1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
20 #include <asm/sections.h>
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
37 * DOC: memblock overview
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
78 * Once memblock is setup the memory can be allocated using one of the
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
115 struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
147 #define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
152 #define memblock_dbg(fmt, ...) \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
164 static enum memblock_flags __init_memblock choose_memblock_flags(void)
166 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
169 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
170 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
172 return *size = min(*size, PHYS_ADDR_MAX - base);
176 * Address comparison utilities
178 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
179 phys_addr_t base2, phys_addr_t size2)
181 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
184 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
185 phys_addr_t base, phys_addr_t size)
189 memblock_cap_size(base, &size);
191 for (i = 0; i < type->cnt; i++)
192 if (memblock_addrs_overlap(base, size, type->regions[i].base,
193 type->regions[i].size))
195 return i < type->cnt;
199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
200 * @start: start of candidate range
201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
202 * %MEMBLOCK_ALLOC_ACCESSIBLE
203 * @size: size of free area to find
204 * @align: alignment of free area to find
205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
206 * @flags: pick from blocks based on memory attributes
208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
211 * Found address on success, 0 on failure.
213 static phys_addr_t __init_memblock
214 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
215 phys_addr_t size, phys_addr_t align, int nid,
216 enum memblock_flags flags)
218 phys_addr_t this_start, this_end, cand;
221 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
222 this_start = clamp(this_start, start, end);
223 this_end = clamp(this_end, start, end);
225 cand = round_up(this_start, align);
226 if (cand < this_end && this_end - cand >= size)
234 * __memblock_find_range_top_down - find free area utility, in top-down
235 * @start: start of candidate range
236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
237 * %MEMBLOCK_ALLOC_ACCESSIBLE
238 * @size: size of free area to find
239 * @align: alignment of free area to find
240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
241 * @flags: pick from blocks based on memory attributes
243 * Utility called from memblock_find_in_range_node(), find free area top-down.
246 * Found address on success, 0 on failure.
248 static phys_addr_t __init_memblock
249 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
250 phys_addr_t size, phys_addr_t align, int nid,
251 enum memblock_flags flags)
253 phys_addr_t this_start, this_end, cand;
256 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
258 this_start = clamp(this_start, start, end);
259 this_end = clamp(this_end, start, end);
264 cand = round_down(this_end - size, align);
265 if (cand >= this_start)
273 * memblock_find_in_range_node - find free area in given range and node
274 * @size: size of free area to find
275 * @align: alignment of free area to find
276 * @start: start of candidate range
277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
278 * %MEMBLOCK_ALLOC_ACCESSIBLE
279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
280 * @flags: pick from blocks based on memory attributes
282 * Find @size free area aligned to @align in the specified range and node.
285 * Found address on success, 0 on failure.
287 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
288 phys_addr_t align, phys_addr_t start,
289 phys_addr_t end, int nid,
290 enum memblock_flags flags)
293 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
294 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
295 end = memblock.current_limit;
297 /* avoid allocating the first page */
298 start = max_t(phys_addr_t, start, PAGE_SIZE);
299 end = max(start, end);
301 if (memblock_bottom_up())
302 return __memblock_find_range_bottom_up(start, end, size, align,
305 return __memblock_find_range_top_down(start, end, size, align,
310 * memblock_find_in_range - find free area in given range
311 * @start: start of candidate range
312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
313 * %MEMBLOCK_ALLOC_ACCESSIBLE
314 * @size: size of free area to find
315 * @align: alignment of free area to find
317 * Find @size free area aligned to @align in the specified range.
320 * Found address on success, 0 on failure.
322 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
323 phys_addr_t end, phys_addr_t size,
327 enum memblock_flags flags = choose_memblock_flags();
330 ret = memblock_find_in_range_node(size, align, start, end,
331 NUMA_NO_NODE, flags);
333 if (!ret && (flags & MEMBLOCK_MIRROR)) {
334 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
336 flags &= ~MEMBLOCK_MIRROR;
343 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
345 type->total_size -= type->regions[r].size;
346 memmove(&type->regions[r], &type->regions[r + 1],
347 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
350 /* Special case for empty arrays */
351 if (type->cnt == 0) {
352 WARN_ON(type->total_size != 0);
354 type->regions[0].base = 0;
355 type->regions[0].size = 0;
356 type->regions[0].flags = 0;
357 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
361 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
363 * memblock_discard - discard memory and reserved arrays if they were allocated
365 void __init memblock_discard(void)
367 phys_addr_t addr, size;
369 if (memblock.reserved.regions != memblock_reserved_init_regions) {
370 addr = __pa(memblock.reserved.regions);
371 size = PAGE_ALIGN(sizeof(struct memblock_region) *
372 memblock.reserved.max);
373 if (memblock_reserved_in_slab)
374 kfree(memblock.reserved.regions);
376 memblock_free_late(addr, size);
377 /* Reset to prevent UAF from stray frees. */
378 memblock.reserved.regions = memblock_reserved_init_regions;
379 memblock.reserved.cnt = 1;
380 memblock_remove_region(&memblock.reserved, 0);
383 if (memblock.memory.regions != memblock_memory_init_regions) {
384 addr = __pa(memblock.memory.regions);
385 size = PAGE_ALIGN(sizeof(struct memblock_region) *
386 memblock.memory.max);
387 if (memblock_memory_in_slab)
388 kfree(memblock.memory.regions);
390 memblock_free_late(addr, size);
393 memblock_memory = NULL;
398 * memblock_double_array - double the size of the memblock regions array
399 * @type: memblock type of the regions array being doubled
400 * @new_area_start: starting address of memory range to avoid overlap with
401 * @new_area_size: size of memory range to avoid overlap with
403 * Double the size of the @type regions array. If memblock is being used to
404 * allocate memory for a new reserved regions array and there is a previously
405 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
406 * waiting to be reserved, ensure the memory used by the new array does
410 * 0 on success, -1 on failure.
412 static int __init_memblock memblock_double_array(struct memblock_type *type,
413 phys_addr_t new_area_start,
414 phys_addr_t new_area_size)
416 struct memblock_region *new_array, *old_array;
417 phys_addr_t old_alloc_size, new_alloc_size;
418 phys_addr_t old_size, new_size, addr, new_end;
419 int use_slab = slab_is_available();
422 /* We don't allow resizing until we know about the reserved regions
423 * of memory that aren't suitable for allocation
425 if (!memblock_can_resize)
428 /* Calculate new doubled size */
429 old_size = type->max * sizeof(struct memblock_region);
430 new_size = old_size << 1;
432 * We need to allocated new one align to PAGE_SIZE,
433 * so we can free them completely later.
435 old_alloc_size = PAGE_ALIGN(old_size);
436 new_alloc_size = PAGE_ALIGN(new_size);
438 /* Retrieve the slab flag */
439 if (type == &memblock.memory)
440 in_slab = &memblock_memory_in_slab;
442 in_slab = &memblock_reserved_in_slab;
444 /* Try to find some space for it */
446 new_array = kmalloc(new_size, GFP_KERNEL);
447 addr = new_array ? __pa(new_array) : 0;
449 /* only exclude range when trying to double reserved.regions */
450 if (type != &memblock.reserved)
451 new_area_start = new_area_size = 0;
453 addr = memblock_find_in_range(new_area_start + new_area_size,
454 memblock.current_limit,
455 new_alloc_size, PAGE_SIZE);
456 if (!addr && new_area_size)
457 addr = memblock_find_in_range(0,
458 min(new_area_start, memblock.current_limit),
459 new_alloc_size, PAGE_SIZE);
461 new_array = addr ? __va(addr) : NULL;
464 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
465 type->name, type->max, type->max * 2);
469 new_end = addr + new_size - 1;
470 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
471 type->name, type->max * 2, &addr, &new_end);
474 * Found space, we now need to move the array over before we add the
475 * reserved region since it may be our reserved array itself that is
478 memcpy(new_array, type->regions, old_size);
479 memset(new_array + type->max, 0, old_size);
480 old_array = type->regions;
481 type->regions = new_array;
484 /* Free old array. We needn't free it if the array is the static one */
487 else if (old_array != memblock_memory_init_regions &&
488 old_array != memblock_reserved_init_regions)
489 memblock_free(old_array, old_alloc_size);
492 * Reserve the new array if that comes from the memblock. Otherwise, we
496 BUG_ON(memblock_reserve(addr, new_alloc_size));
498 /* Update slab flag */
505 * memblock_merge_regions - merge neighboring compatible regions
506 * @type: memblock type to scan
507 * @start_rgn: start scanning from (@start_rgn - 1)
508 * @end_rgn: end scanning at (@end_rgn - 1)
509 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
511 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
512 unsigned long start_rgn,
513 unsigned long end_rgn)
518 end_rgn = min(end_rgn, type->cnt - 1);
519 while (i < end_rgn) {
520 struct memblock_region *this = &type->regions[i];
521 struct memblock_region *next = &type->regions[i + 1];
523 if (this->base + this->size != next->base ||
524 memblock_get_region_node(this) !=
525 memblock_get_region_node(next) ||
526 this->flags != next->flags) {
527 BUG_ON(this->base + this->size > next->base);
532 this->size += next->size;
533 /* move forward from next + 1, index of which is i + 2 */
534 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
541 * memblock_insert_region - insert new memblock region
542 * @type: memblock type to insert into
543 * @idx: index for the insertion point
544 * @base: base address of the new region
545 * @size: size of the new region
546 * @nid: node id of the new region
547 * @flags: flags of the new region
549 * Insert new memblock region [@base, @base + @size) into @type at @idx.
550 * @type must already have extra room to accommodate the new region.
552 static void __init_memblock memblock_insert_region(struct memblock_type *type,
553 int idx, phys_addr_t base,
556 enum memblock_flags flags)
558 struct memblock_region *rgn = &type->regions[idx];
560 BUG_ON(type->cnt >= type->max);
561 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
565 memblock_set_region_node(rgn, nid);
567 type->total_size += size;
571 * memblock_add_range - add new memblock region
572 * @type: memblock type to add new region into
573 * @base: base address of the new region
574 * @size: size of the new region
575 * @nid: nid of the new region
576 * @flags: flags of the new region
578 * Add new memblock region [@base, @base + @size) into @type. The new region
579 * is allowed to overlap with existing ones - overlaps don't affect already
580 * existing regions. @type is guaranteed to be minimal (all neighbouring
581 * compatible regions are merged) after the addition.
584 * 0 on success, -errno on failure.
586 static int __init_memblock memblock_add_range(struct memblock_type *type,
587 phys_addr_t base, phys_addr_t size,
588 int nid, enum memblock_flags flags)
591 phys_addr_t obase = base;
592 phys_addr_t end = base + memblock_cap_size(base, &size);
593 int idx, nr_new, start_rgn = -1, end_rgn;
594 struct memblock_region *rgn;
599 /* special case for empty array */
600 if (type->regions[0].size == 0) {
601 WARN_ON(type->cnt != 1 || type->total_size);
602 type->regions[0].base = base;
603 type->regions[0].size = size;
604 type->regions[0].flags = flags;
605 memblock_set_region_node(&type->regions[0], nid);
606 type->total_size = size;
611 * The worst case is when new range overlaps all existing regions,
612 * then we'll need type->cnt + 1 empty regions in @type. So if
613 * type->cnt * 2 + 1 is less than or equal to type->max, we know
614 * that there is enough empty regions in @type, and we can insert
617 if (type->cnt * 2 + 1 <= type->max)
622 * The following is executed twice. Once with %false @insert and
623 * then with %true. The first counts the number of regions needed
624 * to accommodate the new area. The second actually inserts them.
629 for_each_memblock_type(idx, type, rgn) {
630 phys_addr_t rbase = rgn->base;
631 phys_addr_t rend = rbase + rgn->size;
638 * @rgn overlaps. If it separates the lower part of new
639 * area, insert that portion.
643 WARN_ON(nid != memblock_get_region_node(rgn));
645 WARN_ON(flags != rgn->flags);
651 memblock_insert_region(type, idx++, base,
656 /* area below @rend is dealt with, forget about it */
657 base = min(rend, end);
660 /* insert the remaining portion */
667 memblock_insert_region(type, idx, base, end - base,
676 * If this was the first round, resize array and repeat for actual
677 * insertions; otherwise, merge and return.
680 while (type->cnt + nr_new > type->max)
681 if (memblock_double_array(type, obase, size) < 0)
686 memblock_merge_regions(type, start_rgn, end_rgn);
692 * memblock_add_node - add new memblock region within a NUMA node
693 * @base: base address of the new region
694 * @size: size of the new region
695 * @nid: nid of the new region
696 * @flags: flags of the new region
698 * Add new memblock region [@base, @base + @size) to the "memory"
699 * type. See memblock_add_range() description for mode details
702 * 0 on success, -errno on failure.
704 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
705 int nid, enum memblock_flags flags)
707 phys_addr_t end = base + size - 1;
709 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
710 &base, &end, nid, flags, (void *)_RET_IP_);
712 return memblock_add_range(&memblock.memory, base, size, nid, flags);
716 * memblock_add - add new memblock region
717 * @base: base address of the new region
718 * @size: size of the new region
720 * Add new memblock region [@base, @base + @size) to the "memory"
721 * type. See memblock_add_range() description for mode details
724 * 0 on success, -errno on failure.
726 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
728 phys_addr_t end = base + size - 1;
730 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
731 &base, &end, (void *)_RET_IP_);
733 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
737 * memblock_isolate_range - isolate given range into disjoint memblocks
738 * @type: memblock type to isolate range for
739 * @base: base of range to isolate
740 * @size: size of range to isolate
741 * @start_rgn: out parameter for the start of isolated region
742 * @end_rgn: out parameter for the end of isolated region
744 * Walk @type and ensure that regions don't cross the boundaries defined by
745 * [@base, @base + @size). Crossing regions are split at the boundaries,
746 * which may create at most two more regions. The index of the first
747 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
750 * 0 on success, -errno on failure.
752 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
753 phys_addr_t base, phys_addr_t size,
754 int *start_rgn, int *end_rgn)
756 phys_addr_t end = base + memblock_cap_size(base, &size);
758 struct memblock_region *rgn;
760 *start_rgn = *end_rgn = 0;
765 /* we'll create at most two more regions */
766 while (type->cnt + 2 > type->max)
767 if (memblock_double_array(type, base, size) < 0)
770 for_each_memblock_type(idx, type, rgn) {
771 phys_addr_t rbase = rgn->base;
772 phys_addr_t rend = rbase + rgn->size;
781 * @rgn intersects from below. Split and continue
782 * to process the next region - the new top half.
785 rgn->size -= base - rbase;
786 type->total_size -= base - rbase;
787 memblock_insert_region(type, idx, rbase, base - rbase,
788 memblock_get_region_node(rgn),
790 } else if (rend > end) {
792 * @rgn intersects from above. Split and redo the
793 * current region - the new bottom half.
796 rgn->size -= end - rbase;
797 type->total_size -= end - rbase;
798 memblock_insert_region(type, idx--, rbase, end - rbase,
799 memblock_get_region_node(rgn),
802 /* @rgn is fully contained, record it */
812 static int __init_memblock memblock_remove_range(struct memblock_type *type,
813 phys_addr_t base, phys_addr_t size)
815 int start_rgn, end_rgn;
818 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
822 for (i = end_rgn - 1; i >= start_rgn; i--)
823 memblock_remove_region(type, i);
827 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
829 phys_addr_t end = base + size - 1;
831 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
832 &base, &end, (void *)_RET_IP_);
834 return memblock_remove_range(&memblock.memory, base, size);
838 * memblock_free - free boot memory allocation
839 * @ptr: starting address of the boot memory allocation
840 * @size: size of the boot memory block in bytes
842 * Free boot memory block previously allocated by memblock_alloc_xx() API.
843 * The freeing memory will not be released to the buddy allocator.
845 void __init_memblock memblock_free(void *ptr, size_t size)
848 memblock_phys_free(__pa(ptr), size);
852 * memblock_phys_free - free boot memory block
853 * @base: phys starting address of the boot memory block
854 * @size: size of the boot memory block in bytes
856 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
857 * The freeing memory will not be released to the buddy allocator.
859 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
861 phys_addr_t end = base + size - 1;
863 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
864 &base, &end, (void *)_RET_IP_);
866 kmemleak_free_part_phys(base, size);
867 return memblock_remove_range(&memblock.reserved, base, size);
870 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
872 phys_addr_t end = base + size - 1;
874 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
875 &base, &end, (void *)_RET_IP_);
877 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
880 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
881 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
883 phys_addr_t end = base + size - 1;
885 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
886 &base, &end, (void *)_RET_IP_);
888 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
893 * memblock_setclr_flag - set or clear flag for a memory region
894 * @base: base address of the region
895 * @size: size of the region
896 * @set: set or clear the flag
897 * @flag: the flag to update
899 * This function isolates region [@base, @base + @size), and sets/clears flag
901 * Return: 0 on success, -errno on failure.
903 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
904 phys_addr_t size, int set, int flag)
906 struct memblock_type *type = &memblock.memory;
907 int i, ret, start_rgn, end_rgn;
909 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
913 for (i = start_rgn; i < end_rgn; i++) {
914 struct memblock_region *r = &type->regions[i];
922 memblock_merge_regions(type, start_rgn, end_rgn);
927 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
928 * @base: the base phys addr of the region
929 * @size: the size of the region
931 * Return: 0 on success, -errno on failure.
933 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
935 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
939 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
940 * @base: the base phys addr of the region
941 * @size: the size of the region
943 * Return: 0 on success, -errno on failure.
945 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
947 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
951 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
952 * @base: the base phys addr of the region
953 * @size: the size of the region
955 * Return: 0 on success, -errno on failure.
957 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
959 if (!mirrored_kernelcore)
962 system_has_some_mirror = true;
964 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
968 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
969 * @base: the base phys addr of the region
970 * @size: the size of the region
972 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
973 * direct mapping of the physical memory. These regions will still be
974 * covered by the memory map. The struct page representing NOMAP memory
975 * frames in the memory map will be PageReserved()
977 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
978 * memblock, the caller must inform kmemleak to ignore that memory
980 * Return: 0 on success, -errno on failure.
982 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
984 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
988 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
989 * @base: the base phys addr of the region
990 * @size: the size of the region
992 * Return: 0 on success, -errno on failure.
994 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
996 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
999 static bool should_skip_region(struct memblock_type *type,
1000 struct memblock_region *m,
1003 int m_nid = memblock_get_region_node(m);
1005 /* we never skip regions when iterating memblock.reserved or physmem */
1006 if (type != memblock_memory)
1009 /* only memory regions are associated with nodes, check it */
1010 if (nid != NUMA_NO_NODE && nid != m_nid)
1013 /* skip hotpluggable memory regions if needed */
1014 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1015 !(flags & MEMBLOCK_HOTPLUG))
1018 /* if we want mirror memory skip non-mirror memory regions */
1019 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1022 /* skip nomap memory unless we were asked for it explicitly */
1023 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1026 /* skip driver-managed memory unless we were asked for it explicitly */
1027 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1034 * __next_mem_range - next function for for_each_free_mem_range() etc.
1035 * @idx: pointer to u64 loop variable
1036 * @nid: node selector, %NUMA_NO_NODE for all nodes
1037 * @flags: pick from blocks based on memory attributes
1038 * @type_a: pointer to memblock_type from where the range is taken
1039 * @type_b: pointer to memblock_type which excludes memory from being taken
1040 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1041 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1042 * @out_nid: ptr to int for nid of the range, can be %NULL
1044 * Find the first area from *@idx which matches @nid, fill the out
1045 * parameters, and update *@idx for the next iteration. The lower 32bit of
1046 * *@idx contains index into type_a and the upper 32bit indexes the
1047 * areas before each region in type_b. For example, if type_b regions
1048 * look like the following,
1050 * 0:[0-16), 1:[32-48), 2:[128-130)
1052 * The upper 32bit indexes the following regions.
1054 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1056 * As both region arrays are sorted, the function advances the two indices
1057 * in lockstep and returns each intersection.
1059 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1060 struct memblock_type *type_a,
1061 struct memblock_type *type_b, phys_addr_t *out_start,
1062 phys_addr_t *out_end, int *out_nid)
1064 int idx_a = *idx & 0xffffffff;
1065 int idx_b = *idx >> 32;
1067 if (WARN_ONCE(nid == MAX_NUMNODES,
1068 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1071 for (; idx_a < type_a->cnt; idx_a++) {
1072 struct memblock_region *m = &type_a->regions[idx_a];
1074 phys_addr_t m_start = m->base;
1075 phys_addr_t m_end = m->base + m->size;
1076 int m_nid = memblock_get_region_node(m);
1078 if (should_skip_region(type_a, m, nid, flags))
1083 *out_start = m_start;
1089 *idx = (u32)idx_a | (u64)idx_b << 32;
1093 /* scan areas before each reservation */
1094 for (; idx_b < type_b->cnt + 1; idx_b++) {
1095 struct memblock_region *r;
1096 phys_addr_t r_start;
1099 r = &type_b->regions[idx_b];
1100 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1101 r_end = idx_b < type_b->cnt ?
1102 r->base : PHYS_ADDR_MAX;
1105 * if idx_b advanced past idx_a,
1106 * break out to advance idx_a
1108 if (r_start >= m_end)
1110 /* if the two regions intersect, we're done */
1111 if (m_start < r_end) {
1114 max(m_start, r_start);
1116 *out_end = min(m_end, r_end);
1120 * The region which ends first is
1121 * advanced for the next iteration.
1127 *idx = (u32)idx_a | (u64)idx_b << 32;
1133 /* signal end of iteration */
1138 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1140 * @idx: pointer to u64 loop variable
1141 * @nid: node selector, %NUMA_NO_NODE for all nodes
1142 * @flags: pick from blocks based on memory attributes
1143 * @type_a: pointer to memblock_type from where the range is taken
1144 * @type_b: pointer to memblock_type which excludes memory from being taken
1145 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1146 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1147 * @out_nid: ptr to int for nid of the range, can be %NULL
1149 * Finds the next range from type_a which is not marked as unsuitable
1152 * Reverse of __next_mem_range().
1154 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1155 enum memblock_flags flags,
1156 struct memblock_type *type_a,
1157 struct memblock_type *type_b,
1158 phys_addr_t *out_start,
1159 phys_addr_t *out_end, int *out_nid)
1161 int idx_a = *idx & 0xffffffff;
1162 int idx_b = *idx >> 32;
1164 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1167 if (*idx == (u64)ULLONG_MAX) {
1168 idx_a = type_a->cnt - 1;
1170 idx_b = type_b->cnt;
1175 for (; idx_a >= 0; idx_a--) {
1176 struct memblock_region *m = &type_a->regions[idx_a];
1178 phys_addr_t m_start = m->base;
1179 phys_addr_t m_end = m->base + m->size;
1180 int m_nid = memblock_get_region_node(m);
1182 if (should_skip_region(type_a, m, nid, flags))
1187 *out_start = m_start;
1193 *idx = (u32)idx_a | (u64)idx_b << 32;
1197 /* scan areas before each reservation */
1198 for (; idx_b >= 0; idx_b--) {
1199 struct memblock_region *r;
1200 phys_addr_t r_start;
1203 r = &type_b->regions[idx_b];
1204 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1205 r_end = idx_b < type_b->cnt ?
1206 r->base : PHYS_ADDR_MAX;
1208 * if idx_b advanced past idx_a,
1209 * break out to advance idx_a
1212 if (r_end <= m_start)
1214 /* if the two regions intersect, we're done */
1215 if (m_end > r_start) {
1217 *out_start = max(m_start, r_start);
1219 *out_end = min(m_end, r_end);
1222 if (m_start >= r_start)
1226 *idx = (u32)idx_a | (u64)idx_b << 32;
1231 /* signal end of iteration */
1236 * Common iterator interface used to define for_each_mem_pfn_range().
1238 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1239 unsigned long *out_start_pfn,
1240 unsigned long *out_end_pfn, int *out_nid)
1242 struct memblock_type *type = &memblock.memory;
1243 struct memblock_region *r;
1246 while (++*idx < type->cnt) {
1247 r = &type->regions[*idx];
1248 r_nid = memblock_get_region_node(r);
1250 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1252 if (nid == MAX_NUMNODES || nid == r_nid)
1255 if (*idx >= type->cnt) {
1261 *out_start_pfn = PFN_UP(r->base);
1263 *out_end_pfn = PFN_DOWN(r->base + r->size);
1269 * memblock_set_node - set node ID on memblock regions
1270 * @base: base of area to set node ID for
1271 * @size: size of area to set node ID for
1272 * @type: memblock type to set node ID for
1273 * @nid: node ID to set
1275 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1276 * Regions which cross the area boundaries are split as necessary.
1279 * 0 on success, -errno on failure.
1281 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1282 struct memblock_type *type, int nid)
1285 int start_rgn, end_rgn;
1288 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1292 for (i = start_rgn; i < end_rgn; i++)
1293 memblock_set_region_node(&type->regions[i], nid);
1295 memblock_merge_regions(type, start_rgn, end_rgn);
1300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1302 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1304 * @idx: pointer to u64 loop variable
1305 * @zone: zone in which all of the memory blocks reside
1306 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1307 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1309 * This function is meant to be a zone/pfn specific wrapper for the
1310 * for_each_mem_range type iterators. Specifically they are used in the
1311 * deferred memory init routines and as such we were duplicating much of
1312 * this logic throughout the code. So instead of having it in multiple
1313 * locations it seemed like it would make more sense to centralize this to
1314 * one new iterator that does everything they need.
1316 void __init_memblock
1317 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1318 unsigned long *out_spfn, unsigned long *out_epfn)
1320 int zone_nid = zone_to_nid(zone);
1321 phys_addr_t spa, epa;
1323 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1324 &memblock.memory, &memblock.reserved,
1327 while (*idx != U64_MAX) {
1328 unsigned long epfn = PFN_DOWN(epa);
1329 unsigned long spfn = PFN_UP(spa);
1332 * Verify the end is at least past the start of the zone and
1333 * that we have at least one PFN to initialize.
1335 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1336 /* if we went too far just stop searching */
1337 if (zone_end_pfn(zone) <= spfn) {
1343 *out_spfn = max(zone->zone_start_pfn, spfn);
1345 *out_epfn = min(zone_end_pfn(zone), epfn);
1350 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1351 &memblock.memory, &memblock.reserved,
1355 /* signal end of iteration */
1357 *out_spfn = ULONG_MAX;
1362 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1365 * memblock_alloc_range_nid - allocate boot memory block
1366 * @size: size of memory block to be allocated in bytes
1367 * @align: alignment of the region and block's size
1368 * @start: the lower bound of the memory region to allocate (phys address)
1369 * @end: the upper bound of the memory region to allocate (phys address)
1370 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1371 * @exact_nid: control the allocation fall back to other nodes
1373 * The allocation is performed from memory region limited by
1374 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1376 * If the specified node can not hold the requested memory and @exact_nid
1377 * is false, the allocation falls back to any node in the system.
1379 * For systems with memory mirroring, the allocation is attempted first
1380 * from the regions with mirroring enabled and then retried from any
1383 * In addition, function using kmemleak_alloc_phys for allocated boot
1384 * memory block, it is never reported as leaks.
1387 * Physical address of allocated memory block on success, %0 on failure.
1389 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1390 phys_addr_t align, phys_addr_t start,
1391 phys_addr_t end, int nid,
1394 enum memblock_flags flags = choose_memblock_flags();
1397 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1401 /* Can't use WARNs this early in boot on powerpc */
1403 align = SMP_CACHE_BYTES;
1407 found = memblock_find_in_range_node(size, align, start, end, nid,
1409 if (found && !memblock_reserve(found, size))
1412 if (nid != NUMA_NO_NODE && !exact_nid) {
1413 found = memblock_find_in_range_node(size, align, start,
1416 if (found && !memblock_reserve(found, size))
1420 if (flags & MEMBLOCK_MIRROR) {
1421 flags &= ~MEMBLOCK_MIRROR;
1422 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1431 * Skip kmemleak for those places like kasan_init() and
1432 * early_pgtable_alloc() due to high volume.
1434 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1436 * Memblock allocated blocks are never reported as
1437 * leaks. This is because many of these blocks are
1438 * only referred via the physical address which is
1439 * not looked up by kmemleak.
1441 kmemleak_alloc_phys(found, size, 0);
1444 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1445 * require memory to be accepted before it can be used by the
1448 * Accept the memory of the allocated buffer.
1450 accept_memory(found, found + size);
1456 * memblock_phys_alloc_range - allocate a memory block inside specified range
1457 * @size: size of memory block to be allocated in bytes
1458 * @align: alignment of the region and block's size
1459 * @start: the lower bound of the memory region to allocate (physical address)
1460 * @end: the upper bound of the memory region to allocate (physical address)
1462 * Allocate @size bytes in the between @start and @end.
1464 * Return: physical address of the allocated memory block on success,
1467 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1472 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1473 __func__, (u64)size, (u64)align, &start, &end,
1475 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1480 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1481 * @size: size of memory block to be allocated in bytes
1482 * @align: alignment of the region and block's size
1483 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1485 * Allocates memory block from the specified NUMA node. If the node
1486 * has no available memory, attempts to allocated from any node in the
1489 * Return: physical address of the allocated memory block on success,
1492 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1494 return memblock_alloc_range_nid(size, align, 0,
1495 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1499 * memblock_alloc_internal - allocate boot memory block
1500 * @size: size of memory block to be allocated in bytes
1501 * @align: alignment of the region and block's size
1502 * @min_addr: the lower bound of the memory region to allocate (phys address)
1503 * @max_addr: the upper bound of the memory region to allocate (phys address)
1504 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1505 * @exact_nid: control the allocation fall back to other nodes
1507 * Allocates memory block using memblock_alloc_range_nid() and
1508 * converts the returned physical address to virtual.
1510 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1511 * will fall back to memory below @min_addr. Other constraints, such
1512 * as node and mirrored memory will be handled again in
1513 * memblock_alloc_range_nid().
1516 * Virtual address of allocated memory block on success, NULL on failure.
1518 static void * __init memblock_alloc_internal(
1519 phys_addr_t size, phys_addr_t align,
1520 phys_addr_t min_addr, phys_addr_t max_addr,
1521 int nid, bool exact_nid)
1526 * Detect any accidental use of these APIs after slab is ready, as at
1527 * this moment memblock may be deinitialized already and its
1528 * internal data may be destroyed (after execution of memblock_free_all)
1530 if (WARN_ON_ONCE(slab_is_available()))
1531 return kzalloc_node(size, GFP_NOWAIT, nid);
1533 if (max_addr > memblock.current_limit)
1534 max_addr = memblock.current_limit;
1536 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1539 /* retry allocation without lower limit */
1540 if (!alloc && min_addr)
1541 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1547 return phys_to_virt(alloc);
1551 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1552 * without zeroing memory
1553 * @size: size of memory block to be allocated in bytes
1554 * @align: alignment of the region and block's size
1555 * @min_addr: the lower bound of the memory region from where the allocation
1556 * is preferred (phys address)
1557 * @max_addr: the upper bound of the memory region from where the allocation
1558 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1559 * allocate only from memory limited by memblock.current_limit value
1560 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1562 * Public function, provides additional debug information (including caller
1563 * info), if enabled. Does not zero allocated memory.
1566 * Virtual address of allocated memory block on success, NULL on failure.
1568 void * __init memblock_alloc_exact_nid_raw(
1569 phys_addr_t size, phys_addr_t align,
1570 phys_addr_t min_addr, phys_addr_t max_addr,
1573 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1574 __func__, (u64)size, (u64)align, nid, &min_addr,
1575 &max_addr, (void *)_RET_IP_);
1577 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1582 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1583 * memory and without panicking
1584 * @size: size of memory block to be allocated in bytes
1585 * @align: alignment of the region and block's size
1586 * @min_addr: the lower bound of the memory region from where the allocation
1587 * is preferred (phys address)
1588 * @max_addr: the upper bound of the memory region from where the allocation
1589 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1590 * allocate only from memory limited by memblock.current_limit value
1591 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1593 * Public function, provides additional debug information (including caller
1594 * info), if enabled. Does not zero allocated memory, does not panic if request
1595 * cannot be satisfied.
1598 * Virtual address of allocated memory block on success, NULL on failure.
1600 void * __init memblock_alloc_try_nid_raw(
1601 phys_addr_t size, phys_addr_t align,
1602 phys_addr_t min_addr, phys_addr_t max_addr,
1605 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1606 __func__, (u64)size, (u64)align, nid, &min_addr,
1607 &max_addr, (void *)_RET_IP_);
1609 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1614 * memblock_alloc_try_nid - allocate boot memory block
1615 * @size: size of memory block to be allocated in bytes
1616 * @align: alignment of the region and block's size
1617 * @min_addr: the lower bound of the memory region from where the allocation
1618 * is preferred (phys address)
1619 * @max_addr: the upper bound of the memory region from where the allocation
1620 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1621 * allocate only from memory limited by memblock.current_limit value
1622 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1624 * Public function, provides additional debug information (including caller
1625 * info), if enabled. This function zeroes the allocated memory.
1628 * Virtual address of allocated memory block on success, NULL on failure.
1630 void * __init memblock_alloc_try_nid(
1631 phys_addr_t size, phys_addr_t align,
1632 phys_addr_t min_addr, phys_addr_t max_addr,
1637 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1638 __func__, (u64)size, (u64)align, nid, &min_addr,
1639 &max_addr, (void *)_RET_IP_);
1640 ptr = memblock_alloc_internal(size, align,
1641 min_addr, max_addr, nid, false);
1643 memset(ptr, 0, size);
1649 * memblock_free_late - free pages directly to buddy allocator
1650 * @base: phys starting address of the boot memory block
1651 * @size: size of the boot memory block in bytes
1653 * This is only useful when the memblock allocator has already been torn
1654 * down, but we are still initializing the system. Pages are released directly
1655 * to the buddy allocator.
1657 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1659 phys_addr_t cursor, end;
1661 end = base + size - 1;
1662 memblock_dbg("%s: [%pa-%pa] %pS\n",
1663 __func__, &base, &end, (void *)_RET_IP_);
1664 kmemleak_free_part_phys(base, size);
1665 cursor = PFN_UP(base);
1666 end = PFN_DOWN(base + size);
1668 for (; cursor < end; cursor++) {
1669 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1670 totalram_pages_inc();
1675 * Remaining API functions
1678 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1680 return memblock.memory.total_size;
1683 phys_addr_t __init_memblock memblock_reserved_size(void)
1685 return memblock.reserved.total_size;
1688 /* lowest address */
1689 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1691 return memblock.memory.regions[0].base;
1694 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1696 int idx = memblock.memory.cnt - 1;
1698 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1701 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1703 phys_addr_t max_addr = PHYS_ADDR_MAX;
1704 struct memblock_region *r;
1707 * translate the memory @limit size into the max address within one of
1708 * the memory memblock regions, if the @limit exceeds the total size
1709 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1711 for_each_mem_region(r) {
1712 if (limit <= r->size) {
1713 max_addr = r->base + limit;
1722 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1724 phys_addr_t max_addr;
1729 max_addr = __find_max_addr(limit);
1731 /* @limit exceeds the total size of the memory, do nothing */
1732 if (max_addr == PHYS_ADDR_MAX)
1735 /* truncate both memory and reserved regions */
1736 memblock_remove_range(&memblock.memory, max_addr,
1738 memblock_remove_range(&memblock.reserved, max_addr,
1742 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1744 int start_rgn, end_rgn;
1750 if (!memblock_memory->total_size) {
1751 pr_warn("%s: No memory registered yet\n", __func__);
1755 ret = memblock_isolate_range(&memblock.memory, base, size,
1756 &start_rgn, &end_rgn);
1760 /* remove all the MAP regions */
1761 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1762 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1763 memblock_remove_region(&memblock.memory, i);
1765 for (i = start_rgn - 1; i >= 0; i--)
1766 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1767 memblock_remove_region(&memblock.memory, i);
1769 /* truncate the reserved regions */
1770 memblock_remove_range(&memblock.reserved, 0, base);
1771 memblock_remove_range(&memblock.reserved,
1772 base + size, PHYS_ADDR_MAX);
1775 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1777 phys_addr_t max_addr;
1782 max_addr = __find_max_addr(limit);
1784 /* @limit exceeds the total size of the memory, do nothing */
1785 if (max_addr == PHYS_ADDR_MAX)
1788 memblock_cap_memory_range(0, max_addr);
1791 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1793 unsigned int left = 0, right = type->cnt;
1796 unsigned int mid = (right + left) / 2;
1798 if (addr < type->regions[mid].base)
1800 else if (addr >= (type->regions[mid].base +
1801 type->regions[mid].size))
1805 } while (left < right);
1809 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1811 return memblock_search(&memblock.reserved, addr) != -1;
1814 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1816 return memblock_search(&memblock.memory, addr) != -1;
1819 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1821 int i = memblock_search(&memblock.memory, addr);
1825 return !memblock_is_nomap(&memblock.memory.regions[i]);
1828 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1829 unsigned long *start_pfn, unsigned long *end_pfn)
1831 struct memblock_type *type = &memblock.memory;
1832 int mid = memblock_search(type, PFN_PHYS(pfn));
1837 *start_pfn = PFN_DOWN(type->regions[mid].base);
1838 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1840 return memblock_get_region_node(&type->regions[mid]);
1844 * memblock_is_region_memory - check if a region is a subset of memory
1845 * @base: base of region to check
1846 * @size: size of region to check
1848 * Check if the region [@base, @base + @size) is a subset of a memory block.
1851 * 0 if false, non-zero if true
1853 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1855 int idx = memblock_search(&memblock.memory, base);
1856 phys_addr_t end = base + memblock_cap_size(base, &size);
1860 return (memblock.memory.regions[idx].base +
1861 memblock.memory.regions[idx].size) >= end;
1865 * memblock_is_region_reserved - check if a region intersects reserved memory
1866 * @base: base of region to check
1867 * @size: size of region to check
1869 * Check if the region [@base, @base + @size) intersects a reserved
1873 * True if they intersect, false if not.
1875 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1877 return memblock_overlaps_region(&memblock.reserved, base, size);
1880 void __init_memblock memblock_trim_memory(phys_addr_t align)
1882 phys_addr_t start, end, orig_start, orig_end;
1883 struct memblock_region *r;
1885 for_each_mem_region(r) {
1886 orig_start = r->base;
1887 orig_end = r->base + r->size;
1888 start = round_up(orig_start, align);
1889 end = round_down(orig_end, align);
1891 if (start == orig_start && end == orig_end)
1896 r->size = end - start;
1898 memblock_remove_region(&memblock.memory,
1899 r - memblock.memory.regions);
1905 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1907 memblock.current_limit = limit;
1910 phys_addr_t __init_memblock memblock_get_current_limit(void)
1912 return memblock.current_limit;
1915 static void __init_memblock memblock_dump(struct memblock_type *type)
1917 phys_addr_t base, end, size;
1918 enum memblock_flags flags;
1920 struct memblock_region *rgn;
1922 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1924 for_each_memblock_type(idx, type, rgn) {
1925 char nid_buf[32] = "";
1929 end = base + size - 1;
1932 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1933 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1934 memblock_get_region_node(rgn));
1936 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1937 type->name, idx, &base, &end, &size, nid_buf, flags);
1941 static void __init_memblock __memblock_dump_all(void)
1943 pr_info("MEMBLOCK configuration:\n");
1944 pr_info(" memory size = %pa reserved size = %pa\n",
1945 &memblock.memory.total_size,
1946 &memblock.reserved.total_size);
1948 memblock_dump(&memblock.memory);
1949 memblock_dump(&memblock.reserved);
1950 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1951 memblock_dump(&physmem);
1955 void __init_memblock memblock_dump_all(void)
1958 __memblock_dump_all();
1961 void __init memblock_allow_resize(void)
1963 memblock_can_resize = 1;
1966 static int __init early_memblock(char *p)
1968 if (p && strstr(p, "debug"))
1972 early_param("memblock", early_memblock);
1974 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1976 struct page *start_pg, *end_pg;
1977 phys_addr_t pg, pgend;
1980 * Convert start_pfn/end_pfn to a struct page pointer.
1982 start_pg = pfn_to_page(start_pfn - 1) + 1;
1983 end_pg = pfn_to_page(end_pfn - 1) + 1;
1986 * Convert to physical addresses, and round start upwards and end
1989 pg = PAGE_ALIGN(__pa(start_pg));
1990 pgend = __pa(end_pg) & PAGE_MASK;
1993 * If there are free pages between these, free the section of the
1997 memblock_phys_free(pg, pgend - pg);
2001 * The mem_map array can get very big. Free the unused area of the memory map.
2003 static void __init free_unused_memmap(void)
2005 unsigned long start, end, prev_end = 0;
2008 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2009 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2013 * This relies on each bank being in address order.
2014 * The banks are sorted previously in bootmem_init().
2016 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2017 #ifdef CONFIG_SPARSEMEM
2019 * Take care not to free memmap entries that don't exist
2020 * due to SPARSEMEM sections which aren't present.
2022 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2025 * Align down here since many operations in VM subsystem
2026 * presume that there are no holes in the memory map inside
2029 start = pageblock_start_pfn(start);
2032 * If we had a previous bank, and there is a space
2033 * between the current bank and the previous, free it.
2035 if (prev_end && prev_end < start)
2036 free_memmap(prev_end, start);
2039 * Align up here since many operations in VM subsystem
2040 * presume that there are no holes in the memory map inside
2043 prev_end = pageblock_align(end);
2046 #ifdef CONFIG_SPARSEMEM
2047 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2048 prev_end = pageblock_align(end);
2049 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2054 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2058 while (start < end) {
2060 * Free the pages in the largest chunks alignment allows.
2062 * __ffs() behaviour is undefined for 0. start == 0 is
2063 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2066 order = min_t(int, MAX_ORDER, __ffs(start));
2070 while (start + (1UL << order) > end)
2073 memblock_free_pages(pfn_to_page(start), start, order);
2075 start += (1UL << order);
2079 static unsigned long __init __free_memory_core(phys_addr_t start,
2082 unsigned long start_pfn = PFN_UP(start);
2083 unsigned long end_pfn = min_t(unsigned long,
2084 PFN_DOWN(end), max_low_pfn);
2086 if (start_pfn >= end_pfn)
2089 __free_pages_memory(start_pfn, end_pfn);
2091 return end_pfn - start_pfn;
2094 static void __init memmap_init_reserved_pages(void)
2096 struct memblock_region *region;
2097 phys_addr_t start, end;
2101 * set nid on all reserved pages and also treat struct
2102 * pages for the NOMAP regions as PageReserved
2104 for_each_mem_region(region) {
2105 nid = memblock_get_region_node(region);
2106 start = region->base;
2107 end = start + region->size;
2109 if (memblock_is_nomap(region))
2110 reserve_bootmem_region(start, end, nid);
2112 memblock_set_node(start, end, &memblock.reserved, nid);
2115 /* initialize struct pages for the reserved regions */
2116 for_each_reserved_mem_region(region) {
2117 nid = memblock_get_region_node(region);
2118 start = region->base;
2119 end = start + region->size;
2121 reserve_bootmem_region(start, end, nid);
2125 static unsigned long __init free_low_memory_core_early(void)
2127 unsigned long count = 0;
2128 phys_addr_t start, end;
2131 memblock_clear_hotplug(0, -1);
2133 memmap_init_reserved_pages();
2136 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2137 * because in some case like Node0 doesn't have RAM installed
2138 * low ram will be on Node1
2140 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2142 count += __free_memory_core(start, end);
2147 static int reset_managed_pages_done __initdata;
2149 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2153 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2154 atomic_long_set(&z->managed_pages, 0);
2157 void __init reset_all_zones_managed_pages(void)
2159 struct pglist_data *pgdat;
2161 if (reset_managed_pages_done)
2164 for_each_online_pgdat(pgdat)
2165 reset_node_managed_pages(pgdat);
2167 reset_managed_pages_done = 1;
2171 * memblock_free_all - release free pages to the buddy allocator
2173 void __init memblock_free_all(void)
2175 unsigned long pages;
2177 free_unused_memmap();
2178 reset_all_zones_managed_pages();
2180 pages = free_low_memory_core_early();
2181 totalram_pages_add(pages);
2184 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2185 static const char * const flagname[] = {
2186 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2187 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2188 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2189 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2192 static int memblock_debug_show(struct seq_file *m, void *private)
2194 struct memblock_type *type = m->private;
2195 struct memblock_region *reg;
2197 unsigned int count = ARRAY_SIZE(flagname);
2200 for (i = 0; i < type->cnt; i++) {
2201 reg = &type->regions[i];
2202 end = reg->base + reg->size - 1;
2203 nid = memblock_get_region_node(reg);
2205 seq_printf(m, "%4d: ", i);
2206 seq_printf(m, "%pa..%pa ", ®->base, &end);
2207 if (nid != MAX_NUMNODES)
2208 seq_printf(m, "%4d ", nid);
2210 seq_printf(m, "%4c ", 'x');
2212 for (j = 0; j < count; j++) {
2213 if (reg->flags & (1U << j)) {
2214 seq_printf(m, "%s\n", flagname[j]);
2219 seq_printf(m, "%s\n", "UNKNOWN");
2221 seq_printf(m, "%s\n", "NONE");
2226 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2228 static int __init memblock_init_debugfs(void)
2230 struct dentry *root = debugfs_create_dir("memblock", NULL);
2232 debugfs_create_file("memory", 0444, root,
2233 &memblock.memory, &memblock_debug_fops);
2234 debugfs_create_file("reserved", 0444, root,
2235 &memblock.reserved, &memblock_debug_fops);
2236 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2237 debugfs_create_file("physmem", 0444, root, &physmem,
2238 &memblock_debug_fops);
2243 __initcall(memblock_init_debugfs);
2245 #endif /* CONFIG_DEBUG_FS */