup_swap_init(void)
7787 {
7788         if (mem_cgroup_disabled())
7789                 return 0;
7790
7791         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7792         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7793 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7794         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7795 #endif
7796         return 0;
7797 }
7798 subsys_initcall(mem_cgroup_swap_init);
7799
7800 #endif /* CONFIG_SWAP */