2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static __init_memblock const char *
45 memblock_type_name(struct memblock_type *type)
47 if (type == &memblock.memory)
49 else if (type == &memblock.reserved)
55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
56 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
58 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
62 * Address comparison utilities
64 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
65 phys_addr_t base2, phys_addr_t size2)
67 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
70 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
71 phys_addr_t base, phys_addr_t size)
75 for (i = 0; i < type->cnt; i++) {
76 phys_addr_t rgnbase = type->regions[i].base;
77 phys_addr_t rgnsize = type->regions[i].size;
78 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
82 return (i < type->cnt) ? i : -1;
86 * memblock_find_in_range_node - find free area in given range and node
87 * @start: start of candidate range
88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
89 * @size: size of free area to find
90 * @align: alignment of free area to find
91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
93 * Find @size free area aligned to @align in the specified range and node.
95 * If we have CONFIG_HAVE_MEMBLOCK_NODE_MAP defined, we need to check if the
96 * memory we found if not in hotpluggable ranges.
99 * Found address on success, %0 on failure.
101 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
102 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
103 phys_addr_t end, phys_addr_t size,
104 phys_addr_t align, int nid)
106 phys_addr_t this_start, this_end, cand;
108 int curr = movablemem_map.nr_map - 1;
111 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
112 end = memblock.current_limit;
114 /* avoid allocating the first page */
115 start = max_t(phys_addr_t, start, PAGE_SIZE);
116 end = max(start, end);
118 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
119 this_start = clamp(this_start, start, end);
120 this_end = clamp(this_end, start, end);
123 if (this_end <= this_start || this_end < size)
126 for (; curr >= 0; curr--) {
127 if ((movablemem_map.map[curr].start_pfn << PAGE_SHIFT)
132 cand = round_down(this_end - size, align);
134 cand < movablemem_map.map[curr].end_pfn << PAGE_SHIFT) {
135 this_end = movablemem_map.map[curr].start_pfn
140 if (cand >= this_start)
146 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
147 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
148 phys_addr_t end, phys_addr_t size,
149 phys_addr_t align, int nid)
151 phys_addr_t this_start, this_end, cand;
155 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
156 end = memblock.current_limit;
158 /* avoid allocating the first page */
159 start = max_t(phys_addr_t, start, PAGE_SIZE);
160 end = max(start, end);
162 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
163 this_start = clamp(this_start, start, end);
164 this_end = clamp(this_end, start, end);
169 cand = round_down(this_end - size, align);
170 if (cand >= this_start)
175 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
178 * memblock_find_in_range - find free area in given range
179 * @start: start of candidate range
180 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
181 * @size: size of free area to find
182 * @align: alignment of free area to find
184 * Find @size free area aligned to @align in the specified range.
187 * Found address on success, %0 on failure.
189 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
190 phys_addr_t end, phys_addr_t size,
193 return memblock_find_in_range_node(start, end, size, align,
197 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
199 type->total_size -= type->regions[r].size;
200 memmove(&type->regions[r], &type->regions[r + 1],
201 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
204 /* Special case for empty arrays */
205 if (type->cnt == 0) {
206 WARN_ON(type->total_size != 0);
208 type->regions[0].base = 0;
209 type->regions[0].size = 0;
210 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
214 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
217 if (memblock.reserved.regions == memblock_reserved_init_regions)
220 *addr = __pa(memblock.reserved.regions);
222 return PAGE_ALIGN(sizeof(struct memblock_region) *
223 memblock.reserved.max);
227 * memblock_double_array - double the size of the memblock regions array
228 * @type: memblock type of the regions array being doubled
229 * @new_area_start: starting address of memory range to avoid overlap with
230 * @new_area_size: size of memory range to avoid overlap with
232 * Double the size of the @type regions array. If memblock is being used to
233 * allocate memory for a new reserved regions array and there is a previously
234 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
235 * waiting to be reserved, ensure the memory used by the new array does
239 * 0 on success, -1 on failure.
241 static int __init_memblock memblock_double_array(struct memblock_type *type,
242 phys_addr_t new_area_start,
243 phys_addr_t new_area_size)
245 struct memblock_region *new_array, *old_array;
246 phys_addr_t old_alloc_size, new_alloc_size;
247 phys_addr_t old_size, new_size, addr;
248 int use_slab = slab_is_available();
251 /* We don't allow resizing until we know about the reserved regions
252 * of memory that aren't suitable for allocation
254 if (!memblock_can_resize)
257 /* Calculate new doubled size */
258 old_size = type->max * sizeof(struct memblock_region);
259 new_size = old_size << 1;
261 * We need to allocated new one align to PAGE_SIZE,
262 * so we can free them completely later.
264 old_alloc_size = PAGE_ALIGN(old_size);
265 new_alloc_size = PAGE_ALIGN(new_size);
267 /* Retrieve the slab flag */
268 if (type == &memblock.memory)
269 in_slab = &memblock_memory_in_slab;
271 in_slab = &memblock_reserved_in_slab;
273 /* Try to find some space for it.
275 * WARNING: We assume that either slab_is_available() and we use it or
276 * we use MEMBLOCK for allocations. That means that this is unsafe to
277 * use when bootmem is currently active (unless bootmem itself is
278 * implemented on top of MEMBLOCK which isn't the case yet)
280 * This should however not be an issue for now, as we currently only
281 * call into MEMBLOCK while it's still active, or much later when slab
282 * is active for memory hotplug operations
285 new_array = kmalloc(new_size, GFP_KERNEL);
286 addr = new_array ? __pa(new_array) : 0;
288 /* only exclude range when trying to double reserved.regions */
289 if (type != &memblock.reserved)
290 new_area_start = new_area_size = 0;
292 addr = memblock_find_in_range(new_area_start + new_area_size,
293 memblock.current_limit,
294 new_alloc_size, PAGE_SIZE);
295 if (!addr && new_area_size)
296 addr = memblock_find_in_range(0,
297 min(new_area_start, memblock.current_limit),
298 new_alloc_size, PAGE_SIZE);
300 new_array = addr ? __va(addr) : NULL;
303 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
304 memblock_type_name(type), type->max, type->max * 2);
308 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
309 memblock_type_name(type), type->max * 2, (u64)addr,
310 (u64)addr + new_size - 1);
313 * Found space, we now need to move the array over before we add the
314 * reserved region since it may be our reserved array itself that is
317 memcpy(new_array, type->regions, old_size);
318 memset(new_array + type->max, 0, old_size);
319 old_array = type->regions;
320 type->regions = new_array;
323 /* Free old array. We needn't free it if the array is the static one */
326 else if (old_array != memblock_memory_init_regions &&
327 old_array != memblock_reserved_init_regions)
328 memblock_free(__pa(old_array), old_alloc_size);
331 * Reserve the new array if that comes from the memblock. Otherwise, we
335 BUG_ON(memblock_reserve(addr, new_alloc_size));
337 /* Update slab flag */
344 * memblock_merge_regions - merge neighboring compatible regions
345 * @type: memblock type to scan
347 * Scan @type and merge neighboring compatible regions.
349 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
353 /* cnt never goes below 1 */
354 while (i < type->cnt - 1) {
355 struct memblock_region *this = &type->regions[i];
356 struct memblock_region *next = &type->regions[i + 1];
358 if (this->base + this->size != next->base ||
359 memblock_get_region_node(this) !=
360 memblock_get_region_node(next)) {
361 BUG_ON(this->base + this->size > next->base);
366 this->size += next->size;
367 /* move forward from next + 1, index of which is i + 2 */
368 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
374 * memblock_insert_region - insert new memblock region
375 * @type: memblock type to insert into
376 * @idx: index for the insertion point
377 * @base: base address of the new region
378 * @size: size of the new region
380 * Insert new memblock region [@base,@base+@size) into @type at @idx.
381 * @type must already have extra room to accomodate the new region.
383 static void __init_memblock memblock_insert_region(struct memblock_type *type,
384 int idx, phys_addr_t base,
385 phys_addr_t size, int nid)
387 struct memblock_region *rgn = &type->regions[idx];
389 BUG_ON(type->cnt >= type->max);
390 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
393 memblock_set_region_node(rgn, nid);
395 type->total_size += size;
399 * memblock_add_region - add new memblock region
400 * @type: memblock type to add new region into
401 * @base: base address of the new region
402 * @size: size of the new region
403 * @nid: nid of the new region
405 * Add new memblock region [@base,@base+@size) into @type. The new region
406 * is allowed to overlap with existing ones - overlaps don't affect already
407 * existing regions. @type is guaranteed to be minimal (all neighbouring
408 * compatible regions are merged) after the addition.
411 * 0 on success, -errno on failure.
413 static int __init_memblock memblock_add_region(struct memblock_type *type,
414 phys_addr_t base, phys_addr_t size, int nid)
417 phys_addr_t obase = base;
418 phys_addr_t end = base + memblock_cap_size(base, &size);
424 /* special case for empty array */
425 if (type->regions[0].size == 0) {
426 WARN_ON(type->cnt != 1 || type->total_size);
427 type->regions[0].base = base;
428 type->regions[0].size = size;
429 memblock_set_region_node(&type->regions[0], nid);
430 type->total_size = size;
435 * The following is executed twice. Once with %false @insert and
436 * then with %true. The first counts the number of regions needed
437 * to accomodate the new area. The second actually inserts them.
442 for (i = 0; i < type->cnt; i++) {
443 struct memblock_region *rgn = &type->regions[i];
444 phys_addr_t rbase = rgn->base;
445 phys_addr_t rend = rbase + rgn->size;
452 * @rgn overlaps. If it separates the lower part of new
453 * area, insert that portion.
458 memblock_insert_region(type, i++, base,
461 /* area below @rend is dealt with, forget about it */
462 base = min(rend, end);
465 /* insert the remaining portion */
469 memblock_insert_region(type, i, base, end - base, nid);
473 * If this was the first round, resize array and repeat for actual
474 * insertions; otherwise, merge and return.
477 while (type->cnt + nr_new > type->max)
478 if (memblock_double_array(type, obase, size) < 0)
483 memblock_merge_regions(type);
488 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
491 return memblock_add_region(&memblock.memory, base, size, nid);
494 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
496 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
500 * memblock_isolate_range - isolate given range into disjoint memblocks
501 * @type: memblock type to isolate range for
502 * @base: base of range to isolate
503 * @size: size of range to isolate
504 * @start_rgn: out parameter for the start of isolated region
505 * @end_rgn: out parameter for the end of isolated region
507 * Walk @type and ensure that regions don't cross the boundaries defined by
508 * [@base,@base+@size). Crossing regions are split at the boundaries,
509 * which may create at most two more regions. The index of the first
510 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
513 * 0 on success, -errno on failure.
515 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
516 phys_addr_t base, phys_addr_t size,
517 int *start_rgn, int *end_rgn)
519 phys_addr_t end = base + memblock_cap_size(base, &size);
522 *start_rgn = *end_rgn = 0;
527 /* we'll create at most two more regions */
528 while (type->cnt + 2 > type->max)
529 if (memblock_double_array(type, base, size) < 0)
532 for (i = 0; i < type->cnt; i++) {
533 struct memblock_region *rgn = &type->regions[i];
534 phys_addr_t rbase = rgn->base;
535 phys_addr_t rend = rbase + rgn->size;
544 * @rgn intersects from below. Split and continue
545 * to process the next region - the new top half.
548 rgn->size -= base - rbase;
549 type->total_size -= base - rbase;
550 memblock_insert_region(type, i, rbase, base - rbase,
551 memblock_get_region_node(rgn));
552 } else if (rend > end) {
554 * @rgn intersects from above. Split and redo the
555 * current region - the new bottom half.
558 rgn->size -= end - rbase;
559 type->total_size -= end - rbase;
560 memblock_insert_region(type, i--, rbase, end - rbase,
561 memblock_get_region_node(rgn));
563 /* @rgn is fully contained, record it */
573 static int __init_memblock __memblock_remove(struct memblock_type *type,
574 phys_addr_t base, phys_addr_t size)
576 int start_rgn, end_rgn;
579 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
583 for (i = end_rgn - 1; i >= start_rgn; i--)
584 memblock_remove_region(type, i);
588 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
590 return __memblock_remove(&memblock.memory, base, size);
593 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
595 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
596 (unsigned long long)base,
597 (unsigned long long)base + size,
600 return __memblock_remove(&memblock.reserved, base, size);
603 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
605 struct memblock_type *_rgn = &memblock.reserved;
607 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
608 (unsigned long long)base,
609 (unsigned long long)base + size,
612 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
616 * __next_free_mem_range - next function for for_each_free_mem_range()
617 * @idx: pointer to u64 loop variable
618 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
619 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
620 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
621 * @out_nid: ptr to int for nid of the range, can be %NULL
623 * Find the first free area from *@idx which matches @nid, fill the out
624 * parameters, and update *@idx for the next iteration. The lower 32bit of
625 * *@idx contains index into memory region and the upper 32bit indexes the
626 * areas before each reserved region. For example, if reserved regions
627 * look like the following,
629 * 0:[0-16), 1:[32-48), 2:[128-130)
631 * The upper 32bit indexes the following regions.
633 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
635 * As both region arrays are sorted, the function advances the two indices
636 * in lockstep and returns each intersection.
638 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
639 phys_addr_t *out_start,
640 phys_addr_t *out_end, int *out_nid)
642 struct memblock_type *mem = &memblock.memory;
643 struct memblock_type *rsv = &memblock.reserved;
644 int mi = *idx & 0xffffffff;
647 for ( ; mi < mem->cnt; mi++) {
648 struct memblock_region *m = &mem->regions[mi];
649 phys_addr_t m_start = m->base;
650 phys_addr_t m_end = m->base + m->size;
652 /* only memory regions are associated with nodes, check it */
653 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
656 /* scan areas before each reservation for intersection */
657 for ( ; ri < rsv->cnt + 1; ri++) {
658 struct memblock_region *r = &rsv->regions[ri];
659 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
660 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
662 /* if ri advanced past mi, break out to advance mi */
663 if (r_start >= m_end)
665 /* if the two regions intersect, we're done */
666 if (m_start < r_end) {
668 *out_start = max(m_start, r_start);
670 *out_end = min(m_end, r_end);
672 *out_nid = memblock_get_region_node(m);
674 * The region which ends first is advanced
675 * for the next iteration.
681 *idx = (u32)mi | (u64)ri << 32;
687 /* signal end of iteration */
692 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
693 * @idx: pointer to u64 loop variable
694 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
695 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
696 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
697 * @out_nid: ptr to int for nid of the range, can be %NULL
699 * Reverse of __next_free_mem_range().
701 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
702 phys_addr_t *out_start,
703 phys_addr_t *out_end, int *out_nid)
705 struct memblock_type *mem = &memblock.memory;
706 struct memblock_type *rsv = &memblock.reserved;
707 int mi = *idx & 0xffffffff;
710 if (*idx == (u64)ULLONG_MAX) {
715 for ( ; mi >= 0; mi--) {
716 struct memblock_region *m = &mem->regions[mi];
717 phys_addr_t m_start = m->base;
718 phys_addr_t m_end = m->base + m->size;
720 /* only memory regions are associated with nodes, check it */
721 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
724 /* scan areas before each reservation for intersection */
725 for ( ; ri >= 0; ri--) {
726 struct memblock_region *r = &rsv->regions[ri];
727 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
728 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
730 /* if ri advanced past mi, break out to advance mi */
731 if (r_end <= m_start)
733 /* if the two regions intersect, we're done */
734 if (m_end > r_start) {
736 *out_start = max(m_start, r_start);
738 *out_end = min(m_end, r_end);
740 *out_nid = memblock_get_region_node(m);
742 if (m_start >= r_start)
746 *idx = (u32)mi | (u64)ri << 32;
755 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
757 * Common iterator interface used to define for_each_mem_range().
759 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
760 unsigned long *out_start_pfn,
761 unsigned long *out_end_pfn, int *out_nid)
763 struct memblock_type *type = &memblock.memory;
764 struct memblock_region *r;
766 while (++*idx < type->cnt) {
767 r = &type->regions[*idx];
769 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
771 if (nid == MAX_NUMNODES || nid == r->nid)
774 if (*idx >= type->cnt) {
780 *out_start_pfn = PFN_UP(r->base);
782 *out_end_pfn = PFN_DOWN(r->base + r->size);
788 * memblock_set_node - set node ID on memblock regions
789 * @base: base of area to set node ID for
790 * @size: size of area to set node ID for
791 * @nid: node ID to set
793 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
794 * Regions which cross the area boundaries are split as necessary.
797 * 0 on success, -errno on failure.
799 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
802 struct memblock_type *type = &memblock.memory;
803 int start_rgn, end_rgn;
806 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
810 for (i = start_rgn; i < end_rgn; i++)
811 memblock_set_region_node(&type->regions[i], nid);
813 memblock_merge_regions(type);
816 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
818 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
819 phys_addr_t align, phys_addr_t max_addr,
824 /* align @size to avoid excessive fragmentation on reserved array */
825 size = round_up(size, align);
827 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
828 if (found && !memblock_reserve(found, size))
834 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
836 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
839 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
841 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
844 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
848 alloc = __memblock_alloc_base(size, align, max_addr);
851 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
852 (unsigned long long) size, (unsigned long long) max_addr);
857 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
859 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
862 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
864 phys_addr_t res = memblock_alloc_nid(size, align, nid);
868 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
873 * Remaining API functions
876 phys_addr_t __init memblock_phys_mem_size(void)
878 return memblock.memory.total_size;
881 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
883 unsigned long pages = 0;
884 struct memblock_region *r;
885 unsigned long start_pfn, end_pfn;
887 for_each_memblock(memory, r) {
888 start_pfn = memblock_region_memory_base_pfn(r);
889 end_pfn = memblock_region_memory_end_pfn(r);
890 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
891 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
892 pages += end_pfn - start_pfn;
895 return (phys_addr_t)pages << PAGE_SHIFT;
899 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
901 return memblock.memory.regions[0].base;
904 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
906 int idx = memblock.memory.cnt - 1;
908 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
911 void __init memblock_enforce_memory_limit(phys_addr_t limit)
914 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
919 /* find out max address */
920 for (i = 0; i < memblock.memory.cnt; i++) {
921 struct memblock_region *r = &memblock.memory.regions[i];
923 if (limit <= r->size) {
924 max_addr = r->base + limit;
930 /* truncate both memory and reserved regions */
931 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
932 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
935 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
937 unsigned int left = 0, right = type->cnt;
940 unsigned int mid = (right + left) / 2;
942 if (addr < type->regions[mid].base)
944 else if (addr >= (type->regions[mid].base +
945 type->regions[mid].size))
949 } while (left < right);
953 int __init memblock_is_reserved(phys_addr_t addr)
955 return memblock_search(&memblock.reserved, addr) != -1;
958 int __init_memblock memblock_is_memory(phys_addr_t addr)
960 return memblock_search(&memblock.memory, addr) != -1;
964 * memblock_is_region_memory - check if a region is a subset of memory
965 * @base: base of region to check
966 * @size: size of region to check
968 * Check if the region [@base, @base+@size) is a subset of a memory block.
971 * 0 if false, non-zero if true
973 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
975 int idx = memblock_search(&memblock.memory, base);
976 phys_addr_t end = base + memblock_cap_size(base, &size);
980 return memblock.memory.regions[idx].base <= base &&
981 (memblock.memory.regions[idx].base +
982 memblock.memory.regions[idx].size) >= end;
986 * memblock_is_region_reserved - check if a region intersects reserved memory
987 * @base: base of region to check
988 * @size: size of region to check
990 * Check if the region [@base, @base+@size) intersects a reserved memory block.
993 * 0 if false, non-zero if true
995 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
997 memblock_cap_size(base, &size);
998 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1001 void __init_memblock memblock_trim_memory(phys_addr_t align)
1004 phys_addr_t start, end, orig_start, orig_end;
1005 struct memblock_type *mem = &memblock.memory;
1007 for (i = 0; i < mem->cnt; i++) {
1008 orig_start = mem->regions[i].base;
1009 orig_end = mem->regions[i].base + mem->regions[i].size;
1010 start = round_up(orig_start, align);
1011 end = round_down(orig_end, align);
1013 if (start == orig_start && end == orig_end)
1017 mem->regions[i].base = start;
1018 mem->regions[i].size = end - start;
1020 memblock_remove_region(mem, i);
1026 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1028 memblock.current_limit = limit;
1031 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1033 unsigned long long base, size;
1036 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1038 for (i = 0; i < type->cnt; i++) {
1039 struct memblock_region *rgn = &type->regions[i];
1040 char nid_buf[32] = "";
1044 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1045 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1046 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1047 memblock_get_region_node(rgn));
1049 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
1050 name, i, base, base + size - 1, size, nid_buf);
1054 void __init_memblock __memblock_dump_all(void)
1056 pr_info("MEMBLOCK configuration:\n");
1057 pr_info(" memory size = %#llx reserved size = %#llx\n",
1058 (unsigned long long)memblock.memory.total_size,
1059 (unsigned long long)memblock.reserved.total_size);
1061 memblock_dump(&memblock.memory, "memory");
1062 memblock_dump(&memblock.reserved, "reserved");
1065 void __init memblock_allow_resize(void)
1067 memblock_can_resize = 1;
1070 static int __init early_memblock(char *p)
1072 if (p && strstr(p, "debug"))
1076 early_param("memblock", early_memblock);
1078 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1080 static int memblock_debug_show(struct seq_file *m, void *private)
1082 struct memblock_type *type = m->private;
1083 struct memblock_region *reg;
1086 for (i = 0; i < type->cnt; i++) {
1087 reg = &type->regions[i];
1088 seq_printf(m, "%4d: ", i);
1089 if (sizeof(phys_addr_t) == 4)
1090 seq_printf(m, "0x%08lx..0x%08lx\n",
1091 (unsigned long)reg->base,
1092 (unsigned long)(reg->base + reg->size - 1));
1094 seq_printf(m, "0x%016llx..0x%016llx\n",
1095 (unsigned long long)reg->base,
1096 (unsigned long long)(reg->base + reg->size - 1));
1102 static int memblock_debug_open(struct inode *inode, struct file *file)
1104 return single_open(file, memblock_debug_show, inode->i_private);
1107 static const struct file_operations memblock_debug_fops = {
1108 .open = memblock_debug_open,
1110 .llseek = seq_lseek,
1111 .release = single_release,
1114 static int __init memblock_init_debugfs(void)
1116 struct dentry *root = debugfs_create_dir("memblock", NULL);
1119 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1120 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1124 __initcall(memblock_init_debugfs);
1126 #endif /* CONFIG_DEBUG_FS */