mm: LKSM: remove unnecessary debug messages
[platform/kernel/linux-rpi.git] / mm / lksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Lightweight KSM.
4  *
5  * This code provides lightweight version of KSM.
6  *
7  * Copyright (C) 2020 Samsung Electronics Co., Ltd.
8  * Author: Sung-hun Kim (sfoon.kim@samsung.com)
9  */
10
11 /*
12  * Memory merging support.
13  *
14  * This code enables dynamic sharing of identical pages found in different
15  * memory areas, even if they are not shared by fork()
16  *
17  * Copyright (C) 2008-2009 Red Hat, Inc.
18  * Authors:
19  *      Izik Eidus
20  *      Andrea Arcangeli
21  *      Chris Wright
22  *      Hugh Dickins
23  */
24
25 #include <linux/errno.h>
26 #include <linux/mm.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/rwsem.h>
33 #include <linux/pagemap.h>
34 #include <linux/rmap.h>
35 #include <linux/spinlock.h>
36 #include <linux/xxhash.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/wait.h>
40 #include <linux/slab.h>
41 #include <linux/rbtree.h>
42 #include <linux/memory.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/swap.h>
45 #include <linux/ksm.h>
46 #include <linux/hashtable.h>
47 #include <linux/freezer.h>
48 #include <linux/oom.h>
49 #include <linux/numa.h>
50
51 #include <asm/tlbflush.h>
52 #include "internal.h"
53
54 #ifdef CONFIG_NUMA
55 #define NUMA(x)         (x)
56 #define DO_NUMA(x)      do { (x); } while (0)
57 #else
58 #define NUMA(x)         (0)
59 #define DO_NUMA(x)      do { } while (0)
60 #endif
61
62 #define ksm_debug(fmt, ...) \
63         printk(KERN_DEBUG "[ksm:%s:%d] " fmt "\n", __func__, __LINE__, ##__VA_ARGS__)
64 #define ksm_err(fmt, ...) \
65         printk(KERN_ERR "[ksm:%s:%d] " fmt "\n", __func__, __LINE__, ##__VA_ARGS__)
66
67 /**
68  * DOC: Overview
69  *
70  * A few notes about the KSM scanning process,
71  * to make it easier to understand the data structures below:
72  *
73  * In order to reduce excessive scanning, KSM sorts the memory pages by their
74  * contents into a data structure that holds pointers to the pages' locations.
75  *
76  * Since the contents of the pages may change at any moment, KSM cannot just
77  * insert the pages into a normal sorted tree and expect it to find anything.
78  * Therefore KSM uses two data structures - the stable and the unstable tree.
79  *
80  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
81  * by their contents.  Because each such page is write-protected, searching on
82  * this tree is fully assured to be working (except when pages are unmapped),
83  * and therefore this tree is called the stable tree.
84  *
85  * The stable tree node includes information required for reverse
86  * mapping from a KSM page to virtual addresses that map this page.
87  *
88  * In order to avoid large latencies of the rmap walks on KSM pages,
89  * KSM maintains two types of nodes in the stable tree:
90  *
91  * * the regular nodes that keep the reverse mapping structures in a
92  *   linked list
93  * * the "chains" that link nodes ("dups") that represent the same
94  *   write protected memory content, but each "dup" corresponds to a
95  *   different KSM page copy of that content
96  *
97  * Internally, the regular nodes, "dups" and "chains" are represented
98  * using the same :c:type:`struct stable_node` structure.
99  *
100  * In addition to the stable tree, KSM uses a second data structure called the
101  * unstable tree: this tree holds pointers to pages which have been found to
102  * be "unchanged for a period of time".  The unstable tree sorts these pages
103  * by their contents, but since they are not write-protected, KSM cannot rely
104  * upon the unstable tree to work correctly - the unstable tree is liable to
105  * be corrupted as its contents are modified, and so it is called unstable.
106  *
107  * KSM solves this problem by several techniques:
108  *
109  * 1) The unstable tree is flushed every time KSM completes scanning all
110  *    memory areas, and then the tree is rebuilt again from the beginning.
111  * 2) KSM will only insert into the unstable tree, pages whose hash value
112  *    has not changed since the previous scan of all memory areas.
113  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
114  *    colors of the nodes and not on their contents, assuring that even when
115  *    the tree gets "corrupted" it won't get out of balance, so scanning time
116  *    remains the same (also, searching and inserting nodes in an rbtree uses
117  *    the same algorithm, so we have no overhead when we flush and rebuild).
118  * 4) KSM never flushes the stable tree, which means that even if it were to
119  *    take 10 attempts to find a page in the unstable tree, once it is found,
120  *    it is secured in the stable tree.  (When we scan a new page, we first
121  *    compare it against the stable tree, and then against the unstable tree.)
122  *
123  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
124  * stable trees and multiple unstable trees: one of each for each NUMA node.
125  */
126
127 /*
128  * A few notes about lightweight KSM.
129  *
130  * A smart crawler leverages semantics of tasks in Tizen.
131  * When the application goes to background, it is attached to freezer
132  * task group. LKSM crawler hooks this event and adds a "frozen task"
133  * to candidate list for scanning.
134  *
135  */
136
137 /* merge window size */
138 #define MERGE_WIN 3
139
140 /**
141  * struct mm_slot - ksm information per mm that is being scanned
142  * @link: link to the mm_slots hash list
143  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
144  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
145  * @mm: the mm that this information is valid for
146  *
147  * extension - added for LKSM
148  * @state: state of mm_slot (frozen, listed, scanned, newcomer)
149  * @merge_idx: merge window index to store the number of currently merged pages
150  * @nr_merged_win: merge window to keep recent three numbers
151  * @nr_merged: sum of nr_merged_win, used to maintain vips_list (ordered list)
152  * @ordered_list: list ordered by nr_merged
153  * @scanning_size: number of anonymous pages in mm_struct
154  * @fault_cnt: last read count of page fault (minor + major)
155  * @elapsed: elapsed scanning time
156  * @nr_scans: number of scanning pages (can be different with scanning_size)
157  */
158 struct mm_slot {
159         struct hlist_node link;
160         struct list_head mm_list;
161         struct list_head scan_list;
162         struct rmap_item *rmap_list;
163         struct mm_struct *mm;
164
165         short state;
166
167         short merge_idx;
168         int nr_merged_win[MERGE_WIN];
169         int nr_merged;
170         struct rb_node ordered_list;
171
172         unsigned long scanning_size; /* in number of pages */
173         unsigned long fault_cnt;
174         unsigned long elapsed;
175         int nr_scans;
176
177 #ifdef CONFIG_LKSM_FILTER
178         /* used for releasing lksm_region */
179         struct list_head ref_list;
180         int nr_regions;
181 #endif
182
183 };
184
185 /*
186  * scanning mode of LKSM:
187  * LKSM_SCAN_PARTIAL: perform deduplication on subset of processes
188  * LKSM_SCAN_FULL: perform deduplication on full set of processes
189  */
190 enum lksm_scan_mode {
191         LKSM_SCAN_NONE,
192         LKSM_SCAN_PARTIAL,
193         LKSM_SCAN_FULL,
194 };
195
196 /**
197  * struct ksm_scan - cursor for scanning
198  * @address: the next address inside that to be scanned
199  * @rmap_list: link to the next rmap to be scanned in the rmap_list
200  * @mm_slot: the current mm_slot we are scanning
201  * @remove_mm_list: temporary list for batching flush of removed slots
202  * @nr_scannable: the number of remaining unscanned scannable slots
203  * @nr_frozen: the number of remaining unscanned frozen slots
204  * @scan_round: scanning round (partial + full)
205  * @nr_full_scan: the number of full scanning
206  * @scan_mode: coverage of current scanning
207  *
208  * There is only the one ksm_scan instance of this cursor structure.
209  */
210 struct ksm_scan {
211         unsigned long address;
212         struct rmap_item **rmap_list;
213
214         struct mm_slot *mm_slot;
215         struct list_head remove_mm_list;
216
217         /* statistics of scanning targets */
218         atomic_t nr_scannable;
219         atomic_t nr_frozen;
220
221         unsigned long scan_round;
222         unsigned long nr_full_scan;
223
224         enum lksm_scan_mode scan_mode;
225
226 #ifdef CONFIG_LKSM_FILTER
227         struct lksm_region *region;
228         unsigned long vma_base_addr;
229         struct vm_area_struct *cached_vma;
230 #endif /* CONFIG_LKSM_FILTER */
231 };
232
233 /**
234  * struct stable_node - node of the stable rbtree
235  * @node: rb node of this ksm page in the stable tree
236  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
237  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
238  * @list: linked into migrate_nodes, pending placement in the proper node tree
239  * @hlist: hlist head of rmap_items using this ksm page
240  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
241  * @chain_prune_time: time of the last full garbage collection
242  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
243  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
244  */
245 struct stable_node {
246         union {
247                 struct rb_node node;    /* when node of stable tree */
248                 struct {                /* when listed for migration */
249                         struct list_head *head;
250                         struct {
251                                 struct hlist_node hlist_dup;
252                                 struct list_head list;
253                         };
254                 };
255         };
256         struct hlist_head hlist;
257         union {
258                 unsigned long kpfn;
259                 unsigned long chain_prune_time;
260         };
261         /*
262          * STABLE_NODE_CHAIN can be any negative number in
263          * rmap_hlist_len negative range, but better not -1 to be able
264          * to reliably detect underflows.
265          */
266 #define STABLE_NODE_CHAIN -1024
267         int rmap_hlist_len;
268 #ifdef CONFIG_NUMA
269         int nid;
270 #endif
271 };
272
273 /**
274  * struct rmap_item - reverse mapping item for virtual addresses
275  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
276  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
277  * @nid: NUMA node id of unstable tree in which linked (may not match page)
278  * @region: pointer to the mapped region (LKSM feature)
279  * @mm: the memory structure this rmap_item is pointing into
280  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
281  * @oldchecksum: previous checksum of the page at that virtual address
282  * @node: rb node of this rmap_item in the unstable tree
283  * @head: pointer to stable_node heading this list in the stable tree
284  * @base_addr: used for calculating offset of the address (LKSM feature)
285  * @hlist: link into hlist of rmap_items hanging off that stable_node
286  */
287 struct rmap_item {
288         struct rmap_item *rmap_list;
289         union {
290                 struct anon_vma *anon_vma;      /* when stable */
291 #ifdef CONFIG_NUMA
292                 int nid;                /* when node of unstable tree */
293 #endif
294 #ifdef CONFIG_LKSM_FILTER
295                 struct lksm_region *region; /* when unstable */
296 #endif
297         };
298         struct mm_struct *mm;
299         unsigned long address;          /* + low bits used for flags below */
300         unsigned int oldchecksum;       /* when unstable (LSB is a frozen bit) */
301         union {
302                 struct rb_node node;    /* when node of unstable tree */
303                 struct {                /* when listed from stable tree */
304 #ifdef CONFIG_LKSM_FILTER
305                         union {
306                                 struct stable_node *head;
307                                 unsigned long base_addr; /* temporal storage for merge */
308                         };
309 #else
310                         struct stable_node *head;
311 #endif /* CONFIG_LKSM_FILTER */
312                         struct hlist_node hlist;
313                 };
314         };
315 };
316
317 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree scan_round */
318 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
319 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
320 #define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
321                                 /* to mask all the flags */
322
323 /* The stable and unstable tree heads */
324 static struct rb_root one_stable_tree[1] = { RB_ROOT };
325 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
326 static struct rb_root *root_stable_tree = one_stable_tree;
327 static struct rb_root *root_unstable_tree = one_unstable_tree;
328
329 #define LKSM_NODE_ID 0
330
331 /* Recently migrated nodes of stable tree, pending proper placement */
332 static LIST_HEAD(migrate_nodes);
333 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
334
335 /* list for VIP processes */
336 static struct rb_root vips_list = RB_ROOT;
337 static int lksm_max_vips = 20;
338
339 #define MM_SLOTS_HASH_BITS 10
340 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
341 static DEFINE_HASHTABLE(task_slots_hash, MM_SLOTS_HASH_BITS);
342
343 /*
344  * two list heads in LKSM:
345  *  - ksm_mm_head: a head for traversing whole list of processes,
346                 not used for scanning itself
347  *  - ksm_scan_head: a head for a list of currently scanning processes
348  */
349 static struct mm_slot ksm_mm_head = {
350         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
351 };
352
353 static struct mm_slot ksm_scan_head = {
354         .scan_list = LIST_HEAD_INIT(ksm_scan_head.scan_list),
355 };
356
357 static struct ksm_scan ksm_scan = {
358         .mm_slot = &ksm_scan_head,
359 };
360
361 static struct kmem_cache *rmap_item_cache;
362 static struct kmem_cache *stable_node_cache;
363 static struct kmem_cache *mm_slot_cache;
364 static struct kmem_cache *task_slot_cache;
365
366 /* The number of nodes in the stable tree */
367 static unsigned long ksm_pages_shared;
368
369 /* The number of page slots additionally sharing those nodes */
370 static unsigned long ksm_pages_sharing;
371
372 /* The number of nodes in the unstable tree */
373 static unsigned long ksm_pages_unshared;
374
375 /* The number of rmap_items in use: to calculate pages_volatile */
376 static unsigned long ksm_rmap_items;
377
378 /* The number of stable_node chains */
379 static unsigned long ksm_stable_node_chains;
380
381 /* The number of stable_node dups linked to the stable_node chains */
382 static unsigned long ksm_stable_node_dups;
383
384 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
385 static int ksm_stable_node_chains_prune_millisecs = 2000;
386
387 /* Maximum number of page slots sharing a stable node */
388 static int ksm_max_page_sharing = 256;
389
390 /* Number of pages ksmd should scan in one batch */
391 static unsigned int ksm_thread_pages_to_scan = 100;
392
393 /* Milliseconds ksmd should sleep between batches */
394 static unsigned int ksm_thread_sleep_millisecs = 20;
395
396 /* Checksum of an empty (zeroed) page */
397 static unsigned int zero_checksum __read_mostly;
398
399 /* Processes tracked by KSM thread */
400 static unsigned int ksm_nr_added_process;
401
402 /* Whether to merge empty (zeroed) pages with actual zero pages */
403 static bool ksm_use_zero_pages __read_mostly;
404
405 /* An indicator for KSM scanning */
406 static atomic_t ksm_one_shot_scanning;
407
408 /* Boosting when the scanner performs partial scan */
409 static unsigned int lksm_boosted_pages_to_scan = 100;
410 static unsigned int lksm_default_pages_to_scan = 100;
411
412 #ifdef CONFIG_NUMA
413 /* Zeroed when merging across nodes is not allowed */
414 static unsigned int ksm_merge_across_nodes = 1;
415 static int ksm_nr_node_ids = 1;
416 #else
417 #define ksm_merge_across_nodes  1U
418 #define ksm_nr_node_ids         1
419 #endif
420
421 /*
422  * Default policy for KSM_RUN_ONESHOT:
423  * KSM performs both scannings only when the user requests it.
424  * If scanning is ended, both crawler and scanner threads are blocked until
425  * the next request is coming.
426  */
427 #define KSM_RUN_STOP    0
428 #define KSM_RUN_MERGE   1
429 #define KSM_RUN_UNMERGE 2
430 #define KSM_RUN_OFFLINE 4
431 #define KSM_RUN_ONESHOT 8
432
433 static unsigned long ksm_run = KSM_RUN_STOP;
434 static atomic_t ksm_state; /* 0: in crawling 1: in scanning */
435
436 #define lksm_check_scan_state(ksm_state) (atomic_read(&ksm_state) == 1)
437 #define lksm_set_scan_state(ksm_state) (atomic_set(&ksm_state, 1))
438 #define lksm_clear_scan_state(ksm_state) (atomic_set(&ksm_state, 0))
439
440 struct task_slot {
441         struct task_struct *task;
442         int frozen;
443         unsigned long inserted;
444         struct list_head list;
445         struct hlist_node hlist;
446 };
447
448 /*
449  * Frozen state:
450  * When a process stops running on forground (e.g., going to background),
451  * the system daemon (e.g., resourced) puts it to cgroup_freezer.
452  * Once a process joins into freezer cgroup, the system kernel does not count
453  * it as a runnable process, and thus it cannot be scheduled on CPU.
454  * So, I regard processes in freezer cgroup as a frozen state and that can be
455  * good candidates of memory deduplication.
456  *
457  * LKSM provides a hook to catch the moment that the process is being frozen.
458  * With the hook, ksm crawler can get candidate list for memory deduplication.
459  * (see kernel/cgroup_freezer.c)
460  */
461 #define FROZEN_BIT 0x01
462 #define LISTED_BIT 0x02
463
464 #define lksm_test_rmap_frozen(rmap_item) (rmap_item->oldchecksum & FROZEN_BIT)
465 #define lksm_set_rmap_frozen(rmap_item) (rmap_item->oldchecksum |= FROZEN_BIT)
466 #define lksm_clear_rmap_frozen(rmap_item) (rmap_item->oldchecksum &= ~FROZEN_BIT)
467 #define lksm_clear_checksum_frozen(checksum) (checksum &= ~FROZEN_BIT)
468
469 #define KSM_MM_FROZEN 0x01
470 #define KSM_MM_LISTED 0x02
471 #define KSM_MM_NEWCOMER 0x04
472 #define KSM_MM_SCANNED 0x08
473 #ifdef CONFIG_LKSM_FILTER
474 #define KSM_MM_PREPARED 0x10
475 #endif
476
477 #define lksm_test_mm_state(mm_slot, bit) (mm_slot->state & bit)
478 #define lksm_set_mm_state(mm_slot, bit) (mm_slot->state |= bit)
479 #define lksm_clear_mm_state(mm_slot, bit) (mm_slot->state &= ~bit)
480
481 #ifdef CONFIG_LKSM_FILTER
482 #define LKSM_REGION_HASH_BITS 10
483 static DEFINE_HASHTABLE(lksm_region_hash, LKSM_REGION_HASH_BITS);
484 spinlock_t lksm_region_lock;
485
486 /*
487  * LKSM uses the filter when the region is scanned more than
488  * LKSM_REGION_MATURE round
489  */
490 #define LKSM_REGION_MATURE 5
491 #define lksm_region_mature(round, region) \
492                 ((round - region->scan_round) > LKSM_REGION_MATURE)
493
494 enum lksm_region_type {
495         LKSM_REGION_HEAP,
496         LKSM_REGION_STACK,
497         LKSM_REGION_FILE1, /* file mapped region: data section */
498         LKSM_REGION_FILE2, /* file mapped region: bss section */
499         LKSM_REGION_CONFLICT, /* conflicted regions: do not filtering */
500         LKSM_REGION_UNKNOWN,
501 };
502
503 static const char * const region_type_str[] = {
504         "heap",
505         "stack",
506         "file_data",
507         "file_bss",
508         "conflicted",
509         "unknown",
510 };
511
512 /* sharing statistics for each region type */
513 static int region_share[LKSM_REGION_UNKNOWN + 1];
514
515 /*
516  * lksm_region: A region represents a physical mapped area.
517  * Each process can have its own instance of a region, namely vma.
518  * Regions for not-a-file-mapped areas like heap and stack just have
519  * abstract representations as symbols.
520  *
521  * LKSM leverages the region for offset-based filtering.
522  * Each region has a filter which records offsets of addresses of
523  * shared pages in the region.
524  * If once a region is matured, LKSM uses the filter to skip scanning of
525  * unsharable pages.
526  *
527  * @type: type of region, refer above enumeration
528  * @len: length of filter (in the number of 64-bit variables)
529  * @ino: inode number if the region is mapped to file
530  * @merge_cnt: the number of merged pages in the region
531  * @filter_cnt: the number of set bits in filter
532  * @scan_round: the birth scan round of this region
533  * @conflict: the count of size changed, clue for conflict
534  * @refcount: if it reaches zero, the region will be freed
535  * @hnode: hash node for finding region by ino
536  * @next: data region can have a next (bss) region
537  * @prev: reverse pointer to data region
538  *
539  * A few notes about bitmap filter variable:
540  * LKSM uses bitmap filter for skipping scan of unsharable pages.
541  * If a region is smaller than 256KB (<= 64 pages),
542  * it can be covered by a bitmap stored in a 64-bit variable.
543  * LKSM only allocates a bitmap array as a filter when the region is
544  * larger than 256KB, otherwise it uses a 64-bit variable as a filter.
545  *
546  * @filter: when the region is bigger than 64 pages
547  * @single_filter: when the region is smaller than or equal to 64 pages
548  */
549 #define SINGLE_FILTER_LEN 1 /* a region can be covered by single variable */
550
551 struct lksm_region {
552         enum lksm_region_type type;
553         int len;
554         int ino;
555         int merge_cnt;
556         int filter_cnt;
557         int scan_round;
558         int conflict;
559         atomic_t refcount;
560         struct hlist_node hnode;
561         struct lksm_region *next;
562         struct lksm_region *prev;
563         union {
564                 unsigned long *filter;
565                 unsigned long single_filter;
566         };
567 };
568
569 /*
570  * lksm_region_ref:
571  * Contains references from processes to regions
572  */
573
574 struct lksm_region_ref {
575         struct list_head list; /* listed by mm_slot */
576         struct lksm_region *region;
577 };
578
579 /* the number of registered lksm_regions */
580 static unsigned int lksm_nr_regions;
581
582 /* the upper limit for region lookup */
583 #define LKSM_REGION_ITER_MAX 8
584
585 #define lksm_region_size(start, end) ((int)(end - start) >> PAGE_SHIFT)
586 #define lksm_bitmap_size(size) ((size >> 6) + ((size % BITS_PER_LONG) ? 1 : 0))
587
588 /* all processes share one lksm_region for their heaps */
589 static struct lksm_region heap_region, unknown_region;
590
591 static void lksm_register_file_anon_region(struct mm_slot *slot,
592                         struct vm_area_struct *vma);
593 static struct lksm_region *lksm_find_region(struct vm_area_struct *vma);
594 #endif /* CONFIG_LKSM_FILTER */
595
596 static int initial_round = 3;
597 static unsigned long ksm_crawl_round;
598 static unsigned long crawler_sleep;
599
600 /* statistical information */
601 static int lksm_nr_merged; /* global merge count */
602 static int lksm_nr_broken; /* global broken count */
603 static int lksm_nr_scanned_slot; /* global scanned slot count */
604 static int lksm_slot_nr_merged; /* per-slot merge count */
605 static int lksm_slot_nr_broken; /* per-slot broken count */
606
607 /* initially, KSM takes small full scan interval */
608 #define DEFAULT_FULL_SCAN_INTERVAL 60000 /* 60 seconds */
609 static unsigned long full_scan_interval = 100;
610
611 /* statistical information about scanning time */
612 static unsigned long lksm_last_scan_time;
613 static unsigned long lksm_proc_scan_time;
614
615 /* stuffs for pruning short-lived task */
616 #define KSM_SHORT_TASK_TIME 100
617 static unsigned long short_lived_thresh = KSM_SHORT_TASK_TIME;
618
619 #define get_task_runtime(task) (task->se.sum_exec_runtime)
620 #define ms_to_ns(ms) (ms * 1000 * 1000)
621 #define check_short_task(task) \
622         (get_task_runtime(task) < ms_to_ns(short_lived_thresh))
623
624 static void wait_while_offlining(void);
625 static struct mm_slot *__ksm_enter_alloc_slot(struct mm_struct *mm, int frozen);
626
627 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
628 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
629 static DEFINE_MUTEX(ksm_thread_mutex);
630 static DEFINE_SPINLOCK(ksm_mmlist_lock);
631 static DECLARE_WAIT_QUEUE_HEAD(ksm_crawl_wait);
632
633 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
634                 sizeof(struct __struct), __alignof__(struct __struct),\
635                 (__flags), NULL)
636
637 static int __init ksm_slab_init(void)
638 {
639         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
640         if (!rmap_item_cache)
641                 goto out;
642
643         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
644         if (!stable_node_cache)
645                 goto out_free1;
646
647         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
648         if (!mm_slot_cache)
649                 goto out_free2;
650         task_slot_cache = KSM_KMEM_CACHE(task_slot, 0);
651         if (!task_slot_cache)
652                 goto out_free3;
653
654         return 0;
655
656 out_free3:
657         kmem_cache_destroy(mm_slot_cache);
658 out_free2:
659         kmem_cache_destroy(stable_node_cache);
660 out_free1:
661         kmem_cache_destroy(rmap_item_cache);
662 out:
663         return -ENOMEM;
664 }
665
666 static void __init ksm_slab_free(void)
667 {
668         kmem_cache_destroy(mm_slot_cache);
669         kmem_cache_destroy(stable_node_cache);
670         kmem_cache_destroy(rmap_item_cache);
671         mm_slot_cache = NULL;
672 }
673
674 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
675 {
676         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
677 }
678
679 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
680 {
681         return dup->head == STABLE_NODE_DUP_HEAD;
682 }
683
684 static inline void stable_node_chain_add_dup(struct stable_node *dup,
685                                              struct stable_node *chain)
686 {
687         VM_BUG_ON(is_stable_node_dup(dup));
688         dup->head = STABLE_NODE_DUP_HEAD;
689         VM_BUG_ON(!is_stable_node_chain(chain));
690         hlist_add_head(&dup->hlist_dup, &chain->hlist);
691         ksm_stable_node_dups++;
692 }
693
694 static inline void __stable_node_dup_del(struct stable_node *dup)
695 {
696         VM_BUG_ON(!is_stable_node_dup(dup));
697         hlist_del(&dup->hlist_dup);
698         ksm_stable_node_dups--;
699 }
700
701 static inline void stable_node_dup_del(struct stable_node *dup)
702 {
703         VM_BUG_ON(is_stable_node_chain(dup));
704         if (is_stable_node_dup(dup))
705                 __stable_node_dup_del(dup);
706         else
707                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
708 #ifdef CONFIG_DEBUG_VM
709         dup->head = NULL;
710 #endif
711 }
712
713 static inline struct rmap_item *alloc_rmap_item(void)
714 {
715         struct rmap_item *rmap_item;
716
717         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
718                                                 __GFP_NORETRY | __GFP_NOWARN);
719         if (rmap_item)
720                 ksm_rmap_items++;
721         return rmap_item;
722 }
723
724 static inline void free_rmap_item(struct rmap_item *rmap_item)
725 {
726         ksm_rmap_items--;
727         rmap_item->mm = NULL;   /* debug safety */
728         kmem_cache_free(rmap_item_cache, rmap_item);
729 }
730
731 static inline struct stable_node *alloc_stable_node(void)
732 {
733         /*
734          * The allocation can take too long with GFP_KERNEL when memory is under
735          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
736          * grants access to memory reserves, helping to avoid this problem.
737          */
738         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
739 }
740
741 static inline void free_stable_node(struct stable_node *stable_node)
742 {
743         VM_BUG_ON(stable_node->rmap_hlist_len &&
744                   !is_stable_node_chain(stable_node));
745         kmem_cache_free(stable_node_cache, stable_node);
746 }
747
748 static inline struct mm_slot *alloc_mm_slot(void)
749 {
750         if (!mm_slot_cache)     /* initialization failed */
751                 return NULL;
752         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
753 }
754
755 static inline void free_mm_slot(struct mm_slot *mm_slot)
756 {
757         kmem_cache_free(mm_slot_cache, mm_slot);
758 }
759
760 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
761 {
762         struct mm_slot *slot;
763
764         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
765                 if (slot->mm == mm)
766                         return slot;
767
768         return NULL;
769 }
770
771 static void insert_to_mm_slots_hash(struct mm_struct *mm,
772                                     struct mm_slot *mm_slot)
773 {
774         mm_slot->mm = mm;
775         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
776 }
777
778 static inline struct task_slot *alloc_task_slot(void)
779 {
780         if (!task_slot_cache)
781                 return NULL;
782         return kmem_cache_zalloc(task_slot_cache, GFP_NOWAIT);
783 }
784
785 static inline void free_task_slot(struct task_slot *task_slot)
786 {
787         kmem_cache_free(task_slot_cache, task_slot);
788 }
789
790 static struct task_slot *get_task_slot(struct task_struct *task)
791 {
792         struct task_slot *slot;
793
794         hash_for_each_possible(task_slots_hash, slot, hlist,
795                         (unsigned long)task)
796                 if (slot->task == task)
797                         return slot;
798         return NULL;
799 }
800
801 static inline void insert_to_task_slots_hash(struct task_slot *slot)
802 {
803         hash_add(task_slots_hash, &slot->hlist, (unsigned long)slot->task);
804 }
805
806 /*
807  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
808  * page tables after it has passed through ksm_exit() - which, if necessary,
809  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
810  * a special flag: they can just back out as soon as mm_users goes to zero.
811  * ksm_test_exit() is used throughout to make this test for exit: in some
812  * places for correctness, in some places just to avoid unnecessary work.
813  */
814 static inline bool ksm_test_exit(struct mm_struct *mm)
815 {
816         return atomic_read(&mm->mm_users) == 0;
817 }
818
819 /*
820  * We use break_ksm to break COW on a ksm page: it's a stripped down
821  *
822  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
823  *              put_page(page);
824  *
825  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
826  * in case the application has unmapped and remapped mm,addr meanwhile.
827  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
828  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
829  *
830  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
831  * of the process that owns 'vma'.  We also do not want to enforce
832  * protection keys here anyway.
833  */
834 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
835 {
836         struct page *page;
837         vm_fault_t ret = 0;
838
839         do {
840                 cond_resched();
841                 page = follow_page(vma, addr,
842                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
843                 if (IS_ERR_OR_NULL(page))
844                         break;
845                 if (PageKsm(page))
846                         ret = handle_mm_fault(vma, addr,
847                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
848                 else
849                         ret = VM_FAULT_WRITE;
850                 put_page(page);
851         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
852         /*
853          * We must loop because handle_mm_fault() may back out if there's
854          * any difficulty e.g. if pte accessed bit gets updated concurrently.
855          *
856          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
857          * COW has been broken, even if the vma does not permit VM_WRITE;
858          * but note that a concurrent fault might break PageKsm for us.
859          *
860          * VM_FAULT_SIGBUS could occur if we race with truncation of the
861          * backing file, which also invalidates anonymous pages: that's
862          * okay, that truncation will have unmapped the PageKsm for us.
863          *
864          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
865          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
866          * current task has TIF_MEMDIE set, and will be OOM killed on return
867          * to user; and ksmd, having no mm, would never be chosen for that.
868          *
869          * But if the mm is in a limited mem_cgroup, then the fault may fail
870          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
871          * even ksmd can fail in this way - though it's usually breaking ksm
872          * just to undo a merge it made a moment before, so unlikely to oom.
873          *
874          * That's a pity: we might therefore have more kernel pages allocated
875          * than we're counting as nodes in the stable tree; but ksm_do_scan
876          * will retry to break_cow on each pass, so should recover the page
877          * in due course.  The important thing is to not let VM_MERGEABLE
878          * be cleared while any such pages might remain in the area.
879          */
880         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
881 }
882
883 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
884                 unsigned long addr)
885 {
886         struct vm_area_struct *vma;
887         if (ksm_test_exit(mm))
888                 return NULL;
889         vma = find_vma(mm, addr);
890         if (!vma || vma->vm_start > addr)
891                 return NULL;
892         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
893                 return NULL;
894         return vma;
895 }
896
897 static void break_cow(struct rmap_item *rmap_item)
898 {
899         struct mm_struct *mm = rmap_item->mm;
900         unsigned long addr = rmap_item->address;
901         struct vm_area_struct *vma;
902
903         /*
904          * It is not an accident that whenever we want to break COW
905          * to undo, we also need to drop a reference to the anon_vma.
906          */
907         put_anon_vma(rmap_item->anon_vma);
908
909         down_read(&mm->mmap_sem);
910         vma = find_mergeable_vma(mm, addr);
911         if (vma)
912                 break_ksm(vma, addr);
913         up_read(&mm->mmap_sem);
914 }
915
916 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
917 {
918         struct mm_struct *mm = rmap_item->mm;
919         unsigned long addr = rmap_item->address;
920         struct vm_area_struct *vma;
921         struct page *page;
922
923         down_read(&mm->mmap_sem);
924         vma = find_mergeable_vma(mm, addr);
925         if (!vma)
926                 goto out;
927
928         page = follow_page(vma, addr, FOLL_GET);
929         if (IS_ERR_OR_NULL(page))
930                 goto out;
931         if (PageAnon(page)) {
932                 flush_anon_page(vma, page, addr);
933                 flush_dcache_page(page);
934         } else {
935                 put_page(page);
936 out:
937                 page = NULL;
938         }
939         up_read(&mm->mmap_sem);
940         return page;
941 }
942
943 #ifdef CONFIG_LKSM_FILTER
944 static inline int is_heap(struct vm_area_struct *vma)
945 {
946         return vma->vm_start <= vma->vm_mm->brk &&
947                 vma->vm_end >= vma->vm_mm->start_brk;
948 }
949
950 /* below code is copied from fs/proc/task_mmu.c */
951
952 static int is_stack(struct vm_area_struct *vma)
953 {
954         return vma->vm_start <= vma->vm_mm->start_stack &&
955                 vma->vm_end >= vma->vm_mm->start_stack;
956 }
957
958 static int is_exec(struct vm_area_struct *vma)
959 {
960         return (vma->vm_flags & VM_EXEC);
961 }
962 #endif /* CONFIG_LKSM_FILTER */
963
964 /*
965  * ksm_join: a wrapper function of ksm_enter.
966  * The function sets VM_MERGEABLE flag of vmas in the given mm_struct.
967  */
968 static int ksm_join(struct mm_struct *mm, int frozen)
969 {
970         struct vm_area_struct *vma;
971         struct mm_slot *slot;
972         int newly_allocated = 0;
973
974         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
975                 slot = __ksm_enter_alloc_slot(mm, frozen);
976                 if (!slot)
977                         return -ENOMEM;
978                 newly_allocated = 1;
979         } else {
980                 slot = get_mm_slot(mm);
981                 if (!slot) {
982                         ksm_err("there is no mm_slot for %p", mm);
983                         return -EINVAL;
984                 }
985         }
986
987         for (vma = mm->mmap; vma; vma = vma->vm_next) {
988                 if (vma->vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
989                                 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
990                                 VM_HUGETLB | VM_MIXEDMAP))
991                         continue;
992                 vma->vm_flags |= VM_MERGEABLE;
993 #ifdef CONFIG_LKSM_FILTER
994                 /*
995                  * Many page sharings come from library pages because processes
996                  * are sharing runtime framwork of the OS.
997                  * Thus, anonymous pages related with file-mapped areas can show
998                  * sharing patterns which can be exploited in LKSM while other
999                  * anonymous regions (e.g., heap) don't.
1000                  * LKSM only tracks file-related regions to make filters.
1001                  */
1002                 if (!is_heap(vma) && !is_stack(vma) &&
1003                                 !is_exec(vma) && vma->anon_vma)
1004                         lksm_register_file_anon_region(slot, vma);
1005 #endif
1006         }
1007
1008         return newly_allocated;
1009 }
1010
1011 #define ksm_join_write_lock(mm, frozen, ret) do {\
1012         down_write(&mm->mmap_sem);      \
1013         ret = ksm_join(mm, frozen);     \
1014         up_write(&mm->mmap_sem);        \
1015 } while (0)
1016
1017 #ifdef CONFIG_LKSM_FILTER
1018 static void lksm_region_ref_append
1019 (struct mm_slot *slot, struct lksm_region *region)
1020 {
1021         struct lksm_region_ref *ref;
1022
1023         BUG_ON(!region);
1024         ref = kzalloc(sizeof(struct lksm_region_ref), GFP_KERNEL);
1025         if (!ref)
1026                 return;
1027         ref->region = region;
1028         list_add_tail(&ref->list, &slot->ref_list);
1029
1030         atomic_inc(&region->refcount);
1031 }
1032
1033 static void lksm_region_free(struct lksm_region *region)
1034 {
1035         unsigned long flags;
1036
1037         spin_lock_irqsave(&lksm_region_lock, flags);
1038         if (!region->next) {
1039                 if (region->prev) {
1040                         if (atomic_read(&region->prev->refcount) == 0) {
1041                                 hash_del(&region->prev->hnode);
1042                                 if (region->prev->len > SINGLE_FILTER_LEN)
1043                                         kfree(region->prev->filter);
1044                                 kfree(region->prev);
1045                         } else
1046                                 region->prev->next = NULL;
1047                 }
1048                 hash_del(&region->hnode);
1049                 if (region->len > SINGLE_FILTER_LEN)
1050                         kfree(region->filter);
1051                 kfree(region);
1052         }
1053         spin_unlock_irqrestore(&lksm_region_lock, flags);
1054 }
1055
1056 static void lksm_region_ref_remove(struct lksm_region_ref *ref)
1057 {
1058         list_del_init(&ref->list);
1059         if (atomic_dec_and_test(&ref->region->refcount))
1060                 lksm_region_free(ref->region);
1061         kfree(ref);
1062 }
1063
1064 static void lksm_region_ref_list_release(struct mm_slot *slot)
1065 {
1066         struct lksm_region_ref *ref, *next;
1067
1068         list_for_each_entry_safe(ref, next, &slot->ref_list, list) {
1069                 lksm_region_ref_remove(ref);
1070         }
1071 }
1072 #endif /* CONFIG_LKSM_FILTER */
1073
1074 /*
1075  * This helper is used for getting right index into array of tree roots.
1076  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
1077  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
1078  * every node has its own stable and unstable tree.
1079  */
1080 static inline int get_kpfn_nid(unsigned long kpfn)
1081 {
1082         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
1083 }
1084
1085 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
1086                                                    struct rb_root *root)
1087 {
1088         struct stable_node *chain = alloc_stable_node();
1089         VM_BUG_ON(is_stable_node_chain(dup));
1090         if (likely(chain)) {
1091                 INIT_HLIST_HEAD(&chain->hlist);
1092                 chain->chain_prune_time = jiffies;
1093                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
1094 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
1095                 chain->nid = NUMA_NO_NODE; /* debug */
1096 #endif
1097                 ksm_stable_node_chains++;
1098
1099                 /*
1100                  * Put the stable node chain in the first dimension of
1101                  * the stable tree and at the same time remove the old
1102                  * stable node.
1103                  */
1104                 rb_replace_node(&dup->node, &chain->node, root);
1105
1106                 /*
1107                  * Move the old stable node to the second dimension
1108                  * queued in the hlist_dup. The invariant is that all
1109                  * dup stable_nodes in the chain->hlist point to pages
1110                  * that are wrprotected and have the exact same
1111                  * content.
1112                  */
1113                 stable_node_chain_add_dup(dup, chain);
1114         }
1115         return chain;
1116 }
1117
1118 static inline void free_stable_node_chain(struct stable_node *chain,
1119                                           struct rb_root *root)
1120 {
1121         rb_erase(&chain->node, root);
1122         free_stable_node(chain);
1123         ksm_stable_node_chains--;
1124 }
1125
1126 static void remove_node_from_stable_tree(struct stable_node *stable_node)
1127 {
1128         struct rmap_item *rmap_item;
1129
1130         /* check it's not STABLE_NODE_CHAIN or negative */
1131         BUG_ON(stable_node->rmap_hlist_len < 0);
1132
1133         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1134                 if (rmap_item->hlist.next) {
1135                         ksm_pages_sharing--;
1136                         lksm_slot_nr_broken++;
1137                         lksm_nr_broken++;
1138                 } else
1139                         ksm_pages_shared--;
1140                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1141                 stable_node->rmap_hlist_len--;
1142                 put_anon_vma(rmap_item->anon_vma);
1143                 rmap_item->address &= PAGE_MASK;
1144                 cond_resched();
1145         }
1146
1147         /*
1148          * We need the second aligned pointer of the migrate_nodes
1149          * list_head to stay clear from the rb_parent_color union
1150          * (aligned and different than any node) and also different
1151          * from &migrate_nodes. This will verify that future list.h changes
1152          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
1153          */
1154 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
1155         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
1156         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
1157 #endif
1158
1159         if (stable_node->head == &migrate_nodes)
1160                 list_del(&stable_node->list);
1161         else
1162                 stable_node_dup_del(stable_node);
1163         free_stable_node(stable_node);
1164 }
1165
1166 enum get_ksm_page_flags {
1167         GET_KSM_PAGE_NOLOCK,
1168         GET_KSM_PAGE_LOCK,
1169         GET_KSM_PAGE_TRYLOCK
1170 };
1171
1172 /*
1173  * get_ksm_page: checks if the page indicated by the stable node
1174  * is still its ksm page, despite having held no reference to it.
1175  * In which case we can trust the content of the page, and it
1176  * returns the gotten page; but if the page has now been zapped,
1177  * remove the stale node from the stable tree and return NULL.
1178  * But beware, the stable node's page might be being migrated.
1179  *
1180  * You would expect the stable_node to hold a reference to the ksm page.
1181  * But if it increments the page's count, swapping out has to wait for
1182  * ksmd to come around again before it can free the page, which may take
1183  * seconds or even minutes: much too unresponsive.  So instead we use a
1184  * "keyhole reference": access to the ksm page from the stable node peeps
1185  * out through its keyhole to see if that page still holds the right key,
1186  * pointing back to this stable node.  This relies on freeing a PageAnon
1187  * page to reset its page->mapping to NULL, and relies on no other use of
1188  * a page to put something that might look like our key in page->mapping.
1189  * is on its way to being freed; but it is an anomaly to bear in mind.
1190  */
1191 static struct page *get_ksm_page(struct stable_node *stable_node,
1192                                  enum get_ksm_page_flags flags)
1193 {
1194         struct page *page;
1195         void *expected_mapping;
1196         unsigned long kpfn;
1197
1198         expected_mapping = (void *)((unsigned long)stable_node |
1199                                         PAGE_MAPPING_KSM);
1200 again:
1201         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
1202         page = pfn_to_page(kpfn);
1203         if (READ_ONCE(page->mapping) != expected_mapping)
1204                 goto stale;
1205
1206         /*
1207          * We cannot do anything with the page while its refcount is 0.
1208          * Usually 0 means free, or tail of a higher-order page: in which
1209          * case this node is no longer referenced, and should be freed;
1210          * however, it might mean that the page is under page_ref_freeze().
1211          * The __remove_mapping() case is easy, again the node is now stale;
1212          * the same is in reuse_ksm_page() case; but if page is swapcache
1213          * in migrate_page_move_mapping(), it might still be our page,
1214          * in which case it's essential to keep the node.
1215          */
1216         while (!get_page_unless_zero(page)) {
1217                 /*
1218                  * Another check for page->mapping != expected_mapping would
1219                  * work here too.  We have chosen the !PageSwapCache test to
1220                  * optimize the common case, when the page is or is about to
1221                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
1222                  * in the ref_freeze section of __remove_mapping(); but Anon
1223                  * page->mapping reset to NULL later, in free_pages_prepare().
1224                  */
1225                 if (!PageSwapCache(page))
1226                         goto stale;
1227                 cpu_relax();
1228         }
1229
1230         if (READ_ONCE(page->mapping) != expected_mapping) {
1231                 put_page(page);
1232                 goto stale;
1233         }
1234
1235         if (flags == GET_KSM_PAGE_TRYLOCK) {
1236                 if (!trylock_page(page)) {
1237                         put_page(page);
1238                         return ERR_PTR(-EBUSY);
1239                 }
1240         } else if (flags == GET_KSM_PAGE_LOCK)
1241                 lock_page(page);
1242
1243         if (flags != GET_KSM_PAGE_NOLOCK) {
1244                 if (READ_ONCE(page->mapping) != expected_mapping) {
1245                         unlock_page(page);
1246                         put_page(page);
1247                         goto stale;
1248                 }
1249         }
1250         return page;
1251
1252 stale:
1253         /*
1254          * We come here from above when page->mapping or !PageSwapCache
1255          * suggests that the node is stale; but it might be under migration.
1256          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
1257          * before checking whether node->kpfn has been changed.
1258          */
1259         smp_rmb();
1260         if (READ_ONCE(stable_node->kpfn) != kpfn)
1261                 goto again;
1262         remove_node_from_stable_tree(stable_node);
1263         return NULL;
1264 }
1265
1266 /*
1267  * Removing rmap_item from stable or unstable tree.
1268  * This function will clean the information from the stable/unstable tree.
1269  */
1270 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
1271 {
1272         if (rmap_item->address & STABLE_FLAG) {
1273                 struct stable_node *stable_node;
1274                 struct page *page;
1275
1276                 stable_node = rmap_item->head;
1277                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
1278                 if (!page)
1279                         goto out;
1280
1281                 hlist_del(&rmap_item->hlist);
1282                 unlock_page(page);
1283                 put_page(page);
1284
1285                 if (!hlist_empty(&stable_node->hlist)) {
1286                         ksm_pages_sharing--;
1287                         lksm_slot_nr_broken++;
1288                         lksm_nr_broken++;
1289                 } else
1290                         ksm_pages_shared--;
1291                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1292                 stable_node->rmap_hlist_len--;
1293
1294                 put_anon_vma(rmap_item->anon_vma);
1295                 rmap_item->address &= PAGE_MASK;
1296
1297         } else if (rmap_item->address & UNSTABLE_FLAG) {
1298                 unsigned char age;
1299                 /*
1300                  * Usually ksmd can and must skip the rb_erase, because
1301                  * root_unstable_tree was already reset to RB_ROOT.
1302                  * But be careful when an mm is exiting: do the rb_erase
1303                  * if this rmap_item was inserted by this scan, rather
1304                  * than left over from before.
1305                  */
1306                 age = (unsigned char)(ksm_scan.scan_round - rmap_item->address);
1307                 if (!age)
1308                         rb_erase(&rmap_item->node,
1309                                  root_unstable_tree + NUMA(rmap_item->nid));
1310                 else
1311                         RB_CLEAR_NODE(&rmap_item->node);
1312
1313                 ksm_pages_unshared--;
1314                 rmap_item->address &= PAGE_MASK;
1315         }
1316 out:
1317         cond_resched();         /* we're called from many long loops */
1318 }
1319
1320 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
1321                                        struct rmap_item **rmap_list)
1322 {
1323         while (*rmap_list) {
1324                 struct rmap_item *rmap_item = *rmap_list;
1325                 *rmap_list = rmap_item->rmap_list;
1326                 remove_rmap_item_from_tree(rmap_item);
1327                 free_rmap_item(rmap_item);
1328         }
1329 }
1330
1331 /*
1332  * Though it's very tempting to unmerge rmap_items from stable tree rather
1333  * than check every pte of a given vma, the locking doesn't quite work for
1334  * that - an rmap_item is assigned to the stable tree after inserting ksm
1335  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
1336  * rmap_items from parent to child at fork time (so as not to waste time
1337  * if exit comes before the next scan reaches it).
1338  *
1339  * Similarly, although we'd like to remove rmap_items (so updating counts
1340  * and freeing memory) when unmerging an area, it's easier to leave that
1341  * to the next pass of ksmd - consider, for example, how ksmd might be
1342  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1343  */
1344 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1345                              unsigned long start, unsigned long end)
1346 {
1347         unsigned long addr;
1348         int err = 0;
1349
1350         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1351                 if (ksm_test_exit(vma->vm_mm))
1352                         break;
1353                 if (signal_pending(current))
1354                         err = -ERESTARTSYS;
1355                 else
1356                         err = break_ksm(vma, addr);
1357         }
1358         return err;
1359 }
1360
1361 static inline struct stable_node *page_stable_node(struct page *page)
1362 {
1363         return PageKsm(page) ? page_rmapping(page) : NULL;
1364 }
1365
1366 static inline void set_page_stable_node(struct page *page,
1367                                         struct stable_node *stable_node)
1368 {
1369         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1370 }
1371
1372 #ifdef CONFIG_SYSFS
1373 /*
1374  * Only called through the sysfs control interface:
1375  */
1376 static int remove_stable_node(struct stable_node *stable_node)
1377 {
1378         struct page *page;
1379         int err;
1380
1381         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
1382         if (!page) {
1383                 /*
1384                  * get_ksm_page did remove_node_from_stable_tree itself.
1385                  */
1386                 return 0;
1387         }
1388
1389         /*
1390          * Page could be still mapped if this races with __mmput() running in
1391          * between ksm_exit() and exit_mmap(). Just refuse to let
1392          * merge_across_nodes/max_page_sharing be switched.
1393          */
1394         err = -EBUSY;
1395         if (!page_mapped(page)) {
1396                 /*
1397                  * The stable node did not yet appear stale to get_ksm_page(),
1398                  * since that allows for an unmapped ksm page to be recognized
1399                  * right up until it is freed; but the node is safe to remove.
1400                  * This page might be in a pagevec waiting to be freed,
1401                  * or it might be PageSwapCache (perhaps under writeback),
1402                  * or it might have been removed from swapcache a moment ago.
1403                  */
1404                 set_page_stable_node(page, NULL);
1405                 remove_node_from_stable_tree(stable_node);
1406                 err = 0;
1407         }
1408
1409         unlock_page(page);
1410         put_page(page);
1411         return err;
1412 }
1413
1414 static int remove_stable_node_chain(struct stable_node *stable_node,
1415                                     struct rb_root *root)
1416 {
1417         struct stable_node *dup;
1418         struct hlist_node *hlist_safe;
1419
1420         if (!is_stable_node_chain(stable_node)) {
1421                 VM_BUG_ON(is_stable_node_dup(stable_node));
1422                 if (remove_stable_node(stable_node))
1423                         return true;
1424                 else
1425                         return false;
1426         }
1427
1428         hlist_for_each_entry_safe(dup, hlist_safe,
1429                                   &stable_node->hlist, hlist_dup) {
1430                 VM_BUG_ON(!is_stable_node_dup(dup));
1431                 if (remove_stable_node(dup))
1432                         return true;
1433         }
1434         BUG_ON(!hlist_empty(&stable_node->hlist));
1435         free_stable_node_chain(stable_node, root);
1436         return false;
1437 }
1438
1439 static int remove_all_stable_nodes(void)
1440 {
1441         struct stable_node *stable_node, *next;
1442         int nid;
1443         int err = 0;
1444
1445         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1446                 while (root_stable_tree[nid].rb_node) {
1447                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
1448                                                 struct stable_node, node);
1449                         if (remove_stable_node_chain(stable_node,
1450                                                      root_stable_tree + nid)) {
1451                                 err = -EBUSY;
1452                                 break;  /* proceed to next nid */
1453                         }
1454                         cond_resched();
1455                 }
1456         }
1457         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1458                 if (remove_stable_node(stable_node))
1459                         err = -EBUSY;
1460                 cond_resched();
1461         }
1462         return err;
1463 }
1464
1465 static int unmerge_and_remove_all_rmap_items(void)
1466 {
1467         struct mm_slot *mm_slot;
1468         struct mm_struct *mm;
1469         struct vm_area_struct *vma;
1470         int err = 0;
1471
1472         spin_lock(&ksm_mmlist_lock);
1473         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
1474                                                 struct mm_slot, mm_list);
1475         spin_unlock(&ksm_mmlist_lock);
1476
1477         for (mm_slot = ksm_scan.mm_slot;
1478                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
1479                 mm = mm_slot->mm;
1480                 down_read(&mm->mmap_sem);
1481                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1482                         if (ksm_test_exit(mm))
1483                                 break;
1484                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1485                                 continue;
1486                         err = unmerge_ksm_pages(vma,
1487                                                 vma->vm_start, vma->vm_end);
1488                         if (err)
1489                                 goto error;
1490                 }
1491
1492                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
1493                 up_read(&mm->mmap_sem);
1494
1495                 spin_lock(&ksm_mmlist_lock);
1496                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
1497                                                 struct mm_slot, mm_list);
1498                 if (ksm_test_exit(mm)) {
1499                         hash_del(&mm_slot->link);
1500                         list_del(&mm_slot->mm_list);
1501                         spin_unlock(&ksm_mmlist_lock);
1502
1503                         free_mm_slot(mm_slot);
1504                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1505                         mmdrop(mm);
1506                 } else
1507                         spin_unlock(&ksm_mmlist_lock);
1508         }
1509
1510         /* Clean up stable nodes, but don't worry if some are still busy */
1511         remove_all_stable_nodes();
1512         ksm_scan.scan_round = 0;
1513         return 0;
1514
1515 error:
1516         up_read(&mm->mmap_sem);
1517         spin_lock(&ksm_mmlist_lock);
1518         ksm_scan.mm_slot = &ksm_mm_head;
1519         spin_unlock(&ksm_mmlist_lock);
1520         return err;
1521 }
1522 #endif /* CONFIG_SYSFS */
1523
1524 static u32 calc_checksum(struct page *page)
1525 {
1526         u32 checksum;
1527         void *addr = kmap_atomic(page);
1528         checksum = xxhash(addr, PAGE_SIZE, 0);
1529         kunmap_atomic(addr);
1530         return lksm_clear_checksum_frozen(checksum);
1531 }
1532
1533 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1534                               pte_t *orig_pte)
1535 {
1536         struct mm_struct *mm = vma->vm_mm;
1537         struct page_vma_mapped_walk pvmw = {
1538                 .page = page,
1539                 .vma = vma,
1540         };
1541         int swapped;
1542         int err = -EFAULT;
1543         struct mmu_notifier_range range;
1544
1545         pvmw.address = page_address_in_vma(page, vma);
1546         if (pvmw.address == -EFAULT)
1547                 goto out;
1548
1549         BUG_ON(PageTransCompound(page));
1550
1551         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1552                                 pvmw.address,
1553                                 pvmw.address + PAGE_SIZE);
1554         mmu_notifier_invalidate_range_start(&range);
1555
1556         if (!page_vma_mapped_walk(&pvmw))
1557                 goto out_mn;
1558         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1559                 goto out_unlock;
1560
1561         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1562             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1563                                                 mm_tlb_flush_pending(mm)) {
1564                 pte_t entry;
1565
1566                 swapped = PageSwapCache(page);
1567                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1568                 /*
1569                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1570                  * take any lock, therefore the check that we are going to make
1571                  * with the pagecount against the mapcount is racey and
1572                  * O_DIRECT can happen right after the check.
1573                  * So we clear the pte and flush the tlb before the check
1574                  * this assure us that no O_DIRECT can happen after the check
1575                  * or in the middle of the check.
1576                  *
1577                  * No need to notify as we are downgrading page table to read
1578                  * only not changing it to point to a new page.
1579                  *
1580                  * See Documentation/vm/mmu_notifier.rst
1581                  */
1582                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1583                 /*
1584                  * Check that no O_DIRECT or similar I/O is in progress on the
1585                  * page
1586                  */
1587                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1588                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1589                         goto out_unlock;
1590                 }
1591                 if (pte_dirty(entry))
1592                         set_page_dirty(page);
1593
1594                 if (pte_protnone(entry))
1595                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1596                 else
1597                         entry = pte_mkclean(pte_wrprotect(entry));
1598                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1599         }
1600         *orig_pte = *pvmw.pte;
1601         err = 0;
1602
1603 out_unlock:
1604         page_vma_mapped_walk_done(&pvmw);
1605 out_mn:
1606         mmu_notifier_invalidate_range_end(&range);
1607 out:
1608         return err;
1609 }
1610
1611 /**
1612  * replace_page - replace page in vma by new ksm page
1613  * @vma:      vma that holds the pte pointing to page
1614  * @page:     the page we are replacing by kpage
1615  * @kpage:    the ksm page we replace page by
1616  * @orig_pte: the original value of the pte
1617  *
1618  * Returns 0 on success, -EFAULT on failure.
1619  */
1620 static int replace_page(struct vm_area_struct *vma, struct page *page,
1621                         struct page *kpage, pte_t orig_pte)
1622 {
1623         struct mm_struct *mm = vma->vm_mm;
1624         pmd_t *pmd;
1625         pte_t *ptep;
1626         pte_t newpte;
1627         spinlock_t *ptl;
1628         unsigned long addr;
1629         int err = -EFAULT;
1630         struct mmu_notifier_range range;
1631
1632         addr = page_address_in_vma(page, vma);
1633         if (addr == -EFAULT)
1634                 goto out;
1635
1636         pmd = mm_find_pmd(mm, addr);
1637         if (!pmd)
1638                 goto out;
1639
1640         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1641                                 addr + PAGE_SIZE);
1642         mmu_notifier_invalidate_range_start(&range);
1643
1644         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1645         if (!pte_same(*ptep, orig_pte)) {
1646                 pte_unmap_unlock(ptep, ptl);
1647                 goto out_mn;
1648         }
1649
1650         /*
1651          * No need to check ksm_use_zero_pages here: we can only have a
1652          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1653          */
1654         if (!is_zero_pfn(page_to_pfn(kpage))) {
1655                 get_page(kpage);
1656                 page_add_anon_rmap(kpage, vma, addr, false);
1657                 newpte = mk_pte(kpage, vma->vm_page_prot);
1658         } else {
1659                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1660                                                vma->vm_page_prot));
1661                 /*
1662                  * We're replacing an anonymous page with a zero page, which is
1663                  * not anonymous. We need to do proper accounting otherwise we
1664                  * will get wrong values in /proc, and a BUG message in dmesg
1665                  * when tearing down the mm.
1666                  */
1667                 dec_mm_counter(mm, MM_ANONPAGES);
1668         }
1669
1670         flush_cache_page(vma, addr, pte_pfn(*ptep));
1671         /*
1672          * No need to notify as we are replacing a read only page with another
1673          * read only page with the same content.
1674          *
1675          * See Documentation/vm/mmu_notifier.rst
1676          */
1677         ptep_clear_flush(vma, addr, ptep);
1678         set_pte_at_notify(mm, addr, ptep, newpte);
1679
1680         page_remove_rmap(page, false);
1681         if (!page_mapped(page))
1682                 try_to_free_swap(page);
1683         put_page(page);
1684
1685         pte_unmap_unlock(ptep, ptl);
1686         err = 0;
1687 out_mn:
1688         mmu_notifier_invalidate_range_end(&range);
1689 out:
1690         return err;
1691 }
1692
1693 /*
1694  * try_to_merge_one_page - take two pages and merge them into one
1695  * @vma: the vma that holds the pte pointing to page
1696  * @page: the PageAnon page that we want to replace with kpage
1697  * @kpage: the PageKsm page that we want to map instead of page,
1698  *         or NULL the first time when we want to use page as kpage.
1699  *
1700  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1701  */
1702 static int try_to_merge_one_page(struct vm_area_struct *vma,
1703                                  struct page *page, struct page *kpage)
1704 {
1705         pte_t orig_pte = __pte(0);
1706         int err = -EFAULT;
1707
1708         if (page == kpage)                      /* ksm page forked */
1709                 return 0;
1710
1711         if (!PageAnon(page))
1712                 goto out;
1713
1714         /*
1715          * We need the page lock to read a stable PageSwapCache in
1716          * write_protect_page().  We use trylock_page() instead of
1717          * lock_page() because we don't want to wait here - we
1718          * prefer to continue scanning and merging different pages,
1719          * then come back to this page when it is unlocked.
1720          */
1721         if (!trylock_page(page))
1722                 goto out;
1723
1724         if (PageTransCompound(page)) {
1725                 if (split_huge_page(page))
1726                         goto out_unlock;
1727         }
1728
1729         /*
1730          * If this anonymous page is mapped only here, its pte may need
1731          * to be write-protected.  If it's mapped elsewhere, all of its
1732          * ptes are necessarily already write-protected.  But in either
1733          * case, we need to lock and check page_count is not raised.
1734          */
1735         if (write_protect_page(vma, page, &orig_pte) == 0) {
1736                 if (!kpage) {
1737                         /*
1738                          * While we hold page lock, upgrade page from
1739                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1740                          * stable_tree_insert() will update stable_node.
1741                          */
1742                         set_page_stable_node(page, NULL);
1743                         mark_page_accessed(page);
1744                         /*
1745                          * Page reclaim just frees a clean page with no dirty
1746                          * ptes: make sure that the ksm page would be swapped.
1747                          */
1748                         if (!PageDirty(page))
1749                                 SetPageDirty(page);
1750                         err = 0;
1751                 } else if (pages_identical(page, kpage))
1752                         err = replace_page(vma, page, kpage, orig_pte);
1753         }
1754
1755         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1756                 munlock_vma_page(page);
1757                 if (!PageMlocked(kpage)) {
1758                         unlock_page(page);
1759                         lock_page(kpage);
1760                         mlock_vma_page(kpage);
1761                         page = kpage;           /* for final unlock */
1762                 }
1763         }
1764
1765 out_unlock:
1766         unlock_page(page);
1767 out:
1768         return err;
1769 }
1770
1771 /*
1772  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1773  * but no new kernel page is allocated: kpage must already be a ksm page.
1774  *
1775  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1776  */
1777 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1778                                       struct page *page, struct page *kpage)
1779 {
1780         struct mm_struct *mm = rmap_item->mm;
1781         struct vm_area_struct *vma;
1782         int err = -EFAULT;
1783
1784         down_read(&mm->mmap_sem);
1785         vma = find_mergeable_vma(mm, rmap_item->address);
1786         if (!vma)
1787                 goto out;
1788
1789         err = try_to_merge_one_page(vma, page, kpage);
1790         if (err)
1791                 goto out;
1792
1793         /* Unstable nid is in union with stable anon_vma: remove first */
1794         remove_rmap_item_from_tree(rmap_item);
1795
1796 #ifdef CONFIG_LKSM_FILTER
1797         /* node is removed from tree, base_addr can be safely used */
1798         rmap_item->base_addr = vma->vm_start;
1799 #endif
1800         /* Must get reference to anon_vma while still holding mmap_sem */
1801         rmap_item->anon_vma = vma->anon_vma;
1802         get_anon_vma(vma->anon_vma);
1803 out:
1804         up_read(&mm->mmap_sem);
1805         return err;
1806 }
1807
1808 /*
1809  * try_to_merge_two_pages - take two identical pages and prepare them
1810  * to be merged into one page.
1811  *
1812  * This function returns the kpage if we successfully merged two identical
1813  * pages into one ksm page, NULL otherwise.
1814  *
1815  * Note that this function upgrades page to ksm page: if one of the pages
1816  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1817  */
1818 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1819                                            struct page *page,
1820                                            struct rmap_item *tree_rmap_item,
1821                                            struct page *tree_page)
1822 {
1823         int err;
1824
1825         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1826         if (!err) {
1827                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1828                                                         tree_page, page);
1829                 /*
1830                  * If that fails, we have a ksm page with only one pte
1831                  * pointing to it: so break it.
1832                  */
1833                 if (err)
1834                         break_cow(rmap_item);
1835         }
1836         return err ? NULL : page;
1837 }
1838
1839 static __always_inline
1840 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1841 {
1842         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1843         /*
1844          * Check that at least one mapping still exists, otherwise
1845          * there's no much point to merge and share with this
1846          * stable_node, as the underlying tree_page of the other
1847          * sharer is going to be freed soon.
1848          */
1849         return stable_node->rmap_hlist_len &&
1850                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1851 }
1852
1853 static __always_inline
1854 bool is_page_sharing_candidate(struct stable_node *stable_node)
1855 {
1856         return __is_page_sharing_candidate(stable_node, 0);
1857 }
1858
1859 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1860                                     struct stable_node **_stable_node,
1861                                     struct rb_root *root,
1862                                     bool prune_stale_stable_nodes)
1863 {
1864         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1865         struct hlist_node *hlist_safe;
1866         struct page *_tree_page, *tree_page = NULL;
1867         int nr = 0;
1868         int found_rmap_hlist_len;
1869
1870         if (!prune_stale_stable_nodes ||
1871             time_before(jiffies, stable_node->chain_prune_time +
1872                         msecs_to_jiffies(
1873                                 ksm_stable_node_chains_prune_millisecs)))
1874                 prune_stale_stable_nodes = false;
1875         else
1876                 stable_node->chain_prune_time = jiffies;
1877
1878         hlist_for_each_entry_safe(dup, hlist_safe,
1879                                   &stable_node->hlist, hlist_dup) {
1880                 cond_resched();
1881                 /*
1882                  * We must walk all stable_node_dup to prune the stale
1883                  * stable nodes during lookup.
1884                  *
1885                  * get_ksm_page can drop the nodes from the
1886                  * stable_node->hlist if they point to freed pages
1887                  * (that's why we do a _safe walk). The "dup"
1888                  * stable_node parameter itself will be freed from
1889                  * under us if it returns NULL.
1890                  */
1891                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1892                 if (!_tree_page)
1893                         continue;
1894                 nr += 1;
1895                 if (is_page_sharing_candidate(dup)) {
1896                         if (!found ||
1897                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1898                                 if (found)
1899                                         put_page(tree_page);
1900                                 found = dup;
1901                                 found_rmap_hlist_len = found->rmap_hlist_len;
1902                                 tree_page = _tree_page;
1903
1904                                 /* skip put_page for found dup */
1905                                 if (!prune_stale_stable_nodes)
1906                                         break;
1907                                 continue;
1908                         }
1909                 }
1910                 put_page(_tree_page);
1911         }
1912
1913         if (found) {
1914                 /*
1915                  * nr is counting all dups in the chain only if
1916                  * prune_stale_stable_nodes is true, otherwise we may
1917                  * break the loop at nr == 1 even if there are
1918                  * multiple entries.
1919                  */
1920                 if (prune_stale_stable_nodes && nr == 1) {
1921                         /*
1922                          * If there's not just one entry it would
1923                          * corrupt memory, better BUG_ON. In KSM
1924                          * context with no lock held it's not even
1925                          * fatal.
1926                          */
1927                         BUG_ON(stable_node->hlist.first->next);
1928
1929                         /*
1930                          * There's just one entry and it is below the
1931                          * deduplication limit so drop the chain.
1932                          */
1933                         rb_replace_node(&stable_node->node, &found->node,
1934                                         root);
1935                         free_stable_node(stable_node);
1936                         ksm_stable_node_chains--;
1937                         ksm_stable_node_dups--;
1938                         /*
1939                          * NOTE: the caller depends on the stable_node
1940                          * to be equal to stable_node_dup if the chain
1941                          * was collapsed.
1942                          */
1943                         *_stable_node = found;
1944                         /*
1945                          * Just for robustneess as stable_node is
1946                          * otherwise left as a stable pointer, the
1947                          * compiler shall optimize it away at build
1948                          * time.
1949                          */
1950                         stable_node = NULL;
1951                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1952                            __is_page_sharing_candidate(found, 1)) {
1953                         /*
1954                          * If the found stable_node dup can accept one
1955                          * more future merge (in addition to the one
1956                          * that is underway) and is not at the head of
1957                          * the chain, put it there so next search will
1958                          * be quicker in the !prune_stale_stable_nodes
1959                          * case.
1960                          *
1961                          * NOTE: it would be inaccurate to use nr > 1
1962                          * instead of checking the hlist.first pointer
1963                          * directly, because in the
1964                          * prune_stale_stable_nodes case "nr" isn't
1965                          * the position of the found dup in the chain,
1966                          * but the total number of dups in the chain.
1967                          */
1968                         hlist_del(&found->hlist_dup);
1969                         hlist_add_head(&found->hlist_dup,
1970                                        &stable_node->hlist);
1971                 }
1972         }
1973
1974         *_stable_node_dup = found;
1975         return tree_page;
1976 }
1977
1978 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1979                                                struct rb_root *root)
1980 {
1981         if (!is_stable_node_chain(stable_node))
1982                 return stable_node;
1983         if (hlist_empty(&stable_node->hlist)) {
1984                 free_stable_node_chain(stable_node, root);
1985                 return NULL;
1986         }
1987         return hlist_entry(stable_node->hlist.first,
1988                            typeof(*stable_node), hlist_dup);
1989 }
1990
1991 /*
1992  * Like for get_ksm_page, this function can free the *_stable_node and
1993  * *_stable_node_dup if the returned tree_page is NULL.
1994  *
1995  * It can also free and overwrite *_stable_node with the found
1996  * stable_node_dup if the chain is collapsed (in which case
1997  * *_stable_node will be equal to *_stable_node_dup like if the chain
1998  * never existed). It's up to the caller to verify tree_page is not
1999  * NULL before dereferencing *_stable_node or *_stable_node_dup.
2000  *
2001  * *_stable_node_dup is really a second output parameter of this
2002  * function and will be overwritten in all cases, the caller doesn't
2003  * need to initialize it.
2004  */
2005 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
2006                                         struct stable_node **_stable_node,
2007                                         struct rb_root *root,
2008                                         bool prune_stale_stable_nodes)
2009 {
2010         struct stable_node *stable_node = *_stable_node;
2011         if (!is_stable_node_chain(stable_node)) {
2012                 if (is_page_sharing_candidate(stable_node)) {
2013                         *_stable_node_dup = stable_node;
2014                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2015                 }
2016                 /*
2017                  * _stable_node_dup set to NULL means the stable_node
2018                  * reached the ksm_max_page_sharing limit.
2019                  */
2020                 *_stable_node_dup = NULL;
2021                 return NULL;
2022         }
2023         return stable_node_dup(_stable_node_dup, _stable_node, root,
2024                                prune_stale_stable_nodes);
2025 }
2026
2027 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
2028                                                 struct stable_node **s_n,
2029                                                 struct rb_root *root)
2030 {
2031         return __stable_node_chain(s_n_d, s_n, root, true);
2032 }
2033
2034 static __always_inline struct page *chain(struct stable_node **s_n_d,
2035                                           struct stable_node *s_n,
2036                                           struct rb_root *root)
2037 {
2038         struct stable_node *old_stable_node = s_n;
2039         struct page *tree_page;
2040
2041         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
2042         /* not pruning dups so s_n cannot have changed */
2043         VM_BUG_ON(s_n != old_stable_node);
2044         return tree_page;
2045 }
2046
2047 /*
2048  * stable_tree_search - search for page inside the stable tree
2049  *
2050  * This function checks if there is a page inside the stable tree
2051  * with identical content to the page that we are scanning right now.
2052  *
2053  * This function returns the stable tree node of identical content if found,
2054  * NULL otherwise.
2055  */
2056 static struct page *stable_tree_search(struct page *page)
2057 {
2058         int nid;
2059         struct rb_root *root;
2060         struct rb_node **new;
2061         struct rb_node *parent;
2062         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
2063         struct stable_node *page_node;
2064
2065         page_node = page_stable_node(page);
2066         if (page_node && page_node->head != &migrate_nodes) {
2067                 /* ksm page forked */
2068                 get_page(page);
2069                 return page;
2070         }
2071
2072         nid = get_kpfn_nid(page_to_pfn(page));
2073         root = root_stable_tree + nid;
2074 again:
2075         new = &root->rb_node;
2076         parent = NULL;
2077
2078         while (*new) {
2079                 struct page *tree_page;
2080                 int ret;
2081
2082                 cond_resched();
2083                 stable_node = rb_entry(*new, struct stable_node, node);
2084                 stable_node_any = NULL;
2085                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
2086                 /*
2087                  * NOTE: stable_node may have been freed by
2088                  * chain_prune() if the returned stable_node_dup is
2089                  * not NULL. stable_node_dup may have been inserted in
2090                  * the rbtree instead as a regular stable_node (in
2091                  * order to collapse the stable_node chain if a single
2092                  * stable_node dup was found in it). In such case the
2093                  * stable_node is overwritten by the calleee to point
2094                  * to the stable_node_dup that was collapsed in the
2095                  * stable rbtree and stable_node will be equal to
2096                  * stable_node_dup like if the chain never existed.
2097                  */
2098                 if (!stable_node_dup) {
2099                         /*
2100                          * Either all stable_node dups were full in
2101                          * this stable_node chain, or this chain was
2102                          * empty and should be rb_erased.
2103                          */
2104                         stable_node_any = stable_node_dup_any(stable_node,
2105                                                               root);
2106                         if (!stable_node_any) {
2107                                 /* rb_erase just run */
2108                                 goto again;
2109                         }
2110                         /*
2111                          * Take any of the stable_node dups page of
2112                          * this stable_node chain to let the tree walk
2113                          * continue. All KSM pages belonging to the
2114                          * stable_node dups in a stable_node chain
2115                          * have the same content and they're
2116                          * wrprotected at all times. Any will work
2117                          * fine to continue the walk.
2118                          */
2119                         tree_page = get_ksm_page(stable_node_any,
2120                                                  GET_KSM_PAGE_NOLOCK);
2121                 }
2122                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
2123                 if (!tree_page) {
2124                         /*
2125                          * If we walked over a stale stable_node,
2126                          * get_ksm_page() will call rb_erase() and it
2127                          * may rebalance the tree from under us. So
2128                          * restart the search from scratch. Returning
2129                          * NULL would be safe too, but we'd generate
2130                          * false negative insertions just because some
2131                          * stable_node was stale.
2132                          */
2133                         goto again;
2134                 }
2135
2136                 ret = memcmp_pages(page, tree_page);
2137                 put_page(tree_page);
2138
2139                 parent = *new;
2140                 if (ret < 0)
2141                         new = &parent->rb_left;
2142                 else if (ret > 0)
2143                         new = &parent->rb_right;
2144                 else {
2145                         if (page_node) {
2146                                 VM_BUG_ON(page_node->head != &migrate_nodes);
2147                                 /*
2148                                  * Test if the migrated page should be merged
2149                                  * into a stable node dup. If the mapcount is
2150                                  * 1 we can migrate it with another KSM page
2151                                  * without adding it to the chain.
2152                                  */
2153                                 if (page_mapcount(page) > 1)
2154                                         goto chain_append;
2155                         }
2156
2157                         if (!stable_node_dup) {
2158                                 /*
2159                                  * If the stable_node is a chain and
2160                                  * we got a payload match in memcmp
2161                                  * but we cannot merge the scanned
2162                                  * page in any of the existing
2163                                  * stable_node dups because they're
2164                                  * all full, we need to wait the
2165                                  * scanned page to find itself a match
2166                                  * in the unstable tree to create a
2167                                  * brand new KSM page to add later to
2168                                  * the dups of this stable_node.
2169                                  */
2170                                 return NULL;
2171                         }
2172
2173                         /*
2174                          * Lock and unlock the stable_node's page (which
2175                          * might already have been migrated) so that page
2176                          * migration is sure to notice its raised count.
2177                          * It would be more elegant to return stable_node
2178                          * than kpage, but that involves more changes.
2179                          */
2180                         tree_page = get_ksm_page(stable_node_dup,
2181                                                  GET_KSM_PAGE_TRYLOCK);
2182
2183                         if (PTR_ERR(tree_page) == -EBUSY)
2184                                 return ERR_PTR(-EBUSY);
2185
2186                         if (unlikely(!tree_page))
2187                                 /*
2188                                  * The tree may have been rebalanced,
2189                                  * so re-evaluate parent and new.
2190                                  */
2191                                 goto again;
2192                         unlock_page(tree_page);
2193
2194                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
2195                             NUMA(stable_node_dup->nid)) {
2196                                 put_page(tree_page);
2197                                 goto replace;
2198                         }
2199                         return tree_page;
2200                 }
2201         }
2202
2203         if (!page_node)
2204                 return NULL;
2205
2206         list_del(&page_node->list);
2207         DO_NUMA(page_node->nid = nid);
2208         rb_link_node(&page_node->node, parent, new);
2209         rb_insert_color(&page_node->node, root);
2210 out:
2211         if (is_page_sharing_candidate(page_node)) {
2212                 get_page(page);
2213                 return page;
2214         } else
2215                 return NULL;
2216
2217 replace:
2218         /*
2219          * If stable_node was a chain and chain_prune collapsed it,
2220          * stable_node has been updated to be the new regular
2221          * stable_node. A collapse of the chain is indistinguishable
2222          * from the case there was no chain in the stable
2223          * rbtree. Otherwise stable_node is the chain and
2224          * stable_node_dup is the dup to replace.
2225          */
2226         if (stable_node_dup == stable_node) {
2227                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
2228                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2229                 /* there is no chain */
2230                 if (page_node) {
2231                         VM_BUG_ON(page_node->head != &migrate_nodes);
2232                         list_del(&page_node->list);
2233                         DO_NUMA(page_node->nid = nid);
2234                         rb_replace_node(&stable_node_dup->node,
2235                                         &page_node->node,
2236                                         root);
2237                         if (is_page_sharing_candidate(page_node))
2238                                 get_page(page);
2239                         else
2240                                 page = NULL;
2241                 } else {
2242                         rb_erase(&stable_node_dup->node, root);
2243                         page = NULL;
2244                 }
2245         } else {
2246                 VM_BUG_ON(!is_stable_node_chain(stable_node));
2247                 __stable_node_dup_del(stable_node_dup);
2248                 if (page_node) {
2249                         VM_BUG_ON(page_node->head != &migrate_nodes);
2250                         list_del(&page_node->list);
2251                         DO_NUMA(page_node->nid = nid);
2252                         stable_node_chain_add_dup(page_node, stable_node);
2253                         if (is_page_sharing_candidate(page_node))
2254                                 get_page(page);
2255                         else
2256                                 page = NULL;
2257                 } else {
2258                         page = NULL;
2259                 }
2260         }
2261         stable_node_dup->head = &migrate_nodes;
2262         list_add(&stable_node_dup->list, stable_node_dup->head);
2263         return page;
2264
2265 chain_append:
2266         /* stable_node_dup could be null if it reached the limit */
2267         if (!stable_node_dup)
2268                 stable_node_dup = stable_node_any;
2269         /*
2270          * If stable_node was a chain and chain_prune collapsed it,
2271          * stable_node has been updated to be the new regular
2272          * stable_node. A collapse of the chain is indistinguishable
2273          * from the case there was no chain in the stable
2274          * rbtree. Otherwise stable_node is the chain and
2275          * stable_node_dup is the dup to replace.
2276          */
2277         if (stable_node_dup == stable_node) {
2278                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
2279                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2280                 /* chain is missing so create it */
2281                 stable_node = alloc_stable_node_chain(stable_node_dup,
2282                                                       root);
2283                 if (!stable_node)
2284                         return NULL;
2285         }
2286         /*
2287          * Add this stable_node dup that was
2288          * migrated to the stable_node chain
2289          * of the current nid for this page
2290          * content.
2291          */
2292         VM_BUG_ON(!is_stable_node_chain(stable_node));
2293         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2294         VM_BUG_ON(page_node->head != &migrate_nodes);
2295         list_del(&page_node->list);
2296         DO_NUMA(page_node->nid = nid);
2297         stable_node_chain_add_dup(page_node, stable_node);
2298         goto out;
2299 }
2300
2301 /*
2302  * stable_tree_insert - insert stable tree node pointing to new ksm page
2303  * into the stable tree.
2304  *
2305  * This function returns the stable tree node just allocated on success,
2306  * NULL otherwise.
2307  */
2308 static struct stable_node *stable_tree_insert(struct page *kpage)
2309 {
2310         int nid;
2311         unsigned long kpfn;
2312         struct rb_root *root;
2313         struct rb_node **new;
2314         struct rb_node *parent;
2315         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
2316         bool need_chain = false;
2317
2318         kpfn = page_to_pfn(kpage);
2319         nid = get_kpfn_nid(kpfn);
2320         root = root_stable_tree + nid;
2321 again:
2322         parent = NULL;
2323         new = &root->rb_node;
2324
2325         while (*new) {
2326                 struct page *tree_page;
2327                 int ret;
2328
2329                 cond_resched();
2330                 stable_node = rb_entry(*new, struct stable_node, node);
2331                 stable_node_any = NULL;
2332                 tree_page = chain(&stable_node_dup, stable_node, root);
2333                 if (!stable_node_dup) {
2334                         /*
2335                          * Either all stable_node dups were full in
2336                          * this stable_node chain, or this chain was
2337                          * empty and should be rb_erased.
2338                          */
2339                         stable_node_any = stable_node_dup_any(stable_node,
2340                                                               root);
2341                         if (!stable_node_any) {
2342                                 /* rb_erase just run */
2343                                 goto again;
2344                         }
2345                         /*
2346                          * Take any of the stable_node dups page of
2347                          * this stable_node chain to let the tree walk
2348                          * continue. All KSM pages belonging to the
2349                          * stable_node dups in a stable_node chain
2350                          * have the same content and they're
2351                          * wrprotected at all times. Any will work
2352                          * fine to continue the walk.
2353                          */
2354                         tree_page = get_ksm_page(stable_node_any,
2355                                                  GET_KSM_PAGE_NOLOCK);
2356                 }
2357                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
2358                 if (!tree_page) {
2359                         /*
2360                          * If we walked over a stale stable_node,
2361                          * get_ksm_page() will call rb_erase() and it
2362                          * may rebalance the tree from under us. So
2363                          * restart the search from scratch. Returning
2364                          * NULL would be safe too, but we'd generate
2365                          * false negative insertions just because some
2366                          * stable_node was stale.
2367                          */
2368                         goto again;
2369                 }
2370
2371                 ret = memcmp_pages(kpage, tree_page);
2372                 put_page(tree_page);
2373
2374                 parent = *new;
2375                 if (ret < 0)
2376                         new = &parent->rb_left;
2377                 else if (ret > 0)
2378                         new = &parent->rb_right;
2379                 else {
2380                         need_chain = true;
2381                         break;
2382                 }
2383         }
2384
2385         stable_node_dup = alloc_stable_node();
2386         if (!stable_node_dup)
2387                 return NULL;
2388
2389         INIT_HLIST_HEAD(&stable_node_dup->hlist);
2390         stable_node_dup->kpfn = kpfn;
2391         set_page_stable_node(kpage, stable_node_dup);
2392         stable_node_dup->rmap_hlist_len = 0;
2393         DO_NUMA(stable_node_dup->nid = nid);
2394         if (!need_chain) {
2395                 rb_link_node(&stable_node_dup->node, parent, new);
2396                 rb_insert_color(&stable_node_dup->node, root);
2397         } else {
2398                 if (!is_stable_node_chain(stable_node)) {
2399                         struct stable_node *orig = stable_node;
2400                         /* chain is missing so create it */
2401                         stable_node = alloc_stable_node_chain(orig, root);
2402                         if (!stable_node) {
2403                                 free_stable_node(stable_node_dup);
2404                                 return NULL;
2405                         }
2406                 }
2407                 stable_node_chain_add_dup(stable_node_dup, stable_node);
2408         }
2409
2410         return stable_node_dup;
2411 }
2412
2413 /*
2414  * unstable_tree_search_insert - search for identical page,
2415  * else insert rmap_item into the unstable tree.
2416  *
2417  * This function searches for a page in the unstable tree identical to the
2418  * page currently being scanned; and if no identical page is found in the
2419  * tree, we insert rmap_item as a new object into the unstable tree.
2420  *
2421  * This function returns pointer to rmap_item found to be identical
2422  * to the currently scanned page, NULL otherwise.
2423  *
2424  * This function does both searching and inserting, because they share
2425  * the same walking algorithm in an rbtree.
2426  */
2427 static
2428 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
2429                                               struct page *page,
2430                                               struct page **tree_pagep)
2431 {
2432         struct rb_node **new;
2433         struct rb_root *root;
2434         struct rb_node *parent = NULL;
2435         int nid;
2436
2437         nid = get_kpfn_nid(page_to_pfn(page));
2438         root = root_unstable_tree + nid;
2439         new = &root->rb_node;
2440
2441         while (*new) {
2442                 struct rmap_item *tree_rmap_item;
2443                 struct page *tree_page;
2444                 int ret;
2445
2446                 cond_resched();
2447                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
2448                 tree_page = get_mergeable_page(tree_rmap_item);
2449                 if (!tree_page)
2450                         return NULL;
2451
2452                 /*
2453                  * Don't substitute a ksm page for a forked page.
2454                  */
2455                 if (page == tree_page) {
2456                         put_page(tree_page);
2457                         return NULL;
2458                 }
2459
2460                 ret = memcmp_pages(page, tree_page);
2461
2462                 parent = *new;
2463                 if (ret < 0) {
2464                         put_page(tree_page);
2465                         new = &parent->rb_left;
2466                 } else if (ret > 0) {
2467                         put_page(tree_page);
2468                         new = &parent->rb_right;
2469                 } else if (!ksm_merge_across_nodes &&
2470                            page_to_nid(tree_page) != nid) {
2471                         /*
2472                          * If tree_page has been migrated to another NUMA node,
2473                          * it will be flushed out and put in the right unstable
2474                          * tree next time: only merge with it when across_nodes.
2475                          */
2476                         put_page(tree_page);
2477                         return NULL;
2478                 } else {
2479                         *tree_pagep = tree_page;
2480                         return tree_rmap_item;
2481                 }
2482         }
2483
2484         rmap_item->address |= UNSTABLE_FLAG;
2485         rmap_item->address |= (ksm_scan.scan_round & SEQNR_MASK);
2486         DO_NUMA(rmap_item->nid = nid);
2487         rb_link_node(&rmap_item->node, parent, new);
2488         rb_insert_color(&rmap_item->node, root);
2489
2490 #ifdef CONFIG_LKSM_FILTER
2491         rmap_item->region = ksm_scan.region;
2492 #endif
2493         ksm_pages_unshared++;
2494         return NULL;
2495 }
2496
2497 /*
2498  * stable_tree_append - add another rmap_item to the linked list of
2499  * rmap_items hanging off a given node of the stable tree, all sharing
2500  * the same ksm page.
2501  */
2502 static void stable_tree_append(struct rmap_item *rmap_item,
2503                                struct stable_node *stable_node,
2504                                bool max_page_sharing_bypass)
2505 {
2506         /*
2507          * rmap won't find this mapping if we don't insert the
2508          * rmap_item in the right stable_node
2509          * duplicate. page_migration could break later if rmap breaks,
2510          * so we can as well crash here. We really need to check for
2511          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2512          * for other negative values as an undeflow if detected here
2513          * for the first time (and not when decreasing rmap_hlist_len)
2514          * would be sign of memory corruption in the stable_node.
2515          */
2516         BUG_ON(stable_node->rmap_hlist_len < 0);
2517
2518         stable_node->rmap_hlist_len++;
2519         if (!max_page_sharing_bypass)
2520                 /* possibly non fatal but unexpected overflow, only warn */
2521                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2522                              ksm_max_page_sharing);
2523
2524         rmap_item->head = stable_node;
2525         rmap_item->address |= STABLE_FLAG;
2526         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2527
2528         if (rmap_item->hlist.next) {
2529                 ksm_pages_sharing++;
2530                 lksm_slot_nr_merged++;
2531                 lksm_nr_merged++;
2532         } else
2533                 ksm_pages_shared++;
2534 }
2535
2536 #ifdef CONFIG_LKSM_FILTER
2537 static inline void stable_tree_append_region(struct rmap_item *rmap_item,
2538                                struct stable_node *stable_node,
2539                                struct lksm_region *region,
2540                                bool max_page_sharing_bypass)
2541 {
2542         if (region->type == LKSM_REGION_FILE1
2543                         || region->type == LKSM_REGION_FILE2) {
2544                 int ret;
2545                 unsigned long offset =
2546                                 (rmap_item->address - rmap_item->base_addr) >> PAGE_SHIFT;
2547                 if (unlikely(region->filter_cnt == 0)
2548                                 && region->len > SINGLE_FILTER_LEN
2549                                 && !region->filter) {
2550                         region->filter = kcalloc(region->len, sizeof(long), GFP_KERNEL);
2551                         if (!region->filter) {
2552                                 ksm_err("fail to allocate memory for filter");
2553                                 goto skip;
2554                         }
2555                 }
2556                 if (region->len > SINGLE_FILTER_LEN)
2557                         ret = test_and_set_bit(offset, region->filter);
2558                 else
2559                         ret = test_and_set_bit(offset, &region->single_filter);
2560                 if (!ret)
2561                         region->filter_cnt++;
2562         }
2563         region->merge_cnt++;
2564         region_share[region->type]++;
2565 skip:
2566         stable_tree_append(rmap_item, stable_node, max_page_sharing_bypass);
2567 }
2568 #endif /* CONFIG_LKSM_FILTER */
2569
2570 /*
2571  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2572  * if not, compare checksum to previous and if it's the same, see if page can
2573  * be inserted into the unstable tree, or merged with a page already there and
2574  * both transferred to the stable tree.
2575  *
2576  * @page: the page that we are searching identical page to.
2577  * @rmap_item: the reverse mapping into the virtual address of this page
2578  */
2579 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2580 {
2581         struct mm_struct *mm = rmap_item->mm;
2582         struct rmap_item *tree_rmap_item;
2583         struct page *tree_page = NULL;
2584         struct stable_node *stable_node;
2585         struct page *kpage;
2586         unsigned int checksum;
2587         int err;
2588         bool max_page_sharing_bypass = false;
2589
2590         stable_node = page_stable_node(page);
2591         if (stable_node) {
2592                 if (stable_node->head != &migrate_nodes &&
2593                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2594                     NUMA(stable_node->nid)) {
2595                         stable_node_dup_del(stable_node);
2596                         stable_node->head = &migrate_nodes;
2597                         list_add(&stable_node->list, stable_node->head);
2598                 }
2599                 if (stable_node->head != &migrate_nodes &&
2600                     rmap_item->head == stable_node)
2601                         return;
2602                 /*
2603                  * If it's a KSM fork, allow it to go over the sharing limit
2604                  * without warnings.
2605                  */
2606                 if (!is_page_sharing_candidate(stable_node))
2607                         max_page_sharing_bypass = true;
2608         }
2609
2610         /* We first start with searching the page inside the stable tree */
2611         kpage = stable_tree_search(page);
2612         if (kpage == page && rmap_item->head == stable_node) {
2613                 put_page(kpage);
2614                 return;
2615         }
2616
2617         remove_rmap_item_from_tree(rmap_item);
2618
2619         if (kpage) {
2620                 if (PTR_ERR(kpage) == -EBUSY)
2621                         return;
2622
2623                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2624                 if (!err) {
2625                         /*
2626                          * The page was successfully merged:
2627                          * add its rmap_item to the stable tree.
2628                          */
2629                         lock_page(kpage);
2630 #ifdef CONFIG_LKSM_FILTER
2631                         stable_tree_append_region(rmap_item, page_stable_node(kpage),
2632                                         ksm_scan.region, max_page_sharing_bypass);
2633 #else
2634                         stable_tree_append(rmap_item, page_stable_node(kpage),
2635                                            max_page_sharing_bypass);
2636 #endif
2637                         unlock_page(kpage);
2638                 }
2639                 put_page(kpage);
2640                 return;
2641         }
2642
2643         /*
2644          * LKSM: In LKSM, KSM is running in a event-triggered manner.
2645          * Because of that scanning is much infrequently performed.
2646          * We just skip caculation of checksum for LKSM to catch scanning
2647          * chances more.
2648          */
2649         if (ksm_scan.scan_round < initial_round
2650                                 && !lksm_test_rmap_frozen(rmap_item)) {
2651                 checksum = calc_checksum(page);
2652                 if (rmap_item->oldchecksum != checksum) {
2653                         rmap_item->oldchecksum = checksum;
2654                         return;
2655                 }
2656         }
2657
2658         /*
2659          * Same checksum as an empty page. We attempt to merge it with the
2660          * appropriate zero page if the user enabled this via sysfs.
2661          */
2662         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2663                 struct vm_area_struct *vma;
2664
2665                 down_read(&mm->mmap_sem);
2666                 vma = find_mergeable_vma(mm, rmap_item->address);
2667                 if (vma) {
2668                         err = try_to_merge_one_page(vma, page,
2669                                         ZERO_PAGE(rmap_item->address));
2670                 } else {
2671                         /*
2672                          * If the vma is out of date, we do not need to
2673                          * continue.
2674                          */
2675                         err = 0;
2676                 }
2677                 up_read(&mm->mmap_sem);
2678                 /*
2679                  * In case of failure, the page was not really empty, so we
2680                  * need to continue. Otherwise we're done.
2681                  */
2682                 if (!err)
2683                         return;
2684         }
2685         tree_rmap_item =
2686                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2687         if (tree_rmap_item) {
2688                 bool split;
2689 #ifdef CONFIG_LKSM_FILTER
2690                 struct lksm_region *tree_region = tree_rmap_item->region;
2691 #endif
2692                 kpage = try_to_merge_two_pages(rmap_item, page,
2693                                                 tree_rmap_item, tree_page);
2694                 /*
2695                  * If both pages we tried to merge belong to the same compound
2696                  * page, then we actually ended up increasing the reference
2697                  * count of the same compound page twice, and split_huge_page
2698                  * failed.
2699                  * Here we set a flag if that happened, and we use it later to
2700                  * try split_huge_page again. Since we call put_page right
2701                  * afterwards, the reference count will be correct and
2702                  * split_huge_page should succeed.
2703                  */
2704                 split = PageTransCompound(page)
2705                         && compound_head(page) == compound_head(tree_page);
2706                 put_page(tree_page);
2707                 if (kpage) {
2708                         /*
2709                          * The pages were successfully merged: insert new
2710                          * node in the stable tree and add both rmap_items.
2711                          */
2712                         lock_page(kpage);
2713                         stable_node = stable_tree_insert(kpage);
2714                         if (stable_node) {
2715 #ifdef CONFIG_LKSM_FILTER
2716                                 stable_tree_append_region(tree_rmap_item, stable_node,
2717                                                 tree_region, false);
2718                                 stable_tree_append_region(rmap_item, stable_node,
2719                                                 ksm_scan.region, false);
2720 #else
2721                                 stable_tree_append(tree_rmap_item, stable_node,
2722                                                    false);
2723                                 stable_tree_append(rmap_item, stable_node,
2724                                                    false);
2725 #endif
2726                         }
2727                         unlock_page(kpage);
2728
2729                         /*
2730                          * If we fail to insert the page into the stable tree,
2731                          * we will have 2 virtual addresses that are pointing
2732                          * to a ksm page left outside the stable tree,
2733                          * in which case we need to break_cow on both.
2734                          */
2735                         if (!stable_node) {
2736                                 break_cow(tree_rmap_item);
2737                                 break_cow(rmap_item);
2738 #ifdef CONFIG_LKSM_FILTER
2739                                 tree_rmap_item->region = tree_region;
2740                                 rmap_item->region = ksm_scan.region;
2741 #endif
2742                         }
2743                 } else if (split) {
2744                         /*
2745                          * We are here if we tried to merge two pages and
2746                          * failed because they both belonged to the same
2747                          * compound page. We will split the page now, but no
2748                          * merging will take place.
2749                          * We do not want to add the cost of a full lock; if
2750                          * the page is locked, it is better to skip it and
2751                          * perhaps try again later.
2752                          */
2753                         if (!trylock_page(page))
2754                                 return;
2755                         split_huge_page(page);
2756                         unlock_page(page);
2757                 }
2758         }
2759 }
2760
2761 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2762                                             struct rmap_item **rmap_list,
2763                                             unsigned long addr)
2764 {
2765         struct rmap_item *rmap_item;
2766
2767         while (*rmap_list) {
2768                 rmap_item = *rmap_list;
2769                 if ((rmap_item->address & PAGE_MASK) == addr) {
2770                         if (lksm_test_mm_state(mm_slot, KSM_MM_FROZEN)
2771                                         && rmap_item->address & UNSTABLE_FLAG)
2772                                 lksm_set_rmap_frozen(rmap_item);
2773                         else
2774                                 lksm_clear_rmap_frozen(rmap_item);
2775                         return rmap_item;
2776                 }
2777                 if (rmap_item->address > addr)
2778                         break;
2779                 *rmap_list = rmap_item->rmap_list;
2780                 remove_rmap_item_from_tree(rmap_item);
2781                 free_rmap_item(rmap_item);
2782         }
2783
2784         rmap_item = alloc_rmap_item();
2785         if (rmap_item) {
2786                 /* It has already been zeroed */
2787                 rmap_item->mm = mm_slot->mm;
2788                 rmap_item->address = addr;
2789                 rmap_item->rmap_list = *rmap_list;
2790 #ifdef CONFIG_LKSM_FILTER
2791                 rmap_item->region = ksm_scan.region;
2792 #endif
2793                 *rmap_list = rmap_item;
2794                 if (lksm_test_mm_state(mm_slot, FROZEN_BIT))
2795                         lksm_set_rmap_frozen(rmap_item);
2796                 else
2797                         lksm_clear_rmap_frozen(rmap_item);
2798         }
2799         return rmap_item;
2800 }
2801
2802 /*
2803  * lksm_flush_removed_mm_list:
2804  * batched flushing out removed mm_slots by lksm_remove_mm_slot
2805  */
2806 static void lksm_flush_removed_mm_list(void)
2807 {
2808         struct mm_slot *head, *next, *slot;
2809
2810         spin_lock(&ksm_mmlist_lock);
2811         head = list_first_entry_or_null(&ksm_scan.remove_mm_list,
2812                         struct mm_slot, mm_list);
2813         if (!head) {
2814                 spin_unlock(&ksm_mmlist_lock);
2815                 return;
2816         }
2817
2818         list_del_init(&ksm_scan.remove_mm_list);
2819         spin_unlock(&ksm_mmlist_lock);
2820
2821         if (!list_empty(&head->mm_list)) {
2822                 list_for_each_entry_safe(slot, next, &head->mm_list, mm_list) {
2823                         list_del(&slot->mm_list);
2824
2825                         cond_resched();
2826
2827                         remove_trailing_rmap_items(slot, &slot->rmap_list);
2828 #ifdef CONFIG_LKSM_FILTER
2829                         lksm_region_ref_list_release(slot);
2830 #endif
2831                         clear_bit(MMF_VM_MERGEABLE, &slot->mm->flags);
2832                         mmdrop(slot->mm);
2833                         free_mm_slot(slot);
2834                 }
2835         }
2836
2837         cond_resched();
2838         remove_trailing_rmap_items(head, &head->rmap_list);
2839         clear_bit(MMF_VM_MERGEABLE, &head->mm->flags);
2840         mmdrop(head->mm);
2841         free_mm_slot(head);
2842 }
2843
2844 /*
2845  * remove mm_slot from lists
2846  * LKSM defers releasing stuffs at the end of scanning
2847  */
2848 static inline void lksm_remove_mm_slot(struct mm_slot *slot)
2849 {
2850         hash_del(&slot->link);
2851         list_del_init(&slot->scan_list);
2852         list_move(&slot->mm_list, &ksm_scan.remove_mm_list);
2853         if (!RB_EMPTY_NODE(&slot->ordered_list)) {
2854                 rb_erase(&slot->ordered_list, &vips_list);
2855                 RB_CLEAR_NODE(&slot->ordered_list);
2856         }
2857 }
2858
2859 /* caller must hold ksm_mmlist_lock */
2860 static struct mm_slot *lksm_get_unscanned_mm_slot(struct mm_slot *slot)
2861 {
2862         struct mm_slot *next;
2863
2864         list_for_each_entry_safe_continue(slot, next, &ksm_scan_head.scan_list,
2865                         scan_list) {
2866                 if (ksm_test_exit(slot->mm)) {
2867                         if (lksm_test_mm_state(slot, KSM_MM_FROZEN))
2868                                 atomic_dec(&ksm_scan.nr_frozen);
2869                         else
2870                                 atomic_dec(&ksm_scan.nr_scannable);
2871                         lksm_remove_mm_slot(slot);
2872                         continue;
2873                 }
2874
2875                 lksm_nr_scanned_slot++;
2876                 break;
2877         }
2878
2879         return slot;
2880 }
2881
2882 /* caller must hold ksm_mmlist_lock */
2883 static void lksm_insert_mm_slot_ordered(struct mm_slot *slot)
2884 {
2885         struct rb_root *root;
2886         struct rb_node **new;
2887         struct rb_node *parent;
2888         struct mm_slot *temp_slot;
2889
2890         root = &vips_list;
2891         parent = NULL;
2892         new = &root->rb_node;
2893
2894         while (*new) {
2895                 temp_slot = rb_entry(*new, struct mm_slot, ordered_list);
2896
2897                 parent = *new;
2898                 if (slot->nr_merged > temp_slot->nr_merged)
2899                         new = &parent->rb_left;
2900                 else
2901                         new = &parent->rb_right;
2902         }
2903
2904         rb_link_node(&slot->ordered_list, parent, new);
2905         rb_insert_color(&slot->ordered_list, root);
2906 }
2907
2908 #ifdef CONFIG_LKSM_FILTER
2909 /*
2910  * most vmas grow up except stack.
2911  * the given value of size must be same with orig's one.
2912  */
2913
2914 static inline void __lksm_copy_filter
2915 (unsigned long *orig, unsigned long *newer, int size)
2916 {
2917         while (size-- >= 0)
2918                 *(newer++) = *(orig++);
2919 }
2920
2921 static inline void lksm_copy_filter
2922 (struct lksm_region *region, unsigned long *filter)
2923 {
2924         if (region->len > SINGLE_FILTER_LEN) {
2925                 if (region->filter)
2926                         __lksm_copy_filter(region->filter, filter, region->len);
2927         } else
2928                 __lksm_copy_filter(&region->single_filter, filter, region->len);
2929 }
2930
2931 static struct vm_area_struct *lksm_find_next_vma
2932 (struct mm_struct *mm, struct mm_slot *slot)
2933 {
2934         struct vm_area_struct *vma;
2935         struct lksm_region *region;
2936
2937         if (ksm_test_exit(mm))
2938                 vma = NULL;
2939         else
2940                 vma = find_vma(mm, ksm_scan.address);
2941         for (; vma; vma = vma->vm_next) {
2942                 if (!(vma->vm_flags & VM_MERGEABLE))
2943                         continue;
2944                 if (ksm_scan.address < vma->vm_start)
2945                         ksm_scan.address = vma->vm_start;
2946                 if (!vma->anon_vma) {
2947                         ksm_scan.address = vma->vm_end;
2948                         continue;
2949                 }
2950
2951                 if (ksm_scan.cached_vma == vma)
2952                         region = ksm_scan.region;
2953                 else {
2954                         region = lksm_find_region(vma);
2955                         ksm_scan.cached_vma = vma;
2956                         ksm_scan.vma_base_addr = vma->vm_start;
2957                 }
2958
2959                 if (!region || region->type == LKSM_REGION_CONFLICT)
2960                         region = &unknown_region;
2961                 else if (region->type != LKSM_REGION_HEAP
2962                                         && region->type != LKSM_REGION_CONFLICT
2963                                         && region->type != LKSM_REGION_UNKNOWN) {
2964                         int size = lksm_region_size(vma->vm_start, vma->vm_end);
2965                         int len = (size > BITS_PER_LONG) ? lksm_bitmap_size(size)
2966                                         : SINGLE_FILTER_LEN;
2967
2968                         if (len > SINGLE_FILTER_LEN && unlikely(region->len != len)) {
2969                                 region->conflict++;
2970                                 if (region->conflict > 1) {
2971                                         region->type = LKSM_REGION_CONFLICT;
2972                                         if (region->len > SINGLE_FILTER_LEN)
2973                                                 kfree(region->filter);
2974                                         region->filter = NULL;
2975                                         region->len = SINGLE_FILTER_LEN;
2976                                         /* conflicted regions will be unfiltered */
2977                                         region = &unknown_region;
2978                                         break;
2979                                 }
2980                                 if (region->len < len) {
2981                                         unsigned long *filter;
2982                                         ksm_debug("size of region(%p) is changed: %d -> %d (size: %d)",
2983                                                         region, region->len, len, size);
2984                                         filter = kcalloc(len, sizeof(long), GFP_KERNEL);
2985                                         if (!filter) {
2986                                                 ksm_err("fail to allocate memory for filter");
2987                                                 goto skip;
2988                                         }
2989                                         if (region->filter_cnt > 0)
2990                                                 lksm_copy_filter(region, filter);
2991                                         if (region->len > SINGLE_FILTER_LEN)
2992                                                 kfree(region->filter);
2993                                         region->filter = filter;
2994                                         region->len = len;
2995                                 }
2996                         }
2997                 }
2998 skip:
2999                 if (ksm_scan.region != region)
3000                         ksm_scan.region = region;
3001                 break;
3002         }
3003         return vma;
3004 }
3005
3006 static inline unsigned long lksm_get_next_filtered_address
3007 (struct lksm_region *region, unsigned long addr, unsigned long base)
3008 {
3009         unsigned long next_offset, curr_offset, nbits;
3010
3011         curr_offset = (addr - base) >> PAGE_SHIFT;
3012         nbits = (region->len == 0) ? BITS_PER_LONG :
3013                                 (region->len << (6 + PAGE_SHIFT));
3014         if (region->len > SINGLE_FILTER_LEN)
3015                 next_offset = find_next_bit(region->filter, nbits, curr_offset);
3016         else
3017                 next_offset = find_next_bit(&region->single_filter,
3018                                 nbits, curr_offset);
3019
3020         return (next_offset << PAGE_SHIFT) + base;
3021 }
3022
3023 #define lksm_region_skipped(region) \
3024                 (region->len > 0 && !region->filter)
3025
3026 static struct rmap_item *__scan_next_rmap_item(struct page **page,
3027                 struct mm_struct *mm, struct mm_slot *slot)
3028 {
3029         struct vm_area_struct *vma;
3030         struct rmap_item *rmap_item;
3031         unsigned long addr;
3032
3033 again:
3034         cond_resched();
3035         vma = lksm_find_next_vma(mm, slot);
3036
3037         while (vma && ksm_scan.address < vma->vm_end) {
3038                 if (ksm_test_exit(mm)) {
3039                         vma = NULL;
3040                         break;
3041                 }
3042                 if (!lksm_test_mm_state(slot, KSM_MM_NEWCOMER)
3043                                 && !lksm_test_mm_state(slot, KSM_MM_FROZEN)
3044                                 && ksm_scan.region->type != LKSM_REGION_HEAP
3045                                 && ksm_scan.region->type != LKSM_REGION_UNKNOWN
3046                                 && lksm_region_mature(ksm_scan.scan_round, ksm_scan.region)
3047                                 && !lksm_region_skipped(ksm_scan.region)) {
3048                         if (ksm_scan.region->filter_cnt > 0) {
3049                                 addr = lksm_get_next_filtered_address(ksm_scan.region,
3050                                                 ksm_scan.address, ksm_scan.vma_base_addr);
3051                                 ksm_scan.address = addr;
3052                                 if (ksm_scan.address >= vma->vm_end)
3053                                         break;
3054                                 if (ksm_scan.address < vma->vm_start) {
3055                                         ksm_debug("address(%lu) is less than vm_start(%lu)",
3056                                                 ksm_scan.address, vma->vm_start);
3057                                         break;
3058                                 }
3059                         } else {
3060                                 ksm_scan.address = vma->vm_end;
3061                                 break;
3062                         }
3063                 }
3064                 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
3065                 if (IS_ERR_OR_NULL(*page)) {
3066                         ksm_scan.address += PAGE_SIZE;
3067                         cond_resched();
3068                         continue;
3069                 }
3070                 if (PageAnon(*page)) {
3071                         flush_anon_page(vma, *page, ksm_scan.address);
3072                         flush_dcache_page(*page);
3073                         rmap_item = get_next_rmap_item(slot,
3074                                         ksm_scan.rmap_list, ksm_scan.address);
3075                         if (rmap_item) {
3076                                 ksm_scan.rmap_list =
3077                                                 &rmap_item->rmap_list;
3078                                 ksm_scan.address += PAGE_SIZE;
3079                         } else
3080                                 put_page(*page);
3081                         return rmap_item;
3082                 }
3083                 put_page(*page);
3084                 ksm_scan.address += PAGE_SIZE;
3085                 cond_resched();
3086         }
3087         if (vma)
3088                 goto again;
3089         /* clean-up a scanned region */
3090         ksm_scan.region = NULL;
3091         ksm_scan.cached_vma = NULL;
3092         ksm_scan.vma_base_addr = 0;
3093
3094         return NULL; /* no scannable rmap item */
3095 }
3096
3097 #else /* CONFIG_LKSM_FILTER */
3098
3099 static struct rmap_item *__scan_next_rmap_item(struct page **page,
3100                 struct mm_struct *mm, struct mm_slot *slot)
3101 {
3102         struct vm_area_struct *vma;
3103         struct rmap_item *rmap_item;
3104
3105         if (ksm_test_exit(mm))
3106                 vma = NULL;
3107         else
3108                 vma = find_vma(mm, ksm_scan.address);
3109
3110         for (; vma; vma = vma->vm_next) {
3111                 if (!(vma->vm_flags & VM_MERGEABLE))
3112                         continue;
3113                 if (ksm_scan.address < vma->vm_start)
3114                         ksm_scan.address = vma->vm_start;
3115                 if (!vma->anon_vma)
3116                         ksm_scan.address = vma->vm_end;
3117
3118                 while (ksm_scan.address < vma->vm_end) {
3119                         if (ksm_test_exit(mm))
3120                                 break;
3121                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
3122                         if (IS_ERR_OR_NULL(*page)) {
3123                                 ksm_scan.address += PAGE_SIZE;
3124                                 cond_resched();
3125                                 continue;
3126                         }
3127                         if (PageAnon(*page)) {
3128                                 flush_anon_page(vma, *page, ksm_scan.address);
3129                                 flush_dcache_page(*page);
3130                                 rmap_item = get_next_rmap_item(slot,
3131                                         ksm_scan.rmap_list, ksm_scan.address);
3132                                 if (rmap_item) {
3133                                         ksm_scan.rmap_list =
3134                                                         &rmap_item->rmap_list;
3135                                         ksm_scan.address += PAGE_SIZE;
3136                                 } else
3137                                         put_page(*page);
3138                                 return rmap_item;
3139                         }
3140                         put_page(*page);
3141                         ksm_scan.address += PAGE_SIZE;
3142                         cond_resched();
3143                 }
3144         }
3145
3146         return NULL;
3147 }
3148
3149 #endif /* CONFIG_LKSM_FILTER */
3150
3151 static inline int sum_merge_win(int merge_win[], int len)
3152 {
3153         int i, sum = 0;
3154
3155         for (i = 0; i < len; i++)
3156                 sum += merge_win[i];
3157         return sum;
3158 }
3159
3160 static inline int lksm_account_mm_slot_nr_merge(struct mm_slot *slot, int nr_merged)
3161 {
3162         slot->nr_merged_win[slot->merge_idx++] = nr_merged;
3163         if (slot->merge_idx == MERGE_WIN)
3164                 slot->merge_idx = 0;
3165         slot->nr_merged = sum_merge_win(slot->nr_merged_win, MERGE_WIN);
3166         return slot->nr_merged;
3167 }
3168
3169 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
3170 {
3171         struct mm_struct *mm;
3172         struct mm_slot *slot;
3173         struct rmap_item *rmap_item;
3174
3175         if (list_empty(&ksm_scan_head.scan_list))
3176                 return NULL;
3177
3178         slot = ksm_scan.mm_slot;
3179         if (slot == &ksm_scan_head) {
3180                 /*
3181                  * A number of pages can hang around indefinitely on per-cpu
3182                  * pagevecs, raised page count preventing write_protect_page
3183                  * from merging them.  Though it doesn't really matter much,
3184                  * it is puzzling to see some stuck in pages_volatile until
3185                  * other activity jostles them out, and they also prevented
3186                  * LTP's KSM test from succeeding deterministically; so drain
3187                  * them here (here rather than on entry to ksm_do_scan(),
3188                  * so we don't IPI too often when pages_to_scan is set low).
3189                  */
3190                 lru_add_drain_all();
3191
3192                 if (ksm_scan.scan_round < ksm_crawl_round) {
3193                         ksm_scan.scan_round = ksm_crawl_round;
3194                         root_unstable_tree[LKSM_NODE_ID] = RB_ROOT;
3195                 }
3196
3197                 spin_lock(&ksm_mmlist_lock);
3198                 slot = lksm_get_unscanned_mm_slot(slot);
3199                 ksm_scan.mm_slot = slot;
3200                 spin_unlock(&ksm_mmlist_lock);
3201
3202                 /*
3203                  * Although we tested list_empty() above, a racing __ksm_exit
3204                  * of the last mm on the list may have removed it since then.
3205                  */
3206                 if (slot == &ksm_scan_head)
3207                         return NULL;
3208
3209                 slot->elapsed = get_jiffies_64();
3210 next_mm:
3211                 ksm_scan.address = 0;
3212                 ksm_scan.rmap_list = &slot->rmap_list;
3213         }
3214
3215         if (unlikely(!ksm_scan.rmap_list))
3216                 ksm_scan.rmap_list = &slot->rmap_list;
3217
3218         mm = slot->mm;
3219         BUG_ON(!mm);
3220         down_read(&mm->mmap_sem);
3221         rmap_item = __scan_next_rmap_item(page, mm, slot);
3222
3223         if (rmap_item) {
3224                 slot->nr_scans++;
3225                 up_read(&mm->mmap_sem);
3226                 return rmap_item;
3227         }
3228
3229         if (ksm_test_exit(mm)) {
3230                 ksm_scan.address = 0;
3231                 ksm_scan.rmap_list = &slot->rmap_list;
3232         }
3233         /*
3234          * Nuke all the rmap_items that are above this current rmap:
3235          * because there were no VM_MERGEABLE vmas with such addresses.
3236          */
3237         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
3238
3239         spin_lock(&ksm_mmlist_lock);
3240         ksm_scan.mm_slot = lksm_get_unscanned_mm_slot(slot);
3241
3242         if (ksm_scan.address == 0) {
3243                 /*
3244                  * We've completed a full scan of all vmas, holding mmap_sem
3245                  * throughout, and found no VM_MERGEABLE: so do the same as
3246                  * __ksm_exit does to remove this mm from all our lists now.
3247                  * This applies either when cleaning up after __ksm_exit
3248                  * (but beware: we can reach here even before __ksm_exit),
3249                  * or when all VM_MERGEABLE areas have been unmapped (and
3250                  * mmap_sem then protects against race with MADV_MERGEABLE).
3251                  */
3252                 up_read(&mm->mmap_sem);
3253                 if (lksm_test_mm_state(slot, KSM_MM_FROZEN))
3254                         atomic_dec(&ksm_scan.nr_frozen);
3255                 else
3256                         atomic_dec(&ksm_scan.nr_scannable);
3257                 lksm_remove_mm_slot(slot);
3258                 spin_unlock(&ksm_mmlist_lock);
3259
3260                 lksm_slot_nr_merged = 0;
3261                 lksm_slot_nr_broken = 0;
3262         } else {
3263                 int newcomer = 0, frozen = 0;
3264
3265                 up_read(&mm->mmap_sem);
3266
3267                 if (lksm_test_mm_state(slot, KSM_MM_NEWCOMER)) {
3268                         lksm_clear_mm_state(slot, KSM_MM_NEWCOMER);
3269                         newcomer = 1;
3270                 }
3271                 if (lksm_test_mm_state(slot, KSM_MM_FROZEN)) {
3272                         lksm_clear_mm_state(slot, KSM_MM_FROZEN);
3273                         frozen = 1;
3274                         atomic_dec(&ksm_scan.nr_frozen);
3275                 } else
3276                         atomic_dec(&ksm_scan.nr_scannable);
3277                 lksm_set_mm_state(slot, KSM_MM_SCANNED);
3278
3279                 list_del_init(&slot->scan_list);
3280                 if (!RB_EMPTY_NODE(&slot->ordered_list)) {
3281                         rb_erase(&slot->ordered_list, &vips_list);
3282                         RB_CLEAR_NODE(&slot->ordered_list);
3283                 }
3284                 if (lksm_account_mm_slot_nr_merge(slot, lksm_slot_nr_merged))
3285                         lksm_insert_mm_slot_ordered(slot);
3286
3287                 slot->elapsed = get_jiffies_64() - slot->elapsed;
3288                 spin_unlock(&ksm_mmlist_lock);
3289
3290                 if (ksm_test_exit(slot->mm))
3291                         ksm_debug("slot(%p:%p) is exited", slot, slot->mm);
3292                 else
3293                         ksm_debug("slot-%d(%s) %d merged %d scanned %lu pages "
3294                                         "(sum: %d) - (%s, %s) takes %u msecs (nr_scannable: %d)",
3295                                         task_pid_nr(slot->mm->owner), slot->mm->owner->comm,
3296                                         lksm_slot_nr_merged - lksm_slot_nr_broken, slot->nr_scans,
3297                                         slot->scanning_size, slot->nr_merged,
3298                                         newcomer ? "new" : "old",
3299                                         frozen ? "frozen" : "normal",
3300                                         jiffies_to_msecs(slot->elapsed),
3301                                         atomic_read(&ksm_scan.nr_scannable));
3302
3303                 lksm_slot_nr_merged = 0;
3304                 lksm_slot_nr_broken = 0;
3305         }
3306
3307         /* Repeat until we've completed scanning the whole list */
3308         slot = ksm_scan.mm_slot;
3309         if (slot != &ksm_scan_head) {
3310                 slot->elapsed = get_jiffies_64();
3311                 goto next_mm;
3312         }
3313
3314         return NULL;
3315 }
3316
3317 /**
3318  * ksm_do_scan  - the ksm scanner main worker function.
3319  * @scan_npages:  number of pages we want to scan before we return.
3320  */
3321 static int ksm_do_scan(unsigned int scan_npages)
3322 {
3323         struct rmap_item *rmap_item;
3324         struct page *uninitialized_var(page);
3325
3326         while (scan_npages-- && likely(!freezing(current))) {
3327                 cond_resched();
3328                 rmap_item = scan_get_next_rmap_item(&page);
3329                 if (!rmap_item)
3330                         return 1; /* need sleep */
3331                 cmp_and_merge_page(page, rmap_item);
3332                 put_page(page);
3333         }
3334         return 0;
3335 }
3336
3337 static int ksmd_should_run(void)
3338 {
3339         return (ksm_run & KSM_RUN_MERGE) &&
3340                 !list_empty(&ksm_scan_head.scan_list);
3341 }
3342
3343 static void lksm_scan_wrapup_wait(void)
3344 {
3345         if (ksm_scan.scan_mode == LKSM_SCAN_PARTIAL) {
3346                 if (ksm_thread_pages_to_scan != lksm_default_pages_to_scan)
3347                         ksm_thread_pages_to_scan = lksm_default_pages_to_scan;
3348         } else if (ksm_scan.scan_mode == LKSM_SCAN_FULL)
3349                 ksm_scan.nr_full_scan++;
3350
3351         lksm_nr_merged = 0;
3352         lksm_nr_broken = 0;
3353         lksm_nr_scanned_slot = 0;
3354
3355         ksm_scan.scan_mode = LKSM_SCAN_NONE;
3356         if (ksm_run & KSM_RUN_ONESHOT)
3357                 atomic_set(&ksm_one_shot_scanning, LKSM_SCAN_NONE);
3358
3359         lksm_clear_scan_state(ksm_state);
3360
3361         wait_event_freezable(ksm_thread_wait,
3362                         (lksm_check_scan_state(ksm_state) && ksmd_should_run())
3363                         || kthread_should_stop());
3364 }
3365
3366 static int lksm_scan_thread(void *nothing)
3367 {
3368         unsigned long begin, elapsed;
3369         unsigned int sleep_ms;
3370         int need_to_sleep = 0;
3371
3372         set_freezable();
3373         set_user_nice(current, 5);
3374
3375         ksm_debug("KSM_SCAND pid: %d", task_pid_nr(current));
3376         while (!kthread_should_stop()) {
3377                 mutex_lock(&ksm_thread_mutex);
3378                 wait_while_offlining();
3379                 if (ksmd_should_run())
3380                         need_to_sleep = ksm_do_scan(ksm_thread_pages_to_scan);
3381                 mutex_unlock(&ksm_thread_mutex);
3382
3383                 try_to_freeze();
3384
3385                 if (need_to_sleep) {
3386                         if (!ksmd_should_run()) {
3387                                 /* if no one left in scanning list, go to sleep for a while */
3388                                 lksm_flush_removed_mm_list();
3389
3390                                 elapsed = get_jiffies_64() - begin;
3391                                 lksm_last_scan_time = elapsed;
3392                                 lksm_proc_scan_time = elapsed / lksm_nr_scanned_slot;
3393
3394                                 ksm_debug("Scanning(%d) takes %u ms, %d/%d-pages "
3395                                                 "are merged/broken (nr_scannable: %d, nr_frozen: %d)",
3396                                                 lksm_nr_scanned_slot,
3397                                                 jiffies_to_msecs(lksm_last_scan_time),
3398                                                 lksm_nr_merged, lksm_nr_broken,
3399                                                 atomic_read(&ksm_scan.nr_scannable),
3400                                                 atomic_read(&ksm_scan.nr_frozen));
3401
3402                                 lksm_scan_wrapup_wait();
3403
3404                                 ksm_debug("Start %lu-th scanning: nr_scannable(%d) "
3405                                                 "nr_frozen(%d)",
3406                                                 ksm_scan.scan_round,
3407                                                 atomic_read(&ksm_scan.nr_scannable),
3408                                                 atomic_read(&ksm_scan.nr_frozen));
3409
3410                                 if (ksm_scan.scan_mode == LKSM_SCAN_PARTIAL) {
3411                                         if (lksm_boosted_pages_to_scan !=
3412                                                         ksm_thread_pages_to_scan) {
3413                                                 ksm_thread_pages_to_scan = lksm_boosted_pages_to_scan;
3414                                                 ksm_debug("set pages_to_scan to %u",
3415                                                                 lksm_boosted_pages_to_scan);
3416                                         }
3417                                 }
3418                                 begin = get_jiffies_64();
3419                         } else {
3420                                 /* new scanning targets are coming */
3421                                 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
3422                                 wait_event_interruptible_timeout(ksm_iter_wait,
3423                                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
3424                                                 msecs_to_jiffies(sleep_ms));
3425                         }
3426                         need_to_sleep = 0;
3427                 } else if (ksmd_should_run()) {
3428                         /* normal sleep */
3429                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
3430                         wait_event_interruptible_timeout(ksm_iter_wait,
3431                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
3432                                 msecs_to_jiffies(sleep_ms));
3433                 } else {
3434                         /* wait for activating ksm */
3435                         if (likely(ksm_scan.scan_round > 0)) {
3436                                 lksm_flush_removed_mm_list();
3437
3438                                 elapsed = get_jiffies_64() - begin;
3439                                 lksm_last_scan_time = elapsed;
3440                                 lksm_proc_scan_time = elapsed / lksm_nr_scanned_slot;
3441
3442                                 ksm_debug("Scanning(%d) takes %u ms, %d/%d-pages are merged/broken",
3443                                                 lksm_nr_scanned_slot, jiffies_to_msecs(lksm_last_scan_time),
3444                                                 lksm_nr_merged, lksm_nr_broken);
3445
3446                                 lksm_scan_wrapup_wait();
3447                         } else
3448                                 wait_event_freezable(ksm_thread_wait,
3449                                         (lksm_check_scan_state(ksm_state) && ksmd_should_run())
3450                                         || kthread_should_stop());
3451
3452                         ksm_debug("Start %lu-th scanning: nr_scannable(%d) nr_frozen(%d)",
3453                                         ksm_scan.scan_round,
3454                                         atomic_read(&ksm_scan.nr_scannable),
3455                                         atomic_read(&ksm_scan.nr_frozen));
3456
3457                         if (ksm_scan.scan_mode == LKSM_SCAN_PARTIAL) {
3458                                 ksm_thread_pages_to_scan = lksm_boosted_pages_to_scan;
3459                                 ksm_debug("set pages_to_scan to %u",
3460                                                 lksm_boosted_pages_to_scan);
3461                         }
3462                         begin = get_jiffies_64();
3463                 }
3464         }
3465         return 0;
3466 }
3467
3468 /*
3469  * lksm crawler declaration & definition part
3470  */
3471 static struct task_struct *ksm_crawld;
3472
3473 LIST_HEAD(frozen_task_list);
3474 DEFINE_SPINLOCK(frozen_task_lock);
3475
3476 enum {
3477         KSM_CRAWL_SLEEP,
3478         KSM_CRAWL_RUN,
3479 } ksm_crawl_state;
3480 static atomic_t crawl_state;
3481
3482 enum {
3483         LKSM_TASK_SLOT_NONE = 0,
3484         LKSM_TASK_SLOT_REMOVED,
3485 };
3486
3487 static inline int lksm_count_and_clear_mm_slots
3488 (struct mm_slot *head, unsigned long *delay)
3489 {
3490         int count = 0;
3491         struct mm_slot *slot;
3492
3493         spin_lock(&ksm_mmlist_lock);
3494         list_for_each_entry(slot, &head->mm_list, mm_list) {
3495                 if (list_empty(&slot->scan_list)) {
3496                         lksm_clear_mm_state(slot, KSM_MM_SCANNED);
3497                         slot->nr_scans = 0;
3498                         slot->scanning_size = get_mm_counter(slot->mm, MM_ANONPAGES);
3499                         list_add_tail(&slot->scan_list, &ksm_scan_head.scan_list);
3500                         *delay += slot->elapsed;
3501                         count++;
3502                 }
3503         }
3504         spin_unlock(&ksm_mmlist_lock);
3505         return count;
3506 }
3507
3508 static int lksm_prepare_frozen_scan(void)
3509 {
3510         int nr_frozen = 0, nr_added = 0, err;
3511         struct task_struct *task;
3512         struct task_slot *task_slot;
3513         struct mm_struct *mm;
3514
3515         spin_lock(&frozen_task_lock);
3516         nr_frozen = atomic_read(&ksm_scan.nr_frozen);
3517         if (list_empty(&frozen_task_list)) {
3518                 spin_unlock(&frozen_task_lock);
3519                 return nr_frozen;
3520         }
3521
3522         ksm_debug("prepare frozen scan: round(%lu)", ksm_crawl_round);
3523         task_slot = list_first_entry_or_null(&frozen_task_list,
3524                         struct task_slot, list);
3525         while (task_slot) {
3526                 list_del(&task_slot->list);
3527                 hash_del(&task_slot->hlist);
3528                 spin_unlock(&frozen_task_lock);
3529
3530                 task = task_slot->task;
3531                 if (ksm_run & KSM_RUN_UNMERGE) {
3532                         put_task_struct(task);
3533                         free_task_slot(task_slot);
3534                         goto clean_up_abort;
3535                 }
3536
3537                 mm = get_task_mm(task);
3538
3539                 if (!mm || ksm_test_exit(mm))
3540                         goto mm_exit_out;
3541
3542                 if (mm) {
3543                         ksm_join_write_lock(mm, task_slot->frozen, err);
3544                         if (!err)
3545                                 nr_added++;
3546                 }
3547
3548 mm_exit_out:
3549                 free_task_slot(task_slot);
3550                 put_task_struct(task);
3551                 if (mm)
3552                         mmput(mm);
3553
3554                 cond_resched();
3555
3556                 spin_lock(&frozen_task_lock);
3557                 task_slot = list_first_entry_or_null(&frozen_task_list,
3558                                 struct task_slot, list);
3559         }
3560         spin_unlock(&frozen_task_lock);
3561         atomic_add(nr_added, &ksm_scan.nr_frozen);
3562
3563         return nr_added + nr_frozen;
3564
3565 clean_up_abort:
3566         spin_lock(&frozen_task_lock);
3567         task_slot = list_first_entry_or_null(&frozen_task_list,
3568                         struct task_slot, list);
3569         while (task_slot) {
3570                 list_del(&task_slot->list);
3571                 hash_del(&task_slot->hlist);
3572                 spin_unlock(&frozen_task_lock);
3573
3574                 task = task_slot->task;
3575                 put_task_struct(task);
3576                 free_task_slot(task_slot);
3577
3578                 spin_lock(&frozen_task_lock);
3579                 task_slot = list_first_entry_or_null(&frozen_task_list,
3580                                 struct task_slot, list);
3581         }
3582         spin_unlock(&frozen_task_lock);
3583
3584         return 0;
3585 }
3586
3587 /* this function make a list of new processes and vip processes */
3588 static int lksm_prepare_partial_scan(void)
3589 {
3590         int ret, nr_frozen = 0, nr_added = 0, nr_scannable = 0;
3591         unsigned long delay = 0;
3592         unsigned long fault_cnt = 0;
3593         struct task_struct *task;
3594         struct mm_struct *mm;
3595         struct mm_slot *mm_slot;
3596         struct list_head recheck_list;
3597         struct rb_node *node;
3598
3599         ksm_debug("prepare partial scan: round(%lu)", ksm_crawl_round);
3600         INIT_LIST_HEAD(&recheck_list);
3601
3602         nr_frozen = lksm_prepare_frozen_scan();
3603
3604         /* get newbies */
3605         for_each_process(task) {
3606                 if (task == current || task_pid_nr(task) == 0
3607                         || check_short_task(task))
3608                         continue;
3609                 if (ksm_run & KSM_RUN_UNMERGE) {
3610                         nr_frozen = 0;
3611                         nr_added = 0;
3612                         goto abort;
3613                 }
3614                 mm = get_task_mm(task);
3615                 if (!mm)
3616                         continue;
3617                 ksm_join_write_lock(mm, KSM_TASK_UNFROZEN, ret);
3618                 if (ret > 0)
3619                         nr_added++;
3620                 mmput(mm);
3621         }
3622
3623         /* get vips */
3624         if (nr_added + nr_frozen >= lksm_max_vips) {
3625                 ksm_debug("nr_scannable(%d) already fulfilled skip vips",
3626                                 nr_added + nr_frozen);
3627                 goto skip_vips;
3628         }
3629
3630         spin_lock(&ksm_mmlist_lock);
3631         node = rb_first(&vips_list);
3632         if (!node) {
3633                 ksm_debug("empty vip list");
3634                 spin_unlock(&ksm_mmlist_lock);
3635                 goto skip_vips;
3636         }
3637         mm_slot = rb_entry(node, struct mm_slot, ordered_list);
3638         while (nr_scannable + nr_added + nr_frozen < lksm_max_vips) {
3639                 if (ksm_run & KSM_RUN_UNMERGE) {
3640                         spin_unlock(&ksm_mmlist_lock);
3641                         nr_scannable = 0;
3642                         nr_frozen = 0;
3643                         nr_added = 0;
3644                         goto abort;
3645                 }
3646                 if (ksm_test_exit(mm_slot->mm)) {
3647                         if (!lksm_test_mm_state(mm_slot, KSM_MM_SCANNED))
3648                                 atomic_dec(&ksm_scan.nr_scannable);
3649                         lksm_remove_mm_slot(mm_slot);
3650                         goto next_node;
3651                 }
3652                 if (!lksm_test_mm_state(mm_slot, KSM_MM_LISTED))
3653                         goto next_node;
3654
3655                 /* prunning by fault count */
3656                 fault_cnt = mm_slot->mm->owner->maj_flt + mm_slot->mm->owner->min_flt;
3657                 if (mm_slot->fault_cnt == fault_cnt)
3658                         goto next_node;
3659
3660                 mm_slot->fault_cnt = fault_cnt;
3661                 mm_slot->scanning_size = get_mm_counter(mm_slot->mm, MM_ANONPAGES);
3662                 mm_slot->nr_scans = 0;
3663                 delay += mm_slot->elapsed;
3664                 ksm_debug("slot(nr_merged: %d, scanning_size: %lu) task(%s)",
3665                                 mm_slot->nr_merged, mm_slot->scanning_size,
3666                                 mm_slot->mm->owner->comm);
3667                 list_move_tail(&mm_slot->scan_list, &recheck_list);
3668                 lksm_clear_mm_state(mm_slot, KSM_MM_SCANNED);
3669 #ifdef CONFIG_LKSM_FILTER
3670                 /* to prevent mm_slot termination on __ksm_exit */
3671                 lksm_set_mm_state(mm_slot, KSM_MM_PREPARED);
3672 #endif
3673                 nr_scannable++;
3674
3675 next_node:
3676                 node = rb_next(node);
3677                 if (!node)
3678                         break;
3679                 mm_slot = rb_entry(node, struct mm_slot, ordered_list);
3680         }
3681         spin_unlock(&ksm_mmlist_lock);
3682 #ifdef CONFIG_LKSM_FILTER
3683         list_for_each_entry(mm_slot, &recheck_list, scan_list) {
3684                 if (ksm_test_exit(mm_slot->mm))
3685                         continue;
3686                 mm_slot->nr_scans = 0;
3687                 /* check new maps */
3688                 down_read(&mm_slot->mm->mmap_sem);
3689                 ksm_join(mm_slot->mm, KSM_TASK_UNFROZEN);
3690                 up_read(&mm_slot->mm->mmap_sem);
3691         }
3692 #endif
3693 skip_vips:
3694         spin_lock(&ksm_mmlist_lock);
3695         if (!list_empty(&recheck_list)) {
3696 #ifdef CONFIG_LKSM_FILTER
3697         list_for_each_entry(mm_slot, &recheck_list, scan_list)
3698             lksm_clear_mm_state(mm_slot, KSM_MM_PREPARED);
3699 #endif
3700                 list_splice(&recheck_list, &ksm_scan_head.scan_list);
3701         }
3702         spin_unlock(&ksm_mmlist_lock);
3703
3704         ksm_scan.scan_mode = LKSM_SCAN_PARTIAL;
3705         ksm_crawl_round++;
3706
3707         atomic_add(nr_scannable + nr_added, &ksm_scan.nr_scannable);
3708         ksm_debug("nr_frozen: %d nr_added: %d nr_scannable: %d - %d",
3709                 nr_frozen, nr_added, nr_scannable, atomic_read(&ksm_scan.nr_scannable));
3710 abort:
3711         return nr_frozen + nr_added + nr_scannable;
3712 }
3713
3714 static int lksm_prepare_full_scan(unsigned long *next_fullscan)
3715 {
3716         int ret, nr_frozen = 0, nr_added = 0, nr_scannable = 0, nr_target;
3717         unsigned long delay = 0;
3718         struct task_struct *task;
3719         struct mm_struct *mm;
3720
3721         ksm_debug("prepare full scan: round(%lu)", ksm_crawl_round);
3722
3723         nr_frozen = lksm_prepare_frozen_scan();
3724
3725         for_each_process(task) {
3726                 if (task == current || task_pid_nr(task) == 0
3727                         || check_short_task(task))
3728                         continue;
3729                 if (ksm_run & KSM_RUN_UNMERGE) {
3730                         nr_target = 0;
3731                         goto abort;
3732                 }
3733
3734                 mm = get_task_mm(task);
3735                 if (!mm)
3736                         continue;
3737                 ksm_join_write_lock(mm, KSM_TASK_UNFROZEN, ret);
3738                 if (ret > 0)
3739                         nr_added++;
3740                 mmput(mm);
3741         }
3742
3743         nr_scannable = lksm_count_and_clear_mm_slots(&ksm_mm_head, &delay);
3744         nr_target = nr_scannable + nr_added + nr_frozen;
3745
3746         /* calculate crawler's sleep time */
3747         delay += msecs_to_jiffies((nr_frozen + nr_added) * lksm_proc_scan_time);
3748         *next_fullscan = jiffies + delay + msecs_to_jiffies(full_scan_interval);
3749
3750         ksm_scan.scan_mode = LKSM_SCAN_FULL;
3751         ksm_crawl_round++;
3752
3753         atomic_add(nr_scannable + nr_added, &ksm_scan.nr_scannable);
3754         ksm_debug("nr_frozen: %d nr_added: %d nr_scannable: %d - %d",
3755                         nr_frozen, nr_added, nr_scannable,
3756                         atomic_read(&ksm_scan.nr_scannable));
3757 abort:
3758         return nr_target;
3759 }
3760
3761 static int lksm_do_wait_userspace_event(unsigned long sleep_time)
3762 {
3763         wait_event_freezable(ksm_crawl_wait,
3764                         kthread_should_stop() ||
3765                         (atomic_read(&ksm_one_shot_scanning) > 0));
3766         return atomic_read(&ksm_one_shot_scanning);
3767 }
3768
3769 static int lksm_do_wait_frozen_event(unsigned long sleep_time)
3770 {
3771         int need_scan = 0;
3772
3773         spin_lock_irq(&frozen_task_lock);
3774         if (list_empty(&frozen_task_list))
3775                 /* wait until candidate list is filled */
3776                 wait_event_interruptible_lock_irq_timeout(
3777                                 ksm_crawl_wait,
3778                                 kthread_should_stop()
3779                                 || !list_empty(&frozen_task_list)
3780                                 || !list_empty(&ksm_scan_head.scan_list),
3781                                 frozen_task_lock, sleep_time);
3782
3783         if (!list_empty(&frozen_task_list) ||
3784                         !list_empty(&ksm_scan_head.scan_list))
3785                 need_scan = 1;
3786         spin_unlock_irq(&frozen_task_lock);
3787
3788         return need_scan;
3789 }
3790
3791 static inline void lksm_wake_up_scan_thread(void)
3792 {
3793         ksm_debug("wake up lksm_scan_thread");
3794         lksm_set_scan_state(ksm_state);
3795         wake_up(&ksm_thread_wait);
3796 }
3797
3798 #define LKSM_CRAWL_FROZEN_EVENT_WAIT 100 /* 100ms */
3799
3800 static void lksm_do_crawl_once
3801 (unsigned long *next_fscan, unsigned long sleep_time)
3802 {
3803         int nr_added = 0;
3804         int scan_mode;
3805
3806         /* cralwer thread waits for trigger event from userspace */
3807         scan_mode = lksm_do_wait_userspace_event(sleep_time);
3808
3809         if (scan_mode == LKSM_SCAN_PARTIAL) {
3810                 atomic_set(&crawl_state, KSM_CRAWL_RUN);
3811                 msleep(LKSM_CRAWL_FROZEN_EVENT_WAIT);
3812                 nr_added = lksm_prepare_partial_scan();
3813         } else if (scan_mode == LKSM_SCAN_FULL) {
3814                 atomic_set(&crawl_state, KSM_CRAWL_RUN);
3815                 nr_added = lksm_prepare_full_scan(next_fscan);
3816         }
3817
3818         try_to_freeze();
3819
3820         if (nr_added > 0)
3821                 lksm_wake_up_scan_thread();
3822         else {
3823                 ksm_debug("No one can be scanned!");
3824                 atomic_set(&ksm_one_shot_scanning, LKSM_SCAN_NONE);
3825         }
3826         atomic_set(&crawl_state, KSM_CRAWL_SLEEP);
3827 }
3828
3829 static void lksm_do_crawl_periodic
3830 (unsigned long *next_fscan, unsigned long sleep_time)
3831 {
3832         int nr_added = 0;
3833
3834         if (time_is_before_eq_jiffies(*next_fscan)) {
3835                 atomic_set(&crawl_state, KSM_CRAWL_RUN);
3836                 nr_added = lksm_prepare_full_scan(next_fscan);
3837         } else if (lksm_do_wait_frozen_event(sleep_time)) {
3838                 atomic_set(&crawl_state, KSM_CRAWL_RUN);
3839                 msleep(LKSM_CRAWL_FROZEN_EVENT_WAIT);
3840                 nr_added = lksm_prepare_partial_scan();
3841         }
3842
3843         try_to_freeze();
3844
3845         if (nr_added > 0)
3846                 lksm_wake_up_scan_thread();
3847         atomic_set(&crawl_state, KSM_CRAWL_SLEEP);
3848 }
3849
3850 static int lksm_crawl_thread(void *data)
3851 {
3852         int nr_added = 0;
3853         unsigned long next_fscan = jiffies;     /* next full scan */
3854         unsigned long sleep_time = crawler_sleep;
3855
3856         set_freezable();
3857         set_user_nice(current, 5);
3858
3859         ksm_debug("KSM_CRAWLD pid: %d", task_pid_nr(current));
3860         wait_event_freezable(ksm_crawl_wait,
3861                 kthread_should_stop() || ksm_run & KSM_RUN_MERGE);
3862         /* initial loop */
3863         while (!kthread_should_stop() && ksm_crawl_round < initial_round) {
3864
3865                 try_to_freeze();
3866
3867                 if ((ksm_run & KSM_RUN_MERGE) &&
3868                                 !lksm_check_scan_state(ksm_state) &&
3869                                 time_is_before_eq_jiffies(next_fscan)) {
3870                         nr_added = lksm_prepare_full_scan(&next_fscan);
3871                         if (nr_added) {
3872                                 lksm_wake_up_scan_thread();
3873                                 nr_added = 0;
3874                         }
3875                         next_fscan = jiffies + sleep_time;
3876                 }
3877
3878                 wait_event_interruptible_timeout(ksm_crawl_wait,
3879                         kthread_should_stop() || !lksm_check_scan_state(ksm_state),
3880                         sleep_time);
3881         }
3882
3883         /* initialization loop done */
3884         full_scan_interval = DEFAULT_FULL_SCAN_INTERVAL;
3885         next_fscan = jiffies + msecs_to_jiffies(full_scan_interval);
3886         atomic_set(&crawl_state, KSM_CRAWL_SLEEP);
3887
3888         /* normal operation loop */
3889         while (!kthread_should_stop()) {
3890                 if (ksm_run & KSM_RUN_ONESHOT) {
3891                         if (!lksm_check_scan_state(ksm_state))
3892                                 lksm_do_crawl_once(&next_fscan, sleep_time);
3893                         else
3894                                 /* wait until scanning done */
3895                                 wait_event_freezable(ksm_crawl_wait,
3896                                         !lksm_check_scan_state(ksm_state)
3897                                         || kthread_should_stop());
3898                 } else if (ksm_run & KSM_RUN_MERGE) {
3899                         if (!lksm_check_scan_state(ksm_state))
3900                                 lksm_do_crawl_periodic(&next_fscan, sleep_time);
3901                         else
3902                                 /* wait until scanning done */
3903                                 wait_event_interruptible_timeout(ksm_crawl_wait,
3904                                         !lksm_check_scan_state(ksm_state)
3905                                         || kthread_should_stop(),
3906                                         sleep_time);
3907                         try_to_freeze();
3908                 } else {
3909                         ksm_debug("ksm is not activated");
3910                         wait_event_freezable(ksm_crawl_wait,
3911                                 kthread_should_stop() || (ksm_run & KSM_RUN_MERGE));
3912                 }
3913         }
3914
3915         return 0;
3916 }
3917
3918 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
3919                 unsigned long end, int advice, unsigned long *vm_flags)
3920 {
3921         struct mm_struct *mm = vma->vm_mm;
3922         int err;
3923
3924         switch (advice) {
3925         case MADV_MERGEABLE:
3926                 /*
3927                  * Be somewhat over-protective for now!
3928                  */
3929                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
3930                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
3931                                  VM_HUGETLB | VM_MIXEDMAP))
3932                         return 0;               /* just ignore the advice */
3933
3934                 if (vma_is_dax(vma))
3935                         return 0;
3936
3937 #ifdef VM_SAO
3938                 if (*vm_flags & VM_SAO)
3939                         return 0;
3940 #endif
3941 #ifdef VM_SPARC_ADI
3942                 if (*vm_flags & VM_SPARC_ADI)
3943                         return 0;
3944 #endif
3945
3946                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
3947                         err = __ksm_enter(mm, KSM_TASK_UNFROZEN);
3948                         if (err)
3949                                 return err;
3950                 }
3951
3952                 *vm_flags |= VM_MERGEABLE;
3953                 break;
3954
3955         case MADV_UNMERGEABLE:
3956                 if (!(*vm_flags & VM_MERGEABLE))
3957                         return 0;               /* just ignore the advice */
3958
3959                 if (vma->anon_vma) {
3960                         err = unmerge_ksm_pages(vma, start, end);
3961                         if (err)
3962                                 return err;
3963                 }
3964
3965                 *vm_flags &= ~VM_MERGEABLE;
3966                 break;
3967         }
3968
3969         return 0;
3970 }
3971
3972 static struct mm_slot *__ksm_enter_alloc_slot(struct mm_struct *mm, int frozen)
3973 {
3974         struct mm_slot *mm_slot;
3975
3976         mm_slot = alloc_mm_slot();
3977         if (!mm_slot)
3978                 return NULL;
3979
3980         if (frozen == KSM_TASK_FROZEN)
3981                 lksm_set_mm_state(mm_slot, KSM_MM_FROZEN | KSM_MM_NEWCOMER);
3982         else
3983                 lksm_set_mm_state(mm_slot, KSM_MM_LISTED | KSM_MM_NEWCOMER);
3984
3985         lksm_clear_mm_state(mm_slot, KSM_MM_SCANNED);
3986         RB_CLEAR_NODE(&mm_slot->ordered_list);
3987         mm_slot->fault_cnt = mm->owner->maj_flt + mm->owner->min_flt;
3988         mm_slot->scanning_size = get_mm_counter(mm, MM_ANONPAGES);
3989
3990         spin_lock(&ksm_mmlist_lock);
3991         insert_to_mm_slots_hash(mm, mm_slot);
3992         /*
3993          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
3994          * insert just behind the scanning cursor, to let the area settle
3995          * down a little; when fork is followed by immediate exec, we don't
3996          * want ksmd to waste time setting up and tearing down an rmap_list.
3997          *
3998          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
3999          * scanning cursor, otherwise KSM pages in newly forked mms will be
4000          * missed: then we might as well insert at the end of the list.
4001          */
4002         if (ksm_run & KSM_RUN_UNMERGE)
4003                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
4004         else {
4005                 list_add_tail(&mm_slot->scan_list, &ksm_scan_head.scan_list);
4006                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
4007         }
4008         ksm_nr_added_process++;
4009         spin_unlock(&ksm_mmlist_lock);
4010 #ifdef CONFIG_LKSM_FILTER
4011         INIT_LIST_HEAD(&mm_slot->ref_list);
4012 #endif
4013         set_bit(MMF_VM_MERGEABLE, &mm->flags);
4014         atomic_inc(&mm->mm_count);
4015
4016         return mm_slot;
4017 }
4018
4019 int __ksm_enter(struct mm_struct *mm, int frozen)
4020 {
4021         if (!__ksm_enter_alloc_slot(mm, frozen))
4022                 return -ENOMEM;
4023         return 0;
4024 }
4025
4026 void __ksm_exit(struct mm_struct *mm)
4027 {
4028         struct mm_slot *mm_slot;
4029         int easy_to_free = 0;
4030
4031         /*
4032          * This process is exiting: if it's straightforward (as is the
4033          * case when ksmd was never running), free mm_slot immediately.
4034          * But if it's at the cursor or has rmap_items linked to it, use
4035          * mmap_sem to synchronize with any break_cows before pagetables
4036          * are freed, and leave the mm_slot on the list for ksmd to free.
4037          * Beware: ksm may already have noticed it exiting and freed the slot.
4038          */
4039
4040         spin_lock(&ksm_mmlist_lock);
4041         mm_slot = get_mm_slot(mm);
4042         if (!mm_slot) {
4043                 spin_unlock(&ksm_mmlist_lock);
4044                 return;
4045         }
4046
4047         if (ksm_scan.mm_slot != mm_slot) {
4048 #ifdef CONFIG_LKSM_FILTER
4049                 if (lksm_test_mm_state(mm_slot, KSM_MM_PREPARED))
4050                         goto deferring_free;
4051 #endif
4052                 if (!mm_slot->rmap_list) {
4053                         hash_del(&mm_slot->link);
4054                         list_del(&mm_slot->mm_list);
4055                         list_del(&mm_slot->scan_list);
4056                         if (!RB_EMPTY_NODE(&mm_slot->ordered_list)) {
4057                                 rb_erase(&mm_slot->ordered_list, &vips_list);
4058                                 RB_CLEAR_NODE(&mm_slot->ordered_list);
4059                         }
4060                         easy_to_free = 1;
4061                 } else
4062                         lksm_remove_mm_slot(mm_slot);
4063                 if (lksm_test_mm_state(mm_slot, KSM_MM_FROZEN))
4064                         atomic_dec(&ksm_scan.nr_frozen);
4065                 else if (!lksm_test_mm_state(mm_slot, KSM_MM_SCANNED))
4066                         atomic_dec(&ksm_scan.nr_scannable);
4067         }
4068 #ifdef CONFIG_LKSM_FILTER
4069 deferring_free:
4070 #endif
4071         ksm_nr_added_process--;
4072         spin_unlock(&ksm_mmlist_lock);
4073
4074         if (easy_to_free) {
4075 #ifdef CONFIG_LKSM_FILTER
4076                 lksm_region_ref_list_release(mm_slot);
4077 #endif
4078                 free_mm_slot(mm_slot);
4079                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
4080                 mmdrop(mm);
4081         } else if (mm_slot) {
4082                 down_write(&mm->mmap_sem);
4083                 up_write(&mm->mmap_sem);
4084         }
4085 }
4086
4087 struct page *ksm_might_need_to_copy(struct page *page,
4088                         struct vm_area_struct *vma, unsigned long address)
4089 {
4090         struct anon_vma *anon_vma = page_anon_vma(page);
4091         struct page *new_page;
4092
4093         if (PageKsm(page)) {
4094                 if (page_stable_node(page) &&
4095                     !(ksm_run & KSM_RUN_UNMERGE))
4096                         return page;    /* no need to copy it */
4097         } else if (!anon_vma) {
4098                 return page;            /* no need to copy it */
4099         } else if (anon_vma->root == vma->anon_vma->root &&
4100                  page->index == linear_page_index(vma, address)) {
4101                 return page;            /* still no need to copy it */
4102         }
4103         if (!PageUptodate(page))
4104                 return page;            /* let do_swap_page report the error */
4105
4106         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
4107         if (new_page) {
4108                 copy_user_highpage(new_page, page, address, vma);
4109
4110                 SetPageDirty(new_page);
4111                 __SetPageUptodate(new_page);
4112                 __SetPageLocked(new_page);
4113         }
4114
4115         return new_page;
4116 }
4117
4118 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
4119 {
4120         struct stable_node *stable_node;
4121         struct rmap_item *rmap_item;
4122         int search_new_forks = 0;
4123
4124         VM_BUG_ON_PAGE(!PageKsm(page), page);
4125
4126         /*
4127          * Rely on the page lock to protect against concurrent modifications
4128          * to that page's node of the stable tree.
4129          */
4130         VM_BUG_ON_PAGE(!PageLocked(page), page);
4131
4132         stable_node = page_stable_node(page);
4133         if (!stable_node)
4134                 return;
4135 again:
4136         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4137                 struct anon_vma *anon_vma = rmap_item->anon_vma;
4138                 struct anon_vma_chain *vmac;
4139                 struct vm_area_struct *vma;
4140
4141                 cond_resched();
4142                 anon_vma_lock_read(anon_vma);
4143                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
4144                                                0, ULONG_MAX) {
4145                         unsigned long addr;
4146
4147                         cond_resched();
4148                         vma = vmac->vma;
4149
4150                         /* Ignore the stable/unstable/sqnr flags */
4151                         addr = rmap_item->address & ~KSM_FLAG_MASK;
4152
4153                         if (addr < vma->vm_start || addr >= vma->vm_end)
4154                                 continue;
4155                         /*
4156                          * Initially we examine only the vma which covers this
4157                          * rmap_item; but later, if there is still work to do,
4158                          * we examine covering vmas in other mms: in case they
4159                          * were forked from the original since ksmd passed.
4160                          */
4161                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
4162                                 continue;
4163
4164                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
4165                                 continue;
4166
4167                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
4168                                 anon_vma_unlock_read(anon_vma);
4169                                 return;
4170                         }
4171                         if (rwc->done && rwc->done(page)) {
4172                                 anon_vma_unlock_read(anon_vma);
4173                                 return;
4174                         }
4175                 }
4176                 anon_vma_unlock_read(anon_vma);
4177         }
4178         if (!search_new_forks++)
4179                 goto again;
4180 }
4181
4182 bool reuse_ksm_page(struct page *page,
4183                     struct vm_area_struct *vma,
4184                     unsigned long address)
4185 {
4186 #ifdef CONFIG_DEBUG_VM
4187         if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
4188                         WARN_ON(!page_mapped(page)) ||
4189                         WARN_ON(!PageLocked(page))) {
4190                 dump_page(page, "reuse_ksm_page");
4191                 return false;
4192         }
4193 #endif
4194
4195         if (PageSwapCache(page) || !page_stable_node(page))
4196                 return false;
4197         /* Prohibit parallel get_ksm_page() */
4198         if (!page_ref_freeze(page, 1))
4199                 return false;
4200
4201         page_move_anon_rmap(page, vma);
4202         page->index = linear_page_index(vma, address);
4203         page_ref_unfreeze(page, 1);
4204
4205         return true;
4206 }
4207 #ifdef CONFIG_MIGRATION
4208 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
4209 {
4210         struct stable_node *stable_node;
4211
4212         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
4213         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
4214         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
4215
4216         stable_node = page_stable_node(newpage);
4217         if (stable_node) {
4218                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
4219                 stable_node->kpfn = page_to_pfn(newpage);
4220                 /*
4221                  * newpage->mapping was set in advance; now we need smp_wmb()
4222                  * to make sure that the new stable_node->kpfn is visible
4223                  * to get_ksm_page() before it can see that oldpage->mapping
4224                  * has gone stale (or that PageSwapCache has been cleared).
4225                  */
4226                 smp_wmb();
4227                 set_page_stable_node(oldpage, NULL);
4228         }
4229 }
4230 #endif /* CONFIG_MIGRATION */
4231
4232 #ifdef CONFIG_MEMORY_HOTREMOVE
4233 static void wait_while_offlining(void)
4234 {
4235         while (ksm_run & KSM_RUN_OFFLINE) {
4236                 mutex_unlock(&ksm_thread_mutex);
4237                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
4238                             TASK_UNINTERRUPTIBLE);
4239                 mutex_lock(&ksm_thread_mutex);
4240         }
4241 }
4242
4243 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
4244                                          unsigned long start_pfn,
4245                                          unsigned long end_pfn)
4246 {
4247         if (stable_node->kpfn >= start_pfn &&
4248             stable_node->kpfn < end_pfn) {
4249                 /*
4250                  * Don't get_ksm_page, page has already gone:
4251                  * which is why we keep kpfn instead of page*
4252                  */
4253                 remove_node_from_stable_tree(stable_node);
4254                 return true;
4255         }
4256         return false;
4257 }
4258
4259 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
4260                                            unsigned long start_pfn,
4261                                            unsigned long end_pfn,
4262                                            struct rb_root *root)
4263 {
4264         struct stable_node *dup;
4265         struct hlist_node *hlist_safe;
4266
4267         if (!is_stable_node_chain(stable_node)) {
4268                 VM_BUG_ON(is_stable_node_dup(stable_node));
4269                 return stable_node_dup_remove_range(stable_node, start_pfn,
4270                                                     end_pfn);
4271         }
4272
4273         hlist_for_each_entry_safe(dup, hlist_safe,
4274                                   &stable_node->hlist, hlist_dup) {
4275                 VM_BUG_ON(!is_stable_node_dup(dup));
4276                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
4277         }
4278         if (hlist_empty(&stable_node->hlist)) {
4279                 free_stable_node_chain(stable_node, root);
4280                 return true; /* notify caller that tree was rebalanced */
4281         } else
4282                 return false;
4283 }
4284
4285 static void ksm_check_stable_tree(unsigned long start_pfn,
4286                                   unsigned long end_pfn)
4287 {
4288         struct stable_node *stable_node, *next;
4289         struct rb_node *node;
4290         int nid;
4291
4292         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
4293                 node = rb_first(root_stable_tree + nid);
4294                 while (node) {
4295                         stable_node = rb_entry(node, struct stable_node, node);
4296                         if (stable_node_chain_remove_range(stable_node,
4297                                                            start_pfn, end_pfn,
4298                                                            root_stable_tree +
4299                                                            nid))
4300                                 node = rb_first(root_stable_tree + nid);
4301                         else
4302                                 node = rb_next(node);
4303                         cond_resched();
4304                 }
4305         }
4306         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4307                 if (stable_node->kpfn >= start_pfn &&
4308                     stable_node->kpfn < end_pfn)
4309                         remove_node_from_stable_tree(stable_node);
4310                 cond_resched();
4311         }
4312 }
4313
4314 static int ksm_memory_callback(struct notifier_block *self,
4315                                unsigned long action, void *arg)
4316 {
4317         struct memory_notify *mn = arg;
4318
4319         switch (action) {
4320         case MEM_GOING_OFFLINE:
4321                 /*
4322                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
4323                  * and remove_all_stable_nodes() while memory is going offline:
4324                  * it is unsafe for them to touch the stable tree at this time.
4325                  * But unmerge_ksm_pages(), rmap lookups and other entry points
4326                  * which do not need the ksm_thread_mutex are all safe.
4327                  */
4328                 mutex_lock(&ksm_thread_mutex);
4329                 ksm_run |= KSM_RUN_OFFLINE;
4330                 mutex_unlock(&ksm_thread_mutex);
4331                 break;
4332
4333         case MEM_OFFLINE:
4334                 /*
4335                  * Most of the work is done by page migration; but there might
4336                  * be a few stable_nodes left over, still pointing to struct
4337                  * pages which have been offlined: prune those from the tree,
4338                  * otherwise get_ksm_page() might later try to access a
4339                  * non-existent struct page.
4340                  */
4341                 ksm_check_stable_tree(mn->start_pfn,
4342                                       mn->start_pfn + mn->nr_pages);
4343                 /* fallthrough */
4344
4345         case MEM_CANCEL_OFFLINE:
4346                 mutex_lock(&ksm_thread_mutex);
4347                 ksm_run &= ~KSM_RUN_OFFLINE;
4348                 mutex_unlock(&ksm_thread_mutex);
4349
4350                 smp_mb();       /* wake_up_bit advises this */
4351                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
4352                 break;
4353         }
4354         return NOTIFY_OK;
4355 }
4356 #else
4357 static void wait_while_offlining(void)
4358 {
4359 }
4360 #endif /* CONFIG_MEMORY_HOTREMOVE */
4361
4362 #ifdef CONFIG_SYSFS
4363 /*
4364  * This all compiles without CONFIG_SYSFS, but is a waste of space.
4365  */
4366
4367 #define KSM_ATTR_RO(_name) \
4368         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4369 #define KSM_ATTR(_name) \
4370         static struct kobj_attribute _name##_attr = \
4371                 __ATTR(_name, 0644, _name##_show, _name##_store)
4372
4373 static ssize_t sleep_millisecs_show(struct kobject *kobj,
4374                                     struct kobj_attribute *attr, char *buf)
4375 {
4376         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
4377 }
4378
4379 static ssize_t sleep_millisecs_store(struct kobject *kobj,
4380                                      struct kobj_attribute *attr,
4381                                      const char *buf, size_t count)
4382 {
4383         unsigned long msecs;
4384         int err;
4385
4386         err = kstrtoul(buf, 10, &msecs);
4387         if (err || msecs > UINT_MAX)
4388                 return -EINVAL;
4389
4390         ksm_thread_sleep_millisecs = msecs;
4391         wake_up_interruptible(&ksm_iter_wait);
4392
4393         return count;
4394 }
4395 KSM_ATTR(sleep_millisecs);
4396
4397 static ssize_t pages_to_scan_show(struct kobject *kobj,
4398                                   struct kobj_attribute *attr, char *buf)
4399 {
4400         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
4401 }
4402
4403 static ssize_t pages_to_scan_store(struct kobject *kobj,
4404                                    struct kobj_attribute *attr,
4405                                    const char *buf, size_t count)
4406 {
4407         int err;
4408         unsigned long nr_pages;
4409
4410         err = kstrtoul(buf, 10, &nr_pages);
4411         if (err || nr_pages > UINT_MAX)
4412                 return -EINVAL;
4413
4414         ksm_thread_pages_to_scan = nr_pages;
4415
4416         return count;
4417 }
4418 KSM_ATTR(pages_to_scan);
4419
4420 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
4421                         char *buf)
4422 {
4423         if (ksm_run & KSM_RUN_ONESHOT)
4424                 return sprintf(buf, "%u\n", KSM_RUN_ONESHOT);
4425         else
4426                 return sprintf(buf, "%lu\n", ksm_run);
4427 }
4428
4429 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
4430                          const char *buf, size_t count)
4431 {
4432         int err;
4433         unsigned long flags;
4434
4435         err = kstrtoul(buf, 10, &flags);
4436         if (err || flags > UINT_MAX)
4437                 return -EINVAL;
4438         if (flags > KSM_RUN_ONESHOT)
4439                 return -EINVAL;
4440
4441         /*
4442          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
4443          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
4444          * breaking COW to free the pages_shared (but leaves mm_slots
4445          * on the list for when ksmd may be set running again).
4446          */
4447
4448         mutex_lock(&ksm_thread_mutex);
4449         wait_while_offlining();
4450         if (ksm_run != flags) {
4451                 if (flags == KSM_RUN_ONESHOT)
4452                         ksm_run = KSM_RUN_MERGE | KSM_RUN_ONESHOT;
4453                 else
4454                         ksm_run = flags;
4455                 if (flags & KSM_RUN_UNMERGE) {
4456                         set_current_oom_origin();
4457                         err = unmerge_and_remove_all_rmap_items();
4458                         clear_current_oom_origin();
4459                         if (err) {
4460                                 ksm_run = KSM_RUN_STOP;
4461                                 count = err;
4462                         }
4463                 }
4464         }
4465         mutex_unlock(&ksm_thread_mutex);
4466
4467         if (ksm_run & KSM_RUN_MERGE) {
4468                 ksm_debug("activate KSM");
4469                 wake_up(&ksm_crawl_wait);
4470         }
4471
4472         return count;
4473 }
4474 KSM_ATTR(run);
4475
4476 #ifdef CONFIG_NUMA
4477 static ssize_t merge_across_nodes_show(struct kobject *kobj,
4478                                 struct kobj_attribute *attr, char *buf)
4479 {
4480         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
4481 }
4482
4483 static ssize_t merge_across_nodes_store(struct kobject *kobj,
4484                                    struct kobj_attribute *attr,
4485                                    const char *buf, size_t count)
4486 {
4487         int err;
4488         unsigned long knob;
4489
4490         err = kstrtoul(buf, 10, &knob);
4491         if (err)
4492                 return err;
4493         if (knob > 1)
4494                 return -EINVAL;
4495
4496         mutex_lock(&ksm_thread_mutex);
4497         wait_while_offlining();
4498         if (ksm_merge_across_nodes != knob) {
4499                 if (ksm_pages_shared || remove_all_stable_nodes())
4500                         err = -EBUSY;
4501                 else if (root_stable_tree == one_stable_tree) {
4502                         struct rb_root *buf;
4503                         /*
4504                          * This is the first time that we switch away from the
4505                          * default of merging across nodes: must now allocate
4506                          * a buffer to hold as many roots as may be needed.
4507                          * Allocate stable and unstable together:
4508                          * MAXSMP NODES_SHIFT 10 will use 16kB.
4509                          */
4510                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
4511                                       GFP_KERNEL);
4512                         /* Let us assume that RB_ROOT is NULL is zero */
4513                         if (!buf)
4514                                 err = -ENOMEM;
4515                         else {
4516                                 root_stable_tree = buf;
4517                                 root_unstable_tree = buf + nr_node_ids;
4518                                 /* Stable tree is empty but not the unstable */
4519                                 root_unstable_tree[0] = one_unstable_tree[0];
4520                         }
4521                 }
4522                 if (!err) {
4523                         ksm_merge_across_nodes = knob;
4524                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
4525                 }
4526         }
4527         mutex_unlock(&ksm_thread_mutex);
4528
4529         return err ? err : count;
4530 }
4531 KSM_ATTR(merge_across_nodes);
4532 #endif
4533
4534 static ssize_t use_zero_pages_show(struct kobject *kobj,
4535                                 struct kobj_attribute *attr, char *buf)
4536 {
4537         return sprintf(buf, "%u\n", ksm_use_zero_pages);
4538 }
4539 static ssize_t use_zero_pages_store(struct kobject *kobj,
4540                                    struct kobj_attribute *attr,
4541                                    const char *buf, size_t count)
4542 {
4543         int err;
4544         bool value;
4545
4546         err = kstrtobool(buf, &value);
4547         if (err)
4548                 return -EINVAL;
4549
4550         ksm_use_zero_pages = value;
4551
4552         return count;
4553 }
4554 KSM_ATTR(use_zero_pages);
4555
4556 static ssize_t max_page_sharing_show(struct kobject *kobj,
4557                                      struct kobj_attribute *attr, char *buf)
4558 {
4559         return sprintf(buf, "%u\n", ksm_max_page_sharing);
4560 }
4561
4562 static ssize_t max_page_sharing_store(struct kobject *kobj,
4563                                       struct kobj_attribute *attr,
4564                                       const char *buf, size_t count)
4565 {
4566         int err;
4567         int knob;
4568
4569         err = kstrtoint(buf, 10, &knob);
4570         if (err)
4571                 return err;
4572         /*
4573          * When a KSM page is created it is shared by 2 mappings. This
4574          * being a signed comparison, it implicitly verifies it's not
4575          * negative.
4576          */
4577         if (knob < 2)
4578                 return -EINVAL;
4579
4580         if (READ_ONCE(ksm_max_page_sharing) == knob)
4581                 return count;
4582
4583         mutex_lock(&ksm_thread_mutex);
4584         wait_while_offlining();
4585         if (ksm_max_page_sharing != knob) {
4586                 if (ksm_pages_shared || remove_all_stable_nodes())
4587                         err = -EBUSY;
4588                 else
4589                         ksm_max_page_sharing = knob;
4590         }
4591         mutex_unlock(&ksm_thread_mutex);
4592
4593         return err ? err : count;
4594 }
4595 KSM_ATTR(max_page_sharing);
4596
4597 static ssize_t pages_shared_show(struct kobject *kobj,
4598                                  struct kobj_attribute *attr, char *buf)
4599 {
4600         return sprintf(buf, "%lu\n", ksm_pages_shared);
4601 }
4602 KSM_ATTR_RO(pages_shared);
4603
4604 static ssize_t pages_sharing_show(struct kobject *kobj,
4605                                   struct kobj_attribute *attr, char *buf)
4606 {
4607         return sprintf(buf, "%lu\n", ksm_pages_sharing);
4608 }
4609 KSM_ATTR_RO(pages_sharing);
4610
4611 static ssize_t pages_unshared_show(struct kobject *kobj,
4612                                    struct kobj_attribute *attr, char *buf)
4613 {
4614         return sprintf(buf, "%lu\n", ksm_pages_unshared);
4615 }
4616 KSM_ATTR_RO(pages_unshared);
4617
4618 static ssize_t pages_volatile_show(struct kobject *kobj,
4619                                    struct kobj_attribute *attr, char *buf)
4620 {
4621         long ksm_pages_volatile;
4622
4623         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
4624                                 - ksm_pages_sharing - ksm_pages_unshared;
4625         /*
4626          * It was not worth any locking to calculate that statistic,
4627          * but it might therefore sometimes be negative: conceal that.
4628          */
4629         if (ksm_pages_volatile < 0)
4630                 ksm_pages_volatile = 0;
4631         return sprintf(buf, "%ld\n", ksm_pages_volatile);
4632 }
4633 KSM_ATTR_RO(pages_volatile);
4634
4635 static ssize_t stable_node_dups_show(struct kobject *kobj,
4636                                      struct kobj_attribute *attr, char *buf)
4637 {
4638         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
4639 }
4640 KSM_ATTR_RO(stable_node_dups);
4641
4642 static ssize_t stable_node_chains_show(struct kobject *kobj,
4643                                        struct kobj_attribute *attr, char *buf)
4644 {
4645         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
4646 }
4647 KSM_ATTR_RO(stable_node_chains);
4648
4649 static ssize_t
4650 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
4651                                         struct kobj_attribute *attr,
4652                                         char *buf)
4653 {
4654         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
4655 }
4656
4657 static ssize_t
4658 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
4659                                          struct kobj_attribute *attr,
4660                                          const char *buf, size_t count)
4661 {
4662         unsigned long msecs;
4663         int err;
4664
4665         err = kstrtoul(buf, 10, &msecs);
4666         if (err || msecs > UINT_MAX)
4667                 return -EINVAL;
4668
4669         ksm_stable_node_chains_prune_millisecs = msecs;
4670
4671         return count;
4672 }
4673 KSM_ATTR(stable_node_chains_prune_millisecs);
4674
4675 static ssize_t full_scans_show(struct kobject *kobj,
4676                                struct kobj_attribute *attr, char *buf)
4677 {
4678         return sprintf(buf, "%lu\n", ksm_scan.nr_full_scan);
4679 }
4680 KSM_ATTR_RO(full_scans);
4681
4682 static ssize_t scanning_process_show(struct kobject *kobj,
4683                                         struct kobj_attribute *attr, char *buf)
4684 {
4685         return sprintf(buf, "%u\n", ksm_nr_added_process);
4686 }
4687 KSM_ATTR_RO(scanning_process);
4688
4689 static ssize_t full_scan_interval_show(struct kobject *kobj,
4690         struct kobj_attribute *attr, char *buf)
4691 {
4692         return sprintf(buf, "%lu\n", full_scan_interval);
4693 }
4694
4695 static ssize_t full_scan_interval_store(struct kobject *kbj,
4696         struct kobj_attribute *attr, const char *buf, size_t count)
4697 {
4698         int err;
4699         unsigned long interval;
4700
4701         err = kstrtoul(buf, 10, &interval);
4702         if (err || interval > UINT_MAX)
4703                 return -EINVAL;
4704
4705         full_scan_interval = interval;
4706         return count;
4707 }
4708 KSM_ATTR(full_scan_interval);
4709
4710 static ssize_t one_shot_scanning_show(struct kobject *kobj,
4711                                         struct kobj_attribute *attr, char *buf)
4712 {
4713         return sprintf(buf, "%d\n", atomic_read(&ksm_one_shot_scanning));
4714 }
4715
4716 static ssize_t one_shot_scanning_store(struct kobject *kbj,
4717         struct kobj_attribute *attr, const char *buf, size_t count)
4718 {
4719         int err, val;
4720
4721         err = kstrtoint(buf, 10, &val);
4722         if (err || (val != LKSM_SCAN_PARTIAL && val != LKSM_SCAN_FULL)) {
4723                 ksm_err("wrong value: %d", val);
4724                 return -EINVAL;
4725         }
4726
4727         if (!atomic_cmpxchg(&ksm_one_shot_scanning, LKSM_SCAN_NONE, val)) {
4728                 wake_up(&ksm_crawl_wait);
4729                 return count;
4730         }
4731         ksm_debug("ksm is still scanning");
4732         return -EINVAL;
4733 }
4734 KSM_ATTR(one_shot_scanning);
4735
4736 static ssize_t scan_boost_show(struct kobject *kobj,
4737                    struct kobj_attribute *attr, char *buf)
4738 {
4739         return sprintf(buf, "%u\n", lksm_boosted_pages_to_scan);
4740 }
4741
4742 static ssize_t scan_boost_store(struct kobject *kbj,
4743    struct kobj_attribute *attr, const char *buf, size_t count)
4744 {
4745         int err, val;
4746
4747         err = kstrtoint(buf, 10, &val);
4748         /* lksm_boosted_pages_to_scan must presence in from 100 to 10000 */
4749         if (err || val < 100 || val > 10000) {
4750                 ksm_err("wrong value: %d", val);
4751                 return -EINVAL;
4752         }
4753
4754         lksm_boosted_pages_to_scan = (unsigned int) val;
4755
4756         return count;
4757 }
4758 KSM_ATTR(scan_boost);
4759
4760 #ifdef CONFIG_LKSM_FILTER
4761 static ssize_t nr_regions_show(struct kobject *kobj,
4762                                  struct kobj_attribute *attr, char *buf)
4763 {
4764         return sprintf(buf, "%u\n", lksm_nr_regions);
4765 }
4766 KSM_ATTR_RO(nr_regions);
4767
4768 static ssize_t region_share_show(struct kobject *obj,
4769                                 struct kobj_attribute *attr, char *buf)
4770 {
4771         return sprintf(buf, "%s:%d %s:%d %s:%d %s:%d %s:%d\n",
4772                         region_type_str[0], region_share[0], region_type_str[1], region_share[1],
4773                         region_type_str[2], region_share[2], region_type_str[3], region_share[3],
4774                         region_type_str[4], region_share[4]);
4775 }
4776 KSM_ATTR_RO(region_share);
4777 #endif /* CONFIG_LKSM_FILTER */
4778
4779 static struct attribute *ksm_attrs[] = {
4780         &sleep_millisecs_attr.attr,
4781         &pages_to_scan_attr.attr,
4782         &run_attr.attr,
4783         &pages_shared_attr.attr,
4784         &pages_sharing_attr.attr,
4785         &pages_unshared_attr.attr,
4786         &pages_volatile_attr.attr,
4787         &full_scans_attr.attr,
4788 #ifdef CONFIG_NUMA
4789         &merge_across_nodes_attr.attr,
4790 #endif
4791         &max_page_sharing_attr.attr,
4792         &stable_node_chains_attr.attr,
4793         &stable_node_dups_attr.attr,
4794         &stable_node_chains_prune_millisecs_attr.attr,
4795         &use_zero_pages_attr.attr,
4796         &scanning_process_attr.attr,
4797         &full_scan_interval_attr.attr,
4798         &one_shot_scanning_attr.attr,
4799         &scan_boost_attr.attr,
4800 #ifdef CONFIG_LKSM_FILTER
4801         &nr_regions_attr.attr,
4802         &region_share_attr.attr,
4803 #endif
4804         NULL,
4805 };
4806
4807 static const struct attribute_group ksm_attr_group = {
4808         .attrs = ksm_attrs,
4809         .name = "ksm",
4810 };
4811 #endif /* CONFIG_SYSFS */
4812
4813 #ifdef CONFIG_LKSM_FILTER
4814 static inline void init_lksm_region
4815 (struct lksm_region *region, unsigned long ino, int type, int len)
4816 {
4817         region->ino = ino;
4818         region->type = type;
4819         region->len = len;
4820 }
4821
4822 /* if region is newly allocated, the function returns true. */
4823 static void lksm_insert_region
4824 (struct lksm_region **region, unsigned long ino,
4825 struct vm_area_struct *vma, int type)
4826 {
4827         int size, len, need_hash_add = 0;
4828         struct lksm_region *next = NULL;
4829         unsigned long flags;
4830
4831         size = lksm_region_size(vma->vm_start, vma->vm_end);
4832         BUG_ON(size < 0);
4833         len = (size > BITS_PER_LONG) ? lksm_bitmap_size(size) : SINGLE_FILTER_LEN;
4834
4835         if (!(*region)) {
4836                 *region = kzalloc(sizeof(struct lksm_region), GFP_KERNEL);
4837                 if (!*region) {
4838                         ksm_err("region allocation failed");
4839                         return;
4840                 }
4841                 init_lksm_region(*region, ino, LKSM_REGION_FILE1, len);
4842                 (*region)->scan_round = ksm_crawl_round;
4843                 atomic_set(&(*region)->refcount, 0);
4844                 lksm_nr_regions++;
4845                 need_hash_add = 1;
4846         }
4847
4848         if (!(*region)->next && type == LKSM_REGION_FILE2) {
4849                 next = kzalloc(sizeof(struct lksm_region), GFP_KERNEL);
4850                 if (!next) {
4851                         if (need_hash_add)
4852                                 kfree(*region);
4853                         *region = NULL;
4854                         ksm_err("region allocation failed");
4855                         return;
4856                 }
4857                 init_lksm_region(next, ino, LKSM_REGION_FILE2, len);
4858                 atomic_set(&next->refcount, 0);
4859                 next->scan_round = ksm_crawl_round;
4860                 lksm_nr_regions++;
4861         }
4862
4863         if (need_hash_add || next) {
4864                 spin_lock_irqsave(&lksm_region_lock, flags);
4865                 if (need_hash_add)
4866                         hash_add(lksm_region_hash, &(*region)->hnode, ino);
4867                 if (next) {
4868                         (*region)->next = next;
4869                         next->prev = *region;
4870                 }
4871                 spin_unlock_irqrestore(&lksm_region_lock, flags);
4872         }
4873 }
4874
4875 static inline struct lksm_region *lksm_hash_find_region(unsigned long ino)
4876 {
4877         struct lksm_region *region;
4878
4879         hash_for_each_possible(lksm_region_hash, region, hnode, ino)
4880                 if (region->ino == ino)
4881                         return region;
4882         return NULL;
4883 }
4884
4885 static void lksm_register_file_anon_region
4886 (struct mm_slot *slot, struct vm_area_struct *vma)
4887 {
4888         struct lksm_region *region;
4889         struct file *file = NULL;
4890         struct inode *inode;
4891         unsigned long flags;
4892         int type;
4893
4894         if (vma->vm_file) {
4895                 file = vma->vm_file;
4896                 type = LKSM_REGION_FILE1;
4897         } else if (vma->vm_prev) {
4898                 /* LKSM should deal with .NET libraries */
4899                 struct vm_area_struct *prev = vma->vm_prev;
4900                 if (prev->vm_flags & VM_MERGEABLE && prev->vm_file) {
4901                         /* Linux standard map structure */
4902                         file = prev->vm_file;
4903                         type = LKSM_REGION_FILE2;
4904                 } else {
4905                         /* DLL map structure */
4906                         int i = 0;
4907                         bool find = false;
4908                         while (i <= LKSM_REGION_ITER_MAX && prev) {
4909                                 if (file == NULL)
4910                                         file = prev->vm_file;
4911                                 else if (prev->vm_file && file != prev->vm_file)
4912                                         break;
4913
4914                                 if (prev->vm_flags & VM_MERGEABLE && file) {
4915                                         find = true;
4916                                         break;
4917                                 }
4918                                 prev = prev->vm_prev;
4919                                 i++;
4920                         }
4921                         if (find)
4922                                 type = LKSM_REGION_FILE2;
4923                         else
4924                                 file = NULL;
4925                 }
4926         }
4927
4928         if (file) {
4929                 inode = file_inode(file);
4930                 BUG_ON(!inode);
4931
4932                 spin_lock_irqsave(&lksm_region_lock, flags);
4933                 region = lksm_hash_find_region(inode->i_ino);
4934                 spin_unlock_irqrestore(&lksm_region_lock, flags);
4935
4936                 lksm_insert_region(&region, inode->i_ino, vma, type);
4937                 if (region) {
4938                         if (type == LKSM_REGION_FILE1)
4939                                 lksm_region_ref_append(slot, region);
4940                         else
4941                                 lksm_region_ref_append(slot, region->next);
4942                 }
4943         }
4944 }
4945
4946 static struct lksm_region *lksm_find_region(struct vm_area_struct *vma)
4947 {
4948         struct lksm_region *region = NULL;
4949         struct file *file = NULL;
4950         struct inode *inode;
4951         unsigned long ino = 0, flags;
4952         int type;
4953
4954         if (is_heap(vma))
4955                 return &heap_region;
4956         else if (is_stack(vma))
4957                 return NULL;
4958         else if (!vma->anon_vma)
4959                 return NULL;
4960         else if (is_exec(vma))
4961                 return NULL;
4962
4963         if (vma->vm_file) {
4964                 /* check thread stack */
4965                 file = vma->vm_file;
4966                 type = LKSM_REGION_FILE1;
4967         } else if (vma->vm_prev) {
4968                 struct vm_area_struct *prev = vma->vm_prev;
4969                 if (prev->vm_flags & VM_MERGEABLE && prev->vm_file) {
4970                         /* Linux standard map structure */
4971                         file = prev->vm_file;
4972                         type = LKSM_REGION_FILE2;
4973                 } else {
4974                         /* DLL map structure */
4975                         int i = 0;
4976                         bool find = false;
4977                         while (i <= LKSM_REGION_ITER_MAX && prev) {
4978                                 if (file == NULL)
4979                                         file = prev->vm_file;
4980                                 else if (prev->vm_file && file != prev->vm_file)
4981                                         break;
4982
4983                                 if (prev->vm_flags & VM_MERGEABLE && file) {
4984                                         find = true;
4985                                         break;
4986                                 }
4987                                 prev = prev->vm_prev;
4988                                 i++;
4989                         }
4990                         if (find)
4991                                 type = LKSM_REGION_FILE2;
4992                         else
4993                                 file = NULL;
4994                 }
4995         }
4996
4997         if (file) {
4998                 inode = file_inode(file);
4999                 BUG_ON(!inode);
5000                 ino = inode->i_ino;
5001
5002                 if (ksm_scan.region && ksm_scan.region->ino == ino) {
5003                         if (ksm_scan.region->type == type)
5004                                 return ksm_scan.region;
5005                         else if (ksm_scan.region->type == LKSM_REGION_FILE1)
5006                                 region = ksm_scan.region;
5007                 } else {
5008                         spin_lock_irqsave(&lksm_region_lock, flags);
5009                         region = lksm_hash_find_region(ino);
5010                         spin_unlock_irqrestore(&lksm_region_lock, flags);
5011                 }
5012         }
5013
5014         if (region && type == LKSM_REGION_FILE2) {
5015                 if (!region->next) {
5016                         lksm_insert_region(&region, ino, vma, type);
5017                         BUG_ON(!region->next);
5018                 }
5019                 return region->next;
5020         }
5021         return region;
5022 }
5023 #endif /* CONFIG_LKSM_FILTER */
5024
5025 static inline int __lksm_remove_candidate(struct task_struct *task)
5026 {
5027         int ret = LKSM_TASK_SLOT_NONE;
5028         struct task_slot *slot = get_task_slot(task);
5029
5030         if (slot) {
5031                 list_del(&slot->list);
5032                 hash_del(&slot->hlist);
5033                 free_task_slot(slot);
5034                 ret = LKSM_TASK_SLOT_REMOVED;
5035         }
5036         return ret;
5037 }
5038
5039 /* called by ksm_exit */
5040 void lksm_remove_candidate(struct mm_struct *mm)
5041 {
5042         int ret;
5043
5044         if (!mm->owner) {
5045                 struct mm_slot *mm_slot;
5046
5047                 spin_lock(&ksm_mmlist_lock);
5048                 mm_slot = get_mm_slot(mm);
5049                 if (mm_slot && mm_slot != ksm_scan.mm_slot) {
5050                         list_move(&mm_slot->mm_list, &ksm_scan.remove_mm_list);
5051                         if (lksm_test_mm_state(mm_slot, KSM_MM_FROZEN))
5052                                 atomic_dec(&ksm_scan.nr_frozen);
5053                         else if (!lksm_test_mm_state(mm_slot, KSM_MM_SCANNED))
5054                                 atomic_dec(&ksm_scan.nr_scannable);
5055                 }
5056                 spin_unlock(&ksm_mmlist_lock);
5057                 return;
5058         }
5059
5060         spin_lock(&frozen_task_lock);
5061         ret = __lksm_remove_candidate(mm->owner);
5062         spin_unlock(&frozen_task_lock);
5063         if (ret == LKSM_TASK_SLOT_REMOVED)
5064                 put_task_struct(mm->owner);
5065 }
5066
5067 static int lksm_task_frozen(struct task_struct *task)
5068 {
5069         int need_wakeup = 0;
5070         struct mm_struct *mm = task->mm;
5071         struct mm_slot *mm_slot;
5072         struct task_slot *task_slot;
5073
5074         if (mm && test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
5075                 /* a mergeable task becoming frozen */
5076                 spin_lock(&ksm_mmlist_lock);
5077                 mm_slot = get_mm_slot(mm);
5078                 BUG_ON(!mm_slot);
5079
5080                 if (mm_slot != ksm_scan.mm_slot
5081                                 && lksm_test_mm_state(mm_slot, KSM_MM_LISTED)) {
5082                         if (list_empty(&mm_slot->scan_list))
5083                                 list_add_tail(&mm_slot->scan_list, &ksm_scan_head.scan_list);
5084                         if (!lksm_test_mm_state(mm_slot, KSM_MM_SCANNED))
5085                                 atomic_dec(&ksm_scan.nr_scannable);
5086                         lksm_clear_mm_state(mm_slot, KSM_MM_LISTED);
5087                         lksm_set_mm_state(mm_slot, KSM_MM_FROZEN);
5088                         atomic_inc(&ksm_scan.nr_frozen);
5089
5090                         need_wakeup = (ksm_run == KSM_RUN_MERGE);
5091                         ksm_debug("lksm_task_frozen called for task(%s): %p (nr_frozen: %d)",
5092                                         task->comm, task, atomic_read(&ksm_scan.nr_frozen));
5093                 }
5094                 spin_unlock(&ksm_mmlist_lock);
5095         } else {
5096                 task_slot = alloc_task_slot();
5097                 if (!task_slot) {
5098                         ksm_err("[ksm_tizen] Cannot allocate memory for task_slot\n");
5099                         return -ENOMEM;
5100                 }
5101
5102                 task_slot->task = task;
5103                 task_slot->frozen = KSM_TASK_FROZEN;
5104                 task_slot->inserted = jiffies;
5105
5106                 get_task_struct(task);
5107
5108                 spin_lock(&frozen_task_lock);
5109                 list_add(&task_slot->list, &frozen_task_list);
5110                 insert_to_task_slots_hash(task_slot);
5111                 spin_unlock(&frozen_task_lock);
5112
5113                 need_wakeup = (ksm_run == KSM_RUN_MERGE);
5114                 ksm_debug("task-%d(%s) is added to frozen task list",
5115                                 task_pid_nr(task), task->comm);
5116         }
5117
5118         if (need_wakeup && atomic_read(&crawl_state) == KSM_CRAWL_SLEEP)
5119                 wake_up(&ksm_crawl_wait);
5120
5121         return 0;
5122 }
5123
5124 static int lksm_task_thawed(struct task_struct *task)
5125 {
5126         struct mm_struct *mm = task->mm;
5127         struct mm_slot *mm_slot;
5128         struct task_slot *task_slot;
5129
5130         if (mm && test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
5131                 /* a frozen task becoming thawed */
5132                 spin_lock(&ksm_mmlist_lock);
5133                 mm_slot = get_mm_slot(mm);
5134                 BUG_ON(!mm_slot);
5135
5136                 if (lksm_test_mm_state(mm_slot, KSM_MM_FROZEN)
5137                                 && ksm_scan.mm_slot != mm_slot) {
5138                         if (!lksm_test_mm_state(mm_slot, KSM_MM_SCANNED))
5139                                 atomic_inc(&ksm_scan.nr_scannable);
5140                         else
5141                                 list_del_init(&mm_slot->scan_list);
5142                         lksm_clear_mm_state(mm_slot, KSM_MM_FROZEN);
5143                         lksm_set_mm_state(mm_slot, KSM_MM_LISTED);
5144                         atomic_dec(&ksm_scan.nr_frozen);
5145                         ksm_debug("nr_frozen: %d nr_scannable: %d",
5146                                         atomic_read(&ksm_scan.nr_frozen),
5147                                         atomic_read(&ksm_scan.nr_scannable));
5148                 }
5149                 spin_unlock(&ksm_mmlist_lock);
5150         } else {
5151                 /* just remove task slot, it will be cared by full_scan */
5152                 spin_lock(&frozen_task_lock);
5153                 task_slot = get_task_slot(task);
5154                 if (task_slot) {
5155                         list_del(&task_slot->list);
5156                         hash_del(&task_slot->hlist);
5157                 }
5158                 spin_unlock(&frozen_task_lock);
5159                 if (task_slot) {
5160                         free_task_slot(task_slot);
5161                         put_task_struct(task);
5162                         ksm_debug("task-%d(%s) is removed from frozen task list",
5163                                 task_pid_nr(task), task->comm);
5164                 }
5165         }
5166
5167         return 0;
5168 }
5169
5170 /*
5171  * lksm_hint: a hook for construct candidate list
5172  * this function cannot sleep
5173  */
5174 int lksm_hint(struct task_struct *task, int frozen)
5175 {
5176         /*
5177          * If lksm_hint is called by ksm_fork, the task yet has its own
5178          * mm_struct because it does not completes mm_struct initialization.
5179          * Thus, we skip this check and put the task into candidate list.
5180          */
5181         if (frozen == KSM_TASK_FROZEN)
5182                 return lksm_task_frozen(task);
5183         else if (frozen == KSM_TASK_THAWED)
5184                 return lksm_task_thawed(task);
5185         else
5186                 return 0;
5187 }
5188
5189 static void __init lksm_init(void)
5190 {
5191         ksm_crawld = kthread_create(lksm_crawl_thread, NULL, "ksm_crawld");
5192
5193         if (ksm_crawld == NULL) {
5194                 printk(KERN_ALERT "fail to create ksm crawler daemon\n");
5195                 return;
5196         }
5197
5198         atomic_set(&ksm_scan.nr_frozen, 0);
5199         atomic_set(&ksm_scan.nr_scannable, 0);
5200         atomic_set(&ksm_state, 0);
5201         INIT_LIST_HEAD(&ksm_scan.remove_mm_list);
5202
5203         crawler_sleep = msecs_to_jiffies(1000);
5204 #ifdef CONFIG_LKSM_FILTER
5205         init_lksm_region(&heap_region, 0, LKSM_REGION_HEAP, 0);
5206         heap_region.merge_cnt = 0;
5207         heap_region.filter_cnt = 0;
5208         heap_region.filter = NULL;
5209
5210         init_lksm_region(&unknown_region, 0, LKSM_REGION_UNKNOWN, 0);
5211         unknown_region.merge_cnt = 0;
5212         unknown_region.filter_cnt = 0;
5213         unknown_region.filter = NULL;
5214
5215         spin_lock_init(&lksm_region_lock);
5216 #endif /* CONFIG_LKSM_FILTER */
5217         wake_up_process(ksm_crawld);
5218 }
5219
5220 static int __init ksm_init(void)
5221 {
5222         struct task_struct *ksm_thread;
5223         int err;
5224
5225         /* The correct value depends on page size and endianness */
5226         zero_checksum = calc_checksum(ZERO_PAGE(0));
5227         /* Default to false for backwards compatibility */
5228         ksm_use_zero_pages = false;
5229
5230         err = ksm_slab_init();
5231         if (err)
5232                 goto out;
5233
5234         ksm_thread = kthread_run(lksm_scan_thread, NULL, "ksmd");
5235         if (IS_ERR(ksm_thread)) {
5236                 pr_err("ksm: creating kthread failed\n");
5237                 err = PTR_ERR(ksm_thread);
5238                 goto out_free;
5239         }
5240
5241 #ifdef CONFIG_SYSFS
5242         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
5243         if (err) {
5244                 pr_err("ksm: register sysfs failed\n");
5245                 kthread_stop(ksm_thread);
5246                 goto out_free;
5247         }
5248 #else
5249         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
5250
5251 #endif /* CONFIG_SYSFS */
5252         lksm_init();
5253 #ifdef CONFIG_MEMORY_HOTREMOVE
5254         /* There is no significance to this priority 100 */
5255         hotplug_memory_notifier(ksm_memory_callback, 100);
5256 #endif
5257         return 0;
5258
5259 out_free:
5260         ksm_slab_free();
5261 out:
5262         return err;
5263 }
5264 subsys_initcall(ksm_init);