1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
40 struct madvise_walk_private {
41 struct mmu_gather *tlb;
46 * Any behaviour which results in changes to the vma->vm_flags needs to
47 * take mmap_lock for writing. Others, which simply traverse vmas, need
48 * to only take it for reading.
50 static int madvise_need_mmap_write(int behavior)
56 case MADV_DONTNEED_LOCKED:
60 case MADV_POPULATE_READ:
61 case MADV_POPULATE_WRITE:
64 /* be safe, default to 1. list exceptions explicitly */
69 #ifdef CONFIG_ANON_VMA_NAME
70 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 struct anon_vma_name *anon_name;
75 /* Add 1 for NUL terminator at the end of the anon_name->name */
76 count = strlen(name) + 1;
77 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 kref_init(&anon_name->kref);
80 memcpy(anon_name->name, name, count);
86 void anon_vma_name_free(struct kref *kref)
88 struct anon_vma_name *anon_name =
89 container_of(kref, struct anon_vma_name, kref);
93 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 mmap_assert_locked(vma->vm_mm);
100 return vma->anon_name;
103 /* mmap_lock should be write-locked */
104 static int replace_anon_vma_name(struct vm_area_struct *vma,
105 struct anon_vma_name *anon_name)
107 struct anon_vma_name *orig_name = anon_vma_name(vma);
110 vma->anon_name = NULL;
111 anon_vma_name_put(orig_name);
115 if (anon_vma_name_eq(orig_name, anon_name))
118 vma->anon_name = anon_vma_name_reuse(anon_name);
119 anon_vma_name_put(orig_name);
123 #else /* CONFIG_ANON_VMA_NAME */
124 static int replace_anon_vma_name(struct vm_area_struct *vma,
125 struct anon_vma_name *anon_name)
132 #endif /* CONFIG_ANON_VMA_NAME */
134 * Update the vm_flags on region of a vma, splitting it or merging it as
135 * necessary. Must be called with mmap_sem held for writing;
136 * Caller should ensure anon_name stability by raising its refcount even when
137 * anon_name belongs to a valid vma because this function might free that vma.
139 static int madvise_update_vma(struct vm_area_struct *vma,
140 struct vm_area_struct **prev, unsigned long start,
141 unsigned long end, unsigned long new_flags,
142 struct anon_vma_name *anon_name)
144 struct mm_struct *mm = vma->vm_mm;
148 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
153 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
154 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
155 vma->vm_file, pgoff, vma_policy(vma),
156 vma->vm_userfaultfd_ctx, anon_name);
164 if (start != vma->vm_start) {
165 if (unlikely(mm->map_count >= sysctl_max_map_count))
167 error = __split_vma(mm, vma, start, 1);
172 if (end != vma->vm_end) {
173 if (unlikely(mm->map_count >= sysctl_max_map_count))
175 error = __split_vma(mm, vma, end, 0);
182 * vm_flags is protected by the mmap_lock held in write mode.
184 vma->vm_flags = new_flags;
186 error = replace_anon_vma_name(vma, anon_name);
195 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
196 unsigned long end, struct mm_walk *walk)
199 struct vm_area_struct *vma = walk->private;
201 struct swap_iocb *splug = NULL;
203 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
206 for (index = start; index != end; index += PAGE_SIZE) {
212 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
213 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
214 pte_unmap_unlock(orig_pte, ptl);
216 if (pte_present(pte) || pte_none(pte))
218 entry = pte_to_swp_entry(pte);
219 if (unlikely(non_swap_entry(entry)))
222 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
223 vma, index, false, &splug);
227 swap_read_unplug(splug);
232 static const struct mm_walk_ops swapin_walk_ops = {
233 .pmd_entry = swapin_walk_pmd_entry,
236 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
237 unsigned long start, unsigned long end,
238 struct address_space *mapping)
240 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
241 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
243 struct swap_iocb *splug = NULL;
246 xas_for_each(&xas, page, end_index) {
249 if (!xa_is_value(page))
251 swap = radix_to_swp_entry(page);
252 /* There might be swapin error entries in shmem mapping. */
253 if (non_swap_entry(swap))
258 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
259 NULL, 0, false, &splug);
266 swap_read_unplug(splug);
268 lru_add_drain(); /* Push any new pages onto the LRU now */
270 #endif /* CONFIG_SWAP */
273 * Schedule all required I/O operations. Do not wait for completion.
275 static long madvise_willneed(struct vm_area_struct *vma,
276 struct vm_area_struct **prev,
277 unsigned long start, unsigned long end)
279 struct mm_struct *mm = vma->vm_mm;
280 struct file *file = vma->vm_file;
286 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
287 lru_add_drain(); /* Push any new pages onto the LRU now */
291 if (shmem_mapping(file->f_mapping)) {
292 force_shm_swapin_readahead(vma, start, end,
301 if (IS_DAX(file_inode(file))) {
302 /* no bad return value, but ignore advice */
307 * Filesystem's fadvise may need to take various locks. We need to
308 * explicitly grab a reference because the vma (and hence the
309 * vma's reference to the file) can go away as soon as we drop
312 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
314 offset = (loff_t)(start - vma->vm_start)
315 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
316 mmap_read_unlock(mm);
317 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
323 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
324 unsigned long addr, unsigned long end,
325 struct mm_walk *walk)
327 struct madvise_walk_private *private = walk->private;
328 struct mmu_gather *tlb = private->tlb;
329 bool pageout = private->pageout;
330 struct mm_struct *mm = tlb->mm;
331 struct vm_area_struct *vma = walk->vma;
332 pte_t *orig_pte, *pte, ptent;
334 struct page *page = NULL;
335 LIST_HEAD(page_list);
337 if (fatal_signal_pending(current))
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 if (pmd_trans_huge(*pmd)) {
343 unsigned long next = pmd_addr_end(addr, end);
345 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
346 ptl = pmd_trans_huge_lock(pmd, vma);
351 if (is_huge_zero_pmd(orig_pmd))
354 if (unlikely(!pmd_present(orig_pmd))) {
355 VM_BUG_ON(thp_migration_supported() &&
356 !is_pmd_migration_entry(orig_pmd));
360 page = pmd_page(orig_pmd);
362 /* Do not interfere with other mappings of this page */
363 if (page_mapcount(page) != 1)
366 if (next - addr != HPAGE_PMD_SIZE) {
372 err = split_huge_page(page);
380 if (pmd_young(orig_pmd)) {
381 pmdp_invalidate(vma, addr, pmd);
382 orig_pmd = pmd_mkold(orig_pmd);
384 set_pmd_at(mm, addr, pmd, orig_pmd);
385 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
388 ClearPageReferenced(page);
389 test_and_clear_page_young(page);
391 if (!isolate_lru_page(page)) {
392 if (PageUnevictable(page))
393 putback_lru_page(page);
395 list_add(&page->lru, &page_list);
398 deactivate_page(page);
402 reclaim_pages(&page_list);
407 if (pmd_trans_unstable(pmd))
410 tlb_change_page_size(tlb, PAGE_SIZE);
411 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
412 flush_tlb_batched_pending(mm);
413 arch_enter_lazy_mmu_mode();
414 for (; addr < end; pte++, addr += PAGE_SIZE) {
420 if (!pte_present(ptent))
423 page = vm_normal_page(vma, addr, ptent);
428 * Creating a THP page is expensive so split it only if we
429 * are sure it's worth. Split it if we are only owner.
431 if (PageTransCompound(page)) {
432 if (page_mapcount(page) != 1)
435 if (!trylock_page(page)) {
439 pte_unmap_unlock(orig_pte, ptl);
440 if (split_huge_page(page)) {
443 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
448 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
454 /* Do not interfere with other mappings of this page */
455 if (page_mapcount(page) != 1)
458 VM_BUG_ON_PAGE(PageTransCompound(page), page);
460 if (pte_young(ptent)) {
461 ptent = ptep_get_and_clear_full(mm, addr, pte,
463 ptent = pte_mkold(ptent);
464 set_pte_at(mm, addr, pte, ptent);
465 tlb_remove_tlb_entry(tlb, pte, addr);
469 * We are deactivating a page for accelerating reclaiming.
470 * VM couldn't reclaim the page unless we clear PG_young.
471 * As a side effect, it makes confuse idle-page tracking
472 * because they will miss recent referenced history.
474 ClearPageReferenced(page);
475 test_and_clear_page_young(page);
477 if (!isolate_lru_page(page)) {
478 if (PageUnevictable(page))
479 putback_lru_page(page);
481 list_add(&page->lru, &page_list);
484 deactivate_page(page);
487 arch_leave_lazy_mmu_mode();
488 pte_unmap_unlock(orig_pte, ptl);
490 reclaim_pages(&page_list);
496 static const struct mm_walk_ops cold_walk_ops = {
497 .pmd_entry = madvise_cold_or_pageout_pte_range,
500 static void madvise_cold_page_range(struct mmu_gather *tlb,
501 struct vm_area_struct *vma,
502 unsigned long addr, unsigned long end)
504 struct madvise_walk_private walk_private = {
509 tlb_start_vma(tlb, vma);
510 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
511 tlb_end_vma(tlb, vma);
514 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
516 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
519 static long madvise_cold(struct vm_area_struct *vma,
520 struct vm_area_struct **prev,
521 unsigned long start_addr, unsigned long end_addr)
523 struct mm_struct *mm = vma->vm_mm;
524 struct mmu_gather tlb;
527 if (!can_madv_lru_vma(vma))
531 tlb_gather_mmu(&tlb, mm);
532 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
533 tlb_finish_mmu(&tlb);
538 static void madvise_pageout_page_range(struct mmu_gather *tlb,
539 struct vm_area_struct *vma,
540 unsigned long addr, unsigned long end)
542 struct madvise_walk_private walk_private = {
547 tlb_start_vma(tlb, vma);
548 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
549 tlb_end_vma(tlb, vma);
552 static inline bool can_do_pageout(struct vm_area_struct *vma)
554 if (vma_is_anonymous(vma))
559 * paging out pagecache only for non-anonymous mappings that correspond
560 * to the files the calling process could (if tried) open for writing;
561 * otherwise we'd be including shared non-exclusive mappings, which
562 * opens a side channel.
564 return inode_owner_or_capable(&init_user_ns,
565 file_inode(vma->vm_file)) ||
566 file_permission(vma->vm_file, MAY_WRITE) == 0;
569 static long madvise_pageout(struct vm_area_struct *vma,
570 struct vm_area_struct **prev,
571 unsigned long start_addr, unsigned long end_addr)
573 struct mm_struct *mm = vma->vm_mm;
574 struct mmu_gather tlb;
577 if (!can_madv_lru_vma(vma))
580 if (!can_do_pageout(vma))
584 tlb_gather_mmu(&tlb, mm);
585 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
586 tlb_finish_mmu(&tlb);
591 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
592 unsigned long end, struct mm_walk *walk)
595 struct mmu_gather *tlb = walk->private;
596 struct mm_struct *mm = tlb->mm;
597 struct vm_area_struct *vma = walk->vma;
599 pte_t *orig_pte, *pte, ptent;
604 next = pmd_addr_end(addr, end);
605 if (pmd_trans_huge(*pmd))
606 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
609 if (pmd_trans_unstable(pmd))
612 tlb_change_page_size(tlb, PAGE_SIZE);
613 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
614 flush_tlb_batched_pending(mm);
615 arch_enter_lazy_mmu_mode();
616 for (; addr != end; pte++, addr += PAGE_SIZE) {
622 * If the pte has swp_entry, just clear page table to
623 * prevent swap-in which is more expensive rather than
624 * (page allocation + zeroing).
626 if (!pte_present(ptent)) {
629 entry = pte_to_swp_entry(ptent);
630 if (!non_swap_entry(entry)) {
632 free_swap_and_cache(entry);
633 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
634 } else if (is_hwpoison_entry(entry) ||
635 is_swapin_error_entry(entry)) {
636 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
641 page = vm_normal_page(vma, addr, ptent);
646 * If pmd isn't transhuge but the page is THP and
647 * is owned by only this process, split it and
648 * deactivate all pages.
650 if (PageTransCompound(page)) {
651 if (page_mapcount(page) != 1)
654 if (!trylock_page(page)) {
658 pte_unmap_unlock(orig_pte, ptl);
659 if (split_huge_page(page)) {
662 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
667 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
673 VM_BUG_ON_PAGE(PageTransCompound(page), page);
675 if (PageSwapCache(page) || PageDirty(page)) {
676 if (!trylock_page(page))
679 * If page is shared with others, we couldn't clear
680 * PG_dirty of the page.
682 if (page_mapcount(page) != 1) {
687 if (PageSwapCache(page) && !try_to_free_swap(page)) {
692 ClearPageDirty(page);
696 if (pte_young(ptent) || pte_dirty(ptent)) {
698 * Some of architecture(ex, PPC) don't update TLB
699 * with set_pte_at and tlb_remove_tlb_entry so for
700 * the portability, remap the pte with old|clean
701 * after pte clearing.
703 ptent = ptep_get_and_clear_full(mm, addr, pte,
706 ptent = pte_mkold(ptent);
707 ptent = pte_mkclean(ptent);
708 set_pte_at(mm, addr, pte, ptent);
709 tlb_remove_tlb_entry(tlb, pte, addr);
711 mark_page_lazyfree(page);
715 if (current->mm == mm)
718 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
720 arch_leave_lazy_mmu_mode();
721 pte_unmap_unlock(orig_pte, ptl);
727 static const struct mm_walk_ops madvise_free_walk_ops = {
728 .pmd_entry = madvise_free_pte_range,
731 static int madvise_free_single_vma(struct vm_area_struct *vma,
732 unsigned long start_addr, unsigned long end_addr)
734 struct mm_struct *mm = vma->vm_mm;
735 struct mmu_notifier_range range;
736 struct mmu_gather tlb;
738 /* MADV_FREE works for only anon vma at the moment */
739 if (!vma_is_anonymous(vma))
742 range.start = max(vma->vm_start, start_addr);
743 if (range.start >= vma->vm_end)
745 range.end = min(vma->vm_end, end_addr);
746 if (range.end <= vma->vm_start)
748 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
749 range.start, range.end);
752 tlb_gather_mmu(&tlb, mm);
753 update_hiwater_rss(mm);
755 mmu_notifier_invalidate_range_start(&range);
756 tlb_start_vma(&tlb, vma);
757 walk_page_range(vma->vm_mm, range.start, range.end,
758 &madvise_free_walk_ops, &tlb);
759 tlb_end_vma(&tlb, vma);
760 mmu_notifier_invalidate_range_end(&range);
761 tlb_finish_mmu(&tlb);
767 * Application no longer needs these pages. If the pages are dirty,
768 * it's OK to just throw them away. The app will be more careful about
769 * data it wants to keep. Be sure to free swap resources too. The
770 * zap_page_range call sets things up for shrink_active_list to actually free
771 * these pages later if no one else has touched them in the meantime,
772 * although we could add these pages to a global reuse list for
773 * shrink_active_list to pick up before reclaiming other pages.
775 * NB: This interface discards data rather than pushes it out to swap,
776 * as some implementations do. This has performance implications for
777 * applications like large transactional databases which want to discard
778 * pages in anonymous maps after committing to backing store the data
779 * that was kept in them. There is no reason to write this data out to
780 * the swap area if the application is discarding it.
782 * An interface that causes the system to free clean pages and flush
783 * dirty pages is already available as msync(MS_INVALIDATE).
785 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
786 unsigned long start, unsigned long end)
788 zap_page_range(vma, start, end - start);
792 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
797 if (!is_vm_hugetlb_page(vma)) {
798 unsigned int forbidden = VM_PFNMAP;
800 if (behavior != MADV_DONTNEED_LOCKED)
801 forbidden |= VM_LOCKED;
803 return !(vma->vm_flags & forbidden);
806 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
808 if (start & ~huge_page_mask(hstate_vma(vma)))
811 *end = ALIGN(*end, huge_page_size(hstate_vma(vma)));
815 static long madvise_dontneed_free(struct vm_area_struct *vma,
816 struct vm_area_struct **prev,
817 unsigned long start, unsigned long end,
820 struct mm_struct *mm = vma->vm_mm;
823 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
826 if (!userfaultfd_remove(vma, start, end)) {
827 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
830 vma = find_vma(mm, start);
833 if (start < vma->vm_start) {
835 * This "vma" under revalidation is the one
836 * with the lowest vma->vm_start where start
837 * is also < vma->vm_end. If start <
838 * vma->vm_start it means an hole materialized
839 * in the user address space within the
840 * virtual range passed to MADV_DONTNEED
846 * Potential end adjustment for hugetlb vma is OK as
847 * the check below keeps end within vma.
849 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
852 if (end > vma->vm_end) {
854 * Don't fail if end > vma->vm_end. If the old
855 * vma was split while the mmap_lock was
856 * released the effect of the concurrent
857 * operation may not cause madvise() to
858 * have an undefined result. There may be an
859 * adjacent next vma that we'll walk
860 * next. userfaultfd_remove() will generate an
861 * UFFD_EVENT_REMOVE repetition on the
862 * end-vma->vm_end range, but the manager can
863 * handle a repetition fine.
867 VM_WARN_ON(start >= end);
870 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
871 return madvise_dontneed_single_vma(vma, start, end);
872 else if (behavior == MADV_FREE)
873 return madvise_free_single_vma(vma, start, end);
878 static long madvise_populate(struct vm_area_struct *vma,
879 struct vm_area_struct **prev,
880 unsigned long start, unsigned long end,
883 const bool write = behavior == MADV_POPULATE_WRITE;
884 struct mm_struct *mm = vma->vm_mm;
885 unsigned long tmp_end;
891 while (start < end) {
893 * We might have temporarily dropped the lock. For example,
894 * our VMA might have been split.
896 if (!vma || start >= vma->vm_end) {
897 vma = vma_lookup(mm, start);
902 tmp_end = min_t(unsigned long, end, vma->vm_end);
903 /* Populate (prefault) page tables readable/writable. */
904 pages = faultin_vma_page_range(vma, start, tmp_end, write,
916 case -EINVAL: /* Incompatible mappings / permissions. */
920 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
923 pr_warn_once("%s: unhandled return value: %ld\n",
930 start += pages * PAGE_SIZE;
936 * Application wants to free up the pages and associated backing store.
937 * This is effectively punching a hole into the middle of a file.
939 static long madvise_remove(struct vm_area_struct *vma,
940 struct vm_area_struct **prev,
941 unsigned long start, unsigned long end)
946 struct mm_struct *mm = vma->vm_mm;
948 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
950 if (vma->vm_flags & VM_LOCKED)
955 if (!f || !f->f_mapping || !f->f_mapping->host) {
959 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
962 offset = (loff_t)(start - vma->vm_start)
963 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
966 * Filesystem's fallocate may need to take i_rwsem. We need to
967 * explicitly grab a reference because the vma (and hence the
968 * vma's reference to the file) can go away as soon as we drop
972 if (userfaultfd_remove(vma, start, end)) {
973 /* mmap_lock was not released by userfaultfd_remove() */
974 mmap_read_unlock(mm);
976 error = vfs_fallocate(f,
977 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
978 offset, end - start);
985 * Apply an madvise behavior to a region of a vma. madvise_update_vma
986 * will handle splitting a vm area into separate areas, each area with its own
989 static int madvise_vma_behavior(struct vm_area_struct *vma,
990 struct vm_area_struct **prev,
991 unsigned long start, unsigned long end,
992 unsigned long behavior)
995 struct anon_vma_name *anon_name;
996 unsigned long new_flags = vma->vm_flags;
1000 return madvise_remove(vma, prev, start, end);
1002 return madvise_willneed(vma, prev, start, end);
1004 return madvise_cold(vma, prev, start, end);
1006 return madvise_pageout(vma, prev, start, end);
1009 case MADV_DONTNEED_LOCKED:
1010 return madvise_dontneed_free(vma, prev, start, end, behavior);
1011 case MADV_POPULATE_READ:
1012 case MADV_POPULATE_WRITE:
1013 return madvise_populate(vma, prev, start, end, behavior);
1015 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1017 case MADV_SEQUENTIAL:
1018 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1021 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1024 new_flags |= VM_DONTCOPY;
1027 if (vma->vm_flags & VM_IO)
1029 new_flags &= ~VM_DONTCOPY;
1031 case MADV_WIPEONFORK:
1032 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1033 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1035 new_flags |= VM_WIPEONFORK;
1037 case MADV_KEEPONFORK:
1038 new_flags &= ~VM_WIPEONFORK;
1041 new_flags |= VM_DONTDUMP;
1044 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1046 new_flags &= ~VM_DONTDUMP;
1048 case MADV_MERGEABLE:
1049 case MADV_UNMERGEABLE:
1050 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1055 case MADV_NOHUGEPAGE:
1056 error = hugepage_madvise(vma, &new_flags, behavior);
1062 anon_name = anon_vma_name(vma);
1063 anon_vma_name_get(anon_name);
1064 error = madvise_update_vma(vma, prev, start, end, new_flags,
1066 anon_vma_name_put(anon_name);
1070 * madvise() returns EAGAIN if kernel resources, such as
1071 * slab, are temporarily unavailable.
1073 if (error == -ENOMEM)
1078 #ifdef CONFIG_MEMORY_FAILURE
1080 * Error injection support for memory error handling.
1082 static int madvise_inject_error(int behavior,
1083 unsigned long start, unsigned long end)
1087 if (!capable(CAP_SYS_ADMIN))
1091 for (; start < end; start += size) {
1096 ret = get_user_pages_fast(start, 1, 0, &page);
1099 pfn = page_to_pfn(page);
1102 * When soft offlining hugepages, after migrating the page
1103 * we dissolve it, therefore in the second loop "page" will
1104 * no longer be a compound page.
1106 size = page_size(compound_head(page));
1108 if (behavior == MADV_SOFT_OFFLINE) {
1109 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1111 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1113 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1115 ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1116 if (ret == -EOPNOTSUPP)
1129 madvise_behavior_valid(int behavior)
1135 case MADV_SEQUENTIAL:
1140 case MADV_DONTNEED_LOCKED:
1144 case MADV_POPULATE_READ:
1145 case MADV_POPULATE_WRITE:
1147 case MADV_MERGEABLE:
1148 case MADV_UNMERGEABLE:
1150 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1152 case MADV_NOHUGEPAGE:
1156 case MADV_WIPEONFORK:
1157 case MADV_KEEPONFORK:
1158 #ifdef CONFIG_MEMORY_FAILURE
1159 case MADV_SOFT_OFFLINE:
1170 process_madvise_behavior_valid(int behavior)
1183 * Walk the vmas in range [start,end), and call the visit function on each one.
1184 * The visit function will get start and end parameters that cover the overlap
1185 * between the current vma and the original range. Any unmapped regions in the
1186 * original range will result in this function returning -ENOMEM while still
1187 * calling the visit function on all of the existing vmas in the range.
1188 * Must be called with the mmap_lock held for reading or writing.
1191 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1192 unsigned long end, unsigned long arg,
1193 int (*visit)(struct vm_area_struct *vma,
1194 struct vm_area_struct **prev, unsigned long start,
1195 unsigned long end, unsigned long arg))
1197 struct vm_area_struct *vma;
1198 struct vm_area_struct *prev;
1200 int unmapped_error = 0;
1203 * If the interval [start,end) covers some unmapped address
1204 * ranges, just ignore them, but return -ENOMEM at the end.
1205 * - different from the way of handling in mlock etc.
1207 vma = find_vma_prev(mm, start, &prev);
1208 if (vma && start > vma->vm_start)
1214 /* Still start < end. */
1218 /* Here start < (end|vma->vm_end). */
1219 if (start < vma->vm_start) {
1220 unmapped_error = -ENOMEM;
1221 start = vma->vm_start;
1226 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1231 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1232 error = visit(vma, &prev, start, tmp, arg);
1236 if (prev && start < prev->vm_end)
1237 start = prev->vm_end;
1241 vma = prev->vm_next;
1242 else /* madvise_remove dropped mmap_lock */
1243 vma = find_vma(mm, start);
1246 return unmapped_error;
1249 #ifdef CONFIG_ANON_VMA_NAME
1250 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1251 struct vm_area_struct **prev,
1252 unsigned long start, unsigned long end,
1253 unsigned long anon_name)
1257 /* Only anonymous mappings can be named */
1261 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1262 (struct anon_vma_name *)anon_name);
1265 * madvise() returns EAGAIN if kernel resources, such as
1266 * slab, are temporarily unavailable.
1268 if (error == -ENOMEM)
1273 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1274 unsigned long len_in, struct anon_vma_name *anon_name)
1279 if (start & ~PAGE_MASK)
1281 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1283 /* Check to see whether len was rounded up from small -ve to zero */
1294 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1295 madvise_vma_anon_name);
1297 #endif /* CONFIG_ANON_VMA_NAME */
1299 * The madvise(2) system call.
1301 * Applications can use madvise() to advise the kernel how it should
1302 * handle paging I/O in this VM area. The idea is to help the kernel
1303 * use appropriate read-ahead and caching techniques. The information
1304 * provided is advisory only, and can be safely disregarded by the
1305 * kernel without affecting the correct operation of the application.
1308 * MADV_NORMAL - the default behavior is to read clusters. This
1309 * results in some read-ahead and read-behind.
1310 * MADV_RANDOM - the system should read the minimum amount of data
1311 * on any access, since it is unlikely that the appli-
1312 * cation will need more than what it asks for.
1313 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1314 * once, so they can be aggressively read ahead, and
1315 * can be freed soon after they are accessed.
1316 * MADV_WILLNEED - the application is notifying the system to read
1318 * MADV_DONTNEED - the application is finished with the given range,
1319 * so the kernel can free resources associated with it.
1320 * MADV_FREE - the application marks pages in the given range as lazy free,
1321 * where actual purges are postponed until memory pressure happens.
1322 * MADV_REMOVE - the application wants to free up the given range of
1323 * pages and associated backing store.
1324 * MADV_DONTFORK - omit this area from child's address space when forking:
1325 * typically, to avoid COWing pages pinned by get_user_pages().
1326 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1327 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1328 * range after a fork.
1329 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1330 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1331 * were corrupted by unrecoverable hardware memory failure.
1332 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1333 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1334 * this area with pages of identical content from other such areas.
1335 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1336 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1337 * huge pages in the future. Existing pages might be coalesced and
1338 * new pages might be allocated as THP.
1339 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1340 * transparent huge pages so the existing pages will not be
1341 * coalesced into THP and new pages will not be allocated as THP.
1342 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1343 * from being included in its core dump.
1344 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1345 * MADV_COLD - the application is not expected to use this memory soon,
1346 * deactivate pages in this range so that they can be reclaimed
1347 * easily if memory pressure happens.
1348 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1349 * page out the pages in this range immediately.
1350 * MADV_POPULATE_READ - populate (prefault) page tables readable by
1351 * triggering read faults if required
1352 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1353 * triggering write faults if required
1357 * -EINVAL - start + len < 0, start is not page-aligned,
1358 * "behavior" is not a valid value, or application
1359 * is attempting to release locked or shared pages,
1360 * or the specified address range includes file, Huge TLB,
1361 * MAP_SHARED or VMPFNMAP range.
1362 * -ENOMEM - addresses in the specified range are not currently
1363 * mapped, or are outside the AS of the process.
1364 * -EIO - an I/O error occurred while paging in data.
1365 * -EBADF - map exists, but area maps something that isn't a file.
1366 * -EAGAIN - a kernel resource was temporarily unavailable.
1368 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1374 struct blk_plug plug;
1376 start = untagged_addr(start);
1378 if (!madvise_behavior_valid(behavior))
1381 if (!PAGE_ALIGNED(start))
1383 len = PAGE_ALIGN(len_in);
1385 /* Check to see whether len was rounded up from small -ve to zero */
1396 #ifdef CONFIG_MEMORY_FAILURE
1397 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1398 return madvise_inject_error(behavior, start, start + len_in);
1401 write = madvise_need_mmap_write(behavior);
1403 if (mmap_write_lock_killable(mm))
1409 blk_start_plug(&plug);
1410 error = madvise_walk_vmas(mm, start, end, behavior,
1411 madvise_vma_behavior);
1412 blk_finish_plug(&plug);
1414 mmap_write_unlock(mm);
1416 mmap_read_unlock(mm);
1421 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1423 return do_madvise(current->mm, start, len_in, behavior);
1426 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1427 size_t, vlen, int, behavior, unsigned int, flags)
1430 struct iovec iovstack[UIO_FASTIOV], iovec;
1431 struct iovec *iov = iovstack;
1432 struct iov_iter iter;
1433 struct task_struct *task;
1434 struct mm_struct *mm;
1436 unsigned int f_flags;
1443 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1447 task = pidfd_get_task(pidfd, &f_flags);
1449 ret = PTR_ERR(task);
1453 if (!process_madvise_behavior_valid(behavior)) {
1458 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1459 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1460 if (IS_ERR_OR_NULL(mm)) {
1461 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1466 * Require CAP_SYS_NICE for influencing process performance. Note that
1467 * only non-destructive hints are currently supported.
1469 if (!capable(CAP_SYS_NICE)) {
1474 total_len = iov_iter_count(&iter);
1476 while (iov_iter_count(&iter)) {
1477 iovec = iov_iter_iovec(&iter);
1478 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1479 iovec.iov_len, behavior);
1482 iov_iter_advance(&iter, iovec.iov_len);
1485 ret = (total_len - iov_iter_count(&iter)) ? : ret;
1490 put_task_struct(task);