2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm-generic/sections.h>
25 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
28 struct memblock memblock __initdata_memblock = {
29 .memory.regions = memblock_memory_init_regions,
30 .memory.cnt = 1, /* empty dummy entry */
31 .memory.max = INIT_MEMBLOCK_REGIONS,
33 .reserved.regions = memblock_reserved_init_regions,
34 .reserved.cnt = 1, /* empty dummy entry */
35 .reserved.max = INIT_MEMBLOCK_REGIONS,
38 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
41 int memblock_debug __initdata_memblock;
42 static int memblock_can_resize __initdata_memblock;
43 static int memblock_memory_in_slab __initdata_memblock = 0;
44 static int memblock_reserved_in_slab __initdata_memblock = 0;
46 /* inline so we don't get a warning when pr_debug is compiled out */
47 static __init_memblock const char *
48 memblock_type_name(struct memblock_type *type)
50 if (type == &memblock.memory)
52 else if (type == &memblock.reserved)
58 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
59 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
61 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
65 * Address comparison utilities
67 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
68 phys_addr_t base2, phys_addr_t size2)
70 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
73 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
74 phys_addr_t base, phys_addr_t size)
78 for (i = 0; i < type->cnt; i++) {
79 phys_addr_t rgnbase = type->regions[i].base;
80 phys_addr_t rgnsize = type->regions[i].size;
81 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
85 return (i < type->cnt) ? i : -1;
89 * __memblock_find_range_bottom_up - find free area utility in bottom-up
90 * @start: start of candidate range
91 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
92 * @size: size of free area to find
93 * @align: alignment of free area to find
94 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
96 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
99 * Found address on success, 0 on failure.
101 static phys_addr_t __init_memblock
102 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
103 phys_addr_t size, phys_addr_t align, int nid)
105 phys_addr_t this_start, this_end, cand;
108 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
109 this_start = clamp(this_start, start, end);
110 this_end = clamp(this_end, start, end);
112 cand = round_up(this_start, align);
113 if (cand < this_end && this_end - cand >= size)
121 * __memblock_find_range_top_down - find free area utility, in top-down
122 * @start: start of candidate range
123 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
124 * @size: size of free area to find
125 * @align: alignment of free area to find
126 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
128 * Utility called from memblock_find_in_range_node(), find free area top-down.
131 * Found address on success, 0 on failure.
133 static phys_addr_t __init_memblock
134 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
135 phys_addr_t size, phys_addr_t align, int nid)
137 phys_addr_t this_start, this_end, cand;
140 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
141 this_start = clamp(this_start, start, end);
142 this_end = clamp(this_end, start, end);
147 cand = round_down(this_end - size, align);
148 if (cand >= this_start)
156 * memblock_find_in_range_node - find free area in given range and node
157 * @start: start of candidate range
158 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
159 * @size: size of free area to find
160 * @align: alignment of free area to find
161 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
163 * Find @size free area aligned to @align in the specified range and node.
165 * When allocation direction is bottom-up, the @start should be greater
166 * than the end of the kernel image. Otherwise, it will be trimmed. The
167 * reason is that we want the bottom-up allocation just near the kernel
168 * image so it is highly likely that the allocated memory and the kernel
169 * will reside in the same node.
171 * If bottom-up allocation failed, will try to allocate memory top-down.
174 * Found address on success, 0 on failure.
176 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
177 phys_addr_t end, phys_addr_t size,
178 phys_addr_t align, int nid)
181 phys_addr_t kernel_end;
184 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
185 end = memblock.current_limit;
187 /* avoid allocating the first page */
188 start = max_t(phys_addr_t, start, PAGE_SIZE);
189 end = max(start, end);
190 kernel_end = __pa_symbol(_end);
193 * try bottom-up allocation only when bottom-up mode
194 * is set and @end is above the kernel image.
196 if (memblock_bottom_up() && end > kernel_end) {
197 phys_addr_t bottom_up_start;
199 /* make sure we will allocate above the kernel */
200 bottom_up_start = max(start, kernel_end);
202 /* ok, try bottom-up allocation first */
203 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
209 * we always limit bottom-up allocation above the kernel,
210 * but top-down allocation doesn't have the limit, so
211 * retrying top-down allocation may succeed when bottom-up
214 * bottom-up allocation is expected to be fail very rarely,
215 * so we use WARN_ONCE() here to see the stack trace if
218 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
219 "memory hotunplug may be affected\n");
222 return __memblock_find_range_top_down(start, end, size, align, nid);
226 * memblock_find_in_range - find free area in given range
227 * @start: start of candidate range
228 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
229 * @size: size of free area to find
230 * @align: alignment of free area to find
232 * Find @size free area aligned to @align in the specified range.
235 * Found address on success, 0 on failure.
237 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
238 phys_addr_t end, phys_addr_t size,
241 return memblock_find_in_range_node(start, end, size, align,
245 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
247 type->total_size -= type->regions[r].size;
248 memmove(&type->regions[r], &type->regions[r + 1],
249 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
252 /* Special case for empty arrays */
253 if (type->cnt == 0) {
254 WARN_ON(type->total_size != 0);
256 type->regions[0].base = 0;
257 type->regions[0].size = 0;
258 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
262 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
265 if (memblock.reserved.regions == memblock_reserved_init_regions)
268 *addr = __pa(memblock.reserved.regions);
270 return PAGE_ALIGN(sizeof(struct memblock_region) *
271 memblock.reserved.max);
275 * memblock_double_array - double the size of the memblock regions array
276 * @type: memblock type of the regions array being doubled
277 * @new_area_start: starting address of memory range to avoid overlap with
278 * @new_area_size: size of memory range to avoid overlap with
280 * Double the size of the @type regions array. If memblock is being used to
281 * allocate memory for a new reserved regions array and there is a previously
282 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
283 * waiting to be reserved, ensure the memory used by the new array does
287 * 0 on success, -1 on failure.
289 static int __init_memblock memblock_double_array(struct memblock_type *type,
290 phys_addr_t new_area_start,
291 phys_addr_t new_area_size)
293 struct memblock_region *new_array, *old_array;
294 phys_addr_t old_alloc_size, new_alloc_size;
295 phys_addr_t old_size, new_size, addr;
296 int use_slab = slab_is_available();
299 /* We don't allow resizing until we know about the reserved regions
300 * of memory that aren't suitable for allocation
302 if (!memblock_can_resize)
305 /* Calculate new doubled size */
306 old_size = type->max * sizeof(struct memblock_region);
307 new_size = old_size << 1;
309 * We need to allocated new one align to PAGE_SIZE,
310 * so we can free them completely later.
312 old_alloc_size = PAGE_ALIGN(old_size);
313 new_alloc_size = PAGE_ALIGN(new_size);
315 /* Retrieve the slab flag */
316 if (type == &memblock.memory)
317 in_slab = &memblock_memory_in_slab;
319 in_slab = &memblock_reserved_in_slab;
321 /* Try to find some space for it.
323 * WARNING: We assume that either slab_is_available() and we use it or
324 * we use MEMBLOCK for allocations. That means that this is unsafe to
325 * use when bootmem is currently active (unless bootmem itself is
326 * implemented on top of MEMBLOCK which isn't the case yet)
328 * This should however not be an issue for now, as we currently only
329 * call into MEMBLOCK while it's still active, or much later when slab
330 * is active for memory hotplug operations
333 new_array = kmalloc(new_size, GFP_KERNEL);
334 addr = new_array ? __pa(new_array) : 0;
336 /* only exclude range when trying to double reserved.regions */
337 if (type != &memblock.reserved)
338 new_area_start = new_area_size = 0;
340 addr = memblock_find_in_range(new_area_start + new_area_size,
341 memblock.current_limit,
342 new_alloc_size, PAGE_SIZE);
343 if (!addr && new_area_size)
344 addr = memblock_find_in_range(0,
345 min(new_area_start, memblock.current_limit),
346 new_alloc_size, PAGE_SIZE);
348 new_array = addr ? __va(addr) : NULL;
351 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
352 memblock_type_name(type), type->max, type->max * 2);
356 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
357 memblock_type_name(type), type->max * 2, (u64)addr,
358 (u64)addr + new_size - 1);
361 * Found space, we now need to move the array over before we add the
362 * reserved region since it may be our reserved array itself that is
365 memcpy(new_array, type->regions, old_size);
366 memset(new_array + type->max, 0, old_size);
367 old_array = type->regions;
368 type->regions = new_array;
371 /* Free old array. We needn't free it if the array is the static one */
374 else if (old_array != memblock_memory_init_regions &&
375 old_array != memblock_reserved_init_regions)
376 memblock_free(__pa(old_array), old_alloc_size);
379 * Reserve the new array if that comes from the memblock. Otherwise, we
383 BUG_ON(memblock_reserve(addr, new_alloc_size));
385 /* Update slab flag */
392 * memblock_merge_regions - merge neighboring compatible regions
393 * @type: memblock type to scan
395 * Scan @type and merge neighboring compatible regions.
397 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
401 /* cnt never goes below 1 */
402 while (i < type->cnt - 1) {
403 struct memblock_region *this = &type->regions[i];
404 struct memblock_region *next = &type->regions[i + 1];
406 if (this->base + this->size != next->base ||
407 memblock_get_region_node(this) !=
408 memblock_get_region_node(next)) {
409 BUG_ON(this->base + this->size > next->base);
414 this->size += next->size;
415 /* move forward from next + 1, index of which is i + 2 */
416 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
422 * memblock_insert_region - insert new memblock region
423 * @type: memblock type to insert into
424 * @idx: index for the insertion point
425 * @base: base address of the new region
426 * @size: size of the new region
427 * @nid: node id of the new region
429 * Insert new memblock region [@base,@base+@size) into @type at @idx.
430 * @type must already have extra room to accomodate the new region.
432 static void __init_memblock memblock_insert_region(struct memblock_type *type,
433 int idx, phys_addr_t base,
434 phys_addr_t size, int nid)
436 struct memblock_region *rgn = &type->regions[idx];
438 BUG_ON(type->cnt >= type->max);
439 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
442 memblock_set_region_node(rgn, nid);
444 type->total_size += size;
448 * memblock_add_region - add new memblock region
449 * @type: memblock type to add new region into
450 * @base: base address of the new region
451 * @size: size of the new region
452 * @nid: nid of the new region
454 * Add new memblock region [@base,@base+@size) into @type. The new region
455 * is allowed to overlap with existing ones - overlaps don't affect already
456 * existing regions. @type is guaranteed to be minimal (all neighbouring
457 * compatible regions are merged) after the addition.
460 * 0 on success, -errno on failure.
462 static int __init_memblock memblock_add_region(struct memblock_type *type,
463 phys_addr_t base, phys_addr_t size, int nid)
466 phys_addr_t obase = base;
467 phys_addr_t end = base + memblock_cap_size(base, &size);
473 /* special case for empty array */
474 if (type->regions[0].size == 0) {
475 WARN_ON(type->cnt != 1 || type->total_size);
476 type->regions[0].base = base;
477 type->regions[0].size = size;
478 memblock_set_region_node(&type->regions[0], nid);
479 type->total_size = size;
484 * The following is executed twice. Once with %false @insert and
485 * then with %true. The first counts the number of regions needed
486 * to accomodate the new area. The second actually inserts them.
491 for (i = 0; i < type->cnt; i++) {
492 struct memblock_region *rgn = &type->regions[i];
493 phys_addr_t rbase = rgn->base;
494 phys_addr_t rend = rbase + rgn->size;
501 * @rgn overlaps. If it separates the lower part of new
502 * area, insert that portion.
507 memblock_insert_region(type, i++, base,
510 /* area below @rend is dealt with, forget about it */
511 base = min(rend, end);
514 /* insert the remaining portion */
518 memblock_insert_region(type, i, base, end - base, nid);
522 * If this was the first round, resize array and repeat for actual
523 * insertions; otherwise, merge and return.
526 while (type->cnt + nr_new > type->max)
527 if (memblock_double_array(type, obase, size) < 0)
532 memblock_merge_regions(type);
537 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
540 return memblock_add_region(&memblock.memory, base, size, nid);
543 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
545 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
549 * memblock_isolate_range - isolate given range into disjoint memblocks
550 * @type: memblock type to isolate range for
551 * @base: base of range to isolate
552 * @size: size of range to isolate
553 * @start_rgn: out parameter for the start of isolated region
554 * @end_rgn: out parameter for the end of isolated region
556 * Walk @type and ensure that regions don't cross the boundaries defined by
557 * [@base,@base+@size). Crossing regions are split at the boundaries,
558 * which may create at most two more regions. The index of the first
559 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
562 * 0 on success, -errno on failure.
564 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
565 phys_addr_t base, phys_addr_t size,
566 int *start_rgn, int *end_rgn)
568 phys_addr_t end = base + memblock_cap_size(base, &size);
571 *start_rgn = *end_rgn = 0;
576 /* we'll create at most two more regions */
577 while (type->cnt + 2 > type->max)
578 if (memblock_double_array(type, base, size) < 0)
581 for (i = 0; i < type->cnt; i++) {
582 struct memblock_region *rgn = &type->regions[i];
583 phys_addr_t rbase = rgn->base;
584 phys_addr_t rend = rbase + rgn->size;
593 * @rgn intersects from below. Split and continue
594 * to process the next region - the new top half.
597 rgn->size -= base - rbase;
598 type->total_size -= base - rbase;
599 memblock_insert_region(type, i, rbase, base - rbase,
600 memblock_get_region_node(rgn));
601 } else if (rend > end) {
603 * @rgn intersects from above. Split and redo the
604 * current region - the new bottom half.
607 rgn->size -= end - rbase;
608 type->total_size -= end - rbase;
609 memblock_insert_region(type, i--, rbase, end - rbase,
610 memblock_get_region_node(rgn));
612 /* @rgn is fully contained, record it */
622 static int __init_memblock __memblock_remove(struct memblock_type *type,
623 phys_addr_t base, phys_addr_t size)
625 int start_rgn, end_rgn;
628 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
632 for (i = end_rgn - 1; i >= start_rgn; i--)
633 memblock_remove_region(type, i);
637 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
639 return __memblock_remove(&memblock.memory, base, size);
642 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
644 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
645 (unsigned long long)base,
646 (unsigned long long)base + size,
649 return __memblock_remove(&memblock.reserved, base, size);
652 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
654 struct memblock_type *_rgn = &memblock.reserved;
656 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
657 (unsigned long long)base,
658 (unsigned long long)base + size,
661 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
665 * __next_free_mem_range - next function for for_each_free_mem_range()
666 * @idx: pointer to u64 loop variable
667 * @nid: node selector, %MAX_NUMNODES for all nodes
668 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
669 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
670 * @out_nid: ptr to int for nid of the range, can be %NULL
672 * Find the first free area from *@idx which matches @nid, fill the out
673 * parameters, and update *@idx for the next iteration. The lower 32bit of
674 * *@idx contains index into memory region and the upper 32bit indexes the
675 * areas before each reserved region. For example, if reserved regions
676 * look like the following,
678 * 0:[0-16), 1:[32-48), 2:[128-130)
680 * The upper 32bit indexes the following regions.
682 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
684 * As both region arrays are sorted, the function advances the two indices
685 * in lockstep and returns each intersection.
687 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
688 phys_addr_t *out_start,
689 phys_addr_t *out_end, int *out_nid)
691 struct memblock_type *mem = &memblock.memory;
692 struct memblock_type *rsv = &memblock.reserved;
693 int mi = *idx & 0xffffffff;
696 for ( ; mi < mem->cnt; mi++) {
697 struct memblock_region *m = &mem->regions[mi];
698 phys_addr_t m_start = m->base;
699 phys_addr_t m_end = m->base + m->size;
701 /* only memory regions are associated with nodes, check it */
702 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
705 /* scan areas before each reservation for intersection */
706 for ( ; ri < rsv->cnt + 1; ri++) {
707 struct memblock_region *r = &rsv->regions[ri];
708 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
709 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
711 /* if ri advanced past mi, break out to advance mi */
712 if (r_start >= m_end)
714 /* if the two regions intersect, we're done */
715 if (m_start < r_end) {
717 *out_start = max(m_start, r_start);
719 *out_end = min(m_end, r_end);
721 *out_nid = memblock_get_region_node(m);
723 * The region which ends first is advanced
724 * for the next iteration.
730 *idx = (u32)mi | (u64)ri << 32;
736 /* signal end of iteration */
741 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
742 * @idx: pointer to u64 loop variable
743 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
744 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
745 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
746 * @out_nid: ptr to int for nid of the range, can be %NULL
748 * Reverse of __next_free_mem_range().
750 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
751 phys_addr_t *out_start,
752 phys_addr_t *out_end, int *out_nid)
754 struct memblock_type *mem = &memblock.memory;
755 struct memblock_type *rsv = &memblock.reserved;
756 int mi = *idx & 0xffffffff;
759 if (*idx == (u64)ULLONG_MAX) {
764 for ( ; mi >= 0; mi--) {
765 struct memblock_region *m = &mem->regions[mi];
766 phys_addr_t m_start = m->base;
767 phys_addr_t m_end = m->base + m->size;
769 /* only memory regions are associated with nodes, check it */
770 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
773 /* scan areas before each reservation for intersection */
774 for ( ; ri >= 0; ri--) {
775 struct memblock_region *r = &rsv->regions[ri];
776 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
777 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
779 /* if ri advanced past mi, break out to advance mi */
780 if (r_end <= m_start)
782 /* if the two regions intersect, we're done */
783 if (m_end > r_start) {
785 *out_start = max(m_start, r_start);
787 *out_end = min(m_end, r_end);
789 *out_nid = memblock_get_region_node(m);
791 if (m_start >= r_start)
795 *idx = (u32)mi | (u64)ri << 32;
804 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
806 * Common iterator interface used to define for_each_mem_range().
808 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
809 unsigned long *out_start_pfn,
810 unsigned long *out_end_pfn, int *out_nid)
812 struct memblock_type *type = &memblock.memory;
813 struct memblock_region *r;
815 while (++*idx < type->cnt) {
816 r = &type->regions[*idx];
818 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
820 if (nid == MAX_NUMNODES || nid == r->nid)
823 if (*idx >= type->cnt) {
829 *out_start_pfn = PFN_UP(r->base);
831 *out_end_pfn = PFN_DOWN(r->base + r->size);
837 * memblock_set_node - set node ID on memblock regions
838 * @base: base of area to set node ID for
839 * @size: size of area to set node ID for
840 * @nid: node ID to set
842 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
843 * Regions which cross the area boundaries are split as necessary.
846 * 0 on success, -errno on failure.
848 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
851 struct memblock_type *type = &memblock.memory;
852 int start_rgn, end_rgn;
855 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
859 for (i = start_rgn; i < end_rgn; i++)
860 memblock_set_region_node(&type->regions[i], nid);
862 memblock_merge_regions(type);
865 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
867 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
868 phys_addr_t align, phys_addr_t max_addr,
874 align = __alignof__(long long);
876 /* align @size to avoid excessive fragmentation on reserved array */
877 size = round_up(size, align);
879 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
880 if (found && !memblock_reserve(found, size))
886 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
888 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
891 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
893 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
896 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
900 alloc = __memblock_alloc_base(size, align, max_addr);
903 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
904 (unsigned long long) size, (unsigned long long) max_addr);
909 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
911 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
914 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
916 phys_addr_t res = memblock_alloc_nid(size, align, nid);
920 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
925 * Remaining API functions
928 phys_addr_t __init memblock_phys_mem_size(void)
930 return memblock.memory.total_size;
933 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
935 unsigned long pages = 0;
936 struct memblock_region *r;
937 unsigned long start_pfn, end_pfn;
939 for_each_memblock(memory, r) {
940 start_pfn = memblock_region_memory_base_pfn(r);
941 end_pfn = memblock_region_memory_end_pfn(r);
942 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
943 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
944 pages += end_pfn - start_pfn;
947 return (phys_addr_t)pages << PAGE_SHIFT;
951 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
953 return memblock.memory.regions[0].base;
956 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
958 int idx = memblock.memory.cnt - 1;
960 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
963 void __init memblock_enforce_memory_limit(phys_addr_t limit)
966 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
971 /* find out max address */
972 for (i = 0; i < memblock.memory.cnt; i++) {
973 struct memblock_region *r = &memblock.memory.regions[i];
975 if (limit <= r->size) {
976 max_addr = r->base + limit;
982 /* truncate both memory and reserved regions */
983 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
984 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
987 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
989 unsigned int left = 0, right = type->cnt;
992 unsigned int mid = (right + left) / 2;
994 if (addr < type->regions[mid].base)
996 else if (addr >= (type->regions[mid].base +
997 type->regions[mid].size))
1001 } while (left < right);
1005 int __init memblock_is_reserved(phys_addr_t addr)
1007 return memblock_search(&memblock.reserved, addr) != -1;
1010 int __init_memblock memblock_is_memory(phys_addr_t addr)
1012 return memblock_search(&memblock.memory, addr) != -1;
1015 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1016 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1017 unsigned long *start_pfn, unsigned long *end_pfn)
1019 struct memblock_type *type = &memblock.memory;
1020 int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT);
1025 *start_pfn = type->regions[mid].base >> PAGE_SHIFT;
1026 *end_pfn = (type->regions[mid].base + type->regions[mid].size)
1029 return type->regions[mid].nid;
1034 * memblock_is_region_memory - check if a region is a subset of memory
1035 * @base: base of region to check
1036 * @size: size of region to check
1038 * Check if the region [@base, @base+@size) is a subset of a memory block.
1041 * 0 if false, non-zero if true
1043 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1045 int idx = memblock_search(&memblock.memory, base);
1046 phys_addr_t end = base + memblock_cap_size(base, &size);
1050 return memblock.memory.regions[idx].base <= base &&
1051 (memblock.memory.regions[idx].base +
1052 memblock.memory.regions[idx].size) >= end;
1056 * memblock_is_region_reserved - check if a region intersects reserved memory
1057 * @base: base of region to check
1058 * @size: size of region to check
1060 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1063 * 0 if false, non-zero if true
1065 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1067 memblock_cap_size(base, &size);
1068 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1071 void __init_memblock memblock_trim_memory(phys_addr_t align)
1074 phys_addr_t start, end, orig_start, orig_end;
1075 struct memblock_type *mem = &memblock.memory;
1077 for (i = 0; i < mem->cnt; i++) {
1078 orig_start = mem->regions[i].base;
1079 orig_end = mem->regions[i].base + mem->regions[i].size;
1080 start = round_up(orig_start, align);
1081 end = round_down(orig_end, align);
1083 if (start == orig_start && end == orig_end)
1087 mem->regions[i].base = start;
1088 mem->regions[i].size = end - start;
1090 memblock_remove_region(mem, i);
1096 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1098 memblock.current_limit = limit;
1101 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1103 unsigned long long base, size;
1106 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1108 for (i = 0; i < type->cnt; i++) {
1109 struct memblock_region *rgn = &type->regions[i];
1110 char nid_buf[32] = "";
1114 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1115 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1116 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1117 memblock_get_region_node(rgn));
1119 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
1120 name, i, base, base + size - 1, size, nid_buf);
1124 void __init_memblock __memblock_dump_all(void)
1126 pr_info("MEMBLOCK configuration:\n");
1127 pr_info(" memory size = %#llx reserved size = %#llx\n",
1128 (unsigned long long)memblock.memory.total_size,
1129 (unsigned long long)memblock.reserved.total_size);
1131 memblock_dump(&memblock.memory, "memory");
1132 memblock_dump(&memblock.reserved, "reserved");
1135 void __init memblock_allow_resize(void)
1137 memblock_can_resize = 1;
1140 static int __init early_memblock(char *p)
1142 if (p && strstr(p, "debug"))
1146 early_param("memblock", early_memblock);
1148 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1150 static int memblock_debug_show(struct seq_file *m, void *private)
1152 struct memblock_type *type = m->private;
1153 struct memblock_region *reg;
1156 for (i = 0; i < type->cnt; i++) {
1157 reg = &type->regions[i];
1158 seq_printf(m, "%4d: ", i);
1159 if (sizeof(phys_addr_t) == 4)
1160 seq_printf(m, "0x%08lx..0x%08lx\n",
1161 (unsigned long)reg->base,
1162 (unsigned long)(reg->base + reg->size - 1));
1164 seq_printf(m, "0x%016llx..0x%016llx\n",
1165 (unsigned long long)reg->base,
1166 (unsigned long long)(reg->base + reg->size - 1));
1172 static int memblock_debug_open(struct inode *inode, struct file *file)
1174 return single_open(file, memblock_debug_show, inode->i_private);
1177 static const struct file_operations memblock_debug_fops = {
1178 .open = memblock_debug_open,
1180 .llseek = seq_lseek,
1181 .release = single_release,
1184 static int __init memblock_init_debugfs(void)
1186 struct dentry *root = debugfs_create_dir("memblock", NULL);
1189 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1190 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1194 __initcall(memblock_init_debugfs);
1196 #endif /* CONFIG_DEBUG_FS */