Merge tag 'net-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-rpi.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *      linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/uio.h>
22 #include <linux/ksm.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/pagewalk.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/mmu_notifier.h>
32
33 #include <asm/tlb.h>
34
35 #include "internal.h"
36
37 struct madvise_walk_private {
38         struct mmu_gather *tlb;
39         bool pageout;
40 };
41
42 /*
43  * Any behaviour which results in changes to the vma->vm_flags needs to
44  * take mmap_lock for writing. Others, which simply traverse vmas, need
45  * to only take it for reading.
46  */
47 static int madvise_need_mmap_write(int behavior)
48 {
49         switch (behavior) {
50         case MADV_REMOVE:
51         case MADV_WILLNEED:
52         case MADV_DONTNEED:
53         case MADV_COLD:
54         case MADV_PAGEOUT:
55         case MADV_FREE:
56                 return 0;
57         default:
58                 /* be safe, default to 1. list exceptions explicitly */
59                 return 1;
60         }
61 }
62
63 /*
64  * We can potentially split a vm area into separate
65  * areas, each area with its own behavior.
66  */
67 static long madvise_behavior(struct vm_area_struct *vma,
68                      struct vm_area_struct **prev,
69                      unsigned long start, unsigned long end, int behavior)
70 {
71         struct mm_struct *mm = vma->vm_mm;
72         int error = 0;
73         pgoff_t pgoff;
74         unsigned long new_flags = vma->vm_flags;
75
76         switch (behavior) {
77         case MADV_NORMAL:
78                 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
79                 break;
80         case MADV_SEQUENTIAL:
81                 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
82                 break;
83         case MADV_RANDOM:
84                 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
85                 break;
86         case MADV_DONTFORK:
87                 new_flags |= VM_DONTCOPY;
88                 break;
89         case MADV_DOFORK:
90                 if (vma->vm_flags & VM_IO) {
91                         error = -EINVAL;
92                         goto out;
93                 }
94                 new_flags &= ~VM_DONTCOPY;
95                 break;
96         case MADV_WIPEONFORK:
97                 /* MADV_WIPEONFORK is only supported on anonymous memory. */
98                 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
99                         error = -EINVAL;
100                         goto out;
101                 }
102                 new_flags |= VM_WIPEONFORK;
103                 break;
104         case MADV_KEEPONFORK:
105                 new_flags &= ~VM_WIPEONFORK;
106                 break;
107         case MADV_DONTDUMP:
108                 new_flags |= VM_DONTDUMP;
109                 break;
110         case MADV_DODUMP:
111                 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
112                         error = -EINVAL;
113                         goto out;
114                 }
115                 new_flags &= ~VM_DONTDUMP;
116                 break;
117         case MADV_MERGEABLE:
118         case MADV_UNMERGEABLE:
119                 error = ksm_madvise(vma, start, end, behavior, &new_flags);
120                 if (error)
121                         goto out_convert_errno;
122                 break;
123         case MADV_HUGEPAGE:
124         case MADV_NOHUGEPAGE:
125                 error = hugepage_madvise(vma, &new_flags, behavior);
126                 if (error)
127                         goto out_convert_errno;
128                 break;
129         }
130
131         if (new_flags == vma->vm_flags) {
132                 *prev = vma;
133                 goto out;
134         }
135
136         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
137         *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
138                           vma->vm_file, pgoff, vma_policy(vma),
139                           vma->vm_userfaultfd_ctx);
140         if (*prev) {
141                 vma = *prev;
142                 goto success;
143         }
144
145         *prev = vma;
146
147         if (start != vma->vm_start) {
148                 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
149                         error = -ENOMEM;
150                         goto out;
151                 }
152                 error = __split_vma(mm, vma, start, 1);
153                 if (error)
154                         goto out_convert_errno;
155         }
156
157         if (end != vma->vm_end) {
158                 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
159                         error = -ENOMEM;
160                         goto out;
161                 }
162                 error = __split_vma(mm, vma, end, 0);
163                 if (error)
164                         goto out_convert_errno;
165         }
166
167 success:
168         /*
169          * vm_flags is protected by the mmap_lock held in write mode.
170          */
171         vma->vm_flags = new_flags;
172
173 out_convert_errno:
174         /*
175          * madvise() returns EAGAIN if kernel resources, such as
176          * slab, are temporarily unavailable.
177          */
178         if (error == -ENOMEM)
179                 error = -EAGAIN;
180 out:
181         return error;
182 }
183
184 #ifdef CONFIG_SWAP
185 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
186         unsigned long end, struct mm_walk *walk)
187 {
188         pte_t *orig_pte;
189         struct vm_area_struct *vma = walk->private;
190         unsigned long index;
191
192         if (pmd_none_or_trans_huge_or_clear_bad(pmd))
193                 return 0;
194
195         for (index = start; index != end; index += PAGE_SIZE) {
196                 pte_t pte;
197                 swp_entry_t entry;
198                 struct page *page;
199                 spinlock_t *ptl;
200
201                 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
202                 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
203                 pte_unmap_unlock(orig_pte, ptl);
204
205                 if (pte_present(pte) || pte_none(pte))
206                         continue;
207                 entry = pte_to_swp_entry(pte);
208                 if (unlikely(non_swap_entry(entry)))
209                         continue;
210
211                 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
212                                                         vma, index, false);
213                 if (page)
214                         put_page(page);
215         }
216
217         return 0;
218 }
219
220 static const struct mm_walk_ops swapin_walk_ops = {
221         .pmd_entry              = swapin_walk_pmd_entry,
222 };
223
224 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
225                 unsigned long start, unsigned long end,
226                 struct address_space *mapping)
227 {
228         XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
229         pgoff_t end_index = end / PAGE_SIZE;
230         struct page *page;
231
232         rcu_read_lock();
233         xas_for_each(&xas, page, end_index) {
234                 swp_entry_t swap;
235
236                 if (!xa_is_value(page))
237                         continue;
238                 xas_pause(&xas);
239                 rcu_read_unlock();
240
241                 swap = radix_to_swp_entry(page);
242                 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
243                                                         NULL, 0, false);
244                 if (page)
245                         put_page(page);
246
247                 rcu_read_lock();
248         }
249         rcu_read_unlock();
250
251         lru_add_drain();        /* Push any new pages onto the LRU now */
252 }
253 #endif          /* CONFIG_SWAP */
254
255 /*
256  * Schedule all required I/O operations.  Do not wait for completion.
257  */
258 static long madvise_willneed(struct vm_area_struct *vma,
259                              struct vm_area_struct **prev,
260                              unsigned long start, unsigned long end)
261 {
262         struct mm_struct *mm = vma->vm_mm;
263         struct file *file = vma->vm_file;
264         loff_t offset;
265
266         *prev = vma;
267 #ifdef CONFIG_SWAP
268         if (!file) {
269                 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
270                 lru_add_drain(); /* Push any new pages onto the LRU now */
271                 return 0;
272         }
273
274         if (shmem_mapping(file->f_mapping)) {
275                 force_shm_swapin_readahead(vma, start, end,
276                                         file->f_mapping);
277                 return 0;
278         }
279 #else
280         if (!file)
281                 return -EBADF;
282 #endif
283
284         if (IS_DAX(file_inode(file))) {
285                 /* no bad return value, but ignore advice */
286                 return 0;
287         }
288
289         /*
290          * Filesystem's fadvise may need to take various locks.  We need to
291          * explicitly grab a reference because the vma (and hence the
292          * vma's reference to the file) can go away as soon as we drop
293          * mmap_lock.
294          */
295         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
296         get_file(file);
297         offset = (loff_t)(start - vma->vm_start)
298                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
299         mmap_read_unlock(mm);
300         vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
301         fput(file);
302         mmap_read_lock(mm);
303         return 0;
304 }
305
306 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
307                                 unsigned long addr, unsigned long end,
308                                 struct mm_walk *walk)
309 {
310         struct madvise_walk_private *private = walk->private;
311         struct mmu_gather *tlb = private->tlb;
312         bool pageout = private->pageout;
313         struct mm_struct *mm = tlb->mm;
314         struct vm_area_struct *vma = walk->vma;
315         pte_t *orig_pte, *pte, ptent;
316         spinlock_t *ptl;
317         struct page *page = NULL;
318         LIST_HEAD(page_list);
319
320         if (fatal_signal_pending(current))
321                 return -EINTR;
322
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324         if (pmd_trans_huge(*pmd)) {
325                 pmd_t orig_pmd;
326                 unsigned long next = pmd_addr_end(addr, end);
327
328                 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
329                 ptl = pmd_trans_huge_lock(pmd, vma);
330                 if (!ptl)
331                         return 0;
332
333                 orig_pmd = *pmd;
334                 if (is_huge_zero_pmd(orig_pmd))
335                         goto huge_unlock;
336
337                 if (unlikely(!pmd_present(orig_pmd))) {
338                         VM_BUG_ON(thp_migration_supported() &&
339                                         !is_pmd_migration_entry(orig_pmd));
340                         goto huge_unlock;
341                 }
342
343                 page = pmd_page(orig_pmd);
344
345                 /* Do not interfere with other mappings of this page */
346                 if (page_mapcount(page) != 1)
347                         goto huge_unlock;
348
349                 if (next - addr != HPAGE_PMD_SIZE) {
350                         int err;
351
352                         get_page(page);
353                         spin_unlock(ptl);
354                         lock_page(page);
355                         err = split_huge_page(page);
356                         unlock_page(page);
357                         put_page(page);
358                         if (!err)
359                                 goto regular_page;
360                         return 0;
361                 }
362
363                 if (pmd_young(orig_pmd)) {
364                         pmdp_invalidate(vma, addr, pmd);
365                         orig_pmd = pmd_mkold(orig_pmd);
366
367                         set_pmd_at(mm, addr, pmd, orig_pmd);
368                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
369                 }
370
371                 ClearPageReferenced(page);
372                 test_and_clear_page_young(page);
373                 if (pageout) {
374                         if (!isolate_lru_page(page)) {
375                                 if (PageUnevictable(page))
376                                         putback_lru_page(page);
377                                 else
378                                         list_add(&page->lru, &page_list);
379                         }
380                 } else
381                         deactivate_page(page);
382 huge_unlock:
383                 spin_unlock(ptl);
384                 if (pageout)
385                         reclaim_pages(&page_list);
386                 return 0;
387         }
388
389 regular_page:
390         if (pmd_trans_unstable(pmd))
391                 return 0;
392 #endif
393         tlb_change_page_size(tlb, PAGE_SIZE);
394         orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
395         flush_tlb_batched_pending(mm);
396         arch_enter_lazy_mmu_mode();
397         for (; addr < end; pte++, addr += PAGE_SIZE) {
398                 ptent = *pte;
399
400                 if (pte_none(ptent))
401                         continue;
402
403                 if (!pte_present(ptent))
404                         continue;
405
406                 page = vm_normal_page(vma, addr, ptent);
407                 if (!page)
408                         continue;
409
410                 /*
411                  * Creating a THP page is expensive so split it only if we
412                  * are sure it's worth. Split it if we are only owner.
413                  */
414                 if (PageTransCompound(page)) {
415                         if (page_mapcount(page) != 1)
416                                 break;
417                         get_page(page);
418                         if (!trylock_page(page)) {
419                                 put_page(page);
420                                 break;
421                         }
422                         pte_unmap_unlock(orig_pte, ptl);
423                         if (split_huge_page(page)) {
424                                 unlock_page(page);
425                                 put_page(page);
426                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
427                                 break;
428                         }
429                         unlock_page(page);
430                         put_page(page);
431                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
432                         pte--;
433                         addr -= PAGE_SIZE;
434                         continue;
435                 }
436
437                 /* Do not interfere with other mappings of this page */
438                 if (page_mapcount(page) != 1)
439                         continue;
440
441                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
442
443                 if (pte_young(ptent)) {
444                         ptent = ptep_get_and_clear_full(mm, addr, pte,
445                                                         tlb->fullmm);
446                         ptent = pte_mkold(ptent);
447                         set_pte_at(mm, addr, pte, ptent);
448                         tlb_remove_tlb_entry(tlb, pte, addr);
449                 }
450
451                 /*
452                  * We are deactivating a page for accelerating reclaiming.
453                  * VM couldn't reclaim the page unless we clear PG_young.
454                  * As a side effect, it makes confuse idle-page tracking
455                  * because they will miss recent referenced history.
456                  */
457                 ClearPageReferenced(page);
458                 test_and_clear_page_young(page);
459                 if (pageout) {
460                         if (!isolate_lru_page(page)) {
461                                 if (PageUnevictable(page))
462                                         putback_lru_page(page);
463                                 else
464                                         list_add(&page->lru, &page_list);
465                         }
466                 } else
467                         deactivate_page(page);
468         }
469
470         arch_leave_lazy_mmu_mode();
471         pte_unmap_unlock(orig_pte, ptl);
472         if (pageout)
473                 reclaim_pages(&page_list);
474         cond_resched();
475
476         return 0;
477 }
478
479 static const struct mm_walk_ops cold_walk_ops = {
480         .pmd_entry = madvise_cold_or_pageout_pte_range,
481 };
482
483 static void madvise_cold_page_range(struct mmu_gather *tlb,
484                              struct vm_area_struct *vma,
485                              unsigned long addr, unsigned long end)
486 {
487         struct madvise_walk_private walk_private = {
488                 .pageout = false,
489                 .tlb = tlb,
490         };
491
492         tlb_start_vma(tlb, vma);
493         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
494         tlb_end_vma(tlb, vma);
495 }
496
497 static long madvise_cold(struct vm_area_struct *vma,
498                         struct vm_area_struct **prev,
499                         unsigned long start_addr, unsigned long end_addr)
500 {
501         struct mm_struct *mm = vma->vm_mm;
502         struct mmu_gather tlb;
503
504         *prev = vma;
505         if (!can_madv_lru_vma(vma))
506                 return -EINVAL;
507
508         lru_add_drain();
509         tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
510         madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
511         tlb_finish_mmu(&tlb, start_addr, end_addr);
512
513         return 0;
514 }
515
516 static void madvise_pageout_page_range(struct mmu_gather *tlb,
517                              struct vm_area_struct *vma,
518                              unsigned long addr, unsigned long end)
519 {
520         struct madvise_walk_private walk_private = {
521                 .pageout = true,
522                 .tlb = tlb,
523         };
524
525         tlb_start_vma(tlb, vma);
526         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
527         tlb_end_vma(tlb, vma);
528 }
529
530 static inline bool can_do_pageout(struct vm_area_struct *vma)
531 {
532         if (vma_is_anonymous(vma))
533                 return true;
534         if (!vma->vm_file)
535                 return false;
536         /*
537          * paging out pagecache only for non-anonymous mappings that correspond
538          * to the files the calling process could (if tried) open for writing;
539          * otherwise we'd be including shared non-exclusive mappings, which
540          * opens a side channel.
541          */
542         return inode_owner_or_capable(file_inode(vma->vm_file)) ||
543                 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
544 }
545
546 static long madvise_pageout(struct vm_area_struct *vma,
547                         struct vm_area_struct **prev,
548                         unsigned long start_addr, unsigned long end_addr)
549 {
550         struct mm_struct *mm = vma->vm_mm;
551         struct mmu_gather tlb;
552
553         *prev = vma;
554         if (!can_madv_lru_vma(vma))
555                 return -EINVAL;
556
557         if (!can_do_pageout(vma))
558                 return 0;
559
560         lru_add_drain();
561         tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
562         madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
563         tlb_finish_mmu(&tlb, start_addr, end_addr);
564
565         return 0;
566 }
567
568 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
569                                 unsigned long end, struct mm_walk *walk)
570
571 {
572         struct mmu_gather *tlb = walk->private;
573         struct mm_struct *mm = tlb->mm;
574         struct vm_area_struct *vma = walk->vma;
575         spinlock_t *ptl;
576         pte_t *orig_pte, *pte, ptent;
577         struct page *page;
578         int nr_swap = 0;
579         unsigned long next;
580
581         next = pmd_addr_end(addr, end);
582         if (pmd_trans_huge(*pmd))
583                 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
584                         goto next;
585
586         if (pmd_trans_unstable(pmd))
587                 return 0;
588
589         tlb_change_page_size(tlb, PAGE_SIZE);
590         orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
591         flush_tlb_batched_pending(mm);
592         arch_enter_lazy_mmu_mode();
593         for (; addr != end; pte++, addr += PAGE_SIZE) {
594                 ptent = *pte;
595
596                 if (pte_none(ptent))
597                         continue;
598                 /*
599                  * If the pte has swp_entry, just clear page table to
600                  * prevent swap-in which is more expensive rather than
601                  * (page allocation + zeroing).
602                  */
603                 if (!pte_present(ptent)) {
604                         swp_entry_t entry;
605
606                         entry = pte_to_swp_entry(ptent);
607                         if (non_swap_entry(entry))
608                                 continue;
609                         nr_swap--;
610                         free_swap_and_cache(entry);
611                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
612                         continue;
613                 }
614
615                 page = vm_normal_page(vma, addr, ptent);
616                 if (!page)
617                         continue;
618
619                 /*
620                  * If pmd isn't transhuge but the page is THP and
621                  * is owned by only this process, split it and
622                  * deactivate all pages.
623                  */
624                 if (PageTransCompound(page)) {
625                         if (page_mapcount(page) != 1)
626                                 goto out;
627                         get_page(page);
628                         if (!trylock_page(page)) {
629                                 put_page(page);
630                                 goto out;
631                         }
632                         pte_unmap_unlock(orig_pte, ptl);
633                         if (split_huge_page(page)) {
634                                 unlock_page(page);
635                                 put_page(page);
636                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
637                                 goto out;
638                         }
639                         unlock_page(page);
640                         put_page(page);
641                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
642                         pte--;
643                         addr -= PAGE_SIZE;
644                         continue;
645                 }
646
647                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
648
649                 if (PageSwapCache(page) || PageDirty(page)) {
650                         if (!trylock_page(page))
651                                 continue;
652                         /*
653                          * If page is shared with others, we couldn't clear
654                          * PG_dirty of the page.
655                          */
656                         if (page_mapcount(page) != 1) {
657                                 unlock_page(page);
658                                 continue;
659                         }
660
661                         if (PageSwapCache(page) && !try_to_free_swap(page)) {
662                                 unlock_page(page);
663                                 continue;
664                         }
665
666                         ClearPageDirty(page);
667                         unlock_page(page);
668                 }
669
670                 if (pte_young(ptent) || pte_dirty(ptent)) {
671                         /*
672                          * Some of architecture(ex, PPC) don't update TLB
673                          * with set_pte_at and tlb_remove_tlb_entry so for
674                          * the portability, remap the pte with old|clean
675                          * after pte clearing.
676                          */
677                         ptent = ptep_get_and_clear_full(mm, addr, pte,
678                                                         tlb->fullmm);
679
680                         ptent = pte_mkold(ptent);
681                         ptent = pte_mkclean(ptent);
682                         set_pte_at(mm, addr, pte, ptent);
683                         tlb_remove_tlb_entry(tlb, pte, addr);
684                 }
685                 mark_page_lazyfree(page);
686         }
687 out:
688         if (nr_swap) {
689                 if (current->mm == mm)
690                         sync_mm_rss(mm);
691
692                 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
693         }
694         arch_leave_lazy_mmu_mode();
695         pte_unmap_unlock(orig_pte, ptl);
696         cond_resched();
697 next:
698         return 0;
699 }
700
701 static const struct mm_walk_ops madvise_free_walk_ops = {
702         .pmd_entry              = madvise_free_pte_range,
703 };
704
705 static int madvise_free_single_vma(struct vm_area_struct *vma,
706                         unsigned long start_addr, unsigned long end_addr)
707 {
708         struct mm_struct *mm = vma->vm_mm;
709         struct mmu_notifier_range range;
710         struct mmu_gather tlb;
711
712         /* MADV_FREE works for only anon vma at the moment */
713         if (!vma_is_anonymous(vma))
714                 return -EINVAL;
715
716         range.start = max(vma->vm_start, start_addr);
717         if (range.start >= vma->vm_end)
718                 return -EINVAL;
719         range.end = min(vma->vm_end, end_addr);
720         if (range.end <= vma->vm_start)
721                 return -EINVAL;
722         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
723                                 range.start, range.end);
724
725         lru_add_drain();
726         tlb_gather_mmu(&tlb, mm, range.start, range.end);
727         update_hiwater_rss(mm);
728
729         mmu_notifier_invalidate_range_start(&range);
730         tlb_start_vma(&tlb, vma);
731         walk_page_range(vma->vm_mm, range.start, range.end,
732                         &madvise_free_walk_ops, &tlb);
733         tlb_end_vma(&tlb, vma);
734         mmu_notifier_invalidate_range_end(&range);
735         tlb_finish_mmu(&tlb, range.start, range.end);
736
737         return 0;
738 }
739
740 /*
741  * Application no longer needs these pages.  If the pages are dirty,
742  * it's OK to just throw them away.  The app will be more careful about
743  * data it wants to keep.  Be sure to free swap resources too.  The
744  * zap_page_range call sets things up for shrink_active_list to actually free
745  * these pages later if no one else has touched them in the meantime,
746  * although we could add these pages to a global reuse list for
747  * shrink_active_list to pick up before reclaiming other pages.
748  *
749  * NB: This interface discards data rather than pushes it out to swap,
750  * as some implementations do.  This has performance implications for
751  * applications like large transactional databases which want to discard
752  * pages in anonymous maps after committing to backing store the data
753  * that was kept in them.  There is no reason to write this data out to
754  * the swap area if the application is discarding it.
755  *
756  * An interface that causes the system to free clean pages and flush
757  * dirty pages is already available as msync(MS_INVALIDATE).
758  */
759 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
760                                         unsigned long start, unsigned long end)
761 {
762         zap_page_range(vma, start, end - start);
763         return 0;
764 }
765
766 static long madvise_dontneed_free(struct vm_area_struct *vma,
767                                   struct vm_area_struct **prev,
768                                   unsigned long start, unsigned long end,
769                                   int behavior)
770 {
771         struct mm_struct *mm = vma->vm_mm;
772
773         *prev = vma;
774         if (!can_madv_lru_vma(vma))
775                 return -EINVAL;
776
777         if (!userfaultfd_remove(vma, start, end)) {
778                 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
779
780                 mmap_read_lock(mm);
781                 vma = find_vma(mm, start);
782                 if (!vma)
783                         return -ENOMEM;
784                 if (start < vma->vm_start) {
785                         /*
786                          * This "vma" under revalidation is the one
787                          * with the lowest vma->vm_start where start
788                          * is also < vma->vm_end. If start <
789                          * vma->vm_start it means an hole materialized
790                          * in the user address space within the
791                          * virtual range passed to MADV_DONTNEED
792                          * or MADV_FREE.
793                          */
794                         return -ENOMEM;
795                 }
796                 if (!can_madv_lru_vma(vma))
797                         return -EINVAL;
798                 if (end > vma->vm_end) {
799                         /*
800                          * Don't fail if end > vma->vm_end. If the old
801                          * vma was splitted while the mmap_lock was
802                          * released the effect of the concurrent
803                          * operation may not cause madvise() to
804                          * have an undefined result. There may be an
805                          * adjacent next vma that we'll walk
806                          * next. userfaultfd_remove() will generate an
807                          * UFFD_EVENT_REMOVE repetition on the
808                          * end-vma->vm_end range, but the manager can
809                          * handle a repetition fine.
810                          */
811                         end = vma->vm_end;
812                 }
813                 VM_WARN_ON(start >= end);
814         }
815
816         if (behavior == MADV_DONTNEED)
817                 return madvise_dontneed_single_vma(vma, start, end);
818         else if (behavior == MADV_FREE)
819                 return madvise_free_single_vma(vma, start, end);
820         else
821                 return -EINVAL;
822 }
823
824 /*
825  * Application wants to free up the pages and associated backing store.
826  * This is effectively punching a hole into the middle of a file.
827  */
828 static long madvise_remove(struct vm_area_struct *vma,
829                                 struct vm_area_struct **prev,
830                                 unsigned long start, unsigned long end)
831 {
832         loff_t offset;
833         int error;
834         struct file *f;
835         struct mm_struct *mm = vma->vm_mm;
836
837         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
838
839         if (vma->vm_flags & VM_LOCKED)
840                 return -EINVAL;
841
842         f = vma->vm_file;
843
844         if (!f || !f->f_mapping || !f->f_mapping->host) {
845                         return -EINVAL;
846         }
847
848         if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
849                 return -EACCES;
850
851         offset = (loff_t)(start - vma->vm_start)
852                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
853
854         /*
855          * Filesystem's fallocate may need to take i_mutex.  We need to
856          * explicitly grab a reference because the vma (and hence the
857          * vma's reference to the file) can go away as soon as we drop
858          * mmap_lock.
859          */
860         get_file(f);
861         if (userfaultfd_remove(vma, start, end)) {
862                 /* mmap_lock was not released by userfaultfd_remove() */
863                 mmap_read_unlock(mm);
864         }
865         error = vfs_fallocate(f,
866                                 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
867                                 offset, end - start);
868         fput(f);
869         mmap_read_lock(mm);
870         return error;
871 }
872
873 #ifdef CONFIG_MEMORY_FAILURE
874 /*
875  * Error injection support for memory error handling.
876  */
877 static int madvise_inject_error(int behavior,
878                 unsigned long start, unsigned long end)
879 {
880         struct zone *zone;
881         unsigned long size;
882
883         if (!capable(CAP_SYS_ADMIN))
884                 return -EPERM;
885
886
887         for (; start < end; start += size) {
888                 unsigned long pfn;
889                 struct page *page;
890                 int ret;
891
892                 ret = get_user_pages_fast(start, 1, 0, &page);
893                 if (ret != 1)
894                         return ret;
895                 pfn = page_to_pfn(page);
896
897                 /*
898                  * When soft offlining hugepages, after migrating the page
899                  * we dissolve it, therefore in the second loop "page" will
900                  * no longer be a compound page.
901                  */
902                 size = page_size(compound_head(page));
903
904                 if (behavior == MADV_SOFT_OFFLINE) {
905                         pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
906                                  pfn, start);
907                         ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
908                 } else {
909                         pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
910                                  pfn, start);
911                         /*
912                          * Drop the page reference taken by get_user_pages_fast(). In
913                          * the absence of MF_COUNT_INCREASED the memory_failure()
914                          * routine is responsible for pinning the page to prevent it
915                          * from being released back to the page allocator.
916                          */
917                         put_page(page);
918                         ret = memory_failure(pfn, 0);
919                 }
920
921                 if (ret)
922                         return ret;
923         }
924
925         /* Ensure that all poisoned pages are removed from per-cpu lists */
926         for_each_populated_zone(zone)
927                 drain_all_pages(zone);
928
929         return 0;
930 }
931 #endif
932
933 static long
934 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
935                 unsigned long start, unsigned long end, int behavior)
936 {
937         switch (behavior) {
938         case MADV_REMOVE:
939                 return madvise_remove(vma, prev, start, end);
940         case MADV_WILLNEED:
941                 return madvise_willneed(vma, prev, start, end);
942         case MADV_COLD:
943                 return madvise_cold(vma, prev, start, end);
944         case MADV_PAGEOUT:
945                 return madvise_pageout(vma, prev, start, end);
946         case MADV_FREE:
947         case MADV_DONTNEED:
948                 return madvise_dontneed_free(vma, prev, start, end, behavior);
949         default:
950                 return madvise_behavior(vma, prev, start, end, behavior);
951         }
952 }
953
954 static bool
955 madvise_behavior_valid(int behavior)
956 {
957         switch (behavior) {
958         case MADV_DOFORK:
959         case MADV_DONTFORK:
960         case MADV_NORMAL:
961         case MADV_SEQUENTIAL:
962         case MADV_RANDOM:
963         case MADV_REMOVE:
964         case MADV_WILLNEED:
965         case MADV_DONTNEED:
966         case MADV_FREE:
967         case MADV_COLD:
968         case MADV_PAGEOUT:
969 #ifdef CONFIG_KSM
970         case MADV_MERGEABLE:
971         case MADV_UNMERGEABLE:
972 #endif
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
974         case MADV_HUGEPAGE:
975         case MADV_NOHUGEPAGE:
976 #endif
977         case MADV_DONTDUMP:
978         case MADV_DODUMP:
979         case MADV_WIPEONFORK:
980         case MADV_KEEPONFORK:
981 #ifdef CONFIG_MEMORY_FAILURE
982         case MADV_SOFT_OFFLINE:
983         case MADV_HWPOISON:
984 #endif
985                 return true;
986
987         default:
988                 return false;
989         }
990 }
991
992 static bool
993 process_madvise_behavior_valid(int behavior)
994 {
995         switch (behavior) {
996         case MADV_COLD:
997         case MADV_PAGEOUT:
998                 return true;
999         default:
1000                 return false;
1001         }
1002 }
1003
1004 /*
1005  * The madvise(2) system call.
1006  *
1007  * Applications can use madvise() to advise the kernel how it should
1008  * handle paging I/O in this VM area.  The idea is to help the kernel
1009  * use appropriate read-ahead and caching techniques.  The information
1010  * provided is advisory only, and can be safely disregarded by the
1011  * kernel without affecting the correct operation of the application.
1012  *
1013  * behavior values:
1014  *  MADV_NORMAL - the default behavior is to read clusters.  This
1015  *              results in some read-ahead and read-behind.
1016  *  MADV_RANDOM - the system should read the minimum amount of data
1017  *              on any access, since it is unlikely that the appli-
1018  *              cation will need more than what it asks for.
1019  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1020  *              once, so they can be aggressively read ahead, and
1021  *              can be freed soon after they are accessed.
1022  *  MADV_WILLNEED - the application is notifying the system to read
1023  *              some pages ahead.
1024  *  MADV_DONTNEED - the application is finished with the given range,
1025  *              so the kernel can free resources associated with it.
1026  *  MADV_FREE - the application marks pages in the given range as lazy free,
1027  *              where actual purges are postponed until memory pressure happens.
1028  *  MADV_REMOVE - the application wants to free up the given range of
1029  *              pages and associated backing store.
1030  *  MADV_DONTFORK - omit this area from child's address space when forking:
1031  *              typically, to avoid COWing pages pinned by get_user_pages().
1032  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1033  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1034  *              range after a fork.
1035  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1036  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1037  *              were corrupted by unrecoverable hardware memory failure.
1038  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1039  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1040  *              this area with pages of identical content from other such areas.
1041  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1042  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1043  *              huge pages in the future. Existing pages might be coalesced and
1044  *              new pages might be allocated as THP.
1045  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1046  *              transparent huge pages so the existing pages will not be
1047  *              coalesced into THP and new pages will not be allocated as THP.
1048  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1049  *              from being included in its core dump.
1050  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1051  *  MADV_COLD - the application is not expected to use this memory soon,
1052  *              deactivate pages in this range so that they can be reclaimed
1053  *              easily if memory pressure hanppens.
1054  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1055  *              page out the pages in this range immediately.
1056  *
1057  * return values:
1058  *  zero    - success
1059  *  -EINVAL - start + len < 0, start is not page-aligned,
1060  *              "behavior" is not a valid value, or application
1061  *              is attempting to release locked or shared pages,
1062  *              or the specified address range includes file, Huge TLB,
1063  *              MAP_SHARED or VMPFNMAP range.
1064  *  -ENOMEM - addresses in the specified range are not currently
1065  *              mapped, or are outside the AS of the process.
1066  *  -EIO    - an I/O error occurred while paging in data.
1067  *  -EBADF  - map exists, but area maps something that isn't a file.
1068  *  -EAGAIN - a kernel resource was temporarily unavailable.
1069  */
1070 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1071 {
1072         unsigned long end, tmp;
1073         struct vm_area_struct *vma, *prev;
1074         int unmapped_error = 0;
1075         int error = -EINVAL;
1076         int write;
1077         size_t len;
1078         struct blk_plug plug;
1079
1080         start = untagged_addr(start);
1081
1082         if (!madvise_behavior_valid(behavior))
1083                 return error;
1084
1085         if (!PAGE_ALIGNED(start))
1086                 return error;
1087         len = PAGE_ALIGN(len_in);
1088
1089         /* Check to see whether len was rounded up from small -ve to zero */
1090         if (len_in && !len)
1091                 return error;
1092
1093         end = start + len;
1094         if (end < start)
1095                 return error;
1096
1097         error = 0;
1098         if (end == start)
1099                 return error;
1100
1101 #ifdef CONFIG_MEMORY_FAILURE
1102         if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1103                 return madvise_inject_error(behavior, start, start + len_in);
1104 #endif
1105
1106         write = madvise_need_mmap_write(behavior);
1107         if (write) {
1108                 if (mmap_write_lock_killable(mm))
1109                         return -EINTR;
1110         } else {
1111                 mmap_read_lock(mm);
1112         }
1113
1114         /*
1115          * If the interval [start,end) covers some unmapped address
1116          * ranges, just ignore them, but return -ENOMEM at the end.
1117          * - different from the way of handling in mlock etc.
1118          */
1119         vma = find_vma_prev(mm, start, &prev);
1120         if (vma && start > vma->vm_start)
1121                 prev = vma;
1122
1123         blk_start_plug(&plug);
1124         for (;;) {
1125                 /* Still start < end. */
1126                 error = -ENOMEM;
1127                 if (!vma)
1128                         goto out;
1129
1130                 /* Here start < (end|vma->vm_end). */
1131                 if (start < vma->vm_start) {
1132                         unmapped_error = -ENOMEM;
1133                         start = vma->vm_start;
1134                         if (start >= end)
1135                                 goto out;
1136                 }
1137
1138                 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1139                 tmp = vma->vm_end;
1140                 if (end < tmp)
1141                         tmp = end;
1142
1143                 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1144                 error = madvise_vma(vma, &prev, start, tmp, behavior);
1145                 if (error)
1146                         goto out;
1147                 start = tmp;
1148                 if (prev && start < prev->vm_end)
1149                         start = prev->vm_end;
1150                 error = unmapped_error;
1151                 if (start >= end)
1152                         goto out;
1153                 if (prev)
1154                         vma = prev->vm_next;
1155                 else    /* madvise_remove dropped mmap_lock */
1156                         vma = find_vma(mm, start);
1157         }
1158 out:
1159         blk_finish_plug(&plug);
1160         if (write)
1161                 mmap_write_unlock(mm);
1162         else
1163                 mmap_read_unlock(mm);
1164
1165         return error;
1166 }
1167
1168 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1169 {
1170         return do_madvise(current->mm, start, len_in, behavior);
1171 }
1172
1173 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1174                 size_t, vlen, int, behavior, unsigned int, flags)
1175 {
1176         ssize_t ret;
1177         struct iovec iovstack[UIO_FASTIOV], iovec;
1178         struct iovec *iov = iovstack;
1179         struct iov_iter iter;
1180         struct pid *pid;
1181         struct task_struct *task;
1182         struct mm_struct *mm;
1183         size_t total_len;
1184         unsigned int f_flags;
1185
1186         if (flags != 0) {
1187                 ret = -EINVAL;
1188                 goto out;
1189         }
1190
1191         ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1192         if (ret < 0)
1193                 goto out;
1194
1195         pid = pidfd_get_pid(pidfd, &f_flags);
1196         if (IS_ERR(pid)) {
1197                 ret = PTR_ERR(pid);
1198                 goto free_iov;
1199         }
1200
1201         task = get_pid_task(pid, PIDTYPE_PID);
1202         if (!task) {
1203                 ret = -ESRCH;
1204                 goto put_pid;
1205         }
1206
1207         if (task->mm != current->mm &&
1208                         !process_madvise_behavior_valid(behavior)) {
1209                 ret = -EINVAL;
1210                 goto release_task;
1211         }
1212
1213         mm = mm_access(task, PTRACE_MODE_ATTACH_FSCREDS);
1214         if (IS_ERR_OR_NULL(mm)) {
1215                 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1216                 goto release_task;
1217         }
1218
1219         total_len = iov_iter_count(&iter);
1220
1221         while (iov_iter_count(&iter)) {
1222                 iovec = iov_iter_iovec(&iter);
1223                 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1224                                         iovec.iov_len, behavior);
1225                 if (ret < 0)
1226                         break;
1227                 iov_iter_advance(&iter, iovec.iov_len);
1228         }
1229
1230         if (ret == 0)
1231                 ret = total_len - iov_iter_count(&iter);
1232
1233         mmput(mm);
1234         return ret;
1235
1236 release_task:
1237         put_task_struct(task);
1238 put_pid:
1239         put_pid(pid);
1240 free_iov:
1241         kfree(iov);
1242 out:
1243         return ret;
1244 }