1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
20 #include <asm/sections.h>
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
33 * DOC: memblock overview
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
74 * Once memblock is setup the memory can be allocated using one of the
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
148 #define memblock_dbg(fmt, ...) \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
168 return *size = min(*size, PHYS_ADDR_MAX - base);
172 * Address comparison utilities
174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 phys_addr_t base2, phys_addr_t size2)
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 phys_addr_t base, phys_addr_t size)
185 memblock_cap_size(base, &size);
187 for (i = 0; i < type->cnt; i++)
188 if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 type->regions[i].size))
191 return i < type->cnt;
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 * %MEMBLOCK_ALLOC_ACCESSIBLE
199 * @size: size of free area to find
200 * @align: alignment of free area to find
201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202 * @flags: pick from blocks based on memory attributes
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
207 * Found address on success, 0 on failure.
209 static phys_addr_t __init_memblock
210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 phys_addr_t size, phys_addr_t align, int nid,
212 enum memblock_flags flags)
214 phys_addr_t this_start, this_end, cand;
217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 this_start = clamp(this_start, start, end);
219 this_end = clamp(this_end, start, end);
221 cand = round_up(this_start, align);
222 if (cand < this_end && this_end - cand >= size)
230 * __memblock_find_range_top_down - find free area utility, in top-down
231 * @start: start of candidate range
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 * %MEMBLOCK_ALLOC_ACCESSIBLE
234 * @size: size of free area to find
235 * @align: alignment of free area to find
236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237 * @flags: pick from blocks based on memory attributes
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
242 * Found address on success, 0 on failure.
244 static phys_addr_t __init_memblock
245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 phys_addr_t size, phys_addr_t align, int nid,
247 enum memblock_flags flags)
249 phys_addr_t this_start, this_end, cand;
252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
254 this_start = clamp(this_start, start, end);
255 this_end = clamp(this_end, start, end);
260 cand = round_down(this_end - size, align);
261 if (cand >= this_start)
269 * memblock_find_in_range_node - find free area in given range and node
270 * @size: size of free area to find
271 * @align: alignment of free area to find
272 * @start: start of candidate range
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 * %MEMBLOCK_ALLOC_ACCESSIBLE
275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276 * @flags: pick from blocks based on memory attributes
278 * Find @size free area aligned to @align in the specified range and node.
281 * Found address on success, 0 on failure.
283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 phys_addr_t align, phys_addr_t start,
285 phys_addr_t end, int nid,
286 enum memblock_flags flags)
289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
291 end = memblock.current_limit;
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
297 if (memblock_bottom_up())
298 return __memblock_find_range_bottom_up(start, end, size, align,
301 return __memblock_find_range_top_down(start, end, size, align,
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 * %MEMBLOCK_ALLOC_ACCESSIBLE
310 * @size: size of free area to find
311 * @align: alignment of free area to find
313 * Find @size free area aligned to @align in the specified range.
316 * Found address on success, 0 on failure.
318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 phys_addr_t end, phys_addr_t size,
323 enum memblock_flags flags = choose_memblock_flags();
326 ret = memblock_find_in_range_node(size, align, start, end,
327 NUMA_NO_NODE, flags);
329 if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
332 flags &= ~MEMBLOCK_MIRROR;
339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
341 type->total_size -= type->regions[r].size;
342 memmove(&type->regions[r], &type->regions[r + 1],
343 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
346 /* Special case for empty arrays */
347 if (type->cnt == 0) {
348 WARN_ON(type->total_size != 0);
350 type->regions[0].base = 0;
351 type->regions[0].size = 0;
352 type->regions[0].flags = 0;
353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
359 * memblock_discard - discard memory and reserved arrays if they were allocated
361 void __init memblock_discard(void)
363 phys_addr_t addr, size;
365 if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 addr = __pa(memblock.reserved.regions);
367 size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 memblock.reserved.max);
369 if (memblock_reserved_in_slab)
370 kfree(memblock.reserved.regions);
372 memblock_free_late(addr, size);
375 if (memblock.memory.regions != memblock_memory_init_regions) {
376 addr = __pa(memblock.memory.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.memory.max);
379 if (memblock_memory_in_slab)
380 kfree(memblock.memory.regions);
382 memblock_free_late(addr, size);
385 memblock_memory = NULL;
390 * memblock_double_array - double the size of the memblock regions array
391 * @type: memblock type of the regions array being doubled
392 * @new_area_start: starting address of memory range to avoid overlap with
393 * @new_area_size: size of memory range to avoid overlap with
395 * Double the size of the @type regions array. If memblock is being used to
396 * allocate memory for a new reserved regions array and there is a previously
397 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
398 * waiting to be reserved, ensure the memory used by the new array does
402 * 0 on success, -1 on failure.
404 static int __init_memblock memblock_double_array(struct memblock_type *type,
405 phys_addr_t new_area_start,
406 phys_addr_t new_area_size)
408 struct memblock_region *new_array, *old_array;
409 phys_addr_t old_alloc_size, new_alloc_size;
410 phys_addr_t old_size, new_size, addr, new_end;
411 int use_slab = slab_is_available();
414 /* We don't allow resizing until we know about the reserved regions
415 * of memory that aren't suitable for allocation
417 if (!memblock_can_resize)
420 /* Calculate new doubled size */
421 old_size = type->max * sizeof(struct memblock_region);
422 new_size = old_size << 1;
424 * We need to allocated new one align to PAGE_SIZE,
425 * so we can free them completely later.
427 old_alloc_size = PAGE_ALIGN(old_size);
428 new_alloc_size = PAGE_ALIGN(new_size);
430 /* Retrieve the slab flag */
431 if (type == &memblock.memory)
432 in_slab = &memblock_memory_in_slab;
434 in_slab = &memblock_reserved_in_slab;
436 /* Try to find some space for it */
438 new_array = kmalloc(new_size, GFP_KERNEL);
439 addr = new_array ? __pa(new_array) : 0;
441 /* only exclude range when trying to double reserved.regions */
442 if (type != &memblock.reserved)
443 new_area_start = new_area_size = 0;
445 addr = memblock_find_in_range(new_area_start + new_area_size,
446 memblock.current_limit,
447 new_alloc_size, PAGE_SIZE);
448 if (!addr && new_area_size)
449 addr = memblock_find_in_range(0,
450 min(new_area_start, memblock.current_limit),
451 new_alloc_size, PAGE_SIZE);
453 new_array = addr ? __va(addr) : NULL;
456 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
457 type->name, type->max, type->max * 2);
461 new_end = addr + new_size - 1;
462 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
463 type->name, type->max * 2, &addr, &new_end);
466 * Found space, we now need to move the array over before we add the
467 * reserved region since it may be our reserved array itself that is
470 memcpy(new_array, type->regions, old_size);
471 memset(new_array + type->max, 0, old_size);
472 old_array = type->regions;
473 type->regions = new_array;
476 /* Free old array. We needn't free it if the array is the static one */
479 else if (old_array != memblock_memory_init_regions &&
480 old_array != memblock_reserved_init_regions)
481 memblock_free(old_array, old_alloc_size);
484 * Reserve the new array if that comes from the memblock. Otherwise, we
488 BUG_ON(memblock_reserve(addr, new_alloc_size));
490 /* Update slab flag */
497 * memblock_merge_regions - merge neighboring compatible regions
498 * @type: memblock type to scan
500 * Scan @type and merge neighboring compatible regions.
502 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
506 /* cnt never goes below 1 */
507 while (i < type->cnt - 1) {
508 struct memblock_region *this = &type->regions[i];
509 struct memblock_region *next = &type->regions[i + 1];
511 if (this->base + this->size != next->base ||
512 memblock_get_region_node(this) !=
513 memblock_get_region_node(next) ||
514 this->flags != next->flags) {
515 BUG_ON(this->base + this->size > next->base);
520 this->size += next->size;
521 /* move forward from next + 1, index of which is i + 2 */
522 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
528 * memblock_insert_region - insert new memblock region
529 * @type: memblock type to insert into
530 * @idx: index for the insertion point
531 * @base: base address of the new region
532 * @size: size of the new region
533 * @nid: node id of the new region
534 * @flags: flags of the new region
536 * Insert new memblock region [@base, @base + @size) into @type at @idx.
537 * @type must already have extra room to accommodate the new region.
539 static void __init_memblock memblock_insert_region(struct memblock_type *type,
540 int idx, phys_addr_t base,
543 enum memblock_flags flags)
545 struct memblock_region *rgn = &type->regions[idx];
547 BUG_ON(type->cnt >= type->max);
548 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
552 memblock_set_region_node(rgn, nid);
554 type->total_size += size;
558 * memblock_add_range - add new memblock region
559 * @type: memblock type to add new region into
560 * @base: base address of the new region
561 * @size: size of the new region
562 * @nid: nid of the new region
563 * @flags: flags of the new region
565 * Add new memblock region [@base, @base + @size) into @type. The new region
566 * is allowed to overlap with existing ones - overlaps don't affect already
567 * existing regions. @type is guaranteed to be minimal (all neighbouring
568 * compatible regions are merged) after the addition.
571 * 0 on success, -errno on failure.
573 static int __init_memblock memblock_add_range(struct memblock_type *type,
574 phys_addr_t base, phys_addr_t size,
575 int nid, enum memblock_flags flags)
578 phys_addr_t obase = base;
579 phys_addr_t end = base + memblock_cap_size(base, &size);
581 struct memblock_region *rgn;
586 /* special case for empty array */
587 if (type->regions[0].size == 0) {
588 WARN_ON(type->cnt != 1 || type->total_size);
589 type->regions[0].base = base;
590 type->regions[0].size = size;
591 type->regions[0].flags = flags;
592 memblock_set_region_node(&type->regions[0], nid);
593 type->total_size = size;
598 * The following is executed twice. Once with %false @insert and
599 * then with %true. The first counts the number of regions needed
600 * to accommodate the new area. The second actually inserts them.
605 for_each_memblock_type(idx, type, rgn) {
606 phys_addr_t rbase = rgn->base;
607 phys_addr_t rend = rbase + rgn->size;
614 * @rgn overlaps. If it separates the lower part of new
615 * area, insert that portion.
619 WARN_ON(nid != memblock_get_region_node(rgn));
621 WARN_ON(flags != rgn->flags);
624 memblock_insert_region(type, idx++, base,
628 /* area below @rend is dealt with, forget about it */
629 base = min(rend, end);
632 /* insert the remaining portion */
636 memblock_insert_region(type, idx, base, end - base,
644 * If this was the first round, resize array and repeat for actual
645 * insertions; otherwise, merge and return.
648 while (type->cnt + nr_new > type->max)
649 if (memblock_double_array(type, obase, size) < 0)
654 memblock_merge_regions(type);
660 * memblock_add_node - add new memblock region within a NUMA node
661 * @base: base address of the new region
662 * @size: size of the new region
663 * @nid: nid of the new region
664 * @flags: flags of the new region
666 * Add new memblock region [@base, @base + @size) to the "memory"
667 * type. See memblock_add_range() description for mode details
670 * 0 on success, -errno on failure.
672 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
673 int nid, enum memblock_flags flags)
675 phys_addr_t end = base + size - 1;
677 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
678 &base, &end, nid, flags, (void *)_RET_IP_);
680 return memblock_add_range(&memblock.memory, base, size, nid, flags);
684 * memblock_add - add new memblock region
685 * @base: base address of the new region
686 * @size: size of the new region
688 * Add new memblock region [@base, @base + @size) to the "memory"
689 * type. See memblock_add_range() description for mode details
692 * 0 on success, -errno on failure.
694 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
696 phys_addr_t end = base + size - 1;
698 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
699 &base, &end, (void *)_RET_IP_);
701 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
705 * memblock_isolate_range - isolate given range into disjoint memblocks
706 * @type: memblock type to isolate range for
707 * @base: base of range to isolate
708 * @size: size of range to isolate
709 * @start_rgn: out parameter for the start of isolated region
710 * @end_rgn: out parameter for the end of isolated region
712 * Walk @type and ensure that regions don't cross the boundaries defined by
713 * [@base, @base + @size). Crossing regions are split at the boundaries,
714 * which may create at most two more regions. The index of the first
715 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
718 * 0 on success, -errno on failure.
720 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
721 phys_addr_t base, phys_addr_t size,
722 int *start_rgn, int *end_rgn)
724 phys_addr_t end = base + memblock_cap_size(base, &size);
726 struct memblock_region *rgn;
728 *start_rgn = *end_rgn = 0;
733 /* we'll create at most two more regions */
734 while (type->cnt + 2 > type->max)
735 if (memblock_double_array(type, base, size) < 0)
738 for_each_memblock_type(idx, type, rgn) {
739 phys_addr_t rbase = rgn->base;
740 phys_addr_t rend = rbase + rgn->size;
749 * @rgn intersects from below. Split and continue
750 * to process the next region - the new top half.
753 rgn->size -= base - rbase;
754 type->total_size -= base - rbase;
755 memblock_insert_region(type, idx, rbase, base - rbase,
756 memblock_get_region_node(rgn),
758 } else if (rend > end) {
760 * @rgn intersects from above. Split and redo the
761 * current region - the new bottom half.
764 rgn->size -= end - rbase;
765 type->total_size -= end - rbase;
766 memblock_insert_region(type, idx--, rbase, end - rbase,
767 memblock_get_region_node(rgn),
770 /* @rgn is fully contained, record it */
780 static int __init_memblock memblock_remove_range(struct memblock_type *type,
781 phys_addr_t base, phys_addr_t size)
783 int start_rgn, end_rgn;
786 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
790 for (i = end_rgn - 1; i >= start_rgn; i--)
791 memblock_remove_region(type, i);
795 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
797 phys_addr_t end = base + size - 1;
799 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
800 &base, &end, (void *)_RET_IP_);
802 return memblock_remove_range(&memblock.memory, base, size);
806 * memblock_free - free boot memory allocation
807 * @ptr: starting address of the boot memory allocation
808 * @size: size of the boot memory block in bytes
810 * Free boot memory block previously allocated by memblock_alloc_xx() API.
811 * The freeing memory will not be released to the buddy allocator.
813 void __init_memblock memblock_free(void *ptr, size_t size)
816 memblock_phys_free(__pa(ptr), size);
820 * memblock_phys_free - free boot memory block
821 * @base: phys starting address of the boot memory block
822 * @size: size of the boot memory block in bytes
824 * Free boot memory block previously allocated by memblock_alloc_xx() API.
825 * The freeing memory will not be released to the buddy allocator.
827 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
829 phys_addr_t end = base + size - 1;
831 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
832 &base, &end, (void *)_RET_IP_);
834 kmemleak_free_part_phys(base, size);
835 return memblock_remove_range(&memblock.reserved, base, size);
838 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
840 phys_addr_t end = base + size - 1;
842 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
843 &base, &end, (void *)_RET_IP_);
845 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
848 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
849 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
851 phys_addr_t end = base + size - 1;
853 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
854 &base, &end, (void *)_RET_IP_);
856 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
861 * memblock_setclr_flag - set or clear flag for a memory region
862 * @base: base address of the region
863 * @size: size of the region
864 * @set: set or clear the flag
865 * @flag: the flag to update
867 * This function isolates region [@base, @base + @size), and sets/clears flag
869 * Return: 0 on success, -errno on failure.
871 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
872 phys_addr_t size, int set, int flag)
874 struct memblock_type *type = &memblock.memory;
875 int i, ret, start_rgn, end_rgn;
877 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
881 for (i = start_rgn; i < end_rgn; i++) {
882 struct memblock_region *r = &type->regions[i];
890 memblock_merge_regions(type);
895 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
896 * @base: the base phys addr of the region
897 * @size: the size of the region
899 * Return: 0 on success, -errno on failure.
901 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
903 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
907 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
908 * @base: the base phys addr of the region
909 * @size: the size of the region
911 * Return: 0 on success, -errno on failure.
913 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
915 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
919 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
920 * @base: the base phys addr of the region
921 * @size: the size of the region
923 * Return: 0 on success, -errno on failure.
925 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
927 system_has_some_mirror = true;
929 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
933 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
934 * @base: the base phys addr of the region
935 * @size: the size of the region
937 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
938 * direct mapping of the physical memory. These regions will still be
939 * covered by the memory map. The struct page representing NOMAP memory
940 * frames in the memory map will be PageReserved()
942 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
943 * memblock, the caller must inform kmemleak to ignore that memory
945 * Return: 0 on success, -errno on failure.
947 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
949 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
953 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
954 * @base: the base phys addr of the region
955 * @size: the size of the region
957 * Return: 0 on success, -errno on failure.
959 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
961 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
964 static bool should_skip_region(struct memblock_type *type,
965 struct memblock_region *m,
968 int m_nid = memblock_get_region_node(m);
970 /* we never skip regions when iterating memblock.reserved or physmem */
971 if (type != memblock_memory)
974 /* only memory regions are associated with nodes, check it */
975 if (nid != NUMA_NO_NODE && nid != m_nid)
978 /* skip hotpluggable memory regions if needed */
979 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
980 !(flags & MEMBLOCK_HOTPLUG))
983 /* if we want mirror memory skip non-mirror memory regions */
984 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
987 /* skip nomap memory unless we were asked for it explicitly */
988 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
991 /* skip driver-managed memory unless we were asked for it explicitly */
992 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
999 * __next_mem_range - next function for for_each_free_mem_range() etc.
1000 * @idx: pointer to u64 loop variable
1001 * @nid: node selector, %NUMA_NO_NODE for all nodes
1002 * @flags: pick from blocks based on memory attributes
1003 * @type_a: pointer to memblock_type from where the range is taken
1004 * @type_b: pointer to memblock_type which excludes memory from being taken
1005 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1006 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1007 * @out_nid: ptr to int for nid of the range, can be %NULL
1009 * Find the first area from *@idx which matches @nid, fill the out
1010 * parameters, and update *@idx for the next iteration. The lower 32bit of
1011 * *@idx contains index into type_a and the upper 32bit indexes the
1012 * areas before each region in type_b. For example, if type_b regions
1013 * look like the following,
1015 * 0:[0-16), 1:[32-48), 2:[128-130)
1017 * The upper 32bit indexes the following regions.
1019 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1021 * As both region arrays are sorted, the function advances the two indices
1022 * in lockstep and returns each intersection.
1024 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1025 struct memblock_type *type_a,
1026 struct memblock_type *type_b, phys_addr_t *out_start,
1027 phys_addr_t *out_end, int *out_nid)
1029 int idx_a = *idx & 0xffffffff;
1030 int idx_b = *idx >> 32;
1032 if (WARN_ONCE(nid == MAX_NUMNODES,
1033 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1036 for (; idx_a < type_a->cnt; idx_a++) {
1037 struct memblock_region *m = &type_a->regions[idx_a];
1039 phys_addr_t m_start = m->base;
1040 phys_addr_t m_end = m->base + m->size;
1041 int m_nid = memblock_get_region_node(m);
1043 if (should_skip_region(type_a, m, nid, flags))
1048 *out_start = m_start;
1054 *idx = (u32)idx_a | (u64)idx_b << 32;
1058 /* scan areas before each reservation */
1059 for (; idx_b < type_b->cnt + 1; idx_b++) {
1060 struct memblock_region *r;
1061 phys_addr_t r_start;
1064 r = &type_b->regions[idx_b];
1065 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1066 r_end = idx_b < type_b->cnt ?
1067 r->base : PHYS_ADDR_MAX;
1070 * if idx_b advanced past idx_a,
1071 * break out to advance idx_a
1073 if (r_start >= m_end)
1075 /* if the two regions intersect, we're done */
1076 if (m_start < r_end) {
1079 max(m_start, r_start);
1081 *out_end = min(m_end, r_end);
1085 * The region which ends first is
1086 * advanced for the next iteration.
1092 *idx = (u32)idx_a | (u64)idx_b << 32;
1098 /* signal end of iteration */
1103 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1105 * @idx: pointer to u64 loop variable
1106 * @nid: node selector, %NUMA_NO_NODE for all nodes
1107 * @flags: pick from blocks based on memory attributes
1108 * @type_a: pointer to memblock_type from where the range is taken
1109 * @type_b: pointer to memblock_type which excludes memory from being taken
1110 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1111 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1112 * @out_nid: ptr to int for nid of the range, can be %NULL
1114 * Finds the next range from type_a which is not marked as unsuitable
1117 * Reverse of __next_mem_range().
1119 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1120 enum memblock_flags flags,
1121 struct memblock_type *type_a,
1122 struct memblock_type *type_b,
1123 phys_addr_t *out_start,
1124 phys_addr_t *out_end, int *out_nid)
1126 int idx_a = *idx & 0xffffffff;
1127 int idx_b = *idx >> 32;
1129 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1132 if (*idx == (u64)ULLONG_MAX) {
1133 idx_a = type_a->cnt - 1;
1135 idx_b = type_b->cnt;
1140 for (; idx_a >= 0; idx_a--) {
1141 struct memblock_region *m = &type_a->regions[idx_a];
1143 phys_addr_t m_start = m->base;
1144 phys_addr_t m_end = m->base + m->size;
1145 int m_nid = memblock_get_region_node(m);
1147 if (should_skip_region(type_a, m, nid, flags))
1152 *out_start = m_start;
1158 *idx = (u32)idx_a | (u64)idx_b << 32;
1162 /* scan areas before each reservation */
1163 for (; idx_b >= 0; idx_b--) {
1164 struct memblock_region *r;
1165 phys_addr_t r_start;
1168 r = &type_b->regions[idx_b];
1169 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1170 r_end = idx_b < type_b->cnt ?
1171 r->base : PHYS_ADDR_MAX;
1173 * if idx_b advanced past idx_a,
1174 * break out to advance idx_a
1177 if (r_end <= m_start)
1179 /* if the two regions intersect, we're done */
1180 if (m_end > r_start) {
1182 *out_start = max(m_start, r_start);
1184 *out_end = min(m_end, r_end);
1187 if (m_start >= r_start)
1191 *idx = (u32)idx_a | (u64)idx_b << 32;
1196 /* signal end of iteration */
1201 * Common iterator interface used to define for_each_mem_pfn_range().
1203 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1204 unsigned long *out_start_pfn,
1205 unsigned long *out_end_pfn, int *out_nid)
1207 struct memblock_type *type = &memblock.memory;
1208 struct memblock_region *r;
1211 while (++*idx < type->cnt) {
1212 r = &type->regions[*idx];
1213 r_nid = memblock_get_region_node(r);
1215 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1217 if (nid == MAX_NUMNODES || nid == r_nid)
1220 if (*idx >= type->cnt) {
1226 *out_start_pfn = PFN_UP(r->base);
1228 *out_end_pfn = PFN_DOWN(r->base + r->size);
1234 * memblock_set_node - set node ID on memblock regions
1235 * @base: base of area to set node ID for
1236 * @size: size of area to set node ID for
1237 * @type: memblock type to set node ID for
1238 * @nid: node ID to set
1240 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1241 * Regions which cross the area boundaries are split as necessary.
1244 * 0 on success, -errno on failure.
1246 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1247 struct memblock_type *type, int nid)
1250 int start_rgn, end_rgn;
1253 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1257 for (i = start_rgn; i < end_rgn; i++)
1258 memblock_set_region_node(&type->regions[i], nid);
1260 memblock_merge_regions(type);
1265 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1267 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1269 * @idx: pointer to u64 loop variable
1270 * @zone: zone in which all of the memory blocks reside
1271 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1272 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1274 * This function is meant to be a zone/pfn specific wrapper for the
1275 * for_each_mem_range type iterators. Specifically they are used in the
1276 * deferred memory init routines and as such we were duplicating much of
1277 * this logic throughout the code. So instead of having it in multiple
1278 * locations it seemed like it would make more sense to centralize this to
1279 * one new iterator that does everything they need.
1281 void __init_memblock
1282 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1283 unsigned long *out_spfn, unsigned long *out_epfn)
1285 int zone_nid = zone_to_nid(zone);
1286 phys_addr_t spa, epa;
1288 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1289 &memblock.memory, &memblock.reserved,
1292 while (*idx != U64_MAX) {
1293 unsigned long epfn = PFN_DOWN(epa);
1294 unsigned long spfn = PFN_UP(spa);
1297 * Verify the end is at least past the start of the zone and
1298 * that we have at least one PFN to initialize.
1300 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1301 /* if we went too far just stop searching */
1302 if (zone_end_pfn(zone) <= spfn) {
1308 *out_spfn = max(zone->zone_start_pfn, spfn);
1310 *out_epfn = min(zone_end_pfn(zone), epfn);
1315 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1316 &memblock.memory, &memblock.reserved,
1320 /* signal end of iteration */
1322 *out_spfn = ULONG_MAX;
1327 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1330 * memblock_alloc_range_nid - allocate boot memory block
1331 * @size: size of memory block to be allocated in bytes
1332 * @align: alignment of the region and block's size
1333 * @start: the lower bound of the memory region to allocate (phys address)
1334 * @end: the upper bound of the memory region to allocate (phys address)
1335 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1336 * @exact_nid: control the allocation fall back to other nodes
1338 * The allocation is performed from memory region limited by
1339 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1341 * If the specified node can not hold the requested memory and @exact_nid
1342 * is false, the allocation falls back to any node in the system.
1344 * For systems with memory mirroring, the allocation is attempted first
1345 * from the regions with mirroring enabled and then retried from any
1348 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1349 * allocated boot memory block, so that it is never reported as leaks.
1352 * Physical address of allocated memory block on success, %0 on failure.
1354 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1355 phys_addr_t align, phys_addr_t start,
1356 phys_addr_t end, int nid,
1359 enum memblock_flags flags = choose_memblock_flags();
1362 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1366 /* Can't use WARNs this early in boot on powerpc */
1368 align = SMP_CACHE_BYTES;
1372 found = memblock_find_in_range_node(size, align, start, end, nid,
1374 if (found && !memblock_reserve(found, size))
1377 if (nid != NUMA_NO_NODE && !exact_nid) {
1378 found = memblock_find_in_range_node(size, align, start,
1381 if (found && !memblock_reserve(found, size))
1385 if (flags & MEMBLOCK_MIRROR) {
1386 flags &= ~MEMBLOCK_MIRROR;
1387 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1396 * Skip kmemleak for those places like kasan_init() and
1397 * early_pgtable_alloc() due to high volume.
1399 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1401 * The min_count is set to 0 so that memblock allocated
1402 * blocks are never reported as leaks. This is because many
1403 * of these blocks are only referred via the physical
1404 * address which is not looked up by kmemleak.
1406 kmemleak_alloc_phys(found, size, 0, 0);
1412 * memblock_phys_alloc_range - allocate a memory block inside specified range
1413 * @size: size of memory block to be allocated in bytes
1414 * @align: alignment of the region and block's size
1415 * @start: the lower bound of the memory region to allocate (physical address)
1416 * @end: the upper bound of the memory region to allocate (physical address)
1418 * Allocate @size bytes in the between @start and @end.
1420 * Return: physical address of the allocated memory block on success,
1423 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1428 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1429 __func__, (u64)size, (u64)align, &start, &end,
1431 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1436 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1437 * @size: size of memory block to be allocated in bytes
1438 * @align: alignment of the region and block's size
1439 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1441 * Allocates memory block from the specified NUMA node. If the node
1442 * has no available memory, attempts to allocated from any node in the
1445 * Return: physical address of the allocated memory block on success,
1448 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1450 return memblock_alloc_range_nid(size, align, 0,
1451 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1455 * memblock_alloc_internal - allocate boot memory block
1456 * @size: size of memory block to be allocated in bytes
1457 * @align: alignment of the region and block's size
1458 * @min_addr: the lower bound of the memory region to allocate (phys address)
1459 * @max_addr: the upper bound of the memory region to allocate (phys address)
1460 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1461 * @exact_nid: control the allocation fall back to other nodes
1463 * Allocates memory block using memblock_alloc_range_nid() and
1464 * converts the returned physical address to virtual.
1466 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1467 * will fall back to memory below @min_addr. Other constraints, such
1468 * as node and mirrored memory will be handled again in
1469 * memblock_alloc_range_nid().
1472 * Virtual address of allocated memory block on success, NULL on failure.
1474 static void * __init memblock_alloc_internal(
1475 phys_addr_t size, phys_addr_t align,
1476 phys_addr_t min_addr, phys_addr_t max_addr,
1477 int nid, bool exact_nid)
1482 * Detect any accidental use of these APIs after slab is ready, as at
1483 * this moment memblock may be deinitialized already and its
1484 * internal data may be destroyed (after execution of memblock_free_all)
1486 if (WARN_ON_ONCE(slab_is_available()))
1487 return kzalloc_node(size, GFP_NOWAIT, nid);
1489 if (max_addr > memblock.current_limit)
1490 max_addr = memblock.current_limit;
1492 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1495 /* retry allocation without lower limit */
1496 if (!alloc && min_addr)
1497 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1503 return phys_to_virt(alloc);
1507 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1508 * without zeroing memory
1509 * @size: size of memory block to be allocated in bytes
1510 * @align: alignment of the region and block's size
1511 * @min_addr: the lower bound of the memory region from where the allocation
1512 * is preferred (phys address)
1513 * @max_addr: the upper bound of the memory region from where the allocation
1514 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1515 * allocate only from memory limited by memblock.current_limit value
1516 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1518 * Public function, provides additional debug information (including caller
1519 * info), if enabled. Does not zero allocated memory.
1522 * Virtual address of allocated memory block on success, NULL on failure.
1524 void * __init memblock_alloc_exact_nid_raw(
1525 phys_addr_t size, phys_addr_t align,
1526 phys_addr_t min_addr, phys_addr_t max_addr,
1529 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1530 __func__, (u64)size, (u64)align, nid, &min_addr,
1531 &max_addr, (void *)_RET_IP_);
1533 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1538 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1539 * memory and without panicking
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 * is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546 * allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. Does not zero allocated memory, does not panic if request
1551 * cannot be satisfied.
1554 * Virtual address of allocated memory block on success, NULL on failure.
1556 void * __init memblock_alloc_try_nid_raw(
1557 phys_addr_t size, phys_addr_t align,
1558 phys_addr_t min_addr, phys_addr_t max_addr,
1561 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1562 __func__, (u64)size, (u64)align, nid, &min_addr,
1563 &max_addr, (void *)_RET_IP_);
1565 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1570 * memblock_alloc_try_nid - allocate boot memory block
1571 * @size: size of memory block to be allocated in bytes
1572 * @align: alignment of the region and block's size
1573 * @min_addr: the lower bound of the memory region from where the allocation
1574 * is preferred (phys address)
1575 * @max_addr: the upper bound of the memory region from where the allocation
1576 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1577 * allocate only from memory limited by memblock.current_limit value
1578 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1580 * Public function, provides additional debug information (including caller
1581 * info), if enabled. This function zeroes the allocated memory.
1584 * Virtual address of allocated memory block on success, NULL on failure.
1586 void * __init memblock_alloc_try_nid(
1587 phys_addr_t size, phys_addr_t align,
1588 phys_addr_t min_addr, phys_addr_t max_addr,
1593 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1594 __func__, (u64)size, (u64)align, nid, &min_addr,
1595 &max_addr, (void *)_RET_IP_);
1596 ptr = memblock_alloc_internal(size, align,
1597 min_addr, max_addr, nid, false);
1599 memset(ptr, 0, size);
1605 * memblock_free_late - free pages directly to buddy allocator
1606 * @base: phys starting address of the boot memory block
1607 * @size: size of the boot memory block in bytes
1609 * This is only useful when the memblock allocator has already been torn
1610 * down, but we are still initializing the system. Pages are released directly
1611 * to the buddy allocator.
1613 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1615 phys_addr_t cursor, end;
1617 end = base + size - 1;
1618 memblock_dbg("%s: [%pa-%pa] %pS\n",
1619 __func__, &base, &end, (void *)_RET_IP_);
1620 kmemleak_free_part_phys(base, size);
1621 cursor = PFN_UP(base);
1622 end = PFN_DOWN(base + size);
1624 for (; cursor < end; cursor++) {
1625 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1626 totalram_pages_inc();
1631 * Remaining API functions
1634 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1636 return memblock.memory.total_size;
1639 phys_addr_t __init_memblock memblock_reserved_size(void)
1641 return memblock.reserved.total_size;
1644 /* lowest address */
1645 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1647 return memblock.memory.regions[0].base;
1650 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1652 int idx = memblock.memory.cnt - 1;
1654 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1657 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1659 phys_addr_t max_addr = PHYS_ADDR_MAX;
1660 struct memblock_region *r;
1663 * translate the memory @limit size into the max address within one of
1664 * the memory memblock regions, if the @limit exceeds the total size
1665 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1667 for_each_mem_region(r) {
1668 if (limit <= r->size) {
1669 max_addr = r->base + limit;
1678 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1680 phys_addr_t max_addr;
1685 max_addr = __find_max_addr(limit);
1687 /* @limit exceeds the total size of the memory, do nothing */
1688 if (max_addr == PHYS_ADDR_MAX)
1691 /* truncate both memory and reserved regions */
1692 memblock_remove_range(&memblock.memory, max_addr,
1694 memblock_remove_range(&memblock.reserved, max_addr,
1698 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1700 int start_rgn, end_rgn;
1706 if (!memblock_memory->total_size) {
1707 pr_warn("%s: No memory registered yet\n", __func__);
1711 ret = memblock_isolate_range(&memblock.memory, base, size,
1712 &start_rgn, &end_rgn);
1716 /* remove all the MAP regions */
1717 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1718 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1719 memblock_remove_region(&memblock.memory, i);
1721 for (i = start_rgn - 1; i >= 0; i--)
1722 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1723 memblock_remove_region(&memblock.memory, i);
1725 /* truncate the reserved regions */
1726 memblock_remove_range(&memblock.reserved, 0, base);
1727 memblock_remove_range(&memblock.reserved,
1728 base + size, PHYS_ADDR_MAX);
1731 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1733 phys_addr_t max_addr;
1738 max_addr = __find_max_addr(limit);
1740 /* @limit exceeds the total size of the memory, do nothing */
1741 if (max_addr == PHYS_ADDR_MAX)
1744 memblock_cap_memory_range(0, max_addr);
1747 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1749 unsigned int left = 0, right = type->cnt;
1752 unsigned int mid = (right + left) / 2;
1754 if (addr < type->regions[mid].base)
1756 else if (addr >= (type->regions[mid].base +
1757 type->regions[mid].size))
1761 } while (left < right);
1765 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1767 return memblock_search(&memblock.reserved, addr) != -1;
1770 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1772 return memblock_search(&memblock.memory, addr) != -1;
1775 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1777 int i = memblock_search(&memblock.memory, addr);
1781 return !memblock_is_nomap(&memblock.memory.regions[i]);
1784 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1785 unsigned long *start_pfn, unsigned long *end_pfn)
1787 struct memblock_type *type = &memblock.memory;
1788 int mid = memblock_search(type, PFN_PHYS(pfn));
1793 *start_pfn = PFN_DOWN(type->regions[mid].base);
1794 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1796 return memblock_get_region_node(&type->regions[mid]);
1800 * memblock_is_region_memory - check if a region is a subset of memory
1801 * @base: base of region to check
1802 * @size: size of region to check
1804 * Check if the region [@base, @base + @size) is a subset of a memory block.
1807 * 0 if false, non-zero if true
1809 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1811 int idx = memblock_search(&memblock.memory, base);
1812 phys_addr_t end = base + memblock_cap_size(base, &size);
1816 return (memblock.memory.regions[idx].base +
1817 memblock.memory.regions[idx].size) >= end;
1821 * memblock_is_region_reserved - check if a region intersects reserved memory
1822 * @base: base of region to check
1823 * @size: size of region to check
1825 * Check if the region [@base, @base + @size) intersects a reserved
1829 * True if they intersect, false if not.
1831 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1833 return memblock_overlaps_region(&memblock.reserved, base, size);
1836 void __init_memblock memblock_trim_memory(phys_addr_t align)
1838 phys_addr_t start, end, orig_start, orig_end;
1839 struct memblock_region *r;
1841 for_each_mem_region(r) {
1842 orig_start = r->base;
1843 orig_end = r->base + r->size;
1844 start = round_up(orig_start, align);
1845 end = round_down(orig_end, align);
1847 if (start == orig_start && end == orig_end)
1852 r->size = end - start;
1854 memblock_remove_region(&memblock.memory,
1855 r - memblock.memory.regions);
1861 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1863 memblock.current_limit = limit;
1866 phys_addr_t __init_memblock memblock_get_current_limit(void)
1868 return memblock.current_limit;
1871 static void __init_memblock memblock_dump(struct memblock_type *type)
1873 phys_addr_t base, end, size;
1874 enum memblock_flags flags;
1876 struct memblock_region *rgn;
1878 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1880 for_each_memblock_type(idx, type, rgn) {
1881 char nid_buf[32] = "";
1885 end = base + size - 1;
1888 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1889 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1890 memblock_get_region_node(rgn));
1892 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1893 type->name, idx, &base, &end, &size, nid_buf, flags);
1897 static void __init_memblock __memblock_dump_all(void)
1899 pr_info("MEMBLOCK configuration:\n");
1900 pr_info(" memory size = %pa reserved size = %pa\n",
1901 &memblock.memory.total_size,
1902 &memblock.reserved.total_size);
1904 memblock_dump(&memblock.memory);
1905 memblock_dump(&memblock.reserved);
1906 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1907 memblock_dump(&physmem);
1911 void __init_memblock memblock_dump_all(void)
1914 __memblock_dump_all();
1917 void __init memblock_allow_resize(void)
1919 memblock_can_resize = 1;
1922 static int __init early_memblock(char *p)
1924 if (p && strstr(p, "debug"))
1928 early_param("memblock", early_memblock);
1930 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1932 struct page *start_pg, *end_pg;
1933 phys_addr_t pg, pgend;
1936 * Convert start_pfn/end_pfn to a struct page pointer.
1938 start_pg = pfn_to_page(start_pfn - 1) + 1;
1939 end_pg = pfn_to_page(end_pfn - 1) + 1;
1942 * Convert to physical addresses, and round start upwards and end
1945 pg = PAGE_ALIGN(__pa(start_pg));
1946 pgend = __pa(end_pg) & PAGE_MASK;
1949 * If there are free pages between these, free the section of the
1953 memblock_phys_free(pg, pgend - pg);
1957 * The mem_map array can get very big. Free the unused area of the memory map.
1959 static void __init free_unused_memmap(void)
1961 unsigned long start, end, prev_end = 0;
1964 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1965 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1969 * This relies on each bank being in address order.
1970 * The banks are sorted previously in bootmem_init().
1972 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1973 #ifdef CONFIG_SPARSEMEM
1975 * Take care not to free memmap entries that don't exist
1976 * due to SPARSEMEM sections which aren't present.
1978 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1981 * Align down here since many operations in VM subsystem
1982 * presume that there are no holes in the memory map inside
1985 start = round_down(start, pageblock_nr_pages);
1988 * If we had a previous bank, and there is a space
1989 * between the current bank and the previous, free it.
1991 if (prev_end && prev_end < start)
1992 free_memmap(prev_end, start);
1995 * Align up here since many operations in VM subsystem
1996 * presume that there are no holes in the memory map inside
1999 prev_end = ALIGN(end, pageblock_nr_pages);
2002 #ifdef CONFIG_SPARSEMEM
2003 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2004 prev_end = ALIGN(end, pageblock_nr_pages);
2005 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2010 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2014 while (start < end) {
2015 order = min(MAX_ORDER - 1UL, __ffs(start));
2017 while (start + (1UL << order) > end)
2020 memblock_free_pages(pfn_to_page(start), start, order);
2022 start += (1UL << order);
2026 static unsigned long __init __free_memory_core(phys_addr_t start,
2029 unsigned long start_pfn = PFN_UP(start);
2030 unsigned long end_pfn = min_t(unsigned long,
2031 PFN_DOWN(end), max_low_pfn);
2033 if (start_pfn >= end_pfn)
2036 __free_pages_memory(start_pfn, end_pfn);
2038 return end_pfn - start_pfn;
2041 static void __init memmap_init_reserved_pages(void)
2043 struct memblock_region *region;
2044 phys_addr_t start, end;
2047 /* initialize struct pages for the reserved regions */
2048 for_each_reserved_mem_range(i, &start, &end)
2049 reserve_bootmem_region(start, end);
2051 /* and also treat struct pages for the NOMAP regions as PageReserved */
2052 for_each_mem_region(region) {
2053 if (memblock_is_nomap(region)) {
2054 start = region->base;
2055 end = start + region->size;
2056 reserve_bootmem_region(start, end);
2061 static unsigned long __init free_low_memory_core_early(void)
2063 unsigned long count = 0;
2064 phys_addr_t start, end;
2067 memblock_clear_hotplug(0, -1);
2069 memmap_init_reserved_pages();
2072 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2073 * because in some case like Node0 doesn't have RAM installed
2074 * low ram will be on Node1
2076 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2078 count += __free_memory_core(start, end);
2083 static int reset_managed_pages_done __initdata;
2085 void reset_node_managed_pages(pg_data_t *pgdat)
2089 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2090 atomic_long_set(&z->managed_pages, 0);
2093 void __init reset_all_zones_managed_pages(void)
2095 struct pglist_data *pgdat;
2097 if (reset_managed_pages_done)
2100 for_each_online_pgdat(pgdat)
2101 reset_node_managed_pages(pgdat);
2103 reset_managed_pages_done = 1;
2107 * memblock_free_all - release free pages to the buddy allocator
2109 void __init memblock_free_all(void)
2111 unsigned long pages;
2113 free_unused_memmap();
2114 reset_all_zones_managed_pages();
2116 pages = free_low_memory_core_early();
2117 totalram_pages_add(pages);
2120 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2122 static int memblock_debug_show(struct seq_file *m, void *private)
2124 struct memblock_type *type = m->private;
2125 struct memblock_region *reg;
2129 for (i = 0; i < type->cnt; i++) {
2130 reg = &type->regions[i];
2131 end = reg->base + reg->size - 1;
2133 seq_printf(m, "%4d: ", i);
2134 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2138 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2140 static int __init memblock_init_debugfs(void)
2142 struct dentry *root = debugfs_create_dir("memblock", NULL);
2144 debugfs_create_file("memory", 0444, root,
2145 &memblock.memory, &memblock_debug_fops);
2146 debugfs_create_file("reserved", 0444, root,
2147 &memblock.reserved, &memblock_debug_fops);
2148 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2149 debugfs_create_file("physmem", 0444, root, &physmem,
2150 &memblock_debug_fops);
2155 __initcall(memblock_init_debugfs);
2157 #endif /* CONFIG_DEBUG_FS */