net: hns: fix soft lockup when there is not enough memory
[platform/kernel/linux-rpi.git] / mm / memblock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.     June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS                   128
26 #define INIT_PHYSMEM_REGIONS                    4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS         INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmap`` - describes the actual physical memory regardless of
48  *   the possible restrictions; the ``physmap`` type is only available
49  *   on some architectures.
50  *
51  * Each region is represented by :c:type:`struct memblock_region` that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the :c:type:`struct
54  * memblock_type` which contains an array of memory regions along with
55  * the allocator metadata. The memory types are nicely wrapped with
56  * :c:type:`struct memblock`. This structure is statically initialzed
57  * at build time. The region arrays for the "memory" and "reserved"
58  * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
59  * "physmap" type to %INIT_PHYSMEM_REGIONS.
60  * The :c:func:`memblock_allow_resize` enables automatic resizing of
61  * the region arrays during addition of new regions. This feature
62  * should be used with care so that memory allocated for the region
63  * array will not overlap with areas that should be reserved, for
64  * example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using :c:func:`memblock_add` or
68  * :c:func:`memblock_add_node` functions. The first function does not
69  * assign the region to a NUMA node and it is appropriate for UMA
70  * systems. Yet, it is possible to use it on NUMA systems as well and
71  * assign the region to a NUMA node later in the setup process using
72  * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
73  * performs such an assignment directly.
74  *
75  * Once memblock is setup the memory can be allocated using one of the
76  * API variants:
77  *
78  * * :c:func:`memblock_phys_alloc*` - these functions return the
79  *   **physical** address of the allocated memory
80  * * :c:func:`memblock_alloc*` - these functions return the **virtual**
81  *   address of the allocated memory.
82  *
83  * Note, that both API variants use implict assumptions about allowed
84  * memory ranges and the fallback methods. Consult the documentation
85  * of :c:func:`memblock_alloc_internal` and
86  * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
87  * description.
88  *
89  * As the system boot progresses, the architecture specific
90  * :c:func:`mem_init` function frees all the memory to the buddy page
91  * allocator.
92  *
93  * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
94  * memblock data structures will be discarded after the system
95  * initialization compltes.
96  */
97
98 #ifndef CONFIG_NEED_MULTIPLE_NODES
99 struct pglist_data __refdata contig_page_data;
100 EXPORT_SYMBOL(contig_page_data);
101 #endif
102
103 unsigned long max_low_pfn;
104 unsigned long min_low_pfn;
105 unsigned long max_pfn;
106 unsigned long long max_possible_pfn;
107
108 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
109 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
110 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
111 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
112 #endif
113
114 struct memblock memblock __initdata_memblock = {
115         .memory.regions         = memblock_memory_init_regions,
116         .memory.cnt             = 1,    /* empty dummy entry */
117         .memory.max             = INIT_MEMBLOCK_REGIONS,
118         .memory.name            = "memory",
119
120         .reserved.regions       = memblock_reserved_init_regions,
121         .reserved.cnt           = 1,    /* empty dummy entry */
122         .reserved.max           = INIT_MEMBLOCK_RESERVED_REGIONS,
123         .reserved.name          = "reserved",
124
125 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
126         .physmem.regions        = memblock_physmem_init_regions,
127         .physmem.cnt            = 1,    /* empty dummy entry */
128         .physmem.max            = INIT_PHYSMEM_REGIONS,
129         .physmem.name           = "physmem",
130 #endif
131
132         .bottom_up              = false,
133         .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
134 };
135
136 int memblock_debug __initdata_memblock;
137 static bool system_has_some_mirror __initdata_memblock = false;
138 static int memblock_can_resize __initdata_memblock;
139 static int memblock_memory_in_slab __initdata_memblock = 0;
140 static int memblock_reserved_in_slab __initdata_memblock = 0;
141
142 static enum memblock_flags __init_memblock choose_memblock_flags(void)
143 {
144         return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
145 }
146
147 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
148 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
149 {
150         return *size = min(*size, PHYS_ADDR_MAX - base);
151 }
152
153 /*
154  * Address comparison utilities
155  */
156 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
157                                        phys_addr_t base2, phys_addr_t size2)
158 {
159         return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
160 }
161
162 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
163                                         phys_addr_t base, phys_addr_t size)
164 {
165         unsigned long i;
166
167         for (i = 0; i < type->cnt; i++)
168                 if (memblock_addrs_overlap(base, size, type->regions[i].base,
169                                            type->regions[i].size))
170                         break;
171         return i < type->cnt;
172 }
173
174 /**
175  * __memblock_find_range_bottom_up - find free area utility in bottom-up
176  * @start: start of candidate range
177  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
178  *       %MEMBLOCK_ALLOC_ACCESSIBLE
179  * @size: size of free area to find
180  * @align: alignment of free area to find
181  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
182  * @flags: pick from blocks based on memory attributes
183  *
184  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
185  *
186  * Return:
187  * Found address on success, 0 on failure.
188  */
189 static phys_addr_t __init_memblock
190 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
191                                 phys_addr_t size, phys_addr_t align, int nid,
192                                 enum memblock_flags flags)
193 {
194         phys_addr_t this_start, this_end, cand;
195         u64 i;
196
197         for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
198                 this_start = clamp(this_start, start, end);
199                 this_end = clamp(this_end, start, end);
200
201                 cand = round_up(this_start, align);
202                 if (cand < this_end && this_end - cand >= size)
203                         return cand;
204         }
205
206         return 0;
207 }
208
209 /**
210  * __memblock_find_range_top_down - find free area utility, in top-down
211  * @start: start of candidate range
212  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
213  *       %MEMBLOCK_ALLOC_ACCESSIBLE
214  * @size: size of free area to find
215  * @align: alignment of free area to find
216  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
217  * @flags: pick from blocks based on memory attributes
218  *
219  * Utility called from memblock_find_in_range_node(), find free area top-down.
220  *
221  * Return:
222  * Found address on success, 0 on failure.
223  */
224 static phys_addr_t __init_memblock
225 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
226                                phys_addr_t size, phys_addr_t align, int nid,
227                                enum memblock_flags flags)
228 {
229         phys_addr_t this_start, this_end, cand;
230         u64 i;
231
232         for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
233                                         NULL) {
234                 this_start = clamp(this_start, start, end);
235                 this_end = clamp(this_end, start, end);
236
237                 if (this_end < size)
238                         continue;
239
240                 cand = round_down(this_end - size, align);
241                 if (cand >= this_start)
242                         return cand;
243         }
244
245         return 0;
246 }
247
248 /**
249  * memblock_find_in_range_node - find free area in given range and node
250  * @size: size of free area to find
251  * @align: alignment of free area to find
252  * @start: start of candidate range
253  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
254  *       %MEMBLOCK_ALLOC_ACCESSIBLE
255  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
256  * @flags: pick from blocks based on memory attributes
257  *
258  * Find @size free area aligned to @align in the specified range and node.
259  *
260  * When allocation direction is bottom-up, the @start should be greater
261  * than the end of the kernel image. Otherwise, it will be trimmed. The
262  * reason is that we want the bottom-up allocation just near the kernel
263  * image so it is highly likely that the allocated memory and the kernel
264  * will reside in the same node.
265  *
266  * If bottom-up allocation failed, will try to allocate memory top-down.
267  *
268  * Return:
269  * Found address on success, 0 on failure.
270  */
271 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
272                                         phys_addr_t align, phys_addr_t start,
273                                         phys_addr_t end, int nid,
274                                         enum memblock_flags flags)
275 {
276         phys_addr_t kernel_end, ret;
277
278         /* pump up @end */
279         if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
280             end == MEMBLOCK_ALLOC_KASAN)
281                 end = memblock.current_limit;
282
283         /* avoid allocating the first page */
284         start = max_t(phys_addr_t, start, PAGE_SIZE);
285         end = max(start, end);
286         kernel_end = __pa_symbol(_end);
287
288         /*
289          * try bottom-up allocation only when bottom-up mode
290          * is set and @end is above the kernel image.
291          */
292         if (memblock_bottom_up() && end > kernel_end) {
293                 phys_addr_t bottom_up_start;
294
295                 /* make sure we will allocate above the kernel */
296                 bottom_up_start = max(start, kernel_end);
297
298                 /* ok, try bottom-up allocation first */
299                 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
300                                                       size, align, nid, flags);
301                 if (ret)
302                         return ret;
303
304                 /*
305                  * we always limit bottom-up allocation above the kernel,
306                  * but top-down allocation doesn't have the limit, so
307                  * retrying top-down allocation may succeed when bottom-up
308                  * allocation failed.
309                  *
310                  * bottom-up allocation is expected to be fail very rarely,
311                  * so we use WARN_ONCE() here to see the stack trace if
312                  * fail happens.
313                  */
314                 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
315                           "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
316         }
317
318         return __memblock_find_range_top_down(start, end, size, align, nid,
319                                               flags);
320 }
321
322 /**
323  * memblock_find_in_range - find free area in given range
324  * @start: start of candidate range
325  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
326  *       %MEMBLOCK_ALLOC_ACCESSIBLE
327  * @size: size of free area to find
328  * @align: alignment of free area to find
329  *
330  * Find @size free area aligned to @align in the specified range.
331  *
332  * Return:
333  * Found address on success, 0 on failure.
334  */
335 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
336                                         phys_addr_t end, phys_addr_t size,
337                                         phys_addr_t align)
338 {
339         phys_addr_t ret;
340         enum memblock_flags flags = choose_memblock_flags();
341
342 again:
343         ret = memblock_find_in_range_node(size, align, start, end,
344                                             NUMA_NO_NODE, flags);
345
346         if (!ret && (flags & MEMBLOCK_MIRROR)) {
347                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
348                         &size);
349                 flags &= ~MEMBLOCK_MIRROR;
350                 goto again;
351         }
352
353         return ret;
354 }
355
356 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
357 {
358         type->total_size -= type->regions[r].size;
359         memmove(&type->regions[r], &type->regions[r + 1],
360                 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
361         type->cnt--;
362
363         /* Special case for empty arrays */
364         if (type->cnt == 0) {
365                 WARN_ON(type->total_size != 0);
366                 type->cnt = 1;
367                 type->regions[0].base = 0;
368                 type->regions[0].size = 0;
369                 type->regions[0].flags = 0;
370                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
371         }
372 }
373
374 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
375 /**
376  * memblock_discard - discard memory and reserved arrays if they were allocated
377  */
378 void __init memblock_discard(void)
379 {
380         phys_addr_t addr, size;
381
382         if (memblock.reserved.regions != memblock_reserved_init_regions) {
383                 addr = __pa(memblock.reserved.regions);
384                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
385                                   memblock.reserved.max);
386                 __memblock_free_late(addr, size);
387         }
388
389         if (memblock.memory.regions != memblock_memory_init_regions) {
390                 addr = __pa(memblock.memory.regions);
391                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
392                                   memblock.memory.max);
393                 __memblock_free_late(addr, size);
394         }
395 }
396 #endif
397
398 /**
399  * memblock_double_array - double the size of the memblock regions array
400  * @type: memblock type of the regions array being doubled
401  * @new_area_start: starting address of memory range to avoid overlap with
402  * @new_area_size: size of memory range to avoid overlap with
403  *
404  * Double the size of the @type regions array. If memblock is being used to
405  * allocate memory for a new reserved regions array and there is a previously
406  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
407  * waiting to be reserved, ensure the memory used by the new array does
408  * not overlap.
409  *
410  * Return:
411  * 0 on success, -1 on failure.
412  */
413 static int __init_memblock memblock_double_array(struct memblock_type *type,
414                                                 phys_addr_t new_area_start,
415                                                 phys_addr_t new_area_size)
416 {
417         struct memblock_region *new_array, *old_array;
418         phys_addr_t old_alloc_size, new_alloc_size;
419         phys_addr_t old_size, new_size, addr, new_end;
420         int use_slab = slab_is_available();
421         int *in_slab;
422
423         /* We don't allow resizing until we know about the reserved regions
424          * of memory that aren't suitable for allocation
425          */
426         if (!memblock_can_resize)
427                 return -1;
428
429         /* Calculate new doubled size */
430         old_size = type->max * sizeof(struct memblock_region);
431         new_size = old_size << 1;
432         /*
433          * We need to allocated new one align to PAGE_SIZE,
434          *   so we can free them completely later.
435          */
436         old_alloc_size = PAGE_ALIGN(old_size);
437         new_alloc_size = PAGE_ALIGN(new_size);
438
439         /* Retrieve the slab flag */
440         if (type == &memblock.memory)
441                 in_slab = &memblock_memory_in_slab;
442         else
443                 in_slab = &memblock_reserved_in_slab;
444
445         /* Try to find some space for it */
446         if (use_slab) {
447                 new_array = kmalloc(new_size, GFP_KERNEL);
448                 addr = new_array ? __pa(new_array) : 0;
449         } else {
450                 /* only exclude range when trying to double reserved.regions */
451                 if (type != &memblock.reserved)
452                         new_area_start = new_area_size = 0;
453
454                 addr = memblock_find_in_range(new_area_start + new_area_size,
455                                                 memblock.current_limit,
456                                                 new_alloc_size, PAGE_SIZE);
457                 if (!addr && new_area_size)
458                         addr = memblock_find_in_range(0,
459                                 min(new_area_start, memblock.current_limit),
460                                 new_alloc_size, PAGE_SIZE);
461
462                 new_array = addr ? __va(addr) : NULL;
463         }
464         if (!addr) {
465                 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
466                        type->name, type->max, type->max * 2);
467                 return -1;
468         }
469
470         new_end = addr + new_size - 1;
471         memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
472                         type->name, type->max * 2, &addr, &new_end);
473
474         /*
475          * Found space, we now need to move the array over before we add the
476          * reserved region since it may be our reserved array itself that is
477          * full.
478          */
479         memcpy(new_array, type->regions, old_size);
480         memset(new_array + type->max, 0, old_size);
481         old_array = type->regions;
482         type->regions = new_array;
483         type->max <<= 1;
484
485         /* Free old array. We needn't free it if the array is the static one */
486         if (*in_slab)
487                 kfree(old_array);
488         else if (old_array != memblock_memory_init_regions &&
489                  old_array != memblock_reserved_init_regions)
490                 memblock_free(__pa(old_array), old_alloc_size);
491
492         /*
493          * Reserve the new array if that comes from the memblock.  Otherwise, we
494          * needn't do it
495          */
496         if (!use_slab)
497                 BUG_ON(memblock_reserve(addr, new_alloc_size));
498
499         /* Update slab flag */
500         *in_slab = use_slab;
501
502         return 0;
503 }
504
505 /**
506  * memblock_merge_regions - merge neighboring compatible regions
507  * @type: memblock type to scan
508  *
509  * Scan @type and merge neighboring compatible regions.
510  */
511 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
512 {
513         int i = 0;
514
515         /* cnt never goes below 1 */
516         while (i < type->cnt - 1) {
517                 struct memblock_region *this = &type->regions[i];
518                 struct memblock_region *next = &type->regions[i + 1];
519
520                 if (this->base + this->size != next->base ||
521                     memblock_get_region_node(this) !=
522                     memblock_get_region_node(next) ||
523                     this->flags != next->flags) {
524                         BUG_ON(this->base + this->size > next->base);
525                         i++;
526                         continue;
527                 }
528
529                 this->size += next->size;
530                 /* move forward from next + 1, index of which is i + 2 */
531                 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
532                 type->cnt--;
533         }
534 }
535
536 /**
537  * memblock_insert_region - insert new memblock region
538  * @type:       memblock type to insert into
539  * @idx:        index for the insertion point
540  * @base:       base address of the new region
541  * @size:       size of the new region
542  * @nid:        node id of the new region
543  * @flags:      flags of the new region
544  *
545  * Insert new memblock region [@base, @base + @size) into @type at @idx.
546  * @type must already have extra room to accommodate the new region.
547  */
548 static void __init_memblock memblock_insert_region(struct memblock_type *type,
549                                                    int idx, phys_addr_t base,
550                                                    phys_addr_t size,
551                                                    int nid,
552                                                    enum memblock_flags flags)
553 {
554         struct memblock_region *rgn = &type->regions[idx];
555
556         BUG_ON(type->cnt >= type->max);
557         memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
558         rgn->base = base;
559         rgn->size = size;
560         rgn->flags = flags;
561         memblock_set_region_node(rgn, nid);
562         type->cnt++;
563         type->total_size += size;
564 }
565
566 /**
567  * memblock_add_range - add new memblock region
568  * @type: memblock type to add new region into
569  * @base: base address of the new region
570  * @size: size of the new region
571  * @nid: nid of the new region
572  * @flags: flags of the new region
573  *
574  * Add new memblock region [@base, @base + @size) into @type.  The new region
575  * is allowed to overlap with existing ones - overlaps don't affect already
576  * existing regions.  @type is guaranteed to be minimal (all neighbouring
577  * compatible regions are merged) after the addition.
578  *
579  * Return:
580  * 0 on success, -errno on failure.
581  */
582 int __init_memblock memblock_add_range(struct memblock_type *type,
583                                 phys_addr_t base, phys_addr_t size,
584                                 int nid, enum memblock_flags flags)
585 {
586         bool insert = false;
587         phys_addr_t obase = base;
588         phys_addr_t end = base + memblock_cap_size(base, &size);
589         int idx, nr_new;
590         struct memblock_region *rgn;
591
592         if (!size)
593                 return 0;
594
595         /* special case for empty array */
596         if (type->regions[0].size == 0) {
597                 WARN_ON(type->cnt != 1 || type->total_size);
598                 type->regions[0].base = base;
599                 type->regions[0].size = size;
600                 type->regions[0].flags = flags;
601                 memblock_set_region_node(&type->regions[0], nid);
602                 type->total_size = size;
603                 return 0;
604         }
605 repeat:
606         /*
607          * The following is executed twice.  Once with %false @insert and
608          * then with %true.  The first counts the number of regions needed
609          * to accommodate the new area.  The second actually inserts them.
610          */
611         base = obase;
612         nr_new = 0;
613
614         for_each_memblock_type(idx, type, rgn) {
615                 phys_addr_t rbase = rgn->base;
616                 phys_addr_t rend = rbase + rgn->size;
617
618                 if (rbase >= end)
619                         break;
620                 if (rend <= base)
621                         continue;
622                 /*
623                  * @rgn overlaps.  If it separates the lower part of new
624                  * area, insert that portion.
625                  */
626                 if (rbase > base) {
627 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
628                         WARN_ON(nid != memblock_get_region_node(rgn));
629 #endif
630                         WARN_ON(flags != rgn->flags);
631                         nr_new++;
632                         if (insert)
633                                 memblock_insert_region(type, idx++, base,
634                                                        rbase - base, nid,
635                                                        flags);
636                 }
637                 /* area below @rend is dealt with, forget about it */
638                 base = min(rend, end);
639         }
640
641         /* insert the remaining portion */
642         if (base < end) {
643                 nr_new++;
644                 if (insert)
645                         memblock_insert_region(type, idx, base, end - base,
646                                                nid, flags);
647         }
648
649         if (!nr_new)
650                 return 0;
651
652         /*
653          * If this was the first round, resize array and repeat for actual
654          * insertions; otherwise, merge and return.
655          */
656         if (!insert) {
657                 while (type->cnt + nr_new > type->max)
658                         if (memblock_double_array(type, obase, size) < 0)
659                                 return -ENOMEM;
660                 insert = true;
661                 goto repeat;
662         } else {
663                 memblock_merge_regions(type);
664                 return 0;
665         }
666 }
667
668 /**
669  * memblock_add_node - add new memblock region within a NUMA node
670  * @base: base address of the new region
671  * @size: size of the new region
672  * @nid: nid of the new region
673  *
674  * Add new memblock region [@base, @base + @size) to the "memory"
675  * type. See memblock_add_range() description for mode details
676  *
677  * Return:
678  * 0 on success, -errno on failure.
679  */
680 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
681                                        int nid)
682 {
683         return memblock_add_range(&memblock.memory, base, size, nid, 0);
684 }
685
686 /**
687  * memblock_add - add new memblock region
688  * @base: base address of the new region
689  * @size: size of the new region
690  *
691  * Add new memblock region [@base, @base + @size) to the "memory"
692  * type. See memblock_add_range() description for mode details
693  *
694  * Return:
695  * 0 on success, -errno on failure.
696  */
697 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
698 {
699         phys_addr_t end = base + size - 1;
700
701         memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
702                      &base, &end, (void *)_RET_IP_);
703
704         return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
705 }
706
707 /**
708  * memblock_isolate_range - isolate given range into disjoint memblocks
709  * @type: memblock type to isolate range for
710  * @base: base of range to isolate
711  * @size: size of range to isolate
712  * @start_rgn: out parameter for the start of isolated region
713  * @end_rgn: out parameter for the end of isolated region
714  *
715  * Walk @type and ensure that regions don't cross the boundaries defined by
716  * [@base, @base + @size).  Crossing regions are split at the boundaries,
717  * which may create at most two more regions.  The index of the first
718  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
719  *
720  * Return:
721  * 0 on success, -errno on failure.
722  */
723 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
724                                         phys_addr_t base, phys_addr_t size,
725                                         int *start_rgn, int *end_rgn)
726 {
727         phys_addr_t end = base + memblock_cap_size(base, &size);
728         int idx;
729         struct memblock_region *rgn;
730
731         *start_rgn = *end_rgn = 0;
732
733         if (!size)
734                 return 0;
735
736         /* we'll create at most two more regions */
737         while (type->cnt + 2 > type->max)
738                 if (memblock_double_array(type, base, size) < 0)
739                         return -ENOMEM;
740
741         for_each_memblock_type(idx, type, rgn) {
742                 phys_addr_t rbase = rgn->base;
743                 phys_addr_t rend = rbase + rgn->size;
744
745                 if (rbase >= end)
746                         break;
747                 if (rend <= base)
748                         continue;
749
750                 if (rbase < base) {
751                         /*
752                          * @rgn intersects from below.  Split and continue
753                          * to process the next region - the new top half.
754                          */
755                         rgn->base = base;
756                         rgn->size -= base - rbase;
757                         type->total_size -= base - rbase;
758                         memblock_insert_region(type, idx, rbase, base - rbase,
759                                                memblock_get_region_node(rgn),
760                                                rgn->flags);
761                 } else if (rend > end) {
762                         /*
763                          * @rgn intersects from above.  Split and redo the
764                          * current region - the new bottom half.
765                          */
766                         rgn->base = end;
767                         rgn->size -= end - rbase;
768                         type->total_size -= end - rbase;
769                         memblock_insert_region(type, idx--, rbase, end - rbase,
770                                                memblock_get_region_node(rgn),
771                                                rgn->flags);
772                 } else {
773                         /* @rgn is fully contained, record it */
774                         if (!*end_rgn)
775                                 *start_rgn = idx;
776                         *end_rgn = idx + 1;
777                 }
778         }
779
780         return 0;
781 }
782
783 static int __init_memblock memblock_remove_range(struct memblock_type *type,
784                                           phys_addr_t base, phys_addr_t size)
785 {
786         int start_rgn, end_rgn;
787         int i, ret;
788
789         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
790         if (ret)
791                 return ret;
792
793         for (i = end_rgn - 1; i >= start_rgn; i--)
794                 memblock_remove_region(type, i);
795         return 0;
796 }
797
798 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
799 {
800         phys_addr_t end = base + size - 1;
801
802         memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
803                      &base, &end, (void *)_RET_IP_);
804
805         return memblock_remove_range(&memblock.memory, base, size);
806 }
807
808 /**
809  * memblock_free - free boot memory block
810  * @base: phys starting address of the  boot memory block
811  * @size: size of the boot memory block in bytes
812  *
813  * Free boot memory block previously allocated by memblock_alloc_xx() API.
814  * The freeing memory will not be released to the buddy allocator.
815  */
816 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
817 {
818         phys_addr_t end = base + size - 1;
819
820         memblock_dbg("   memblock_free: [%pa-%pa] %pS\n",
821                      &base, &end, (void *)_RET_IP_);
822
823         kmemleak_free_part_phys(base, size);
824         return memblock_remove_range(&memblock.reserved, base, size);
825 }
826
827 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
828 {
829         phys_addr_t end = base + size - 1;
830
831         memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
832                      &base, &end, (void *)_RET_IP_);
833
834         return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
835 }
836
837 /**
838  * memblock_setclr_flag - set or clear flag for a memory region
839  * @base: base address of the region
840  * @size: size of the region
841  * @set: set or clear the flag
842  * @flag: the flag to udpate
843  *
844  * This function isolates region [@base, @base + @size), and sets/clears flag
845  *
846  * Return: 0 on success, -errno on failure.
847  */
848 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
849                                 phys_addr_t size, int set, int flag)
850 {
851         struct memblock_type *type = &memblock.memory;
852         int i, ret, start_rgn, end_rgn;
853
854         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
855         if (ret)
856                 return ret;
857
858         for (i = start_rgn; i < end_rgn; i++) {
859                 struct memblock_region *r = &type->regions[i];
860
861                 if (set)
862                         r->flags |= flag;
863                 else
864                         r->flags &= ~flag;
865         }
866
867         memblock_merge_regions(type);
868         return 0;
869 }
870
871 /**
872  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
873  * @base: the base phys addr of the region
874  * @size: the size of the region
875  *
876  * Return: 0 on success, -errno on failure.
877  */
878 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
879 {
880         return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
881 }
882
883 /**
884  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
885  * @base: the base phys addr of the region
886  * @size: the size of the region
887  *
888  * Return: 0 on success, -errno on failure.
889  */
890 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
891 {
892         return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
893 }
894
895 /**
896  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
897  * @base: the base phys addr of the region
898  * @size: the size of the region
899  *
900  * Return: 0 on success, -errno on failure.
901  */
902 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
903 {
904         system_has_some_mirror = true;
905
906         return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
907 }
908
909 /**
910  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
911  * @base: the base phys addr of the region
912  * @size: the size of the region
913  *
914  * Return: 0 on success, -errno on failure.
915  */
916 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
917 {
918         return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
919 }
920
921 /**
922  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
923  * @base: the base phys addr of the region
924  * @size: the size of the region
925  *
926  * Return: 0 on success, -errno on failure.
927  */
928 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
929 {
930         return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
931 }
932
933 /**
934  * __next_reserved_mem_region - next function for for_each_reserved_region()
935  * @idx: pointer to u64 loop variable
936  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
937  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
938  *
939  * Iterate over all reserved memory regions.
940  */
941 void __init_memblock __next_reserved_mem_region(u64 *idx,
942                                            phys_addr_t *out_start,
943                                            phys_addr_t *out_end)
944 {
945         struct memblock_type *type = &memblock.reserved;
946
947         if (*idx < type->cnt) {
948                 struct memblock_region *r = &type->regions[*idx];
949                 phys_addr_t base = r->base;
950                 phys_addr_t size = r->size;
951
952                 if (out_start)
953                         *out_start = base;
954                 if (out_end)
955                         *out_end = base + size - 1;
956
957                 *idx += 1;
958                 return;
959         }
960
961         /* signal end of iteration */
962         *idx = ULLONG_MAX;
963 }
964
965 static bool should_skip_region(struct memblock_region *m, int nid, int flags)
966 {
967         int m_nid = memblock_get_region_node(m);
968
969         /* only memory regions are associated with nodes, check it */
970         if (nid != NUMA_NO_NODE && nid != m_nid)
971                 return true;
972
973         /* skip hotpluggable memory regions if needed */
974         if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
975                 return true;
976
977         /* if we want mirror memory skip non-mirror memory regions */
978         if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
979                 return true;
980
981         /* skip nomap memory unless we were asked for it explicitly */
982         if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
983                 return true;
984
985         return false;
986 }
987
988 /**
989  * __next_mem_range - next function for for_each_free_mem_range() etc.
990  * @idx: pointer to u64 loop variable
991  * @nid: node selector, %NUMA_NO_NODE for all nodes
992  * @flags: pick from blocks based on memory attributes
993  * @type_a: pointer to memblock_type from where the range is taken
994  * @type_b: pointer to memblock_type which excludes memory from being taken
995  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
996  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
997  * @out_nid: ptr to int for nid of the range, can be %NULL
998  *
999  * Find the first area from *@idx which matches @nid, fill the out
1000  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1001  * *@idx contains index into type_a and the upper 32bit indexes the
1002  * areas before each region in type_b.  For example, if type_b regions
1003  * look like the following,
1004  *
1005  *      0:[0-16), 1:[32-48), 2:[128-130)
1006  *
1007  * The upper 32bit indexes the following regions.
1008  *
1009  *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1010  *
1011  * As both region arrays are sorted, the function advances the two indices
1012  * in lockstep and returns each intersection.
1013  */
1014 void __init_memblock __next_mem_range(u64 *idx, int nid,
1015                                       enum memblock_flags flags,
1016                                       struct memblock_type *type_a,
1017                                       struct memblock_type *type_b,
1018                                       phys_addr_t *out_start,
1019                                       phys_addr_t *out_end, int *out_nid)
1020 {
1021         int idx_a = *idx & 0xffffffff;
1022         int idx_b = *idx >> 32;
1023
1024         if (WARN_ONCE(nid == MAX_NUMNODES,
1025         "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1026                 nid = NUMA_NO_NODE;
1027
1028         for (; idx_a < type_a->cnt; idx_a++) {
1029                 struct memblock_region *m = &type_a->regions[idx_a];
1030
1031                 phys_addr_t m_start = m->base;
1032                 phys_addr_t m_end = m->base + m->size;
1033                 int         m_nid = memblock_get_region_node(m);
1034
1035                 if (should_skip_region(m, nid, flags))
1036                         continue;
1037
1038                 if (!type_b) {
1039                         if (out_start)
1040                                 *out_start = m_start;
1041                         if (out_end)
1042                                 *out_end = m_end;
1043                         if (out_nid)
1044                                 *out_nid = m_nid;
1045                         idx_a++;
1046                         *idx = (u32)idx_a | (u64)idx_b << 32;
1047                         return;
1048                 }
1049
1050                 /* scan areas before each reservation */
1051                 for (; idx_b < type_b->cnt + 1; idx_b++) {
1052                         struct memblock_region *r;
1053                         phys_addr_t r_start;
1054                         phys_addr_t r_end;
1055
1056                         r = &type_b->regions[idx_b];
1057                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
1058                         r_end = idx_b < type_b->cnt ?
1059                                 r->base : PHYS_ADDR_MAX;
1060
1061                         /*
1062                          * if idx_b advanced past idx_a,
1063                          * break out to advance idx_a
1064                          */
1065                         if (r_start >= m_end)
1066                                 break;
1067                         /* if the two regions intersect, we're done */
1068                         if (m_start < r_end) {
1069                                 if (out_start)
1070                                         *out_start =
1071                                                 max(m_start, r_start);
1072                                 if (out_end)
1073                                         *out_end = min(m_end, r_end);
1074                                 if (out_nid)
1075                                         *out_nid = m_nid;
1076                                 /*
1077                                  * The region which ends first is
1078                                  * advanced for the next iteration.
1079                                  */
1080                                 if (m_end <= r_end)
1081                                         idx_a++;
1082                                 else
1083                                         idx_b++;
1084                                 *idx = (u32)idx_a | (u64)idx_b << 32;
1085                                 return;
1086                         }
1087                 }
1088         }
1089
1090         /* signal end of iteration */
1091         *idx = ULLONG_MAX;
1092 }
1093
1094 /**
1095  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1096  *
1097  * @idx: pointer to u64 loop variable
1098  * @nid: node selector, %NUMA_NO_NODE for all nodes
1099  * @flags: pick from blocks based on memory attributes
1100  * @type_a: pointer to memblock_type from where the range is taken
1101  * @type_b: pointer to memblock_type which excludes memory from being taken
1102  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1103  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1104  * @out_nid: ptr to int for nid of the range, can be %NULL
1105  *
1106  * Finds the next range from type_a which is not marked as unsuitable
1107  * in type_b.
1108  *
1109  * Reverse of __next_mem_range().
1110  */
1111 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1112                                           enum memblock_flags flags,
1113                                           struct memblock_type *type_a,
1114                                           struct memblock_type *type_b,
1115                                           phys_addr_t *out_start,
1116                                           phys_addr_t *out_end, int *out_nid)
1117 {
1118         int idx_a = *idx & 0xffffffff;
1119         int idx_b = *idx >> 32;
1120
1121         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1122                 nid = NUMA_NO_NODE;
1123
1124         if (*idx == (u64)ULLONG_MAX) {
1125                 idx_a = type_a->cnt - 1;
1126                 if (type_b != NULL)
1127                         idx_b = type_b->cnt;
1128                 else
1129                         idx_b = 0;
1130         }
1131
1132         for (; idx_a >= 0; idx_a--) {
1133                 struct memblock_region *m = &type_a->regions[idx_a];
1134
1135                 phys_addr_t m_start = m->base;
1136                 phys_addr_t m_end = m->base + m->size;
1137                 int m_nid = memblock_get_region_node(m);
1138
1139                 if (should_skip_region(m, nid, flags))
1140                         continue;
1141
1142                 if (!type_b) {
1143                         if (out_start)
1144                                 *out_start = m_start;
1145                         if (out_end)
1146                                 *out_end = m_end;
1147                         if (out_nid)
1148                                 *out_nid = m_nid;
1149                         idx_a--;
1150                         *idx = (u32)idx_a | (u64)idx_b << 32;
1151                         return;
1152                 }
1153
1154                 /* scan areas before each reservation */
1155                 for (; idx_b >= 0; idx_b--) {
1156                         struct memblock_region *r;
1157                         phys_addr_t r_start;
1158                         phys_addr_t r_end;
1159
1160                         r = &type_b->regions[idx_b];
1161                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
1162                         r_end = idx_b < type_b->cnt ?
1163                                 r->base : PHYS_ADDR_MAX;
1164                         /*
1165                          * if idx_b advanced past idx_a,
1166                          * break out to advance idx_a
1167                          */
1168
1169                         if (r_end <= m_start)
1170                                 break;
1171                         /* if the two regions intersect, we're done */
1172                         if (m_end > r_start) {
1173                                 if (out_start)
1174                                         *out_start = max(m_start, r_start);
1175                                 if (out_end)
1176                                         *out_end = min(m_end, r_end);
1177                                 if (out_nid)
1178                                         *out_nid = m_nid;
1179                                 if (m_start >= r_start)
1180                                         idx_a--;
1181                                 else
1182                                         idx_b--;
1183                                 *idx = (u32)idx_a | (u64)idx_b << 32;
1184                                 return;
1185                         }
1186                 }
1187         }
1188         /* signal end of iteration */
1189         *idx = ULLONG_MAX;
1190 }
1191
1192 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1193 /*
1194  * Common iterator interface used to define for_each_mem_pfn_range().
1195  */
1196 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1197                                 unsigned long *out_start_pfn,
1198                                 unsigned long *out_end_pfn, int *out_nid)
1199 {
1200         struct memblock_type *type = &memblock.memory;
1201         struct memblock_region *r;
1202
1203         while (++*idx < type->cnt) {
1204                 r = &type->regions[*idx];
1205
1206                 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1207                         continue;
1208                 if (nid == MAX_NUMNODES || nid == r->nid)
1209                         break;
1210         }
1211         if (*idx >= type->cnt) {
1212                 *idx = -1;
1213                 return;
1214         }
1215
1216         if (out_start_pfn)
1217                 *out_start_pfn = PFN_UP(r->base);
1218         if (out_end_pfn)
1219                 *out_end_pfn = PFN_DOWN(r->base + r->size);
1220         if (out_nid)
1221                 *out_nid = r->nid;
1222 }
1223
1224 /**
1225  * memblock_set_node - set node ID on memblock regions
1226  * @base: base of area to set node ID for
1227  * @size: size of area to set node ID for
1228  * @type: memblock type to set node ID for
1229  * @nid: node ID to set
1230  *
1231  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1232  * Regions which cross the area boundaries are split as necessary.
1233  *
1234  * Return:
1235  * 0 on success, -errno on failure.
1236  */
1237 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1238                                       struct memblock_type *type, int nid)
1239 {
1240         int start_rgn, end_rgn;
1241         int i, ret;
1242
1243         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1244         if (ret)
1245                 return ret;
1246
1247         for (i = start_rgn; i < end_rgn; i++)
1248                 memblock_set_region_node(&type->regions[i], nid);
1249
1250         memblock_merge_regions(type);
1251         return 0;
1252 }
1253 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1254 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1255 /**
1256  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1257  *
1258  * @idx: pointer to u64 loop variable
1259  * @zone: zone in which all of the memory blocks reside
1260  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1261  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1262  *
1263  * This function is meant to be a zone/pfn specific wrapper for the
1264  * for_each_mem_range type iterators. Specifically they are used in the
1265  * deferred memory init routines and as such we were duplicating much of
1266  * this logic throughout the code. So instead of having it in multiple
1267  * locations it seemed like it would make more sense to centralize this to
1268  * one new iterator that does everything they need.
1269  */
1270 void __init_memblock
1271 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1272                              unsigned long *out_spfn, unsigned long *out_epfn)
1273 {
1274         int zone_nid = zone_to_nid(zone);
1275         phys_addr_t spa, epa;
1276         int nid;
1277
1278         __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1279                          &memblock.memory, &memblock.reserved,
1280                          &spa, &epa, &nid);
1281
1282         while (*idx != U64_MAX) {
1283                 unsigned long epfn = PFN_DOWN(epa);
1284                 unsigned long spfn = PFN_UP(spa);
1285
1286                 /*
1287                  * Verify the end is at least past the start of the zone and
1288                  * that we have at least one PFN to initialize.
1289                  */
1290                 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1291                         /* if we went too far just stop searching */
1292                         if (zone_end_pfn(zone) <= spfn) {
1293                                 *idx = U64_MAX;
1294                                 break;
1295                         }
1296
1297                         if (out_spfn)
1298                                 *out_spfn = max(zone->zone_start_pfn, spfn);
1299                         if (out_epfn)
1300                                 *out_epfn = min(zone_end_pfn(zone), epfn);
1301
1302                         return;
1303                 }
1304
1305                 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1306                                  &memblock.memory, &memblock.reserved,
1307                                  &spa, &epa, &nid);
1308         }
1309
1310         /* signal end of iteration */
1311         if (out_spfn)
1312                 *out_spfn = ULONG_MAX;
1313         if (out_epfn)
1314                 *out_epfn = 0;
1315 }
1316
1317 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1318
1319 /**
1320  * memblock_alloc_range_nid - allocate boot memory block
1321  * @size: size of memory block to be allocated in bytes
1322  * @align: alignment of the region and block's size
1323  * @start: the lower bound of the memory region to allocate (phys address)
1324  * @end: the upper bound of the memory region to allocate (phys address)
1325  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326  *
1327  * The allocation is performed from memory region limited by
1328  * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1329  *
1330  * If the specified node can not hold the requested memory the
1331  * allocation falls back to any node in the system
1332  *
1333  * For systems with memory mirroring, the allocation is attempted first
1334  * from the regions with mirroring enabled and then retried from any
1335  * memory region.
1336  *
1337  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1338  * allocated boot memory block, so that it is never reported as leaks.
1339  *
1340  * Return:
1341  * Physical address of allocated memory block on success, %0 on failure.
1342  */
1343 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1344                                         phys_addr_t align, phys_addr_t start,
1345                                         phys_addr_t end, int nid)
1346 {
1347         enum memblock_flags flags = choose_memblock_flags();
1348         phys_addr_t found;
1349
1350         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1351                 nid = NUMA_NO_NODE;
1352
1353         if (!align) {
1354                 /* Can't use WARNs this early in boot on powerpc */
1355                 dump_stack();
1356                 align = SMP_CACHE_BYTES;
1357         }
1358
1359 again:
1360         found = memblock_find_in_range_node(size, align, start, end, nid,
1361                                             flags);
1362         if (found && !memblock_reserve(found, size))
1363                 goto done;
1364
1365         if (nid != NUMA_NO_NODE) {
1366                 found = memblock_find_in_range_node(size, align, start,
1367                                                     end, NUMA_NO_NODE,
1368                                                     flags);
1369                 if (found && !memblock_reserve(found, size))
1370                         goto done;
1371         }
1372
1373         if (flags & MEMBLOCK_MIRROR) {
1374                 flags &= ~MEMBLOCK_MIRROR;
1375                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1376                         &size);
1377                 goto again;
1378         }
1379
1380         return 0;
1381
1382 done:
1383         /* Skip kmemleak for kasan_init() due to high volume. */
1384         if (end != MEMBLOCK_ALLOC_KASAN)
1385                 /*
1386                  * The min_count is set to 0 so that memblock allocated
1387                  * blocks are never reported as leaks. This is because many
1388                  * of these blocks are only referred via the physical
1389                  * address which is not looked up by kmemleak.
1390                  */
1391                 kmemleak_alloc_phys(found, size, 0, 0);
1392
1393         return found;
1394 }
1395
1396 /**
1397  * memblock_phys_alloc_range - allocate a memory block inside specified range
1398  * @size: size of memory block to be allocated in bytes
1399  * @align: alignment of the region and block's size
1400  * @start: the lower bound of the memory region to allocate (physical address)
1401  * @end: the upper bound of the memory region to allocate (physical address)
1402  *
1403  * Allocate @size bytes in the between @start and @end.
1404  *
1405  * Return: physical address of the allocated memory block on success,
1406  * %0 on failure.
1407  */
1408 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1409                                              phys_addr_t align,
1410                                              phys_addr_t start,
1411                                              phys_addr_t end)
1412 {
1413         return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1414 }
1415
1416 /**
1417  * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1418  * @size: size of memory block to be allocated in bytes
1419  * @align: alignment of the region and block's size
1420  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1421  *
1422  * Allocates memory block from the specified NUMA node. If the node
1423  * has no available memory, attempts to allocated from any node in the
1424  * system.
1425  *
1426  * Return: physical address of the allocated memory block on success,
1427  * %0 on failure.
1428  */
1429 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1430 {
1431         return memblock_alloc_range_nid(size, align, 0,
1432                                         MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1433 }
1434
1435 /**
1436  * memblock_alloc_internal - allocate boot memory block
1437  * @size: size of memory block to be allocated in bytes
1438  * @align: alignment of the region and block's size
1439  * @min_addr: the lower bound of the memory region to allocate (phys address)
1440  * @max_addr: the upper bound of the memory region to allocate (phys address)
1441  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1442  *
1443  * Allocates memory block using memblock_alloc_range_nid() and
1444  * converts the returned physical address to virtual.
1445  *
1446  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1447  * will fall back to memory below @min_addr. Other constraints, such
1448  * as node and mirrored memory will be handled again in
1449  * memblock_alloc_range_nid().
1450  *
1451  * Return:
1452  * Virtual address of allocated memory block on success, NULL on failure.
1453  */
1454 static void * __init memblock_alloc_internal(
1455                                 phys_addr_t size, phys_addr_t align,
1456                                 phys_addr_t min_addr, phys_addr_t max_addr,
1457                                 int nid)
1458 {
1459         phys_addr_t alloc;
1460
1461         /*
1462          * Detect any accidental use of these APIs after slab is ready, as at
1463          * this moment memblock may be deinitialized already and its
1464          * internal data may be destroyed (after execution of memblock_free_all)
1465          */
1466         if (WARN_ON_ONCE(slab_is_available()))
1467                 return kzalloc_node(size, GFP_NOWAIT, nid);
1468
1469         if (max_addr > memblock.current_limit)
1470                 max_addr = memblock.current_limit;
1471
1472         alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
1473
1474         /* retry allocation without lower limit */
1475         if (!alloc && min_addr)
1476                 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1477
1478         if (!alloc)
1479                 return NULL;
1480
1481         return phys_to_virt(alloc);
1482 }
1483
1484 /**
1485  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1486  * memory and without panicking
1487  * @size: size of memory block to be allocated in bytes
1488  * @align: alignment of the region and block's size
1489  * @min_addr: the lower bound of the memory region from where the allocation
1490  *        is preferred (phys address)
1491  * @max_addr: the upper bound of the memory region from where the allocation
1492  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1493  *            allocate only from memory limited by memblock.current_limit value
1494  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1495  *
1496  * Public function, provides additional debug information (including caller
1497  * info), if enabled. Does not zero allocated memory, does not panic if request
1498  * cannot be satisfied.
1499  *
1500  * Return:
1501  * Virtual address of allocated memory block on success, NULL on failure.
1502  */
1503 void * __init memblock_alloc_try_nid_raw(
1504                         phys_addr_t size, phys_addr_t align,
1505                         phys_addr_t min_addr, phys_addr_t max_addr,
1506                         int nid)
1507 {
1508         void *ptr;
1509
1510         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1511                      __func__, (u64)size, (u64)align, nid, &min_addr,
1512                      &max_addr, (void *)_RET_IP_);
1513
1514         ptr = memblock_alloc_internal(size, align,
1515                                            min_addr, max_addr, nid);
1516         if (ptr && size > 0)
1517                 page_init_poison(ptr, size);
1518
1519         return ptr;
1520 }
1521
1522 /**
1523  * memblock_alloc_try_nid - allocate boot memory block
1524  * @size: size of memory block to be allocated in bytes
1525  * @align: alignment of the region and block's size
1526  * @min_addr: the lower bound of the memory region from where the allocation
1527  *        is preferred (phys address)
1528  * @max_addr: the upper bound of the memory region from where the allocation
1529  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1530  *            allocate only from memory limited by memblock.current_limit value
1531  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1532  *
1533  * Public function, provides additional debug information (including caller
1534  * info), if enabled. This function zeroes the allocated memory.
1535  *
1536  * Return:
1537  * Virtual address of allocated memory block on success, NULL on failure.
1538  */
1539 void * __init memblock_alloc_try_nid(
1540                         phys_addr_t size, phys_addr_t align,
1541                         phys_addr_t min_addr, phys_addr_t max_addr,
1542                         int nid)
1543 {
1544         void *ptr;
1545
1546         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1547                      __func__, (u64)size, (u64)align, nid, &min_addr,
1548                      &max_addr, (void *)_RET_IP_);
1549         ptr = memblock_alloc_internal(size, align,
1550                                            min_addr, max_addr, nid);
1551         if (ptr)
1552                 memset(ptr, 0, size);
1553
1554         return ptr;
1555 }
1556
1557 /**
1558  * __memblock_free_late - free pages directly to buddy allocator
1559  * @base: phys starting address of the  boot memory block
1560  * @size: size of the boot memory block in bytes
1561  *
1562  * This is only useful when the memblock allocator has already been torn
1563  * down, but we are still initializing the system.  Pages are released directly
1564  * to the buddy allocator.
1565  */
1566 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1567 {
1568         phys_addr_t cursor, end;
1569
1570         end = base + size - 1;
1571         memblock_dbg("%s: [%pa-%pa] %pS\n",
1572                      __func__, &base, &end, (void *)_RET_IP_);
1573         kmemleak_free_part_phys(base, size);
1574         cursor = PFN_UP(base);
1575         end = PFN_DOWN(base + size);
1576
1577         for (; cursor < end; cursor++) {
1578                 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1579                 totalram_pages_inc();
1580         }
1581 }
1582
1583 /*
1584  * Remaining API functions
1585  */
1586
1587 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1588 {
1589         return memblock.memory.total_size;
1590 }
1591
1592 phys_addr_t __init_memblock memblock_reserved_size(void)
1593 {
1594         return memblock.reserved.total_size;
1595 }
1596
1597 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1598 {
1599         unsigned long pages = 0;
1600         struct memblock_region *r;
1601         unsigned long start_pfn, end_pfn;
1602
1603         for_each_memblock(memory, r) {
1604                 start_pfn = memblock_region_memory_base_pfn(r);
1605                 end_pfn = memblock_region_memory_end_pfn(r);
1606                 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1607                 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1608                 pages += end_pfn - start_pfn;
1609         }
1610
1611         return PFN_PHYS(pages);
1612 }
1613
1614 /* lowest address */
1615 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1616 {
1617         return memblock.memory.regions[0].base;
1618 }
1619
1620 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1621 {
1622         int idx = memblock.memory.cnt - 1;
1623
1624         return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1625 }
1626
1627 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1628 {
1629         phys_addr_t max_addr = PHYS_ADDR_MAX;
1630         struct memblock_region *r;
1631
1632         /*
1633          * translate the memory @limit size into the max address within one of
1634          * the memory memblock regions, if the @limit exceeds the total size
1635          * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1636          */
1637         for_each_memblock(memory, r) {
1638                 if (limit <= r->size) {
1639                         max_addr = r->base + limit;
1640                         break;
1641                 }
1642                 limit -= r->size;
1643         }
1644
1645         return max_addr;
1646 }
1647
1648 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1649 {
1650         phys_addr_t max_addr = PHYS_ADDR_MAX;
1651
1652         if (!limit)
1653                 return;
1654
1655         max_addr = __find_max_addr(limit);
1656
1657         /* @limit exceeds the total size of the memory, do nothing */
1658         if (max_addr == PHYS_ADDR_MAX)
1659                 return;
1660
1661         /* truncate both memory and reserved regions */
1662         memblock_remove_range(&memblock.memory, max_addr,
1663                               PHYS_ADDR_MAX);
1664         memblock_remove_range(&memblock.reserved, max_addr,
1665                               PHYS_ADDR_MAX);
1666 }
1667
1668 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1669 {
1670         int start_rgn, end_rgn;
1671         int i, ret;
1672
1673         if (!size)
1674                 return;
1675
1676         ret = memblock_isolate_range(&memblock.memory, base, size,
1677                                                 &start_rgn, &end_rgn);
1678         if (ret)
1679                 return;
1680
1681         /* remove all the MAP regions */
1682         for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1683                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1684                         memblock_remove_region(&memblock.memory, i);
1685
1686         for (i = start_rgn - 1; i >= 0; i--)
1687                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688                         memblock_remove_region(&memblock.memory, i);
1689
1690         /* truncate the reserved regions */
1691         memblock_remove_range(&memblock.reserved, 0, base);
1692         memblock_remove_range(&memblock.reserved,
1693                         base + size, PHYS_ADDR_MAX);
1694 }
1695
1696 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1697 {
1698         phys_addr_t max_addr;
1699
1700         if (!limit)
1701                 return;
1702
1703         max_addr = __find_max_addr(limit);
1704
1705         /* @limit exceeds the total size of the memory, do nothing */
1706         if (max_addr == PHYS_ADDR_MAX)
1707                 return;
1708
1709         memblock_cap_memory_range(0, max_addr);
1710 }
1711
1712 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1713 {
1714         unsigned int left = 0, right = type->cnt;
1715
1716         do {
1717                 unsigned int mid = (right + left) / 2;
1718
1719                 if (addr < type->regions[mid].base)
1720                         right = mid;
1721                 else if (addr >= (type->regions[mid].base +
1722                                   type->regions[mid].size))
1723                         left = mid + 1;
1724                 else
1725                         return mid;
1726         } while (left < right);
1727         return -1;
1728 }
1729
1730 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1731 {
1732         return memblock_search(&memblock.reserved, addr) != -1;
1733 }
1734
1735 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1736 {
1737         return memblock_search(&memblock.memory, addr) != -1;
1738 }
1739
1740 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1741 {
1742         int i = memblock_search(&memblock.memory, addr);
1743
1744         if (i == -1)
1745                 return false;
1746         return !memblock_is_nomap(&memblock.memory.regions[i]);
1747 }
1748
1749 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1751                          unsigned long *start_pfn, unsigned long *end_pfn)
1752 {
1753         struct memblock_type *type = &memblock.memory;
1754         int mid = memblock_search(type, PFN_PHYS(pfn));
1755
1756         if (mid == -1)
1757                 return -1;
1758
1759         *start_pfn = PFN_DOWN(type->regions[mid].base);
1760         *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1761
1762         return type->regions[mid].nid;
1763 }
1764 #endif
1765
1766 /**
1767  * memblock_is_region_memory - check if a region is a subset of memory
1768  * @base: base of region to check
1769  * @size: size of region to check
1770  *
1771  * Check if the region [@base, @base + @size) is a subset of a memory block.
1772  *
1773  * Return:
1774  * 0 if false, non-zero if true
1775  */
1776 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1777 {
1778         int idx = memblock_search(&memblock.memory, base);
1779         phys_addr_t end = base + memblock_cap_size(base, &size);
1780
1781         if (idx == -1)
1782                 return false;
1783         return (memblock.memory.regions[idx].base +
1784                  memblock.memory.regions[idx].size) >= end;
1785 }
1786
1787 /**
1788  * memblock_is_region_reserved - check if a region intersects reserved memory
1789  * @base: base of region to check
1790  * @size: size of region to check
1791  *
1792  * Check if the region [@base, @base + @size) intersects a reserved
1793  * memory block.
1794  *
1795  * Return:
1796  * True if they intersect, false if not.
1797  */
1798 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1799 {
1800         memblock_cap_size(base, &size);
1801         return memblock_overlaps_region(&memblock.reserved, base, size);
1802 }
1803
1804 void __init_memblock memblock_trim_memory(phys_addr_t align)
1805 {
1806         phys_addr_t start, end, orig_start, orig_end;
1807         struct memblock_region *r;
1808
1809         for_each_memblock(memory, r) {
1810                 orig_start = r->base;
1811                 orig_end = r->base + r->size;
1812                 start = round_up(orig_start, align);
1813                 end = round_down(orig_end, align);
1814
1815                 if (start == orig_start && end == orig_end)
1816                         continue;
1817
1818                 if (start < end) {
1819                         r->base = start;
1820                         r->size = end - start;
1821                 } else {
1822                         memblock_remove_region(&memblock.memory,
1823                                                r - memblock.memory.regions);
1824                         r--;
1825                 }
1826         }
1827 }
1828
1829 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1830 {
1831         memblock.current_limit = limit;
1832 }
1833
1834 phys_addr_t __init_memblock memblock_get_current_limit(void)
1835 {
1836         return memblock.current_limit;
1837 }
1838
1839 static void __init_memblock memblock_dump(struct memblock_type *type)
1840 {
1841         phys_addr_t base, end, size;
1842         enum memblock_flags flags;
1843         int idx;
1844         struct memblock_region *rgn;
1845
1846         pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1847
1848         for_each_memblock_type(idx, type, rgn) {
1849                 char nid_buf[32] = "";
1850
1851                 base = rgn->base;
1852                 size = rgn->size;
1853                 end = base + size - 1;
1854                 flags = rgn->flags;
1855 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1856                 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1857                         snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1858                                  memblock_get_region_node(rgn));
1859 #endif
1860                 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1861                         type->name, idx, &base, &end, &size, nid_buf, flags);
1862         }
1863 }
1864
1865 void __init_memblock __memblock_dump_all(void)
1866 {
1867         pr_info("MEMBLOCK configuration:\n");
1868         pr_info(" memory size = %pa reserved size = %pa\n",
1869                 &memblock.memory.total_size,
1870                 &memblock.reserved.total_size);
1871
1872         memblock_dump(&memblock.memory);
1873         memblock_dump(&memblock.reserved);
1874 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1875         memblock_dump(&memblock.physmem);
1876 #endif
1877 }
1878
1879 void __init memblock_allow_resize(void)
1880 {
1881         memblock_can_resize = 1;
1882 }
1883
1884 static int __init early_memblock(char *p)
1885 {
1886         if (p && strstr(p, "debug"))
1887                 memblock_debug = 1;
1888         return 0;
1889 }
1890 early_param("memblock", early_memblock);
1891
1892 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1893 {
1894         int order;
1895
1896         while (start < end) {
1897                 order = min(MAX_ORDER - 1UL, __ffs(start));
1898
1899                 while (start + (1UL << order) > end)
1900                         order--;
1901
1902                 memblock_free_pages(pfn_to_page(start), start, order);
1903
1904                 start += (1UL << order);
1905         }
1906 }
1907
1908 static unsigned long __init __free_memory_core(phys_addr_t start,
1909                                  phys_addr_t end)
1910 {
1911         unsigned long start_pfn = PFN_UP(start);
1912         unsigned long end_pfn = min_t(unsigned long,
1913                                       PFN_DOWN(end), max_low_pfn);
1914
1915         if (start_pfn >= end_pfn)
1916                 return 0;
1917
1918         __free_pages_memory(start_pfn, end_pfn);
1919
1920         return end_pfn - start_pfn;
1921 }
1922
1923 static unsigned long __init free_low_memory_core_early(void)
1924 {
1925         unsigned long count = 0;
1926         phys_addr_t start, end;
1927         u64 i;
1928
1929         memblock_clear_hotplug(0, -1);
1930
1931         for_each_reserved_mem_region(i, &start, &end)
1932                 reserve_bootmem_region(start, end);
1933
1934         /*
1935          * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1936          *  because in some case like Node0 doesn't have RAM installed
1937          *  low ram will be on Node1
1938          */
1939         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1940                                 NULL)
1941                 count += __free_memory_core(start, end);
1942
1943         return count;
1944 }
1945
1946 static int reset_managed_pages_done __initdata;
1947
1948 void reset_node_managed_pages(pg_data_t *pgdat)
1949 {
1950         struct zone *z;
1951
1952         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1953                 atomic_long_set(&z->managed_pages, 0);
1954 }
1955
1956 void __init reset_all_zones_managed_pages(void)
1957 {
1958         struct pglist_data *pgdat;
1959
1960         if (reset_managed_pages_done)
1961                 return;
1962
1963         for_each_online_pgdat(pgdat)
1964                 reset_node_managed_pages(pgdat);
1965
1966         reset_managed_pages_done = 1;
1967 }
1968
1969 /**
1970  * memblock_free_all - release free pages to the buddy allocator
1971  *
1972  * Return: the number of pages actually released.
1973  */
1974 unsigned long __init memblock_free_all(void)
1975 {
1976         unsigned long pages;
1977
1978         reset_all_zones_managed_pages();
1979
1980         pages = free_low_memory_core_early();
1981         totalram_pages_add(pages);
1982
1983         return pages;
1984 }
1985
1986 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1987
1988 static int memblock_debug_show(struct seq_file *m, void *private)
1989 {
1990         struct memblock_type *type = m->private;
1991         struct memblock_region *reg;
1992         int i;
1993         phys_addr_t end;
1994
1995         for (i = 0; i < type->cnt; i++) {
1996                 reg = &type->regions[i];
1997                 end = reg->base + reg->size - 1;
1998
1999                 seq_printf(m, "%4d: ", i);
2000                 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2001         }
2002         return 0;
2003 }
2004 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2005
2006 static int __init memblock_init_debugfs(void)
2007 {
2008         struct dentry *root = debugfs_create_dir("memblock", NULL);
2009
2010         debugfs_create_file("memory", 0444, root,
2011                             &memblock.memory, &memblock_debug_fops);
2012         debugfs_create_file("reserved", 0444, root,
2013                             &memblock.reserved, &memblock_debug_fops);
2014 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2015         debugfs_create_file("physmem", 0444, root,
2016                             &memblock.physmem, &memblock_debug_fops);
2017 #endif
2018
2019         return 0;
2020 }
2021 __initcall(memblock_init_debugfs);
2022
2023 #endif /* CONFIG_DEBUG_FS */