2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static __init_memblock const char *
45 memblock_type_name(struct memblock_type *type)
47 if (type == &memblock.memory)
49 else if (type == &memblock.reserved)
55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
56 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
58 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
62 * Address comparison utilities
64 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
65 phys_addr_t base2, phys_addr_t size2)
67 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
70 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
71 phys_addr_t base, phys_addr_t size)
75 for (i = 0; i < type->cnt; i++) {
76 phys_addr_t rgnbase = type->regions[i].base;
77 phys_addr_t rgnsize = type->regions[i].size;
78 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
82 return (i < type->cnt) ? i : -1;
86 * memblock_find_in_range_node - find free area in given range and node
87 * @start: start of candidate range
88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
89 * @size: size of free area to find
90 * @align: alignment of free area to find
91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
93 * Find @size free area aligned to @align in the specified range and node.
96 * Found address on success, %0 on failure.
98 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
99 phys_addr_t end, phys_addr_t size,
100 phys_addr_t align, int nid)
102 phys_addr_t this_start, this_end, cand;
106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
107 end = memblock.current_limit;
109 /* avoid allocating the first page */
110 start = max_t(phys_addr_t, start, PAGE_SIZE);
111 end = max(start, end);
113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
114 this_start = clamp(this_start, start, end);
115 this_end = clamp(this_end, start, end);
120 cand = round_down(this_end - size, align);
121 if (cand >= this_start)
128 * memblock_find_in_range - find free area in given range
129 * @start: start of candidate range
130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
131 * @size: size of free area to find
132 * @align: alignment of free area to find
134 * Find @size free area aligned to @align in the specified range.
137 * Found address on success, %0 on failure.
139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
140 phys_addr_t end, phys_addr_t size,
143 return memblock_find_in_range_node(start, end, size, align,
147 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
149 type->total_size -= type->regions[r].size;
150 memmove(&type->regions[r], &type->regions[r + 1],
151 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
154 /* Special case for empty arrays */
155 if (type->cnt == 0) {
156 WARN_ON(type->total_size != 0);
158 type->regions[0].base = 0;
159 type->regions[0].size = 0;
160 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
164 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
167 if (memblock.reserved.regions == memblock_reserved_init_regions)
170 *addr = __pa(memblock.reserved.regions);
172 return PAGE_ALIGN(sizeof(struct memblock_region) *
173 memblock.reserved.max);
177 * memblock_double_array - double the size of the memblock regions array
178 * @type: memblock type of the regions array being doubled
179 * @new_area_start: starting address of memory range to avoid overlap with
180 * @new_area_size: size of memory range to avoid overlap with
182 * Double the size of the @type regions array. If memblock is being used to
183 * allocate memory for a new reserved regions array and there is a previously
184 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
185 * waiting to be reserved, ensure the memory used by the new array does
189 * 0 on success, -1 on failure.
191 static int __init_memblock memblock_double_array(struct memblock_type *type,
192 phys_addr_t new_area_start,
193 phys_addr_t new_area_size)
195 struct memblock_region *new_array, *old_array;
196 phys_addr_t old_alloc_size, new_alloc_size;
197 phys_addr_t old_size, new_size, addr;
198 int use_slab = slab_is_available();
201 /* We don't allow resizing until we know about the reserved regions
202 * of memory that aren't suitable for allocation
204 if (!memblock_can_resize)
207 /* Calculate new doubled size */
208 old_size = type->max * sizeof(struct memblock_region);
209 new_size = old_size << 1;
211 * We need to allocated new one align to PAGE_SIZE,
212 * so we can free them completely later.
214 old_alloc_size = PAGE_ALIGN(old_size);
215 new_alloc_size = PAGE_ALIGN(new_size);
217 /* Retrieve the slab flag */
218 if (type == &memblock.memory)
219 in_slab = &memblock_memory_in_slab;
221 in_slab = &memblock_reserved_in_slab;
223 /* Try to find some space for it.
225 * WARNING: We assume that either slab_is_available() and we use it or
226 * we use MEMBLOCK for allocations. That means that this is unsafe to
227 * use when bootmem is currently active (unless bootmem itself is
228 * implemented on top of MEMBLOCK which isn't the case yet)
230 * This should however not be an issue for now, as we currently only
231 * call into MEMBLOCK while it's still active, or much later when slab
232 * is active for memory hotplug operations
235 new_array = kmalloc(new_size, GFP_KERNEL);
236 addr = new_array ? __pa(new_array) : 0;
238 /* only exclude range when trying to double reserved.regions */
239 if (type != &memblock.reserved)
240 new_area_start = new_area_size = 0;
242 addr = memblock_find_in_range(new_area_start + new_area_size,
243 memblock.current_limit,
244 new_alloc_size, PAGE_SIZE);
245 if (!addr && new_area_size)
246 addr = memblock_find_in_range(0,
247 min(new_area_start, memblock.current_limit),
248 new_alloc_size, PAGE_SIZE);
250 new_array = addr ? __va(addr) : NULL;
253 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
254 memblock_type_name(type), type->max, type->max * 2);
258 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
259 memblock_type_name(type), type->max * 2, (u64)addr,
260 (u64)addr + new_size - 1);
263 * Found space, we now need to move the array over before we add the
264 * reserved region since it may be our reserved array itself that is
267 memcpy(new_array, type->regions, old_size);
268 memset(new_array + type->max, 0, old_size);
269 old_array = type->regions;
270 type->regions = new_array;
273 /* Free old array. We needn't free it if the array is the static one */
276 else if (old_array != memblock_memory_init_regions &&
277 old_array != memblock_reserved_init_regions)
278 memblock_free(__pa(old_array), old_alloc_size);
281 * Reserve the new array if that comes from the memblock. Otherwise, we
285 BUG_ON(memblock_reserve(addr, new_alloc_size));
287 /* Update slab flag */
294 * memblock_merge_regions - merge neighboring compatible regions
295 * @type: memblock type to scan
297 * Scan @type and merge neighboring compatible regions.
299 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
303 /* cnt never goes below 1 */
304 while (i < type->cnt - 1) {
305 struct memblock_region *this = &type->regions[i];
306 struct memblock_region *next = &type->regions[i + 1];
308 if (this->base + this->size != next->base ||
309 memblock_get_region_node(this) !=
310 memblock_get_region_node(next)) {
311 BUG_ON(this->base + this->size > next->base);
316 this->size += next->size;
317 /* move forward from next + 1, index of which is i + 2 */
318 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
324 * memblock_insert_region - insert new memblock region
325 * @type: memblock type to insert into
326 * @idx: index for the insertion point
327 * @base: base address of the new region
328 * @size: size of the new region
329 * @nid: node id of the new region
331 * Insert new memblock region [@base,@base+@size) into @type at @idx.
332 * @type must already have extra room to accomodate the new region.
334 static void __init_memblock memblock_insert_region(struct memblock_type *type,
335 int idx, phys_addr_t base,
336 phys_addr_t size, int nid)
338 struct memblock_region *rgn = &type->regions[idx];
340 BUG_ON(type->cnt >= type->max);
341 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
344 memblock_set_region_node(rgn, nid);
346 type->total_size += size;
350 * memblock_add_region - add new memblock region
351 * @type: memblock type to add new region into
352 * @base: base address of the new region
353 * @size: size of the new region
354 * @nid: nid of the new region
356 * Add new memblock region [@base,@base+@size) into @type. The new region
357 * is allowed to overlap with existing ones - overlaps don't affect already
358 * existing regions. @type is guaranteed to be minimal (all neighbouring
359 * compatible regions are merged) after the addition.
362 * 0 on success, -errno on failure.
364 static int __init_memblock memblock_add_region(struct memblock_type *type,
365 phys_addr_t base, phys_addr_t size, int nid)
368 phys_addr_t obase = base;
369 phys_addr_t end = base + memblock_cap_size(base, &size);
375 /* special case for empty array */
376 if (type->regions[0].size == 0) {
377 WARN_ON(type->cnt != 1 || type->total_size);
378 type->regions[0].base = base;
379 type->regions[0].size = size;
380 memblock_set_region_node(&type->regions[0], nid);
381 type->total_size = size;
386 * The following is executed twice. Once with %false @insert and
387 * then with %true. The first counts the number of regions needed
388 * to accomodate the new area. The second actually inserts them.
393 for (i = 0; i < type->cnt; i++) {
394 struct memblock_region *rgn = &type->regions[i];
395 phys_addr_t rbase = rgn->base;
396 phys_addr_t rend = rbase + rgn->size;
403 * @rgn overlaps. If it separates the lower part of new
404 * area, insert that portion.
409 memblock_insert_region(type, i++, base,
412 /* area below @rend is dealt with, forget about it */
413 base = min(rend, end);
416 /* insert the remaining portion */
420 memblock_insert_region(type, i, base, end - base, nid);
424 * If this was the first round, resize array and repeat for actual
425 * insertions; otherwise, merge and return.
428 while (type->cnt + nr_new > type->max)
429 if (memblock_double_array(type, obase, size) < 0)
434 memblock_merge_regions(type);
439 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
442 return memblock_add_region(&memblock.memory, base, size, nid);
445 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
447 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
451 * memblock_isolate_range - isolate given range into disjoint memblocks
452 * @type: memblock type to isolate range for
453 * @base: base of range to isolate
454 * @size: size of range to isolate
455 * @start_rgn: out parameter for the start of isolated region
456 * @end_rgn: out parameter for the end of isolated region
458 * Walk @type and ensure that regions don't cross the boundaries defined by
459 * [@base,@base+@size). Crossing regions are split at the boundaries,
460 * which may create at most two more regions. The index of the first
461 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
464 * 0 on success, -errno on failure.
466 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
467 phys_addr_t base, phys_addr_t size,
468 int *start_rgn, int *end_rgn)
470 phys_addr_t end = base + memblock_cap_size(base, &size);
473 *start_rgn = *end_rgn = 0;
478 /* we'll create at most two more regions */
479 while (type->cnt + 2 > type->max)
480 if (memblock_double_array(type, base, size) < 0)
483 for (i = 0; i < type->cnt; i++) {
484 struct memblock_region *rgn = &type->regions[i];
485 phys_addr_t rbase = rgn->base;
486 phys_addr_t rend = rbase + rgn->size;
495 * @rgn intersects from below. Split and continue
496 * to process the next region - the new top half.
499 rgn->size -= base - rbase;
500 type->total_size -= base - rbase;
501 memblock_insert_region(type, i, rbase, base - rbase,
502 memblock_get_region_node(rgn));
503 } else if (rend > end) {
505 * @rgn intersects from above. Split and redo the
506 * current region - the new bottom half.
509 rgn->size -= end - rbase;
510 type->total_size -= end - rbase;
511 memblock_insert_region(type, i--, rbase, end - rbase,
512 memblock_get_region_node(rgn));
514 /* @rgn is fully contained, record it */
524 static int __init_memblock __memblock_remove(struct memblock_type *type,
525 phys_addr_t base, phys_addr_t size)
527 int start_rgn, end_rgn;
530 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
534 for (i = end_rgn - 1; i >= start_rgn; i--)
535 memblock_remove_region(type, i);
539 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
541 return __memblock_remove(&memblock.memory, base, size);
544 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
546 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
547 (unsigned long long)base,
548 (unsigned long long)base + size,
551 return __memblock_remove(&memblock.reserved, base, size);
554 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
556 struct memblock_type *_rgn = &memblock.reserved;
558 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
559 (unsigned long long)base,
560 (unsigned long long)base + size,
563 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
567 * __next_free_mem_range - next function for for_each_free_mem_range()
568 * @idx: pointer to u64 loop variable
569 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
570 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
571 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
572 * @out_nid: ptr to int for nid of the range, can be %NULL
574 * Find the first free area from *@idx which matches @nid, fill the out
575 * parameters, and update *@idx for the next iteration. The lower 32bit of
576 * *@idx contains index into memory region and the upper 32bit indexes the
577 * areas before each reserved region. For example, if reserved regions
578 * look like the following,
580 * 0:[0-16), 1:[32-48), 2:[128-130)
582 * The upper 32bit indexes the following regions.
584 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
586 * As both region arrays are sorted, the function advances the two indices
587 * in lockstep and returns each intersection.
589 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
590 phys_addr_t *out_start,
591 phys_addr_t *out_end, int *out_nid)
593 struct memblock_type *mem = &memblock.memory;
594 struct memblock_type *rsv = &memblock.reserved;
595 int mi = *idx & 0xffffffff;
598 for ( ; mi < mem->cnt; mi++) {
599 struct memblock_region *m = &mem->regions[mi];
600 phys_addr_t m_start = m->base;
601 phys_addr_t m_end = m->base + m->size;
603 /* only memory regions are associated with nodes, check it */
604 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
607 /* scan areas before each reservation for intersection */
608 for ( ; ri < rsv->cnt + 1; ri++) {
609 struct memblock_region *r = &rsv->regions[ri];
610 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
611 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
613 /* if ri advanced past mi, break out to advance mi */
614 if (r_start >= m_end)
616 /* if the two regions intersect, we're done */
617 if (m_start < r_end) {
619 *out_start = max(m_start, r_start);
621 *out_end = min(m_end, r_end);
623 *out_nid = memblock_get_region_node(m);
625 * The region which ends first is advanced
626 * for the next iteration.
632 *idx = (u32)mi | (u64)ri << 32;
638 /* signal end of iteration */
643 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
644 * @idx: pointer to u64 loop variable
645 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
646 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
647 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
648 * @out_nid: ptr to int for nid of the range, can be %NULL
650 * Reverse of __next_free_mem_range().
652 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
653 phys_addr_t *out_start,
654 phys_addr_t *out_end, int *out_nid)
656 struct memblock_type *mem = &memblock.memory;
657 struct memblock_type *rsv = &memblock.reserved;
658 int mi = *idx & 0xffffffff;
661 if (*idx == (u64)ULLONG_MAX) {
666 for ( ; mi >= 0; mi--) {
667 struct memblock_region *m = &mem->regions[mi];
668 phys_addr_t m_start = m->base;
669 phys_addr_t m_end = m->base + m->size;
671 /* only memory regions are associated with nodes, check it */
672 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
675 /* scan areas before each reservation for intersection */
676 for ( ; ri >= 0; ri--) {
677 struct memblock_region *r = &rsv->regions[ri];
678 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
679 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
681 /* if ri advanced past mi, break out to advance mi */
682 if (r_end <= m_start)
684 /* if the two regions intersect, we're done */
685 if (m_end > r_start) {
687 *out_start = max(m_start, r_start);
689 *out_end = min(m_end, r_end);
691 *out_nid = memblock_get_region_node(m);
693 if (m_start >= r_start)
697 *idx = (u32)mi | (u64)ri << 32;
706 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
708 * Common iterator interface used to define for_each_mem_range().
710 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
711 unsigned long *out_start_pfn,
712 unsigned long *out_end_pfn, int *out_nid)
714 struct memblock_type *type = &memblock.memory;
715 struct memblock_region *r;
717 while (++*idx < type->cnt) {
718 r = &type->regions[*idx];
720 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
722 if (nid == MAX_NUMNODES || nid == r->nid)
725 if (*idx >= type->cnt) {
731 *out_start_pfn = PFN_UP(r->base);
733 *out_end_pfn = PFN_DOWN(r->base + r->size);
739 * memblock_set_node - set node ID on memblock regions
740 * @base: base of area to set node ID for
741 * @size: size of area to set node ID for
742 * @nid: node ID to set
744 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
745 * Regions which cross the area boundaries are split as necessary.
748 * 0 on success, -errno on failure.
750 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
753 struct memblock_type *type = &memblock.memory;
754 int start_rgn, end_rgn;
757 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
761 for (i = start_rgn; i < end_rgn; i++)
762 memblock_set_region_node(&type->regions[i], nid);
764 memblock_merge_regions(type);
767 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
769 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
770 phys_addr_t align, phys_addr_t max_addr,
776 align = __alignof__(long long);
778 /* align @size to avoid excessive fragmentation on reserved array */
779 size = round_up(size, align);
781 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
782 if (found && !memblock_reserve(found, size))
788 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
790 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
793 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
795 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
798 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
802 alloc = __memblock_alloc_base(size, align, max_addr);
805 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
806 (unsigned long long) size, (unsigned long long) max_addr);
811 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
813 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
816 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
818 phys_addr_t res = memblock_alloc_nid(size, align, nid);
822 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
827 * Remaining API functions
830 phys_addr_t __init memblock_phys_mem_size(void)
832 return memblock.memory.total_size;
835 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
837 unsigned long pages = 0;
838 struct memblock_region *r;
839 unsigned long start_pfn, end_pfn;
841 for_each_memblock(memory, r) {
842 start_pfn = memblock_region_memory_base_pfn(r);
843 end_pfn = memblock_region_memory_end_pfn(r);
844 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
845 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
846 pages += end_pfn - start_pfn;
849 return (phys_addr_t)pages << PAGE_SHIFT;
853 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
855 return memblock.memory.regions[0].base;
858 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
860 int idx = memblock.memory.cnt - 1;
862 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
865 void __init memblock_enforce_memory_limit(phys_addr_t limit)
868 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
873 /* find out max address */
874 for (i = 0; i < memblock.memory.cnt; i++) {
875 struct memblock_region *r = &memblock.memory.regions[i];
877 if (limit <= r->size) {
878 max_addr = r->base + limit;
884 /* truncate both memory and reserved regions */
885 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
886 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
889 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
891 unsigned int left = 0, right = type->cnt;
894 unsigned int mid = (right + left) / 2;
896 if (addr < type->regions[mid].base)
898 else if (addr >= (type->regions[mid].base +
899 type->regions[mid].size))
903 } while (left < right);
907 int __init memblock_is_reserved(phys_addr_t addr)
909 return memblock_search(&memblock.reserved, addr) != -1;
912 int __init_memblock memblock_is_memory(phys_addr_t addr)
914 return memblock_search(&memblock.memory, addr) != -1;
918 * memblock_is_region_memory - check if a region is a subset of memory
919 * @base: base of region to check
920 * @size: size of region to check
922 * Check if the region [@base, @base+@size) is a subset of a memory block.
925 * 0 if false, non-zero if true
927 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
929 int idx = memblock_search(&memblock.memory, base);
930 phys_addr_t end = base + memblock_cap_size(base, &size);
934 return memblock.memory.regions[idx].base <= base &&
935 (memblock.memory.regions[idx].base +
936 memblock.memory.regions[idx].size) >= end;
940 * memblock_is_region_reserved - check if a region intersects reserved memory
941 * @base: base of region to check
942 * @size: size of region to check
944 * Check if the region [@base, @base+@size) intersects a reserved memory block.
947 * 0 if false, non-zero if true
949 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
951 memblock_cap_size(base, &size);
952 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
955 void __init_memblock memblock_trim_memory(phys_addr_t align)
958 phys_addr_t start, end, orig_start, orig_end;
959 struct memblock_type *mem = &memblock.memory;
961 for (i = 0; i < mem->cnt; i++) {
962 orig_start = mem->regions[i].base;
963 orig_end = mem->regions[i].base + mem->regions[i].size;
964 start = round_up(orig_start, align);
965 end = round_down(orig_end, align);
967 if (start == orig_start && end == orig_end)
971 mem->regions[i].base = start;
972 mem->regions[i].size = end - start;
974 memblock_remove_region(mem, i);
980 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
982 memblock.current_limit = limit;
985 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
987 unsigned long long base, size;
990 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
992 for (i = 0; i < type->cnt; i++) {
993 struct memblock_region *rgn = &type->regions[i];
994 char nid_buf[32] = "";
998 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
999 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1000 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1001 memblock_get_region_node(rgn));
1003 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
1004 name, i, base, base + size - 1, size, nid_buf);
1008 void __init_memblock __memblock_dump_all(void)
1010 pr_info("MEMBLOCK configuration:\n");
1011 pr_info(" memory size = %#llx reserved size = %#llx\n",
1012 (unsigned long long)memblock.memory.total_size,
1013 (unsigned long long)memblock.reserved.total_size);
1015 memblock_dump(&memblock.memory, "memory");
1016 memblock_dump(&memblock.reserved, "reserved");
1019 void __init memblock_allow_resize(void)
1021 memblock_can_resize = 1;
1024 static int __init early_memblock(char *p)
1026 if (p && strstr(p, "debug"))
1030 early_param("memblock", early_memblock);
1032 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1034 static int memblock_debug_show(struct seq_file *m, void *private)
1036 struct memblock_type *type = m->private;
1037 struct memblock_region *reg;
1040 for (i = 0; i < type->cnt; i++) {
1041 reg = &type->regions[i];
1042 seq_printf(m, "%4d: ", i);
1043 if (sizeof(phys_addr_t) == 4)
1044 seq_printf(m, "0x%08lx..0x%08lx\n",
1045 (unsigned long)reg->base,
1046 (unsigned long)(reg->base + reg->size - 1));
1048 seq_printf(m, "0x%016llx..0x%016llx\n",
1049 (unsigned long long)reg->base,
1050 (unsigned long long)(reg->base + reg->size - 1));
1056 static int memblock_debug_open(struct inode *inode, struct file *file)
1058 return single_open(file, memblock_debug_show, inode->i_private);
1061 static const struct file_operations memblock_debug_fops = {
1062 .open = memblock_debug_open,
1064 .llseek = seq_lseek,
1065 .release = single_release,
1068 static int __init memblock_init_debugfs(void)
1070 struct dentry *root = debugfs_create_dir("memblock", NULL);
1073 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1074 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1078 __initcall(memblock_init_debugfs);
1080 #endif /* CONFIG_DEBUG_FS */