1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
35 struct madvise_walk_private {
36 struct mmu_gather *tlb;
41 * Any behaviour which results in changes to the vma->vm_flags needs to
42 * take mmap_sem for writing. Others, which simply traverse vmas, need
43 * to only take it for reading.
45 static int madvise_need_mmap_write(int behavior)
56 /* be safe, default to 1. list exceptions explicitly */
62 * We can potentially split a vm area into separate
63 * areas, each area with its own behavior.
65 static long madvise_behavior(struct vm_area_struct *vma,
66 struct vm_area_struct **prev,
67 unsigned long start, unsigned long end, int behavior)
69 struct mm_struct *mm = vma->vm_mm;
72 unsigned long new_flags = vma->vm_flags;
76 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
79 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
82 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
85 new_flags |= VM_DONTCOPY;
88 if (vma->vm_flags & VM_IO) {
92 new_flags &= ~VM_DONTCOPY;
95 /* MADV_WIPEONFORK is only supported on anonymous memory. */
96 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
100 new_flags |= VM_WIPEONFORK;
102 case MADV_KEEPONFORK:
103 new_flags &= ~VM_WIPEONFORK;
106 new_flags |= VM_DONTDUMP;
109 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
113 new_flags &= ~VM_DONTDUMP;
116 case MADV_UNMERGEABLE:
117 error = ksm_madvise(vma, start, end, behavior, &new_flags);
119 goto out_convert_errno;
122 case MADV_NOHUGEPAGE:
123 error = hugepage_madvise(vma, &new_flags, behavior);
125 goto out_convert_errno;
129 if (new_flags == vma->vm_flags) {
134 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
135 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
136 vma->vm_file, pgoff, vma_policy(vma),
137 vma->vm_userfaultfd_ctx);
145 if (start != vma->vm_start) {
146 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
150 error = __split_vma(mm, vma, start, 1);
152 goto out_convert_errno;
155 if (end != vma->vm_end) {
156 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
160 error = __split_vma(mm, vma, end, 0);
162 goto out_convert_errno;
167 * vm_flags is protected by the mmap_sem held in write mode.
169 vma->vm_flags = new_flags;
173 * madvise() returns EAGAIN if kernel resources, such as
174 * slab, are temporarily unavailable.
176 if (error == -ENOMEM)
183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
184 unsigned long end, struct mm_walk *walk)
187 struct vm_area_struct *vma = walk->private;
190 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
193 for (index = start; index != end; index += PAGE_SIZE) {
199 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
200 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
201 pte_unmap_unlock(orig_pte, ptl);
203 if (pte_present(pte) || pte_none(pte))
205 entry = pte_to_swp_entry(pte);
206 if (unlikely(non_swap_entry(entry)))
209 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
218 static const struct mm_walk_ops swapin_walk_ops = {
219 .pmd_entry = swapin_walk_pmd_entry,
222 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
223 unsigned long start, unsigned long end,
224 struct address_space *mapping)
230 for (; start < end; start += PAGE_SIZE) {
231 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
233 page = find_get_entry(mapping, index);
234 if (!xa_is_value(page)) {
239 swap = radix_to_swp_entry(page);
240 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
246 lru_add_drain(); /* Push any new pages onto the LRU now */
248 #endif /* CONFIG_SWAP */
251 * Schedule all required I/O operations. Do not wait for completion.
253 static long madvise_willneed(struct vm_area_struct *vma,
254 struct vm_area_struct **prev,
255 unsigned long start, unsigned long end)
257 struct file *file = vma->vm_file;
263 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
264 lru_add_drain(); /* Push any new pages onto the LRU now */
268 if (shmem_mapping(file->f_mapping)) {
269 force_shm_swapin_readahead(vma, start, end,
278 if (IS_DAX(file_inode(file))) {
279 /* no bad return value, but ignore advice */
284 * Filesystem's fadvise may need to take various locks. We need to
285 * explicitly grab a reference because the vma (and hence the
286 * vma's reference to the file) can go away as soon as we drop
289 *prev = NULL; /* tell sys_madvise we drop mmap_sem */
291 up_read(¤t->mm->mmap_sem);
292 offset = (loff_t)(start - vma->vm_start)
293 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
294 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
296 down_read(¤t->mm->mmap_sem);
300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
301 unsigned long addr, unsigned long end,
302 struct mm_walk *walk)
304 struct madvise_walk_private *private = walk->private;
305 struct mmu_gather *tlb = private->tlb;
306 bool pageout = private->pageout;
307 struct mm_struct *mm = tlb->mm;
308 struct vm_area_struct *vma = walk->vma;
309 pte_t *orig_pte, *pte, ptent;
311 struct page *page = NULL;
312 LIST_HEAD(page_list);
314 if (fatal_signal_pending(current))
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 if (pmd_trans_huge(*pmd)) {
320 unsigned long next = pmd_addr_end(addr, end);
322 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
323 ptl = pmd_trans_huge_lock(pmd, vma);
328 if (is_huge_zero_pmd(orig_pmd))
331 if (unlikely(!pmd_present(orig_pmd))) {
332 VM_BUG_ON(thp_migration_supported() &&
333 !is_pmd_migration_entry(orig_pmd));
337 page = pmd_page(orig_pmd);
338 if (next - addr != HPAGE_PMD_SIZE) {
341 if (page_mapcount(page) != 1)
347 err = split_huge_page(page);
355 if (pmd_young(orig_pmd)) {
356 pmdp_invalidate(vma, addr, pmd);
357 orig_pmd = pmd_mkold(orig_pmd);
359 set_pmd_at(mm, addr, pmd, orig_pmd);
360 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
363 ClearPageReferenced(page);
364 test_and_clear_page_young(page);
366 if (!isolate_lru_page(page)) {
367 if (PageUnevictable(page))
368 putback_lru_page(page);
370 list_add(&page->lru, &page_list);
373 deactivate_page(page);
377 reclaim_pages(&page_list);
381 if (pmd_trans_unstable(pmd))
385 tlb_change_page_size(tlb, PAGE_SIZE);
386 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
387 flush_tlb_batched_pending(mm);
388 arch_enter_lazy_mmu_mode();
389 for (; addr < end; pte++, addr += PAGE_SIZE) {
395 if (!pte_present(ptent))
398 page = vm_normal_page(vma, addr, ptent);
403 * Creating a THP page is expensive so split it only if we
404 * are sure it's worth. Split it if we are only owner.
406 if (PageTransCompound(page)) {
407 if (page_mapcount(page) != 1)
410 if (!trylock_page(page)) {
414 pte_unmap_unlock(orig_pte, ptl);
415 if (split_huge_page(page)) {
418 pte_offset_map_lock(mm, pmd, addr, &ptl);
423 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
429 VM_BUG_ON_PAGE(PageTransCompound(page), page);
431 if (pte_young(ptent)) {
432 ptent = ptep_get_and_clear_full(mm, addr, pte,
434 ptent = pte_mkold(ptent);
435 set_pte_at(mm, addr, pte, ptent);
436 tlb_remove_tlb_entry(tlb, pte, addr);
440 * We are deactivating a page for accelerating reclaiming.
441 * VM couldn't reclaim the page unless we clear PG_young.
442 * As a side effect, it makes confuse idle-page tracking
443 * because they will miss recent referenced history.
445 ClearPageReferenced(page);
446 test_and_clear_page_young(page);
448 if (!isolate_lru_page(page)) {
449 if (PageUnevictable(page))
450 putback_lru_page(page);
452 list_add(&page->lru, &page_list);
455 deactivate_page(page);
458 arch_leave_lazy_mmu_mode();
459 pte_unmap_unlock(orig_pte, ptl);
461 reclaim_pages(&page_list);
467 static const struct mm_walk_ops cold_walk_ops = {
468 .pmd_entry = madvise_cold_or_pageout_pte_range,
471 static void madvise_cold_page_range(struct mmu_gather *tlb,
472 struct vm_area_struct *vma,
473 unsigned long addr, unsigned long end)
475 struct madvise_walk_private walk_private = {
480 tlb_start_vma(tlb, vma);
481 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
482 tlb_end_vma(tlb, vma);
485 static long madvise_cold(struct vm_area_struct *vma,
486 struct vm_area_struct **prev,
487 unsigned long start_addr, unsigned long end_addr)
489 struct mm_struct *mm = vma->vm_mm;
490 struct mmu_gather tlb;
493 if (!can_madv_lru_vma(vma))
497 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
498 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
499 tlb_finish_mmu(&tlb, start_addr, end_addr);
504 static void madvise_pageout_page_range(struct mmu_gather *tlb,
505 struct vm_area_struct *vma,
506 unsigned long addr, unsigned long end)
508 struct madvise_walk_private walk_private = {
513 tlb_start_vma(tlb, vma);
514 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
515 tlb_end_vma(tlb, vma);
518 static inline bool can_do_pageout(struct vm_area_struct *vma)
520 if (vma_is_anonymous(vma))
525 * paging out pagecache only for non-anonymous mappings that correspond
526 * to the files the calling process could (if tried) open for writing;
527 * otherwise we'd be including shared non-exclusive mappings, which
528 * opens a side channel.
530 return inode_owner_or_capable(file_inode(vma->vm_file)) ||
531 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
534 static long madvise_pageout(struct vm_area_struct *vma,
535 struct vm_area_struct **prev,
536 unsigned long start_addr, unsigned long end_addr)
538 struct mm_struct *mm = vma->vm_mm;
539 struct mmu_gather tlb;
542 if (!can_madv_lru_vma(vma))
545 if (!can_do_pageout(vma))
549 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
550 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
551 tlb_finish_mmu(&tlb, start_addr, end_addr);
556 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
557 unsigned long end, struct mm_walk *walk)
560 struct mmu_gather *tlb = walk->private;
561 struct mm_struct *mm = tlb->mm;
562 struct vm_area_struct *vma = walk->vma;
564 pte_t *orig_pte, *pte, ptent;
569 next = pmd_addr_end(addr, end);
570 if (pmd_trans_huge(*pmd))
571 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
574 if (pmd_trans_unstable(pmd))
577 tlb_change_page_size(tlb, PAGE_SIZE);
578 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
579 flush_tlb_batched_pending(mm);
580 arch_enter_lazy_mmu_mode();
581 for (; addr != end; pte++, addr += PAGE_SIZE) {
587 * If the pte has swp_entry, just clear page table to
588 * prevent swap-in which is more expensive rather than
589 * (page allocation + zeroing).
591 if (!pte_present(ptent)) {
594 entry = pte_to_swp_entry(ptent);
595 if (non_swap_entry(entry))
598 free_swap_and_cache(entry);
599 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
603 page = vm_normal_page(vma, addr, ptent);
608 * If pmd isn't transhuge but the page is THP and
609 * is owned by only this process, split it and
610 * deactivate all pages.
612 if (PageTransCompound(page)) {
613 if (page_mapcount(page) != 1)
616 if (!trylock_page(page)) {
620 pte_unmap_unlock(orig_pte, ptl);
621 if (split_huge_page(page)) {
624 pte_offset_map_lock(mm, pmd, addr, &ptl);
629 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
635 VM_BUG_ON_PAGE(PageTransCompound(page), page);
637 if (PageSwapCache(page) || PageDirty(page)) {
638 if (!trylock_page(page))
641 * If page is shared with others, we couldn't clear
642 * PG_dirty of the page.
644 if (page_mapcount(page) != 1) {
649 if (PageSwapCache(page) && !try_to_free_swap(page)) {
654 ClearPageDirty(page);
658 if (pte_young(ptent) || pte_dirty(ptent)) {
660 * Some of architecture(ex, PPC) don't update TLB
661 * with set_pte_at and tlb_remove_tlb_entry so for
662 * the portability, remap the pte with old|clean
663 * after pte clearing.
665 ptent = ptep_get_and_clear_full(mm, addr, pte,
668 ptent = pte_mkold(ptent);
669 ptent = pte_mkclean(ptent);
670 set_pte_at(mm, addr, pte, ptent);
671 tlb_remove_tlb_entry(tlb, pte, addr);
673 mark_page_lazyfree(page);
677 if (current->mm == mm)
680 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
682 arch_leave_lazy_mmu_mode();
683 pte_unmap_unlock(orig_pte, ptl);
689 static const struct mm_walk_ops madvise_free_walk_ops = {
690 .pmd_entry = madvise_free_pte_range,
693 static int madvise_free_single_vma(struct vm_area_struct *vma,
694 unsigned long start_addr, unsigned long end_addr)
696 struct mm_struct *mm = vma->vm_mm;
697 struct mmu_notifier_range range;
698 struct mmu_gather tlb;
700 /* MADV_FREE works for only anon vma at the moment */
701 if (!vma_is_anonymous(vma))
704 range.start = max(vma->vm_start, start_addr);
705 if (range.start >= vma->vm_end)
707 range.end = min(vma->vm_end, end_addr);
708 if (range.end <= vma->vm_start)
710 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
711 range.start, range.end);
714 tlb_gather_mmu(&tlb, mm, range.start, range.end);
715 update_hiwater_rss(mm);
717 mmu_notifier_invalidate_range_start(&range);
718 tlb_start_vma(&tlb, vma);
719 walk_page_range(vma->vm_mm, range.start, range.end,
720 &madvise_free_walk_ops, &tlb);
721 tlb_end_vma(&tlb, vma);
722 mmu_notifier_invalidate_range_end(&range);
723 tlb_finish_mmu(&tlb, range.start, range.end);
729 * Application no longer needs these pages. If the pages are dirty,
730 * it's OK to just throw them away. The app will be more careful about
731 * data it wants to keep. Be sure to free swap resources too. The
732 * zap_page_range call sets things up for shrink_active_list to actually free
733 * these pages later if no one else has touched them in the meantime,
734 * although we could add these pages to a global reuse list for
735 * shrink_active_list to pick up before reclaiming other pages.
737 * NB: This interface discards data rather than pushes it out to swap,
738 * as some implementations do. This has performance implications for
739 * applications like large transactional databases which want to discard
740 * pages in anonymous maps after committing to backing store the data
741 * that was kept in them. There is no reason to write this data out to
742 * the swap area if the application is discarding it.
744 * An interface that causes the system to free clean pages and flush
745 * dirty pages is already available as msync(MS_INVALIDATE).
747 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
748 unsigned long start, unsigned long end)
750 zap_page_range(vma, start, end - start);
754 static long madvise_dontneed_free(struct vm_area_struct *vma,
755 struct vm_area_struct **prev,
756 unsigned long start, unsigned long end,
760 if (!can_madv_lru_vma(vma))
763 if (!userfaultfd_remove(vma, start, end)) {
764 *prev = NULL; /* mmap_sem has been dropped, prev is stale */
766 down_read(¤t->mm->mmap_sem);
767 vma = find_vma(current->mm, start);
770 if (start < vma->vm_start) {
772 * This "vma" under revalidation is the one
773 * with the lowest vma->vm_start where start
774 * is also < vma->vm_end. If start <
775 * vma->vm_start it means an hole materialized
776 * in the user address space within the
777 * virtual range passed to MADV_DONTNEED
782 if (!can_madv_lru_vma(vma))
784 if (end > vma->vm_end) {
786 * Don't fail if end > vma->vm_end. If the old
787 * vma was splitted while the mmap_sem was
788 * released the effect of the concurrent
789 * operation may not cause madvise() to
790 * have an undefined result. There may be an
791 * adjacent next vma that we'll walk
792 * next. userfaultfd_remove() will generate an
793 * UFFD_EVENT_REMOVE repetition on the
794 * end-vma->vm_end range, but the manager can
795 * handle a repetition fine.
799 VM_WARN_ON(start >= end);
802 if (behavior == MADV_DONTNEED)
803 return madvise_dontneed_single_vma(vma, start, end);
804 else if (behavior == MADV_FREE)
805 return madvise_free_single_vma(vma, start, end);
811 * Application wants to free up the pages and associated backing store.
812 * This is effectively punching a hole into the middle of a file.
814 static long madvise_remove(struct vm_area_struct *vma,
815 struct vm_area_struct **prev,
816 unsigned long start, unsigned long end)
822 *prev = NULL; /* tell sys_madvise we drop mmap_sem */
824 if (vma->vm_flags & VM_LOCKED)
829 if (!f || !f->f_mapping || !f->f_mapping->host) {
833 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
836 offset = (loff_t)(start - vma->vm_start)
837 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
840 * Filesystem's fallocate may need to take i_mutex. We need to
841 * explicitly grab a reference because the vma (and hence the
842 * vma's reference to the file) can go away as soon as we drop
846 if (userfaultfd_remove(vma, start, end)) {
847 /* mmap_sem was not released by userfaultfd_remove() */
848 up_read(¤t->mm->mmap_sem);
850 error = vfs_fallocate(f,
851 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
852 offset, end - start);
854 down_read(¤t->mm->mmap_sem);
858 #ifdef CONFIG_MEMORY_FAILURE
860 * Error injection support for memory error handling.
862 static int madvise_inject_error(int behavior,
863 unsigned long start, unsigned long end)
869 if (!capable(CAP_SYS_ADMIN))
873 for (; start < end; start += PAGE_SIZE << order) {
877 ret = get_user_pages_fast(start, 1, 0, &page);
880 pfn = page_to_pfn(page);
883 * When soft offlining hugepages, after migrating the page
884 * we dissolve it, therefore in the second loop "page" will
885 * no longer be a compound page, and order will be 0.
887 order = compound_order(compound_head(page));
889 if (PageHWPoison(page)) {
894 if (behavior == MADV_SOFT_OFFLINE) {
895 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
898 ret = soft_offline_page(page, MF_COUNT_INCREASED);
904 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
908 * Drop the page reference taken by get_user_pages_fast(). In
909 * the absence of MF_COUNT_INCREASED the memory_failure()
910 * routine is responsible for pinning the page to prevent it
911 * from being released back to the page allocator.
914 ret = memory_failure(pfn, 0);
919 /* Ensure that all poisoned pages are removed from per-cpu lists */
920 for_each_populated_zone(zone)
921 drain_all_pages(zone);
928 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
929 unsigned long start, unsigned long end, int behavior)
933 return madvise_remove(vma, prev, start, end);
935 return madvise_willneed(vma, prev, start, end);
937 return madvise_cold(vma, prev, start, end);
939 return madvise_pageout(vma, prev, start, end);
942 return madvise_dontneed_free(vma, prev, start, end, behavior);
944 return madvise_behavior(vma, prev, start, end, behavior);
949 madvise_behavior_valid(int behavior)
955 case MADV_SEQUENTIAL:
965 case MADV_UNMERGEABLE:
967 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
969 case MADV_NOHUGEPAGE:
973 case MADV_WIPEONFORK:
974 case MADV_KEEPONFORK:
975 #ifdef CONFIG_MEMORY_FAILURE
976 case MADV_SOFT_OFFLINE:
987 * The madvise(2) system call.
989 * Applications can use madvise() to advise the kernel how it should
990 * handle paging I/O in this VM area. The idea is to help the kernel
991 * use appropriate read-ahead and caching techniques. The information
992 * provided is advisory only, and can be safely disregarded by the
993 * kernel without affecting the correct operation of the application.
996 * MADV_NORMAL - the default behavior is to read clusters. This
997 * results in some read-ahead and read-behind.
998 * MADV_RANDOM - the system should read the minimum amount of data
999 * on any access, since it is unlikely that the appli-
1000 * cation will need more than what it asks for.
1001 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1002 * once, so they can be aggressively read ahead, and
1003 * can be freed soon after they are accessed.
1004 * MADV_WILLNEED - the application is notifying the system to read
1006 * MADV_DONTNEED - the application is finished with the given range,
1007 * so the kernel can free resources associated with it.
1008 * MADV_FREE - the application marks pages in the given range as lazy free,
1009 * where actual purges are postponed until memory pressure happens.
1010 * MADV_REMOVE - the application wants to free up the given range of
1011 * pages and associated backing store.
1012 * MADV_DONTFORK - omit this area from child's address space when forking:
1013 * typically, to avoid COWing pages pinned by get_user_pages().
1014 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1015 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1016 * range after a fork.
1017 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1018 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1019 * were corrupted by unrecoverable hardware memory failure.
1020 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1021 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1022 * this area with pages of identical content from other such areas.
1023 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1024 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1025 * huge pages in the future. Existing pages might be coalesced and
1026 * new pages might be allocated as THP.
1027 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1028 * transparent huge pages so the existing pages will not be
1029 * coalesced into THP and new pages will not be allocated as THP.
1030 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1031 * from being included in its core dump.
1032 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1036 * -EINVAL - start + len < 0, start is not page-aligned,
1037 * "behavior" is not a valid value, or application
1038 * is attempting to release locked or shared pages,
1039 * or the specified address range includes file, Huge TLB,
1040 * MAP_SHARED or VMPFNMAP range.
1041 * -ENOMEM - addresses in the specified range are not currently
1042 * mapped, or are outside the AS of the process.
1043 * -EIO - an I/O error occurred while paging in data.
1044 * -EBADF - map exists, but area maps something that isn't a file.
1045 * -EAGAIN - a kernel resource was temporarily unavailable.
1047 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1049 unsigned long end, tmp;
1050 struct vm_area_struct *vma, *prev;
1051 int unmapped_error = 0;
1052 int error = -EINVAL;
1055 struct blk_plug plug;
1057 start = untagged_addr(start);
1059 if (!madvise_behavior_valid(behavior))
1062 if (start & ~PAGE_MASK)
1064 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1066 /* Check to see whether len was rounded up from small -ve to zero */
1078 #ifdef CONFIG_MEMORY_FAILURE
1079 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1080 return madvise_inject_error(behavior, start, start + len_in);
1083 write = madvise_need_mmap_write(behavior);
1085 if (down_write_killable(¤t->mm->mmap_sem))
1088 down_read(¤t->mm->mmap_sem);
1092 * If the interval [start,end) covers some unmapped address
1093 * ranges, just ignore them, but return -ENOMEM at the end.
1094 * - different from the way of handling in mlock etc.
1096 vma = find_vma_prev(current->mm, start, &prev);
1097 if (vma && start > vma->vm_start)
1100 blk_start_plug(&plug);
1102 /* Still start < end. */
1107 /* Here start < (end|vma->vm_end). */
1108 if (start < vma->vm_start) {
1109 unmapped_error = -ENOMEM;
1110 start = vma->vm_start;
1115 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1120 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1121 error = madvise_vma(vma, &prev, start, tmp, behavior);
1125 if (prev && start < prev->vm_end)
1126 start = prev->vm_end;
1127 error = unmapped_error;
1131 vma = prev->vm_next;
1132 else /* madvise_remove dropped mmap_sem */
1133 vma = find_vma(current->mm, start);
1136 blk_finish_plug(&plug);
1138 up_write(¤t->mm->mmap_sem);
1140 up_read(¤t->mm->mmap_sem);