1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
20 #include <asm/sections.h>
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
37 * DOC: memblock overview
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
78 * Once memblock is setup the memory can be allocated using one of the
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
115 struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
147 #define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
152 #define memblock_dbg(fmt, ...) \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
164 bool __init_memblock memblock_has_mirror(void)
166 return system_has_some_mirror;
169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
171 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
177 return *size = min(*size, PHYS_ADDR_MAX - base);
181 * Address comparison utilities
183 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
184 phys_addr_t base2, phys_addr_t size2)
186 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
189 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
190 phys_addr_t base, phys_addr_t size)
194 memblock_cap_size(base, &size);
196 for (i = 0; i < type->cnt; i++)
197 if (memblock_addrs_overlap(base, size, type->regions[i].base,
198 type->regions[i].size))
200 return i < type->cnt;
204 * __memblock_find_range_bottom_up - find free area utility in bottom-up
205 * @start: start of candidate range
206 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
207 * %MEMBLOCK_ALLOC_ACCESSIBLE
208 * @size: size of free area to find
209 * @align: alignment of free area to find
210 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
211 * @flags: pick from blocks based on memory attributes
213 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
216 * Found address on success, 0 on failure.
218 static phys_addr_t __init_memblock
219 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
220 phys_addr_t size, phys_addr_t align, int nid,
221 enum memblock_flags flags)
223 phys_addr_t this_start, this_end, cand;
226 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
227 this_start = clamp(this_start, start, end);
228 this_end = clamp(this_end, start, end);
230 cand = round_up(this_start, align);
231 if (cand < this_end && this_end - cand >= size)
239 * __memblock_find_range_top_down - find free area utility, in top-down
240 * @start: start of candidate range
241 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
242 * %MEMBLOCK_ALLOC_ACCESSIBLE
243 * @size: size of free area to find
244 * @align: alignment of free area to find
245 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
246 * @flags: pick from blocks based on memory attributes
248 * Utility called from memblock_find_in_range_node(), find free area top-down.
251 * Found address on success, 0 on failure.
253 static phys_addr_t __init_memblock
254 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
255 phys_addr_t size, phys_addr_t align, int nid,
256 enum memblock_flags flags)
258 phys_addr_t this_start, this_end, cand;
261 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
263 this_start = clamp(this_start, start, end);
264 this_end = clamp(this_end, start, end);
269 cand = round_down(this_end - size, align);
270 if (cand >= this_start)
278 * memblock_find_in_range_node - find free area in given range and node
279 * @size: size of free area to find
280 * @align: alignment of free area to find
281 * @start: start of candidate range
282 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
283 * %MEMBLOCK_ALLOC_ACCESSIBLE
284 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
285 * @flags: pick from blocks based on memory attributes
287 * Find @size free area aligned to @align in the specified range and node.
290 * Found address on success, 0 on failure.
292 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
293 phys_addr_t align, phys_addr_t start,
294 phys_addr_t end, int nid,
295 enum memblock_flags flags)
298 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
299 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
300 end = memblock.current_limit;
302 /* avoid allocating the first page */
303 start = max_t(phys_addr_t, start, PAGE_SIZE);
304 end = max(start, end);
306 if (memblock_bottom_up())
307 return __memblock_find_range_bottom_up(start, end, size, align,
310 return __memblock_find_range_top_down(start, end, size, align,
315 * memblock_find_in_range - find free area in given range
316 * @start: start of candidate range
317 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
318 * %MEMBLOCK_ALLOC_ACCESSIBLE
319 * @size: size of free area to find
320 * @align: alignment of free area to find
322 * Find @size free area aligned to @align in the specified range.
325 * Found address on success, 0 on failure.
327 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
328 phys_addr_t end, phys_addr_t size,
332 enum memblock_flags flags = choose_memblock_flags();
335 ret = memblock_find_in_range_node(size, align, start, end,
336 NUMA_NO_NODE, flags);
338 if (!ret && (flags & MEMBLOCK_MIRROR)) {
339 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
341 flags &= ~MEMBLOCK_MIRROR;
348 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350 type->total_size -= type->regions[r].size;
351 memmove(&type->regions[r], &type->regions[r + 1],
352 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
355 /* Special case for empty arrays */
356 if (type->cnt == 0) {
357 WARN_ON(type->total_size != 0);
359 type->regions[0].base = 0;
360 type->regions[0].size = 0;
361 type->regions[0].flags = 0;
362 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
366 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
368 * memblock_discard - discard memory and reserved arrays if they were allocated
370 void __init memblock_discard(void)
372 phys_addr_t addr, size;
374 if (memblock.reserved.regions != memblock_reserved_init_regions) {
375 addr = __pa(memblock.reserved.regions);
376 size = PAGE_ALIGN(sizeof(struct memblock_region) *
377 memblock.reserved.max);
378 if (memblock_reserved_in_slab)
379 kfree(memblock.reserved.regions);
381 memblock_free_late(addr, size);
384 if (memblock.memory.regions != memblock_memory_init_regions) {
385 addr = __pa(memblock.memory.regions);
386 size = PAGE_ALIGN(sizeof(struct memblock_region) *
387 memblock.memory.max);
388 if (memblock_memory_in_slab)
389 kfree(memblock.memory.regions);
391 memblock_free_late(addr, size);
394 memblock_memory = NULL;
399 * memblock_double_array - double the size of the memblock regions array
400 * @type: memblock type of the regions array being doubled
401 * @new_area_start: starting address of memory range to avoid overlap with
402 * @new_area_size: size of memory range to avoid overlap with
404 * Double the size of the @type regions array. If memblock is being used to
405 * allocate memory for a new reserved regions array and there is a previously
406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
407 * waiting to be reserved, ensure the memory used by the new array does
411 * 0 on success, -1 on failure.
413 static int __init_memblock memblock_double_array(struct memblock_type *type,
414 phys_addr_t new_area_start,
415 phys_addr_t new_area_size)
417 struct memblock_region *new_array, *old_array;
418 phys_addr_t old_alloc_size, new_alloc_size;
419 phys_addr_t old_size, new_size, addr, new_end;
420 int use_slab = slab_is_available();
423 /* We don't allow resizing until we know about the reserved regions
424 * of memory that aren't suitable for allocation
426 if (!memblock_can_resize)
429 /* Calculate new doubled size */
430 old_size = type->max * sizeof(struct memblock_region);
431 new_size = old_size << 1;
433 * We need to allocated new one align to PAGE_SIZE,
434 * so we can free them completely later.
436 old_alloc_size = PAGE_ALIGN(old_size);
437 new_alloc_size = PAGE_ALIGN(new_size);
439 /* Retrieve the slab flag */
440 if (type == &memblock.memory)
441 in_slab = &memblock_memory_in_slab;
443 in_slab = &memblock_reserved_in_slab;
445 /* Try to find some space for it */
447 new_array = kmalloc(new_size, GFP_KERNEL);
448 addr = new_array ? __pa(new_array) : 0;
450 /* only exclude range when trying to double reserved.regions */
451 if (type != &memblock.reserved)
452 new_area_start = new_area_size = 0;
454 addr = memblock_find_in_range(new_area_start + new_area_size,
455 memblock.current_limit,
456 new_alloc_size, PAGE_SIZE);
457 if (!addr && new_area_size)
458 addr = memblock_find_in_range(0,
459 min(new_area_start, memblock.current_limit),
460 new_alloc_size, PAGE_SIZE);
462 new_array = addr ? __va(addr) : NULL;
465 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
466 type->name, type->max, type->max * 2);
470 new_end = addr + new_size - 1;
471 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
472 type->name, type->max * 2, &addr, &new_end);
475 * Found space, we now need to move the array over before we add the
476 * reserved region since it may be our reserved array itself that is
479 memcpy(new_array, type->regions, old_size);
480 memset(new_array + type->max, 0, old_size);
481 old_array = type->regions;
482 type->regions = new_array;
485 /* Free old array. We needn't free it if the array is the static one */
488 else if (old_array != memblock_memory_init_regions &&
489 old_array != memblock_reserved_init_regions)
490 memblock_free(old_array, old_alloc_size);
493 * Reserve the new array if that comes from the memblock. Otherwise, we
497 BUG_ON(memblock_reserve(addr, new_alloc_size));
499 /* Update slab flag */
506 * memblock_merge_regions - merge neighboring compatible regions
507 * @type: memblock type to scan
508 * @start_rgn: start scanning from (@start_rgn - 1)
509 * @end_rgn: end scanning at (@end_rgn - 1)
510 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
512 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
513 unsigned long start_rgn,
514 unsigned long end_rgn)
519 end_rgn = min(end_rgn, type->cnt - 1);
520 while (i < end_rgn) {
521 struct memblock_region *this = &type->regions[i];
522 struct memblock_region *next = &type->regions[i + 1];
524 if (this->base + this->size != next->base ||
525 memblock_get_region_node(this) !=
526 memblock_get_region_node(next) ||
527 this->flags != next->flags) {
528 BUG_ON(this->base + this->size > next->base);
533 this->size += next->size;
534 /* move forward from next + 1, index of which is i + 2 */
535 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
542 * memblock_insert_region - insert new memblock region
543 * @type: memblock type to insert into
544 * @idx: index for the insertion point
545 * @base: base address of the new region
546 * @size: size of the new region
547 * @nid: node id of the new region
548 * @flags: flags of the new region
550 * Insert new memblock region [@base, @base + @size) into @type at @idx.
551 * @type must already have extra room to accommodate the new region.
553 static void __init_memblock memblock_insert_region(struct memblock_type *type,
554 int idx, phys_addr_t base,
557 enum memblock_flags flags)
559 struct memblock_region *rgn = &type->regions[idx];
561 BUG_ON(type->cnt >= type->max);
562 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
566 memblock_set_region_node(rgn, nid);
568 type->total_size += size;
572 * memblock_add_range - add new memblock region
573 * @type: memblock type to add new region into
574 * @base: base address of the new region
575 * @size: size of the new region
576 * @nid: nid of the new region
577 * @flags: flags of the new region
579 * Add new memblock region [@base, @base + @size) into @type. The new region
580 * is allowed to overlap with existing ones - overlaps don't affect already
581 * existing regions. @type is guaranteed to be minimal (all neighbouring
582 * compatible regions are merged) after the addition.
585 * 0 on success, -errno on failure.
587 static int __init_memblock memblock_add_range(struct memblock_type *type,
588 phys_addr_t base, phys_addr_t size,
589 int nid, enum memblock_flags flags)
592 phys_addr_t obase = base;
593 phys_addr_t end = base + memblock_cap_size(base, &size);
594 int idx, nr_new, start_rgn = -1, end_rgn;
595 struct memblock_region *rgn;
600 /* special case for empty array */
601 if (type->regions[0].size == 0) {
602 WARN_ON(type->cnt != 1 || type->total_size);
603 type->regions[0].base = base;
604 type->regions[0].size = size;
605 type->regions[0].flags = flags;
606 memblock_set_region_node(&type->regions[0], nid);
607 type->total_size = size;
612 * The worst case is when new range overlaps all existing regions,
613 * then we'll need type->cnt + 1 empty regions in @type. So if
614 * type->cnt * 2 + 1 is less than or equal to type->max, we know
615 * that there is enough empty regions in @type, and we can insert
618 if (type->cnt * 2 + 1 <= type->max)
623 * The following is executed twice. Once with %false @insert and
624 * then with %true. The first counts the number of regions needed
625 * to accommodate the new area. The second actually inserts them.
630 for_each_memblock_type(idx, type, rgn) {
631 phys_addr_t rbase = rgn->base;
632 phys_addr_t rend = rbase + rgn->size;
639 * @rgn overlaps. If it separates the lower part of new
640 * area, insert that portion.
644 WARN_ON(nid != memblock_get_region_node(rgn));
646 WARN_ON(flags != rgn->flags);
652 memblock_insert_region(type, idx++, base,
657 /* area below @rend is dealt with, forget about it */
658 base = min(rend, end);
661 /* insert the remaining portion */
668 memblock_insert_region(type, idx, base, end - base,
677 * If this was the first round, resize array and repeat for actual
678 * insertions; otherwise, merge and return.
681 while (type->cnt + nr_new > type->max)
682 if (memblock_double_array(type, obase, size) < 0)
687 memblock_merge_regions(type, start_rgn, end_rgn);
693 * memblock_add_node - add new memblock region within a NUMA node
694 * @base: base address of the new region
695 * @size: size of the new region
696 * @nid: nid of the new region
697 * @flags: flags of the new region
699 * Add new memblock region [@base, @base + @size) to the "memory"
700 * type. See memblock_add_range() description for mode details
703 * 0 on success, -errno on failure.
705 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
706 int nid, enum memblock_flags flags)
708 phys_addr_t end = base + size - 1;
710 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
711 &base, &end, nid, flags, (void *)_RET_IP_);
713 return memblock_add_range(&memblock.memory, base, size, nid, flags);
717 * memblock_add - add new memblock region
718 * @base: base address of the new region
719 * @size: size of the new region
721 * Add new memblock region [@base, @base + @size) to the "memory"
722 * type. See memblock_add_range() description for mode details
725 * 0 on success, -errno on failure.
727 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
729 phys_addr_t end = base + size - 1;
731 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
732 &base, &end, (void *)_RET_IP_);
734 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
738 * memblock_isolate_range - isolate given range into disjoint memblocks
739 * @type: memblock type to isolate range for
740 * @base: base of range to isolate
741 * @size: size of range to isolate
742 * @start_rgn: out parameter for the start of isolated region
743 * @end_rgn: out parameter for the end of isolated region
745 * Walk @type and ensure that regions don't cross the boundaries defined by
746 * [@base, @base + @size). Crossing regions are split at the boundaries,
747 * which may create at most two more regions. The index of the first
748 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
751 * 0 on success, -errno on failure.
753 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
754 phys_addr_t base, phys_addr_t size,
755 int *start_rgn, int *end_rgn)
757 phys_addr_t end = base + memblock_cap_size(base, &size);
759 struct memblock_region *rgn;
761 *start_rgn = *end_rgn = 0;
766 /* we'll create at most two more regions */
767 while (type->cnt + 2 > type->max)
768 if (memblock_double_array(type, base, size) < 0)
771 for_each_memblock_type(idx, type, rgn) {
772 phys_addr_t rbase = rgn->base;
773 phys_addr_t rend = rbase + rgn->size;
782 * @rgn intersects from below. Split and continue
783 * to process the next region - the new top half.
786 rgn->size -= base - rbase;
787 type->total_size -= base - rbase;
788 memblock_insert_region(type, idx, rbase, base - rbase,
789 memblock_get_region_node(rgn),
791 } else if (rend > end) {
793 * @rgn intersects from above. Split and redo the
794 * current region - the new bottom half.
797 rgn->size -= end - rbase;
798 type->total_size -= end - rbase;
799 memblock_insert_region(type, idx--, rbase, end - rbase,
800 memblock_get_region_node(rgn),
803 /* @rgn is fully contained, record it */
813 static int __init_memblock memblock_remove_range(struct memblock_type *type,
814 phys_addr_t base, phys_addr_t size)
816 int start_rgn, end_rgn;
819 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
823 for (i = end_rgn - 1; i >= start_rgn; i--)
824 memblock_remove_region(type, i);
828 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
830 phys_addr_t end = base + size - 1;
832 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
833 &base, &end, (void *)_RET_IP_);
835 return memblock_remove_range(&memblock.memory, base, size);
839 * memblock_free - free boot memory allocation
840 * @ptr: starting address of the boot memory allocation
841 * @size: size of the boot memory block in bytes
843 * Free boot memory block previously allocated by memblock_alloc_xx() API.
844 * The freeing memory will not be released to the buddy allocator.
846 void __init_memblock memblock_free(void *ptr, size_t size)
849 memblock_phys_free(__pa(ptr), size);
853 * memblock_phys_free - free boot memory block
854 * @base: phys starting address of the boot memory block
855 * @size: size of the boot memory block in bytes
857 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
858 * The freeing memory will not be released to the buddy allocator.
860 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
862 phys_addr_t end = base + size - 1;
864 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
865 &base, &end, (void *)_RET_IP_);
867 kmemleak_free_part_phys(base, size);
868 return memblock_remove_range(&memblock.reserved, base, size);
871 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
873 phys_addr_t end = base + size - 1;
875 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
876 &base, &end, (void *)_RET_IP_);
878 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
881 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
882 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
884 phys_addr_t end = base + size - 1;
886 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
887 &base, &end, (void *)_RET_IP_);
889 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
894 * memblock_setclr_flag - set or clear flag for a memory region
895 * @base: base address of the region
896 * @size: size of the region
897 * @set: set or clear the flag
898 * @flag: the flag to update
900 * This function isolates region [@base, @base + @size), and sets/clears flag
902 * Return: 0 on success, -errno on failure.
904 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
905 phys_addr_t size, int set, int flag)
907 struct memblock_type *type = &memblock.memory;
908 int i, ret, start_rgn, end_rgn;
910 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
914 for (i = start_rgn; i < end_rgn; i++) {
915 struct memblock_region *r = &type->regions[i];
923 memblock_merge_regions(type, start_rgn, end_rgn);
928 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
929 * @base: the base phys addr of the region
930 * @size: the size of the region
932 * Return: 0 on success, -errno on failure.
934 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
936 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
940 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
941 * @base: the base phys addr of the region
942 * @size: the size of the region
944 * Return: 0 on success, -errno on failure.
946 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
948 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
952 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
953 * @base: the base phys addr of the region
954 * @size: the size of the region
956 * Return: 0 on success, -errno on failure.
958 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
960 if (!mirrored_kernelcore)
963 system_has_some_mirror = true;
965 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
969 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
970 * @base: the base phys addr of the region
971 * @size: the size of the region
973 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
974 * direct mapping of the physical memory. These regions will still be
975 * covered by the memory map. The struct page representing NOMAP memory
976 * frames in the memory map will be PageReserved()
978 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
979 * memblock, the caller must inform kmemleak to ignore that memory
981 * Return: 0 on success, -errno on failure.
983 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
985 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
989 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
990 * @base: the base phys addr of the region
991 * @size: the size of the region
993 * Return: 0 on success, -errno on failure.
995 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
997 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
1000 static bool should_skip_region(struct memblock_type *type,
1001 struct memblock_region *m,
1004 int m_nid = memblock_get_region_node(m);
1006 /* we never skip regions when iterating memblock.reserved or physmem */
1007 if (type != memblock_memory)
1010 /* only memory regions are associated with nodes, check it */
1011 if (nid != NUMA_NO_NODE && nid != m_nid)
1014 /* skip hotpluggable memory regions if needed */
1015 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1016 !(flags & MEMBLOCK_HOTPLUG))
1019 /* if we want mirror memory skip non-mirror memory regions */
1020 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1023 /* skip nomap memory unless we were asked for it explicitly */
1024 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1027 /* skip driver-managed memory unless we were asked for it explicitly */
1028 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1035 * __next_mem_range - next function for for_each_free_mem_range() etc.
1036 * @idx: pointer to u64 loop variable
1037 * @nid: node selector, %NUMA_NO_NODE for all nodes
1038 * @flags: pick from blocks based on memory attributes
1039 * @type_a: pointer to memblock_type from where the range is taken
1040 * @type_b: pointer to memblock_type which excludes memory from being taken
1041 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1042 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1043 * @out_nid: ptr to int for nid of the range, can be %NULL
1045 * Find the first area from *@idx which matches @nid, fill the out
1046 * parameters, and update *@idx for the next iteration. The lower 32bit of
1047 * *@idx contains index into type_a and the upper 32bit indexes the
1048 * areas before each region in type_b. For example, if type_b regions
1049 * look like the following,
1051 * 0:[0-16), 1:[32-48), 2:[128-130)
1053 * The upper 32bit indexes the following regions.
1055 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1057 * As both region arrays are sorted, the function advances the two indices
1058 * in lockstep and returns each intersection.
1060 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1061 struct memblock_type *type_a,
1062 struct memblock_type *type_b, phys_addr_t *out_start,
1063 phys_addr_t *out_end, int *out_nid)
1065 int idx_a = *idx & 0xffffffff;
1066 int idx_b = *idx >> 32;
1068 if (WARN_ONCE(nid == MAX_NUMNODES,
1069 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1072 for (; idx_a < type_a->cnt; idx_a++) {
1073 struct memblock_region *m = &type_a->regions[idx_a];
1075 phys_addr_t m_start = m->base;
1076 phys_addr_t m_end = m->base + m->size;
1077 int m_nid = memblock_get_region_node(m);
1079 if (should_skip_region(type_a, m, nid, flags))
1084 *out_start = m_start;
1090 *idx = (u32)idx_a | (u64)idx_b << 32;
1094 /* scan areas before each reservation */
1095 for (; idx_b < type_b->cnt + 1; idx_b++) {
1096 struct memblock_region *r;
1097 phys_addr_t r_start;
1100 r = &type_b->regions[idx_b];
1101 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1102 r_end = idx_b < type_b->cnt ?
1103 r->base : PHYS_ADDR_MAX;
1106 * if idx_b advanced past idx_a,
1107 * break out to advance idx_a
1109 if (r_start >= m_end)
1111 /* if the two regions intersect, we're done */
1112 if (m_start < r_end) {
1115 max(m_start, r_start);
1117 *out_end = min(m_end, r_end);
1121 * The region which ends first is
1122 * advanced for the next iteration.
1128 *idx = (u32)idx_a | (u64)idx_b << 32;
1134 /* signal end of iteration */
1139 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1141 * @idx: pointer to u64 loop variable
1142 * @nid: node selector, %NUMA_NO_NODE for all nodes
1143 * @flags: pick from blocks based on memory attributes
1144 * @type_a: pointer to memblock_type from where the range is taken
1145 * @type_b: pointer to memblock_type which excludes memory from being taken
1146 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1147 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1148 * @out_nid: ptr to int for nid of the range, can be %NULL
1150 * Finds the next range from type_a which is not marked as unsuitable
1153 * Reverse of __next_mem_range().
1155 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1156 enum memblock_flags flags,
1157 struct memblock_type *type_a,
1158 struct memblock_type *type_b,
1159 phys_addr_t *out_start,
1160 phys_addr_t *out_end, int *out_nid)
1162 int idx_a = *idx & 0xffffffff;
1163 int idx_b = *idx >> 32;
1165 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1168 if (*idx == (u64)ULLONG_MAX) {
1169 idx_a = type_a->cnt - 1;
1171 idx_b = type_b->cnt;
1176 for (; idx_a >= 0; idx_a--) {
1177 struct memblock_region *m = &type_a->regions[idx_a];
1179 phys_addr_t m_start = m->base;
1180 phys_addr_t m_end = m->base + m->size;
1181 int m_nid = memblock_get_region_node(m);
1183 if (should_skip_region(type_a, m, nid, flags))
1188 *out_start = m_start;
1194 *idx = (u32)idx_a | (u64)idx_b << 32;
1198 /* scan areas before each reservation */
1199 for (; idx_b >= 0; idx_b--) {
1200 struct memblock_region *r;
1201 phys_addr_t r_start;
1204 r = &type_b->regions[idx_b];
1205 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1206 r_end = idx_b < type_b->cnt ?
1207 r->base : PHYS_ADDR_MAX;
1209 * if idx_b advanced past idx_a,
1210 * break out to advance idx_a
1213 if (r_end <= m_start)
1215 /* if the two regions intersect, we're done */
1216 if (m_end > r_start) {
1218 *out_start = max(m_start, r_start);
1220 *out_end = min(m_end, r_end);
1223 if (m_start >= r_start)
1227 *idx = (u32)idx_a | (u64)idx_b << 32;
1232 /* signal end of iteration */
1237 * Common iterator interface used to define for_each_mem_pfn_range().
1239 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1240 unsigned long *out_start_pfn,
1241 unsigned long *out_end_pfn, int *out_nid)
1243 struct memblock_type *type = &memblock.memory;
1244 struct memblock_region *r;
1247 while (++*idx < type->cnt) {
1248 r = &type->regions[*idx];
1249 r_nid = memblock_get_region_node(r);
1251 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1253 if (nid == MAX_NUMNODES || nid == r_nid)
1256 if (*idx >= type->cnt) {
1262 *out_start_pfn = PFN_UP(r->base);
1264 *out_end_pfn = PFN_DOWN(r->base + r->size);
1270 * memblock_set_node - set node ID on memblock regions
1271 * @base: base of area to set node ID for
1272 * @size: size of area to set node ID for
1273 * @type: memblock type to set node ID for
1274 * @nid: node ID to set
1276 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1277 * Regions which cross the area boundaries are split as necessary.
1280 * 0 on success, -errno on failure.
1282 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1283 struct memblock_type *type, int nid)
1286 int start_rgn, end_rgn;
1289 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1293 for (i = start_rgn; i < end_rgn; i++)
1294 memblock_set_region_node(&type->regions[i], nid);
1296 memblock_merge_regions(type, start_rgn, end_rgn);
1301 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1303 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1305 * @idx: pointer to u64 loop variable
1306 * @zone: zone in which all of the memory blocks reside
1307 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1308 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1310 * This function is meant to be a zone/pfn specific wrapper for the
1311 * for_each_mem_range type iterators. Specifically they are used in the
1312 * deferred memory init routines and as such we were duplicating much of
1313 * this logic throughout the code. So instead of having it in multiple
1314 * locations it seemed like it would make more sense to centralize this to
1315 * one new iterator that does everything they need.
1317 void __init_memblock
1318 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1319 unsigned long *out_spfn, unsigned long *out_epfn)
1321 int zone_nid = zone_to_nid(zone);
1322 phys_addr_t spa, epa;
1324 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1325 &memblock.memory, &memblock.reserved,
1328 while (*idx != U64_MAX) {
1329 unsigned long epfn = PFN_DOWN(epa);
1330 unsigned long spfn = PFN_UP(spa);
1333 * Verify the end is at least past the start of the zone and
1334 * that we have at least one PFN to initialize.
1336 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1337 /* if we went too far just stop searching */
1338 if (zone_end_pfn(zone) <= spfn) {
1344 *out_spfn = max(zone->zone_start_pfn, spfn);
1346 *out_epfn = min(zone_end_pfn(zone), epfn);
1351 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1352 &memblock.memory, &memblock.reserved,
1356 /* signal end of iteration */
1358 *out_spfn = ULONG_MAX;
1363 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1366 * memblock_alloc_range_nid - allocate boot memory block
1367 * @size: size of memory block to be allocated in bytes
1368 * @align: alignment of the region and block's size
1369 * @start: the lower bound of the memory region to allocate (phys address)
1370 * @end: the upper bound of the memory region to allocate (phys address)
1371 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1372 * @exact_nid: control the allocation fall back to other nodes
1374 * The allocation is performed from memory region limited by
1375 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1377 * If the specified node can not hold the requested memory and @exact_nid
1378 * is false, the allocation falls back to any node in the system.
1380 * For systems with memory mirroring, the allocation is attempted first
1381 * from the regions with mirroring enabled and then retried from any
1384 * In addition, function using kmemleak_alloc_phys for allocated boot
1385 * memory block, it is never reported as leaks.
1388 * Physical address of allocated memory block on success, %0 on failure.
1390 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1391 phys_addr_t align, phys_addr_t start,
1392 phys_addr_t end, int nid,
1395 enum memblock_flags flags = choose_memblock_flags();
1398 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1402 /* Can't use WARNs this early in boot on powerpc */
1404 align = SMP_CACHE_BYTES;
1408 found = memblock_find_in_range_node(size, align, start, end, nid,
1410 if (found && !memblock_reserve(found, size))
1413 if (nid != NUMA_NO_NODE && !exact_nid) {
1414 found = memblock_find_in_range_node(size, align, start,
1417 if (found && !memblock_reserve(found, size))
1421 if (flags & MEMBLOCK_MIRROR) {
1422 flags &= ~MEMBLOCK_MIRROR;
1423 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1432 * Skip kmemleak for those places like kasan_init() and
1433 * early_pgtable_alloc() due to high volume.
1435 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1437 * Memblock allocated blocks are never reported as
1438 * leaks. This is because many of these blocks are
1439 * only referred via the physical address which is
1440 * not looked up by kmemleak.
1442 kmemleak_alloc_phys(found, size, 0);
1445 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1446 * require memory to be accepted before it can be used by the
1449 * Accept the memory of the allocated buffer.
1451 accept_memory(found, found + size);
1457 * memblock_phys_alloc_range - allocate a memory block inside specified range
1458 * @size: size of memory block to be allocated in bytes
1459 * @align: alignment of the region and block's size
1460 * @start: the lower bound of the memory region to allocate (physical address)
1461 * @end: the upper bound of the memory region to allocate (physical address)
1463 * Allocate @size bytes in the between @start and @end.
1465 * Return: physical address of the allocated memory block on success,
1468 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1473 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1474 __func__, (u64)size, (u64)align, &start, &end,
1476 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1481 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1482 * @size: size of memory block to be allocated in bytes
1483 * @align: alignment of the region and block's size
1484 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1486 * Allocates memory block from the specified NUMA node. If the node
1487 * has no available memory, attempts to allocated from any node in the
1490 * Return: physical address of the allocated memory block on success,
1493 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1495 return memblock_alloc_range_nid(size, align, 0,
1496 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1500 * memblock_alloc_internal - allocate boot memory block
1501 * @size: size of memory block to be allocated in bytes
1502 * @align: alignment of the region and block's size
1503 * @min_addr: the lower bound of the memory region to allocate (phys address)
1504 * @max_addr: the upper bound of the memory region to allocate (phys address)
1505 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1506 * @exact_nid: control the allocation fall back to other nodes
1508 * Allocates memory block using memblock_alloc_range_nid() and
1509 * converts the returned physical address to virtual.
1511 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1512 * will fall back to memory below @min_addr. Other constraints, such
1513 * as node and mirrored memory will be handled again in
1514 * memblock_alloc_range_nid().
1517 * Virtual address of allocated memory block on success, NULL on failure.
1519 static void * __init memblock_alloc_internal(
1520 phys_addr_t size, phys_addr_t align,
1521 phys_addr_t min_addr, phys_addr_t max_addr,
1522 int nid, bool exact_nid)
1527 * Detect any accidental use of these APIs after slab is ready, as at
1528 * this moment memblock may be deinitialized already and its
1529 * internal data may be destroyed (after execution of memblock_free_all)
1531 if (WARN_ON_ONCE(slab_is_available()))
1532 return kzalloc_node(size, GFP_NOWAIT, nid);
1534 if (max_addr > memblock.current_limit)
1535 max_addr = memblock.current_limit;
1537 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1540 /* retry allocation without lower limit */
1541 if (!alloc && min_addr)
1542 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1548 return phys_to_virt(alloc);
1552 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1553 * without zeroing memory
1554 * @size: size of memory block to be allocated in bytes
1555 * @align: alignment of the region and block's size
1556 * @min_addr: the lower bound of the memory region from where the allocation
1557 * is preferred (phys address)
1558 * @max_addr: the upper bound of the memory region from where the allocation
1559 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1560 * allocate only from memory limited by memblock.current_limit value
1561 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1563 * Public function, provides additional debug information (including caller
1564 * info), if enabled. Does not zero allocated memory.
1567 * Virtual address of allocated memory block on success, NULL on failure.
1569 void * __init memblock_alloc_exact_nid_raw(
1570 phys_addr_t size, phys_addr_t align,
1571 phys_addr_t min_addr, phys_addr_t max_addr,
1574 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1575 __func__, (u64)size, (u64)align, nid, &min_addr,
1576 &max_addr, (void *)_RET_IP_);
1578 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1583 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1584 * memory and without panicking
1585 * @size: size of memory block to be allocated in bytes
1586 * @align: alignment of the region and block's size
1587 * @min_addr: the lower bound of the memory region from where the allocation
1588 * is preferred (phys address)
1589 * @max_addr: the upper bound of the memory region from where the allocation
1590 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1591 * allocate only from memory limited by memblock.current_limit value
1592 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1594 * Public function, provides additional debug information (including caller
1595 * info), if enabled. Does not zero allocated memory, does not panic if request
1596 * cannot be satisfied.
1599 * Virtual address of allocated memory block on success, NULL on failure.
1601 void * __init memblock_alloc_try_nid_raw(
1602 phys_addr_t size, phys_addr_t align,
1603 phys_addr_t min_addr, phys_addr_t max_addr,
1606 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1607 __func__, (u64)size, (u64)align, nid, &min_addr,
1608 &max_addr, (void *)_RET_IP_);
1610 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1615 * memblock_alloc_try_nid - allocate boot memory block
1616 * @size: size of memory block to be allocated in bytes
1617 * @align: alignment of the region and block's size
1618 * @min_addr: the lower bound of the memory region from where the allocation
1619 * is preferred (phys address)
1620 * @max_addr: the upper bound of the memory region from where the allocation
1621 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1622 * allocate only from memory limited by memblock.current_limit value
1623 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1625 * Public function, provides additional debug information (including caller
1626 * info), if enabled. This function zeroes the allocated memory.
1629 * Virtual address of allocated memory block on success, NULL on failure.
1631 void * __init memblock_alloc_try_nid(
1632 phys_addr_t size, phys_addr_t align,
1633 phys_addr_t min_addr, phys_addr_t max_addr,
1638 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1639 __func__, (u64)size, (u64)align, nid, &min_addr,
1640 &max_addr, (void *)_RET_IP_);
1641 ptr = memblock_alloc_internal(size, align,
1642 min_addr, max_addr, nid, false);
1644 memset(ptr, 0, size);
1650 * memblock_free_late - free pages directly to buddy allocator
1651 * @base: phys starting address of the boot memory block
1652 * @size: size of the boot memory block in bytes
1654 * This is only useful when the memblock allocator has already been torn
1655 * down, but we are still initializing the system. Pages are released directly
1656 * to the buddy allocator.
1658 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1660 phys_addr_t cursor, end;
1662 end = base + size - 1;
1663 memblock_dbg("%s: [%pa-%pa] %pS\n",
1664 __func__, &base, &end, (void *)_RET_IP_);
1665 kmemleak_free_part_phys(base, size);
1666 cursor = PFN_UP(base);
1667 end = PFN_DOWN(base + size);
1669 for (; cursor < end; cursor++) {
1670 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1671 totalram_pages_inc();
1676 * Remaining API functions
1679 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1681 return memblock.memory.total_size;
1684 phys_addr_t __init_memblock memblock_reserved_size(void)
1686 return memblock.reserved.total_size;
1689 /* lowest address */
1690 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1692 return memblock.memory.regions[0].base;
1695 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1697 int idx = memblock.memory.cnt - 1;
1699 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1702 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1704 phys_addr_t max_addr = PHYS_ADDR_MAX;
1705 struct memblock_region *r;
1708 * translate the memory @limit size into the max address within one of
1709 * the memory memblock regions, if the @limit exceeds the total size
1710 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1712 for_each_mem_region(r) {
1713 if (limit <= r->size) {
1714 max_addr = r->base + limit;
1723 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1725 phys_addr_t max_addr;
1730 max_addr = __find_max_addr(limit);
1732 /* @limit exceeds the total size of the memory, do nothing */
1733 if (max_addr == PHYS_ADDR_MAX)
1736 /* truncate both memory and reserved regions */
1737 memblock_remove_range(&memblock.memory, max_addr,
1739 memblock_remove_range(&memblock.reserved, max_addr,
1743 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1745 int start_rgn, end_rgn;
1751 if (!memblock_memory->total_size) {
1752 pr_warn("%s: No memory registered yet\n", __func__);
1756 ret = memblock_isolate_range(&memblock.memory, base, size,
1757 &start_rgn, &end_rgn);
1761 /* remove all the MAP regions */
1762 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1763 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1764 memblock_remove_region(&memblock.memory, i);
1766 for (i = start_rgn - 1; i >= 0; i--)
1767 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1768 memblock_remove_region(&memblock.memory, i);
1770 /* truncate the reserved regions */
1771 memblock_remove_range(&memblock.reserved, 0, base);
1772 memblock_remove_range(&memblock.reserved,
1773 base + size, PHYS_ADDR_MAX);
1776 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1778 phys_addr_t max_addr;
1783 max_addr = __find_max_addr(limit);
1785 /* @limit exceeds the total size of the memory, do nothing */
1786 if (max_addr == PHYS_ADDR_MAX)
1789 memblock_cap_memory_range(0, max_addr);
1792 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1794 unsigned int left = 0, right = type->cnt;
1797 unsigned int mid = (right + left) / 2;
1799 if (addr < type->regions[mid].base)
1801 else if (addr >= (type->regions[mid].base +
1802 type->regions[mid].size))
1806 } while (left < right);
1810 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1812 return memblock_search(&memblock.reserved, addr) != -1;
1815 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1817 return memblock_search(&memblock.memory, addr) != -1;
1820 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1822 int i = memblock_search(&memblock.memory, addr);
1826 return !memblock_is_nomap(&memblock.memory.regions[i]);
1829 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1830 unsigned long *start_pfn, unsigned long *end_pfn)
1832 struct memblock_type *type = &memblock.memory;
1833 int mid = memblock_search(type, PFN_PHYS(pfn));
1838 *start_pfn = PFN_DOWN(type->regions[mid].base);
1839 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1841 return memblock_get_region_node(&type->regions[mid]);
1845 * memblock_is_region_memory - check if a region is a subset of memory
1846 * @base: base of region to check
1847 * @size: size of region to check
1849 * Check if the region [@base, @base + @size) is a subset of a memory block.
1852 * 0 if false, non-zero if true
1854 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1856 int idx = memblock_search(&memblock.memory, base);
1857 phys_addr_t end = base + memblock_cap_size(base, &size);
1861 return (memblock.memory.regions[idx].base +
1862 memblock.memory.regions[idx].size) >= end;
1866 * memblock_is_region_reserved - check if a region intersects reserved memory
1867 * @base: base of region to check
1868 * @size: size of region to check
1870 * Check if the region [@base, @base + @size) intersects a reserved
1874 * True if they intersect, false if not.
1876 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1878 return memblock_overlaps_region(&memblock.reserved, base, size);
1881 void __init_memblock memblock_trim_memory(phys_addr_t align)
1883 phys_addr_t start, end, orig_start, orig_end;
1884 struct memblock_region *r;
1886 for_each_mem_region(r) {
1887 orig_start = r->base;
1888 orig_end = r->base + r->size;
1889 start = round_up(orig_start, align);
1890 end = round_down(orig_end, align);
1892 if (start == orig_start && end == orig_end)
1897 r->size = end - start;
1899 memblock_remove_region(&memblock.memory,
1900 r - memblock.memory.regions);
1906 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1908 memblock.current_limit = limit;
1911 phys_addr_t __init_memblock memblock_get_current_limit(void)
1913 return memblock.current_limit;
1916 static void __init_memblock memblock_dump(struct memblock_type *type)
1918 phys_addr_t base, end, size;
1919 enum memblock_flags flags;
1921 struct memblock_region *rgn;
1923 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1925 for_each_memblock_type(idx, type, rgn) {
1926 char nid_buf[32] = "";
1930 end = base + size - 1;
1933 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1934 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1935 memblock_get_region_node(rgn));
1937 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1938 type->name, idx, &base, &end, &size, nid_buf, flags);
1942 static void __init_memblock __memblock_dump_all(void)
1944 pr_info("MEMBLOCK configuration:\n");
1945 pr_info(" memory size = %pa reserved size = %pa\n",
1946 &memblock.memory.total_size,
1947 &memblock.reserved.total_size);
1949 memblock_dump(&memblock.memory);
1950 memblock_dump(&memblock.reserved);
1951 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1952 memblock_dump(&physmem);
1956 void __init_memblock memblock_dump_all(void)
1959 __memblock_dump_all();
1962 void __init memblock_allow_resize(void)
1964 memblock_can_resize = 1;
1967 static int __init early_memblock(char *p)
1969 if (p && strstr(p, "debug"))
1973 early_param("memblock", early_memblock);
1975 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1977 struct page *start_pg, *end_pg;
1978 phys_addr_t pg, pgend;
1981 * Convert start_pfn/end_pfn to a struct page pointer.
1983 start_pg = pfn_to_page(start_pfn - 1) + 1;
1984 end_pg = pfn_to_page(end_pfn - 1) + 1;
1987 * Convert to physical addresses, and round start upwards and end
1990 pg = PAGE_ALIGN(__pa(start_pg));
1991 pgend = __pa(end_pg) & PAGE_MASK;
1994 * If there are free pages between these, free the section of the
1998 memblock_phys_free(pg, pgend - pg);
2002 * The mem_map array can get very big. Free the unused area of the memory map.
2004 static void __init free_unused_memmap(void)
2006 unsigned long start, end, prev_end = 0;
2009 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2010 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2014 * This relies on each bank being in address order.
2015 * The banks are sorted previously in bootmem_init().
2017 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2018 #ifdef CONFIG_SPARSEMEM
2020 * Take care not to free memmap entries that don't exist
2021 * due to SPARSEMEM sections which aren't present.
2023 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2026 * Align down here since many operations in VM subsystem
2027 * presume that there are no holes in the memory map inside
2030 start = pageblock_start_pfn(start);
2033 * If we had a previous bank, and there is a space
2034 * between the current bank and the previous, free it.
2036 if (prev_end && prev_end < start)
2037 free_memmap(prev_end, start);
2040 * Align up here since many operations in VM subsystem
2041 * presume that there are no holes in the memory map inside
2044 prev_end = pageblock_align(end);
2047 #ifdef CONFIG_SPARSEMEM
2048 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2049 prev_end = pageblock_align(end);
2050 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2055 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2059 while (start < end) {
2061 * Free the pages in the largest chunks alignment allows.
2063 * __ffs() behaviour is undefined for 0. start == 0 is
2064 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2067 order = min_t(int, MAX_ORDER, __ffs(start));
2071 while (start + (1UL << order) > end)
2074 memblock_free_pages(pfn_to_page(start), start, order);
2076 start += (1UL << order);
2080 static unsigned long __init __free_memory_core(phys_addr_t start,
2083 unsigned long start_pfn = PFN_UP(start);
2084 unsigned long end_pfn = min_t(unsigned long,
2085 PFN_DOWN(end), max_low_pfn);
2087 if (start_pfn >= end_pfn)
2090 __free_pages_memory(start_pfn, end_pfn);
2092 return end_pfn - start_pfn;
2095 static void __init memmap_init_reserved_pages(void)
2097 struct memblock_region *region;
2098 phys_addr_t start, end;
2102 * set nid on all reserved pages and also treat struct
2103 * pages for the NOMAP regions as PageReserved
2105 for_each_mem_region(region) {
2106 nid = memblock_get_region_node(region);
2107 start = region->base;
2108 end = start + region->size;
2110 if (memblock_is_nomap(region))
2111 reserve_bootmem_region(start, end, nid);
2113 memblock_set_node(start, end, &memblock.reserved, nid);
2116 /* initialize struct pages for the reserved regions */
2117 for_each_reserved_mem_region(region) {
2118 nid = memblock_get_region_node(region);
2119 start = region->base;
2120 end = start + region->size;
2122 reserve_bootmem_region(start, end, nid);
2126 static unsigned long __init free_low_memory_core_early(void)
2128 unsigned long count = 0;
2129 phys_addr_t start, end;
2132 memblock_clear_hotplug(0, -1);
2134 memmap_init_reserved_pages();
2137 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2138 * because in some case like Node0 doesn't have RAM installed
2139 * low ram will be on Node1
2141 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2143 count += __free_memory_core(start, end);
2148 static int reset_managed_pages_done __initdata;
2150 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2154 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2155 atomic_long_set(&z->managed_pages, 0);
2158 void __init reset_all_zones_managed_pages(void)
2160 struct pglist_data *pgdat;
2162 if (reset_managed_pages_done)
2165 for_each_online_pgdat(pgdat)
2166 reset_node_managed_pages(pgdat);
2168 reset_managed_pages_done = 1;
2172 * memblock_free_all - release free pages to the buddy allocator
2174 void __init memblock_free_all(void)
2176 unsigned long pages;
2178 free_unused_memmap();
2179 reset_all_zones_managed_pages();
2181 pages = free_low_memory_core_early();
2182 totalram_pages_add(pages);
2185 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2186 static const char * const flagname[] = {
2187 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2188 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2189 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2190 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2193 static int memblock_debug_show(struct seq_file *m, void *private)
2195 struct memblock_type *type = m->private;
2196 struct memblock_region *reg;
2198 unsigned int count = ARRAY_SIZE(flagname);
2201 for (i = 0; i < type->cnt; i++) {
2202 reg = &type->regions[i];
2203 end = reg->base + reg->size - 1;
2204 nid = memblock_get_region_node(reg);
2206 seq_printf(m, "%4d: ", i);
2207 seq_printf(m, "%pa..%pa ", ®->base, &end);
2208 if (nid != MAX_NUMNODES)
2209 seq_printf(m, "%4d ", nid);
2211 seq_printf(m, "%4c ", 'x');
2213 for (j = 0; j < count; j++) {
2214 if (reg->flags & (1U << j)) {
2215 seq_printf(m, "%s\n", flagname[j]);
2220 seq_printf(m, "%s\n", "UNKNOWN");
2222 seq_printf(m, "%s\n", "NONE");
2227 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2229 static int __init memblock_init_debugfs(void)
2231 struct dentry *root = debugfs_create_dir("memblock", NULL);
2233 debugfs_create_file("memory", 0444, root,
2234 &memblock.memory, &memblock_debug_fops);
2235 debugfs_create_file("reserved", 0444, root,
2236 &memblock.reserved, &memblock_debug_fops);
2237 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2238 debugfs_create_file("physmem", 0444, root, &physmem,
2239 &memblock_debug_fops);
2244 __initcall(memblock_init_debugfs);
2246 #endif /* CONFIG_DEBUG_FS */