2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static inline const char *memblock_type_name(struct memblock_type *type)
46 if (type == &memblock.memory)
48 else if (type == &memblock.reserved)
54 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
55 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
57 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
61 * Address comparison utilities
63 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
64 phys_addr_t base2, phys_addr_t size2)
66 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
69 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
70 phys_addr_t base, phys_addr_t size)
74 for (i = 0; i < type->cnt; i++) {
75 phys_addr_t rgnbase = type->regions[i].base;
76 phys_addr_t rgnsize = type->regions[i].size;
77 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
81 return (i < type->cnt) ? i : -1;
85 * memblock_find_in_range_node - find free area in given range and node
86 * @start: start of candidate range
87 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
88 * @size: size of free area to find
89 * @align: alignment of free area to find
90 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
92 * Find @size free area aligned to @align in the specified range and node.
95 * Found address on success, %0 on failure.
97 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
98 phys_addr_t end, phys_addr_t size,
99 phys_addr_t align, int nid)
101 phys_addr_t this_start, this_end, cand;
105 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
106 end = memblock.current_limit;
108 /* avoid allocating the first page */
109 start = max_t(phys_addr_t, start, PAGE_SIZE);
110 end = max(start, end);
112 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
113 this_start = clamp(this_start, start, end);
114 this_end = clamp(this_end, start, end);
119 cand = round_down(this_end - size, align);
120 if (cand >= this_start)
127 * memblock_find_in_range - find free area in given range
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
133 * Find @size free area aligned to @align in the specified range.
136 * Found address on success, %0 on failure.
138 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
139 phys_addr_t end, phys_addr_t size,
142 return memblock_find_in_range_node(start, end, size, align,
147 * Free memblock.reserved.regions
149 int __init_memblock memblock_free_reserved_regions(void)
151 if (memblock.reserved.regions == memblock_reserved_init_regions)
154 return memblock_free(__pa(memblock.reserved.regions),
155 sizeof(struct memblock_region) * memblock.reserved.max);
159 * Reserve memblock.reserved.regions
161 int __init_memblock memblock_reserve_reserved_regions(void)
163 if (memblock.reserved.regions == memblock_reserved_init_regions)
166 return memblock_reserve(__pa(memblock.reserved.regions),
167 sizeof(struct memblock_region) * memblock.reserved.max);
170 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
172 type->total_size -= type->regions[r].size;
173 memmove(&type->regions[r], &type->regions[r + 1],
174 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
177 /* Special case for empty arrays */
178 if (type->cnt == 0) {
179 WARN_ON(type->total_size != 0);
181 type->regions[0].base = 0;
182 type->regions[0].size = 0;
183 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
187 static int __init_memblock memblock_double_array(struct memblock_type *type)
189 struct memblock_region *new_array, *old_array;
190 phys_addr_t old_size, new_size, addr;
191 int use_slab = slab_is_available();
194 /* We don't allow resizing until we know about the reserved regions
195 * of memory that aren't suitable for allocation
197 if (!memblock_can_resize)
200 /* Calculate new doubled size */
201 old_size = type->max * sizeof(struct memblock_region);
202 new_size = old_size << 1;
204 /* Retrieve the slab flag */
205 if (type == &memblock.memory)
206 in_slab = &memblock_memory_in_slab;
208 in_slab = &memblock_reserved_in_slab;
210 /* Try to find some space for it.
212 * WARNING: We assume that either slab_is_available() and we use it or
213 * we use MEMBLOCK for allocations. That means that this is unsafe to use
214 * when bootmem is currently active (unless bootmem itself is implemented
215 * on top of MEMBLOCK which isn't the case yet)
217 * This should however not be an issue for now, as we currently only
218 * call into MEMBLOCK while it's still active, or much later when slab is
219 * active for memory hotplug operations
222 new_array = kmalloc(new_size, GFP_KERNEL);
223 addr = new_array ? __pa(new_array) : 0;
225 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
226 new_array = addr ? __va(addr) : 0;
229 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
230 memblock_type_name(type), type->max, type->max * 2);
234 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
235 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
237 /* Found space, we now need to move the array over before
238 * we add the reserved region since it may be our reserved
239 * array itself that is full.
241 memcpy(new_array, type->regions, old_size);
242 memset(new_array + type->max, 0, old_size);
243 old_array = type->regions;
244 type->regions = new_array;
247 /* Free old array. We needn't free it if the array is the
252 else if (old_array != memblock_memory_init_regions &&
253 old_array != memblock_reserved_init_regions)
254 memblock_free(__pa(old_array), old_size);
256 /* Reserve the new array if that comes from the memblock.
257 * Otherwise, we needn't do it
260 BUG_ON(memblock_reserve(addr, new_size));
262 /* Update slab flag */
269 * memblock_merge_regions - merge neighboring compatible regions
270 * @type: memblock type to scan
272 * Scan @type and merge neighboring compatible regions.
274 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
278 /* cnt never goes below 1 */
279 while (i < type->cnt - 1) {
280 struct memblock_region *this = &type->regions[i];
281 struct memblock_region *next = &type->regions[i + 1];
283 if (this->base + this->size != next->base ||
284 memblock_get_region_node(this) !=
285 memblock_get_region_node(next)) {
286 BUG_ON(this->base + this->size > next->base);
291 this->size += next->size;
292 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
298 * memblock_insert_region - insert new memblock region
299 * @type: memblock type to insert into
300 * @idx: index for the insertion point
301 * @base: base address of the new region
302 * @size: size of the new region
304 * Insert new memblock region [@base,@base+@size) into @type at @idx.
305 * @type must already have extra room to accomodate the new region.
307 static void __init_memblock memblock_insert_region(struct memblock_type *type,
308 int idx, phys_addr_t base,
309 phys_addr_t size, int nid)
311 struct memblock_region *rgn = &type->regions[idx];
313 BUG_ON(type->cnt >= type->max);
314 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
317 memblock_set_region_node(rgn, nid);
319 type->total_size += size;
323 * memblock_add_region - add new memblock region
324 * @type: memblock type to add new region into
325 * @base: base address of the new region
326 * @size: size of the new region
327 * @nid: nid of the new region
329 * Add new memblock region [@base,@base+@size) into @type. The new region
330 * is allowed to overlap with existing ones - overlaps don't affect already
331 * existing regions. @type is guaranteed to be minimal (all neighbouring
332 * compatible regions are merged) after the addition.
335 * 0 on success, -errno on failure.
337 static int __init_memblock memblock_add_region(struct memblock_type *type,
338 phys_addr_t base, phys_addr_t size, int nid)
341 phys_addr_t obase = base;
342 phys_addr_t end = base + memblock_cap_size(base, &size);
348 /* special case for empty array */
349 if (type->regions[0].size == 0) {
350 WARN_ON(type->cnt != 1 || type->total_size);
351 type->regions[0].base = base;
352 type->regions[0].size = size;
353 memblock_set_region_node(&type->regions[0], nid);
354 type->total_size = size;
359 * The following is executed twice. Once with %false @insert and
360 * then with %true. The first counts the number of regions needed
361 * to accomodate the new area. The second actually inserts them.
366 for (i = 0; i < type->cnt; i++) {
367 struct memblock_region *rgn = &type->regions[i];
368 phys_addr_t rbase = rgn->base;
369 phys_addr_t rend = rbase + rgn->size;
376 * @rgn overlaps. If it separates the lower part of new
377 * area, insert that portion.
382 memblock_insert_region(type, i++, base,
385 /* area below @rend is dealt with, forget about it */
386 base = min(rend, end);
389 /* insert the remaining portion */
393 memblock_insert_region(type, i, base, end - base, nid);
397 * If this was the first round, resize array and repeat for actual
398 * insertions; otherwise, merge and return.
401 while (type->cnt + nr_new > type->max)
402 if (memblock_double_array(type) < 0)
407 memblock_merge_regions(type);
412 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
415 return memblock_add_region(&memblock.memory, base, size, nid);
418 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
420 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
424 * memblock_isolate_range - isolate given range into disjoint memblocks
425 * @type: memblock type to isolate range for
426 * @base: base of range to isolate
427 * @size: size of range to isolate
428 * @start_rgn: out parameter for the start of isolated region
429 * @end_rgn: out parameter for the end of isolated region
431 * Walk @type and ensure that regions don't cross the boundaries defined by
432 * [@base,@base+@size). Crossing regions are split at the boundaries,
433 * which may create at most two more regions. The index of the first
434 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
437 * 0 on success, -errno on failure.
439 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
440 phys_addr_t base, phys_addr_t size,
441 int *start_rgn, int *end_rgn)
443 phys_addr_t end = base + memblock_cap_size(base, &size);
446 *start_rgn = *end_rgn = 0;
451 /* we'll create at most two more regions */
452 while (type->cnt + 2 > type->max)
453 if (memblock_double_array(type) < 0)
456 for (i = 0; i < type->cnt; i++) {
457 struct memblock_region *rgn = &type->regions[i];
458 phys_addr_t rbase = rgn->base;
459 phys_addr_t rend = rbase + rgn->size;
468 * @rgn intersects from below. Split and continue
469 * to process the next region - the new top half.
472 rgn->size -= base - rbase;
473 type->total_size -= base - rbase;
474 memblock_insert_region(type, i, rbase, base - rbase,
475 memblock_get_region_node(rgn));
476 } else if (rend > end) {
478 * @rgn intersects from above. Split and redo the
479 * current region - the new bottom half.
482 rgn->size -= end - rbase;
483 type->total_size -= end - rbase;
484 memblock_insert_region(type, i--, rbase, end - rbase,
485 memblock_get_region_node(rgn));
487 /* @rgn is fully contained, record it */
497 static int __init_memblock __memblock_remove(struct memblock_type *type,
498 phys_addr_t base, phys_addr_t size)
500 int start_rgn, end_rgn;
503 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
507 for (i = end_rgn - 1; i >= start_rgn; i--)
508 memblock_remove_region(type, i);
512 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
514 return __memblock_remove(&memblock.memory, base, size);
517 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
519 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
520 (unsigned long long)base,
521 (unsigned long long)base + size,
524 return __memblock_remove(&memblock.reserved, base, size);
527 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
529 struct memblock_type *_rgn = &memblock.reserved;
531 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
532 (unsigned long long)base,
533 (unsigned long long)base + size,
536 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
540 * __next_free_mem_range - next function for for_each_free_mem_range()
541 * @idx: pointer to u64 loop variable
542 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
543 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
544 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
545 * @p_nid: ptr to int for nid of the range, can be %NULL
547 * Find the first free area from *@idx which matches @nid, fill the out
548 * parameters, and update *@idx for the next iteration. The lower 32bit of
549 * *@idx contains index into memory region and the upper 32bit indexes the
550 * areas before each reserved region. For example, if reserved regions
551 * look like the following,
553 * 0:[0-16), 1:[32-48), 2:[128-130)
555 * The upper 32bit indexes the following regions.
557 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
559 * As both region arrays are sorted, the function advances the two indices
560 * in lockstep and returns each intersection.
562 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
563 phys_addr_t *out_start,
564 phys_addr_t *out_end, int *out_nid)
566 struct memblock_type *mem = &memblock.memory;
567 struct memblock_type *rsv = &memblock.reserved;
568 int mi = *idx & 0xffffffff;
571 for ( ; mi < mem->cnt; mi++) {
572 struct memblock_region *m = &mem->regions[mi];
573 phys_addr_t m_start = m->base;
574 phys_addr_t m_end = m->base + m->size;
576 /* only memory regions are associated with nodes, check it */
577 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
580 /* scan areas before each reservation for intersection */
581 for ( ; ri < rsv->cnt + 1; ri++) {
582 struct memblock_region *r = &rsv->regions[ri];
583 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
584 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
586 /* if ri advanced past mi, break out to advance mi */
587 if (r_start >= m_end)
589 /* if the two regions intersect, we're done */
590 if (m_start < r_end) {
592 *out_start = max(m_start, r_start);
594 *out_end = min(m_end, r_end);
596 *out_nid = memblock_get_region_node(m);
598 * The region which ends first is advanced
599 * for the next iteration.
605 *idx = (u32)mi | (u64)ri << 32;
611 /* signal end of iteration */
616 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
617 * @idx: pointer to u64 loop variable
618 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
619 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
620 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
621 * @p_nid: ptr to int for nid of the range, can be %NULL
623 * Reverse of __next_free_mem_range().
625 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
626 phys_addr_t *out_start,
627 phys_addr_t *out_end, int *out_nid)
629 struct memblock_type *mem = &memblock.memory;
630 struct memblock_type *rsv = &memblock.reserved;
631 int mi = *idx & 0xffffffff;
634 if (*idx == (u64)ULLONG_MAX) {
639 for ( ; mi >= 0; mi--) {
640 struct memblock_region *m = &mem->regions[mi];
641 phys_addr_t m_start = m->base;
642 phys_addr_t m_end = m->base + m->size;
644 /* only memory regions are associated with nodes, check it */
645 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
648 /* scan areas before each reservation for intersection */
649 for ( ; ri >= 0; ri--) {
650 struct memblock_region *r = &rsv->regions[ri];
651 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
652 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
654 /* if ri advanced past mi, break out to advance mi */
655 if (r_end <= m_start)
657 /* if the two regions intersect, we're done */
658 if (m_end > r_start) {
660 *out_start = max(m_start, r_start);
662 *out_end = min(m_end, r_end);
664 *out_nid = memblock_get_region_node(m);
666 if (m_start >= r_start)
670 *idx = (u32)mi | (u64)ri << 32;
679 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
681 * Common iterator interface used to define for_each_mem_range().
683 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
684 unsigned long *out_start_pfn,
685 unsigned long *out_end_pfn, int *out_nid)
687 struct memblock_type *type = &memblock.memory;
688 struct memblock_region *r;
690 while (++*idx < type->cnt) {
691 r = &type->regions[*idx];
693 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
695 if (nid == MAX_NUMNODES || nid == r->nid)
698 if (*idx >= type->cnt) {
704 *out_start_pfn = PFN_UP(r->base);
706 *out_end_pfn = PFN_DOWN(r->base + r->size);
712 * memblock_set_node - set node ID on memblock regions
713 * @base: base of area to set node ID for
714 * @size: size of area to set node ID for
715 * @nid: node ID to set
717 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
718 * Regions which cross the area boundaries are split as necessary.
721 * 0 on success, -errno on failure.
723 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
726 struct memblock_type *type = &memblock.memory;
727 int start_rgn, end_rgn;
730 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
734 for (i = start_rgn; i < end_rgn; i++)
735 type->regions[i].nid = nid;
737 memblock_merge_regions(type);
740 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
742 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
743 phys_addr_t align, phys_addr_t max_addr,
748 /* align @size to avoid excessive fragmentation on reserved array */
749 size = round_up(size, align);
751 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
752 if (found && !memblock_reserve(found, size))
758 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
760 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
763 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
765 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
768 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
772 alloc = __memblock_alloc_base(size, align, max_addr);
775 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
776 (unsigned long long) size, (unsigned long long) max_addr);
781 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
783 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
786 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
788 phys_addr_t res = memblock_alloc_nid(size, align, nid);
792 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
797 * Remaining API functions
800 phys_addr_t __init memblock_phys_mem_size(void)
802 return memblock.memory.total_size;
806 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
808 return memblock.memory.regions[0].base;
811 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
813 int idx = memblock.memory.cnt - 1;
815 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
818 void __init memblock_enforce_memory_limit(phys_addr_t limit)
821 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
826 /* find out max address */
827 for (i = 0; i < memblock.memory.cnt; i++) {
828 struct memblock_region *r = &memblock.memory.regions[i];
830 if (limit <= r->size) {
831 max_addr = r->base + limit;
837 /* truncate both memory and reserved regions */
838 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
839 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
842 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
844 unsigned int left = 0, right = type->cnt;
847 unsigned int mid = (right + left) / 2;
849 if (addr < type->regions[mid].base)
851 else if (addr >= (type->regions[mid].base +
852 type->regions[mid].size))
856 } while (left < right);
860 int __init memblock_is_reserved(phys_addr_t addr)
862 return memblock_search(&memblock.reserved, addr) != -1;
865 int __init_memblock memblock_is_memory(phys_addr_t addr)
867 return memblock_search(&memblock.memory, addr) != -1;
870 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
872 int idx = memblock_search(&memblock.memory, base);
873 phys_addr_t end = base + memblock_cap_size(base, &size);
877 return memblock.memory.regions[idx].base <= base &&
878 (memblock.memory.regions[idx].base +
879 memblock.memory.regions[idx].size) >= end;
882 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
884 memblock_cap_size(base, &size);
885 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
889 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
891 memblock.current_limit = limit;
894 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
896 unsigned long long base, size;
899 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
901 for (i = 0; i < type->cnt; i++) {
902 struct memblock_region *rgn = &type->regions[i];
903 char nid_buf[32] = "";
907 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
908 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
909 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
910 memblock_get_region_node(rgn));
912 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
913 name, i, base, base + size - 1, size, nid_buf);
917 void __init_memblock __memblock_dump_all(void)
919 pr_info("MEMBLOCK configuration:\n");
920 pr_info(" memory size = %#llx reserved size = %#llx\n",
921 (unsigned long long)memblock.memory.total_size,
922 (unsigned long long)memblock.reserved.total_size);
924 memblock_dump(&memblock.memory, "memory");
925 memblock_dump(&memblock.reserved, "reserved");
928 void __init memblock_allow_resize(void)
930 memblock_can_resize = 1;
933 static int __init early_memblock(char *p)
935 if (p && strstr(p, "debug"))
939 early_param("memblock", early_memblock);
941 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
943 static int memblock_debug_show(struct seq_file *m, void *private)
945 struct memblock_type *type = m->private;
946 struct memblock_region *reg;
949 for (i = 0; i < type->cnt; i++) {
950 reg = &type->regions[i];
951 seq_printf(m, "%4d: ", i);
952 if (sizeof(phys_addr_t) == 4)
953 seq_printf(m, "0x%08lx..0x%08lx\n",
954 (unsigned long)reg->base,
955 (unsigned long)(reg->base + reg->size - 1));
957 seq_printf(m, "0x%016llx..0x%016llx\n",
958 (unsigned long long)reg->base,
959 (unsigned long long)(reg->base + reg->size - 1));
965 static int memblock_debug_open(struct inode *inode, struct file *file)
967 return single_open(file, memblock_debug_show, inode->i_private);
970 static const struct file_operations memblock_debug_fops = {
971 .open = memblock_debug_open,
974 .release = single_release,
977 static int __init memblock_init_debugfs(void)
979 struct dentry *root = debugfs_create_dir("memblock", NULL);
982 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
983 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
987 __initcall(memblock_init_debugfs);
989 #endif /* CONFIG_DEBUG_FS */