1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
40 struct madvise_walk_private {
41 struct mmu_gather *tlb;
46 * Any behaviour which results in changes to the vma->vm_flags needs to
47 * take mmap_lock for writing. Others, which simply traverse vmas, need
48 * to only take it for reading.
50 static int madvise_need_mmap_write(int behavior)
56 case MADV_DONTNEED_LOCKED:
60 case MADV_POPULATE_READ:
61 case MADV_POPULATE_WRITE:
64 /* be safe, default to 1. list exceptions explicitly */
69 #ifdef CONFIG_ANON_VMA_NAME
70 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 struct anon_vma_name *anon_name;
75 /* Add 1 for NUL terminator at the end of the anon_name->name */
76 count = strlen(name) + 1;
77 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 kref_init(&anon_name->kref);
80 memcpy(anon_name->name, name, count);
86 void anon_vma_name_free(struct kref *kref)
88 struct anon_vma_name *anon_name =
89 container_of(kref, struct anon_vma_name, kref);
93 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 mmap_assert_locked(vma->vm_mm);
100 return vma->anon_name;
103 /* mmap_lock should be write-locked */
104 static int replace_anon_vma_name(struct vm_area_struct *vma,
105 struct anon_vma_name *anon_name)
107 struct anon_vma_name *orig_name = anon_vma_name(vma);
110 vma->anon_name = NULL;
111 anon_vma_name_put(orig_name);
115 if (anon_vma_name_eq(orig_name, anon_name))
118 vma->anon_name = anon_vma_name_reuse(anon_name);
119 anon_vma_name_put(orig_name);
123 #else /* CONFIG_ANON_VMA_NAME */
124 static int replace_anon_vma_name(struct vm_area_struct *vma,
125 struct anon_vma_name *anon_name)
132 #endif /* CONFIG_ANON_VMA_NAME */
134 * Update the vm_flags on region of a vma, splitting it or merging it as
135 * necessary. Must be called with mmap_sem held for writing;
136 * Caller should ensure anon_name stability by raising its refcount even when
137 * anon_name belongs to a valid vma because this function might free that vma.
139 static int madvise_update_vma(struct vm_area_struct *vma,
140 struct vm_area_struct **prev, unsigned long start,
141 unsigned long end, unsigned long new_flags,
142 struct anon_vma_name *anon_name)
144 struct mm_struct *mm = vma->vm_mm;
148 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
153 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
154 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
155 vma->vm_file, pgoff, vma_policy(vma),
156 vma->vm_userfaultfd_ctx, anon_name);
164 if (start != vma->vm_start) {
165 if (unlikely(mm->map_count >= sysctl_max_map_count))
167 error = __split_vma(mm, vma, start, 1);
172 if (end != vma->vm_end) {
173 if (unlikely(mm->map_count >= sysctl_max_map_count))
175 error = __split_vma(mm, vma, end, 0);
182 * vm_flags is protected by the mmap_lock held in write mode.
184 vma->vm_flags = new_flags;
186 error = replace_anon_vma_name(vma, anon_name);
195 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
196 unsigned long end, struct mm_walk *walk)
198 struct vm_area_struct *vma = walk->private;
200 struct swap_iocb *splug = NULL;
202 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
205 for (index = start; index != end; index += PAGE_SIZE) {
212 ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
214 pte_unmap_unlock(ptep, ptl);
216 if (!is_swap_pte(pte))
218 entry = pte_to_swp_entry(pte);
219 if (unlikely(non_swap_entry(entry)))
222 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
223 vma, index, false, &splug);
227 swap_read_unplug(splug);
232 static const struct mm_walk_ops swapin_walk_ops = {
233 .pmd_entry = swapin_walk_pmd_entry,
236 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
237 unsigned long start, unsigned long end,
238 struct address_space *mapping)
240 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
241 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
243 struct swap_iocb *splug = NULL;
246 xas_for_each(&xas, page, end_index) {
249 if (!xa_is_value(page))
251 swap = radix_to_swp_entry(page);
252 /* There might be swapin error entries in shmem mapping. */
253 if (non_swap_entry(swap))
258 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
259 NULL, 0, false, &splug);
266 swap_read_unplug(splug);
268 lru_add_drain(); /* Push any new pages onto the LRU now */
270 #endif /* CONFIG_SWAP */
273 * Schedule all required I/O operations. Do not wait for completion.
275 static long madvise_willneed(struct vm_area_struct *vma,
276 struct vm_area_struct **prev,
277 unsigned long start, unsigned long end)
279 struct mm_struct *mm = vma->vm_mm;
280 struct file *file = vma->vm_file;
286 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
287 lru_add_drain(); /* Push any new pages onto the LRU now */
291 if (shmem_mapping(file->f_mapping)) {
292 force_shm_swapin_readahead(vma, start, end,
301 if (IS_DAX(file_inode(file))) {
302 /* no bad return value, but ignore advice */
307 * Filesystem's fadvise may need to take various locks. We need to
308 * explicitly grab a reference because the vma (and hence the
309 * vma's reference to the file) can go away as soon as we drop
312 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
314 offset = (loff_t)(start - vma->vm_start)
315 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
316 mmap_read_unlock(mm);
317 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
323 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
324 unsigned long addr, unsigned long end,
325 struct mm_walk *walk)
327 struct madvise_walk_private *private = walk->private;
328 struct mmu_gather *tlb = private->tlb;
329 bool pageout = private->pageout;
330 struct mm_struct *mm = tlb->mm;
331 struct vm_area_struct *vma = walk->vma;
332 pte_t *orig_pte, *pte, ptent;
334 struct page *page = NULL;
335 LIST_HEAD(page_list);
337 if (fatal_signal_pending(current))
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 if (pmd_trans_huge(*pmd)) {
343 unsigned long next = pmd_addr_end(addr, end);
345 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
346 ptl = pmd_trans_huge_lock(pmd, vma);
351 if (is_huge_zero_pmd(orig_pmd))
354 if (unlikely(!pmd_present(orig_pmd))) {
355 VM_BUG_ON(thp_migration_supported() &&
356 !is_pmd_migration_entry(orig_pmd));
360 page = pmd_page(orig_pmd);
362 /* Do not interfere with other mappings of this page */
363 if (page_mapcount(page) != 1)
366 if (next - addr != HPAGE_PMD_SIZE) {
372 err = split_huge_page(page);
380 if (pmd_young(orig_pmd)) {
381 pmdp_invalidate(vma, addr, pmd);
382 orig_pmd = pmd_mkold(orig_pmd);
384 set_pmd_at(mm, addr, pmd, orig_pmd);
385 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
388 ClearPageReferenced(page);
389 test_and_clear_page_young(page);
391 if (!isolate_lru_page(page)) {
392 if (PageUnevictable(page))
393 putback_lru_page(page);
395 list_add(&page->lru, &page_list);
398 deactivate_page(page);
402 reclaim_pages(&page_list);
407 if (pmd_trans_unstable(pmd))
410 tlb_change_page_size(tlb, PAGE_SIZE);
411 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
412 flush_tlb_batched_pending(mm);
413 arch_enter_lazy_mmu_mode();
414 for (; addr < end; pte++, addr += PAGE_SIZE) {
420 if (!pte_present(ptent))
423 page = vm_normal_page(vma, addr, ptent);
424 if (!page || is_zone_device_page(page))
428 * Creating a THP page is expensive so split it only if we
429 * are sure it's worth. Split it if we are only owner.
431 if (PageTransCompound(page)) {
432 if (page_mapcount(page) != 1)
435 if (!trylock_page(page)) {
439 pte_unmap_unlock(orig_pte, ptl);
440 if (split_huge_page(page)) {
443 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
448 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
455 * Do not interfere with other mappings of this page and
458 if (!PageLRU(page) || page_mapcount(page) != 1)
461 VM_BUG_ON_PAGE(PageTransCompound(page), page);
463 if (pte_young(ptent)) {
464 ptent = ptep_get_and_clear_full(mm, addr, pte,
466 ptent = pte_mkold(ptent);
467 set_pte_at(mm, addr, pte, ptent);
468 tlb_remove_tlb_entry(tlb, pte, addr);
472 * We are deactivating a page for accelerating reclaiming.
473 * VM couldn't reclaim the page unless we clear PG_young.
474 * As a side effect, it makes confuse idle-page tracking
475 * because they will miss recent referenced history.
477 ClearPageReferenced(page);
478 test_and_clear_page_young(page);
480 if (!isolate_lru_page(page)) {
481 if (PageUnevictable(page))
482 putback_lru_page(page);
484 list_add(&page->lru, &page_list);
487 deactivate_page(page);
490 arch_leave_lazy_mmu_mode();
491 pte_unmap_unlock(orig_pte, ptl);
493 reclaim_pages(&page_list);
499 static const struct mm_walk_ops cold_walk_ops = {
500 .pmd_entry = madvise_cold_or_pageout_pte_range,
503 static void madvise_cold_page_range(struct mmu_gather *tlb,
504 struct vm_area_struct *vma,
505 unsigned long addr, unsigned long end)
507 struct madvise_walk_private walk_private = {
512 tlb_start_vma(tlb, vma);
513 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
514 tlb_end_vma(tlb, vma);
517 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
519 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
522 static long madvise_cold(struct vm_area_struct *vma,
523 struct vm_area_struct **prev,
524 unsigned long start_addr, unsigned long end_addr)
526 struct mm_struct *mm = vma->vm_mm;
527 struct mmu_gather tlb;
530 if (!can_madv_lru_vma(vma))
534 tlb_gather_mmu(&tlb, mm);
535 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
536 tlb_finish_mmu(&tlb);
541 static void madvise_pageout_page_range(struct mmu_gather *tlb,
542 struct vm_area_struct *vma,
543 unsigned long addr, unsigned long end)
545 struct madvise_walk_private walk_private = {
550 tlb_start_vma(tlb, vma);
551 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
552 tlb_end_vma(tlb, vma);
555 static inline bool can_do_pageout(struct vm_area_struct *vma)
557 if (vma_is_anonymous(vma))
562 * paging out pagecache only for non-anonymous mappings that correspond
563 * to the files the calling process could (if tried) open for writing;
564 * otherwise we'd be including shared non-exclusive mappings, which
565 * opens a side channel.
567 return inode_owner_or_capable(&init_user_ns,
568 file_inode(vma->vm_file)) ||
569 file_permission(vma->vm_file, MAY_WRITE) == 0;
572 static long madvise_pageout(struct vm_area_struct *vma,
573 struct vm_area_struct **prev,
574 unsigned long start_addr, unsigned long end_addr)
576 struct mm_struct *mm = vma->vm_mm;
577 struct mmu_gather tlb;
580 if (!can_madv_lru_vma(vma))
583 if (!can_do_pageout(vma))
587 tlb_gather_mmu(&tlb, mm);
588 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
589 tlb_finish_mmu(&tlb);
594 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
595 unsigned long end, struct mm_walk *walk)
598 struct mmu_gather *tlb = walk->private;
599 struct mm_struct *mm = tlb->mm;
600 struct vm_area_struct *vma = walk->vma;
602 pte_t *orig_pte, *pte, ptent;
607 next = pmd_addr_end(addr, end);
608 if (pmd_trans_huge(*pmd))
609 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
612 if (pmd_trans_unstable(pmd))
615 tlb_change_page_size(tlb, PAGE_SIZE);
616 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
617 flush_tlb_batched_pending(mm);
618 arch_enter_lazy_mmu_mode();
619 for (; addr != end; pte++, addr += PAGE_SIZE) {
625 * If the pte has swp_entry, just clear page table to
626 * prevent swap-in which is more expensive rather than
627 * (page allocation + zeroing).
629 if (!pte_present(ptent)) {
632 entry = pte_to_swp_entry(ptent);
633 if (!non_swap_entry(entry)) {
635 free_swap_and_cache(entry);
636 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
637 } else if (is_hwpoison_entry(entry) ||
638 is_swapin_error_entry(entry)) {
639 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
644 page = vm_normal_page(vma, addr, ptent);
645 if (!page || is_zone_device_page(page))
649 * If pmd isn't transhuge but the page is THP and
650 * is owned by only this process, split it and
651 * deactivate all pages.
653 if (PageTransCompound(page)) {
654 if (page_mapcount(page) != 1)
657 if (!trylock_page(page)) {
661 pte_unmap_unlock(orig_pte, ptl);
662 if (split_huge_page(page)) {
665 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
670 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
676 VM_BUG_ON_PAGE(PageTransCompound(page), page);
678 if (PageSwapCache(page) || PageDirty(page)) {
679 if (!trylock_page(page))
682 * If page is shared with others, we couldn't clear
683 * PG_dirty of the page.
685 if (page_mapcount(page) != 1) {
690 if (PageSwapCache(page) && !try_to_free_swap(page)) {
695 ClearPageDirty(page);
699 if (pte_young(ptent) || pte_dirty(ptent)) {
701 * Some of architecture(ex, PPC) don't update TLB
702 * with set_pte_at and tlb_remove_tlb_entry so for
703 * the portability, remap the pte with old|clean
704 * after pte clearing.
706 ptent = ptep_get_and_clear_full(mm, addr, pte,
709 ptent = pte_mkold(ptent);
710 ptent = pte_mkclean(ptent);
711 set_pte_at(mm, addr, pte, ptent);
712 tlb_remove_tlb_entry(tlb, pte, addr);
714 mark_page_lazyfree(page);
718 if (current->mm == mm)
721 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
723 arch_leave_lazy_mmu_mode();
724 pte_unmap_unlock(orig_pte, ptl);
730 static const struct mm_walk_ops madvise_free_walk_ops = {
731 .pmd_entry = madvise_free_pte_range,
734 static int madvise_free_single_vma(struct vm_area_struct *vma,
735 unsigned long start_addr, unsigned long end_addr)
737 struct mm_struct *mm = vma->vm_mm;
738 struct mmu_notifier_range range;
739 struct mmu_gather tlb;
741 /* MADV_FREE works for only anon vma at the moment */
742 if (!vma_is_anonymous(vma))
745 range.start = max(vma->vm_start, start_addr);
746 if (range.start >= vma->vm_end)
748 range.end = min(vma->vm_end, end_addr);
749 if (range.end <= vma->vm_start)
751 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
752 range.start, range.end);
755 tlb_gather_mmu(&tlb, mm);
756 update_hiwater_rss(mm);
758 mmu_notifier_invalidate_range_start(&range);
759 tlb_start_vma(&tlb, vma);
760 walk_page_range(vma->vm_mm, range.start, range.end,
761 &madvise_free_walk_ops, &tlb);
762 tlb_end_vma(&tlb, vma);
763 mmu_notifier_invalidate_range_end(&range);
764 tlb_finish_mmu(&tlb);
770 * Application no longer needs these pages. If the pages are dirty,
771 * it's OK to just throw them away. The app will be more careful about
772 * data it wants to keep. Be sure to free swap resources too. The
773 * zap_page_range call sets things up for shrink_active_list to actually free
774 * these pages later if no one else has touched them in the meantime,
775 * although we could add these pages to a global reuse list for
776 * shrink_active_list to pick up before reclaiming other pages.
778 * NB: This interface discards data rather than pushes it out to swap,
779 * as some implementations do. This has performance implications for
780 * applications like large transactional databases which want to discard
781 * pages in anonymous maps after committing to backing store the data
782 * that was kept in them. There is no reason to write this data out to
783 * the swap area if the application is discarding it.
785 * An interface that causes the system to free clean pages and flush
786 * dirty pages is already available as msync(MS_INVALIDATE).
788 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
789 unsigned long start, unsigned long end)
791 zap_page_range(vma, start, end - start);
795 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
800 if (!is_vm_hugetlb_page(vma)) {
801 unsigned int forbidden = VM_PFNMAP;
803 if (behavior != MADV_DONTNEED_LOCKED)
804 forbidden |= VM_LOCKED;
806 return !(vma->vm_flags & forbidden);
809 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
811 if (start & ~huge_page_mask(hstate_vma(vma)))
814 *end = ALIGN(*end, huge_page_size(hstate_vma(vma)));
818 static long madvise_dontneed_free(struct vm_area_struct *vma,
819 struct vm_area_struct **prev,
820 unsigned long start, unsigned long end,
823 struct mm_struct *mm = vma->vm_mm;
826 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
829 if (!userfaultfd_remove(vma, start, end)) {
830 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
833 vma = find_vma(mm, start);
836 if (start < vma->vm_start) {
838 * This "vma" under revalidation is the one
839 * with the lowest vma->vm_start where start
840 * is also < vma->vm_end. If start <
841 * vma->vm_start it means an hole materialized
842 * in the user address space within the
843 * virtual range passed to MADV_DONTNEED
849 * Potential end adjustment for hugetlb vma is OK as
850 * the check below keeps end within vma.
852 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
855 if (end > vma->vm_end) {
857 * Don't fail if end > vma->vm_end. If the old
858 * vma was split while the mmap_lock was
859 * released the effect of the concurrent
860 * operation may not cause madvise() to
861 * have an undefined result. There may be an
862 * adjacent next vma that we'll walk
863 * next. userfaultfd_remove() will generate an
864 * UFFD_EVENT_REMOVE repetition on the
865 * end-vma->vm_end range, but the manager can
866 * handle a repetition fine.
870 VM_WARN_ON(start >= end);
873 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
874 return madvise_dontneed_single_vma(vma, start, end);
875 else if (behavior == MADV_FREE)
876 return madvise_free_single_vma(vma, start, end);
881 static long madvise_populate(struct vm_area_struct *vma,
882 struct vm_area_struct **prev,
883 unsigned long start, unsigned long end,
886 const bool write = behavior == MADV_POPULATE_WRITE;
887 struct mm_struct *mm = vma->vm_mm;
888 unsigned long tmp_end;
894 while (start < end) {
896 * We might have temporarily dropped the lock. For example,
897 * our VMA might have been split.
899 if (!vma || start >= vma->vm_end) {
900 vma = vma_lookup(mm, start);
905 tmp_end = min_t(unsigned long, end, vma->vm_end);
906 /* Populate (prefault) page tables readable/writable. */
907 pages = faultin_vma_page_range(vma, start, tmp_end, write,
919 case -EINVAL: /* Incompatible mappings / permissions. */
923 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
926 pr_warn_once("%s: unhandled return value: %ld\n",
933 start += pages * PAGE_SIZE;
939 * Application wants to free up the pages and associated backing store.
940 * This is effectively punching a hole into the middle of a file.
942 static long madvise_remove(struct vm_area_struct *vma,
943 struct vm_area_struct **prev,
944 unsigned long start, unsigned long end)
949 struct mm_struct *mm = vma->vm_mm;
951 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
953 if (vma->vm_flags & VM_LOCKED)
958 if (!f || !f->f_mapping || !f->f_mapping->host) {
962 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
965 offset = (loff_t)(start - vma->vm_start)
966 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
969 * Filesystem's fallocate may need to take i_rwsem. We need to
970 * explicitly grab a reference because the vma (and hence the
971 * vma's reference to the file) can go away as soon as we drop
975 if (userfaultfd_remove(vma, start, end)) {
976 /* mmap_lock was not released by userfaultfd_remove() */
977 mmap_read_unlock(mm);
979 error = vfs_fallocate(f,
980 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
981 offset, end - start);
988 * Apply an madvise behavior to a region of a vma. madvise_update_vma
989 * will handle splitting a vm area into separate areas, each area with its own
992 static int madvise_vma_behavior(struct vm_area_struct *vma,
993 struct vm_area_struct **prev,
994 unsigned long start, unsigned long end,
995 unsigned long behavior)
998 struct anon_vma_name *anon_name;
999 unsigned long new_flags = vma->vm_flags;
1003 return madvise_remove(vma, prev, start, end);
1005 return madvise_willneed(vma, prev, start, end);
1007 return madvise_cold(vma, prev, start, end);
1009 return madvise_pageout(vma, prev, start, end);
1012 case MADV_DONTNEED_LOCKED:
1013 return madvise_dontneed_free(vma, prev, start, end, behavior);
1014 case MADV_POPULATE_READ:
1015 case MADV_POPULATE_WRITE:
1016 return madvise_populate(vma, prev, start, end, behavior);
1018 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1020 case MADV_SEQUENTIAL:
1021 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1024 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1027 new_flags |= VM_DONTCOPY;
1030 if (vma->vm_flags & VM_IO)
1032 new_flags &= ~VM_DONTCOPY;
1034 case MADV_WIPEONFORK:
1035 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1036 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1038 new_flags |= VM_WIPEONFORK;
1040 case MADV_KEEPONFORK:
1041 new_flags &= ~VM_WIPEONFORK;
1044 new_flags |= VM_DONTDUMP;
1047 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1049 new_flags &= ~VM_DONTDUMP;
1051 case MADV_MERGEABLE:
1052 case MADV_UNMERGEABLE:
1053 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1058 case MADV_NOHUGEPAGE:
1059 error = hugepage_madvise(vma, &new_flags, behavior);
1065 anon_name = anon_vma_name(vma);
1066 anon_vma_name_get(anon_name);
1067 error = madvise_update_vma(vma, prev, start, end, new_flags,
1069 anon_vma_name_put(anon_name);
1073 * madvise() returns EAGAIN if kernel resources, such as
1074 * slab, are temporarily unavailable.
1076 if (error == -ENOMEM)
1081 #ifdef CONFIG_MEMORY_FAILURE
1083 * Error injection support for memory error handling.
1085 static int madvise_inject_error(int behavior,
1086 unsigned long start, unsigned long end)
1090 if (!capable(CAP_SYS_ADMIN))
1094 for (; start < end; start += size) {
1099 ret = get_user_pages_fast(start, 1, 0, &page);
1102 pfn = page_to_pfn(page);
1105 * When soft offlining hugepages, after migrating the page
1106 * we dissolve it, therefore in the second loop "page" will
1107 * no longer be a compound page.
1109 size = page_size(compound_head(page));
1111 if (behavior == MADV_SOFT_OFFLINE) {
1112 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1114 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1116 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1118 ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1119 if (ret == -EOPNOTSUPP)
1132 madvise_behavior_valid(int behavior)
1138 case MADV_SEQUENTIAL:
1143 case MADV_DONTNEED_LOCKED:
1147 case MADV_POPULATE_READ:
1148 case MADV_POPULATE_WRITE:
1150 case MADV_MERGEABLE:
1151 case MADV_UNMERGEABLE:
1153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1155 case MADV_NOHUGEPAGE:
1159 case MADV_WIPEONFORK:
1160 case MADV_KEEPONFORK:
1161 #ifdef CONFIG_MEMORY_FAILURE
1162 case MADV_SOFT_OFFLINE:
1173 process_madvise_behavior_valid(int behavior)
1186 * Walk the vmas in range [start,end), and call the visit function on each one.
1187 * The visit function will get start and end parameters that cover the overlap
1188 * between the current vma and the original range. Any unmapped regions in the
1189 * original range will result in this function returning -ENOMEM while still
1190 * calling the visit function on all of the existing vmas in the range.
1191 * Must be called with the mmap_lock held for reading or writing.
1194 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1195 unsigned long end, unsigned long arg,
1196 int (*visit)(struct vm_area_struct *vma,
1197 struct vm_area_struct **prev, unsigned long start,
1198 unsigned long end, unsigned long arg))
1200 struct vm_area_struct *vma;
1201 struct vm_area_struct *prev;
1203 int unmapped_error = 0;
1206 * If the interval [start,end) covers some unmapped address
1207 * ranges, just ignore them, but return -ENOMEM at the end.
1208 * - different from the way of handling in mlock etc.
1210 vma = find_vma_prev(mm, start, &prev);
1211 if (vma && start > vma->vm_start)
1217 /* Still start < end. */
1221 /* Here start < (end|vma->vm_end). */
1222 if (start < vma->vm_start) {
1223 unmapped_error = -ENOMEM;
1224 start = vma->vm_start;
1229 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1234 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1235 error = visit(vma, &prev, start, tmp, arg);
1239 if (prev && start < prev->vm_end)
1240 start = prev->vm_end;
1244 vma = prev->vm_next;
1245 else /* madvise_remove dropped mmap_lock */
1246 vma = find_vma(mm, start);
1249 return unmapped_error;
1252 #ifdef CONFIG_ANON_VMA_NAME
1253 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1254 struct vm_area_struct **prev,
1255 unsigned long start, unsigned long end,
1256 unsigned long anon_name)
1260 /* Only anonymous mappings can be named */
1264 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1265 (struct anon_vma_name *)anon_name);
1268 * madvise() returns EAGAIN if kernel resources, such as
1269 * slab, are temporarily unavailable.
1271 if (error == -ENOMEM)
1276 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1277 unsigned long len_in, struct anon_vma_name *anon_name)
1282 if (start & ~PAGE_MASK)
1284 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1286 /* Check to see whether len was rounded up from small -ve to zero */
1297 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1298 madvise_vma_anon_name);
1300 #endif /* CONFIG_ANON_VMA_NAME */
1302 * The madvise(2) system call.
1304 * Applications can use madvise() to advise the kernel how it should
1305 * handle paging I/O in this VM area. The idea is to help the kernel
1306 * use appropriate read-ahead and caching techniques. The information
1307 * provided is advisory only, and can be safely disregarded by the
1308 * kernel without affecting the correct operation of the application.
1311 * MADV_NORMAL - the default behavior is to read clusters. This
1312 * results in some read-ahead and read-behind.
1313 * MADV_RANDOM - the system should read the minimum amount of data
1314 * on any access, since it is unlikely that the appli-
1315 * cation will need more than what it asks for.
1316 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1317 * once, so they can be aggressively read ahead, and
1318 * can be freed soon after they are accessed.
1319 * MADV_WILLNEED - the application is notifying the system to read
1321 * MADV_DONTNEED - the application is finished with the given range,
1322 * so the kernel can free resources associated with it.
1323 * MADV_FREE - the application marks pages in the given range as lazy free,
1324 * where actual purges are postponed until memory pressure happens.
1325 * MADV_REMOVE - the application wants to free up the given range of
1326 * pages and associated backing store.
1327 * MADV_DONTFORK - omit this area from child's address space when forking:
1328 * typically, to avoid COWing pages pinned by get_user_pages().
1329 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1330 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1331 * range after a fork.
1332 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1333 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1334 * were corrupted by unrecoverable hardware memory failure.
1335 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1336 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1337 * this area with pages of identical content from other such areas.
1338 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1339 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1340 * huge pages in the future. Existing pages might be coalesced and
1341 * new pages might be allocated as THP.
1342 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1343 * transparent huge pages so the existing pages will not be
1344 * coalesced into THP and new pages will not be allocated as THP.
1345 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1346 * from being included in its core dump.
1347 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1348 * MADV_COLD - the application is not expected to use this memory soon,
1349 * deactivate pages in this range so that they can be reclaimed
1350 * easily if memory pressure happens.
1351 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1352 * page out the pages in this range immediately.
1353 * MADV_POPULATE_READ - populate (prefault) page tables readable by
1354 * triggering read faults if required
1355 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1356 * triggering write faults if required
1360 * -EINVAL - start + len < 0, start is not page-aligned,
1361 * "behavior" is not a valid value, or application
1362 * is attempting to release locked or shared pages,
1363 * or the specified address range includes file, Huge TLB,
1364 * MAP_SHARED or VMPFNMAP range.
1365 * -ENOMEM - addresses in the specified range are not currently
1366 * mapped, or are outside the AS of the process.
1367 * -EIO - an I/O error occurred while paging in data.
1368 * -EBADF - map exists, but area maps something that isn't a file.
1369 * -EAGAIN - a kernel resource was temporarily unavailable.
1371 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1377 struct blk_plug plug;
1379 start = untagged_addr(start);
1381 if (!madvise_behavior_valid(behavior))
1384 if (!PAGE_ALIGNED(start))
1386 len = PAGE_ALIGN(len_in);
1388 /* Check to see whether len was rounded up from small -ve to zero */
1399 #ifdef CONFIG_MEMORY_FAILURE
1400 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1401 return madvise_inject_error(behavior, start, start + len_in);
1404 write = madvise_need_mmap_write(behavior);
1406 if (mmap_write_lock_killable(mm))
1412 blk_start_plug(&plug);
1413 error = madvise_walk_vmas(mm, start, end, behavior,
1414 madvise_vma_behavior);
1415 blk_finish_plug(&plug);
1417 mmap_write_unlock(mm);
1419 mmap_read_unlock(mm);
1424 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1426 return do_madvise(current->mm, start, len_in, behavior);
1429 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1430 size_t, vlen, int, behavior, unsigned int, flags)
1433 struct iovec iovstack[UIO_FASTIOV], iovec;
1434 struct iovec *iov = iovstack;
1435 struct iov_iter iter;
1436 struct task_struct *task;
1437 struct mm_struct *mm;
1439 unsigned int f_flags;
1446 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1450 task = pidfd_get_task(pidfd, &f_flags);
1452 ret = PTR_ERR(task);
1456 if (!process_madvise_behavior_valid(behavior)) {
1461 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1462 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1463 if (IS_ERR_OR_NULL(mm)) {
1464 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1469 * Require CAP_SYS_NICE for influencing process performance. Note that
1470 * only non-destructive hints are currently supported.
1472 if (!capable(CAP_SYS_NICE)) {
1477 total_len = iov_iter_count(&iter);
1479 while (iov_iter_count(&iter)) {
1480 iovec = iov_iter_iovec(&iter);
1481 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1482 iovec.iov_len, behavior);
1485 iov_iter_advance(&iter, iovec.iov_len);
1488 ret = (total_len - iov_iter_count(&iter)) ? : ret;
1493 put_task_struct(task);