0356cb6c950475b9f636cb7100569897863b76d1
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90         /*
91          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92          */
93         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
94         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
95         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
97         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
98         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100         /* incremented at every  pagein/pageout */
101         MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
103
104         MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108         s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115         /*
116          * spin_lock to protect the per cgroup LRU
117          */
118         struct list_head        lists[NR_LRU_LISTS];
119         unsigned long           count[NR_LRU_LISTS];
120
121         struct zone_reclaim_stat reclaim_stat;
122         struct rb_node          tree_node;      /* RB tree node */
123         unsigned long long      usage_in_excess;/* Set to the value by which */
124                                                 /* the soft limit is exceeded*/
125         bool                    on_tree;
126         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
127                                                 /* use container_of        */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144
145 struct mem_cgroup_tree_per_zone {
146         struct rb_root rb_root;
147         spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161         struct eventfd_ctx *eventfd;
162         u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167         /* An array index points to threshold just below usage. */
168         int current_threshold;
169         /* Size of entries[] */
170         unsigned int size;
171         /* Array of thresholds */
172         struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176         /* Primary thresholds array */
177         struct mem_cgroup_threshold_ary *primary;
178         /*
179          * Spare threshold array.
180          * This is needed to make mem_cgroup_unregister_event() "never fail".
181          * It must be able to store at least primary->size - 1 entries.
182          */
183         struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188         struct list_head list;
189         struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207         struct cgroup_subsys_state css;
208         /*
209          * the counter to account for memory usage
210          */
211         struct res_counter res;
212         /*
213          * the counter to account for mem+swap usage.
214          */
215         struct res_counter memsw;
216         /*
217          * Per cgroup active and inactive list, similar to the
218          * per zone LRU lists.
219          */
220         struct mem_cgroup_lru_info info;
221
222         /*
223           protect against reclaim related member.
224         */
225         spinlock_t reclaim_param_lock;
226
227         /*
228          * While reclaiming in a hierarchy, we cache the last child we
229          * reclaimed from.
230          */
231         int last_scanned_child;
232         /*
233          * Should the accounting and control be hierarchical, per subtree?
234          */
235         bool use_hierarchy;
236         atomic_t        oom_lock;
237         atomic_t        refcnt;
238
239         unsigned int    swappiness;
240         /* OOM-Killer disable */
241         int             oom_kill_disable;
242
243         /* set when res.limit == memsw.limit */
244         bool            memsw_is_minimum;
245
246         /* protect arrays of thresholds */
247         struct mutex thresholds_lock;
248
249         /* thresholds for memory usage. RCU-protected */
250         struct mem_cgroup_thresholds thresholds;
251
252         /* thresholds for mem+swap usage. RCU-protected */
253         struct mem_cgroup_thresholds memsw_thresholds;
254
255         /* For oom notifier event fd */
256         struct list_head oom_notify;
257
258         /*
259          * Should we move charges of a task when a task is moved into this
260          * mem_cgroup ? And what type of charges should we move ?
261          */
262         unsigned long   move_charge_at_immigrate;
263         /*
264          * percpu counter.
265          */
266         struct mem_cgroup_stat_cpu *stat;
267         /*
268          * used when a cpu is offlined or other synchronizations
269          * See mem_cgroup_read_stat().
270          */
271         struct mem_cgroup_stat_cpu nocpu_base;
272         spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
282         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
283         NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288         spinlock_t        lock; /* for from, to */
289         struct mem_cgroup *from;
290         struct mem_cgroup *to;
291         unsigned long precharge;
292         unsigned long moved_charge;
293         unsigned long moved_swap;
294         struct task_struct *moving_task;        /* a task moving charges */
295         wait_queue_head_t waitq;                /* a waitq for other context */
296 } mc = {
297         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303         return test_bit(MOVE_CHARGE_TYPE_ANON,
304                                         &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309         return test_bit(MOVE_CHARGE_TYPE_FILE,
310                                         &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315  * limit reclaim to prevent infinite loops, if they ever occur.
316  */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322         MEM_CGROUP_CHARGE_TYPE_MAPPED,
323         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
324         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
325         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
327         NR_CHARGE_TYPE,
328 };
329
330 /* for encoding cft->private value on file */
331 #define _MEM                    (0)
332 #define _MEMSWAP                (1)
333 #define _OOM_TYPE               (2)
334 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
336 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
337 /* Used for OOM nofiier */
338 #define OOM_CONTROL             (0)
339
340 /*
341  * Reclaim flags for mem_cgroup_hierarchical_reclaim
342  */
343 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
344 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
346 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
348 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349
350 static void mem_cgroup_get(struct mem_cgroup *mem);
351 static void mem_cgroup_put(struct mem_cgroup *mem);
352 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353 static void drain_all_stock_async(void);
354
355 static struct mem_cgroup_per_zone *
356 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357 {
358         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359 }
360
361 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362 {
363         return &mem->css;
364 }
365
366 static struct mem_cgroup_per_zone *
367 page_cgroup_zoneinfo(struct page_cgroup *pc)
368 {
369         struct mem_cgroup *mem = pc->mem_cgroup;
370         int nid = page_cgroup_nid(pc);
371         int zid = page_cgroup_zid(pc);
372
373         if (!mem)
374                 return NULL;
375
376         return mem_cgroup_zoneinfo(mem, nid, zid);
377 }
378
379 static struct mem_cgroup_tree_per_zone *
380 soft_limit_tree_node_zone(int nid, int zid)
381 {
382         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383 }
384
385 static struct mem_cgroup_tree_per_zone *
386 soft_limit_tree_from_page(struct page *page)
387 {
388         int nid = page_to_nid(page);
389         int zid = page_zonenum(page);
390
391         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392 }
393
394 static void
395 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
396                                 struct mem_cgroup_per_zone *mz,
397                                 struct mem_cgroup_tree_per_zone *mctz,
398                                 unsigned long long new_usage_in_excess)
399 {
400         struct rb_node **p = &mctz->rb_root.rb_node;
401         struct rb_node *parent = NULL;
402         struct mem_cgroup_per_zone *mz_node;
403
404         if (mz->on_tree)
405                 return;
406
407         mz->usage_in_excess = new_usage_in_excess;
408         if (!mz->usage_in_excess)
409                 return;
410         while (*p) {
411                 parent = *p;
412                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
413                                         tree_node);
414                 if (mz->usage_in_excess < mz_node->usage_in_excess)
415                         p = &(*p)->rb_left;
416                 /*
417                  * We can't avoid mem cgroups that are over their soft
418                  * limit by the same amount
419                  */
420                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
421                         p = &(*p)->rb_right;
422         }
423         rb_link_node(&mz->tree_node, parent, p);
424         rb_insert_color(&mz->tree_node, &mctz->rb_root);
425         mz->on_tree = true;
426 }
427
428 static void
429 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
430                                 struct mem_cgroup_per_zone *mz,
431                                 struct mem_cgroup_tree_per_zone *mctz)
432 {
433         if (!mz->on_tree)
434                 return;
435         rb_erase(&mz->tree_node, &mctz->rb_root);
436         mz->on_tree = false;
437 }
438
439 static void
440 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441                                 struct mem_cgroup_per_zone *mz,
442                                 struct mem_cgroup_tree_per_zone *mctz)
443 {
444         spin_lock(&mctz->lock);
445         __mem_cgroup_remove_exceeded(mem, mz, mctz);
446         spin_unlock(&mctz->lock);
447 }
448
449
450 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
451 {
452         unsigned long long excess;
453         struct mem_cgroup_per_zone *mz;
454         struct mem_cgroup_tree_per_zone *mctz;
455         int nid = page_to_nid(page);
456         int zid = page_zonenum(page);
457         mctz = soft_limit_tree_from_page(page);
458
459         /*
460          * Necessary to update all ancestors when hierarchy is used.
461          * because their event counter is not touched.
462          */
463         for (; mem; mem = parent_mem_cgroup(mem)) {
464                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
465                 excess = res_counter_soft_limit_excess(&mem->res);
466                 /*
467                  * We have to update the tree if mz is on RB-tree or
468                  * mem is over its softlimit.
469                  */
470                 if (excess || mz->on_tree) {
471                         spin_lock(&mctz->lock);
472                         /* if on-tree, remove it */
473                         if (mz->on_tree)
474                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
475                         /*
476                          * Insert again. mz->usage_in_excess will be updated.
477                          * If excess is 0, no tree ops.
478                          */
479                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
480                         spin_unlock(&mctz->lock);
481                 }
482         }
483 }
484
485 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
486 {
487         int node, zone;
488         struct mem_cgroup_per_zone *mz;
489         struct mem_cgroup_tree_per_zone *mctz;
490
491         for_each_node_state(node, N_POSSIBLE) {
492                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
493                         mz = mem_cgroup_zoneinfo(mem, node, zone);
494                         mctz = soft_limit_tree_node_zone(node, zone);
495                         mem_cgroup_remove_exceeded(mem, mz, mctz);
496                 }
497         }
498 }
499
500 static struct mem_cgroup_per_zone *
501 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
502 {
503         struct rb_node *rightmost = NULL;
504         struct mem_cgroup_per_zone *mz;
505
506 retry:
507         mz = NULL;
508         rightmost = rb_last(&mctz->rb_root);
509         if (!rightmost)
510                 goto done;              /* Nothing to reclaim from */
511
512         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
513         /*
514          * Remove the node now but someone else can add it back,
515          * we will to add it back at the end of reclaim to its correct
516          * position in the tree.
517          */
518         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
519         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
520                 !css_tryget(&mz->mem->css))
521                 goto retry;
522 done:
523         return mz;
524 }
525
526 static struct mem_cgroup_per_zone *
527 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
528 {
529         struct mem_cgroup_per_zone *mz;
530
531         spin_lock(&mctz->lock);
532         mz = __mem_cgroup_largest_soft_limit_node(mctz);
533         spin_unlock(&mctz->lock);
534         return mz;
535 }
536
537 /*
538  * Implementation Note: reading percpu statistics for memcg.
539  *
540  * Both of vmstat[] and percpu_counter has threshold and do periodic
541  * synchronization to implement "quick" read. There are trade-off between
542  * reading cost and precision of value. Then, we may have a chance to implement
543  * a periodic synchronizion of counter in memcg's counter.
544  *
545  * But this _read() function is used for user interface now. The user accounts
546  * memory usage by memory cgroup and he _always_ requires exact value because
547  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
548  * have to visit all online cpus and make sum. So, for now, unnecessary
549  * synchronization is not implemented. (just implemented for cpu hotplug)
550  *
551  * If there are kernel internal actions which can make use of some not-exact
552  * value, and reading all cpu value can be performance bottleneck in some
553  * common workload, threashold and synchonization as vmstat[] should be
554  * implemented.
555  */
556 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
557                 enum mem_cgroup_stat_index idx)
558 {
559         int cpu;
560         s64 val = 0;
561
562         get_online_cpus();
563         for_each_online_cpu(cpu)
564                 val += per_cpu(mem->stat->count[idx], cpu);
565 #ifdef CONFIG_HOTPLUG_CPU
566         spin_lock(&mem->pcp_counter_lock);
567         val += mem->nocpu_base.count[idx];
568         spin_unlock(&mem->pcp_counter_lock);
569 #endif
570         put_online_cpus();
571         return val;
572 }
573
574 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
575 {
576         s64 ret;
577
578         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
579         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
580         return ret;
581 }
582
583 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
584                                          bool charge)
585 {
586         int val = (charge) ? 1 : -1;
587         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
588 }
589
590 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
591                                          bool file, int nr_pages)
592 {
593         preempt_disable();
594
595         if (file)
596                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
597         else
598                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
599
600         /* pagein of a big page is an event. So, ignore page size */
601         if (nr_pages > 0)
602                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
603         else {
604                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
605                 nr_pages = -nr_pages; /* for event */
606         }
607
608         __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
609
610         preempt_enable();
611 }
612
613 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
614                                         enum lru_list idx)
615 {
616         int nid, zid;
617         struct mem_cgroup_per_zone *mz;
618         u64 total = 0;
619
620         for_each_online_node(nid)
621                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
622                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
623                         total += MEM_CGROUP_ZSTAT(mz, idx);
624                 }
625         return total;
626 }
627
628 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
629 {
630         s64 val;
631
632         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
633
634         return !(val & ((1 << event_mask_shift) - 1));
635 }
636
637 /*
638  * Check events in order.
639  *
640  */
641 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
642 {
643         /* threshold event is triggered in finer grain than soft limit */
644         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
645                 mem_cgroup_threshold(mem);
646                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
647                         mem_cgroup_update_tree(mem, page);
648         }
649 }
650
651 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
652 {
653         return container_of(cgroup_subsys_state(cont,
654                                 mem_cgroup_subsys_id), struct mem_cgroup,
655                                 css);
656 }
657
658 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
659 {
660         /*
661          * mm_update_next_owner() may clear mm->owner to NULL
662          * if it races with swapoff, page migration, etc.
663          * So this can be called with p == NULL.
664          */
665         if (unlikely(!p))
666                 return NULL;
667
668         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
669                                 struct mem_cgroup, css);
670 }
671
672 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
673 {
674         struct mem_cgroup *mem = NULL;
675
676         if (!mm)
677                 return NULL;
678         /*
679          * Because we have no locks, mm->owner's may be being moved to other
680          * cgroup. We use css_tryget() here even if this looks
681          * pessimistic (rather than adding locks here).
682          */
683         rcu_read_lock();
684         do {
685                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
686                 if (unlikely(!mem))
687                         break;
688         } while (!css_tryget(&mem->css));
689         rcu_read_unlock();
690         return mem;
691 }
692
693 /* The caller has to guarantee "mem" exists before calling this */
694 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
695 {
696         struct cgroup_subsys_state *css;
697         int found;
698
699         if (!mem) /* ROOT cgroup has the smallest ID */
700                 return root_mem_cgroup; /*css_put/get against root is ignored*/
701         if (!mem->use_hierarchy) {
702                 if (css_tryget(&mem->css))
703                         return mem;
704                 return NULL;
705         }
706         rcu_read_lock();
707         /*
708          * searching a memory cgroup which has the smallest ID under given
709          * ROOT cgroup. (ID >= 1)
710          */
711         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
712         if (css && css_tryget(css))
713                 mem = container_of(css, struct mem_cgroup, css);
714         else
715                 mem = NULL;
716         rcu_read_unlock();
717         return mem;
718 }
719
720 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
721                                         struct mem_cgroup *root,
722                                         bool cond)
723 {
724         int nextid = css_id(&iter->css) + 1;
725         int found;
726         int hierarchy_used;
727         struct cgroup_subsys_state *css;
728
729         hierarchy_used = iter->use_hierarchy;
730
731         css_put(&iter->css);
732         /* If no ROOT, walk all, ignore hierarchy */
733         if (!cond || (root && !hierarchy_used))
734                 return NULL;
735
736         if (!root)
737                 root = root_mem_cgroup;
738
739         do {
740                 iter = NULL;
741                 rcu_read_lock();
742
743                 css = css_get_next(&mem_cgroup_subsys, nextid,
744                                 &root->css, &found);
745                 if (css && css_tryget(css))
746                         iter = container_of(css, struct mem_cgroup, css);
747                 rcu_read_unlock();
748                 /* If css is NULL, no more cgroups will be found */
749                 nextid = found + 1;
750         } while (css && !iter);
751
752         return iter;
753 }
754 /*
755  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
756  * be careful that "break" loop is not allowed. We have reference count.
757  * Instead of that modify "cond" to be false and "continue" to exit the loop.
758  */
759 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
760         for (iter = mem_cgroup_start_loop(root);\
761              iter != NULL;\
762              iter = mem_cgroup_get_next(iter, root, cond))
763
764 #define for_each_mem_cgroup_tree(iter, root) \
765         for_each_mem_cgroup_tree_cond(iter, root, true)
766
767 #define for_each_mem_cgroup_all(iter) \
768         for_each_mem_cgroup_tree_cond(iter, NULL, true)
769
770
771 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
772 {
773         return (mem == root_mem_cgroup);
774 }
775
776 /*
777  * Following LRU functions are allowed to be used without PCG_LOCK.
778  * Operations are called by routine of global LRU independently from memcg.
779  * What we have to take care of here is validness of pc->mem_cgroup.
780  *
781  * Changes to pc->mem_cgroup happens when
782  * 1. charge
783  * 2. moving account
784  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
785  * It is added to LRU before charge.
786  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
787  * When moving account, the page is not on LRU. It's isolated.
788  */
789
790 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
791 {
792         struct page_cgroup *pc;
793         struct mem_cgroup_per_zone *mz;
794
795         if (mem_cgroup_disabled())
796                 return;
797         pc = lookup_page_cgroup(page);
798         /* can happen while we handle swapcache. */
799         if (!TestClearPageCgroupAcctLRU(pc))
800                 return;
801         VM_BUG_ON(!pc->mem_cgroup);
802         /*
803          * We don't check PCG_USED bit. It's cleared when the "page" is finally
804          * removed from global LRU.
805          */
806         mz = page_cgroup_zoneinfo(pc);
807         /* huge page split is done under lru_lock. so, we have no races. */
808         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
809         if (mem_cgroup_is_root(pc->mem_cgroup))
810                 return;
811         VM_BUG_ON(list_empty(&pc->lru));
812         list_del_init(&pc->lru);
813 }
814
815 void mem_cgroup_del_lru(struct page *page)
816 {
817         mem_cgroup_del_lru_list(page, page_lru(page));
818 }
819
820 /*
821  * Writeback is about to end against a page which has been marked for immediate
822  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
823  * inactive list.
824  */
825 void mem_cgroup_rotate_reclaimable_page(struct page *page)
826 {
827         struct mem_cgroup_per_zone *mz;
828         struct page_cgroup *pc;
829         enum lru_list lru = page_lru(page);
830
831         if (mem_cgroup_disabled())
832                 return;
833
834         pc = lookup_page_cgroup(page);
835         /* unused or root page is not rotated. */
836         if (!PageCgroupUsed(pc))
837                 return;
838         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
839         smp_rmb();
840         if (mem_cgroup_is_root(pc->mem_cgroup))
841                 return;
842         mz = page_cgroup_zoneinfo(pc);
843         list_move_tail(&pc->lru, &mz->lists[lru]);
844 }
845
846 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
847 {
848         struct mem_cgroup_per_zone *mz;
849         struct page_cgroup *pc;
850
851         if (mem_cgroup_disabled())
852                 return;
853
854         pc = lookup_page_cgroup(page);
855         /* unused or root page is not rotated. */
856         if (!PageCgroupUsed(pc))
857                 return;
858         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
859         smp_rmb();
860         if (mem_cgroup_is_root(pc->mem_cgroup))
861                 return;
862         mz = page_cgroup_zoneinfo(pc);
863         list_move(&pc->lru, &mz->lists[lru]);
864 }
865
866 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
867 {
868         struct page_cgroup *pc;
869         struct mem_cgroup_per_zone *mz;
870
871         if (mem_cgroup_disabled())
872                 return;
873         pc = lookup_page_cgroup(page);
874         VM_BUG_ON(PageCgroupAcctLRU(pc));
875         if (!PageCgroupUsed(pc))
876                 return;
877         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
878         smp_rmb();
879         mz = page_cgroup_zoneinfo(pc);
880         /* huge page split is done under lru_lock. so, we have no races. */
881         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
882         SetPageCgroupAcctLRU(pc);
883         if (mem_cgroup_is_root(pc->mem_cgroup))
884                 return;
885         list_add(&pc->lru, &mz->lists[lru]);
886 }
887
888 /*
889  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
890  * lru because the page may.be reused after it's fully uncharged (because of
891  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
892  * it again. This function is only used to charge SwapCache. It's done under
893  * lock_page and expected that zone->lru_lock is never held.
894  */
895 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
896 {
897         unsigned long flags;
898         struct zone *zone = page_zone(page);
899         struct page_cgroup *pc = lookup_page_cgroup(page);
900
901         spin_lock_irqsave(&zone->lru_lock, flags);
902         /*
903          * Forget old LRU when this page_cgroup is *not* used. This Used bit
904          * is guarded by lock_page() because the page is SwapCache.
905          */
906         if (!PageCgroupUsed(pc))
907                 mem_cgroup_del_lru_list(page, page_lru(page));
908         spin_unlock_irqrestore(&zone->lru_lock, flags);
909 }
910
911 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
912 {
913         unsigned long flags;
914         struct zone *zone = page_zone(page);
915         struct page_cgroup *pc = lookup_page_cgroup(page);
916
917         spin_lock_irqsave(&zone->lru_lock, flags);
918         /* link when the page is linked to LRU but page_cgroup isn't */
919         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
920                 mem_cgroup_add_lru_list(page, page_lru(page));
921         spin_unlock_irqrestore(&zone->lru_lock, flags);
922 }
923
924
925 void mem_cgroup_move_lists(struct page *page,
926                            enum lru_list from, enum lru_list to)
927 {
928         if (mem_cgroup_disabled())
929                 return;
930         mem_cgroup_del_lru_list(page, from);
931         mem_cgroup_add_lru_list(page, to);
932 }
933
934 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
935 {
936         int ret;
937         struct mem_cgroup *curr = NULL;
938         struct task_struct *p;
939
940         p = find_lock_task_mm(task);
941         if (!p)
942                 return 0;
943         curr = try_get_mem_cgroup_from_mm(p->mm);
944         task_unlock(p);
945         if (!curr)
946                 return 0;
947         /*
948          * We should check use_hierarchy of "mem" not "curr". Because checking
949          * use_hierarchy of "curr" here make this function true if hierarchy is
950          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
951          * hierarchy(even if use_hierarchy is disabled in "mem").
952          */
953         if (mem->use_hierarchy)
954                 ret = css_is_ancestor(&curr->css, &mem->css);
955         else
956                 ret = (curr == mem);
957         css_put(&curr->css);
958         return ret;
959 }
960
961 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
962 {
963         unsigned long active;
964         unsigned long inactive;
965         unsigned long gb;
966         unsigned long inactive_ratio;
967
968         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
969         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
970
971         gb = (inactive + active) >> (30 - PAGE_SHIFT);
972         if (gb)
973                 inactive_ratio = int_sqrt(10 * gb);
974         else
975                 inactive_ratio = 1;
976
977         if (present_pages) {
978                 present_pages[0] = inactive;
979                 present_pages[1] = active;
980         }
981
982         return inactive_ratio;
983 }
984
985 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
986 {
987         unsigned long active;
988         unsigned long inactive;
989         unsigned long present_pages[2];
990         unsigned long inactive_ratio;
991
992         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
993
994         inactive = present_pages[0];
995         active = present_pages[1];
996
997         if (inactive * inactive_ratio < active)
998                 return 1;
999
1000         return 0;
1001 }
1002
1003 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1004 {
1005         unsigned long active;
1006         unsigned long inactive;
1007
1008         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1009         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1010
1011         return (active > inactive);
1012 }
1013
1014 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1015                                        struct zone *zone,
1016                                        enum lru_list lru)
1017 {
1018         int nid = zone_to_nid(zone);
1019         int zid = zone_idx(zone);
1020         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022         return MEM_CGROUP_ZSTAT(mz, lru);
1023 }
1024
1025 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1026                                                       struct zone *zone)
1027 {
1028         int nid = zone_to_nid(zone);
1029         int zid = zone_idx(zone);
1030         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1031
1032         return &mz->reclaim_stat;
1033 }
1034
1035 struct zone_reclaim_stat *
1036 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1037 {
1038         struct page_cgroup *pc;
1039         struct mem_cgroup_per_zone *mz;
1040
1041         if (mem_cgroup_disabled())
1042                 return NULL;
1043
1044         pc = lookup_page_cgroup(page);
1045         if (!PageCgroupUsed(pc))
1046                 return NULL;
1047         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1048         smp_rmb();
1049         mz = page_cgroup_zoneinfo(pc);
1050         if (!mz)
1051                 return NULL;
1052
1053         return &mz->reclaim_stat;
1054 }
1055
1056 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1057                                         struct list_head *dst,
1058                                         unsigned long *scanned, int order,
1059                                         int mode, struct zone *z,
1060                                         struct mem_cgroup *mem_cont,
1061                                         int active, int file)
1062 {
1063         unsigned long nr_taken = 0;
1064         struct page *page;
1065         unsigned long scan;
1066         LIST_HEAD(pc_list);
1067         struct list_head *src;
1068         struct page_cgroup *pc, *tmp;
1069         int nid = zone_to_nid(z);
1070         int zid = zone_idx(z);
1071         struct mem_cgroup_per_zone *mz;
1072         int lru = LRU_FILE * file + active;
1073         int ret;
1074
1075         BUG_ON(!mem_cont);
1076         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1077         src = &mz->lists[lru];
1078
1079         scan = 0;
1080         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1081                 if (scan >= nr_to_scan)
1082                         break;
1083
1084                 page = pc->page;
1085                 if (unlikely(!PageCgroupUsed(pc)))
1086                         continue;
1087                 if (unlikely(!PageLRU(page)))
1088                         continue;
1089
1090                 scan++;
1091                 ret = __isolate_lru_page(page, mode, file);
1092                 switch (ret) {
1093                 case 0:
1094                         list_move(&page->lru, dst);
1095                         mem_cgroup_del_lru(page);
1096                         nr_taken += hpage_nr_pages(page);
1097                         break;
1098                 case -EBUSY:
1099                         /* we don't affect global LRU but rotate in our LRU */
1100                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1101                         break;
1102                 default:
1103                         break;
1104                 }
1105         }
1106
1107         *scanned = scan;
1108
1109         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1110                                       0, 0, 0, mode);
1111
1112         return nr_taken;
1113 }
1114
1115 #define mem_cgroup_from_res_counter(counter, member)    \
1116         container_of(counter, struct mem_cgroup, member)
1117
1118 /**
1119  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1120  * @mem: the memory cgroup
1121  *
1122  * Returns the maximum amount of memory @mem can be charged with, in
1123  * bytes.
1124  */
1125 static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1126 {
1127         unsigned long long margin;
1128
1129         margin = res_counter_margin(&mem->res);
1130         if (do_swap_account)
1131                 margin = min(margin, res_counter_margin(&mem->memsw));
1132         return margin;
1133 }
1134
1135 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1136 {
1137         struct cgroup *cgrp = memcg->css.cgroup;
1138         unsigned int swappiness;
1139
1140         /* root ? */
1141         if (cgrp->parent == NULL)
1142                 return vm_swappiness;
1143
1144         spin_lock(&memcg->reclaim_param_lock);
1145         swappiness = memcg->swappiness;
1146         spin_unlock(&memcg->reclaim_param_lock);
1147
1148         return swappiness;
1149 }
1150
1151 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1152 {
1153         int cpu;
1154
1155         get_online_cpus();
1156         spin_lock(&mem->pcp_counter_lock);
1157         for_each_online_cpu(cpu)
1158                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1159         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1160         spin_unlock(&mem->pcp_counter_lock);
1161         put_online_cpus();
1162
1163         synchronize_rcu();
1164 }
1165
1166 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1167 {
1168         int cpu;
1169
1170         if (!mem)
1171                 return;
1172         get_online_cpus();
1173         spin_lock(&mem->pcp_counter_lock);
1174         for_each_online_cpu(cpu)
1175                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1176         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1177         spin_unlock(&mem->pcp_counter_lock);
1178         put_online_cpus();
1179 }
1180 /*
1181  * 2 routines for checking "mem" is under move_account() or not.
1182  *
1183  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1184  *                        for avoiding race in accounting. If true,
1185  *                        pc->mem_cgroup may be overwritten.
1186  *
1187  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1188  *                        under hierarchy of moving cgroups. This is for
1189  *                        waiting at hith-memory prressure caused by "move".
1190  */
1191
1192 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1193 {
1194         VM_BUG_ON(!rcu_read_lock_held());
1195         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1196 }
1197
1198 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1199 {
1200         struct mem_cgroup *from;
1201         struct mem_cgroup *to;
1202         bool ret = false;
1203         /*
1204          * Unlike task_move routines, we access mc.to, mc.from not under
1205          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1206          */
1207         spin_lock(&mc.lock);
1208         from = mc.from;
1209         to = mc.to;
1210         if (!from)
1211                 goto unlock;
1212         if (from == mem || to == mem
1213             || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1214             || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1215                 ret = true;
1216 unlock:
1217         spin_unlock(&mc.lock);
1218         return ret;
1219 }
1220
1221 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1222 {
1223         if (mc.moving_task && current != mc.moving_task) {
1224                 if (mem_cgroup_under_move(mem)) {
1225                         DEFINE_WAIT(wait);
1226                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1227                         /* moving charge context might have finished. */
1228                         if (mc.moving_task)
1229                                 schedule();
1230                         finish_wait(&mc.waitq, &wait);
1231                         return true;
1232                 }
1233         }
1234         return false;
1235 }
1236
1237 /**
1238  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1239  * @memcg: The memory cgroup that went over limit
1240  * @p: Task that is going to be killed
1241  *
1242  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1243  * enabled
1244  */
1245 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1246 {
1247         struct cgroup *task_cgrp;
1248         struct cgroup *mem_cgrp;
1249         /*
1250          * Need a buffer in BSS, can't rely on allocations. The code relies
1251          * on the assumption that OOM is serialized for memory controller.
1252          * If this assumption is broken, revisit this code.
1253          */
1254         static char memcg_name[PATH_MAX];
1255         int ret;
1256
1257         if (!memcg || !p)
1258                 return;
1259
1260
1261         rcu_read_lock();
1262
1263         mem_cgrp = memcg->css.cgroup;
1264         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1265
1266         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1267         if (ret < 0) {
1268                 /*
1269                  * Unfortunately, we are unable to convert to a useful name
1270                  * But we'll still print out the usage information
1271                  */
1272                 rcu_read_unlock();
1273                 goto done;
1274         }
1275         rcu_read_unlock();
1276
1277         printk(KERN_INFO "Task in %s killed", memcg_name);
1278
1279         rcu_read_lock();
1280         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1281         if (ret < 0) {
1282                 rcu_read_unlock();
1283                 goto done;
1284         }
1285         rcu_read_unlock();
1286
1287         /*
1288          * Continues from above, so we don't need an KERN_ level
1289          */
1290         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1291 done:
1292
1293         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1294                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1295                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1296                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1297         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1298                 "failcnt %llu\n",
1299                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1300                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1301                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1302 }
1303
1304 /*
1305  * This function returns the number of memcg under hierarchy tree. Returns
1306  * 1(self count) if no children.
1307  */
1308 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1309 {
1310         int num = 0;
1311         struct mem_cgroup *iter;
1312
1313         for_each_mem_cgroup_tree(iter, mem)
1314                 num++;
1315         return num;
1316 }
1317
1318 /*
1319  * Return the memory (and swap, if configured) limit for a memcg.
1320  */
1321 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1322 {
1323         u64 limit;
1324         u64 memsw;
1325
1326         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1327         limit += total_swap_pages << PAGE_SHIFT;
1328
1329         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1330         /*
1331          * If memsw is finite and limits the amount of swap space available
1332          * to this memcg, return that limit.
1333          */
1334         return min(limit, memsw);
1335 }
1336
1337 /*
1338  * Visit the first child (need not be the first child as per the ordering
1339  * of the cgroup list, since we track last_scanned_child) of @mem and use
1340  * that to reclaim free pages from.
1341  */
1342 static struct mem_cgroup *
1343 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1344 {
1345         struct mem_cgroup *ret = NULL;
1346         struct cgroup_subsys_state *css;
1347         int nextid, found;
1348
1349         if (!root_mem->use_hierarchy) {
1350                 css_get(&root_mem->css);
1351                 ret = root_mem;
1352         }
1353
1354         while (!ret) {
1355                 rcu_read_lock();
1356                 nextid = root_mem->last_scanned_child + 1;
1357                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1358                                    &found);
1359                 if (css && css_tryget(css))
1360                         ret = container_of(css, struct mem_cgroup, css);
1361
1362                 rcu_read_unlock();
1363                 /* Updates scanning parameter */
1364                 spin_lock(&root_mem->reclaim_param_lock);
1365                 if (!css) {
1366                         /* this means start scan from ID:1 */
1367                         root_mem->last_scanned_child = 0;
1368                 } else
1369                         root_mem->last_scanned_child = found;
1370                 spin_unlock(&root_mem->reclaim_param_lock);
1371         }
1372
1373         return ret;
1374 }
1375
1376 /*
1377  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1378  * we reclaimed from, so that we don't end up penalizing one child extensively
1379  * based on its position in the children list.
1380  *
1381  * root_mem is the original ancestor that we've been reclaim from.
1382  *
1383  * We give up and return to the caller when we visit root_mem twice.
1384  * (other groups can be removed while we're walking....)
1385  *
1386  * If shrink==true, for avoiding to free too much, this returns immedieately.
1387  */
1388 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1389                                                 struct zone *zone,
1390                                                 gfp_t gfp_mask,
1391                                                 unsigned long reclaim_options)
1392 {
1393         struct mem_cgroup *victim;
1394         int ret, total = 0;
1395         int loop = 0;
1396         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1397         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1398         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1399         unsigned long excess;
1400
1401         excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1402
1403         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1404         if (root_mem->memsw_is_minimum)
1405                 noswap = true;
1406
1407         while (1) {
1408                 victim = mem_cgroup_select_victim(root_mem);
1409                 if (victim == root_mem) {
1410                         loop++;
1411                         if (loop >= 1)
1412                                 drain_all_stock_async();
1413                         if (loop >= 2) {
1414                                 /*
1415                                  * If we have not been able to reclaim
1416                                  * anything, it might because there are
1417                                  * no reclaimable pages under this hierarchy
1418                                  */
1419                                 if (!check_soft || !total) {
1420                                         css_put(&victim->css);
1421                                         break;
1422                                 }
1423                                 /*
1424                                  * We want to do more targetted reclaim.
1425                                  * excess >> 2 is not to excessive so as to
1426                                  * reclaim too much, nor too less that we keep
1427                                  * coming back to reclaim from this cgroup
1428                                  */
1429                                 if (total >= (excess >> 2) ||
1430                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1431                                         css_put(&victim->css);
1432                                         break;
1433                                 }
1434                         }
1435                 }
1436                 if (!mem_cgroup_local_usage(victim)) {
1437                         /* this cgroup's local usage == 0 */
1438                         css_put(&victim->css);
1439                         continue;
1440                 }
1441                 /* we use swappiness of local cgroup */
1442                 if (check_soft)
1443                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1444                                 noswap, get_swappiness(victim), zone);
1445                 else
1446                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1447                                                 noswap, get_swappiness(victim));
1448                 css_put(&victim->css);
1449                 /*
1450                  * At shrinking usage, we can't check we should stop here or
1451                  * reclaim more. It's depends on callers. last_scanned_child
1452                  * will work enough for keeping fairness under tree.
1453                  */
1454                 if (shrink)
1455                         return ret;
1456                 total += ret;
1457                 if (check_soft) {
1458                         if (!res_counter_soft_limit_excess(&root_mem->res))
1459                                 return total;
1460                 } else if (mem_cgroup_margin(root_mem))
1461                         return 1 + total;
1462         }
1463         return total;
1464 }
1465
1466 /*
1467  * Check OOM-Killer is already running under our hierarchy.
1468  * If someone is running, return false.
1469  */
1470 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1471 {
1472         int x, lock_count = 0;
1473         struct mem_cgroup *iter;
1474
1475         for_each_mem_cgroup_tree(iter, mem) {
1476                 x = atomic_inc_return(&iter->oom_lock);
1477                 lock_count = max(x, lock_count);
1478         }
1479
1480         if (lock_count == 1)
1481                 return true;
1482         return false;
1483 }
1484
1485 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1486 {
1487         struct mem_cgroup *iter;
1488
1489         /*
1490          * When a new child is created while the hierarchy is under oom,
1491          * mem_cgroup_oom_lock() may not be called. We have to use
1492          * atomic_add_unless() here.
1493          */
1494         for_each_mem_cgroup_tree(iter, mem)
1495                 atomic_add_unless(&iter->oom_lock, -1, 0);
1496         return 0;
1497 }
1498
1499
1500 static DEFINE_MUTEX(memcg_oom_mutex);
1501 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1502
1503 struct oom_wait_info {
1504         struct mem_cgroup *mem;
1505         wait_queue_t    wait;
1506 };
1507
1508 static int memcg_oom_wake_function(wait_queue_t *wait,
1509         unsigned mode, int sync, void *arg)
1510 {
1511         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1512         struct oom_wait_info *oom_wait_info;
1513
1514         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1515
1516         if (oom_wait_info->mem == wake_mem)
1517                 goto wakeup;
1518         /* if no hierarchy, no match */
1519         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1520                 return 0;
1521         /*
1522          * Both of oom_wait_info->mem and wake_mem are stable under us.
1523          * Then we can use css_is_ancestor without taking care of RCU.
1524          */
1525         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1526             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1527                 return 0;
1528
1529 wakeup:
1530         return autoremove_wake_function(wait, mode, sync, arg);
1531 }
1532
1533 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1534 {
1535         /* for filtering, pass "mem" as argument. */
1536         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1537 }
1538
1539 static void memcg_oom_recover(struct mem_cgroup *mem)
1540 {
1541         if (mem && atomic_read(&mem->oom_lock))
1542                 memcg_wakeup_oom(mem);
1543 }
1544
1545 /*
1546  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1547  */
1548 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1549 {
1550         struct oom_wait_info owait;
1551         bool locked, need_to_kill;
1552
1553         owait.mem = mem;
1554         owait.wait.flags = 0;
1555         owait.wait.func = memcg_oom_wake_function;
1556         owait.wait.private = current;
1557         INIT_LIST_HEAD(&owait.wait.task_list);
1558         need_to_kill = true;
1559         /* At first, try to OOM lock hierarchy under mem.*/
1560         mutex_lock(&memcg_oom_mutex);
1561         locked = mem_cgroup_oom_lock(mem);
1562         /*
1563          * Even if signal_pending(), we can't quit charge() loop without
1564          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1565          * under OOM is always welcomed, use TASK_KILLABLE here.
1566          */
1567         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1568         if (!locked || mem->oom_kill_disable)
1569                 need_to_kill = false;
1570         if (locked)
1571                 mem_cgroup_oom_notify(mem);
1572         mutex_unlock(&memcg_oom_mutex);
1573
1574         if (need_to_kill) {
1575                 finish_wait(&memcg_oom_waitq, &owait.wait);
1576                 mem_cgroup_out_of_memory(mem, mask);
1577         } else {
1578                 schedule();
1579                 finish_wait(&memcg_oom_waitq, &owait.wait);
1580         }
1581         mutex_lock(&memcg_oom_mutex);
1582         mem_cgroup_oom_unlock(mem);
1583         memcg_wakeup_oom(mem);
1584         mutex_unlock(&memcg_oom_mutex);
1585
1586         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1587                 return false;
1588         /* Give chance to dying process */
1589         schedule_timeout(1);
1590         return true;
1591 }
1592
1593 /*
1594  * Currently used to update mapped file statistics, but the routine can be
1595  * generalized to update other statistics as well.
1596  *
1597  * Notes: Race condition
1598  *
1599  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1600  * it tends to be costly. But considering some conditions, we doesn't need
1601  * to do so _always_.
1602  *
1603  * Considering "charge", lock_page_cgroup() is not required because all
1604  * file-stat operations happen after a page is attached to radix-tree. There
1605  * are no race with "charge".
1606  *
1607  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1608  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1609  * if there are race with "uncharge". Statistics itself is properly handled
1610  * by flags.
1611  *
1612  * Considering "move", this is an only case we see a race. To make the race
1613  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1614  * possibility of race condition. If there is, we take a lock.
1615  */
1616
1617 void mem_cgroup_update_page_stat(struct page *page,
1618                                  enum mem_cgroup_page_stat_item idx, int val)
1619 {
1620         struct mem_cgroup *mem;
1621         struct page_cgroup *pc = lookup_page_cgroup(page);
1622         bool need_unlock = false;
1623         unsigned long uninitialized_var(flags);
1624
1625         if (unlikely(!pc))
1626                 return;
1627
1628         rcu_read_lock();
1629         mem = pc->mem_cgroup;
1630         if (unlikely(!mem || !PageCgroupUsed(pc)))
1631                 goto out;
1632         /* pc->mem_cgroup is unstable ? */
1633         if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1634                 /* take a lock against to access pc->mem_cgroup */
1635                 move_lock_page_cgroup(pc, &flags);
1636                 need_unlock = true;
1637                 mem = pc->mem_cgroup;
1638                 if (!mem || !PageCgroupUsed(pc))
1639                         goto out;
1640         }
1641
1642         switch (idx) {
1643         case MEMCG_NR_FILE_MAPPED:
1644                 if (val > 0)
1645                         SetPageCgroupFileMapped(pc);
1646                 else if (!page_mapped(page))
1647                         ClearPageCgroupFileMapped(pc);
1648                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1649                 break;
1650         default:
1651                 BUG();
1652         }
1653
1654         this_cpu_add(mem->stat->count[idx], val);
1655
1656 out:
1657         if (unlikely(need_unlock))
1658                 move_unlock_page_cgroup(pc, &flags);
1659         rcu_read_unlock();
1660         return;
1661 }
1662 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1663
1664 /*
1665  * size of first charge trial. "32" comes from vmscan.c's magic value.
1666  * TODO: maybe necessary to use big numbers in big irons.
1667  */
1668 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1669 struct memcg_stock_pcp {
1670         struct mem_cgroup *cached; /* this never be root cgroup */
1671         int charge;
1672         struct work_struct work;
1673 };
1674 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675 static atomic_t memcg_drain_count;
1676
1677 /*
1678  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1679  * from local stock and true is returned. If the stock is 0 or charges from a
1680  * cgroup which is not current target, returns false. This stock will be
1681  * refilled.
1682  */
1683 static bool consume_stock(struct mem_cgroup *mem)
1684 {
1685         struct memcg_stock_pcp *stock;
1686         bool ret = true;
1687
1688         stock = &get_cpu_var(memcg_stock);
1689         if (mem == stock->cached && stock->charge)
1690                 stock->charge -= PAGE_SIZE;
1691         else /* need to call res_counter_charge */
1692                 ret = false;
1693         put_cpu_var(memcg_stock);
1694         return ret;
1695 }
1696
1697 /*
1698  * Returns stocks cached in percpu to res_counter and reset cached information.
1699  */
1700 static void drain_stock(struct memcg_stock_pcp *stock)
1701 {
1702         struct mem_cgroup *old = stock->cached;
1703
1704         if (stock->charge) {
1705                 res_counter_uncharge(&old->res, stock->charge);
1706                 if (do_swap_account)
1707                         res_counter_uncharge(&old->memsw, stock->charge);
1708         }
1709         stock->cached = NULL;
1710         stock->charge = 0;
1711 }
1712
1713 /*
1714  * This must be called under preempt disabled or must be called by
1715  * a thread which is pinned to local cpu.
1716  */
1717 static void drain_local_stock(struct work_struct *dummy)
1718 {
1719         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1720         drain_stock(stock);
1721 }
1722
1723 /*
1724  * Cache charges(val) which is from res_counter, to local per_cpu area.
1725  * This will be consumed by consume_stock() function, later.
1726  */
1727 static void refill_stock(struct mem_cgroup *mem, int val)
1728 {
1729         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1730
1731         if (stock->cached != mem) { /* reset if necessary */
1732                 drain_stock(stock);
1733                 stock->cached = mem;
1734         }
1735         stock->charge += val;
1736         put_cpu_var(memcg_stock);
1737 }
1738
1739 /*
1740  * Tries to drain stocked charges in other cpus. This function is asynchronous
1741  * and just put a work per cpu for draining localy on each cpu. Caller can
1742  * expects some charges will be back to res_counter later but cannot wait for
1743  * it.
1744  */
1745 static void drain_all_stock_async(void)
1746 {
1747         int cpu;
1748         /* This function is for scheduling "drain" in asynchronous way.
1749          * The result of "drain" is not directly handled by callers. Then,
1750          * if someone is calling drain, we don't have to call drain more.
1751          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1752          * there is a race. We just do loose check here.
1753          */
1754         if (atomic_read(&memcg_drain_count))
1755                 return;
1756         /* Notify other cpus that system-wide "drain" is running */
1757         atomic_inc(&memcg_drain_count);
1758         get_online_cpus();
1759         for_each_online_cpu(cpu) {
1760                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1761                 schedule_work_on(cpu, &stock->work);
1762         }
1763         put_online_cpus();
1764         atomic_dec(&memcg_drain_count);
1765         /* We don't wait for flush_work */
1766 }
1767
1768 /* This is a synchronous drain interface. */
1769 static void drain_all_stock_sync(void)
1770 {
1771         /* called when force_empty is called */
1772         atomic_inc(&memcg_drain_count);
1773         schedule_on_each_cpu(drain_local_stock);
1774         atomic_dec(&memcg_drain_count);
1775 }
1776
1777 /*
1778  * This function drains percpu counter value from DEAD cpu and
1779  * move it to local cpu. Note that this function can be preempted.
1780  */
1781 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1782 {
1783         int i;
1784
1785         spin_lock(&mem->pcp_counter_lock);
1786         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1787                 s64 x = per_cpu(mem->stat->count[i], cpu);
1788
1789                 per_cpu(mem->stat->count[i], cpu) = 0;
1790                 mem->nocpu_base.count[i] += x;
1791         }
1792         /* need to clear ON_MOVE value, works as a kind of lock. */
1793         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1794         spin_unlock(&mem->pcp_counter_lock);
1795 }
1796
1797 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1798 {
1799         int idx = MEM_CGROUP_ON_MOVE;
1800
1801         spin_lock(&mem->pcp_counter_lock);
1802         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1803         spin_unlock(&mem->pcp_counter_lock);
1804 }
1805
1806 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1807                                         unsigned long action,
1808                                         void *hcpu)
1809 {
1810         int cpu = (unsigned long)hcpu;
1811         struct memcg_stock_pcp *stock;
1812         struct mem_cgroup *iter;
1813
1814         if ((action == CPU_ONLINE)) {
1815                 for_each_mem_cgroup_all(iter)
1816                         synchronize_mem_cgroup_on_move(iter, cpu);
1817                 return NOTIFY_OK;
1818         }
1819
1820         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1821                 return NOTIFY_OK;
1822
1823         for_each_mem_cgroup_all(iter)
1824                 mem_cgroup_drain_pcp_counter(iter, cpu);
1825
1826         stock = &per_cpu(memcg_stock, cpu);
1827         drain_stock(stock);
1828         return NOTIFY_OK;
1829 }
1830
1831
1832 /* See __mem_cgroup_try_charge() for details */
1833 enum {
1834         CHARGE_OK,              /* success */
1835         CHARGE_RETRY,           /* need to retry but retry is not bad */
1836         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
1837         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
1838         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
1839 };
1840
1841 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1842                                 int csize, bool oom_check)
1843 {
1844         struct mem_cgroup *mem_over_limit;
1845         struct res_counter *fail_res;
1846         unsigned long flags = 0;
1847         int ret;
1848
1849         ret = res_counter_charge(&mem->res, csize, &fail_res);
1850
1851         if (likely(!ret)) {
1852                 if (!do_swap_account)
1853                         return CHARGE_OK;
1854                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1855                 if (likely(!ret))
1856                         return CHARGE_OK;
1857
1858                 res_counter_uncharge(&mem->res, csize);
1859                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1860                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1861         } else
1862                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1863         /*
1864          * csize can be either a huge page (HPAGE_SIZE), a batch of
1865          * regular pages (CHARGE_SIZE), or a single regular page
1866          * (PAGE_SIZE).
1867          *
1868          * Never reclaim on behalf of optional batching, retry with a
1869          * single page instead.
1870          */
1871         if (csize == CHARGE_SIZE)
1872                 return CHARGE_RETRY;
1873
1874         if (!(gfp_mask & __GFP_WAIT))
1875                 return CHARGE_WOULDBLOCK;
1876
1877         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1878                                               gfp_mask, flags);
1879         if (mem_cgroup_margin(mem_over_limit) >= csize)
1880                 return CHARGE_RETRY;
1881         /*
1882          * Even though the limit is exceeded at this point, reclaim
1883          * may have been able to free some pages.  Retry the charge
1884          * before killing the task.
1885          *
1886          * Only for regular pages, though: huge pages are rather
1887          * unlikely to succeed so close to the limit, and we fall back
1888          * to regular pages anyway in case of failure.
1889          */
1890         if (csize == PAGE_SIZE && ret)
1891                 return CHARGE_RETRY;
1892
1893         /*
1894          * At task move, charge accounts can be doubly counted. So, it's
1895          * better to wait until the end of task_move if something is going on.
1896          */
1897         if (mem_cgroup_wait_acct_move(mem_over_limit))
1898                 return CHARGE_RETRY;
1899
1900         /* If we don't need to call oom-killer at el, return immediately */
1901         if (!oom_check)
1902                 return CHARGE_NOMEM;
1903         /* check OOM */
1904         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1905                 return CHARGE_OOM_DIE;
1906
1907         return CHARGE_RETRY;
1908 }
1909
1910 /*
1911  * Unlike exported interface, "oom" parameter is added. if oom==true,
1912  * oom-killer can be invoked.
1913  */
1914 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1915                                    gfp_t gfp_mask,
1916                                    struct mem_cgroup **memcg, bool oom,
1917                                    int page_size)
1918 {
1919         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1920         struct mem_cgroup *mem = NULL;
1921         int ret;
1922         int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1923
1924         /*
1925          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1926          * in system level. So, allow to go ahead dying process in addition to
1927          * MEMDIE process.
1928          */
1929         if (unlikely(test_thread_flag(TIF_MEMDIE)
1930                      || fatal_signal_pending(current)))
1931                 goto bypass;
1932
1933         /*
1934          * We always charge the cgroup the mm_struct belongs to.
1935          * The mm_struct's mem_cgroup changes on task migration if the
1936          * thread group leader migrates. It's possible that mm is not
1937          * set, if so charge the init_mm (happens for pagecache usage).
1938          */
1939         if (!*memcg && !mm)
1940                 goto bypass;
1941 again:
1942         if (*memcg) { /* css should be a valid one */
1943                 mem = *memcg;
1944                 VM_BUG_ON(css_is_removed(&mem->css));
1945                 if (mem_cgroup_is_root(mem))
1946                         goto done;
1947                 if (page_size == PAGE_SIZE && consume_stock(mem))
1948                         goto done;
1949                 css_get(&mem->css);
1950         } else {
1951                 struct task_struct *p;
1952
1953                 rcu_read_lock();
1954                 p = rcu_dereference(mm->owner);
1955                 /*
1956                  * Because we don't have task_lock(), "p" can exit.
1957                  * In that case, "mem" can point to root or p can be NULL with
1958                  * race with swapoff. Then, we have small risk of mis-accouning.
1959                  * But such kind of mis-account by race always happens because
1960                  * we don't have cgroup_mutex(). It's overkill and we allo that
1961                  * small race, here.
1962                  * (*) swapoff at el will charge against mm-struct not against
1963                  * task-struct. So, mm->owner can be NULL.
1964                  */
1965                 mem = mem_cgroup_from_task(p);
1966                 if (!mem || mem_cgroup_is_root(mem)) {
1967                         rcu_read_unlock();
1968                         goto done;
1969                 }
1970                 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1971                         /*
1972                          * It seems dagerous to access memcg without css_get().
1973                          * But considering how consume_stok works, it's not
1974                          * necessary. If consume_stock success, some charges
1975                          * from this memcg are cached on this cpu. So, we
1976                          * don't need to call css_get()/css_tryget() before
1977                          * calling consume_stock().
1978                          */
1979                         rcu_read_unlock();
1980                         goto done;
1981                 }
1982                 /* after here, we may be blocked. we need to get refcnt */
1983                 if (!css_tryget(&mem->css)) {
1984                         rcu_read_unlock();
1985                         goto again;
1986                 }
1987                 rcu_read_unlock();
1988         }
1989
1990         do {
1991                 bool oom_check;
1992
1993                 /* If killed, bypass charge */
1994                 if (fatal_signal_pending(current)) {
1995                         css_put(&mem->css);
1996                         goto bypass;
1997                 }
1998
1999                 oom_check = false;
2000                 if (oom && !nr_oom_retries) {
2001                         oom_check = true;
2002                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2003                 }
2004
2005                 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2006
2007                 switch (ret) {
2008                 case CHARGE_OK:
2009                         break;
2010                 case CHARGE_RETRY: /* not in OOM situation but retry */
2011                         csize = page_size;
2012                         css_put(&mem->css);
2013                         mem = NULL;
2014                         goto again;
2015                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2016                         css_put(&mem->css);
2017                         goto nomem;
2018                 case CHARGE_NOMEM: /* OOM routine works */
2019                         if (!oom) {
2020                                 css_put(&mem->css);
2021                                 goto nomem;
2022                         }
2023                         /* If oom, we never return -ENOMEM */
2024                         nr_oom_retries--;
2025                         break;
2026                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2027                         css_put(&mem->css);
2028                         goto bypass;
2029                 }
2030         } while (ret != CHARGE_OK);
2031
2032         if (csize > page_size)
2033                 refill_stock(mem, csize - page_size);
2034         css_put(&mem->css);
2035 done:
2036         *memcg = mem;
2037         return 0;
2038 nomem:
2039         *memcg = NULL;
2040         return -ENOMEM;
2041 bypass:
2042         *memcg = NULL;
2043         return 0;
2044 }
2045
2046 /*
2047  * Somemtimes we have to undo a charge we got by try_charge().
2048  * This function is for that and do uncharge, put css's refcnt.
2049  * gotten by try_charge().
2050  */
2051 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2052                                                         unsigned long count)
2053 {
2054         if (!mem_cgroup_is_root(mem)) {
2055                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2056                 if (do_swap_account)
2057                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2058         }
2059 }
2060
2061 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2062                                      int page_size)
2063 {
2064         __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2065 }
2066
2067 /*
2068  * A helper function to get mem_cgroup from ID. must be called under
2069  * rcu_read_lock(). The caller must check css_is_removed() or some if
2070  * it's concern. (dropping refcnt from swap can be called against removed
2071  * memcg.)
2072  */
2073 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2074 {
2075         struct cgroup_subsys_state *css;
2076
2077         /* ID 0 is unused ID */
2078         if (!id)
2079                 return NULL;
2080         css = css_lookup(&mem_cgroup_subsys, id);
2081         if (!css)
2082                 return NULL;
2083         return container_of(css, struct mem_cgroup, css);
2084 }
2085
2086 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2087 {
2088         struct mem_cgroup *mem = NULL;
2089         struct page_cgroup *pc;
2090         unsigned short id;
2091         swp_entry_t ent;
2092
2093         VM_BUG_ON(!PageLocked(page));
2094
2095         pc = lookup_page_cgroup(page);
2096         lock_page_cgroup(pc);
2097         if (PageCgroupUsed(pc)) {
2098                 mem = pc->mem_cgroup;
2099                 if (mem && !css_tryget(&mem->css))
2100                         mem = NULL;
2101         } else if (PageSwapCache(page)) {
2102                 ent.val = page_private(page);
2103                 id = lookup_swap_cgroup(ent);
2104                 rcu_read_lock();
2105                 mem = mem_cgroup_lookup(id);
2106                 if (mem && !css_tryget(&mem->css))
2107                         mem = NULL;
2108                 rcu_read_unlock();
2109         }
2110         unlock_page_cgroup(pc);
2111         return mem;
2112 }
2113
2114 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2115                                        struct page_cgroup *pc,
2116                                        enum charge_type ctype,
2117                                        int page_size)
2118 {
2119         int nr_pages = page_size >> PAGE_SHIFT;
2120
2121         lock_page_cgroup(pc);
2122         if (unlikely(PageCgroupUsed(pc))) {
2123                 unlock_page_cgroup(pc);
2124                 mem_cgroup_cancel_charge(mem, page_size);
2125                 return;
2126         }
2127         /*
2128          * we don't need page_cgroup_lock about tail pages, becase they are not
2129          * accessed by any other context at this point.
2130          */
2131         pc->mem_cgroup = mem;
2132         /*
2133          * We access a page_cgroup asynchronously without lock_page_cgroup().
2134          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2135          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2136          * before USED bit, we need memory barrier here.
2137          * See mem_cgroup_add_lru_list(), etc.
2138          */
2139         smp_wmb();
2140         switch (ctype) {
2141         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2142         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2143                 SetPageCgroupCache(pc);
2144                 SetPageCgroupUsed(pc);
2145                 break;
2146         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2147                 ClearPageCgroupCache(pc);
2148                 SetPageCgroupUsed(pc);
2149                 break;
2150         default:
2151                 break;
2152         }
2153
2154         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2155         unlock_page_cgroup(pc);
2156         /*
2157          * "charge_statistics" updated event counter. Then, check it.
2158          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2159          * if they exceeds softlimit.
2160          */
2161         memcg_check_events(mem, pc->page);
2162 }
2163
2164 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2165
2166 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2167                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2168 /*
2169  * Because tail pages are not marked as "used", set it. We're under
2170  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2171  */
2172 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2173 {
2174         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2175         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2176         unsigned long flags;
2177
2178         if (mem_cgroup_disabled())
2179                 return;
2180         /*
2181          * We have no races with charge/uncharge but will have races with
2182          * page state accounting.
2183          */
2184         move_lock_page_cgroup(head_pc, &flags);
2185
2186         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2187         smp_wmb(); /* see __commit_charge() */
2188         if (PageCgroupAcctLRU(head_pc)) {
2189                 enum lru_list lru;
2190                 struct mem_cgroup_per_zone *mz;
2191
2192                 /*
2193                  * LRU flags cannot be copied because we need to add tail
2194                  *.page to LRU by generic call and our hook will be called.
2195                  * We hold lru_lock, then, reduce counter directly.
2196                  */
2197                 lru = page_lru(head);
2198                 mz = page_cgroup_zoneinfo(head_pc);
2199                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2200         }
2201         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2202         move_unlock_page_cgroup(head_pc, &flags);
2203 }
2204 #endif
2205
2206 /**
2207  * __mem_cgroup_move_account - move account of the page
2208  * @pc: page_cgroup of the page.
2209  * @from: mem_cgroup which the page is moved from.
2210  * @to: mem_cgroup which the page is moved to. @from != @to.
2211  * @uncharge: whether we should call uncharge and css_put against @from.
2212  *
2213  * The caller must confirm following.
2214  * - page is not on LRU (isolate_page() is useful.)
2215  * - the pc is locked, used, and ->mem_cgroup points to @from.
2216  *
2217  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2218  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2219  * true, this function does "uncharge" from old cgroup, but it doesn't if
2220  * @uncharge is false, so a caller should do "uncharge".
2221  */
2222
2223 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2224         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2225         int charge_size)
2226 {
2227         int nr_pages = charge_size >> PAGE_SHIFT;
2228
2229         VM_BUG_ON(from == to);
2230         VM_BUG_ON(PageLRU(pc->page));
2231         VM_BUG_ON(!page_is_cgroup_locked(pc));
2232         VM_BUG_ON(!PageCgroupUsed(pc));
2233         VM_BUG_ON(pc->mem_cgroup != from);
2234
2235         if (PageCgroupFileMapped(pc)) {
2236                 /* Update mapped_file data for mem_cgroup */
2237                 preempt_disable();
2238                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2239                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2240                 preempt_enable();
2241         }
2242         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2243         if (uncharge)
2244                 /* This is not "cancel", but cancel_charge does all we need. */
2245                 mem_cgroup_cancel_charge(from, charge_size);
2246
2247         /* caller should have done css_get */
2248         pc->mem_cgroup = to;
2249         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2250         /*
2251          * We charges against "to" which may not have any tasks. Then, "to"
2252          * can be under rmdir(). But in current implementation, caller of
2253          * this function is just force_empty() and move charge, so it's
2254          * garanteed that "to" is never removed. So, we don't check rmdir
2255          * status here.
2256          */
2257 }
2258
2259 /*
2260  * check whether the @pc is valid for moving account and call
2261  * __mem_cgroup_move_account()
2262  */
2263 static int mem_cgroup_move_account(struct page_cgroup *pc,
2264                 struct mem_cgroup *from, struct mem_cgroup *to,
2265                 bool uncharge, int charge_size)
2266 {
2267         int ret = -EINVAL;
2268         unsigned long flags;
2269         /*
2270          * The page is isolated from LRU. So, collapse function
2271          * will not handle this page. But page splitting can happen.
2272          * Do this check under compound_page_lock(). The caller should
2273          * hold it.
2274          */
2275         if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2276                 return -EBUSY;
2277
2278         lock_page_cgroup(pc);
2279         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2280                 move_lock_page_cgroup(pc, &flags);
2281                 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2282                 move_unlock_page_cgroup(pc, &flags);
2283                 ret = 0;
2284         }
2285         unlock_page_cgroup(pc);
2286         /*
2287          * check events
2288          */
2289         memcg_check_events(to, pc->page);
2290         memcg_check_events(from, pc->page);
2291         return ret;
2292 }
2293
2294 /*
2295  * move charges to its parent.
2296  */
2297
2298 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2299                                   struct mem_cgroup *child,
2300                                   gfp_t gfp_mask)
2301 {
2302         struct page *page = pc->page;
2303         struct cgroup *cg = child->css.cgroup;
2304         struct cgroup *pcg = cg->parent;
2305         struct mem_cgroup *parent;
2306         int page_size = PAGE_SIZE;
2307         unsigned long flags;
2308         int ret;
2309
2310         /* Is ROOT ? */
2311         if (!pcg)
2312                 return -EINVAL;
2313
2314         ret = -EBUSY;
2315         if (!get_page_unless_zero(page))
2316                 goto out;
2317         if (isolate_lru_page(page))
2318                 goto put;
2319
2320         if (PageTransHuge(page))
2321                 page_size = HPAGE_SIZE;
2322
2323         parent = mem_cgroup_from_cont(pcg);
2324         ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2325                                 &parent, false, page_size);
2326         if (ret || !parent)
2327                 goto put_back;
2328
2329         if (page_size > PAGE_SIZE)
2330                 flags = compound_lock_irqsave(page);
2331
2332         ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2333         if (ret)
2334                 mem_cgroup_cancel_charge(parent, page_size);
2335
2336         if (page_size > PAGE_SIZE)
2337                 compound_unlock_irqrestore(page, flags);
2338 put_back:
2339         putback_lru_page(page);
2340 put:
2341         put_page(page);
2342 out:
2343         return ret;
2344 }
2345
2346 /*
2347  * Charge the memory controller for page usage.
2348  * Return
2349  * 0 if the charge was successful
2350  * < 0 if the cgroup is over its limit
2351  */
2352 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2353                                 gfp_t gfp_mask, enum charge_type ctype)
2354 {
2355         struct mem_cgroup *mem = NULL;
2356         int page_size = PAGE_SIZE;
2357         struct page_cgroup *pc;
2358         bool oom = true;
2359         int ret;
2360
2361         if (PageTransHuge(page)) {
2362                 page_size <<= compound_order(page);
2363                 VM_BUG_ON(!PageTransHuge(page));
2364                 /*
2365                  * Never OOM-kill a process for a huge page.  The
2366                  * fault handler will fall back to regular pages.
2367                  */
2368                 oom = false;
2369         }
2370
2371         pc = lookup_page_cgroup(page);
2372         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2373
2374         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2375         if (ret || !mem)
2376                 return ret;
2377
2378         __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2379         return 0;
2380 }
2381
2382 int mem_cgroup_newpage_charge(struct page *page,
2383                               struct mm_struct *mm, gfp_t gfp_mask)
2384 {
2385         if (mem_cgroup_disabled())
2386                 return 0;
2387         /*
2388          * If already mapped, we don't have to account.
2389          * If page cache, page->mapping has address_space.
2390          * But page->mapping may have out-of-use anon_vma pointer,
2391          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2392          * is NULL.
2393          */
2394         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2395                 return 0;
2396         if (unlikely(!mm))
2397                 mm = &init_mm;
2398         return mem_cgroup_charge_common(page, mm, gfp_mask,
2399                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2400 }
2401
2402 static void
2403 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2404                                         enum charge_type ctype);
2405
2406 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2407                                 gfp_t gfp_mask)
2408 {
2409         int ret;
2410
2411         if (mem_cgroup_disabled())
2412                 return 0;
2413         if (PageCompound(page))
2414                 return 0;
2415         /*
2416          * Corner case handling. This is called from add_to_page_cache()
2417          * in usual. But some FS (shmem) precharges this page before calling it
2418          * and call add_to_page_cache() with GFP_NOWAIT.
2419          *
2420          * For GFP_NOWAIT case, the page may be pre-charged before calling
2421          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2422          * charge twice. (It works but has to pay a bit larger cost.)
2423          * And when the page is SwapCache, it should take swap information
2424          * into account. This is under lock_page() now.
2425          */
2426         if (!(gfp_mask & __GFP_WAIT)) {
2427                 struct page_cgroup *pc;
2428
2429                 pc = lookup_page_cgroup(page);
2430                 if (!pc)
2431                         return 0;
2432                 lock_page_cgroup(pc);
2433                 if (PageCgroupUsed(pc)) {
2434                         unlock_page_cgroup(pc);
2435                         return 0;
2436                 }
2437                 unlock_page_cgroup(pc);
2438         }
2439
2440         if (unlikely(!mm))
2441                 mm = &init_mm;
2442
2443         if (page_is_file_cache(page))
2444                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2445                                 MEM_CGROUP_CHARGE_TYPE_CACHE);
2446
2447         /* shmem */
2448         if (PageSwapCache(page)) {
2449                 struct mem_cgroup *mem;
2450
2451                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2452                 if (!ret)
2453                         __mem_cgroup_commit_charge_swapin(page, mem,
2454                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2455         } else
2456                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2457                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2458
2459         return ret;
2460 }
2461
2462 /*
2463  * While swap-in, try_charge -> commit or cancel, the page is locked.
2464  * And when try_charge() successfully returns, one refcnt to memcg without
2465  * struct page_cgroup is acquired. This refcnt will be consumed by
2466  * "commit()" or removed by "cancel()"
2467  */
2468 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2469                                  struct page *page,
2470                                  gfp_t mask, struct mem_cgroup **ptr)
2471 {
2472         struct mem_cgroup *mem;
2473         int ret;
2474
2475         *ptr = NULL;
2476
2477         if (mem_cgroup_disabled())
2478                 return 0;
2479
2480         if (!do_swap_account)
2481                 goto charge_cur_mm;
2482         /*
2483          * A racing thread's fault, or swapoff, may have already updated
2484          * the pte, and even removed page from swap cache: in those cases
2485          * do_swap_page()'s pte_same() test will fail; but there's also a
2486          * KSM case which does need to charge the page.
2487          */
2488         if (!PageSwapCache(page))
2489                 goto charge_cur_mm;
2490         mem = try_get_mem_cgroup_from_page(page);
2491         if (!mem)
2492                 goto charge_cur_mm;
2493         *ptr = mem;
2494         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2495         css_put(&mem->css);
2496         return ret;
2497 charge_cur_mm:
2498         if (unlikely(!mm))
2499                 mm = &init_mm;
2500         return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2501 }
2502
2503 static void
2504 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2505                                         enum charge_type ctype)
2506 {
2507         struct page_cgroup *pc;
2508
2509         if (mem_cgroup_disabled())
2510                 return;
2511         if (!ptr)
2512                 return;
2513         cgroup_exclude_rmdir(&ptr->css);
2514         pc = lookup_page_cgroup(page);
2515         mem_cgroup_lru_del_before_commit_swapcache(page);
2516         __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2517         mem_cgroup_lru_add_after_commit_swapcache(page);
2518         /*
2519          * Now swap is on-memory. This means this page may be
2520          * counted both as mem and swap....double count.
2521          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2522          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2523          * may call delete_from_swap_cache() before reach here.
2524          */
2525         if (do_swap_account && PageSwapCache(page)) {
2526                 swp_entry_t ent = {.val = page_private(page)};
2527                 unsigned short id;
2528                 struct mem_cgroup *memcg;
2529
2530                 id = swap_cgroup_record(ent, 0);
2531                 rcu_read_lock();
2532                 memcg = mem_cgroup_lookup(id);
2533                 if (memcg) {
2534                         /*
2535                          * This recorded memcg can be obsolete one. So, avoid
2536                          * calling css_tryget
2537                          */
2538                         if (!mem_cgroup_is_root(memcg))
2539                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2540                         mem_cgroup_swap_statistics(memcg, false);
2541                         mem_cgroup_put(memcg);
2542                 }
2543                 rcu_read_unlock();
2544         }
2545         /*
2546          * At swapin, we may charge account against cgroup which has no tasks.
2547          * So, rmdir()->pre_destroy() can be called while we do this charge.
2548          * In that case, we need to call pre_destroy() again. check it here.
2549          */
2550         cgroup_release_and_wakeup_rmdir(&ptr->css);
2551 }
2552
2553 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2554 {
2555         __mem_cgroup_commit_charge_swapin(page, ptr,
2556                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2557 }
2558
2559 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2560 {
2561         if (mem_cgroup_disabled())
2562                 return;
2563         if (!mem)
2564                 return;
2565         mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2566 }
2567
2568 static void
2569 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2570               int page_size)
2571 {
2572         struct memcg_batch_info *batch = NULL;
2573         bool uncharge_memsw = true;
2574         /* If swapout, usage of swap doesn't decrease */
2575         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2576                 uncharge_memsw = false;
2577
2578         batch = &current->memcg_batch;
2579         /*
2580          * In usual, we do css_get() when we remember memcg pointer.
2581          * But in this case, we keep res->usage until end of a series of
2582          * uncharges. Then, it's ok to ignore memcg's refcnt.
2583          */
2584         if (!batch->memcg)
2585                 batch->memcg = mem;
2586         /*
2587          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2588          * In those cases, all pages freed continously can be expected to be in
2589          * the same cgroup and we have chance to coalesce uncharges.
2590          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2591          * because we want to do uncharge as soon as possible.
2592          */
2593
2594         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2595                 goto direct_uncharge;
2596
2597         if (page_size != PAGE_SIZE)
2598                 goto direct_uncharge;
2599
2600         /*
2601          * In typical case, batch->memcg == mem. This means we can
2602          * merge a series of uncharges to an uncharge of res_counter.
2603          * If not, we uncharge res_counter ony by one.
2604          */
2605         if (batch->memcg != mem)
2606                 goto direct_uncharge;
2607         /* remember freed charge and uncharge it later */
2608         batch->bytes += PAGE_SIZE;
2609         if (uncharge_memsw)
2610                 batch->memsw_bytes += PAGE_SIZE;
2611         return;
2612 direct_uncharge:
2613         res_counter_uncharge(&mem->res, page_size);
2614         if (uncharge_memsw)
2615                 res_counter_uncharge(&mem->memsw, page_size);
2616         if (unlikely(batch->memcg != mem))
2617                 memcg_oom_recover(mem);
2618         return;
2619 }
2620
2621 /*
2622  * uncharge if !page_mapped(page)
2623  */
2624 static struct mem_cgroup *
2625 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2626 {
2627         int count;
2628         struct page_cgroup *pc;
2629         struct mem_cgroup *mem = NULL;
2630         int page_size = PAGE_SIZE;
2631
2632         if (mem_cgroup_disabled())
2633                 return NULL;
2634
2635         if (PageSwapCache(page))
2636                 return NULL;
2637
2638         if (PageTransHuge(page)) {
2639                 page_size <<= compound_order(page);
2640                 VM_BUG_ON(!PageTransHuge(page));
2641         }
2642
2643         count = page_size >> PAGE_SHIFT;
2644         /*
2645          * Check if our page_cgroup is valid
2646          */
2647         pc = lookup_page_cgroup(page);
2648         if (unlikely(!pc || !PageCgroupUsed(pc)))
2649                 return NULL;
2650
2651         lock_page_cgroup(pc);
2652
2653         mem = pc->mem_cgroup;
2654
2655         if (!PageCgroupUsed(pc))
2656                 goto unlock_out;
2657
2658         switch (ctype) {
2659         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2660         case MEM_CGROUP_CHARGE_TYPE_DROP:
2661                 /* See mem_cgroup_prepare_migration() */
2662                 if (page_mapped(page) || PageCgroupMigration(pc))
2663                         goto unlock_out;
2664                 break;
2665         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2666                 if (!PageAnon(page)) {  /* Shared memory */
2667                         if (page->mapping && !page_is_file_cache(page))
2668                                 goto unlock_out;
2669                 } else if (page_mapped(page)) /* Anon */
2670                                 goto unlock_out;
2671                 break;
2672         default:
2673                 break;
2674         }
2675
2676         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2677
2678         ClearPageCgroupUsed(pc);
2679         /*
2680          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2681          * freed from LRU. This is safe because uncharged page is expected not
2682          * to be reused (freed soon). Exception is SwapCache, it's handled by
2683          * special functions.
2684          */
2685
2686         unlock_page_cgroup(pc);
2687         /*
2688          * even after unlock, we have mem->res.usage here and this memcg
2689          * will never be freed.
2690          */
2691         memcg_check_events(mem, page);
2692         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2693                 mem_cgroup_swap_statistics(mem, true);
2694                 mem_cgroup_get(mem);
2695         }
2696         if (!mem_cgroup_is_root(mem))
2697                 __do_uncharge(mem, ctype, page_size);
2698
2699         return mem;
2700
2701 unlock_out:
2702         unlock_page_cgroup(pc);
2703         return NULL;
2704 }
2705
2706 void mem_cgroup_uncharge_page(struct page *page)
2707 {
2708         /* early check. */
2709         if (page_mapped(page))
2710                 return;
2711         if (page->mapping && !PageAnon(page))
2712                 return;
2713         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2714 }
2715
2716 void mem_cgroup_uncharge_cache_page(struct page *page)
2717 {
2718         VM_BUG_ON(page_mapped(page));
2719         VM_BUG_ON(page->mapping);
2720         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2721 }
2722
2723 /*
2724  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2725  * In that cases, pages are freed continuously and we can expect pages
2726  * are in the same memcg. All these calls itself limits the number of
2727  * pages freed at once, then uncharge_start/end() is called properly.
2728  * This may be called prural(2) times in a context,
2729  */
2730
2731 void mem_cgroup_uncharge_start(void)
2732 {
2733         current->memcg_batch.do_batch++;
2734         /* We can do nest. */
2735         if (current->memcg_batch.do_batch == 1) {
2736                 current->memcg_batch.memcg = NULL;
2737                 current->memcg_batch.bytes = 0;
2738                 current->memcg_batch.memsw_bytes = 0;
2739         }
2740 }
2741
2742 void mem_cgroup_uncharge_end(void)
2743 {
2744         struct memcg_batch_info *batch = &current->memcg_batch;
2745
2746         if (!batch->do_batch)
2747                 return;
2748
2749         batch->do_batch--;
2750         if (batch->do_batch) /* If stacked, do nothing. */
2751                 return;
2752
2753         if (!batch->memcg)
2754                 return;
2755         /*
2756          * This "batch->memcg" is valid without any css_get/put etc...
2757          * bacause we hide charges behind us.
2758          */
2759         if (batch->bytes)
2760                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2761         if (batch->memsw_bytes)
2762                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2763         memcg_oom_recover(batch->memcg);
2764         /* forget this pointer (for sanity check) */
2765         batch->memcg = NULL;
2766 }
2767
2768 #ifdef CONFIG_SWAP
2769 /*
2770  * called after __delete_from_swap_cache() and drop "page" account.
2771  * memcg information is recorded to swap_cgroup of "ent"
2772  */
2773 void
2774 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2775 {
2776         struct mem_cgroup *memcg;
2777         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2778
2779         if (!swapout) /* this was a swap cache but the swap is unused ! */
2780                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2781
2782         memcg = __mem_cgroup_uncharge_common(page, ctype);
2783
2784         /*
2785          * record memcg information,  if swapout && memcg != NULL,
2786          * mem_cgroup_get() was called in uncharge().
2787          */
2788         if (do_swap_account && swapout && memcg)
2789                 swap_cgroup_record(ent, css_id(&memcg->css));
2790 }
2791 #endif
2792
2793 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2794 /*
2795  * called from swap_entry_free(). remove record in swap_cgroup and
2796  * uncharge "memsw" account.
2797  */
2798 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2799 {
2800         struct mem_cgroup *memcg;
2801         unsigned short id;
2802
2803         if (!do_swap_account)
2804                 return;
2805
2806         id = swap_cgroup_record(ent, 0);
2807         rcu_read_lock();
2808         memcg = mem_cgroup_lookup(id);
2809         if (memcg) {
2810                 /*
2811                  * We uncharge this because swap is freed.
2812                  * This memcg can be obsolete one. We avoid calling css_tryget
2813                  */
2814                 if (!mem_cgroup_is_root(memcg))
2815                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2816                 mem_cgroup_swap_statistics(memcg, false);
2817                 mem_cgroup_put(memcg);
2818         }
2819         rcu_read_unlock();
2820 }
2821
2822 /**
2823  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2824  * @entry: swap entry to be moved
2825  * @from:  mem_cgroup which the entry is moved from
2826  * @to:  mem_cgroup which the entry is moved to
2827  * @need_fixup: whether we should fixup res_counters and refcounts.
2828  *
2829  * It succeeds only when the swap_cgroup's record for this entry is the same
2830  * as the mem_cgroup's id of @from.
2831  *
2832  * Returns 0 on success, -EINVAL on failure.
2833  *
2834  * The caller must have charged to @to, IOW, called res_counter_charge() about
2835  * both res and memsw, and called css_get().
2836  */
2837 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2838                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2839 {
2840         unsigned short old_id, new_id;
2841
2842         old_id = css_id(&from->css);
2843         new_id = css_id(&to->css);
2844
2845         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2846                 mem_cgroup_swap_statistics(from, false);
2847                 mem_cgroup_swap_statistics(to, true);
2848                 /*
2849                  * This function is only called from task migration context now.
2850                  * It postpones res_counter and refcount handling till the end
2851                  * of task migration(mem_cgroup_clear_mc()) for performance
2852                  * improvement. But we cannot postpone mem_cgroup_get(to)
2853                  * because if the process that has been moved to @to does
2854                  * swap-in, the refcount of @to might be decreased to 0.
2855                  */
2856                 mem_cgroup_get(to);
2857                 if (need_fixup) {
2858                         if (!mem_cgroup_is_root(from))
2859                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2860                         mem_cgroup_put(from);
2861                         /*
2862                          * we charged both to->res and to->memsw, so we should
2863                          * uncharge to->res.
2864                          */
2865                         if (!mem_cgroup_is_root(to))
2866                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2867                 }
2868                 return 0;
2869         }
2870         return -EINVAL;
2871 }
2872 #else
2873 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2874                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2875 {
2876         return -EINVAL;
2877 }
2878 #endif
2879
2880 /*
2881  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2882  * page belongs to.
2883  */
2884 int mem_cgroup_prepare_migration(struct page *page,
2885         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2886 {
2887         struct page_cgroup *pc;
2888         struct mem_cgroup *mem = NULL;
2889         enum charge_type ctype;
2890         int ret = 0;
2891
2892         *ptr = NULL;
2893
2894         VM_BUG_ON(PageTransHuge(page));
2895         if (mem_cgroup_disabled())
2896                 return 0;
2897
2898         pc = lookup_page_cgroup(page);
2899         lock_page_cgroup(pc);
2900         if (PageCgroupUsed(pc)) {
2901                 mem = pc->mem_cgroup;
2902                 css_get(&mem->css);
2903                 /*
2904                  * At migrating an anonymous page, its mapcount goes down
2905                  * to 0 and uncharge() will be called. But, even if it's fully
2906                  * unmapped, migration may fail and this page has to be
2907                  * charged again. We set MIGRATION flag here and delay uncharge
2908                  * until end_migration() is called
2909                  *
2910                  * Corner Case Thinking
2911                  * A)
2912                  * When the old page was mapped as Anon and it's unmap-and-freed
2913                  * while migration was ongoing.
2914                  * If unmap finds the old page, uncharge() of it will be delayed
2915                  * until end_migration(). If unmap finds a new page, it's
2916                  * uncharged when it make mapcount to be 1->0. If unmap code
2917                  * finds swap_migration_entry, the new page will not be mapped
2918                  * and end_migration() will find it(mapcount==0).
2919                  *
2920                  * B)
2921                  * When the old page was mapped but migraion fails, the kernel
2922                  * remaps it. A charge for it is kept by MIGRATION flag even
2923                  * if mapcount goes down to 0. We can do remap successfully
2924                  * without charging it again.
2925                  *
2926                  * C)
2927                  * The "old" page is under lock_page() until the end of
2928                  * migration, so, the old page itself will not be swapped-out.
2929                  * If the new page is swapped out before end_migraton, our
2930                  * hook to usual swap-out path will catch the event.
2931                  */
2932                 if (PageAnon(page))
2933                         SetPageCgroupMigration(pc);
2934         }
2935         unlock_page_cgroup(pc);
2936         /*
2937          * If the page is not charged at this point,
2938          * we return here.
2939          */
2940         if (!mem)
2941                 return 0;
2942
2943         *ptr = mem;
2944         ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2945         css_put(&mem->css);/* drop extra refcnt */
2946         if (ret || *ptr == NULL) {
2947                 if (PageAnon(page)) {
2948                         lock_page_cgroup(pc);
2949                         ClearPageCgroupMigration(pc);
2950                         unlock_page_cgroup(pc);
2951                         /*
2952                          * The old page may be fully unmapped while we kept it.
2953                          */
2954                         mem_cgroup_uncharge_page(page);
2955                 }
2956                 return -ENOMEM;
2957         }
2958         /*
2959          * We charge new page before it's used/mapped. So, even if unlock_page()
2960          * is called before end_migration, we can catch all events on this new
2961          * page. In the case new page is migrated but not remapped, new page's
2962          * mapcount will be finally 0 and we call uncharge in end_migration().
2963          */
2964         pc = lookup_page_cgroup(newpage);
2965         if (PageAnon(page))
2966                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2967         else if (page_is_file_cache(page))
2968                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2969         else
2970                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2971         __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2972         return ret;
2973 }
2974
2975 /* remove redundant charge if migration failed*/
2976 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2977         struct page *oldpage, struct page *newpage, bool migration_ok)
2978 {
2979         struct page *used, *unused;
2980         struct page_cgroup *pc;
2981
2982         if (!mem)
2983                 return;
2984         /* blocks rmdir() */
2985         cgroup_exclude_rmdir(&mem->css);
2986         if (!migration_ok) {
2987                 used = oldpage;
2988                 unused = newpage;
2989         } else {
2990                 used = newpage;
2991                 unused = oldpage;
2992         }
2993         /*
2994          * We disallowed uncharge of pages under migration because mapcount
2995          * of the page goes down to zero, temporarly.
2996          * Clear the flag and check the page should be charged.
2997          */
2998         pc = lookup_page_cgroup(oldpage);
2999         lock_page_cgroup(pc);
3000         ClearPageCgroupMigration(pc);
3001         unlock_page_cgroup(pc);
3002
3003         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3004
3005         /*
3006          * If a page is a file cache, radix-tree replacement is very atomic
3007          * and we can skip this check. When it was an Anon page, its mapcount
3008          * goes down to 0. But because we added MIGRATION flage, it's not
3009          * uncharged yet. There are several case but page->mapcount check
3010          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3011          * check. (see prepare_charge() also)
3012          */
3013         if (PageAnon(used))
3014                 mem_cgroup_uncharge_page(used);
3015         /*
3016          * At migration, we may charge account against cgroup which has no
3017          * tasks.
3018          * So, rmdir()->pre_destroy() can be called while we do this charge.
3019          * In that case, we need to call pre_destroy() again. check it here.
3020          */
3021         cgroup_release_and_wakeup_rmdir(&mem->css);
3022 }
3023
3024 /*
3025  * A call to try to shrink memory usage on charge failure at shmem's swapin.
3026  * Calling hierarchical_reclaim is not enough because we should update
3027  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3028  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3029  * not from the memcg which this page would be charged to.
3030  * try_charge_swapin does all of these works properly.
3031  */
3032 int mem_cgroup_shmem_charge_fallback(struct page *page,
3033                             struct mm_struct *mm,
3034                             gfp_t gfp_mask)
3035 {
3036         struct mem_cgroup *mem;
3037         int ret;
3038
3039         if (mem_cgroup_disabled())
3040                 return 0;
3041
3042         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3043         if (!ret)
3044                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3045
3046         return ret;
3047 }
3048
3049 #ifdef CONFIG_DEBUG_VM
3050 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3051 {
3052         struct page_cgroup *pc;
3053
3054         pc = lookup_page_cgroup(page);
3055         if (likely(pc) && PageCgroupUsed(pc))
3056                 return pc;
3057         return NULL;
3058 }
3059
3060 bool mem_cgroup_bad_page_check(struct page *page)
3061 {
3062         if (mem_cgroup_disabled())
3063                 return false;
3064
3065         return lookup_page_cgroup_used(page) != NULL;
3066 }
3067
3068 void mem_cgroup_print_bad_page(struct page *page)
3069 {
3070         struct page_cgroup *pc;
3071
3072         pc = lookup_page_cgroup_used(page);
3073         if (pc) {
3074                 int ret = -1;
3075                 char *path;
3076
3077                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3078                        pc, pc->flags, pc->mem_cgroup);
3079
3080                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3081                 if (path) {
3082                         rcu_read_lock();
3083                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3084                                                         path, PATH_MAX);
3085                         rcu_read_unlock();
3086                 }
3087
3088                 printk(KERN_CONT "(%s)\n",
3089                                 (ret < 0) ? "cannot get the path" : path);
3090                 kfree(path);
3091         }
3092 }
3093 #endif
3094
3095 static DEFINE_MUTEX(set_limit_mutex);
3096
3097 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3098                                 unsigned long long val)
3099 {
3100         int retry_count;
3101         u64 memswlimit, memlimit;
3102         int ret = 0;
3103         int children = mem_cgroup_count_children(memcg);
3104         u64 curusage, oldusage;
3105         int enlarge;
3106
3107         /*
3108          * For keeping hierarchical_reclaim simple, how long we should retry
3109          * is depends on callers. We set our retry-count to be function
3110          * of # of children which we should visit in this loop.
3111          */
3112         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3113
3114         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3115
3116         enlarge = 0;
3117         while (retry_count) {
3118                 if (signal_pending(current)) {
3119                         ret = -EINTR;
3120                         break;
3121                 }
3122                 /*
3123                  * Rather than hide all in some function, I do this in
3124                  * open coded manner. You see what this really does.
3125                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3126                  */
3127                 mutex_lock(&set_limit_mutex);
3128                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3129                 if (memswlimit < val) {
3130                         ret = -EINVAL;
3131                         mutex_unlock(&set_limit_mutex);
3132                         break;
3133                 }
3134
3135                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3136                 if (memlimit < val)
3137                         enlarge = 1;
3138
3139                 ret = res_counter_set_limit(&memcg->res, val);
3140                 if (!ret) {
3141                         if (memswlimit == val)
3142                                 memcg->memsw_is_minimum = true;
3143                         else
3144                                 memcg->memsw_is_minimum = false;
3145                 }
3146                 mutex_unlock(&set_limit_mutex);
3147
3148                 if (!ret)
3149                         break;
3150
3151                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3152                                                 MEM_CGROUP_RECLAIM_SHRINK);
3153                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3154                 /* Usage is reduced ? */
3155                 if (curusage >= oldusage)
3156                         retry_count--;
3157                 else
3158                         oldusage = curusage;
3159         }
3160         if (!ret && enlarge)
3161                 memcg_oom_recover(memcg);
3162
3163         return ret;
3164 }
3165
3166 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3167                                         unsigned long long val)
3168 {
3169         int retry_count;
3170         u64 memlimit, memswlimit, oldusage, curusage;
3171         int children = mem_cgroup_count_children(memcg);
3172         int ret = -EBUSY;
3173         int enlarge = 0;
3174
3175         /* see mem_cgroup_resize_res_limit */
3176         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3177         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3178         while (retry_count) {
3179                 if (signal_pending(current)) {
3180                         ret = -EINTR;
3181                         break;
3182                 }
3183                 /*
3184                  * Rather than hide all in some function, I do this in
3185                  * open coded manner. You see what this really does.
3186                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3187                  */
3188                 mutex_lock(&set_limit_mutex);
3189                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3190                 if (memlimit > val) {
3191                         ret = -EINVAL;
3192                         mutex_unlock(&set_limit_mutex);
3193                         break;
3194                 }
3195                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3196                 if (memswlimit < val)
3197                         enlarge = 1;
3198                 ret = res_counter_set_limit(&memcg->memsw, val);
3199                 if (!ret) {
3200                         if (memlimit == val)
3201                                 memcg->memsw_is_minimum = true;
3202                         else
3203                                 memcg->memsw_is_minimum = false;
3204                 }
3205                 mutex_unlock(&set_limit_mutex);
3206
3207                 if (!ret)
3208                         break;
3209
3210                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3211                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3212                                                 MEM_CGROUP_RECLAIM_SHRINK);
3213                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3214                 /* Usage is reduced ? */
3215                 if (curusage >= oldusage)
3216                         retry_count--;
3217                 else
3218                         oldusage = curusage;
3219         }
3220         if (!ret && enlarge)
3221                 memcg_oom_recover(memcg);
3222         return ret;
3223 }
3224
3225 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3226                                             gfp_t gfp_mask)
3227 {
3228         unsigned long nr_reclaimed = 0;
3229         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3230         unsigned long reclaimed;
3231         int loop = 0;
3232         struct mem_cgroup_tree_per_zone *mctz;
3233         unsigned long long excess;
3234
3235         if (order > 0)
3236                 return 0;
3237
3238         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3239         /*
3240          * This loop can run a while, specially if mem_cgroup's continuously
3241          * keep exceeding their soft limit and putting the system under
3242          * pressure
3243          */
3244         do {
3245                 if (next_mz)
3246                         mz = next_mz;
3247                 else
3248                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3249                 if (!mz)
3250                         break;
3251
3252                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3253                                                 gfp_mask,
3254                                                 MEM_CGROUP_RECLAIM_SOFT);
3255                 nr_reclaimed += reclaimed;
3256                 spin_lock(&mctz->lock);
3257
3258                 /*
3259                  * If we failed to reclaim anything from this memory cgroup
3260                  * it is time to move on to the next cgroup
3261                  */
3262                 next_mz = NULL;
3263                 if (!reclaimed) {
3264                         do {
3265                                 /*
3266                                  * Loop until we find yet another one.
3267                                  *
3268                                  * By the time we get the soft_limit lock
3269                                  * again, someone might have aded the
3270                                  * group back on the RB tree. Iterate to
3271                                  * make sure we get a different mem.
3272                                  * mem_cgroup_largest_soft_limit_node returns
3273                                  * NULL if no other cgroup is present on
3274                                  * the tree
3275                                  */
3276                                 next_mz =
3277                                 __mem_cgroup_largest_soft_limit_node(mctz);
3278                                 if (next_mz == mz) {
3279                                         css_put(&next_mz->mem->css);
3280                                         next_mz = NULL;
3281                                 } else /* next_mz == NULL or other memcg */
3282                                         break;
3283                         } while (1);
3284                 }
3285                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3286                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3287                 /*
3288                  * One school of thought says that we should not add
3289                  * back the node to the tree if reclaim returns 0.
3290                  * But our reclaim could return 0, simply because due
3291                  * to priority we are exposing a smaller subset of
3292                  * memory to reclaim from. Consider this as a longer
3293                  * term TODO.
3294                  */
3295                 /* If excess == 0, no tree ops */
3296                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3297                 spin_unlock(&mctz->lock);
3298                 css_put(&mz->mem->css);
3299                 loop++;
3300                 /*
3301                  * Could not reclaim anything and there are no more
3302                  * mem cgroups to try or we seem to be looping without
3303                  * reclaiming anything.
3304                  */
3305                 if (!nr_reclaimed &&
3306                         (next_mz == NULL ||
3307                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3308                         break;
3309         } while (!nr_reclaimed);
3310         if (next_mz)
3311                 css_put(&next_mz->mem->css);
3312         return nr_reclaimed;
3313 }
3314
3315 /*
3316  * This routine traverse page_cgroup in given list and drop them all.
3317  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3318  */
3319 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3320                                 int node, int zid, enum lru_list lru)
3321 {
3322         struct zone *zone;
3323         struct mem_cgroup_per_zone *mz;
3324         struct page_cgroup *pc, *busy;
3325         unsigned long flags, loop;
3326         struct list_head *list;
3327         int ret = 0;
3328
3329         zone = &NODE_DATA(node)->node_zones[zid];
3330         mz = mem_cgroup_zoneinfo(mem, node, zid);
3331         list = &mz->lists[lru];
3332
3333         loop = MEM_CGROUP_ZSTAT(mz, lru);
3334         /* give some margin against EBUSY etc...*/
3335         loop += 256;
3336         busy = NULL;
3337         while (loop--) {
3338                 ret = 0;
3339                 spin_lock_irqsave(&zone->lru_lock, flags);
3340                 if (list_empty(list)) {
3341                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3342                         break;
3343                 }
3344                 pc = list_entry(list->prev, struct page_cgroup, lru);
3345                 if (busy == pc) {
3346                         list_move(&pc->lru, list);
3347                         busy = NULL;
3348                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3349                         continue;
3350                 }
3351                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3352
3353                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3354                 if (ret == -ENOMEM)
3355                         break;
3356
3357                 if (ret == -EBUSY || ret == -EINVAL) {
3358                         /* found lock contention or "pc" is obsolete. */
3359                         busy = pc;
3360                         cond_resched();
3361                 } else
3362                         busy = NULL;
3363         }
3364
3365         if (!ret && !list_empty(list))
3366                 return -EBUSY;
3367         return ret;
3368 }
3369
3370 /*
3371  * make mem_cgroup's charge to be 0 if there is no task.
3372  * This enables deleting this mem_cgroup.
3373  */
3374 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3375 {
3376         int ret;
3377         int node, zid, shrink;
3378         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3379         struct cgroup *cgrp = mem->css.cgroup;
3380
3381         css_get(&mem->css);
3382
3383         shrink = 0;
3384         /* should free all ? */
3385         if (free_all)
3386                 goto try_to_free;
3387 move_account:
3388         do {
3389                 ret = -EBUSY;
3390                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3391                         goto out;
3392                 ret = -EINTR;
3393                 if (signal_pending(current))
3394                         goto out;
3395                 /* This is for making all *used* pages to be on LRU. */
3396                 lru_add_drain_all();
3397                 drain_all_stock_sync();
3398                 ret = 0;
3399                 mem_cgroup_start_move(mem);
3400                 for_each_node_state(node, N_HIGH_MEMORY) {
3401                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3402                                 enum lru_list l;
3403                                 for_each_lru(l) {
3404                                         ret = mem_cgroup_force_empty_list(mem,
3405                                                         node, zid, l);
3406                                         if (ret)
3407                                                 break;
3408                                 }
3409                         }
3410                         if (ret)
3411                                 break;
3412                 }
3413                 mem_cgroup_end_move(mem);
3414                 memcg_oom_recover(mem);
3415                 /* it seems parent cgroup doesn't have enough mem */
3416                 if (ret == -ENOMEM)
3417                         goto try_to_free;
3418                 cond_resched();
3419         /* "ret" should also be checked to ensure all lists are empty. */
3420         } while (mem->res.usage > 0 || ret);
3421 out:
3422         css_put(&mem->css);
3423         return ret;
3424
3425 try_to_free:
3426         /* returns EBUSY if there is a task or if we come here twice. */
3427         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3428                 ret = -EBUSY;
3429                 goto out;
3430         }
3431         /* we call try-to-free pages for make this cgroup empty */
3432         lru_add_drain_all();
3433         /* try to free all pages in this cgroup */
3434         shrink = 1;
3435         while (nr_retries && mem->res.usage > 0) {
3436                 int progress;
3437
3438                 if (signal_pending(current)) {
3439                         ret = -EINTR;
3440                         goto out;
3441                 }
3442                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3443                                                 false, get_swappiness(mem));
3444                 if (!progress) {
3445                         nr_retries--;
3446                         /* maybe some writeback is necessary */
3447                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3448                 }
3449
3450         }
3451         lru_add_drain();
3452         /* try move_account...there may be some *locked* pages. */
3453         goto move_account;
3454 }
3455
3456 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3457 {
3458         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3459 }
3460
3461
3462 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3463 {
3464         return mem_cgroup_from_cont(cont)->use_hierarchy;
3465 }
3466
3467 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3468                                         u64 val)
3469 {
3470         int retval = 0;
3471         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3472         struct cgroup *parent = cont->parent;
3473         struct mem_cgroup *parent_mem = NULL;
3474
3475         if (parent)
3476                 parent_mem = mem_cgroup_from_cont(parent);
3477
3478         cgroup_lock();
3479         /*
3480          * If parent's use_hierarchy is set, we can't make any modifications
3481          * in the child subtrees. If it is unset, then the change can
3482          * occur, provided the current cgroup has no children.
3483          *
3484          * For the root cgroup, parent_mem is NULL, we allow value to be
3485          * set if there are no children.
3486          */
3487         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3488                                 (val == 1 || val == 0)) {
3489                 if (list_empty(&cont->children))
3490                         mem->use_hierarchy = val;
3491                 else
3492                         retval = -EBUSY;
3493         } else
3494                 retval = -EINVAL;
3495         cgroup_unlock();
3496
3497         return retval;
3498 }
3499
3500
3501 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3502                                 enum mem_cgroup_stat_index idx)
3503 {
3504         struct mem_cgroup *iter;
3505         s64 val = 0;
3506
3507         /* each per cpu's value can be minus.Then, use s64 */
3508         for_each_mem_cgroup_tree(iter, mem)
3509                 val += mem_cgroup_read_stat(iter, idx);
3510
3511         if (val < 0) /* race ? */
3512                 val = 0;
3513         return val;
3514 }
3515
3516 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3517 {
3518         u64 val;
3519
3520         if (!mem_cgroup_is_root(mem)) {
3521                 if (!swap)
3522                         return res_counter_read_u64(&mem->res, RES_USAGE);
3523                 else
3524                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3525         }
3526
3527         val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3528         val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3529
3530         if (swap)
3531                 val += mem_cgroup_get_recursive_idx_stat(mem,
3532                                 MEM_CGROUP_STAT_SWAPOUT);
3533
3534         return val << PAGE_SHIFT;
3535 }
3536
3537 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3538 {
3539         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3540         u64 val;
3541         int type, name;
3542
3543         type = MEMFILE_TYPE(cft->private);
3544         name = MEMFILE_ATTR(cft->private);
3545         switch (type) {
3546         case _MEM:
3547                 if (name == RES_USAGE)
3548                         val = mem_cgroup_usage(mem, false);
3549                 else
3550                         val = res_counter_read_u64(&mem->res, name);
3551                 break;
3552         case _MEMSWAP:
3553                 if (name == RES_USAGE)
3554                         val = mem_cgroup_usage(mem, true);
3555                 else
3556                         val = res_counter_read_u64(&mem->memsw, name);
3557                 break;
3558         default:
3559                 BUG();
3560                 break;
3561         }
3562         return val;
3563 }
3564 /*
3565  * The user of this function is...
3566  * RES_LIMIT.
3567  */
3568 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3569                             const char *buffer)
3570 {
3571         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3572         int type, name;
3573         unsigned long long val;
3574         int ret;
3575
3576         type = MEMFILE_TYPE(cft->private);
3577         name = MEMFILE_ATTR(cft->private);
3578         switch (name) {
3579         case RES_LIMIT:
3580                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3581                         ret = -EINVAL;
3582                         break;
3583                 }
3584                 /* This function does all necessary parse...reuse it */
3585                 ret = res_counter_memparse_write_strategy(buffer, &val);
3586                 if (ret)
3587                         break;
3588                 if (type == _MEM)
3589                         ret = mem_cgroup_resize_limit(memcg, val);
3590                 else
3591                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3592                 break;
3593         case RES_SOFT_LIMIT:
3594                 ret = res_counter_memparse_write_strategy(buffer, &val);
3595                 if (ret)
3596                         break;
3597                 /*
3598                  * For memsw, soft limits are hard to implement in terms
3599                  * of semantics, for now, we support soft limits for
3600                  * control without swap
3601                  */
3602                 if (type == _MEM)
3603                         ret = res_counter_set_soft_limit(&memcg->res, val);
3604                 else
3605                         ret = -EINVAL;
3606                 break;
3607         default:
3608                 ret = -EINVAL; /* should be BUG() ? */
3609                 break;
3610         }
3611         return ret;
3612 }
3613
3614 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3615                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3616 {
3617         struct cgroup *cgroup;
3618         unsigned long long min_limit, min_memsw_limit, tmp;
3619
3620         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3621         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3622         cgroup = memcg->css.cgroup;
3623         if (!memcg->use_hierarchy)
3624                 goto out;
3625
3626         while (cgroup->parent) {
3627                 cgroup = cgroup->parent;
3628                 memcg = mem_cgroup_from_cont(cgroup);
3629                 if (!memcg->use_hierarchy)
3630                         break;
3631                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3632                 min_limit = min(min_limit, tmp);
3633                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3634                 min_memsw_limit = min(min_memsw_limit, tmp);
3635         }
3636 out:
3637         *mem_limit = min_limit;
3638         *memsw_limit = min_memsw_limit;
3639         return;
3640 }
3641
3642 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3643 {
3644         struct mem_cgroup *mem;
3645         int type, name;
3646
3647         mem = mem_cgroup_from_cont(cont);
3648         type = MEMFILE_TYPE(event);
3649         name = MEMFILE_ATTR(event);
3650         switch (name) {
3651         case RES_MAX_USAGE:
3652                 if (type == _MEM)
3653                         res_counter_reset_max(&mem->res);
3654                 else
3655                         res_counter_reset_max(&mem->memsw);
3656                 break;
3657         case RES_FAILCNT:
3658                 if (type == _MEM)
3659                         res_counter_reset_failcnt(&mem->res);
3660                 else
3661                         res_counter_reset_failcnt(&mem->memsw);
3662                 break;
3663         }
3664
3665         return 0;
3666 }
3667
3668 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3669                                         struct cftype *cft)
3670 {
3671         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3672 }
3673
3674 #ifdef CONFIG_MMU
3675 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3676                                         struct cftype *cft, u64 val)
3677 {
3678         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3679
3680         if (val >= (1 << NR_MOVE_TYPE))
3681                 return -EINVAL;
3682         /*
3683          * We check this value several times in both in can_attach() and
3684          * attach(), so we need cgroup lock to prevent this value from being
3685          * inconsistent.
3686          */
3687         cgroup_lock();
3688         mem->move_charge_at_immigrate = val;
3689         cgroup_unlock();
3690
3691         return 0;
3692 }
3693 #else
3694 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3695                                         struct cftype *cft, u64 val)
3696 {
3697         return -ENOSYS;
3698 }
3699 #endif
3700
3701
3702 /* For read statistics */
3703 enum {
3704         MCS_CACHE,
3705         MCS_RSS,
3706         MCS_FILE_MAPPED,
3707         MCS_PGPGIN,
3708         MCS_PGPGOUT,
3709         MCS_SWAP,
3710         MCS_INACTIVE_ANON,
3711         MCS_ACTIVE_ANON,
3712         MCS_INACTIVE_FILE,
3713         MCS_ACTIVE_FILE,
3714         MCS_UNEVICTABLE,
3715         NR_MCS_STAT,
3716 };
3717
3718 struct mcs_total_stat {
3719         s64 stat[NR_MCS_STAT];
3720 };
3721
3722 struct {
3723         char *local_name;
3724         char *total_name;
3725 } memcg_stat_strings[NR_MCS_STAT] = {
3726         {"cache", "total_cache"},
3727         {"rss", "total_rss"},
3728         {"mapped_file", "total_mapped_file"},
3729         {"pgpgin", "total_pgpgin"},
3730         {"pgpgout", "total_pgpgout"},
3731         {"swap", "total_swap"},
3732         {"inactive_anon", "total_inactive_anon"},
3733         {"active_anon", "total_active_anon"},
3734         {"inactive_file", "total_inactive_file"},
3735         {"active_file", "total_active_file"},
3736         {"unevictable", "total_unevictable"}
3737 };
3738
3739
3740 static void
3741 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3742 {
3743         s64 val;
3744
3745         /* per cpu stat */
3746         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3747         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3748         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3749         s->stat[MCS_RSS] += val * PAGE_SIZE;
3750         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3751         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3752         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3753         s->stat[MCS_PGPGIN] += val;
3754         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3755         s->stat[MCS_PGPGOUT] += val;
3756         if (do_swap_account) {
3757                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3758                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3759         }
3760
3761         /* per zone stat */
3762         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3763         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3764         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3765         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3766         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3767         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3768         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3769         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3770         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3771         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3772 }
3773
3774 static void
3775 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3776 {
3777         struct mem_cgroup *iter;
3778
3779         for_each_mem_cgroup_tree(iter, mem)
3780                 mem_cgroup_get_local_stat(iter, s);
3781 }
3782
3783 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3784                                  struct cgroup_map_cb *cb)
3785 {
3786         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3787         struct mcs_total_stat mystat;
3788         int i;
3789
3790         memset(&mystat, 0, sizeof(mystat));
3791         mem_cgroup_get_local_stat(mem_cont, &mystat);
3792
3793         for (i = 0; i < NR_MCS_STAT; i++) {
3794                 if (i == MCS_SWAP && !do_swap_account)
3795                         continue;
3796                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3797         }
3798
3799         /* Hierarchical information */
3800         {
3801                 unsigned long long limit, memsw_limit;
3802                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3803                 cb->fill(cb, "hierarchical_memory_limit", limit);
3804                 if (do_swap_account)
3805                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3806         }
3807
3808         memset(&mystat, 0, sizeof(mystat));
3809         mem_cgroup_get_total_stat(mem_cont, &mystat);
3810         for (i = 0; i < NR_MCS_STAT; i++) {
3811                 if (i == MCS_SWAP && !do_swap_account)
3812                         continue;
3813                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3814         }
3815
3816 #ifdef CONFIG_DEBUG_VM
3817         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3818
3819         {
3820                 int nid, zid;
3821                 struct mem_cgroup_per_zone *mz;
3822                 unsigned long recent_rotated[2] = {0, 0};
3823                 unsigned long recent_scanned[2] = {0, 0};
3824
3825                 for_each_online_node(nid)
3826                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3827                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3828
3829                                 recent_rotated[0] +=
3830                                         mz->reclaim_stat.recent_rotated[0];
3831                                 recent_rotated[1] +=
3832                                         mz->reclaim_stat.recent_rotated[1];
3833                                 recent_scanned[0] +=
3834                                         mz->reclaim_stat.recent_scanned[0];
3835                                 recent_scanned[1] +=
3836                                         mz->reclaim_stat.recent_scanned[1];
3837                         }
3838                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3839                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3840                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3841                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3842         }
3843 #endif
3844
3845         return 0;
3846 }
3847
3848 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3849 {
3850         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3851
3852         return get_swappiness(memcg);
3853 }
3854
3855 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3856                                        u64 val)
3857 {
3858         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3859         struct mem_cgroup *parent;
3860
3861         if (val > 100)
3862                 return -EINVAL;
3863
3864         if (cgrp->parent == NULL)
3865                 return -EINVAL;
3866
3867         parent = mem_cgroup_from_cont(cgrp->parent);
3868
3869         cgroup_lock();
3870
3871         /* If under hierarchy, only empty-root can set this value */
3872         if ((parent->use_hierarchy) ||
3873             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3874                 cgroup_unlock();
3875                 return -EINVAL;
3876         }
3877
3878         spin_lock(&memcg->reclaim_param_lock);
3879         memcg->swappiness = val;
3880         spin_unlock(&memcg->reclaim_param_lock);
3881
3882         cgroup_unlock();
3883
3884         return 0;
3885 }
3886
3887 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3888 {
3889         struct mem_cgroup_threshold_ary *t;
3890         u64 usage;
3891         int i;
3892
3893         rcu_read_lock();
3894         if (!swap)
3895                 t = rcu_dereference(memcg->thresholds.primary);
3896         else
3897                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3898
3899         if (!t)
3900                 goto unlock;
3901
3902         usage = mem_cgroup_usage(memcg, swap);
3903
3904         /*
3905          * current_threshold points to threshold just below usage.
3906          * If it's not true, a threshold was crossed after last
3907          * call of __mem_cgroup_threshold().
3908          */
3909         i = t->current_threshold;
3910
3911         /*
3912          * Iterate backward over array of thresholds starting from
3913          * current_threshold and check if a threshold is crossed.
3914          * If none of thresholds below usage is crossed, we read
3915          * only one element of the array here.
3916          */
3917         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3918                 eventfd_signal(t->entries[i].eventfd, 1);
3919
3920         /* i = current_threshold + 1 */
3921         i++;
3922
3923         /*
3924          * Iterate forward over array of thresholds starting from
3925          * current_threshold+1 and check if a threshold is crossed.
3926          * If none of thresholds above usage is crossed, we read
3927          * only one element of the array here.
3928          */
3929         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3930                 eventfd_signal(t->entries[i].eventfd, 1);
3931
3932         /* Update current_threshold */
3933         t->current_threshold = i - 1;
3934 unlock:
3935         rcu_read_unlock();
3936 }
3937
3938 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3939 {
3940         while (memcg) {
3941                 __mem_cgroup_threshold(memcg, false);
3942                 if (do_swap_account)
3943                         __mem_cgroup_threshold(memcg, true);
3944
3945                 memcg = parent_mem_cgroup(memcg);
3946         }
3947 }
3948
3949 static int compare_thresholds(const void *a, const void *b)
3950 {
3951         const struct mem_cgroup_threshold *_a = a;
3952         const struct mem_cgroup_threshold *_b = b;
3953
3954         return _a->threshold - _b->threshold;
3955 }
3956
3957 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3958 {
3959         struct mem_cgroup_eventfd_list *ev;
3960
3961         list_for_each_entry(ev, &mem->oom_notify, list)
3962                 eventfd_signal(ev->eventfd, 1);
3963         return 0;
3964 }
3965
3966 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3967 {
3968         struct mem_cgroup *iter;
3969
3970         for_each_mem_cgroup_tree(iter, mem)
3971                 mem_cgroup_oom_notify_cb(iter);
3972 }
3973
3974 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3975         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3976 {
3977         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3978         struct mem_cgroup_thresholds *thresholds;
3979         struct mem_cgroup_threshold_ary *new;
3980         int type = MEMFILE_TYPE(cft->private);
3981         u64 threshold, usage;
3982         int i, size, ret;
3983
3984         ret = res_counter_memparse_write_strategy(args, &threshold);
3985         if (ret)
3986                 return ret;
3987
3988         mutex_lock(&memcg->thresholds_lock);
3989
3990         if (type == _MEM)
3991                 thresholds = &memcg->thresholds;
3992         else if (type == _MEMSWAP)
3993                 thresholds = &memcg->memsw_thresholds;
3994         else
3995                 BUG();
3996
3997         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3998
3999         /* Check if a threshold crossed before adding a new one */
4000         if (thresholds->primary)
4001                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4002
4003         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4004
4005         /* Allocate memory for new array of thresholds */
4006         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4007                         GFP_KERNEL);
4008         if (!new) {
4009                 ret = -ENOMEM;
4010                 goto unlock;
4011         }
4012         new->size = size;
4013
4014         /* Copy thresholds (if any) to new array */
4015         if (thresholds->primary) {
4016                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4017                                 sizeof(struct mem_cgroup_threshold));
4018         }
4019
4020         /* Add new threshold */
4021         new->entries[size - 1].eventfd = eventfd;
4022         new->entries[size - 1].threshold = threshold;
4023
4024         /* Sort thresholds. Registering of new threshold isn't time-critical */
4025         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4026                         compare_thresholds, NULL);
4027
4028         /* Find current threshold */
4029         new->current_threshold = -1;
4030         for (i = 0; i < size; i++) {
4031                 if (new->entries[i].threshold < usage) {
4032                         /*
4033                          * new->current_threshold will not be used until
4034                          * rcu_assign_pointer(), so it's safe to increment
4035                          * it here.
4036                          */
4037                         ++new->current_threshold;
4038                 }
4039         }
4040
4041         /* Free old spare buffer and save old primary buffer as spare */
4042         kfree(thresholds->spare);
4043         thresholds->spare = thresholds->primary;
4044
4045         rcu_assign_pointer(thresholds->primary, new);
4046
4047         /* To be sure that nobody uses thresholds */
4048         synchronize_rcu();
4049
4050 unlock:
4051         mutex_unlock(&memcg->thresholds_lock);
4052
4053         return ret;
4054 }
4055
4056 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4057         struct cftype *cft, struct eventfd_ctx *eventfd)
4058 {
4059         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4060         struct mem_cgroup_thresholds *thresholds;
4061         struct mem_cgroup_threshold_ary *new;
4062         int type = MEMFILE_TYPE(cft->private);
4063         u64 usage;
4064         int i, j, size;
4065
4066         mutex_lock(&memcg->thresholds_lock);
4067         if (type == _MEM)
4068                 thresholds = &memcg->thresholds;
4069         else if (type == _MEMSWAP)
4070                 thresholds = &memcg->memsw_thresholds;
4071         else
4072                 BUG();
4073
4074         /*
4075          * Something went wrong if we trying to unregister a threshold
4076          * if we don't have thresholds
4077          */
4078         BUG_ON(!thresholds);
4079
4080         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4081
4082         /* Check if a threshold crossed before removing */
4083         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4084
4085         /* Calculate new number of threshold */
4086         size = 0;
4087         for (i = 0; i < thresholds->primary->size; i++) {
4088                 if (thresholds->primary->entries[i].eventfd != eventfd)
4089                         size++;
4090         }
4091
4092         new = thresholds->spare;
4093
4094         /* Set thresholds array to NULL if we don't have thresholds */
4095         if (!size) {
4096                 kfree(new);
4097                 new = NULL;
4098                 goto swap_buffers;
4099         }
4100
4101         new->size = size;
4102
4103         /* Copy thresholds and find current threshold */
4104         new->current_threshold = -1;
4105         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4106                 if (thresholds->primary->entries[i].eventfd == eventfd)
4107                         continue;
4108
4109                 new->entries[j] = thresholds->primary->entries[i];
4110                 if (new->entries[j].threshold < usage) {
4111                         /*
4112                          * new->current_threshold will not be used
4113                          * until rcu_assign_pointer(), so it's safe to increment
4114                          * it here.
4115                          */
4116                         ++new->current_threshold;
4117                 }
4118                 j++;
4119         }
4120
4121 swap_buffers:
4122         /* Swap primary and spare array */
4123         thresholds->spare = thresholds->primary;
4124         rcu_assign_pointer(thresholds->primary, new);
4125
4126         /* To be sure that nobody uses thresholds */
4127         synchronize_rcu();
4128
4129         mutex_unlock(&memcg->thresholds_lock);
4130 }
4131
4132 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4133         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4134 {
4135         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4136         struct mem_cgroup_eventfd_list *event;
4137         int type = MEMFILE_TYPE(cft->private);
4138
4139         BUG_ON(type != _OOM_TYPE);
4140         event = kmalloc(sizeof(*event), GFP_KERNEL);
4141         if (!event)
4142                 return -ENOMEM;
4143
4144         mutex_lock(&memcg_oom_mutex);
4145
4146         event->eventfd = eventfd;
4147         list_add(&event->list, &memcg->oom_notify);
4148
4149         /* already in OOM ? */
4150         if (atomic_read(&memcg->oom_lock))
4151                 eventfd_signal(eventfd, 1);
4152         mutex_unlock(&memcg_oom_mutex);
4153
4154         return 0;
4155 }
4156
4157 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4158         struct cftype *cft, struct eventfd_ctx *eventfd)
4159 {
4160         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4161         struct mem_cgroup_eventfd_list *ev, *tmp;
4162         int type = MEMFILE_TYPE(cft->private);
4163
4164         BUG_ON(type != _OOM_TYPE);
4165
4166         mutex_lock(&memcg_oom_mutex);
4167
4168         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4169                 if (ev->eventfd == eventfd) {
4170                         list_del(&ev->list);
4171                         kfree(ev);
4172                 }
4173         }
4174
4175         mutex_unlock(&memcg_oom_mutex);
4176 }
4177
4178 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4179         struct cftype *cft,  struct cgroup_map_cb *cb)
4180 {
4181         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4182
4183         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4184
4185         if (atomic_read(&mem->oom_lock))
4186                 cb->fill(cb, "under_oom", 1);
4187         else
4188                 cb->fill(cb, "under_oom", 0);
4189         return 0;
4190 }
4191
4192 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4193         struct cftype *cft, u64 val)
4194 {
4195         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4196         struct mem_cgroup *parent;
4197
4198         /* cannot set to root cgroup and only 0 and 1 are allowed */
4199         if (!cgrp->parent || !((val == 0) || (val == 1)))
4200                 return -EINVAL;
4201
4202         parent = mem_cgroup_from_cont(cgrp->parent);
4203
4204         cgroup_lock();
4205         /* oom-kill-disable is a flag for subhierarchy. */
4206         if ((parent->use_hierarchy) ||
4207             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4208                 cgroup_unlock();
4209                 return -EINVAL;
4210         }
4211         mem->oom_kill_disable = val;
4212         if (!val)
4213                 memcg_oom_recover(mem);
4214         cgroup_unlock();
4215         return 0;
4216 }
4217
4218 static struct cftype mem_cgroup_files[] = {
4219         {
4220                 .name = "usage_in_bytes",
4221                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4222                 .read_u64 = mem_cgroup_read,
4223                 .register_event = mem_cgroup_usage_register_event,
4224                 .unregister_event = mem_cgroup_usage_unregister_event,
4225         },
4226         {
4227                 .name = "max_usage_in_bytes",
4228                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4229                 .trigger = mem_cgroup_reset,
4230                 .read_u64 = mem_cgroup_read,
4231         },
4232         {
4233                 .name = "limit_in_bytes",
4234                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4235                 .write_string = mem_cgroup_write,
4236                 .read_u64 = mem_cgroup_read,
4237         },
4238         {
4239                 .name = "soft_limit_in_bytes",
4240                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4241                 .write_string = mem_cgroup_write,
4242                 .read_u64 = mem_cgroup_read,
4243         },
4244         {
4245                 .name = "failcnt",
4246                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4247                 .trigger = mem_cgroup_reset,
4248                 .read_u64 = mem_cgroup_read,
4249         },
4250         {
4251                 .name = "stat",
4252                 .read_map = mem_control_stat_show,
4253         },
4254         {
4255                 .name = "force_empty",
4256                 .trigger = mem_cgroup_force_empty_write,
4257         },
4258         {
4259                 .name = "use_hierarchy",
4260                 .write_u64 = mem_cgroup_hierarchy_write,
4261                 .read_u64 = mem_cgroup_hierarchy_read,
4262         },
4263         {
4264                 .name = "swappiness",
4265                 .read_u64 = mem_cgroup_swappiness_read,
4266                 .write_u64 = mem_cgroup_swappiness_write,
4267         },
4268         {
4269                 .name = "move_charge_at_immigrate",
4270                 .read_u64 = mem_cgroup_move_charge_read,
4271                 .write_u64 = mem_cgroup_move_charge_write,
4272         },
4273         {
4274                 .name = "oom_control",
4275                 .read_map = mem_cgroup_oom_control_read,
4276                 .write_u64 = mem_cgroup_oom_control_write,
4277                 .register_event = mem_cgroup_oom_register_event,
4278                 .unregister_event = mem_cgroup_oom_unregister_event,
4279                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4280         },
4281 };
4282
4283 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4284 static struct cftype memsw_cgroup_files[] = {
4285         {
4286                 .name = "memsw.usage_in_bytes",
4287                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4288                 .read_u64 = mem_cgroup_read,
4289                 .register_event = mem_cgroup_usage_register_event,
4290                 .unregister_event = mem_cgroup_usage_unregister_event,
4291         },
4292         {
4293                 .name = "memsw.max_usage_in_bytes",
4294                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4295                 .trigger = mem_cgroup_reset,
4296                 .read_u64 = mem_cgroup_read,
4297         },
4298         {
4299                 .name = "memsw.limit_in_bytes",
4300                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4301                 .write_string = mem_cgroup_write,
4302                 .read_u64 = mem_cgroup_read,
4303         },
4304         {
4305                 .name = "memsw.failcnt",
4306                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4307                 .trigger = mem_cgroup_reset,
4308                 .read_u64 = mem_cgroup_read,
4309         },
4310 };
4311
4312 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4313 {
4314         if (!do_swap_account)
4315                 return 0;
4316         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4317                                 ARRAY_SIZE(memsw_cgroup_files));
4318 };
4319 #else
4320 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4321 {
4322         return 0;
4323 }
4324 #endif
4325
4326 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4327 {
4328         struct mem_cgroup_per_node *pn;
4329         struct mem_cgroup_per_zone *mz;
4330         enum lru_list l;
4331         int zone, tmp = node;
4332         /*
4333          * This routine is called against possible nodes.
4334          * But it's BUG to call kmalloc() against offline node.
4335          *
4336          * TODO: this routine can waste much memory for nodes which will
4337          *       never be onlined. It's better to use memory hotplug callback
4338          *       function.
4339          */
4340         if (!node_state(node, N_NORMAL_MEMORY))
4341                 tmp = -1;
4342         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4343         if (!pn)
4344                 return 1;
4345
4346         mem->info.nodeinfo[node] = pn;
4347         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4348                 mz = &pn->zoneinfo[zone];
4349                 for_each_lru(l)
4350                         INIT_LIST_HEAD(&mz->lists[l]);
4351                 mz->usage_in_excess = 0;
4352                 mz->on_tree = false;
4353                 mz->mem = mem;
4354         }
4355         return 0;
4356 }
4357
4358 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4359 {
4360         kfree(mem->info.nodeinfo[node]);
4361 }
4362
4363 static struct mem_cgroup *mem_cgroup_alloc(void)
4364 {
4365         struct mem_cgroup *mem;
4366         int size = sizeof(struct mem_cgroup);
4367
4368         /* Can be very big if MAX_NUMNODES is very big */
4369         if (size < PAGE_SIZE)
4370                 mem = kzalloc(size, GFP_KERNEL);
4371         else
4372                 mem = vzalloc(size);
4373
4374         if (!mem)
4375                 return NULL;
4376
4377         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4378         if (!mem->stat)
4379                 goto out_free;
4380         spin_lock_init(&mem->pcp_counter_lock);
4381         return mem;
4382
4383 out_free:
4384         if (size < PAGE_SIZE)
4385                 kfree(mem);
4386         else
4387                 vfree(mem);
4388         return NULL;
4389 }
4390
4391 /*
4392  * At destroying mem_cgroup, references from swap_cgroup can remain.
4393  * (scanning all at force_empty is too costly...)
4394  *
4395  * Instead of clearing all references at force_empty, we remember
4396  * the number of reference from swap_cgroup and free mem_cgroup when
4397  * it goes down to 0.
4398  *
4399  * Removal of cgroup itself succeeds regardless of refs from swap.
4400  */
4401
4402 static void __mem_cgroup_free(struct mem_cgroup *mem)
4403 {
4404         int node;
4405
4406         mem_cgroup_remove_from_trees(mem);
4407         free_css_id(&mem_cgroup_subsys, &mem->css);
4408
4409         for_each_node_state(node, N_POSSIBLE)
4410                 free_mem_cgroup_per_zone_info(mem, node);
4411
4412         free_percpu(mem->stat);
4413         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4414                 kfree(mem);
4415         else
4416                 vfree(mem);
4417 }
4418
4419 static void mem_cgroup_get(struct mem_cgroup *mem)
4420 {
4421         atomic_inc(&mem->refcnt);
4422 }
4423
4424 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4425 {
4426         if (atomic_sub_and_test(count, &mem->refcnt)) {
4427                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4428                 __mem_cgroup_free(mem);
4429                 if (parent)
4430                         mem_cgroup_put(parent);
4431         }
4432 }
4433
4434 static void mem_cgroup_put(struct mem_cgroup *mem)
4435 {
4436         __mem_cgroup_put(mem, 1);
4437 }
4438
4439 /*
4440  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4441  */
4442 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4443 {
4444         if (!mem->res.parent)
4445                 return NULL;
4446         return mem_cgroup_from_res_counter(mem->res.parent, res);
4447 }
4448
4449 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4450 static void __init enable_swap_cgroup(void)
4451 {
4452         if (!mem_cgroup_disabled() && really_do_swap_account)
4453                 do_swap_account = 1;
4454 }
4455 #else
4456 static void __init enable_swap_cgroup(void)
4457 {
4458 }
4459 #endif
4460
4461 static int mem_cgroup_soft_limit_tree_init(void)
4462 {
4463         struct mem_cgroup_tree_per_node *rtpn;
4464         struct mem_cgroup_tree_per_zone *rtpz;
4465         int tmp, node, zone;
4466
4467         for_each_node_state(node, N_POSSIBLE) {
4468                 tmp = node;
4469                 if (!node_state(node, N_NORMAL_MEMORY))
4470                         tmp = -1;
4471                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4472                 if (!rtpn)
4473                         return 1;
4474
4475                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4476
4477                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4478                         rtpz = &rtpn->rb_tree_per_zone[zone];
4479                         rtpz->rb_root = RB_ROOT;
4480                         spin_lock_init(&rtpz->lock);
4481                 }
4482         }
4483         return 0;
4484 }
4485
4486 static struct cgroup_subsys_state * __ref
4487 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4488 {
4489         struct mem_cgroup *mem, *parent;
4490         long error = -ENOMEM;
4491         int node;
4492
4493         mem = mem_cgroup_alloc();
4494         if (!mem)
4495                 return ERR_PTR(error);
4496
4497         for_each_node_state(node, N_POSSIBLE)
4498                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4499                         goto free_out;
4500
4501         /* root ? */
4502         if (cont->parent == NULL) {
4503                 int cpu;
4504                 enable_swap_cgroup();
4505                 parent = NULL;
4506                 root_mem_cgroup = mem;
4507                 if (mem_cgroup_soft_limit_tree_init())
4508                         goto free_out;
4509                 for_each_possible_cpu(cpu) {
4510                         struct memcg_stock_pcp *stock =
4511                                                 &per_cpu(memcg_stock, cpu);
4512                         INIT_WORK(&stock->work, drain_local_stock);
4513                 }
4514                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4515         } else {
4516                 parent = mem_cgroup_from_cont(cont->parent);
4517                 mem->use_hierarchy = parent->use_hierarchy;
4518                 mem->oom_kill_disable = parent->oom_kill_disable;
4519         }
4520
4521         if (parent && parent->use_hierarchy) {
4522                 res_counter_init(&mem->res, &parent->res);
4523                 res_counter_init(&mem->memsw, &parent->memsw);
4524                 /*
4525                  * We increment refcnt of the parent to ensure that we can
4526                  * safely access it on res_counter_charge/uncharge.
4527                  * This refcnt will be decremented when freeing this
4528                  * mem_cgroup(see mem_cgroup_put).
4529                  */
4530                 mem_cgroup_get(parent);
4531         } else {
4532                 res_counter_init(&mem->res, NULL);
4533                 res_counter_init(&mem->memsw, NULL);
4534         }
4535         mem->last_scanned_child = 0;
4536         spin_lock_init(&mem->reclaim_param_lock);
4537         INIT_LIST_HEAD(&mem->oom_notify);
4538
4539         if (parent)
4540                 mem->swappiness = get_swappiness(parent);
4541         atomic_set(&mem->refcnt, 1);
4542         mem->move_charge_at_immigrate = 0;
4543         mutex_init(&mem->thresholds_lock);
4544         return &mem->css;
4545 free_out:
4546         __mem_cgroup_free(mem);
4547         root_mem_cgroup = NULL;
4548         return ERR_PTR(error);
4549 }
4550
4551 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4552                                         struct cgroup *cont)
4553 {
4554         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4555
4556         return mem_cgroup_force_empty(mem, false);
4557 }
4558
4559 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4560                                 struct cgroup *cont)
4561 {
4562         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4563
4564         mem_cgroup_put(mem);
4565 }
4566
4567 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4568                                 struct cgroup *cont)
4569 {
4570         int ret;
4571
4572         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4573                                 ARRAY_SIZE(mem_cgroup_files));
4574
4575         if (!ret)
4576                 ret = register_memsw_files(cont, ss);
4577         return ret;
4578 }
4579
4580 #ifdef CONFIG_MMU
4581 /* Handlers for move charge at task migration. */
4582 #define PRECHARGE_COUNT_AT_ONCE 256
4583 static int mem_cgroup_do_precharge(unsigned long count)
4584 {
4585         int ret = 0;
4586         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4587         struct mem_cgroup *mem = mc.to;
4588
4589         if (mem_cgroup_is_root(mem)) {
4590                 mc.precharge += count;
4591                 /* we don't need css_get for root */
4592                 return ret;
4593         }
4594         /* try to charge at once */
4595         if (count > 1) {
4596                 struct res_counter *dummy;
4597                 /*
4598                  * "mem" cannot be under rmdir() because we've already checked
4599                  * by cgroup_lock_live_cgroup() that it is not removed and we
4600                  * are still under the same cgroup_mutex. So we can postpone
4601                  * css_get().
4602                  */
4603                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4604                         goto one_by_one;
4605                 if (do_swap_account && res_counter_charge(&mem->memsw,
4606                                                 PAGE_SIZE * count, &dummy)) {
4607                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4608                         goto one_by_one;
4609                 }
4610                 mc.precharge += count;
4611                 return ret;
4612         }
4613 one_by_one:
4614         /* fall back to one by one charge */
4615         while (count--) {
4616                 if (signal_pending(current)) {
4617                         ret = -EINTR;
4618                         break;
4619                 }
4620                 if (!batch_count--) {
4621                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4622                         cond_resched();
4623                 }
4624                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4625                                               PAGE_SIZE);
4626                 if (ret || !mem)
4627                         /* mem_cgroup_clear_mc() will do uncharge later */
4628                         return -ENOMEM;
4629                 mc.precharge++;
4630         }
4631         return ret;
4632 }
4633
4634 /**
4635  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4636  * @vma: the vma the pte to be checked belongs
4637  * @addr: the address corresponding to the pte to be checked
4638  * @ptent: the pte to be checked
4639  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4640  *
4641  * Returns
4642  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4643  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4644  *     move charge. if @target is not NULL, the page is stored in target->page
4645  *     with extra refcnt got(Callers should handle it).
4646  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4647  *     target for charge migration. if @target is not NULL, the entry is stored
4648  *     in target->ent.
4649  *
4650  * Called with pte lock held.
4651  */
4652 union mc_target {
4653         struct page     *page;
4654         swp_entry_t     ent;
4655 };
4656
4657 enum mc_target_type {
4658         MC_TARGET_NONE, /* not used */
4659         MC_TARGET_PAGE,
4660         MC_TARGET_SWAP,
4661 };
4662
4663 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4664                                                 unsigned long addr, pte_t ptent)
4665 {
4666         struct page *page = vm_normal_page(vma, addr, ptent);
4667
4668         if (!page || !page_mapped(page))
4669                 return NULL;
4670         if (PageAnon(page)) {
4671                 /* we don't move shared anon */
4672                 if (!move_anon() || page_mapcount(page) > 2)
4673                         return NULL;
4674         } else if (!move_file())
4675                 /* we ignore mapcount for file pages */
4676                 return NULL;
4677         if (!get_page_unless_zero(page))
4678                 return NULL;
4679
4680         return page;
4681 }
4682
4683 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4684                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4685 {
4686         int usage_count;
4687         struct page *page = NULL;
4688         swp_entry_t ent = pte_to_swp_entry(ptent);
4689
4690         if (!move_anon() || non_swap_entry(ent))
4691                 return NULL;
4692         usage_count = mem_cgroup_count_swap_user(ent, &page);
4693         if (usage_count > 1) { /* we don't move shared anon */
4694                 if (page)
4695                         put_page(page);
4696                 return NULL;
4697         }
4698         if (do_swap_account)
4699                 entry->val = ent.val;
4700
4701         return page;
4702 }
4703
4704 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4705                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4706 {
4707         struct page *page = NULL;
4708         struct inode *inode;
4709         struct address_space *mapping;
4710         pgoff_t pgoff;
4711
4712         if (!vma->vm_file) /* anonymous vma */
4713                 return NULL;
4714         if (!move_file())
4715                 return NULL;
4716
4717         inode = vma->vm_file->f_path.dentry->d_inode;
4718         mapping = vma->vm_file->f_mapping;
4719         if (pte_none(ptent))
4720                 pgoff = linear_page_index(vma, addr);
4721         else /* pte_file(ptent) is true */
4722                 pgoff = pte_to_pgoff(ptent);
4723
4724         /* page is moved even if it's not RSS of this task(page-faulted). */
4725         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4726                 page = find_get_page(mapping, pgoff);
4727         } else { /* shmem/tmpfs file. we should take account of swap too. */
4728                 swp_entry_t ent;
4729                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4730                 if (do_swap_account)
4731                         entry->val = ent.val;
4732         }
4733
4734         return page;
4735 }
4736
4737 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4738                 unsigned long addr, pte_t ptent, union mc_target *target)
4739 {
4740         struct page *page = NULL;
4741         struct page_cgroup *pc;
4742         int ret = 0;
4743         swp_entry_t ent = { .val = 0 };
4744
4745         if (pte_present(ptent))
4746                 page = mc_handle_present_pte(vma, addr, ptent);
4747         else if (is_swap_pte(ptent))
4748                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4749         else if (pte_none(ptent) || pte_file(ptent))
4750                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4751
4752         if (!page && !ent.val)
4753                 return 0;
4754         if (page) {
4755                 pc = lookup_page_cgroup(page);
4756                 /*
4757                  * Do only loose check w/o page_cgroup lock.
4758                  * mem_cgroup_move_account() checks the pc is valid or not under
4759                  * the lock.
4760                  */
4761                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4762                         ret = MC_TARGET_PAGE;
4763                         if (target)
4764                                 target->page = page;
4765                 }
4766                 if (!ret || !target)
4767                         put_page(page);
4768         }
4769         /* There is a swap entry and a page doesn't exist or isn't charged */
4770         if (ent.val && !ret &&
4771                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4772                 ret = MC_TARGET_SWAP;
4773                 if (target)
4774                         target->ent = ent;
4775         }
4776         return ret;
4777 }
4778
4779 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4780                                         unsigned long addr, unsigned long end,
4781                                         struct mm_walk *walk)
4782 {
4783         struct vm_area_struct *vma = walk->private;
4784         pte_t *pte;
4785         spinlock_t *ptl;
4786
4787         split_huge_page_pmd(walk->mm, pmd);
4788
4789         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4790         for (; addr != end; pte++, addr += PAGE_SIZE)
4791                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4792                         mc.precharge++; /* increment precharge temporarily */
4793         pte_unmap_unlock(pte - 1, ptl);
4794         cond_resched();
4795
4796         return 0;
4797 }
4798
4799 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4800 {
4801         unsigned long precharge;
4802         struct vm_area_struct *vma;
4803
4804         down_read(&mm->mmap_sem);
4805         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4806                 struct mm_walk mem_cgroup_count_precharge_walk = {
4807                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4808                         .mm = mm,
4809                         .private = vma,
4810                 };
4811                 if (is_vm_hugetlb_page(vma))
4812                         continue;
4813                 walk_page_range(vma->vm_start, vma->vm_end,
4814                                         &mem_cgroup_count_precharge_walk);
4815         }
4816         up_read(&mm->mmap_sem);
4817
4818         precharge = mc.precharge;
4819         mc.precharge = 0;
4820
4821         return precharge;
4822 }
4823
4824 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4825 {
4826         unsigned long precharge = mem_cgroup_count_precharge(mm);
4827
4828         VM_BUG_ON(mc.moving_task);
4829         mc.moving_task = current;
4830         return mem_cgroup_do_precharge(precharge);
4831 }
4832
4833 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4834 static void __mem_cgroup_clear_mc(void)
4835 {
4836         struct mem_cgroup *from = mc.from;
4837         struct mem_cgroup *to = mc.to;
4838
4839         /* we must uncharge all the leftover precharges from mc.to */
4840         if (mc.precharge) {
4841                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4842                 mc.precharge = 0;
4843         }
4844         /*
4845          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4846          * we must uncharge here.
4847          */
4848         if (mc.moved_charge) {
4849                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4850                 mc.moved_charge = 0;
4851         }
4852         /* we must fixup refcnts and charges */
4853         if (mc.moved_swap) {
4854                 /* uncharge swap account from the old cgroup */
4855                 if (!mem_cgroup_is_root(mc.from))
4856                         res_counter_uncharge(&mc.from->memsw,
4857                                                 PAGE_SIZE * mc.moved_swap);
4858                 __mem_cgroup_put(mc.from, mc.moved_swap);
4859
4860                 if (!mem_cgroup_is_root(mc.to)) {
4861                         /*
4862                          * we charged both to->res and to->memsw, so we should
4863                          * uncharge to->res.
4864                          */
4865                         res_counter_uncharge(&mc.to->res,
4866                                                 PAGE_SIZE * mc.moved_swap);
4867                 }
4868                 /* we've already done mem_cgroup_get(mc.to) */
4869                 mc.moved_swap = 0;
4870         }
4871         memcg_oom_recover(from);
4872         memcg_oom_recover(to);
4873         wake_up_all(&mc.waitq);
4874 }
4875
4876 static void mem_cgroup_clear_mc(void)
4877 {
4878         struct mem_cgroup *from = mc.from;
4879
4880         /*
4881          * we must clear moving_task before waking up waiters at the end of
4882          * task migration.
4883          */
4884         mc.moving_task = NULL;
4885         __mem_cgroup_clear_mc();
4886         spin_lock(&mc.lock);
4887         mc.from = NULL;
4888         mc.to = NULL;
4889         spin_unlock(&mc.lock);
4890         mem_cgroup_end_move(from);
4891 }
4892
4893 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4894                                 struct cgroup *cgroup,
4895                                 struct task_struct *p,
4896                                 bool threadgroup)
4897 {
4898         int ret = 0;
4899         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4900
4901         if (mem->move_charge_at_immigrate) {
4902                 struct mm_struct *mm;
4903                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4904
4905                 VM_BUG_ON(from == mem);
4906
4907                 mm = get_task_mm(p);
4908                 if (!mm)
4909                         return 0;
4910                 /* We move charges only when we move a owner of the mm */
4911                 if (mm->owner == p) {
4912                         VM_BUG_ON(mc.from);
4913                         VM_BUG_ON(mc.to);
4914                         VM_BUG_ON(mc.precharge);
4915                         VM_BUG_ON(mc.moved_charge);
4916                         VM_BUG_ON(mc.moved_swap);
4917                         mem_cgroup_start_move(from);
4918                         spin_lock(&mc.lock);
4919                         mc.from = from;
4920                         mc.to = mem;
4921                         spin_unlock(&mc.lock);
4922                         /* We set mc.moving_task later */
4923
4924                         ret = mem_cgroup_precharge_mc(mm);
4925                         if (ret)
4926                                 mem_cgroup_clear_mc();
4927                 }
4928                 mmput(mm);
4929         }
4930         return ret;
4931 }
4932
4933 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4934                                 struct cgroup *cgroup,
4935                                 struct task_struct *p,
4936                                 bool threadgroup)
4937 {
4938         mem_cgroup_clear_mc();
4939 }
4940
4941 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4942                                 unsigned long addr, unsigned long end,
4943                                 struct mm_walk *walk)
4944 {
4945         int ret = 0;
4946         struct vm_area_struct *vma = walk->private;
4947         pte_t *pte;
4948         spinlock_t *ptl;
4949
4950         split_huge_page_pmd(walk->mm, pmd);
4951 retry:
4952         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4953         for (; addr != end; addr += PAGE_SIZE) {
4954                 pte_t ptent = *(pte++);
4955                 union mc_target target;
4956                 int type;
4957                 struct page *page;
4958                 struct page_cgroup *pc;
4959                 swp_entry_t ent;
4960
4961                 if (!mc.precharge)
4962                         break;
4963
4964                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4965                 switch (type) {
4966                 case MC_TARGET_PAGE:
4967                         page = target.page;
4968                         if (isolate_lru_page(page))
4969                                 goto put;
4970                         pc = lookup_page_cgroup(page);
4971                         if (!mem_cgroup_move_account(pc,
4972                                         mc.from, mc.to, false, PAGE_SIZE)) {
4973                                 mc.precharge--;
4974                                 /* we uncharge from mc.from later. */
4975                                 mc.moved_charge++;
4976                         }
4977                         putback_lru_page(page);
4978 put:                    /* is_target_pte_for_mc() gets the page */
4979                         put_page(page);
4980                         break;
4981                 case MC_TARGET_SWAP:
4982                         ent = target.ent;
4983                         if (!mem_cgroup_move_swap_account(ent,
4984                                                 mc.from, mc.to, false)) {
4985                                 mc.precharge--;
4986                                 /* we fixup refcnts and charges later. */
4987                                 mc.moved_swap++;
4988                         }
4989                         break;
4990                 default:
4991                         break;
4992                 }
4993         }
4994         pte_unmap_unlock(pte - 1, ptl);
4995         cond_resched();
4996
4997         if (addr != end) {
4998                 /*
4999                  * We have consumed all precharges we got in can_attach().
5000                  * We try charge one by one, but don't do any additional
5001                  * charges to mc.to if we have failed in charge once in attach()
5002                  * phase.
5003                  */
5004                 ret = mem_cgroup_do_precharge(1);
5005                 if (!ret)
5006                         goto retry;
5007         }
5008
5009         return ret;
5010 }
5011
5012 static void mem_cgroup_move_charge(struct mm_struct *mm)
5013 {
5014         struct vm_area_struct *vma;
5015
5016         lru_add_drain_all();
5017 retry:
5018         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5019                 /*
5020                  * Someone who are holding the mmap_sem might be waiting in
5021                  * waitq. So we cancel all extra charges, wake up all waiters,
5022                  * and retry. Because we cancel precharges, we might not be able
5023                  * to move enough charges, but moving charge is a best-effort
5024                  * feature anyway, so it wouldn't be a big problem.
5025                  */
5026                 __mem_cgroup_clear_mc();
5027                 cond_resched();
5028                 goto retry;
5029         }
5030         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5031                 int ret;
5032                 struct mm_walk mem_cgroup_move_charge_walk = {
5033                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5034                         .mm = mm,
5035                         .private = vma,
5036                 };
5037                 if (is_vm_hugetlb_page(vma))
5038                         continue;
5039                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5040                                                 &mem_cgroup_move_charge_walk);
5041                 if (ret)
5042                         /*
5043                          * means we have consumed all precharges and failed in
5044                          * doing additional charge. Just abandon here.
5045                          */
5046                         break;
5047         }
5048         up_read(&mm->mmap_sem);
5049 }
5050
5051 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5052                                 struct cgroup *cont,
5053                                 struct cgroup *old_cont,
5054                                 struct task_struct *p,
5055                                 bool threadgroup)
5056 {
5057         struct mm_struct *mm;
5058
5059         if (!mc.to)
5060                 /* no need to move charge */
5061                 return;
5062
5063         mm = get_task_mm(p);
5064         if (mm) {
5065                 mem_cgroup_move_charge(mm);
5066                 mmput(mm);
5067         }
5068         mem_cgroup_clear_mc();
5069 }
5070 #else   /* !CONFIG_MMU */
5071 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5072                                 struct cgroup *cgroup,
5073                                 struct task_struct *p,
5074                                 bool threadgroup)
5075 {
5076         return 0;
5077 }
5078 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5079                                 struct cgroup *cgroup,
5080                                 struct task_struct *p,
5081                                 bool threadgroup)
5082 {
5083 }
5084 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5085                                 struct cgroup *cont,
5086                                 struct cgroup *old_cont,
5087                                 struct task_struct *p,
5088                                 bool threadgroup)
5089 {
5090 }
5091 #endif
5092
5093 struct cgroup_subsys mem_cgroup_subsys = {
5094         .name = "memory",
5095         .subsys_id = mem_cgroup_subsys_id,
5096         .create = mem_cgroup_create,
5097         .pre_destroy = mem_cgroup_pre_destroy,
5098         .destroy = mem_cgroup_destroy,
5099         .populate = mem_cgroup_populate,
5100         .can_attach = mem_cgroup_can_attach,
5101         .cancel_attach = mem_cgroup_cancel_attach,
5102         .attach = mem_cgroup_move_task,
5103         .early_init = 0,
5104         .use_id = 1,
5105 };
5106
5107 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5108 static int __init enable_swap_account(char *s)
5109 {
5110         /* consider enabled if no parameter or 1 is given */
5111         if (!(*s) || !strcmp(s, "=1"))
5112                 really_do_swap_account = 1;
5113         else if (!strcmp(s, "=0"))
5114                 really_do_swap_account = 0;
5115         return 1;
5116 }
5117 __setup("swapaccount", enable_swap_account);
5118
5119 static int __init disable_swap_account(char *s)
5120 {
5121         printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5122         enable_swap_account("=0");
5123         return 1;
5124 }
5125 __setup("noswapaccount", disable_swap_account);
5126 #endif