Merge tag 'powerpc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-exynos.git] / mm / memblock.c
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.     June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35         .memory.regions         = memblock_memory_init_regions,
36         .memory.cnt             = 1,    /* empty dummy entry */
37         .memory.max             = INIT_MEMBLOCK_REGIONS,
38
39         .reserved.regions       = memblock_reserved_init_regions,
40         .reserved.cnt           = 1,    /* empty dummy entry */
41         .reserved.max           = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44         .physmem.regions        = memblock_physmem_init_regions,
45         .physmem.cnt            = 1,    /* empty dummy entry */
46         .physmem.max            = INIT_PHYSMEM_REGIONS,
47 #endif
48
49         .bottom_up              = false,
50         .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64         return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71         if (type == &memblock.memory)
72                 return "memory";
73         else if (type == &memblock.reserved)
74                 return "reserved";
75         else
76                 return "unknown";
77 }
78
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82         return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84
85 /*
86  * Address comparison utilities
87  */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89                                        phys_addr_t base2, phys_addr_t size2)
90 {
91         return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95                                         phys_addr_t base, phys_addr_t size)
96 {
97         unsigned long i;
98
99         for (i = 0; i < type->cnt; i++)
100                 if (memblock_addrs_overlap(base, size, type->regions[i].base,
101                                            type->regions[i].size))
102                         break;
103         return i < type->cnt;
104 }
105
106 /*
107  * __memblock_find_range_bottom_up - find free area utility in bottom-up
108  * @start: start of candidate range
109  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110  * @size: size of free area to find
111  * @align: alignment of free area to find
112  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113  * @flags: pick from blocks based on memory attributes
114  *
115  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116  *
117  * RETURNS:
118  * Found address on success, 0 on failure.
119  */
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122                                 phys_addr_t size, phys_addr_t align, int nid,
123                                 ulong flags)
124 {
125         phys_addr_t this_start, this_end, cand;
126         u64 i;
127
128         for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129                 this_start = clamp(this_start, start, end);
130                 this_end = clamp(this_end, start, end);
131
132                 cand = round_up(this_start, align);
133                 if (cand < this_end && this_end - cand >= size)
134                         return cand;
135         }
136
137         return 0;
138 }
139
140 /**
141  * __memblock_find_range_top_down - find free area utility, in top-down
142  * @start: start of candidate range
143  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144  * @size: size of free area to find
145  * @align: alignment of free area to find
146  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147  * @flags: pick from blocks based on memory attributes
148  *
149  * Utility called from memblock_find_in_range_node(), find free area top-down.
150  *
151  * RETURNS:
152  * Found address on success, 0 on failure.
153  */
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156                                phys_addr_t size, phys_addr_t align, int nid,
157                                ulong flags)
158 {
159         phys_addr_t this_start, this_end, cand;
160         u64 i;
161
162         for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163                                         NULL) {
164                 this_start = clamp(this_start, start, end);
165                 this_end = clamp(this_end, start, end);
166
167                 if (this_end < size)
168                         continue;
169
170                 cand = round_down(this_end - size, align);
171                 if (cand >= this_start)
172                         return cand;
173         }
174
175         return 0;
176 }
177
178 /**
179  * memblock_find_in_range_node - find free area in given range and node
180  * @size: size of free area to find
181  * @align: alignment of free area to find
182  * @start: start of candidate range
183  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185  * @flags: pick from blocks based on memory attributes
186  *
187  * Find @size free area aligned to @align in the specified range and node.
188  *
189  * When allocation direction is bottom-up, the @start should be greater
190  * than the end of the kernel image. Otherwise, it will be trimmed. The
191  * reason is that we want the bottom-up allocation just near the kernel
192  * image so it is highly likely that the allocated memory and the kernel
193  * will reside in the same node.
194  *
195  * If bottom-up allocation failed, will try to allocate memory top-down.
196  *
197  * RETURNS:
198  * Found address on success, 0 on failure.
199  */
200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201                                         phys_addr_t align, phys_addr_t start,
202                                         phys_addr_t end, int nid, ulong flags)
203 {
204         phys_addr_t kernel_end, ret;
205
206         /* pump up @end */
207         if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208                 end = memblock.current_limit;
209
210         /* avoid allocating the first page */
211         start = max_t(phys_addr_t, start, PAGE_SIZE);
212         end = max(start, end);
213         kernel_end = __pa_symbol(_end);
214
215         /*
216          * try bottom-up allocation only when bottom-up mode
217          * is set and @end is above the kernel image.
218          */
219         if (memblock_bottom_up() && end > kernel_end) {
220                 phys_addr_t bottom_up_start;
221
222                 /* make sure we will allocate above the kernel */
223                 bottom_up_start = max(start, kernel_end);
224
225                 /* ok, try bottom-up allocation first */
226                 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227                                                       size, align, nid, flags);
228                 if (ret)
229                         return ret;
230
231                 /*
232                  * we always limit bottom-up allocation above the kernel,
233                  * but top-down allocation doesn't have the limit, so
234                  * retrying top-down allocation may succeed when bottom-up
235                  * allocation failed.
236                  *
237                  * bottom-up allocation is expected to be fail very rarely,
238                  * so we use WARN_ONCE() here to see the stack trace if
239                  * fail happens.
240                  */
241                 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
242         }
243
244         return __memblock_find_range_top_down(start, end, size, align, nid,
245                                               flags);
246 }
247
248 /**
249  * memblock_find_in_range - find free area in given range
250  * @start: start of candidate range
251  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252  * @size: size of free area to find
253  * @align: alignment of free area to find
254  *
255  * Find @size free area aligned to @align in the specified range.
256  *
257  * RETURNS:
258  * Found address on success, 0 on failure.
259  */
260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261                                         phys_addr_t end, phys_addr_t size,
262                                         phys_addr_t align)
263 {
264         phys_addr_t ret;
265         ulong flags = choose_memblock_flags();
266
267 again:
268         ret = memblock_find_in_range_node(size, align, start, end,
269                                             NUMA_NO_NODE, flags);
270
271         if (!ret && (flags & MEMBLOCK_MIRROR)) {
272                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273                         &size);
274                 flags &= ~MEMBLOCK_MIRROR;
275                 goto again;
276         }
277
278         return ret;
279 }
280
281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
282 {
283         type->total_size -= type->regions[r].size;
284         memmove(&type->regions[r], &type->regions[r + 1],
285                 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
286         type->cnt--;
287
288         /* Special case for empty arrays */
289         if (type->cnt == 0) {
290                 WARN_ON(type->total_size != 0);
291                 type->cnt = 1;
292                 type->regions[0].base = 0;
293                 type->regions[0].size = 0;
294                 type->regions[0].flags = 0;
295                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
296         }
297 }
298
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
300
301 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
302                                         phys_addr_t *addr)
303 {
304         if (memblock.reserved.regions == memblock_reserved_init_regions)
305                 return 0;
306
307         *addr = __pa(memblock.reserved.regions);
308
309         return PAGE_ALIGN(sizeof(struct memblock_region) *
310                           memblock.reserved.max);
311 }
312
313 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
314                                         phys_addr_t *addr)
315 {
316         if (memblock.memory.regions == memblock_memory_init_regions)
317                 return 0;
318
319         *addr = __pa(memblock.memory.regions);
320
321         return PAGE_ALIGN(sizeof(struct memblock_region) *
322                           memblock.memory.max);
323 }
324
325 #endif
326
327 /**
328  * memblock_double_array - double the size of the memblock regions array
329  * @type: memblock type of the regions array being doubled
330  * @new_area_start: starting address of memory range to avoid overlap with
331  * @new_area_size: size of memory range to avoid overlap with
332  *
333  * Double the size of the @type regions array. If memblock is being used to
334  * allocate memory for a new reserved regions array and there is a previously
335  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336  * waiting to be reserved, ensure the memory used by the new array does
337  * not overlap.
338  *
339  * RETURNS:
340  * 0 on success, -1 on failure.
341  */
342 static int __init_memblock memblock_double_array(struct memblock_type *type,
343                                                 phys_addr_t new_area_start,
344                                                 phys_addr_t new_area_size)
345 {
346         struct memblock_region *new_array, *old_array;
347         phys_addr_t old_alloc_size, new_alloc_size;
348         phys_addr_t old_size, new_size, addr;
349         int use_slab = slab_is_available();
350         int *in_slab;
351
352         /* We don't allow resizing until we know about the reserved regions
353          * of memory that aren't suitable for allocation
354          */
355         if (!memblock_can_resize)
356                 return -1;
357
358         /* Calculate new doubled size */
359         old_size = type->max * sizeof(struct memblock_region);
360         new_size = old_size << 1;
361         /*
362          * We need to allocated new one align to PAGE_SIZE,
363          *   so we can free them completely later.
364          */
365         old_alloc_size = PAGE_ALIGN(old_size);
366         new_alloc_size = PAGE_ALIGN(new_size);
367
368         /* Retrieve the slab flag */
369         if (type == &memblock.memory)
370                 in_slab = &memblock_memory_in_slab;
371         else
372                 in_slab = &memblock_reserved_in_slab;
373
374         /* Try to find some space for it.
375          *
376          * WARNING: We assume that either slab_is_available() and we use it or
377          * we use MEMBLOCK for allocations. That means that this is unsafe to
378          * use when bootmem is currently active (unless bootmem itself is
379          * implemented on top of MEMBLOCK which isn't the case yet)
380          *
381          * This should however not be an issue for now, as we currently only
382          * call into MEMBLOCK while it's still active, or much later when slab
383          * is active for memory hotplug operations
384          */
385         if (use_slab) {
386                 new_array = kmalloc(new_size, GFP_KERNEL);
387                 addr = new_array ? __pa(new_array) : 0;
388         } else {
389                 /* only exclude range when trying to double reserved.regions */
390                 if (type != &memblock.reserved)
391                         new_area_start = new_area_size = 0;
392
393                 addr = memblock_find_in_range(new_area_start + new_area_size,
394                                                 memblock.current_limit,
395                                                 new_alloc_size, PAGE_SIZE);
396                 if (!addr && new_area_size)
397                         addr = memblock_find_in_range(0,
398                                 min(new_area_start, memblock.current_limit),
399                                 new_alloc_size, PAGE_SIZE);
400
401                 new_array = addr ? __va(addr) : NULL;
402         }
403         if (!addr) {
404                 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405                        memblock_type_name(type), type->max, type->max * 2);
406                 return -1;
407         }
408
409         memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410                         memblock_type_name(type), type->max * 2, (u64)addr,
411                         (u64)addr + new_size - 1);
412
413         /*
414          * Found space, we now need to move the array over before we add the
415          * reserved region since it may be our reserved array itself that is
416          * full.
417          */
418         memcpy(new_array, type->regions, old_size);
419         memset(new_array + type->max, 0, old_size);
420         old_array = type->regions;
421         type->regions = new_array;
422         type->max <<= 1;
423
424         /* Free old array. We needn't free it if the array is the static one */
425         if (*in_slab)
426                 kfree(old_array);
427         else if (old_array != memblock_memory_init_regions &&
428                  old_array != memblock_reserved_init_regions)
429                 memblock_free(__pa(old_array), old_alloc_size);
430
431         /*
432          * Reserve the new array if that comes from the memblock.  Otherwise, we
433          * needn't do it
434          */
435         if (!use_slab)
436                 BUG_ON(memblock_reserve(addr, new_alloc_size));
437
438         /* Update slab flag */
439         *in_slab = use_slab;
440
441         return 0;
442 }
443
444 /**
445  * memblock_merge_regions - merge neighboring compatible regions
446  * @type: memblock type to scan
447  *
448  * Scan @type and merge neighboring compatible regions.
449  */
450 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
451 {
452         int i = 0;
453
454         /* cnt never goes below 1 */
455         while (i < type->cnt - 1) {
456                 struct memblock_region *this = &type->regions[i];
457                 struct memblock_region *next = &type->regions[i + 1];
458
459                 if (this->base + this->size != next->base ||
460                     memblock_get_region_node(this) !=
461                     memblock_get_region_node(next) ||
462                     this->flags != next->flags) {
463                         BUG_ON(this->base + this->size > next->base);
464                         i++;
465                         continue;
466                 }
467
468                 this->size += next->size;
469                 /* move forward from next + 1, index of which is i + 2 */
470                 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
471                 type->cnt--;
472         }
473 }
474
475 /**
476  * memblock_insert_region - insert new memblock region
477  * @type:       memblock type to insert into
478  * @idx:        index for the insertion point
479  * @base:       base address of the new region
480  * @size:       size of the new region
481  * @nid:        node id of the new region
482  * @flags:      flags of the new region
483  *
484  * Insert new memblock region [@base,@base+@size) into @type at @idx.
485  * @type must already have extra room to accommodate the new region.
486  */
487 static void __init_memblock memblock_insert_region(struct memblock_type *type,
488                                                    int idx, phys_addr_t base,
489                                                    phys_addr_t size,
490                                                    int nid, unsigned long flags)
491 {
492         struct memblock_region *rgn = &type->regions[idx];
493
494         BUG_ON(type->cnt >= type->max);
495         memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
496         rgn->base = base;
497         rgn->size = size;
498         rgn->flags = flags;
499         memblock_set_region_node(rgn, nid);
500         type->cnt++;
501         type->total_size += size;
502 }
503
504 /**
505  * memblock_add_range - add new memblock region
506  * @type: memblock type to add new region into
507  * @base: base address of the new region
508  * @size: size of the new region
509  * @nid: nid of the new region
510  * @flags: flags of the new region
511  *
512  * Add new memblock region [@base,@base+@size) into @type.  The new region
513  * is allowed to overlap with existing ones - overlaps don't affect already
514  * existing regions.  @type is guaranteed to be minimal (all neighbouring
515  * compatible regions are merged) after the addition.
516  *
517  * RETURNS:
518  * 0 on success, -errno on failure.
519  */
520 int __init_memblock memblock_add_range(struct memblock_type *type,
521                                 phys_addr_t base, phys_addr_t size,
522                                 int nid, unsigned long flags)
523 {
524         bool insert = false;
525         phys_addr_t obase = base;
526         phys_addr_t end = base + memblock_cap_size(base, &size);
527         int idx, nr_new;
528         struct memblock_region *rgn;
529
530         if (!size)
531                 return 0;
532
533         /* special case for empty array */
534         if (type->regions[0].size == 0) {
535                 WARN_ON(type->cnt != 1 || type->total_size);
536                 type->regions[0].base = base;
537                 type->regions[0].size = size;
538                 type->regions[0].flags = flags;
539                 memblock_set_region_node(&type->regions[0], nid);
540                 type->total_size = size;
541                 return 0;
542         }
543 repeat:
544         /*
545          * The following is executed twice.  Once with %false @insert and
546          * then with %true.  The first counts the number of regions needed
547          * to accommodate the new area.  The second actually inserts them.
548          */
549         base = obase;
550         nr_new = 0;
551
552         for_each_memblock_type(type, rgn) {
553                 phys_addr_t rbase = rgn->base;
554                 phys_addr_t rend = rbase + rgn->size;
555
556                 if (rbase >= end)
557                         break;
558                 if (rend <= base)
559                         continue;
560                 /*
561                  * @rgn overlaps.  If it separates the lower part of new
562                  * area, insert that portion.
563                  */
564                 if (rbase > base) {
565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566                         WARN_ON(nid != memblock_get_region_node(rgn));
567 #endif
568                         WARN_ON(flags != rgn->flags);
569                         nr_new++;
570                         if (insert)
571                                 memblock_insert_region(type, idx++, base,
572                                                        rbase - base, nid,
573                                                        flags);
574                 }
575                 /* area below @rend is dealt with, forget about it */
576                 base = min(rend, end);
577         }
578
579         /* insert the remaining portion */
580         if (base < end) {
581                 nr_new++;
582                 if (insert)
583                         memblock_insert_region(type, idx, base, end - base,
584                                                nid, flags);
585         }
586
587         if (!nr_new)
588                 return 0;
589
590         /*
591          * If this was the first round, resize array and repeat for actual
592          * insertions; otherwise, merge and return.
593          */
594         if (!insert) {
595                 while (type->cnt + nr_new > type->max)
596                         if (memblock_double_array(type, obase, size) < 0)
597                                 return -ENOMEM;
598                 insert = true;
599                 goto repeat;
600         } else {
601                 memblock_merge_regions(type);
602                 return 0;
603         }
604 }
605
606 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
607                                        int nid)
608 {
609         return memblock_add_range(&memblock.memory, base, size, nid, 0);
610 }
611
612 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
613 {
614         memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
615                      (unsigned long long)base,
616                      (unsigned long long)base + size - 1,
617                      0UL, (void *)_RET_IP_);
618
619         return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
620 }
621
622 /**
623  * memblock_isolate_range - isolate given range into disjoint memblocks
624  * @type: memblock type to isolate range for
625  * @base: base of range to isolate
626  * @size: size of range to isolate
627  * @start_rgn: out parameter for the start of isolated region
628  * @end_rgn: out parameter for the end of isolated region
629  *
630  * Walk @type and ensure that regions don't cross the boundaries defined by
631  * [@base,@base+@size).  Crossing regions are split at the boundaries,
632  * which may create at most two more regions.  The index of the first
633  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
634  *
635  * RETURNS:
636  * 0 on success, -errno on failure.
637  */
638 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
639                                         phys_addr_t base, phys_addr_t size,
640                                         int *start_rgn, int *end_rgn)
641 {
642         phys_addr_t end = base + memblock_cap_size(base, &size);
643         int idx;
644         struct memblock_region *rgn;
645
646         *start_rgn = *end_rgn = 0;
647
648         if (!size)
649                 return 0;
650
651         /* we'll create at most two more regions */
652         while (type->cnt + 2 > type->max)
653                 if (memblock_double_array(type, base, size) < 0)
654                         return -ENOMEM;
655
656         for_each_memblock_type(type, rgn) {
657                 phys_addr_t rbase = rgn->base;
658                 phys_addr_t rend = rbase + rgn->size;
659
660                 if (rbase >= end)
661                         break;
662                 if (rend <= base)
663                         continue;
664
665                 if (rbase < base) {
666                         /*
667                          * @rgn intersects from below.  Split and continue
668                          * to process the next region - the new top half.
669                          */
670                         rgn->base = base;
671                         rgn->size -= base - rbase;
672                         type->total_size -= base - rbase;
673                         memblock_insert_region(type, idx, rbase, base - rbase,
674                                                memblock_get_region_node(rgn),
675                                                rgn->flags);
676                 } else if (rend > end) {
677                         /*
678                          * @rgn intersects from above.  Split and redo the
679                          * current region - the new bottom half.
680                          */
681                         rgn->base = end;
682                         rgn->size -= end - rbase;
683                         type->total_size -= end - rbase;
684                         memblock_insert_region(type, idx--, rbase, end - rbase,
685                                                memblock_get_region_node(rgn),
686                                                rgn->flags);
687                 } else {
688                         /* @rgn is fully contained, record it */
689                         if (!*end_rgn)
690                                 *start_rgn = idx;
691                         *end_rgn = idx + 1;
692                 }
693         }
694
695         return 0;
696 }
697
698 static int __init_memblock memblock_remove_range(struct memblock_type *type,
699                                           phys_addr_t base, phys_addr_t size)
700 {
701         int start_rgn, end_rgn;
702         int i, ret;
703
704         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
705         if (ret)
706                 return ret;
707
708         for (i = end_rgn - 1; i >= start_rgn; i--)
709                 memblock_remove_region(type, i);
710         return 0;
711 }
712
713 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
714 {
715         return memblock_remove_range(&memblock.memory, base, size);
716 }
717
718
719 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
720 {
721         memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
722                      (unsigned long long)base,
723                      (unsigned long long)base + size - 1,
724                      (void *)_RET_IP_);
725
726         kmemleak_free_part(__va(base), size);
727         return memblock_remove_range(&memblock.reserved, base, size);
728 }
729
730 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
731 {
732         memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
733                      (unsigned long long)base,
734                      (unsigned long long)base + size - 1,
735                      0UL, (void *)_RET_IP_);
736
737         return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
738 }
739
740 /**
741  *
742  * This function isolates region [@base, @base + @size), and sets/clears flag
743  *
744  * Return 0 on success, -errno on failure.
745  */
746 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
747                                 phys_addr_t size, int set, int flag)
748 {
749         struct memblock_type *type = &memblock.memory;
750         int i, ret, start_rgn, end_rgn;
751
752         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
753         if (ret)
754                 return ret;
755
756         for (i = start_rgn; i < end_rgn; i++)
757                 if (set)
758                         memblock_set_region_flags(&type->regions[i], flag);
759                 else
760                         memblock_clear_region_flags(&type->regions[i], flag);
761
762         memblock_merge_regions(type);
763         return 0;
764 }
765
766 /**
767  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
768  * @base: the base phys addr of the region
769  * @size: the size of the region
770  *
771  * Return 0 on success, -errno on failure.
772  */
773 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
774 {
775         return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
776 }
777
778 /**
779  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
780  * @base: the base phys addr of the region
781  * @size: the size of the region
782  *
783  * Return 0 on success, -errno on failure.
784  */
785 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
786 {
787         return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
788 }
789
790 /**
791  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
792  * @base: the base phys addr of the region
793  * @size: the size of the region
794  *
795  * Return 0 on success, -errno on failure.
796  */
797 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
798 {
799         system_has_some_mirror = true;
800
801         return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
802 }
803
804 /**
805  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
806  * @base: the base phys addr of the region
807  * @size: the size of the region
808  *
809  * Return 0 on success, -errno on failure.
810  */
811 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
812 {
813         return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
814 }
815
816 /**
817  * __next_reserved_mem_region - next function for for_each_reserved_region()
818  * @idx: pointer to u64 loop variable
819  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
820  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
821  *
822  * Iterate over all reserved memory regions.
823  */
824 void __init_memblock __next_reserved_mem_region(u64 *idx,
825                                            phys_addr_t *out_start,
826                                            phys_addr_t *out_end)
827 {
828         struct memblock_type *type = &memblock.reserved;
829
830         if (*idx < type->cnt) {
831                 struct memblock_region *r = &type->regions[*idx];
832                 phys_addr_t base = r->base;
833                 phys_addr_t size = r->size;
834
835                 if (out_start)
836                         *out_start = base;
837                 if (out_end)
838                         *out_end = base + size - 1;
839
840                 *idx += 1;
841                 return;
842         }
843
844         /* signal end of iteration */
845         *idx = ULLONG_MAX;
846 }
847
848 /**
849  * __next__mem_range - next function for for_each_free_mem_range() etc.
850  * @idx: pointer to u64 loop variable
851  * @nid: node selector, %NUMA_NO_NODE for all nodes
852  * @flags: pick from blocks based on memory attributes
853  * @type_a: pointer to memblock_type from where the range is taken
854  * @type_b: pointer to memblock_type which excludes memory from being taken
855  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
856  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
857  * @out_nid: ptr to int for nid of the range, can be %NULL
858  *
859  * Find the first area from *@idx which matches @nid, fill the out
860  * parameters, and update *@idx for the next iteration.  The lower 32bit of
861  * *@idx contains index into type_a and the upper 32bit indexes the
862  * areas before each region in type_b.  For example, if type_b regions
863  * look like the following,
864  *
865  *      0:[0-16), 1:[32-48), 2:[128-130)
866  *
867  * The upper 32bit indexes the following regions.
868  *
869  *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
870  *
871  * As both region arrays are sorted, the function advances the two indices
872  * in lockstep and returns each intersection.
873  */
874 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
875                                       struct memblock_type *type_a,
876                                       struct memblock_type *type_b,
877                                       phys_addr_t *out_start,
878                                       phys_addr_t *out_end, int *out_nid)
879 {
880         int idx_a = *idx & 0xffffffff;
881         int idx_b = *idx >> 32;
882
883         if (WARN_ONCE(nid == MAX_NUMNODES,
884         "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
885                 nid = NUMA_NO_NODE;
886
887         for (; idx_a < type_a->cnt; idx_a++) {
888                 struct memblock_region *m = &type_a->regions[idx_a];
889
890                 phys_addr_t m_start = m->base;
891                 phys_addr_t m_end = m->base + m->size;
892                 int         m_nid = memblock_get_region_node(m);
893
894                 /* only memory regions are associated with nodes, check it */
895                 if (nid != NUMA_NO_NODE && nid != m_nid)
896                         continue;
897
898                 /* skip hotpluggable memory regions if needed */
899                 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
900                         continue;
901
902                 /* if we want mirror memory skip non-mirror memory regions */
903                 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
904                         continue;
905
906                 /* skip nomap memory unless we were asked for it explicitly */
907                 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
908                         continue;
909
910                 if (!type_b) {
911                         if (out_start)
912                                 *out_start = m_start;
913                         if (out_end)
914                                 *out_end = m_end;
915                         if (out_nid)
916                                 *out_nid = m_nid;
917                         idx_a++;
918                         *idx = (u32)idx_a | (u64)idx_b << 32;
919                         return;
920                 }
921
922                 /* scan areas before each reservation */
923                 for (; idx_b < type_b->cnt + 1; idx_b++) {
924                         struct memblock_region *r;
925                         phys_addr_t r_start;
926                         phys_addr_t r_end;
927
928                         r = &type_b->regions[idx_b];
929                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
930                         r_end = idx_b < type_b->cnt ?
931                                 r->base : ULLONG_MAX;
932
933                         /*
934                          * if idx_b advanced past idx_a,
935                          * break out to advance idx_a
936                          */
937                         if (r_start >= m_end)
938                                 break;
939                         /* if the two regions intersect, we're done */
940                         if (m_start < r_end) {
941                                 if (out_start)
942                                         *out_start =
943                                                 max(m_start, r_start);
944                                 if (out_end)
945                                         *out_end = min(m_end, r_end);
946                                 if (out_nid)
947                                         *out_nid = m_nid;
948                                 /*
949                                  * The region which ends first is
950                                  * advanced for the next iteration.
951                                  */
952                                 if (m_end <= r_end)
953                                         idx_a++;
954                                 else
955                                         idx_b++;
956                                 *idx = (u32)idx_a | (u64)idx_b << 32;
957                                 return;
958                         }
959                 }
960         }
961
962         /* signal end of iteration */
963         *idx = ULLONG_MAX;
964 }
965
966 /**
967  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
968  *
969  * Finds the next range from type_a which is not marked as unsuitable
970  * in type_b.
971  *
972  * @idx: pointer to u64 loop variable
973  * @nid: node selector, %NUMA_NO_NODE for all nodes
974  * @flags: pick from blocks based on memory attributes
975  * @type_a: pointer to memblock_type from where the range is taken
976  * @type_b: pointer to memblock_type which excludes memory from being taken
977  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
978  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
979  * @out_nid: ptr to int for nid of the range, can be %NULL
980  *
981  * Reverse of __next_mem_range().
982  */
983 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
984                                           struct memblock_type *type_a,
985                                           struct memblock_type *type_b,
986                                           phys_addr_t *out_start,
987                                           phys_addr_t *out_end, int *out_nid)
988 {
989         int idx_a = *idx & 0xffffffff;
990         int idx_b = *idx >> 32;
991
992         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
993                 nid = NUMA_NO_NODE;
994
995         if (*idx == (u64)ULLONG_MAX) {
996                 idx_a = type_a->cnt - 1;
997                 if (type_b != NULL)
998                         idx_b = type_b->cnt;
999                 else
1000                         idx_b = 0;
1001         }
1002
1003         for (; idx_a >= 0; idx_a--) {
1004                 struct memblock_region *m = &type_a->regions[idx_a];
1005
1006                 phys_addr_t m_start = m->base;
1007                 phys_addr_t m_end = m->base + m->size;
1008                 int m_nid = memblock_get_region_node(m);
1009
1010                 /* only memory regions are associated with nodes, check it */
1011                 if (nid != NUMA_NO_NODE && nid != m_nid)
1012                         continue;
1013
1014                 /* skip hotpluggable memory regions if needed */
1015                 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1016                         continue;
1017
1018                 /* if we want mirror memory skip non-mirror memory regions */
1019                 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1020                         continue;
1021
1022                 /* skip nomap memory unless we were asked for it explicitly */
1023                 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1024                         continue;
1025
1026                 if (!type_b) {
1027                         if (out_start)
1028                                 *out_start = m_start;
1029                         if (out_end)
1030                                 *out_end = m_end;
1031                         if (out_nid)
1032                                 *out_nid = m_nid;
1033                         idx_a--;
1034                         *idx = (u32)idx_a | (u64)idx_b << 32;
1035                         return;
1036                 }
1037
1038                 /* scan areas before each reservation */
1039                 for (; idx_b >= 0; idx_b--) {
1040                         struct memblock_region *r;
1041                         phys_addr_t r_start;
1042                         phys_addr_t r_end;
1043
1044                         r = &type_b->regions[idx_b];
1045                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
1046                         r_end = idx_b < type_b->cnt ?
1047                                 r->base : ULLONG_MAX;
1048                         /*
1049                          * if idx_b advanced past idx_a,
1050                          * break out to advance idx_a
1051                          */
1052
1053                         if (r_end <= m_start)
1054                                 break;
1055                         /* if the two regions intersect, we're done */
1056                         if (m_end > r_start) {
1057                                 if (out_start)
1058                                         *out_start = max(m_start, r_start);
1059                                 if (out_end)
1060                                         *out_end = min(m_end, r_end);
1061                                 if (out_nid)
1062                                         *out_nid = m_nid;
1063                                 if (m_start >= r_start)
1064                                         idx_a--;
1065                                 else
1066                                         idx_b--;
1067                                 *idx = (u32)idx_a | (u64)idx_b << 32;
1068                                 return;
1069                         }
1070                 }
1071         }
1072         /* signal end of iteration */
1073         *idx = ULLONG_MAX;
1074 }
1075
1076 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1077 /*
1078  * Common iterator interface used to define for_each_mem_range().
1079  */
1080 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1081                                 unsigned long *out_start_pfn,
1082                                 unsigned long *out_end_pfn, int *out_nid)
1083 {
1084         struct memblock_type *type = &memblock.memory;
1085         struct memblock_region *r;
1086
1087         while (++*idx < type->cnt) {
1088                 r = &type->regions[*idx];
1089
1090                 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1091                         continue;
1092                 if (nid == MAX_NUMNODES || nid == r->nid)
1093                         break;
1094         }
1095         if (*idx >= type->cnt) {
1096                 *idx = -1;
1097                 return;
1098         }
1099
1100         if (out_start_pfn)
1101                 *out_start_pfn = PFN_UP(r->base);
1102         if (out_end_pfn)
1103                 *out_end_pfn = PFN_DOWN(r->base + r->size);
1104         if (out_nid)
1105                 *out_nid = r->nid;
1106 }
1107
1108 /**
1109  * memblock_set_node - set node ID on memblock regions
1110  * @base: base of area to set node ID for
1111  * @size: size of area to set node ID for
1112  * @type: memblock type to set node ID for
1113  * @nid: node ID to set
1114  *
1115  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1116  * Regions which cross the area boundaries are split as necessary.
1117  *
1118  * RETURNS:
1119  * 0 on success, -errno on failure.
1120  */
1121 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1122                                       struct memblock_type *type, int nid)
1123 {
1124         int start_rgn, end_rgn;
1125         int i, ret;
1126
1127         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1128         if (ret)
1129                 return ret;
1130
1131         for (i = start_rgn; i < end_rgn; i++)
1132                 memblock_set_region_node(&type->regions[i], nid);
1133
1134         memblock_merge_regions(type);
1135         return 0;
1136 }
1137 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1138
1139 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1140                                         phys_addr_t align, phys_addr_t start,
1141                                         phys_addr_t end, int nid, ulong flags)
1142 {
1143         phys_addr_t found;
1144
1145         if (!align)
1146                 align = SMP_CACHE_BYTES;
1147
1148         found = memblock_find_in_range_node(size, align, start, end, nid,
1149                                             flags);
1150         if (found && !memblock_reserve(found, size)) {
1151                 /*
1152                  * The min_count is set to 0 so that memblock allocations are
1153                  * never reported as leaks.
1154                  */
1155                 kmemleak_alloc(__va(found), size, 0, 0);
1156                 return found;
1157         }
1158         return 0;
1159 }
1160
1161 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1162                                         phys_addr_t start, phys_addr_t end,
1163                                         ulong flags)
1164 {
1165         return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1166                                         flags);
1167 }
1168
1169 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1170                                         phys_addr_t align, phys_addr_t max_addr,
1171                                         int nid, ulong flags)
1172 {
1173         return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1174 }
1175
1176 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1177 {
1178         ulong flags = choose_memblock_flags();
1179         phys_addr_t ret;
1180
1181 again:
1182         ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1183                                       nid, flags);
1184
1185         if (!ret && (flags & MEMBLOCK_MIRROR)) {
1186                 flags &= ~MEMBLOCK_MIRROR;
1187                 goto again;
1188         }
1189         return ret;
1190 }
1191
1192 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1193 {
1194         return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1195                                        MEMBLOCK_NONE);
1196 }
1197
1198 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1199 {
1200         phys_addr_t alloc;
1201
1202         alloc = __memblock_alloc_base(size, align, max_addr);
1203
1204         if (alloc == 0)
1205                 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1206                       (unsigned long long) size, (unsigned long long) max_addr);
1207
1208         return alloc;
1209 }
1210
1211 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1212 {
1213         return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1214 }
1215
1216 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1217 {
1218         phys_addr_t res = memblock_alloc_nid(size, align, nid);
1219
1220         if (res)
1221                 return res;
1222         return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1223 }
1224
1225 /**
1226  * memblock_virt_alloc_internal - allocate boot memory block
1227  * @size: size of memory block to be allocated in bytes
1228  * @align: alignment of the region and block's size
1229  * @min_addr: the lower bound of the memory region to allocate (phys address)
1230  * @max_addr: the upper bound of the memory region to allocate (phys address)
1231  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1232  *
1233  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1234  * will fall back to memory below @min_addr. Also, allocation may fall back
1235  * to any node in the system if the specified node can not
1236  * hold the requested memory.
1237  *
1238  * The allocation is performed from memory region limited by
1239  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1240  *
1241  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1242  *
1243  * The phys address of allocated boot memory block is converted to virtual and
1244  * allocated memory is reset to 0.
1245  *
1246  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1247  * allocated boot memory block, so that it is never reported as leaks.
1248  *
1249  * RETURNS:
1250  * Virtual address of allocated memory block on success, NULL on failure.
1251  */
1252 static void * __init memblock_virt_alloc_internal(
1253                                 phys_addr_t size, phys_addr_t align,
1254                                 phys_addr_t min_addr, phys_addr_t max_addr,
1255                                 int nid)
1256 {
1257         phys_addr_t alloc;
1258         void *ptr;
1259         ulong flags = choose_memblock_flags();
1260
1261         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1262                 nid = NUMA_NO_NODE;
1263
1264         /*
1265          * Detect any accidental use of these APIs after slab is ready, as at
1266          * this moment memblock may be deinitialized already and its
1267          * internal data may be destroyed (after execution of free_all_bootmem)
1268          */
1269         if (WARN_ON_ONCE(slab_is_available()))
1270                 return kzalloc_node(size, GFP_NOWAIT, nid);
1271
1272         if (!align)
1273                 align = SMP_CACHE_BYTES;
1274
1275         if (max_addr > memblock.current_limit)
1276                 max_addr = memblock.current_limit;
1277
1278 again:
1279         alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1280                                             nid, flags);
1281         if (alloc)
1282                 goto done;
1283
1284         if (nid != NUMA_NO_NODE) {
1285                 alloc = memblock_find_in_range_node(size, align, min_addr,
1286                                                     max_addr, NUMA_NO_NODE,
1287                                                     flags);
1288                 if (alloc)
1289                         goto done;
1290         }
1291
1292         if (min_addr) {
1293                 min_addr = 0;
1294                 goto again;
1295         }
1296
1297         if (flags & MEMBLOCK_MIRROR) {
1298                 flags &= ~MEMBLOCK_MIRROR;
1299                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1300                         &size);
1301                 goto again;
1302         }
1303
1304         return NULL;
1305 done:
1306         memblock_reserve(alloc, size);
1307         ptr = phys_to_virt(alloc);
1308         memset(ptr, 0, size);
1309
1310         /*
1311          * The min_count is set to 0 so that bootmem allocated blocks
1312          * are never reported as leaks. This is because many of these blocks
1313          * are only referred via the physical address which is not
1314          * looked up by kmemleak.
1315          */
1316         kmemleak_alloc(ptr, size, 0, 0);
1317
1318         return ptr;
1319 }
1320
1321 /**
1322  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1323  * @size: size of memory block to be allocated in bytes
1324  * @align: alignment of the region and block's size
1325  * @min_addr: the lower bound of the memory region from where the allocation
1326  *        is preferred (phys address)
1327  * @max_addr: the upper bound of the memory region from where the allocation
1328  *            is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1329  *            allocate only from memory limited by memblock.current_limit value
1330  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1331  *
1332  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1333  * additional debug information (including caller info), if enabled.
1334  *
1335  * RETURNS:
1336  * Virtual address of allocated memory block on success, NULL on failure.
1337  */
1338 void * __init memblock_virt_alloc_try_nid_nopanic(
1339                                 phys_addr_t size, phys_addr_t align,
1340                                 phys_addr_t min_addr, phys_addr_t max_addr,
1341                                 int nid)
1342 {
1343         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1344                      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1345                      (u64)max_addr, (void *)_RET_IP_);
1346         return memblock_virt_alloc_internal(size, align, min_addr,
1347                                              max_addr, nid);
1348 }
1349
1350 /**
1351  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1352  * @size: size of memory block to be allocated in bytes
1353  * @align: alignment of the region and block's size
1354  * @min_addr: the lower bound of the memory region from where the allocation
1355  *        is preferred (phys address)
1356  * @max_addr: the upper bound of the memory region from where the allocation
1357  *            is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1358  *            allocate only from memory limited by memblock.current_limit value
1359  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1360  *
1361  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1362  * which provides debug information (including caller info), if enabled,
1363  * and panics if the request can not be satisfied.
1364  *
1365  * RETURNS:
1366  * Virtual address of allocated memory block on success, NULL on failure.
1367  */
1368 void * __init memblock_virt_alloc_try_nid(
1369                         phys_addr_t size, phys_addr_t align,
1370                         phys_addr_t min_addr, phys_addr_t max_addr,
1371                         int nid)
1372 {
1373         void *ptr;
1374
1375         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1376                      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1377                      (u64)max_addr, (void *)_RET_IP_);
1378         ptr = memblock_virt_alloc_internal(size, align,
1379                                            min_addr, max_addr, nid);
1380         if (ptr)
1381                 return ptr;
1382
1383         panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1384               __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1385               (u64)max_addr);
1386         return NULL;
1387 }
1388
1389 /**
1390  * __memblock_free_early - free boot memory block
1391  * @base: phys starting address of the  boot memory block
1392  * @size: size of the boot memory block in bytes
1393  *
1394  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1395  * The freeing memory will not be released to the buddy allocator.
1396  */
1397 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1398 {
1399         memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1400                      __func__, (u64)base, (u64)base + size - 1,
1401                      (void *)_RET_IP_);
1402         kmemleak_free_part(__va(base), size);
1403         memblock_remove_range(&memblock.reserved, base, size);
1404 }
1405
1406 /*
1407  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1408  * @addr: phys starting address of the  boot memory block
1409  * @size: size of the boot memory block in bytes
1410  *
1411  * This is only useful when the bootmem allocator has already been torn
1412  * down, but we are still initializing the system.  Pages are released directly
1413  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1414  */
1415 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1416 {
1417         u64 cursor, end;
1418
1419         memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1420                      __func__, (u64)base, (u64)base + size - 1,
1421                      (void *)_RET_IP_);
1422         kmemleak_free_part(__va(base), size);
1423         cursor = PFN_UP(base);
1424         end = PFN_DOWN(base + size);
1425
1426         for (; cursor < end; cursor++) {
1427                 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1428                 totalram_pages++;
1429         }
1430 }
1431
1432 /*
1433  * Remaining API functions
1434  */
1435
1436 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1437 {
1438         return memblock.memory.total_size;
1439 }
1440
1441 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1442 {
1443         unsigned long pages = 0;
1444         struct memblock_region *r;
1445         unsigned long start_pfn, end_pfn;
1446
1447         for_each_memblock(memory, r) {
1448                 start_pfn = memblock_region_memory_base_pfn(r);
1449                 end_pfn = memblock_region_memory_end_pfn(r);
1450                 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1451                 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1452                 pages += end_pfn - start_pfn;
1453         }
1454
1455         return PFN_PHYS(pages);
1456 }
1457
1458 /* lowest address */
1459 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1460 {
1461         return memblock.memory.regions[0].base;
1462 }
1463
1464 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1465 {
1466         int idx = memblock.memory.cnt - 1;
1467
1468         return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1469 }
1470
1471 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1472 {
1473         phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1474         struct memblock_region *r;
1475
1476         /*
1477          * translate the memory @limit size into the max address within one of
1478          * the memory memblock regions, if the @limit exceeds the total size
1479          * of those regions, max_addr will keep original value ULLONG_MAX
1480          */
1481         for_each_memblock(memory, r) {
1482                 if (limit <= r->size) {
1483                         max_addr = r->base + limit;
1484                         break;
1485                 }
1486                 limit -= r->size;
1487         }
1488
1489         return max_addr;
1490 }
1491
1492 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1493 {
1494         phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1495
1496         if (!limit)
1497                 return;
1498
1499         max_addr = __find_max_addr(limit);
1500
1501         /* @limit exceeds the total size of the memory, do nothing */
1502         if (max_addr == (phys_addr_t)ULLONG_MAX)
1503                 return;
1504
1505         /* truncate both memory and reserved regions */
1506         memblock_remove_range(&memblock.memory, max_addr,
1507                               (phys_addr_t)ULLONG_MAX);
1508         memblock_remove_range(&memblock.reserved, max_addr,
1509                               (phys_addr_t)ULLONG_MAX);
1510 }
1511
1512 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1513 {
1514         struct memblock_type *type = &memblock.memory;
1515         phys_addr_t max_addr;
1516         int i, ret, start_rgn, end_rgn;
1517
1518         if (!limit)
1519                 return;
1520
1521         max_addr = __find_max_addr(limit);
1522
1523         /* @limit exceeds the total size of the memory, do nothing */
1524         if (max_addr == (phys_addr_t)ULLONG_MAX)
1525                 return;
1526
1527         ret = memblock_isolate_range(type, max_addr, (phys_addr_t)ULLONG_MAX,
1528                                 &start_rgn, &end_rgn);
1529         if (ret)
1530                 return;
1531
1532         /* remove all the MAP regions above the limit */
1533         for (i = end_rgn - 1; i >= start_rgn; i--) {
1534                 if (!memblock_is_nomap(&type->regions[i]))
1535                         memblock_remove_region(type, i);
1536         }
1537         /* truncate the reserved regions */
1538         memblock_remove_range(&memblock.reserved, max_addr,
1539                               (phys_addr_t)ULLONG_MAX);
1540 }
1541
1542 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1543 {
1544         unsigned int left = 0, right = type->cnt;
1545
1546         do {
1547                 unsigned int mid = (right + left) / 2;
1548
1549                 if (addr < type->regions[mid].base)
1550                         right = mid;
1551                 else if (addr >= (type->regions[mid].base +
1552                                   type->regions[mid].size))
1553                         left = mid + 1;
1554                 else
1555                         return mid;
1556         } while (left < right);
1557         return -1;
1558 }
1559
1560 bool __init memblock_is_reserved(phys_addr_t addr)
1561 {
1562         return memblock_search(&memblock.reserved, addr) != -1;
1563 }
1564
1565 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1566 {
1567         return memblock_search(&memblock.memory, addr) != -1;
1568 }
1569
1570 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1571 {
1572         int i = memblock_search(&memblock.memory, addr);
1573
1574         if (i == -1)
1575                 return false;
1576         return !memblock_is_nomap(&memblock.memory.regions[i]);
1577 }
1578
1579 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1580 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1581                          unsigned long *start_pfn, unsigned long *end_pfn)
1582 {
1583         struct memblock_type *type = &memblock.memory;
1584         int mid = memblock_search(type, PFN_PHYS(pfn));
1585
1586         if (mid == -1)
1587                 return -1;
1588
1589         *start_pfn = PFN_DOWN(type->regions[mid].base);
1590         *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1591
1592         return type->regions[mid].nid;
1593 }
1594 #endif
1595
1596 /**
1597  * memblock_is_region_memory - check if a region is a subset of memory
1598  * @base: base of region to check
1599  * @size: size of region to check
1600  *
1601  * Check if the region [@base, @base+@size) is a subset of a memory block.
1602  *
1603  * RETURNS:
1604  * 0 if false, non-zero if true
1605  */
1606 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1607 {
1608         int idx = memblock_search(&memblock.memory, base);
1609         phys_addr_t end = base + memblock_cap_size(base, &size);
1610
1611         if (idx == -1)
1612                 return 0;
1613         return memblock.memory.regions[idx].base <= base &&
1614                 (memblock.memory.regions[idx].base +
1615                  memblock.memory.regions[idx].size) >= end;
1616 }
1617
1618 /**
1619  * memblock_is_region_reserved - check if a region intersects reserved memory
1620  * @base: base of region to check
1621  * @size: size of region to check
1622  *
1623  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1624  *
1625  * RETURNS:
1626  * True if they intersect, false if not.
1627  */
1628 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1629 {
1630         memblock_cap_size(base, &size);
1631         return memblock_overlaps_region(&memblock.reserved, base, size);
1632 }
1633
1634 void __init_memblock memblock_trim_memory(phys_addr_t align)
1635 {
1636         phys_addr_t start, end, orig_start, orig_end;
1637         struct memblock_region *r;
1638
1639         for_each_memblock(memory, r) {
1640                 orig_start = r->base;
1641                 orig_end = r->base + r->size;
1642                 start = round_up(orig_start, align);
1643                 end = round_down(orig_end, align);
1644
1645                 if (start == orig_start && end == orig_end)
1646                         continue;
1647
1648                 if (start < end) {
1649                         r->base = start;
1650                         r->size = end - start;
1651                 } else {
1652                         memblock_remove_region(&memblock.memory,
1653                                                r - memblock.memory.regions);
1654                         r--;
1655                 }
1656         }
1657 }
1658
1659 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1660 {
1661         memblock.current_limit = limit;
1662 }
1663
1664 phys_addr_t __init_memblock memblock_get_current_limit(void)
1665 {
1666         return memblock.current_limit;
1667 }
1668
1669 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1670 {
1671         unsigned long long base, size;
1672         unsigned long flags;
1673         int idx;
1674         struct memblock_region *rgn;
1675
1676         pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1677
1678         for_each_memblock_type(type, rgn) {
1679                 char nid_buf[32] = "";
1680
1681                 base = rgn->base;
1682                 size = rgn->size;
1683                 flags = rgn->flags;
1684 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1685                 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1686                         snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1687                                  memblock_get_region_node(rgn));
1688 #endif
1689                 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1690                         name, idx, base, base + size - 1, size, nid_buf, flags);
1691         }
1692 }
1693
1694 void __init_memblock __memblock_dump_all(void)
1695 {
1696         pr_info("MEMBLOCK configuration:\n");
1697         pr_info(" memory size = %#llx reserved size = %#llx\n",
1698                 (unsigned long long)memblock.memory.total_size,
1699                 (unsigned long long)memblock.reserved.total_size);
1700
1701         memblock_dump(&memblock.memory, "memory");
1702         memblock_dump(&memblock.reserved, "reserved");
1703 }
1704
1705 void __init memblock_allow_resize(void)
1706 {
1707         memblock_can_resize = 1;
1708 }
1709
1710 static int __init early_memblock(char *p)
1711 {
1712         if (p && strstr(p, "debug"))
1713                 memblock_debug = 1;
1714         return 0;
1715 }
1716 early_param("memblock", early_memblock);
1717
1718 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1719
1720 static int memblock_debug_show(struct seq_file *m, void *private)
1721 {
1722         struct memblock_type *type = m->private;
1723         struct memblock_region *reg;
1724         int i;
1725
1726         for (i = 0; i < type->cnt; i++) {
1727                 reg = &type->regions[i];
1728                 seq_printf(m, "%4d: ", i);
1729                 if (sizeof(phys_addr_t) == 4)
1730                         seq_printf(m, "0x%08lx..0x%08lx\n",
1731                                    (unsigned long)reg->base,
1732                                    (unsigned long)(reg->base + reg->size - 1));
1733                 else
1734                         seq_printf(m, "0x%016llx..0x%016llx\n",
1735                                    (unsigned long long)reg->base,
1736                                    (unsigned long long)(reg->base + reg->size - 1));
1737
1738         }
1739         return 0;
1740 }
1741
1742 static int memblock_debug_open(struct inode *inode, struct file *file)
1743 {
1744         return single_open(file, memblock_debug_show, inode->i_private);
1745 }
1746
1747 static const struct file_operations memblock_debug_fops = {
1748         .open = memblock_debug_open,
1749         .read = seq_read,
1750         .llseek = seq_lseek,
1751         .release = single_release,
1752 };
1753
1754 static int __init memblock_init_debugfs(void)
1755 {
1756         struct dentry *root = debugfs_create_dir("memblock", NULL);
1757         if (!root)
1758                 return -ENXIO;
1759         debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1760         debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1761 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1762         debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1763 #endif
1764
1765         return 0;
1766 }
1767 __initcall(memblock_init_debugfs);
1768
1769 #endif /* CONFIG_DEBUG_FS */