Merge "kfence: Use pt_regs to generate stack trace on faults" into tizen
[platform/kernel/linux-rpi.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *      linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/uio.h>
22 #include <linux/ksm.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/pagewalk.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/mmu_notifier.h>
32
33 #include <asm/tlb.h>
34
35 #include "internal.h"
36
37 struct madvise_walk_private {
38         struct mmu_gather *tlb;
39         bool pageout;
40 };
41
42 /*
43  * Any behaviour which results in changes to the vma->vm_flags needs to
44  * take mmap_lock for writing. Others, which simply traverse vmas, need
45  * to only take it for reading.
46  */
47 static int madvise_need_mmap_write(int behavior)
48 {
49         switch (behavior) {
50         case MADV_REMOVE:
51         case MADV_WILLNEED:
52         case MADV_DONTNEED:
53         case MADV_COLD:
54         case MADV_PAGEOUT:
55         case MADV_FREE:
56                 return 0;
57         default:
58                 /* be safe, default to 1. list exceptions explicitly */
59                 return 1;
60         }
61 }
62
63 /*
64  * We can potentially split a vm area into separate
65  * areas, each area with its own behavior.
66  */
67 static long madvise_behavior(struct vm_area_struct *vma,
68                      struct vm_area_struct **prev,
69                      unsigned long start, unsigned long end, int behavior)
70 {
71         struct mm_struct *mm = vma->vm_mm;
72         int error = 0;
73         pgoff_t pgoff;
74         unsigned long new_flags = vma->vm_flags;
75
76         switch (behavior) {
77         case MADV_NORMAL:
78                 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
79                 break;
80         case MADV_SEQUENTIAL:
81                 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
82                 break;
83         case MADV_RANDOM:
84                 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
85                 break;
86         case MADV_DONTFORK:
87                 new_flags |= VM_DONTCOPY;
88                 break;
89         case MADV_DOFORK:
90                 if (vma->vm_flags & VM_IO) {
91                         error = -EINVAL;
92                         goto out;
93                 }
94                 new_flags &= ~VM_DONTCOPY;
95                 break;
96         case MADV_WIPEONFORK:
97                 /* MADV_WIPEONFORK is only supported on anonymous memory. */
98                 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
99                         error = -EINVAL;
100                         goto out;
101                 }
102                 new_flags |= VM_WIPEONFORK;
103                 break;
104         case MADV_KEEPONFORK:
105                 new_flags &= ~VM_WIPEONFORK;
106                 break;
107         case MADV_DONTDUMP:
108                 new_flags |= VM_DONTDUMP;
109                 break;
110         case MADV_DODUMP:
111                 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
112                         error = -EINVAL;
113                         goto out;
114                 }
115                 new_flags &= ~VM_DONTDUMP;
116                 break;
117         case MADV_MERGEABLE:
118         case MADV_UNMERGEABLE:
119                 error = ksm_madvise(vma, start, end, behavior, &new_flags);
120                 if (error)
121                         goto out_convert_errno;
122                 break;
123         case MADV_HUGEPAGE:
124         case MADV_NOHUGEPAGE:
125                 error = hugepage_madvise(vma, &new_flags, behavior);
126                 if (error)
127                         goto out_convert_errno;
128                 break;
129         }
130
131         if (new_flags == vma->vm_flags) {
132                 *prev = vma;
133                 goto out;
134         }
135
136         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
137         *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
138                           vma->vm_file, pgoff, vma_policy(vma),
139                           vma->vm_userfaultfd_ctx);
140         if (*prev) {
141                 vma = *prev;
142                 goto success;
143         }
144
145         *prev = vma;
146
147         if (start != vma->vm_start) {
148                 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
149                         error = -ENOMEM;
150                         goto out;
151                 }
152                 error = __split_vma(mm, vma, start, 1);
153                 if (error)
154                         goto out_convert_errno;
155         }
156
157         if (end != vma->vm_end) {
158                 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
159                         error = -ENOMEM;
160                         goto out;
161                 }
162                 error = __split_vma(mm, vma, end, 0);
163                 if (error)
164                         goto out_convert_errno;
165         }
166
167 success:
168         /*
169          * vm_flags is protected by the mmap_lock held in write mode.
170          */
171         vma->vm_flags = new_flags;
172
173 out_convert_errno:
174         /*
175          * madvise() returns EAGAIN if kernel resources, such as
176          * slab, are temporarily unavailable.
177          */
178         if (error == -ENOMEM)
179                 error = -EAGAIN;
180 out:
181         return error;
182 }
183
184 #ifdef CONFIG_SWAP
185 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
186         unsigned long end, struct mm_walk *walk)
187 {
188         pte_t *orig_pte;
189         struct vm_area_struct *vma = walk->private;
190         unsigned long index;
191
192         if (pmd_none_or_trans_huge_or_clear_bad(pmd))
193                 return 0;
194
195         for (index = start; index != end; index += PAGE_SIZE) {
196                 pte_t pte;
197                 swp_entry_t entry;
198                 struct page *page;
199                 spinlock_t *ptl;
200
201                 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
202                 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
203                 pte_unmap_unlock(orig_pte, ptl);
204
205                 if (pte_present(pte) || pte_none(pte))
206                         continue;
207                 entry = pte_to_swp_entry(pte);
208                 if (unlikely(non_swap_entry(entry)))
209                         continue;
210
211                 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
212                                                         vma, index, false);
213                 if (page)
214                         put_page(page);
215         }
216
217         return 0;
218 }
219
220 static const struct mm_walk_ops swapin_walk_ops = {
221         .pmd_entry              = swapin_walk_pmd_entry,
222 };
223
224 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
225                 unsigned long start, unsigned long end,
226                 struct address_space *mapping)
227 {
228         XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
229         pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
230         struct page *page;
231
232         rcu_read_lock();
233         xas_for_each(&xas, page, end_index) {
234                 swp_entry_t swap;
235
236                 if (!xa_is_value(page))
237                         continue;
238                 xas_pause(&xas);
239                 rcu_read_unlock();
240
241                 swap = radix_to_swp_entry(page);
242                 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
243                                                         NULL, 0, false);
244                 if (page)
245                         put_page(page);
246
247                 rcu_read_lock();
248         }
249         rcu_read_unlock();
250
251         lru_add_drain();        /* Push any new pages onto the LRU now */
252 }
253 #endif          /* CONFIG_SWAP */
254
255 /*
256  * Schedule all required I/O operations.  Do not wait for completion.
257  */
258 static long madvise_willneed(struct vm_area_struct *vma,
259                              struct vm_area_struct **prev,
260                              unsigned long start, unsigned long end)
261 {
262         struct mm_struct *mm = vma->vm_mm;
263         struct file *file = vma->vm_file;
264         loff_t offset;
265
266         *prev = vma;
267 #ifdef CONFIG_SWAP
268         if (!file) {
269                 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
270                 lru_add_drain(); /* Push any new pages onto the LRU now */
271                 return 0;
272         }
273
274         if (shmem_mapping(file->f_mapping)) {
275                 force_shm_swapin_readahead(vma, start, end,
276                                         file->f_mapping);
277                 return 0;
278         }
279 #else
280         if (!file)
281                 return -EBADF;
282 #endif
283
284         if (IS_DAX(file_inode(file))) {
285                 /* no bad return value, but ignore advice */
286                 return 0;
287         }
288
289         /*
290          * Filesystem's fadvise may need to take various locks.  We need to
291          * explicitly grab a reference because the vma (and hence the
292          * vma's reference to the file) can go away as soon as we drop
293          * mmap_lock.
294          */
295         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
296         get_file(file);
297         offset = (loff_t)(start - vma->vm_start)
298                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
299         mmap_read_unlock(mm);
300         vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
301         fput(file);
302         mmap_read_lock(mm);
303         return 0;
304 }
305
306 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
307                                 unsigned long addr, unsigned long end,
308                                 struct mm_walk *walk)
309 {
310         struct madvise_walk_private *private = walk->private;
311         struct mmu_gather *tlb = private->tlb;
312         bool pageout = private->pageout;
313         struct mm_struct *mm = tlb->mm;
314         struct vm_area_struct *vma = walk->vma;
315         pte_t *orig_pte, *pte, ptent;
316         spinlock_t *ptl;
317         struct page *page = NULL;
318         LIST_HEAD(page_list);
319
320         if (fatal_signal_pending(current))
321                 return -EINTR;
322
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324         if (pmd_trans_huge(*pmd)) {
325                 pmd_t orig_pmd;
326                 unsigned long next = pmd_addr_end(addr, end);
327
328                 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
329                 ptl = pmd_trans_huge_lock(pmd, vma);
330                 if (!ptl)
331                         return 0;
332
333                 orig_pmd = *pmd;
334                 if (is_huge_zero_pmd(orig_pmd))
335                         goto huge_unlock;
336
337                 if (unlikely(!pmd_present(orig_pmd))) {
338                         VM_BUG_ON(thp_migration_supported() &&
339                                         !is_pmd_migration_entry(orig_pmd));
340                         goto huge_unlock;
341                 }
342
343                 page = pmd_page(orig_pmd);
344
345                 /* Do not interfere with other mappings of this page */
346                 if (page_mapcount(page) != 1)
347                         goto huge_unlock;
348
349                 if (next - addr != HPAGE_PMD_SIZE) {
350                         int err;
351
352                         get_page(page);
353                         spin_unlock(ptl);
354                         lock_page(page);
355                         err = split_huge_page(page);
356                         unlock_page(page);
357                         put_page(page);
358                         if (!err)
359                                 goto regular_page;
360                         return 0;
361                 }
362
363                 if (pmd_young(orig_pmd)) {
364                         pmdp_invalidate(vma, addr, pmd);
365                         orig_pmd = pmd_mkold(orig_pmd);
366
367                         set_pmd_at(mm, addr, pmd, orig_pmd);
368                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
369                 }
370
371                 ClearPageReferenced(page);
372                 test_and_clear_page_young(page);
373                 if (pageout) {
374                         if (!isolate_lru_page(page)) {
375                                 if (PageUnevictable(page))
376                                         putback_lru_page(page);
377                                 else
378                                         list_add(&page->lru, &page_list);
379                         }
380                 } else
381                         deactivate_page(page);
382 huge_unlock:
383                 spin_unlock(ptl);
384                 if (pageout)
385                         reclaim_pages(&page_list);
386                 return 0;
387         }
388
389 regular_page:
390         if (pmd_trans_unstable(pmd))
391                 return 0;
392 #endif
393         tlb_change_page_size(tlb, PAGE_SIZE);
394         orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
395         flush_tlb_batched_pending(mm);
396         arch_enter_lazy_mmu_mode();
397         for (; addr < end; pte++, addr += PAGE_SIZE) {
398                 ptent = *pte;
399
400                 if (pte_none(ptent))
401                         continue;
402
403                 if (!pte_present(ptent))
404                         continue;
405
406                 page = vm_normal_page(vma, addr, ptent);
407                 if (!page)
408                         continue;
409
410 #ifdef CONFIG_FINEGRAINED_THP
411                 if (pte_cont(ptent))
412                         split_huge_pte_address(vma, addr, false, NULL);
413 #endif
414
415                 /*
416                  * Creating a THP page is expensive so split it only if we
417                  * are sure it's worth. Split it if we are only owner.
418                  */
419                 if (PageTransCompound(page)) {
420                         if (page_mapcount(page) != 1)
421                                 break;
422                         get_page(page);
423                         if (!trylock_page(page)) {
424                                 put_page(page);
425                                 break;
426                         }
427                         pte_unmap_unlock(orig_pte, ptl);
428                         if (split_huge_page(page)) {
429                                 unlock_page(page);
430                                 put_page(page);
431                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
432                                 break;
433                         }
434                         unlock_page(page);
435                         put_page(page);
436                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
437                         pte--;
438                         addr -= PAGE_SIZE;
439                         continue;
440                 }
441
442                 /* Do not interfere with other mappings of this page */
443                 if (page_mapcount(page) != 1)
444                         continue;
445
446                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
447
448                 if (pte_young(ptent)) {
449                         ptent = ptep_get_and_clear_full(mm, addr, pte,
450                                                         tlb->fullmm);
451                         ptent = pte_mkold(ptent);
452                         set_pte_at(mm, addr, pte, ptent);
453                         tlb_remove_tlb_entry(tlb, pte, addr);
454                 }
455
456                 /*
457                  * We are deactivating a page for accelerating reclaiming.
458                  * VM couldn't reclaim the page unless we clear PG_young.
459                  * As a side effect, it makes confuse idle-page tracking
460                  * because they will miss recent referenced history.
461                  */
462                 ClearPageReferenced(page);
463                 test_and_clear_page_young(page);
464                 if (pageout) {
465                         if (!isolate_lru_page(page)) {
466                                 if (PageUnevictable(page))
467                                         putback_lru_page(page);
468                                 else
469                                         list_add(&page->lru, &page_list);
470                         }
471                 } else
472                         deactivate_page(page);
473         }
474
475         arch_leave_lazy_mmu_mode();
476         pte_unmap_unlock(orig_pte, ptl);
477         if (pageout)
478                 reclaim_pages(&page_list);
479         cond_resched();
480
481         return 0;
482 }
483
484 static const struct mm_walk_ops cold_walk_ops = {
485         .pmd_entry = madvise_cold_or_pageout_pte_range,
486 };
487
488 static void madvise_cold_page_range(struct mmu_gather *tlb,
489                              struct vm_area_struct *vma,
490                              unsigned long addr, unsigned long end)
491 {
492         struct madvise_walk_private walk_private = {
493                 .pageout = false,
494                 .tlb = tlb,
495         };
496
497         tlb_start_vma(tlb, vma);
498         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
499         tlb_end_vma(tlb, vma);
500 }
501
502 static long madvise_cold(struct vm_area_struct *vma,
503                         struct vm_area_struct **prev,
504                         unsigned long start_addr, unsigned long end_addr)
505 {
506         struct mm_struct *mm = vma->vm_mm;
507         struct mmu_gather tlb;
508
509         *prev = vma;
510         if (!can_madv_lru_vma(vma))
511                 return -EINVAL;
512
513         lru_add_drain();
514         tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
515         madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
516         tlb_finish_mmu(&tlb, start_addr, end_addr);
517
518         return 0;
519 }
520
521 static void madvise_pageout_page_range(struct mmu_gather *tlb,
522                              struct vm_area_struct *vma,
523                              unsigned long addr, unsigned long end)
524 {
525         struct madvise_walk_private walk_private = {
526                 .pageout = true,
527                 .tlb = tlb,
528         };
529
530         tlb_start_vma(tlb, vma);
531         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
532         tlb_end_vma(tlb, vma);
533 }
534
535 static inline bool can_do_pageout(struct vm_area_struct *vma)
536 {
537         if (vma_is_anonymous(vma))
538                 return true;
539         if (!vma->vm_file)
540                 return false;
541         /*
542          * paging out pagecache only for non-anonymous mappings that correspond
543          * to the files the calling process could (if tried) open for writing;
544          * otherwise we'd be including shared non-exclusive mappings, which
545          * opens a side channel.
546          */
547         return inode_owner_or_capable(file_inode(vma->vm_file)) ||
548                 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
549 }
550
551 static long madvise_pageout(struct vm_area_struct *vma,
552                         struct vm_area_struct **prev,
553                         unsigned long start_addr, unsigned long end_addr)
554 {
555         struct mm_struct *mm = vma->vm_mm;
556         struct mmu_gather tlb;
557
558         *prev = vma;
559         if (!can_madv_lru_vma(vma))
560                 return -EINVAL;
561
562         if (!can_do_pageout(vma))
563                 return 0;
564
565         lru_add_drain();
566         tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
567         madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
568         tlb_finish_mmu(&tlb, start_addr, end_addr);
569
570         return 0;
571 }
572
573 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
574                                 unsigned long end, struct mm_walk *walk)
575
576 {
577         struct mmu_gather *tlb = walk->private;
578         struct mm_struct *mm = tlb->mm;
579         struct vm_area_struct *vma = walk->vma;
580         spinlock_t *ptl;
581         pte_t *orig_pte, *pte, ptent;
582         struct page *page;
583         int nr_swap = 0;
584         unsigned long next;
585
586         next = pmd_addr_end(addr, end);
587         if (pmd_trans_huge(*pmd))
588                 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
589                         goto next;
590
591         if (pmd_trans_unstable(pmd))
592                 return 0;
593
594         tlb_change_page_size(tlb, PAGE_SIZE);
595         orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
596         flush_tlb_batched_pending(mm);
597         arch_enter_lazy_mmu_mode();
598         for (; addr != end; pte++, addr += PAGE_SIZE) {
599                 ptent = *pte;
600
601                 if (pte_none(ptent))
602                         continue;
603                 /*
604                  * If the pte has swp_entry, just clear page table to
605                  * prevent swap-in which is more expensive rather than
606                  * (page allocation + zeroing).
607                  */
608                 if (!pte_present(ptent)) {
609                         swp_entry_t entry;
610
611                         entry = pte_to_swp_entry(ptent);
612                         if (non_swap_entry(entry))
613                                 continue;
614                         nr_swap--;
615                         free_swap_and_cache(entry);
616                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
617                         continue;
618                 }
619
620                 page = vm_normal_page(vma, addr, ptent);
621                 if (!page)
622                         continue;
623
624 #ifdef CONFIG_FINEGRAINED_THP
625                 if (pte_cont(ptent))
626                         split_huge_pte_address(vma, addr, false, NULL);
627 #endif /* CONFIG_FINEGRAINED_THP */
628
629                 /*
630                  * If pmd isn't transhuge but the page is THP and
631                  * is owned by only this process, split it and
632                  * deactivate all pages.
633                  */
634                 if (PageTransCompound(page)) {
635                         if (page_mapcount(page) != 1)
636                                 goto out;
637                         get_page(page);
638                         if (!trylock_page(page)) {
639                                 put_page(page);
640                                 goto out;
641                         }
642                         pte_unmap_unlock(orig_pte, ptl);
643                         if (split_huge_page(page)) {
644                                 unlock_page(page);
645                                 put_page(page);
646                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
647                                 goto out;
648                         }
649                         unlock_page(page);
650                         put_page(page);
651                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
652                         pte--;
653                         addr -= PAGE_SIZE;
654                         continue;
655                 }
656
657                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
658
659                 if (PageSwapCache(page) || PageDirty(page)) {
660                         if (!trylock_page(page))
661                                 continue;
662                         /*
663                          * If page is shared with others, we couldn't clear
664                          * PG_dirty of the page.
665                          */
666                         if (page_mapcount(page) != 1) {
667                                 unlock_page(page);
668                                 continue;
669                         }
670
671                         if (PageSwapCache(page) && !try_to_free_swap(page)) {
672                                 unlock_page(page);
673                                 continue;
674                         }
675
676                         ClearPageDirty(page);
677                         unlock_page(page);
678                 }
679
680                 if (pte_young(ptent) || pte_dirty(ptent)) {
681                         /*
682                          * Some of architecture(ex, PPC) don't update TLB
683                          * with set_pte_at and tlb_remove_tlb_entry so for
684                          * the portability, remap the pte with old|clean
685                          * after pte clearing.
686                          */
687                         ptent = ptep_get_and_clear_full(mm, addr, pte,
688                                                         tlb->fullmm);
689
690                         ptent = pte_mkold(ptent);
691                         ptent = pte_mkclean(ptent);
692                         set_pte_at(mm, addr, pte, ptent);
693                         tlb_remove_tlb_entry(tlb, pte, addr);
694                 }
695                 mark_page_lazyfree(page);
696         }
697 out:
698         if (nr_swap) {
699                 if (current->mm == mm)
700                         sync_mm_rss(mm);
701
702                 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
703         }
704         arch_leave_lazy_mmu_mode();
705         pte_unmap_unlock(orig_pte, ptl);
706         cond_resched();
707 next:
708         return 0;
709 }
710
711 static const struct mm_walk_ops madvise_free_walk_ops = {
712         .pmd_entry              = madvise_free_pte_range,
713 };
714
715 static int madvise_free_single_vma(struct vm_area_struct *vma,
716                         unsigned long start_addr, unsigned long end_addr)
717 {
718         struct mm_struct *mm = vma->vm_mm;
719         struct mmu_notifier_range range;
720         struct mmu_gather tlb;
721
722         /* MADV_FREE works for only anon vma at the moment */
723         if (!vma_is_anonymous(vma))
724                 return -EINVAL;
725
726         range.start = max(vma->vm_start, start_addr);
727         if (range.start >= vma->vm_end)
728                 return -EINVAL;
729         range.end = min(vma->vm_end, end_addr);
730         if (range.end <= vma->vm_start)
731                 return -EINVAL;
732         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
733                                 range.start, range.end);
734
735         lru_add_drain();
736         tlb_gather_mmu(&tlb, mm, range.start, range.end);
737         update_hiwater_rss(mm);
738
739         mmu_notifier_invalidate_range_start(&range);
740         tlb_start_vma(&tlb, vma);
741         walk_page_range(vma->vm_mm, range.start, range.end,
742                         &madvise_free_walk_ops, &tlb);
743         tlb_end_vma(&tlb, vma);
744         mmu_notifier_invalidate_range_end(&range);
745         tlb_finish_mmu(&tlb, range.start, range.end);
746
747         return 0;
748 }
749
750 /*
751  * Application no longer needs these pages.  If the pages are dirty,
752  * it's OK to just throw them away.  The app will be more careful about
753  * data it wants to keep.  Be sure to free swap resources too.  The
754  * zap_page_range call sets things up for shrink_active_list to actually free
755  * these pages later if no one else has touched them in the meantime,
756  * although we could add these pages to a global reuse list for
757  * shrink_active_list to pick up before reclaiming other pages.
758  *
759  * NB: This interface discards data rather than pushes it out to swap,
760  * as some implementations do.  This has performance implications for
761  * applications like large transactional databases which want to discard
762  * pages in anonymous maps after committing to backing store the data
763  * that was kept in them.  There is no reason to write this data out to
764  * the swap area if the application is discarding it.
765  *
766  * An interface that causes the system to free clean pages and flush
767  * dirty pages is already available as msync(MS_INVALIDATE).
768  */
769 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
770                                         unsigned long start, unsigned long end)
771 {
772         zap_page_range(vma, start, end - start);
773         return 0;
774 }
775
776 static long madvise_dontneed_free(struct vm_area_struct *vma,
777                                   struct vm_area_struct **prev,
778                                   unsigned long start, unsigned long end,
779                                   int behavior)
780 {
781         struct mm_struct *mm = vma->vm_mm;
782
783         *prev = vma;
784         if (!can_madv_lru_vma(vma))
785                 return -EINVAL;
786
787         if (!userfaultfd_remove(vma, start, end)) {
788                 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
789
790                 mmap_read_lock(mm);
791                 vma = find_vma(mm, start);
792                 if (!vma)
793                         return -ENOMEM;
794                 if (start < vma->vm_start) {
795                         /*
796                          * This "vma" under revalidation is the one
797                          * with the lowest vma->vm_start where start
798                          * is also < vma->vm_end. If start <
799                          * vma->vm_start it means an hole materialized
800                          * in the user address space within the
801                          * virtual range passed to MADV_DONTNEED
802                          * or MADV_FREE.
803                          */
804                         return -ENOMEM;
805                 }
806                 if (!can_madv_lru_vma(vma))
807                         return -EINVAL;
808                 if (end > vma->vm_end) {
809                         /*
810                          * Don't fail if end > vma->vm_end. If the old
811                          * vma was splitted while the mmap_lock was
812                          * released the effect of the concurrent
813                          * operation may not cause madvise() to
814                          * have an undefined result. There may be an
815                          * adjacent next vma that we'll walk
816                          * next. userfaultfd_remove() will generate an
817                          * UFFD_EVENT_REMOVE repetition on the
818                          * end-vma->vm_end range, but the manager can
819                          * handle a repetition fine.
820                          */
821                         end = vma->vm_end;
822                 }
823                 VM_WARN_ON(start >= end);
824         }
825
826         if (behavior == MADV_DONTNEED)
827                 return madvise_dontneed_single_vma(vma, start, end);
828         else if (behavior == MADV_FREE)
829                 return madvise_free_single_vma(vma, start, end);
830         else
831                 return -EINVAL;
832 }
833
834 /*
835  * Application wants to free up the pages and associated backing store.
836  * This is effectively punching a hole into the middle of a file.
837  */
838 static long madvise_remove(struct vm_area_struct *vma,
839                                 struct vm_area_struct **prev,
840                                 unsigned long start, unsigned long end)
841 {
842         loff_t offset;
843         int error;
844         struct file *f;
845         struct mm_struct *mm = vma->vm_mm;
846
847         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
848
849         if (vma->vm_flags & VM_LOCKED)
850                 return -EINVAL;
851
852         f = vma->vm_file;
853
854         if (!f || !f->f_mapping || !f->f_mapping->host) {
855                         return -EINVAL;
856         }
857
858         if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
859                 return -EACCES;
860
861         offset = (loff_t)(start - vma->vm_start)
862                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
863
864         /*
865          * Filesystem's fallocate may need to take i_mutex.  We need to
866          * explicitly grab a reference because the vma (and hence the
867          * vma's reference to the file) can go away as soon as we drop
868          * mmap_lock.
869          */
870         get_file(f);
871         if (userfaultfd_remove(vma, start, end)) {
872                 /* mmap_lock was not released by userfaultfd_remove() */
873                 mmap_read_unlock(mm);
874         }
875         error = vfs_fallocate(f,
876                                 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
877                                 offset, end - start);
878         fput(f);
879         mmap_read_lock(mm);
880         return error;
881 }
882
883 #ifdef CONFIG_MEMORY_FAILURE
884 /*
885  * Error injection support for memory error handling.
886  */
887 static int madvise_inject_error(int behavior,
888                 unsigned long start, unsigned long end)
889 {
890         struct zone *zone;
891         unsigned long size;
892
893         if (!capable(CAP_SYS_ADMIN))
894                 return -EPERM;
895
896
897         for (; start < end; start += size) {
898                 unsigned long pfn;
899                 struct page *page;
900                 int ret;
901
902                 ret = get_user_pages_fast(start, 1, 0, &page);
903                 if (ret != 1)
904                         return ret;
905                 pfn = page_to_pfn(page);
906
907                 /*
908                  * When soft offlining hugepages, after migrating the page
909                  * we dissolve it, therefore in the second loop "page" will
910                  * no longer be a compound page.
911                  */
912                 size = page_size(compound_head(page));
913
914                 if (behavior == MADV_SOFT_OFFLINE) {
915                         pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
916                                  pfn, start);
917                         ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
918                 } else {
919                         pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
920                                  pfn, start);
921                         ret = memory_failure(pfn, MF_COUNT_INCREASED);
922                 }
923
924                 if (ret)
925                         return ret;
926         }
927
928         /* Ensure that all poisoned pages are removed from per-cpu lists */
929         for_each_populated_zone(zone)
930                 drain_all_pages(zone);
931
932         return 0;
933 }
934 #endif
935
936 static long
937 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
938                 unsigned long start, unsigned long end, int behavior)
939 {
940         switch (behavior) {
941         case MADV_REMOVE:
942                 return madvise_remove(vma, prev, start, end);
943         case MADV_WILLNEED:
944                 return madvise_willneed(vma, prev, start, end);
945         case MADV_COLD:
946                 return madvise_cold(vma, prev, start, end);
947         case MADV_PAGEOUT:
948                 return madvise_pageout(vma, prev, start, end);
949         case MADV_FREE:
950         case MADV_DONTNEED:
951                 return madvise_dontneed_free(vma, prev, start, end, behavior);
952         default:
953                 return madvise_behavior(vma, prev, start, end, behavior);
954         }
955 }
956
957 static bool
958 madvise_behavior_valid(int behavior)
959 {
960         switch (behavior) {
961         case MADV_DOFORK:
962         case MADV_DONTFORK:
963         case MADV_NORMAL:
964         case MADV_SEQUENTIAL:
965         case MADV_RANDOM:
966         case MADV_REMOVE:
967         case MADV_WILLNEED:
968         case MADV_DONTNEED:
969         case MADV_FREE:
970         case MADV_COLD:
971         case MADV_PAGEOUT:
972 #ifdef CONFIG_KSM
973         case MADV_MERGEABLE:
974         case MADV_UNMERGEABLE:
975 #endif
976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
977         case MADV_HUGEPAGE:
978         case MADV_NOHUGEPAGE:
979 #endif
980         case MADV_DONTDUMP:
981         case MADV_DODUMP:
982         case MADV_WIPEONFORK:
983         case MADV_KEEPONFORK:
984 #ifdef CONFIG_MEMORY_FAILURE
985         case MADV_SOFT_OFFLINE:
986         case MADV_HWPOISON:
987 #endif
988                 return true;
989
990         default:
991                 return false;
992         }
993 }
994
995 static bool
996 process_madvise_behavior_valid(int behavior)
997 {
998         switch (behavior) {
999         case MADV_COLD:
1000         case MADV_PAGEOUT:
1001                 return true;
1002         default:
1003                 return false;
1004         }
1005 }
1006
1007 /*
1008  * The madvise(2) system call.
1009  *
1010  * Applications can use madvise() to advise the kernel how it should
1011  * handle paging I/O in this VM area.  The idea is to help the kernel
1012  * use appropriate read-ahead and caching techniques.  The information
1013  * provided is advisory only, and can be safely disregarded by the
1014  * kernel without affecting the correct operation of the application.
1015  *
1016  * behavior values:
1017  *  MADV_NORMAL - the default behavior is to read clusters.  This
1018  *              results in some read-ahead and read-behind.
1019  *  MADV_RANDOM - the system should read the minimum amount of data
1020  *              on any access, since it is unlikely that the appli-
1021  *              cation will need more than what it asks for.
1022  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1023  *              once, so they can be aggressively read ahead, and
1024  *              can be freed soon after they are accessed.
1025  *  MADV_WILLNEED - the application is notifying the system to read
1026  *              some pages ahead.
1027  *  MADV_DONTNEED - the application is finished with the given range,
1028  *              so the kernel can free resources associated with it.
1029  *  MADV_FREE - the application marks pages in the given range as lazy free,
1030  *              where actual purges are postponed until memory pressure happens.
1031  *  MADV_REMOVE - the application wants to free up the given range of
1032  *              pages and associated backing store.
1033  *  MADV_DONTFORK - omit this area from child's address space when forking:
1034  *              typically, to avoid COWing pages pinned by get_user_pages().
1035  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1036  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1037  *              range after a fork.
1038  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1039  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1040  *              were corrupted by unrecoverable hardware memory failure.
1041  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1042  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1043  *              this area with pages of identical content from other such areas.
1044  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1045  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1046  *              huge pages in the future. Existing pages might be coalesced and
1047  *              new pages might be allocated as THP.
1048  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1049  *              transparent huge pages so the existing pages will not be
1050  *              coalesced into THP and new pages will not be allocated as THP.
1051  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1052  *              from being included in its core dump.
1053  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1054  *  MADV_COLD - the application is not expected to use this memory soon,
1055  *              deactivate pages in this range so that they can be reclaimed
1056  *              easily if memory pressure hanppens.
1057  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1058  *              page out the pages in this range immediately.
1059  *
1060  * return values:
1061  *  zero    - success
1062  *  -EINVAL - start + len < 0, start is not page-aligned,
1063  *              "behavior" is not a valid value, or application
1064  *              is attempting to release locked or shared pages,
1065  *              or the specified address range includes file, Huge TLB,
1066  *              MAP_SHARED or VMPFNMAP range.
1067  *  -ENOMEM - addresses in the specified range are not currently
1068  *              mapped, or are outside the AS of the process.
1069  *  -EIO    - an I/O error occurred while paging in data.
1070  *  -EBADF  - map exists, but area maps something that isn't a file.
1071  *  -EAGAIN - a kernel resource was temporarily unavailable.
1072  */
1073 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1074 {
1075         unsigned long end, tmp;
1076         struct vm_area_struct *vma, *prev;
1077         int unmapped_error = 0;
1078         int error = -EINVAL;
1079         int write;
1080         size_t len;
1081         struct blk_plug plug;
1082
1083         start = untagged_addr(start);
1084
1085         if (!madvise_behavior_valid(behavior))
1086                 return error;
1087
1088         if (!PAGE_ALIGNED(start))
1089                 return error;
1090         len = PAGE_ALIGN(len_in);
1091
1092         /* Check to see whether len was rounded up from small -ve to zero */
1093         if (len_in && !len)
1094                 return error;
1095
1096         end = start + len;
1097         if (end < start)
1098                 return error;
1099
1100         error = 0;
1101         if (end == start)
1102                 return error;
1103
1104 #ifdef CONFIG_MEMORY_FAILURE
1105         if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1106                 return madvise_inject_error(behavior, start, start + len_in);
1107 #endif
1108
1109         write = madvise_need_mmap_write(behavior);
1110         if (write) {
1111                 if (mmap_write_lock_killable(mm))
1112                         return -EINTR;
1113         } else {
1114                 mmap_read_lock(mm);
1115         }
1116
1117         /*
1118          * If the interval [start,end) covers some unmapped address
1119          * ranges, just ignore them, but return -ENOMEM at the end.
1120          * - different from the way of handling in mlock etc.
1121          */
1122         vma = find_vma_prev(mm, start, &prev);
1123         if (vma && start > vma->vm_start)
1124                 prev = vma;
1125
1126         blk_start_plug(&plug);
1127         for (;;) {
1128                 /* Still start < end. */
1129                 error = -ENOMEM;
1130                 if (!vma)
1131                         goto out;
1132
1133                 /* Here start < (end|vma->vm_end). */
1134                 if (start < vma->vm_start) {
1135                         unmapped_error = -ENOMEM;
1136                         start = vma->vm_start;
1137                         if (start >= end)
1138                                 goto out;
1139                 }
1140
1141                 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1142                 tmp = vma->vm_end;
1143                 if (end < tmp)
1144                         tmp = end;
1145
1146                 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1147                 error = madvise_vma(vma, &prev, start, tmp, behavior);
1148                 if (error)
1149                         goto out;
1150                 start = tmp;
1151                 if (prev && start < prev->vm_end)
1152                         start = prev->vm_end;
1153                 error = unmapped_error;
1154                 if (start >= end)
1155                         goto out;
1156                 if (prev)
1157                         vma = prev->vm_next;
1158                 else    /* madvise_remove dropped mmap_lock */
1159                         vma = find_vma(mm, start);
1160         }
1161 out:
1162         blk_finish_plug(&plug);
1163         if (write)
1164                 mmap_write_unlock(mm);
1165         else
1166                 mmap_read_unlock(mm);
1167
1168         return error;
1169 }
1170
1171 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1172 {
1173         return do_madvise(current->mm, start, len_in, behavior);
1174 }
1175
1176 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1177                 size_t, vlen, int, behavior, unsigned int, flags)
1178 {
1179         ssize_t ret;
1180         struct iovec iovstack[UIO_FASTIOV], iovec;
1181         struct iovec *iov = iovstack;
1182         struct iov_iter iter;
1183         struct pid *pid;
1184         struct task_struct *task;
1185         struct mm_struct *mm;
1186         size_t total_len;
1187         unsigned int f_flags;
1188
1189         if (flags != 0) {
1190                 ret = -EINVAL;
1191                 goto out;
1192         }
1193
1194         ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1195         if (ret < 0)
1196                 goto out;
1197
1198         pid = pidfd_get_pid(pidfd, &f_flags);
1199         if (IS_ERR(pid)) {
1200                 ret = PTR_ERR(pid);
1201                 goto free_iov;
1202         }
1203
1204         task = get_pid_task(pid, PIDTYPE_PID);
1205         if (!task) {
1206                 ret = -ESRCH;
1207                 goto put_pid;
1208         }
1209
1210         if (!process_madvise_behavior_valid(behavior)) {
1211                 ret = -EINVAL;
1212                 goto release_task;
1213         }
1214
1215         /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1216         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1217         if (IS_ERR_OR_NULL(mm)) {
1218                 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1219                 goto release_task;
1220         }
1221
1222         /*
1223          * Require CAP_SYS_NICE for influencing process performance. Note that
1224          * only non-destructive hints are currently supported.
1225          */
1226         if (!capable(CAP_SYS_NICE)) {
1227                 ret = -EPERM;
1228                 goto release_mm;
1229         }
1230
1231         total_len = iov_iter_count(&iter);
1232
1233         while (iov_iter_count(&iter)) {
1234                 iovec = iov_iter_iovec(&iter);
1235                 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1236                                         iovec.iov_len, behavior);
1237                 if (ret < 0)
1238                         break;
1239                 iov_iter_advance(&iter, iovec.iov_len);
1240         }
1241
1242         if (ret == 0)
1243                 ret = total_len - iov_iter_count(&iter);
1244
1245 release_mm:
1246         mmput(mm);
1247 release_task:
1248         put_task_struct(task);
1249 put_pid:
1250         put_pid(pid);
1251 free_iov:
1252         kfree(iov);
1253 out:
1254         return ret;
1255 }