1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
40 struct madvise_walk_private {
41 struct mmu_gather *tlb;
46 * Any behaviour which results in changes to the vma->vm_flags needs to
47 * take mmap_lock for writing. Others, which simply traverse vmas, need
48 * to only take it for reading.
50 static int madvise_need_mmap_write(int behavior)
56 case MADV_DONTNEED_LOCKED:
60 case MADV_POPULATE_READ:
61 case MADV_POPULATE_WRITE:
65 /* be safe, default to 1. list exceptions explicitly */
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
73 struct anon_vma_name *anon_name;
76 /* Add 1 for NUL terminator at the end of the anon_name->name */
77 count = strlen(name) + 1;
78 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
80 kref_init(&anon_name->kref);
81 memcpy(anon_name->name, name, count);
87 void anon_vma_name_free(struct kref *kref)
89 struct anon_vma_name *anon_name =
90 container_of(kref, struct anon_vma_name, kref);
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
96 mmap_assert_locked(vma->vm_mm);
101 return vma->anon_name;
104 /* mmap_lock should be write-locked */
105 static int replace_anon_vma_name(struct vm_area_struct *vma,
106 struct anon_vma_name *anon_name)
108 struct anon_vma_name *orig_name = anon_vma_name(vma);
111 vma->anon_name = NULL;
112 anon_vma_name_put(orig_name);
116 if (anon_vma_name_eq(orig_name, anon_name))
119 vma->anon_name = anon_vma_name_reuse(anon_name);
120 anon_vma_name_put(orig_name);
124 #else /* CONFIG_ANON_VMA_NAME */
125 static int replace_anon_vma_name(struct vm_area_struct *vma,
126 struct anon_vma_name *anon_name)
133 #endif /* CONFIG_ANON_VMA_NAME */
135 * Update the vm_flags on region of a vma, splitting it or merging it as
136 * necessary. Must be called with mmap_sem held for writing;
137 * Caller should ensure anon_name stability by raising its refcount even when
138 * anon_name belongs to a valid vma because this function might free that vma.
140 static int madvise_update_vma(struct vm_area_struct *vma,
141 struct vm_area_struct **prev, unsigned long start,
142 unsigned long end, unsigned long new_flags,
143 struct anon_vma_name *anon_name)
145 struct mm_struct *mm = vma->vm_mm;
149 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
154 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
155 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
156 vma->vm_file, pgoff, vma_policy(vma),
157 vma->vm_userfaultfd_ctx, anon_name);
165 if (start != vma->vm_start) {
166 if (unlikely(mm->map_count >= sysctl_max_map_count))
168 error = __split_vma(mm, vma, start, 1);
173 if (end != vma->vm_end) {
174 if (unlikely(mm->map_count >= sysctl_max_map_count))
176 error = __split_vma(mm, vma, end, 0);
183 * vm_flags is protected by the mmap_lock held in write mode.
185 vma->vm_flags = new_flags;
187 error = replace_anon_vma_name(vma, anon_name);
196 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
197 unsigned long end, struct mm_walk *walk)
199 struct vm_area_struct *vma = walk->private;
201 struct swap_iocb *splug = NULL;
203 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
206 for (index = start; index != end; index += PAGE_SIZE) {
213 ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
215 pte_unmap_unlock(ptep, ptl);
217 if (!is_swap_pte(pte))
219 entry = pte_to_swp_entry(pte);
220 if (unlikely(non_swap_entry(entry)))
223 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
224 vma, index, false, &splug);
228 swap_read_unplug(splug);
233 static const struct mm_walk_ops swapin_walk_ops = {
234 .pmd_entry = swapin_walk_pmd_entry,
237 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
238 unsigned long start, unsigned long end,
239 struct address_space *mapping)
241 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
242 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
244 struct swap_iocb *splug = NULL;
247 xas_for_each(&xas, page, end_index) {
250 if (!xa_is_value(page))
252 swap = radix_to_swp_entry(page);
253 /* There might be swapin error entries in shmem mapping. */
254 if (non_swap_entry(swap))
259 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
260 NULL, 0, false, &splug);
267 swap_read_unplug(splug);
269 lru_add_drain(); /* Push any new pages onto the LRU now */
271 #endif /* CONFIG_SWAP */
274 * Schedule all required I/O operations. Do not wait for completion.
276 static long madvise_willneed(struct vm_area_struct *vma,
277 struct vm_area_struct **prev,
278 unsigned long start, unsigned long end)
280 struct mm_struct *mm = vma->vm_mm;
281 struct file *file = vma->vm_file;
287 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
288 lru_add_drain(); /* Push any new pages onto the LRU now */
292 if (shmem_mapping(file->f_mapping)) {
293 force_shm_swapin_readahead(vma, start, end,
302 if (IS_DAX(file_inode(file))) {
303 /* no bad return value, but ignore advice */
308 * Filesystem's fadvise may need to take various locks. We need to
309 * explicitly grab a reference because the vma (and hence the
310 * vma's reference to the file) can go away as soon as we drop
313 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
315 offset = (loff_t)(start - vma->vm_start)
316 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
317 mmap_read_unlock(mm);
318 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
324 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
325 unsigned long addr, unsigned long end,
326 struct mm_walk *walk)
328 struct madvise_walk_private *private = walk->private;
329 struct mmu_gather *tlb = private->tlb;
330 bool pageout = private->pageout;
331 struct mm_struct *mm = tlb->mm;
332 struct vm_area_struct *vma = walk->vma;
333 pte_t *orig_pte, *pte, ptent;
335 struct page *page = NULL;
336 LIST_HEAD(page_list);
338 if (fatal_signal_pending(current))
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 if (pmd_trans_huge(*pmd)) {
344 unsigned long next = pmd_addr_end(addr, end);
346 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
347 ptl = pmd_trans_huge_lock(pmd, vma);
352 if (is_huge_zero_pmd(orig_pmd))
355 if (unlikely(!pmd_present(orig_pmd))) {
356 VM_BUG_ON(thp_migration_supported() &&
357 !is_pmd_migration_entry(orig_pmd));
361 page = pmd_page(orig_pmd);
363 /* Do not interfere with other mappings of this page */
364 if (page_mapcount(page) != 1)
367 if (next - addr != HPAGE_PMD_SIZE) {
373 err = split_huge_page(page);
381 if (pmd_young(orig_pmd)) {
382 pmdp_invalidate(vma, addr, pmd);
383 orig_pmd = pmd_mkold(orig_pmd);
385 set_pmd_at(mm, addr, pmd, orig_pmd);
386 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
389 ClearPageReferenced(page);
390 test_and_clear_page_young(page);
392 if (!isolate_lru_page(page)) {
393 if (PageUnevictable(page))
394 putback_lru_page(page);
396 list_add(&page->lru, &page_list);
399 deactivate_page(page);
403 reclaim_pages(&page_list);
408 if (pmd_trans_unstable(pmd))
411 tlb_change_page_size(tlb, PAGE_SIZE);
412 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
413 flush_tlb_batched_pending(mm);
414 arch_enter_lazy_mmu_mode();
415 for (; addr < end; pte++, addr += PAGE_SIZE) {
421 if (!pte_present(ptent))
424 page = vm_normal_page(vma, addr, ptent);
425 if (!page || is_zone_device_page(page))
429 * Creating a THP page is expensive so split it only if we
430 * are sure it's worth. Split it if we are only owner.
432 if (PageTransCompound(page)) {
433 if (page_mapcount(page) != 1)
436 if (!trylock_page(page)) {
440 pte_unmap_unlock(orig_pte, ptl);
441 if (split_huge_page(page)) {
444 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
449 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
456 * Do not interfere with other mappings of this page and
459 if (!PageLRU(page) || page_mapcount(page) != 1)
462 VM_BUG_ON_PAGE(PageTransCompound(page), page);
464 if (pte_young(ptent)) {
465 ptent = ptep_get_and_clear_full(mm, addr, pte,
467 ptent = pte_mkold(ptent);
468 set_pte_at(mm, addr, pte, ptent);
469 tlb_remove_tlb_entry(tlb, pte, addr);
473 * We are deactivating a page for accelerating reclaiming.
474 * VM couldn't reclaim the page unless we clear PG_young.
475 * As a side effect, it makes confuse idle-page tracking
476 * because they will miss recent referenced history.
478 ClearPageReferenced(page);
479 test_and_clear_page_young(page);
481 if (!isolate_lru_page(page)) {
482 if (PageUnevictable(page))
483 putback_lru_page(page);
485 list_add(&page->lru, &page_list);
488 deactivate_page(page);
491 arch_leave_lazy_mmu_mode();
492 pte_unmap_unlock(orig_pte, ptl);
494 reclaim_pages(&page_list);
500 static const struct mm_walk_ops cold_walk_ops = {
501 .pmd_entry = madvise_cold_or_pageout_pte_range,
504 static void madvise_cold_page_range(struct mmu_gather *tlb,
505 struct vm_area_struct *vma,
506 unsigned long addr, unsigned long end)
508 struct madvise_walk_private walk_private = {
513 tlb_start_vma(tlb, vma);
514 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
515 tlb_end_vma(tlb, vma);
518 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
520 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
523 static long madvise_cold(struct vm_area_struct *vma,
524 struct vm_area_struct **prev,
525 unsigned long start_addr, unsigned long end_addr)
527 struct mm_struct *mm = vma->vm_mm;
528 struct mmu_gather tlb;
531 if (!can_madv_lru_vma(vma))
535 tlb_gather_mmu(&tlb, mm);
536 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
537 tlb_finish_mmu(&tlb);
542 static void madvise_pageout_page_range(struct mmu_gather *tlb,
543 struct vm_area_struct *vma,
544 unsigned long addr, unsigned long end)
546 struct madvise_walk_private walk_private = {
551 tlb_start_vma(tlb, vma);
552 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
553 tlb_end_vma(tlb, vma);
556 static inline bool can_do_pageout(struct vm_area_struct *vma)
558 if (vma_is_anonymous(vma))
563 * paging out pagecache only for non-anonymous mappings that correspond
564 * to the files the calling process could (if tried) open for writing;
565 * otherwise we'd be including shared non-exclusive mappings, which
566 * opens a side channel.
568 return inode_owner_or_capable(&init_user_ns,
569 file_inode(vma->vm_file)) ||
570 file_permission(vma->vm_file, MAY_WRITE) == 0;
573 static long madvise_pageout(struct vm_area_struct *vma,
574 struct vm_area_struct **prev,
575 unsigned long start_addr, unsigned long end_addr)
577 struct mm_struct *mm = vma->vm_mm;
578 struct mmu_gather tlb;
581 if (!can_madv_lru_vma(vma))
584 if (!can_do_pageout(vma))
588 tlb_gather_mmu(&tlb, mm);
589 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
590 tlb_finish_mmu(&tlb);
595 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
596 unsigned long end, struct mm_walk *walk)
599 struct mmu_gather *tlb = walk->private;
600 struct mm_struct *mm = tlb->mm;
601 struct vm_area_struct *vma = walk->vma;
603 pte_t *orig_pte, *pte, ptent;
609 next = pmd_addr_end(addr, end);
610 if (pmd_trans_huge(*pmd))
611 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
614 if (pmd_trans_unstable(pmd))
617 tlb_change_page_size(tlb, PAGE_SIZE);
618 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
619 flush_tlb_batched_pending(mm);
620 arch_enter_lazy_mmu_mode();
621 for (; addr != end; pte++, addr += PAGE_SIZE) {
627 * If the pte has swp_entry, just clear page table to
628 * prevent swap-in which is more expensive rather than
629 * (page allocation + zeroing).
631 if (!pte_present(ptent)) {
634 entry = pte_to_swp_entry(ptent);
635 if (!non_swap_entry(entry)) {
637 free_swap_and_cache(entry);
638 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
639 } else if (is_hwpoison_entry(entry) ||
640 is_swapin_error_entry(entry)) {
641 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
646 page = vm_normal_page(vma, addr, ptent);
647 if (!page || is_zone_device_page(page))
649 folio = page_folio(page);
652 * If pmd isn't transhuge but the folio is large and
653 * is owned by only this process, split it and
654 * deactivate all pages.
656 if (folio_test_large(folio)) {
657 if (folio_mapcount(folio) != 1)
660 if (!folio_trylock(folio)) {
664 pte_unmap_unlock(orig_pte, ptl);
665 if (split_folio(folio)) {
668 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
673 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
679 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
680 if (!folio_trylock(folio))
683 * If folio is shared with others, we mustn't clear
684 * the folio's dirty flag.
686 if (folio_mapcount(folio) != 1) {
691 if (folio_test_swapcache(folio) &&
692 !folio_free_swap(folio)) {
697 folio_clear_dirty(folio);
701 if (pte_young(ptent) || pte_dirty(ptent)) {
703 * Some of architecture(ex, PPC) don't update TLB
704 * with set_pte_at and tlb_remove_tlb_entry so for
705 * the portability, remap the pte with old|clean
706 * after pte clearing.
708 ptent = ptep_get_and_clear_full(mm, addr, pte,
711 ptent = pte_mkold(ptent);
712 ptent = pte_mkclean(ptent);
713 set_pte_at(mm, addr, pte, ptent);
714 tlb_remove_tlb_entry(tlb, pte, addr);
716 mark_page_lazyfree(&folio->page);
720 if (current->mm == mm)
723 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
725 arch_leave_lazy_mmu_mode();
726 pte_unmap_unlock(orig_pte, ptl);
732 static const struct mm_walk_ops madvise_free_walk_ops = {
733 .pmd_entry = madvise_free_pte_range,
736 static int madvise_free_single_vma(struct vm_area_struct *vma,
737 unsigned long start_addr, unsigned long end_addr)
739 struct mm_struct *mm = vma->vm_mm;
740 struct mmu_notifier_range range;
741 struct mmu_gather tlb;
743 /* MADV_FREE works for only anon vma at the moment */
744 if (!vma_is_anonymous(vma))
747 range.start = max(vma->vm_start, start_addr);
748 if (range.start >= vma->vm_end)
750 range.end = min(vma->vm_end, end_addr);
751 if (range.end <= vma->vm_start)
753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
754 range.start, range.end);
757 tlb_gather_mmu(&tlb, mm);
758 update_hiwater_rss(mm);
760 mmu_notifier_invalidate_range_start(&range);
761 tlb_start_vma(&tlb, vma);
762 walk_page_range(vma->vm_mm, range.start, range.end,
763 &madvise_free_walk_ops, &tlb);
764 tlb_end_vma(&tlb, vma);
765 mmu_notifier_invalidate_range_end(&range);
766 tlb_finish_mmu(&tlb);
772 * Application no longer needs these pages. If the pages are dirty,
773 * it's OK to just throw them away. The app will be more careful about
774 * data it wants to keep. Be sure to free swap resources too. The
775 * zap_page_range call sets things up for shrink_active_list to actually free
776 * these pages later if no one else has touched them in the meantime,
777 * although we could add these pages to a global reuse list for
778 * shrink_active_list to pick up before reclaiming other pages.
780 * NB: This interface discards data rather than pushes it out to swap,
781 * as some implementations do. This has performance implications for
782 * applications like large transactional databases which want to discard
783 * pages in anonymous maps after committing to backing store the data
784 * that was kept in them. There is no reason to write this data out to
785 * the swap area if the application is discarding it.
787 * An interface that causes the system to free clean pages and flush
788 * dirty pages is already available as msync(MS_INVALIDATE).
790 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
791 unsigned long start, unsigned long end)
793 zap_page_range(vma, start, end - start);
797 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
802 if (!is_vm_hugetlb_page(vma)) {
803 unsigned int forbidden = VM_PFNMAP;
805 if (behavior != MADV_DONTNEED_LOCKED)
806 forbidden |= VM_LOCKED;
808 return !(vma->vm_flags & forbidden);
811 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
813 if (start & ~huge_page_mask(hstate_vma(vma)))
816 *end = ALIGN(*end, huge_page_size(hstate_vma(vma)));
820 static long madvise_dontneed_free(struct vm_area_struct *vma,
821 struct vm_area_struct **prev,
822 unsigned long start, unsigned long end,
825 struct mm_struct *mm = vma->vm_mm;
828 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
831 if (!userfaultfd_remove(vma, start, end)) {
832 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
835 vma = find_vma(mm, start);
838 if (start < vma->vm_start) {
840 * This "vma" under revalidation is the one
841 * with the lowest vma->vm_start where start
842 * is also < vma->vm_end. If start <
843 * vma->vm_start it means an hole materialized
844 * in the user address space within the
845 * virtual range passed to MADV_DONTNEED
851 * Potential end adjustment for hugetlb vma is OK as
852 * the check below keeps end within vma.
854 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
857 if (end > vma->vm_end) {
859 * Don't fail if end > vma->vm_end. If the old
860 * vma was split while the mmap_lock was
861 * released the effect of the concurrent
862 * operation may not cause madvise() to
863 * have an undefined result. There may be an
864 * adjacent next vma that we'll walk
865 * next. userfaultfd_remove() will generate an
866 * UFFD_EVENT_REMOVE repetition on the
867 * end-vma->vm_end range, but the manager can
868 * handle a repetition fine.
872 VM_WARN_ON(start >= end);
875 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
876 return madvise_dontneed_single_vma(vma, start, end);
877 else if (behavior == MADV_FREE)
878 return madvise_free_single_vma(vma, start, end);
883 static long madvise_populate(struct vm_area_struct *vma,
884 struct vm_area_struct **prev,
885 unsigned long start, unsigned long end,
888 const bool write = behavior == MADV_POPULATE_WRITE;
889 struct mm_struct *mm = vma->vm_mm;
890 unsigned long tmp_end;
896 while (start < end) {
898 * We might have temporarily dropped the lock. For example,
899 * our VMA might have been split.
901 if (!vma || start >= vma->vm_end) {
902 vma = vma_lookup(mm, start);
907 tmp_end = min_t(unsigned long, end, vma->vm_end);
908 /* Populate (prefault) page tables readable/writable. */
909 pages = faultin_vma_page_range(vma, start, tmp_end, write,
921 case -EINVAL: /* Incompatible mappings / permissions. */
925 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
928 pr_warn_once("%s: unhandled return value: %ld\n",
935 start += pages * PAGE_SIZE;
941 * Application wants to free up the pages and associated backing store.
942 * This is effectively punching a hole into the middle of a file.
944 static long madvise_remove(struct vm_area_struct *vma,
945 struct vm_area_struct **prev,
946 unsigned long start, unsigned long end)
951 struct mm_struct *mm = vma->vm_mm;
953 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
955 if (vma->vm_flags & VM_LOCKED)
960 if (!f || !f->f_mapping || !f->f_mapping->host) {
964 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
967 offset = (loff_t)(start - vma->vm_start)
968 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
971 * Filesystem's fallocate may need to take i_rwsem. We need to
972 * explicitly grab a reference because the vma (and hence the
973 * vma's reference to the file) can go away as soon as we drop
977 if (userfaultfd_remove(vma, start, end)) {
978 /* mmap_lock was not released by userfaultfd_remove() */
979 mmap_read_unlock(mm);
981 error = vfs_fallocate(f,
982 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
983 offset, end - start);
990 * Apply an madvise behavior to a region of a vma. madvise_update_vma
991 * will handle splitting a vm area into separate areas, each area with its own
994 static int madvise_vma_behavior(struct vm_area_struct *vma,
995 struct vm_area_struct **prev,
996 unsigned long start, unsigned long end,
997 unsigned long behavior)
1000 struct anon_vma_name *anon_name;
1001 unsigned long new_flags = vma->vm_flags;
1005 return madvise_remove(vma, prev, start, end);
1007 return madvise_willneed(vma, prev, start, end);
1009 return madvise_cold(vma, prev, start, end);
1011 return madvise_pageout(vma, prev, start, end);
1014 case MADV_DONTNEED_LOCKED:
1015 return madvise_dontneed_free(vma, prev, start, end, behavior);
1016 case MADV_POPULATE_READ:
1017 case MADV_POPULATE_WRITE:
1018 return madvise_populate(vma, prev, start, end, behavior);
1020 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1022 case MADV_SEQUENTIAL:
1023 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1026 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1029 new_flags |= VM_DONTCOPY;
1032 if (vma->vm_flags & VM_IO)
1034 new_flags &= ~VM_DONTCOPY;
1036 case MADV_WIPEONFORK:
1037 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1038 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1040 new_flags |= VM_WIPEONFORK;
1042 case MADV_KEEPONFORK:
1043 new_flags &= ~VM_WIPEONFORK;
1046 new_flags |= VM_DONTDUMP;
1049 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1051 new_flags &= ~VM_DONTDUMP;
1053 case MADV_MERGEABLE:
1054 case MADV_UNMERGEABLE:
1055 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1060 case MADV_NOHUGEPAGE:
1061 error = hugepage_madvise(vma, &new_flags, behavior);
1066 return madvise_collapse(vma, prev, start, end);
1069 anon_name = anon_vma_name(vma);
1070 anon_vma_name_get(anon_name);
1071 error = madvise_update_vma(vma, prev, start, end, new_flags,
1073 anon_vma_name_put(anon_name);
1077 * madvise() returns EAGAIN if kernel resources, such as
1078 * slab, are temporarily unavailable.
1080 if (error == -ENOMEM)
1085 #ifdef CONFIG_MEMORY_FAILURE
1087 * Error injection support for memory error handling.
1089 static int madvise_inject_error(int behavior,
1090 unsigned long start, unsigned long end)
1094 if (!capable(CAP_SYS_ADMIN))
1098 for (; start < end; start += size) {
1103 ret = get_user_pages_fast(start, 1, 0, &page);
1106 pfn = page_to_pfn(page);
1109 * When soft offlining hugepages, after migrating the page
1110 * we dissolve it, therefore in the second loop "page" will
1111 * no longer be a compound page.
1113 size = page_size(compound_head(page));
1115 if (behavior == MADV_SOFT_OFFLINE) {
1116 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1118 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1120 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1122 ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1123 if (ret == -EOPNOTSUPP)
1136 madvise_behavior_valid(int behavior)
1142 case MADV_SEQUENTIAL:
1147 case MADV_DONTNEED_LOCKED:
1151 case MADV_POPULATE_READ:
1152 case MADV_POPULATE_WRITE:
1154 case MADV_MERGEABLE:
1155 case MADV_UNMERGEABLE:
1157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1159 case MADV_NOHUGEPAGE:
1164 case MADV_WIPEONFORK:
1165 case MADV_KEEPONFORK:
1166 #ifdef CONFIG_MEMORY_FAILURE
1167 case MADV_SOFT_OFFLINE:
1177 static bool process_madvise_behavior_valid(int behavior)
1191 * Walk the vmas in range [start,end), and call the visit function on each one.
1192 * The visit function will get start and end parameters that cover the overlap
1193 * between the current vma and the original range. Any unmapped regions in the
1194 * original range will result in this function returning -ENOMEM while still
1195 * calling the visit function on all of the existing vmas in the range.
1196 * Must be called with the mmap_lock held for reading or writing.
1199 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1200 unsigned long end, unsigned long arg,
1201 int (*visit)(struct vm_area_struct *vma,
1202 struct vm_area_struct **prev, unsigned long start,
1203 unsigned long end, unsigned long arg))
1205 struct vm_area_struct *vma;
1206 struct vm_area_struct *prev;
1208 int unmapped_error = 0;
1211 * If the interval [start,end) covers some unmapped address
1212 * ranges, just ignore them, but return -ENOMEM at the end.
1213 * - different from the way of handling in mlock etc.
1215 vma = find_vma_prev(mm, start, &prev);
1216 if (vma && start > vma->vm_start)
1222 /* Still start < end. */
1226 /* Here start < (end|vma->vm_end). */
1227 if (start < vma->vm_start) {
1228 unmapped_error = -ENOMEM;
1229 start = vma->vm_start;
1234 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1239 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1240 error = visit(vma, &prev, start, tmp, arg);
1244 if (prev && start < prev->vm_end)
1245 start = prev->vm_end;
1249 vma = find_vma(mm, prev->vm_end);
1250 else /* madvise_remove dropped mmap_lock */
1251 vma = find_vma(mm, start);
1254 return unmapped_error;
1257 #ifdef CONFIG_ANON_VMA_NAME
1258 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1259 struct vm_area_struct **prev,
1260 unsigned long start, unsigned long end,
1261 unsigned long anon_name)
1265 /* Only anonymous mappings can be named */
1269 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1270 (struct anon_vma_name *)anon_name);
1273 * madvise() returns EAGAIN if kernel resources, such as
1274 * slab, are temporarily unavailable.
1276 if (error == -ENOMEM)
1281 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1282 unsigned long len_in, struct anon_vma_name *anon_name)
1287 if (start & ~PAGE_MASK)
1289 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1291 /* Check to see whether len was rounded up from small -ve to zero */
1302 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1303 madvise_vma_anon_name);
1305 #endif /* CONFIG_ANON_VMA_NAME */
1307 * The madvise(2) system call.
1309 * Applications can use madvise() to advise the kernel how it should
1310 * handle paging I/O in this VM area. The idea is to help the kernel
1311 * use appropriate read-ahead and caching techniques. The information
1312 * provided is advisory only, and can be safely disregarded by the
1313 * kernel without affecting the correct operation of the application.
1316 * MADV_NORMAL - the default behavior is to read clusters. This
1317 * results in some read-ahead and read-behind.
1318 * MADV_RANDOM - the system should read the minimum amount of data
1319 * on any access, since it is unlikely that the appli-
1320 * cation will need more than what it asks for.
1321 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1322 * once, so they can be aggressively read ahead, and
1323 * can be freed soon after they are accessed.
1324 * MADV_WILLNEED - the application is notifying the system to read
1326 * MADV_DONTNEED - the application is finished with the given range,
1327 * so the kernel can free resources associated with it.
1328 * MADV_FREE - the application marks pages in the given range as lazy free,
1329 * where actual purges are postponed until memory pressure happens.
1330 * MADV_REMOVE - the application wants to free up the given range of
1331 * pages and associated backing store.
1332 * MADV_DONTFORK - omit this area from child's address space when forking:
1333 * typically, to avoid COWing pages pinned by get_user_pages().
1334 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1335 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1336 * range after a fork.
1337 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1338 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1339 * were corrupted by unrecoverable hardware memory failure.
1340 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1341 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1342 * this area with pages of identical content from other such areas.
1343 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1344 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1345 * huge pages in the future. Existing pages might be coalesced and
1346 * new pages might be allocated as THP.
1347 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1348 * transparent huge pages so the existing pages will not be
1349 * coalesced into THP and new pages will not be allocated as THP.
1350 * MADV_COLLAPSE - synchronously coalesce pages into new THP.
1351 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1352 * from being included in its core dump.
1353 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1354 * MADV_COLD - the application is not expected to use this memory soon,
1355 * deactivate pages in this range so that they can be reclaimed
1356 * easily if memory pressure happens.
1357 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1358 * page out the pages in this range immediately.
1359 * MADV_POPULATE_READ - populate (prefault) page tables readable by
1360 * triggering read faults if required
1361 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1362 * triggering write faults if required
1366 * -EINVAL - start + len < 0, start is not page-aligned,
1367 * "behavior" is not a valid value, or application
1368 * is attempting to release locked or shared pages,
1369 * or the specified address range includes file, Huge TLB,
1370 * MAP_SHARED or VMPFNMAP range.
1371 * -ENOMEM - addresses in the specified range are not currently
1372 * mapped, or are outside the AS of the process.
1373 * -EIO - an I/O error occurred while paging in data.
1374 * -EBADF - map exists, but area maps something that isn't a file.
1375 * -EAGAIN - a kernel resource was temporarily unavailable.
1377 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1383 struct blk_plug plug;
1385 start = untagged_addr(start);
1387 if (!madvise_behavior_valid(behavior))
1390 if (!PAGE_ALIGNED(start))
1392 len = PAGE_ALIGN(len_in);
1394 /* Check to see whether len was rounded up from small -ve to zero */
1405 #ifdef CONFIG_MEMORY_FAILURE
1406 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1407 return madvise_inject_error(behavior, start, start + len_in);
1410 write = madvise_need_mmap_write(behavior);
1412 if (mmap_write_lock_killable(mm))
1418 blk_start_plug(&plug);
1419 error = madvise_walk_vmas(mm, start, end, behavior,
1420 madvise_vma_behavior);
1421 blk_finish_plug(&plug);
1423 mmap_write_unlock(mm);
1425 mmap_read_unlock(mm);
1430 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1432 return do_madvise(current->mm, start, len_in, behavior);
1435 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1436 size_t, vlen, int, behavior, unsigned int, flags)
1439 struct iovec iovstack[UIO_FASTIOV], iovec;
1440 struct iovec *iov = iovstack;
1441 struct iov_iter iter;
1442 struct task_struct *task;
1443 struct mm_struct *mm;
1445 unsigned int f_flags;
1452 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1456 task = pidfd_get_task(pidfd, &f_flags);
1458 ret = PTR_ERR(task);
1462 if (!process_madvise_behavior_valid(behavior)) {
1467 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1468 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1469 if (IS_ERR_OR_NULL(mm)) {
1470 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1475 * Require CAP_SYS_NICE for influencing process performance. Note that
1476 * only non-destructive hints are currently supported.
1478 if (!capable(CAP_SYS_NICE)) {
1483 total_len = iov_iter_count(&iter);
1485 while (iov_iter_count(&iter)) {
1486 iovec = iov_iter_iovec(&iter);
1487 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1488 iovec.iov_len, behavior);
1491 iov_iter_advance(&iter, iovec.iov_len);
1494 ret = (total_len - iov_iter_count(&iter)) ? : ret;
1499 put_task_struct(task);