1 // SPDX-License-Identifier: GPL-2.0-only
3 * Memory merging support.
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
8 * Copyright (C) 2008-2009 Red Hat, Inc.
16 #include <linux/errno.h>
18 #include <linux/mm_inline.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
44 #include <asm/tlbflush.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
53 #define DO_NUMA(x) do { (x); } while (0)
56 #define DO_NUMA(x) do { } while (0)
62 * A few notes about the KSM scanning process,
63 * to make it easier to understand the data structures below:
65 * In order to reduce excessive scanning, KSM sorts the memory pages by their
66 * contents into a data structure that holds pointers to the pages' locations.
68 * Since the contents of the pages may change at any moment, KSM cannot just
69 * insert the pages into a normal sorted tree and expect it to find anything.
70 * Therefore KSM uses two data structures - the stable and the unstable tree.
72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73 * by their contents. Because each such page is write-protected, searching on
74 * this tree is fully assured to be working (except when pages are unmapped),
75 * and therefore this tree is called the stable tree.
77 * The stable tree node includes information required for reverse
78 * mapping from a KSM page to virtual addresses that map this page.
80 * In order to avoid large latencies of the rmap walks on KSM pages,
81 * KSM maintains two types of nodes in the stable tree:
83 * * the regular nodes that keep the reverse mapping structures in a
85 * * the "chains" that link nodes ("dups") that represent the same
86 * write protected memory content, but each "dup" corresponds to a
87 * different KSM page copy of that content
89 * Internally, the regular nodes, "dups" and "chains" are represented
90 * using the same struct ksm_stable_node structure.
92 * In addition to the stable tree, KSM uses a second data structure called the
93 * unstable tree: this tree holds pointers to pages which have been found to
94 * be "unchanged for a period of time". The unstable tree sorts these pages
95 * by their contents, but since they are not write-protected, KSM cannot rely
96 * upon the unstable tree to work correctly - the unstable tree is liable to
97 * be corrupted as its contents are modified, and so it is called unstable.
99 * KSM solves this problem by several techniques:
101 * 1) The unstable tree is flushed every time KSM completes scanning all
102 * memory areas, and then the tree is rebuilt again from the beginning.
103 * 2) KSM will only insert into the unstable tree, pages whose hash value
104 * has not changed since the previous scan of all memory areas.
105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106 * colors of the nodes and not on their contents, assuring that even when
107 * the tree gets "corrupted" it won't get out of balance, so scanning time
108 * remains the same (also, searching and inserting nodes in an rbtree uses
109 * the same algorithm, so we have no overhead when we flush and rebuild).
110 * 4) KSM never flushes the stable tree, which means that even if it were to
111 * take 10 attempts to find a page in the unstable tree, once it is found,
112 * it is secured in the stable tree. (When we scan a new page, we first
113 * compare it against the stable tree, and then against the unstable tree.)
115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116 * stable trees and multiple unstable trees: one of each for each NUMA node.
120 * struct ksm_mm_slot - ksm information per mm that is being scanned
121 * @slot: hash lookup from mm to mm_slot
122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126 struct ksm_rmap_item *rmap_list;
130 * struct ksm_scan - cursor for scanning
131 * @mm_slot: the current mm_slot we are scanning
132 * @address: the next address inside that to be scanned
133 * @rmap_list: link to the next rmap to be scanned in the rmap_list
134 * @seqnr: count of completed full scans (needed when removing unstable node)
136 * There is only the one ksm_scan instance of this cursor structure.
139 struct ksm_mm_slot *mm_slot;
140 unsigned long address;
141 struct ksm_rmap_item **rmap_list;
146 * struct ksm_stable_node - node of the stable rbtree
147 * @node: rb node of this ksm page in the stable tree
148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150 * @list: linked into migrate_nodes, pending placement in the proper node tree
151 * @hlist: hlist head of rmap_items using this ksm page
152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153 * @chain_prune_time: time of the last full garbage collection
154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
157 struct ksm_stable_node {
159 struct rb_node node; /* when node of stable tree */
160 struct { /* when listed for migration */
161 struct list_head *head;
163 struct hlist_node hlist_dup;
164 struct list_head list;
168 struct hlist_head hlist;
171 unsigned long chain_prune_time;
174 * STABLE_NODE_CHAIN can be any negative number in
175 * rmap_hlist_len negative range, but better not -1 to be able
176 * to reliably detect underflows.
178 #define STABLE_NODE_CHAIN -1024
186 * struct ksm_rmap_item - reverse mapping item for virtual addresses
187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189 * @nid: NUMA node id of unstable tree in which linked (may not match page)
190 * @mm: the memory structure this rmap_item is pointing into
191 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192 * @oldchecksum: previous checksum of the page at that virtual address
193 * @node: rb node of this rmap_item in the unstable tree
194 * @head: pointer to stable_node heading this list in the stable tree
195 * @hlist: link into hlist of rmap_items hanging off that stable_node
197 struct ksm_rmap_item {
198 struct ksm_rmap_item *rmap_list;
200 struct anon_vma *anon_vma; /* when stable */
202 int nid; /* when node of unstable tree */
205 struct mm_struct *mm;
206 unsigned long address; /* + low bits used for flags below */
207 unsigned int oldchecksum; /* when unstable */
209 struct rb_node node; /* when node of unstable tree */
210 struct { /* when listed from stable tree */
211 struct ksm_stable_node *head;
212 struct hlist_node hlist;
217 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
219 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234 static struct ksm_mm_slot ksm_mm_head = {
235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
237 static struct ksm_scan ksm_scan = {
238 .mm_slot = &ksm_mm_head,
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
286 #define ksm_merge_across_nodes 1U
287 #define ksm_nr_node_ids 1
290 #define KSM_RUN_STOP 0
291 #define KSM_RUN_MERGE 1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303 sizeof(struct __struct), __alignof__(struct __struct),\
306 static int __init ksm_slab_init(void)
308 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309 if (!rmap_item_cache)
312 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313 if (!stable_node_cache)
316 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
323 kmem_cache_destroy(stable_node_cache);
325 kmem_cache_destroy(rmap_item_cache);
330 static void __init ksm_slab_free(void)
332 kmem_cache_destroy(mm_slot_cache);
333 kmem_cache_destroy(stable_node_cache);
334 kmem_cache_destroy(rmap_item_cache);
335 mm_slot_cache = NULL;
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
345 return dup->head == STABLE_NODE_DUP_HEAD;
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349 struct ksm_stable_node *chain)
351 VM_BUG_ON(is_stable_node_dup(dup));
352 dup->head = STABLE_NODE_DUP_HEAD;
353 VM_BUG_ON(!is_stable_node_chain(chain));
354 hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 ksm_stable_node_dups++;
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
360 VM_BUG_ON(!is_stable_node_dup(dup));
361 hlist_del(&dup->hlist_dup);
362 ksm_stable_node_dups--;
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
367 VM_BUG_ON(is_stable_node_chain(dup));
368 if (is_stable_node_dup(dup))
369 __stable_node_dup_del(dup);
371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
379 struct ksm_rmap_item *rmap_item;
381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 __GFP_NORETRY | __GFP_NOWARN);
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
391 rmap_item->mm->ksm_rmap_items--;
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
396 static inline struct ksm_stable_node *alloc_stable_node(void)
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
410 kmem_cache_free(stable_node_cache, stable_node);
414 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415 * page tables after it has passed through ksm_exit() - which, if necessary,
416 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
417 * a special flag: they can just back out as soon as mm_users goes to zero.
418 * ksm_test_exit() is used throughout to make this test for exit: in some
419 * places for correctness, in some places just to avoid unnecessary work.
421 static inline bool ksm_test_exit(struct mm_struct *mm)
423 return atomic_read(&mm->mm_users) == 0;
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427 struct mm_walk *walk)
429 struct page *page = NULL;
434 if (pmd_leaf(*pmd) || !pmd_present(*pmd))
437 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438 if (pte_present(*pte)) {
439 page = vm_normal_page(walk->vma, addr, *pte);
440 } else if (!pte_none(*pte)) {
441 swp_entry_t entry = pte_to_swp_entry(*pte);
444 * As KSM pages remain KSM pages until freed, no need to wait
445 * here for migration to end.
447 if (is_migration_entry(entry))
448 page = pfn_swap_entry_to_page(entry);
450 ret = page && PageKsm(page);
451 pte_unmap_unlock(pte, ptl);
455 static const struct mm_walk_ops break_ksm_ops = {
456 .pmd_entry = break_ksm_pmd_entry,
460 * We use break_ksm to break COW on a ksm page by triggering unsharing,
461 * such that the ksm page will get replaced by an exclusive anonymous page.
463 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
464 * in case the application has unmapped and remapped mm,addr meanwhile.
465 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
466 * mmap of /dev/mem, where we would not want to touch it.
468 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
469 * of the process that owns 'vma'. We also do not want to enforce
470 * protection keys here anyway.
472 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
480 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
481 &break_ksm_ops, NULL);
482 if (WARN_ON_ONCE(ksm_page < 0))
486 ret = handle_mm_fault(vma, addr,
487 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
489 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
491 * We must loop until we no longer find a KSM page because
492 * handle_mm_fault() may back out if there's any difficulty e.g. if
493 * pte accessed bit gets updated concurrently.
495 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 * backing file, which also invalidates anonymous pages: that's
497 * okay, that truncation will have unmapped the PageKsm for us.
499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 * to user; and ksmd, having no mm, would never be chosen for that.
504 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 * even ksmd can fail in this way - though it's usually breaking ksm
507 * just to undo a merge it made a moment before, so unlikely to oom.
509 * That's a pity: we might therefore have more kernel pages allocated
510 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 * will retry to break_cow on each pass, so should recover the page
512 * in due course. The important thing is to not let VM_MERGEABLE
513 * be cleared while any such pages might remain in the area.
515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 static bool vma_ksm_compatible(struct vm_area_struct *vma)
520 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
521 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
523 return false; /* just ignore the advice */
529 if (vma->vm_flags & VM_SAO)
533 if (vma->vm_flags & VM_SPARC_ADI)
540 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
543 struct vm_area_struct *vma;
544 if (ksm_test_exit(mm))
546 vma = vma_lookup(mm, addr);
547 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
552 static void break_cow(struct ksm_rmap_item *rmap_item)
554 struct mm_struct *mm = rmap_item->mm;
555 unsigned long addr = rmap_item->address;
556 struct vm_area_struct *vma;
559 * It is not an accident that whenever we want to break COW
560 * to undo, we also need to drop a reference to the anon_vma.
562 put_anon_vma(rmap_item->anon_vma);
565 vma = find_mergeable_vma(mm, addr);
567 break_ksm(vma, addr);
568 mmap_read_unlock(mm);
571 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
573 struct mm_struct *mm = rmap_item->mm;
574 unsigned long addr = rmap_item->address;
575 struct vm_area_struct *vma;
579 vma = find_mergeable_vma(mm, addr);
583 page = follow_page(vma, addr, FOLL_GET);
584 if (IS_ERR_OR_NULL(page))
586 if (is_zone_device_page(page))
588 if (PageAnon(page)) {
589 flush_anon_page(vma, page, addr);
590 flush_dcache_page(page);
597 mmap_read_unlock(mm);
602 * This helper is used for getting right index into array of tree roots.
603 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
604 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
605 * every node has its own stable and unstable tree.
607 static inline int get_kpfn_nid(unsigned long kpfn)
609 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
612 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
613 struct rb_root *root)
615 struct ksm_stable_node *chain = alloc_stable_node();
616 VM_BUG_ON(is_stable_node_chain(dup));
618 INIT_HLIST_HEAD(&chain->hlist);
619 chain->chain_prune_time = jiffies;
620 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
621 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
622 chain->nid = NUMA_NO_NODE; /* debug */
624 ksm_stable_node_chains++;
627 * Put the stable node chain in the first dimension of
628 * the stable tree and at the same time remove the old
631 rb_replace_node(&dup->node, &chain->node, root);
634 * Move the old stable node to the second dimension
635 * queued in the hlist_dup. The invariant is that all
636 * dup stable_nodes in the chain->hlist point to pages
637 * that are write protected and have the exact same
640 stable_node_chain_add_dup(dup, chain);
645 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
646 struct rb_root *root)
648 rb_erase(&chain->node, root);
649 free_stable_node(chain);
650 ksm_stable_node_chains--;
653 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
655 struct ksm_rmap_item *rmap_item;
657 /* check it's not STABLE_NODE_CHAIN or negative */
658 BUG_ON(stable_node->rmap_hlist_len < 0);
660 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
661 if (rmap_item->hlist.next) {
663 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
668 rmap_item->mm->ksm_merging_pages--;
670 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
671 stable_node->rmap_hlist_len--;
672 put_anon_vma(rmap_item->anon_vma);
673 rmap_item->address &= PAGE_MASK;
678 * We need the second aligned pointer of the migrate_nodes
679 * list_head to stay clear from the rb_parent_color union
680 * (aligned and different than any node) and also different
681 * from &migrate_nodes. This will verify that future list.h changes
682 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
684 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
685 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
687 trace_ksm_remove_ksm_page(stable_node->kpfn);
688 if (stable_node->head == &migrate_nodes)
689 list_del(&stable_node->list);
691 stable_node_dup_del(stable_node);
692 free_stable_node(stable_node);
695 enum get_ksm_page_flags {
702 * get_ksm_page: checks if the page indicated by the stable node
703 * is still its ksm page, despite having held no reference to it.
704 * In which case we can trust the content of the page, and it
705 * returns the gotten page; but if the page has now been zapped,
706 * remove the stale node from the stable tree and return NULL.
707 * But beware, the stable node's page might be being migrated.
709 * You would expect the stable_node to hold a reference to the ksm page.
710 * But if it increments the page's count, swapping out has to wait for
711 * ksmd to come around again before it can free the page, which may take
712 * seconds or even minutes: much too unresponsive. So instead we use a
713 * "keyhole reference": access to the ksm page from the stable node peeps
714 * out through its keyhole to see if that page still holds the right key,
715 * pointing back to this stable node. This relies on freeing a PageAnon
716 * page to reset its page->mapping to NULL, and relies on no other use of
717 * a page to put something that might look like our key in page->mapping.
718 * is on its way to being freed; but it is an anomaly to bear in mind.
720 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
721 enum get_ksm_page_flags flags)
724 void *expected_mapping;
727 expected_mapping = (void *)((unsigned long)stable_node |
730 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
731 page = pfn_to_page(kpfn);
732 if (READ_ONCE(page->mapping) != expected_mapping)
736 * We cannot do anything with the page while its refcount is 0.
737 * Usually 0 means free, or tail of a higher-order page: in which
738 * case this node is no longer referenced, and should be freed;
739 * however, it might mean that the page is under page_ref_freeze().
740 * The __remove_mapping() case is easy, again the node is now stale;
741 * the same is in reuse_ksm_page() case; but if page is swapcache
742 * in folio_migrate_mapping(), it might still be our page,
743 * in which case it's essential to keep the node.
745 while (!get_page_unless_zero(page)) {
747 * Another check for page->mapping != expected_mapping would
748 * work here too. We have chosen the !PageSwapCache test to
749 * optimize the common case, when the page is or is about to
750 * be freed: PageSwapCache is cleared (under spin_lock_irq)
751 * in the ref_freeze section of __remove_mapping(); but Anon
752 * page->mapping reset to NULL later, in free_pages_prepare().
754 if (!PageSwapCache(page))
759 if (READ_ONCE(page->mapping) != expected_mapping) {
764 if (flags == GET_KSM_PAGE_TRYLOCK) {
765 if (!trylock_page(page)) {
767 return ERR_PTR(-EBUSY);
769 } else if (flags == GET_KSM_PAGE_LOCK)
772 if (flags != GET_KSM_PAGE_NOLOCK) {
773 if (READ_ONCE(page->mapping) != expected_mapping) {
783 * We come here from above when page->mapping or !PageSwapCache
784 * suggests that the node is stale; but it might be under migration.
785 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
786 * before checking whether node->kpfn has been changed.
789 if (READ_ONCE(stable_node->kpfn) != kpfn)
791 remove_node_from_stable_tree(stable_node);
796 * Removing rmap_item from stable or unstable tree.
797 * This function will clean the information from the stable/unstable tree.
799 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
801 if (rmap_item->address & STABLE_FLAG) {
802 struct ksm_stable_node *stable_node;
805 stable_node = rmap_item->head;
806 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
810 hlist_del(&rmap_item->hlist);
814 if (!hlist_empty(&stable_node->hlist))
819 rmap_item->mm->ksm_merging_pages--;
821 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
822 stable_node->rmap_hlist_len--;
824 put_anon_vma(rmap_item->anon_vma);
825 rmap_item->head = NULL;
826 rmap_item->address &= PAGE_MASK;
828 } else if (rmap_item->address & UNSTABLE_FLAG) {
831 * Usually ksmd can and must skip the rb_erase, because
832 * root_unstable_tree was already reset to RB_ROOT.
833 * But be careful when an mm is exiting: do the rb_erase
834 * if this rmap_item was inserted by this scan, rather
835 * than left over from before.
837 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
840 rb_erase(&rmap_item->node,
841 root_unstable_tree + NUMA(rmap_item->nid));
842 ksm_pages_unshared--;
843 rmap_item->address &= PAGE_MASK;
846 cond_resched(); /* we're called from many long loops */
849 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
852 struct ksm_rmap_item *rmap_item = *rmap_list;
853 *rmap_list = rmap_item->rmap_list;
854 remove_rmap_item_from_tree(rmap_item);
855 free_rmap_item(rmap_item);
860 * Though it's very tempting to unmerge rmap_items from stable tree rather
861 * than check every pte of a given vma, the locking doesn't quite work for
862 * that - an rmap_item is assigned to the stable tree after inserting ksm
863 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
864 * rmap_items from parent to child at fork time (so as not to waste time
865 * if exit comes before the next scan reaches it).
867 * Similarly, although we'd like to remove rmap_items (so updating counts
868 * and freeing memory) when unmerging an area, it's easier to leave that
869 * to the next pass of ksmd - consider, for example, how ksmd might be
870 * in cmp_and_merge_page on one of the rmap_items we would be removing.
872 static int unmerge_ksm_pages(struct vm_area_struct *vma,
873 unsigned long start, unsigned long end)
878 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
879 if (ksm_test_exit(vma->vm_mm))
881 if (signal_pending(current))
884 err = break_ksm(vma, addr);
889 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
891 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
894 static inline struct ksm_stable_node *page_stable_node(struct page *page)
896 return folio_stable_node(page_folio(page));
899 static inline void set_page_stable_node(struct page *page,
900 struct ksm_stable_node *stable_node)
902 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
903 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
908 * Only called through the sysfs control interface:
910 static int remove_stable_node(struct ksm_stable_node *stable_node)
915 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
918 * get_ksm_page did remove_node_from_stable_tree itself.
924 * Page could be still mapped if this races with __mmput() running in
925 * between ksm_exit() and exit_mmap(). Just refuse to let
926 * merge_across_nodes/max_page_sharing be switched.
929 if (!page_mapped(page)) {
931 * The stable node did not yet appear stale to get_ksm_page(),
932 * since that allows for an unmapped ksm page to be recognized
933 * right up until it is freed; but the node is safe to remove.
934 * This page might be in a pagevec waiting to be freed,
935 * or it might be PageSwapCache (perhaps under writeback),
936 * or it might have been removed from swapcache a moment ago.
938 set_page_stable_node(page, NULL);
939 remove_node_from_stable_tree(stable_node);
948 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
949 struct rb_root *root)
951 struct ksm_stable_node *dup;
952 struct hlist_node *hlist_safe;
954 if (!is_stable_node_chain(stable_node)) {
955 VM_BUG_ON(is_stable_node_dup(stable_node));
956 if (remove_stable_node(stable_node))
962 hlist_for_each_entry_safe(dup, hlist_safe,
963 &stable_node->hlist, hlist_dup) {
964 VM_BUG_ON(!is_stable_node_dup(dup));
965 if (remove_stable_node(dup))
968 BUG_ON(!hlist_empty(&stable_node->hlist));
969 free_stable_node_chain(stable_node, root);
973 static int remove_all_stable_nodes(void)
975 struct ksm_stable_node *stable_node, *next;
979 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
980 while (root_stable_tree[nid].rb_node) {
981 stable_node = rb_entry(root_stable_tree[nid].rb_node,
982 struct ksm_stable_node, node);
983 if (remove_stable_node_chain(stable_node,
984 root_stable_tree + nid)) {
986 break; /* proceed to next nid */
991 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
992 if (remove_stable_node(stable_node))
999 static int unmerge_and_remove_all_rmap_items(void)
1001 struct ksm_mm_slot *mm_slot;
1002 struct mm_slot *slot;
1003 struct mm_struct *mm;
1004 struct vm_area_struct *vma;
1007 spin_lock(&ksm_mmlist_lock);
1008 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1009 struct mm_slot, mm_node);
1010 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1011 spin_unlock(&ksm_mmlist_lock);
1013 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1014 mm_slot = ksm_scan.mm_slot) {
1015 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1017 mm = mm_slot->slot.mm;
1021 * Exit right away if mm is exiting to avoid lockdep issue in
1024 if (ksm_test_exit(mm))
1027 for_each_vma(vmi, vma) {
1028 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1030 err = unmerge_ksm_pages(vma,
1031 vma->vm_start, vma->vm_end);
1037 remove_trailing_rmap_items(&mm_slot->rmap_list);
1038 mmap_read_unlock(mm);
1040 spin_lock(&ksm_mmlist_lock);
1041 slot = list_entry(mm_slot->slot.mm_node.next,
1042 struct mm_slot, mm_node);
1043 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1044 if (ksm_test_exit(mm)) {
1045 hash_del(&mm_slot->slot.hash);
1046 list_del(&mm_slot->slot.mm_node);
1047 spin_unlock(&ksm_mmlist_lock);
1049 mm_slot_free(mm_slot_cache, mm_slot);
1050 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1051 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1054 spin_unlock(&ksm_mmlist_lock);
1057 /* Clean up stable nodes, but don't worry if some are still busy */
1058 remove_all_stable_nodes();
1063 mmap_read_unlock(mm);
1064 spin_lock(&ksm_mmlist_lock);
1065 ksm_scan.mm_slot = &ksm_mm_head;
1066 spin_unlock(&ksm_mmlist_lock);
1069 #endif /* CONFIG_SYSFS */
1071 static u32 calc_checksum(struct page *page)
1074 void *addr = kmap_atomic(page);
1075 checksum = xxhash(addr, PAGE_SIZE, 0);
1076 kunmap_atomic(addr);
1080 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1083 struct mm_struct *mm = vma->vm_mm;
1084 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1087 struct mmu_notifier_range range;
1088 bool anon_exclusive;
1090 pvmw.address = page_address_in_vma(page, vma);
1091 if (pvmw.address == -EFAULT)
1094 BUG_ON(PageTransCompound(page));
1096 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1097 pvmw.address + PAGE_SIZE);
1098 mmu_notifier_invalidate_range_start(&range);
1100 if (!page_vma_mapped_walk(&pvmw))
1102 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1105 anon_exclusive = PageAnonExclusive(page);
1106 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1107 anon_exclusive || mm_tlb_flush_pending(mm)) {
1110 swapped = PageSwapCache(page);
1111 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1113 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1114 * take any lock, therefore the check that we are going to make
1115 * with the pagecount against the mapcount is racy and
1116 * O_DIRECT can happen right after the check.
1117 * So we clear the pte and flush the tlb before the check
1118 * this assure us that no O_DIRECT can happen after the check
1119 * or in the middle of the check.
1121 * No need to notify as we are downgrading page table to read
1122 * only not changing it to point to a new page.
1124 * See Documentation/mm/mmu_notifier.rst
1126 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1128 * Check that no O_DIRECT or similar I/O is in progress on the
1131 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1132 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1136 /* See page_try_share_anon_rmap(): clear PTE first. */
1137 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1138 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1142 if (pte_dirty(entry))
1143 set_page_dirty(page);
1144 entry = pte_mkclean(entry);
1146 if (pte_write(entry))
1147 entry = pte_wrprotect(entry);
1149 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1151 *orig_pte = *pvmw.pte;
1155 page_vma_mapped_walk_done(&pvmw);
1157 mmu_notifier_invalidate_range_end(&range);
1163 * replace_page - replace page in vma by new ksm page
1164 * @vma: vma that holds the pte pointing to page
1165 * @page: the page we are replacing by kpage
1166 * @kpage: the ksm page we replace page by
1167 * @orig_pte: the original value of the pte
1169 * Returns 0 on success, -EFAULT on failure.
1171 static int replace_page(struct vm_area_struct *vma, struct page *page,
1172 struct page *kpage, pte_t orig_pte)
1174 struct mm_struct *mm = vma->vm_mm;
1175 struct folio *folio;
1183 struct mmu_notifier_range range;
1185 addr = page_address_in_vma(page, vma);
1186 if (addr == -EFAULT)
1189 pmd = mm_find_pmd(mm, addr);
1193 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1194 * without holding anon_vma lock for write. So when looking for a
1195 * genuine pmde (in which to find pte), test present and !THP together.
1199 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1202 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1204 mmu_notifier_invalidate_range_start(&range);
1206 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1207 if (!pte_same(*ptep, orig_pte)) {
1208 pte_unmap_unlock(ptep, ptl);
1211 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1212 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1215 * No need to check ksm_use_zero_pages here: we can only have a
1216 * zero_page here if ksm_use_zero_pages was enabled already.
1218 if (!is_zero_pfn(page_to_pfn(kpage))) {
1220 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1221 newpte = mk_pte(kpage, vma->vm_page_prot);
1223 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1224 vma->vm_page_prot));
1226 * We're replacing an anonymous page with a zero page, which is
1227 * not anonymous. We need to do proper accounting otherwise we
1228 * will get wrong values in /proc, and a BUG message in dmesg
1229 * when tearing down the mm.
1231 dec_mm_counter(mm, MM_ANONPAGES);
1234 flush_cache_page(vma, addr, pte_pfn(*ptep));
1236 * No need to notify as we are replacing a read only page with another
1237 * read only page with the same content.
1239 * See Documentation/mm/mmu_notifier.rst
1241 ptep_clear_flush(vma, addr, ptep);
1242 set_pte_at_notify(mm, addr, ptep, newpte);
1244 folio = page_folio(page);
1245 page_remove_rmap(page, vma, false);
1246 if (!folio_mapped(folio))
1247 folio_free_swap(folio);
1250 pte_unmap_unlock(ptep, ptl);
1253 mmu_notifier_invalidate_range_end(&range);
1259 * try_to_merge_one_page - take two pages and merge them into one
1260 * @vma: the vma that holds the pte pointing to page
1261 * @page: the PageAnon page that we want to replace with kpage
1262 * @kpage: the PageKsm page that we want to map instead of page,
1263 * or NULL the first time when we want to use page as kpage.
1265 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1267 static int try_to_merge_one_page(struct vm_area_struct *vma,
1268 struct page *page, struct page *kpage)
1270 pte_t orig_pte = __pte(0);
1273 if (page == kpage) /* ksm page forked */
1276 if (!PageAnon(page))
1280 * We need the page lock to read a stable PageSwapCache in
1281 * write_protect_page(). We use trylock_page() instead of
1282 * lock_page() because we don't want to wait here - we
1283 * prefer to continue scanning and merging different pages,
1284 * then come back to this page when it is unlocked.
1286 if (!trylock_page(page))
1289 if (PageTransCompound(page)) {
1290 if (split_huge_page(page))
1295 * If this anonymous page is mapped only here, its pte may need
1296 * to be write-protected. If it's mapped elsewhere, all of its
1297 * ptes are necessarily already write-protected. But in either
1298 * case, we need to lock and check page_count is not raised.
1300 if (write_protect_page(vma, page, &orig_pte) == 0) {
1303 * While we hold page lock, upgrade page from
1304 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1305 * stable_tree_insert() will update stable_node.
1307 set_page_stable_node(page, NULL);
1308 mark_page_accessed(page);
1310 * Page reclaim just frees a clean page with no dirty
1311 * ptes: make sure that the ksm page would be swapped.
1313 if (!PageDirty(page))
1316 } else if (pages_identical(page, kpage))
1317 err = replace_page(vma, page, kpage, orig_pte);
1327 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1328 * but no new kernel page is allocated: kpage must already be a ksm page.
1330 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1332 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1333 struct page *page, struct page *kpage)
1335 struct mm_struct *mm = rmap_item->mm;
1336 struct vm_area_struct *vma;
1340 vma = find_mergeable_vma(mm, rmap_item->address);
1344 err = try_to_merge_one_page(vma, page, kpage);
1348 /* Unstable nid is in union with stable anon_vma: remove first */
1349 remove_rmap_item_from_tree(rmap_item);
1351 /* Must get reference to anon_vma while still holding mmap_lock */
1352 rmap_item->anon_vma = vma->anon_vma;
1353 get_anon_vma(vma->anon_vma);
1355 mmap_read_unlock(mm);
1356 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1357 rmap_item, mm, err);
1362 * try_to_merge_two_pages - take two identical pages and prepare them
1363 * to be merged into one page.
1365 * This function returns the kpage if we successfully merged two identical
1366 * pages into one ksm page, NULL otherwise.
1368 * Note that this function upgrades page to ksm page: if one of the pages
1369 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1371 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1373 struct ksm_rmap_item *tree_rmap_item,
1374 struct page *tree_page)
1378 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1380 err = try_to_merge_with_ksm_page(tree_rmap_item,
1383 * If that fails, we have a ksm page with only one pte
1384 * pointing to it: so break it.
1387 break_cow(rmap_item);
1389 return err ? NULL : page;
1392 static __always_inline
1393 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1395 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1397 * Check that at least one mapping still exists, otherwise
1398 * there's no much point to merge and share with this
1399 * stable_node, as the underlying tree_page of the other
1400 * sharer is going to be freed soon.
1402 return stable_node->rmap_hlist_len &&
1403 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1406 static __always_inline
1407 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1409 return __is_page_sharing_candidate(stable_node, 0);
1412 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1413 struct ksm_stable_node **_stable_node,
1414 struct rb_root *root,
1415 bool prune_stale_stable_nodes)
1417 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1418 struct hlist_node *hlist_safe;
1419 struct page *_tree_page, *tree_page = NULL;
1421 int found_rmap_hlist_len;
1423 if (!prune_stale_stable_nodes ||
1424 time_before(jiffies, stable_node->chain_prune_time +
1426 ksm_stable_node_chains_prune_millisecs)))
1427 prune_stale_stable_nodes = false;
1429 stable_node->chain_prune_time = jiffies;
1431 hlist_for_each_entry_safe(dup, hlist_safe,
1432 &stable_node->hlist, hlist_dup) {
1435 * We must walk all stable_node_dup to prune the stale
1436 * stable nodes during lookup.
1438 * get_ksm_page can drop the nodes from the
1439 * stable_node->hlist if they point to freed pages
1440 * (that's why we do a _safe walk). The "dup"
1441 * stable_node parameter itself will be freed from
1442 * under us if it returns NULL.
1444 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1448 if (is_page_sharing_candidate(dup)) {
1450 dup->rmap_hlist_len > found_rmap_hlist_len) {
1452 put_page(tree_page);
1454 found_rmap_hlist_len = found->rmap_hlist_len;
1455 tree_page = _tree_page;
1457 /* skip put_page for found dup */
1458 if (!prune_stale_stable_nodes)
1463 put_page(_tree_page);
1468 * nr is counting all dups in the chain only if
1469 * prune_stale_stable_nodes is true, otherwise we may
1470 * break the loop at nr == 1 even if there are
1473 if (prune_stale_stable_nodes && nr == 1) {
1475 * If there's not just one entry it would
1476 * corrupt memory, better BUG_ON. In KSM
1477 * context with no lock held it's not even
1480 BUG_ON(stable_node->hlist.first->next);
1483 * There's just one entry and it is below the
1484 * deduplication limit so drop the chain.
1486 rb_replace_node(&stable_node->node, &found->node,
1488 free_stable_node(stable_node);
1489 ksm_stable_node_chains--;
1490 ksm_stable_node_dups--;
1492 * NOTE: the caller depends on the stable_node
1493 * to be equal to stable_node_dup if the chain
1496 *_stable_node = found;
1498 * Just for robustness, as stable_node is
1499 * otherwise left as a stable pointer, the
1500 * compiler shall optimize it away at build
1504 } else if (stable_node->hlist.first != &found->hlist_dup &&
1505 __is_page_sharing_candidate(found, 1)) {
1507 * If the found stable_node dup can accept one
1508 * more future merge (in addition to the one
1509 * that is underway) and is not at the head of
1510 * the chain, put it there so next search will
1511 * be quicker in the !prune_stale_stable_nodes
1514 * NOTE: it would be inaccurate to use nr > 1
1515 * instead of checking the hlist.first pointer
1516 * directly, because in the
1517 * prune_stale_stable_nodes case "nr" isn't
1518 * the position of the found dup in the chain,
1519 * but the total number of dups in the chain.
1521 hlist_del(&found->hlist_dup);
1522 hlist_add_head(&found->hlist_dup,
1523 &stable_node->hlist);
1527 *_stable_node_dup = found;
1531 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1532 struct rb_root *root)
1534 if (!is_stable_node_chain(stable_node))
1536 if (hlist_empty(&stable_node->hlist)) {
1537 free_stable_node_chain(stable_node, root);
1540 return hlist_entry(stable_node->hlist.first,
1541 typeof(*stable_node), hlist_dup);
1545 * Like for get_ksm_page, this function can free the *_stable_node and
1546 * *_stable_node_dup if the returned tree_page is NULL.
1548 * It can also free and overwrite *_stable_node with the found
1549 * stable_node_dup if the chain is collapsed (in which case
1550 * *_stable_node will be equal to *_stable_node_dup like if the chain
1551 * never existed). It's up to the caller to verify tree_page is not
1552 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1554 * *_stable_node_dup is really a second output parameter of this
1555 * function and will be overwritten in all cases, the caller doesn't
1556 * need to initialize it.
1558 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1559 struct ksm_stable_node **_stable_node,
1560 struct rb_root *root,
1561 bool prune_stale_stable_nodes)
1563 struct ksm_stable_node *stable_node = *_stable_node;
1564 if (!is_stable_node_chain(stable_node)) {
1565 if (is_page_sharing_candidate(stable_node)) {
1566 *_stable_node_dup = stable_node;
1567 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1570 * _stable_node_dup set to NULL means the stable_node
1571 * reached the ksm_max_page_sharing limit.
1573 *_stable_node_dup = NULL;
1576 return stable_node_dup(_stable_node_dup, _stable_node, root,
1577 prune_stale_stable_nodes);
1580 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1581 struct ksm_stable_node **s_n,
1582 struct rb_root *root)
1584 return __stable_node_chain(s_n_d, s_n, root, true);
1587 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1588 struct ksm_stable_node *s_n,
1589 struct rb_root *root)
1591 struct ksm_stable_node *old_stable_node = s_n;
1592 struct page *tree_page;
1594 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1595 /* not pruning dups so s_n cannot have changed */
1596 VM_BUG_ON(s_n != old_stable_node);
1601 * stable_tree_search - search for page inside the stable tree
1603 * This function checks if there is a page inside the stable tree
1604 * with identical content to the page that we are scanning right now.
1606 * This function returns the stable tree node of identical content if found,
1609 static struct page *stable_tree_search(struct page *page)
1612 struct rb_root *root;
1613 struct rb_node **new;
1614 struct rb_node *parent;
1615 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1616 struct ksm_stable_node *page_node;
1618 page_node = page_stable_node(page);
1619 if (page_node && page_node->head != &migrate_nodes) {
1620 /* ksm page forked */
1625 nid = get_kpfn_nid(page_to_pfn(page));
1626 root = root_stable_tree + nid;
1628 new = &root->rb_node;
1632 struct page *tree_page;
1636 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1637 stable_node_any = NULL;
1638 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1640 * NOTE: stable_node may have been freed by
1641 * chain_prune() if the returned stable_node_dup is
1642 * not NULL. stable_node_dup may have been inserted in
1643 * the rbtree instead as a regular stable_node (in
1644 * order to collapse the stable_node chain if a single
1645 * stable_node dup was found in it). In such case the
1646 * stable_node is overwritten by the callee to point
1647 * to the stable_node_dup that was collapsed in the
1648 * stable rbtree and stable_node will be equal to
1649 * stable_node_dup like if the chain never existed.
1651 if (!stable_node_dup) {
1653 * Either all stable_node dups were full in
1654 * this stable_node chain, or this chain was
1655 * empty and should be rb_erased.
1657 stable_node_any = stable_node_dup_any(stable_node,
1659 if (!stable_node_any) {
1660 /* rb_erase just run */
1664 * Take any of the stable_node dups page of
1665 * this stable_node chain to let the tree walk
1666 * continue. All KSM pages belonging to the
1667 * stable_node dups in a stable_node chain
1668 * have the same content and they're
1669 * write protected at all times. Any will work
1670 * fine to continue the walk.
1672 tree_page = get_ksm_page(stable_node_any,
1673 GET_KSM_PAGE_NOLOCK);
1675 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1678 * If we walked over a stale stable_node,
1679 * get_ksm_page() will call rb_erase() and it
1680 * may rebalance the tree from under us. So
1681 * restart the search from scratch. Returning
1682 * NULL would be safe too, but we'd generate
1683 * false negative insertions just because some
1684 * stable_node was stale.
1689 ret = memcmp_pages(page, tree_page);
1690 put_page(tree_page);
1694 new = &parent->rb_left;
1696 new = &parent->rb_right;
1699 VM_BUG_ON(page_node->head != &migrate_nodes);
1701 * Test if the migrated page should be merged
1702 * into a stable node dup. If the mapcount is
1703 * 1 we can migrate it with another KSM page
1704 * without adding it to the chain.
1706 if (page_mapcount(page) > 1)
1710 if (!stable_node_dup) {
1712 * If the stable_node is a chain and
1713 * we got a payload match in memcmp
1714 * but we cannot merge the scanned
1715 * page in any of the existing
1716 * stable_node dups because they're
1717 * all full, we need to wait the
1718 * scanned page to find itself a match
1719 * in the unstable tree to create a
1720 * brand new KSM page to add later to
1721 * the dups of this stable_node.
1727 * Lock and unlock the stable_node's page (which
1728 * might already have been migrated) so that page
1729 * migration is sure to notice its raised count.
1730 * It would be more elegant to return stable_node
1731 * than kpage, but that involves more changes.
1733 tree_page = get_ksm_page(stable_node_dup,
1734 GET_KSM_PAGE_TRYLOCK);
1736 if (PTR_ERR(tree_page) == -EBUSY)
1737 return ERR_PTR(-EBUSY);
1739 if (unlikely(!tree_page))
1741 * The tree may have been rebalanced,
1742 * so re-evaluate parent and new.
1745 unlock_page(tree_page);
1747 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1748 NUMA(stable_node_dup->nid)) {
1749 put_page(tree_page);
1759 list_del(&page_node->list);
1760 DO_NUMA(page_node->nid = nid);
1761 rb_link_node(&page_node->node, parent, new);
1762 rb_insert_color(&page_node->node, root);
1764 if (is_page_sharing_candidate(page_node)) {
1772 * If stable_node was a chain and chain_prune collapsed it,
1773 * stable_node has been updated to be the new regular
1774 * stable_node. A collapse of the chain is indistinguishable
1775 * from the case there was no chain in the stable
1776 * rbtree. Otherwise stable_node is the chain and
1777 * stable_node_dup is the dup to replace.
1779 if (stable_node_dup == stable_node) {
1780 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1781 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1782 /* there is no chain */
1784 VM_BUG_ON(page_node->head != &migrate_nodes);
1785 list_del(&page_node->list);
1786 DO_NUMA(page_node->nid = nid);
1787 rb_replace_node(&stable_node_dup->node,
1790 if (is_page_sharing_candidate(page_node))
1795 rb_erase(&stable_node_dup->node, root);
1799 VM_BUG_ON(!is_stable_node_chain(stable_node));
1800 __stable_node_dup_del(stable_node_dup);
1802 VM_BUG_ON(page_node->head != &migrate_nodes);
1803 list_del(&page_node->list);
1804 DO_NUMA(page_node->nid = nid);
1805 stable_node_chain_add_dup(page_node, stable_node);
1806 if (is_page_sharing_candidate(page_node))
1814 stable_node_dup->head = &migrate_nodes;
1815 list_add(&stable_node_dup->list, stable_node_dup->head);
1819 /* stable_node_dup could be null if it reached the limit */
1820 if (!stable_node_dup)
1821 stable_node_dup = stable_node_any;
1823 * If stable_node was a chain and chain_prune collapsed it,
1824 * stable_node has been updated to be the new regular
1825 * stable_node. A collapse of the chain is indistinguishable
1826 * from the case there was no chain in the stable
1827 * rbtree. Otherwise stable_node is the chain and
1828 * stable_node_dup is the dup to replace.
1830 if (stable_node_dup == stable_node) {
1831 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1832 /* chain is missing so create it */
1833 stable_node = alloc_stable_node_chain(stable_node_dup,
1839 * Add this stable_node dup that was
1840 * migrated to the stable_node chain
1841 * of the current nid for this page
1844 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1845 VM_BUG_ON(page_node->head != &migrate_nodes);
1846 list_del(&page_node->list);
1847 DO_NUMA(page_node->nid = nid);
1848 stable_node_chain_add_dup(page_node, stable_node);
1853 * stable_tree_insert - insert stable tree node pointing to new ksm page
1854 * into the stable tree.
1856 * This function returns the stable tree node just allocated on success,
1859 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1863 struct rb_root *root;
1864 struct rb_node **new;
1865 struct rb_node *parent;
1866 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1867 bool need_chain = false;
1869 kpfn = page_to_pfn(kpage);
1870 nid = get_kpfn_nid(kpfn);
1871 root = root_stable_tree + nid;
1874 new = &root->rb_node;
1877 struct page *tree_page;
1881 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1882 stable_node_any = NULL;
1883 tree_page = chain(&stable_node_dup, stable_node, root);
1884 if (!stable_node_dup) {
1886 * Either all stable_node dups were full in
1887 * this stable_node chain, or this chain was
1888 * empty and should be rb_erased.
1890 stable_node_any = stable_node_dup_any(stable_node,
1892 if (!stable_node_any) {
1893 /* rb_erase just run */
1897 * Take any of the stable_node dups page of
1898 * this stable_node chain to let the tree walk
1899 * continue. All KSM pages belonging to the
1900 * stable_node dups in a stable_node chain
1901 * have the same content and they're
1902 * write protected at all times. Any will work
1903 * fine to continue the walk.
1905 tree_page = get_ksm_page(stable_node_any,
1906 GET_KSM_PAGE_NOLOCK);
1908 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1911 * If we walked over a stale stable_node,
1912 * get_ksm_page() will call rb_erase() and it
1913 * may rebalance the tree from under us. So
1914 * restart the search from scratch. Returning
1915 * NULL would be safe too, but we'd generate
1916 * false negative insertions just because some
1917 * stable_node was stale.
1922 ret = memcmp_pages(kpage, tree_page);
1923 put_page(tree_page);
1927 new = &parent->rb_left;
1929 new = &parent->rb_right;
1936 stable_node_dup = alloc_stable_node();
1937 if (!stable_node_dup)
1940 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1941 stable_node_dup->kpfn = kpfn;
1942 set_page_stable_node(kpage, stable_node_dup);
1943 stable_node_dup->rmap_hlist_len = 0;
1944 DO_NUMA(stable_node_dup->nid = nid);
1946 rb_link_node(&stable_node_dup->node, parent, new);
1947 rb_insert_color(&stable_node_dup->node, root);
1949 if (!is_stable_node_chain(stable_node)) {
1950 struct ksm_stable_node *orig = stable_node;
1951 /* chain is missing so create it */
1952 stable_node = alloc_stable_node_chain(orig, root);
1954 free_stable_node(stable_node_dup);
1958 stable_node_chain_add_dup(stable_node_dup, stable_node);
1961 return stable_node_dup;
1965 * unstable_tree_search_insert - search for identical page,
1966 * else insert rmap_item into the unstable tree.
1968 * This function searches for a page in the unstable tree identical to the
1969 * page currently being scanned; and if no identical page is found in the
1970 * tree, we insert rmap_item as a new object into the unstable tree.
1972 * This function returns pointer to rmap_item found to be identical
1973 * to the currently scanned page, NULL otherwise.
1975 * This function does both searching and inserting, because they share
1976 * the same walking algorithm in an rbtree.
1979 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1981 struct page **tree_pagep)
1983 struct rb_node **new;
1984 struct rb_root *root;
1985 struct rb_node *parent = NULL;
1988 nid = get_kpfn_nid(page_to_pfn(page));
1989 root = root_unstable_tree + nid;
1990 new = &root->rb_node;
1993 struct ksm_rmap_item *tree_rmap_item;
1994 struct page *tree_page;
1998 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1999 tree_page = get_mergeable_page(tree_rmap_item);
2004 * Don't substitute a ksm page for a forked page.
2006 if (page == tree_page) {
2007 put_page(tree_page);
2011 ret = memcmp_pages(page, tree_page);
2015 put_page(tree_page);
2016 new = &parent->rb_left;
2017 } else if (ret > 0) {
2018 put_page(tree_page);
2019 new = &parent->rb_right;
2020 } else if (!ksm_merge_across_nodes &&
2021 page_to_nid(tree_page) != nid) {
2023 * If tree_page has been migrated to another NUMA node,
2024 * it will be flushed out and put in the right unstable
2025 * tree next time: only merge with it when across_nodes.
2027 put_page(tree_page);
2030 *tree_pagep = tree_page;
2031 return tree_rmap_item;
2035 rmap_item->address |= UNSTABLE_FLAG;
2036 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2037 DO_NUMA(rmap_item->nid = nid);
2038 rb_link_node(&rmap_item->node, parent, new);
2039 rb_insert_color(&rmap_item->node, root);
2041 ksm_pages_unshared++;
2046 * stable_tree_append - add another rmap_item to the linked list of
2047 * rmap_items hanging off a given node of the stable tree, all sharing
2048 * the same ksm page.
2050 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2051 struct ksm_stable_node *stable_node,
2052 bool max_page_sharing_bypass)
2055 * rmap won't find this mapping if we don't insert the
2056 * rmap_item in the right stable_node
2057 * duplicate. page_migration could break later if rmap breaks,
2058 * so we can as well crash here. We really need to check for
2059 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2060 * for other negative values as an underflow if detected here
2061 * for the first time (and not when decreasing rmap_hlist_len)
2062 * would be sign of memory corruption in the stable_node.
2064 BUG_ON(stable_node->rmap_hlist_len < 0);
2066 stable_node->rmap_hlist_len++;
2067 if (!max_page_sharing_bypass)
2068 /* possibly non fatal but unexpected overflow, only warn */
2069 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2070 ksm_max_page_sharing);
2072 rmap_item->head = stable_node;
2073 rmap_item->address |= STABLE_FLAG;
2074 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2076 if (rmap_item->hlist.next)
2077 ksm_pages_sharing++;
2081 rmap_item->mm->ksm_merging_pages++;
2085 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2086 * if not, compare checksum to previous and if it's the same, see if page can
2087 * be inserted into the unstable tree, or merged with a page already there and
2088 * both transferred to the stable tree.
2090 * @page: the page that we are searching identical page to.
2091 * @rmap_item: the reverse mapping into the virtual address of this page
2093 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2095 struct mm_struct *mm = rmap_item->mm;
2096 struct ksm_rmap_item *tree_rmap_item;
2097 struct page *tree_page = NULL;
2098 struct ksm_stable_node *stable_node;
2100 unsigned int checksum;
2102 bool max_page_sharing_bypass = false;
2104 stable_node = page_stable_node(page);
2106 if (stable_node->head != &migrate_nodes &&
2107 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2108 NUMA(stable_node->nid)) {
2109 stable_node_dup_del(stable_node);
2110 stable_node->head = &migrate_nodes;
2111 list_add(&stable_node->list, stable_node->head);
2113 if (stable_node->head != &migrate_nodes &&
2114 rmap_item->head == stable_node)
2117 * If it's a KSM fork, allow it to go over the sharing limit
2120 if (!is_page_sharing_candidate(stable_node))
2121 max_page_sharing_bypass = true;
2124 /* We first start with searching the page inside the stable tree */
2125 kpage = stable_tree_search(page);
2126 if (kpage == page && rmap_item->head == stable_node) {
2131 remove_rmap_item_from_tree(rmap_item);
2134 if (PTR_ERR(kpage) == -EBUSY)
2137 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2140 * The page was successfully merged:
2141 * add its rmap_item to the stable tree.
2144 stable_tree_append(rmap_item, page_stable_node(kpage),
2145 max_page_sharing_bypass);
2153 * If the hash value of the page has changed from the last time
2154 * we calculated it, this page is changing frequently: therefore we
2155 * don't want to insert it in the unstable tree, and we don't want
2156 * to waste our time searching for something identical to it there.
2158 checksum = calc_checksum(page);
2159 if (rmap_item->oldchecksum != checksum) {
2160 rmap_item->oldchecksum = checksum;
2165 * Same checksum as an empty page. We attempt to merge it with the
2166 * appropriate zero page if the user enabled this via sysfs.
2168 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2169 struct vm_area_struct *vma;
2172 vma = find_mergeable_vma(mm, rmap_item->address);
2174 err = try_to_merge_one_page(vma, page,
2175 ZERO_PAGE(rmap_item->address));
2176 trace_ksm_merge_one_page(
2177 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2178 rmap_item, mm, err);
2181 * If the vma is out of date, we do not need to
2186 mmap_read_unlock(mm);
2188 * In case of failure, the page was not really empty, so we
2189 * need to continue. Otherwise we're done.
2195 unstable_tree_search_insert(rmap_item, page, &tree_page);
2196 if (tree_rmap_item) {
2199 kpage = try_to_merge_two_pages(rmap_item, page,
2200 tree_rmap_item, tree_page);
2202 * If both pages we tried to merge belong to the same compound
2203 * page, then we actually ended up increasing the reference
2204 * count of the same compound page twice, and split_huge_page
2206 * Here we set a flag if that happened, and we use it later to
2207 * try split_huge_page again. Since we call put_page right
2208 * afterwards, the reference count will be correct and
2209 * split_huge_page should succeed.
2211 split = PageTransCompound(page)
2212 && compound_head(page) == compound_head(tree_page);
2213 put_page(tree_page);
2216 * The pages were successfully merged: insert new
2217 * node in the stable tree and add both rmap_items.
2220 stable_node = stable_tree_insert(kpage);
2222 stable_tree_append(tree_rmap_item, stable_node,
2224 stable_tree_append(rmap_item, stable_node,
2230 * If we fail to insert the page into the stable tree,
2231 * we will have 2 virtual addresses that are pointing
2232 * to a ksm page left outside the stable tree,
2233 * in which case we need to break_cow on both.
2236 break_cow(tree_rmap_item);
2237 break_cow(rmap_item);
2241 * We are here if we tried to merge two pages and
2242 * failed because they both belonged to the same
2243 * compound page. We will split the page now, but no
2244 * merging will take place.
2245 * We do not want to add the cost of a full lock; if
2246 * the page is locked, it is better to skip it and
2247 * perhaps try again later.
2249 if (!trylock_page(page))
2251 split_huge_page(page);
2257 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2258 struct ksm_rmap_item **rmap_list,
2261 struct ksm_rmap_item *rmap_item;
2263 while (*rmap_list) {
2264 rmap_item = *rmap_list;
2265 if ((rmap_item->address & PAGE_MASK) == addr)
2267 if (rmap_item->address > addr)
2269 *rmap_list = rmap_item->rmap_list;
2270 remove_rmap_item_from_tree(rmap_item);
2271 free_rmap_item(rmap_item);
2274 rmap_item = alloc_rmap_item();
2276 /* It has already been zeroed */
2277 rmap_item->mm = mm_slot->slot.mm;
2278 rmap_item->mm->ksm_rmap_items++;
2279 rmap_item->address = addr;
2280 rmap_item->rmap_list = *rmap_list;
2281 *rmap_list = rmap_item;
2286 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2288 struct mm_struct *mm;
2289 struct ksm_mm_slot *mm_slot;
2290 struct mm_slot *slot;
2291 struct vm_area_struct *vma;
2292 struct ksm_rmap_item *rmap_item;
2293 struct vma_iterator vmi;
2296 if (list_empty(&ksm_mm_head.slot.mm_node))
2299 mm_slot = ksm_scan.mm_slot;
2300 if (mm_slot == &ksm_mm_head) {
2301 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2304 * A number of pages can hang around indefinitely on per-cpu
2305 * pagevecs, raised page count preventing write_protect_page
2306 * from merging them. Though it doesn't really matter much,
2307 * it is puzzling to see some stuck in pages_volatile until
2308 * other activity jostles them out, and they also prevented
2309 * LTP's KSM test from succeeding deterministically; so drain
2310 * them here (here rather than on entry to ksm_do_scan(),
2311 * so we don't IPI too often when pages_to_scan is set low).
2313 lru_add_drain_all();
2316 * Whereas stale stable_nodes on the stable_tree itself
2317 * get pruned in the regular course of stable_tree_search(),
2318 * those moved out to the migrate_nodes list can accumulate:
2319 * so prune them once before each full scan.
2321 if (!ksm_merge_across_nodes) {
2322 struct ksm_stable_node *stable_node, *next;
2325 list_for_each_entry_safe(stable_node, next,
2326 &migrate_nodes, list) {
2327 page = get_ksm_page(stable_node,
2328 GET_KSM_PAGE_NOLOCK);
2335 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2336 root_unstable_tree[nid] = RB_ROOT;
2338 spin_lock(&ksm_mmlist_lock);
2339 slot = list_entry(mm_slot->slot.mm_node.next,
2340 struct mm_slot, mm_node);
2341 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2342 ksm_scan.mm_slot = mm_slot;
2343 spin_unlock(&ksm_mmlist_lock);
2345 * Although we tested list_empty() above, a racing __ksm_exit
2346 * of the last mm on the list may have removed it since then.
2348 if (mm_slot == &ksm_mm_head)
2351 ksm_scan.address = 0;
2352 ksm_scan.rmap_list = &mm_slot->rmap_list;
2355 slot = &mm_slot->slot;
2357 vma_iter_init(&vmi, mm, ksm_scan.address);
2360 if (ksm_test_exit(mm))
2363 for_each_vma(vmi, vma) {
2364 if (!(vma->vm_flags & VM_MERGEABLE))
2366 if (ksm_scan.address < vma->vm_start)
2367 ksm_scan.address = vma->vm_start;
2369 ksm_scan.address = vma->vm_end;
2371 while (ksm_scan.address < vma->vm_end) {
2372 if (ksm_test_exit(mm))
2374 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2375 if (IS_ERR_OR_NULL(*page)) {
2376 ksm_scan.address += PAGE_SIZE;
2380 if (is_zone_device_page(*page))
2382 if (PageAnon(*page)) {
2383 flush_anon_page(vma, *page, ksm_scan.address);
2384 flush_dcache_page(*page);
2385 rmap_item = get_next_rmap_item(mm_slot,
2386 ksm_scan.rmap_list, ksm_scan.address);
2388 ksm_scan.rmap_list =
2389 &rmap_item->rmap_list;
2390 ksm_scan.address += PAGE_SIZE;
2393 mmap_read_unlock(mm);
2398 ksm_scan.address += PAGE_SIZE;
2403 if (ksm_test_exit(mm)) {
2405 ksm_scan.address = 0;
2406 ksm_scan.rmap_list = &mm_slot->rmap_list;
2409 * Nuke all the rmap_items that are above this current rmap:
2410 * because there were no VM_MERGEABLE vmas with such addresses.
2412 remove_trailing_rmap_items(ksm_scan.rmap_list);
2414 spin_lock(&ksm_mmlist_lock);
2415 slot = list_entry(mm_slot->slot.mm_node.next,
2416 struct mm_slot, mm_node);
2417 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2418 if (ksm_scan.address == 0) {
2420 * We've completed a full scan of all vmas, holding mmap_lock
2421 * throughout, and found no VM_MERGEABLE: so do the same as
2422 * __ksm_exit does to remove this mm from all our lists now.
2423 * This applies either when cleaning up after __ksm_exit
2424 * (but beware: we can reach here even before __ksm_exit),
2425 * or when all VM_MERGEABLE areas have been unmapped (and
2426 * mmap_lock then protects against race with MADV_MERGEABLE).
2428 hash_del(&mm_slot->slot.hash);
2429 list_del(&mm_slot->slot.mm_node);
2430 spin_unlock(&ksm_mmlist_lock);
2432 mm_slot_free(mm_slot_cache, mm_slot);
2433 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2434 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2435 mmap_read_unlock(mm);
2438 mmap_read_unlock(mm);
2440 * mmap_read_unlock(mm) first because after
2441 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2442 * already have been freed under us by __ksm_exit()
2443 * because the "mm_slot" is still hashed and
2444 * ksm_scan.mm_slot doesn't point to it anymore.
2446 spin_unlock(&ksm_mmlist_lock);
2449 /* Repeat until we've completed scanning the whole list */
2450 mm_slot = ksm_scan.mm_slot;
2451 if (mm_slot != &ksm_mm_head)
2454 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2460 * ksm_do_scan - the ksm scanner main worker function.
2461 * @scan_npages: number of pages we want to scan before we return.
2463 static void ksm_do_scan(unsigned int scan_npages)
2465 struct ksm_rmap_item *rmap_item;
2468 while (scan_npages-- && likely(!freezing(current))) {
2470 rmap_item = scan_get_next_rmap_item(&page);
2473 cmp_and_merge_page(page, rmap_item);
2478 static int ksmd_should_run(void)
2480 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2483 static int ksm_scan_thread(void *nothing)
2485 unsigned int sleep_ms;
2488 set_user_nice(current, 5);
2490 while (!kthread_should_stop()) {
2491 mutex_lock(&ksm_thread_mutex);
2492 wait_while_offlining();
2493 if (ksmd_should_run())
2494 ksm_do_scan(ksm_thread_pages_to_scan);
2495 mutex_unlock(&ksm_thread_mutex);
2499 if (ksmd_should_run()) {
2500 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2501 wait_event_interruptible_timeout(ksm_iter_wait,
2502 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2503 msecs_to_jiffies(sleep_ms));
2505 wait_event_freezable(ksm_thread_wait,
2506 ksmd_should_run() || kthread_should_stop());
2512 static void __ksm_add_vma(struct vm_area_struct *vma)
2514 unsigned long vm_flags = vma->vm_flags;
2516 if (vm_flags & VM_MERGEABLE)
2519 if (vma_ksm_compatible(vma))
2520 vm_flags_set(vma, VM_MERGEABLE);
2523 static int __ksm_del_vma(struct vm_area_struct *vma)
2527 if (!(vma->vm_flags & VM_MERGEABLE))
2530 if (vma->anon_vma) {
2531 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2536 vm_flags_clear(vma, VM_MERGEABLE);
2540 * ksm_add_vma - Mark vma as mergeable if compatible
2542 * @vma: Pointer to vma
2544 void ksm_add_vma(struct vm_area_struct *vma)
2546 struct mm_struct *mm = vma->vm_mm;
2548 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2552 static void ksm_add_vmas(struct mm_struct *mm)
2554 struct vm_area_struct *vma;
2556 VMA_ITERATOR(vmi, mm, 0);
2557 for_each_vma(vmi, vma)
2561 static int ksm_del_vmas(struct mm_struct *mm)
2563 struct vm_area_struct *vma;
2566 VMA_ITERATOR(vmi, mm, 0);
2567 for_each_vma(vmi, vma) {
2568 err = __ksm_del_vma(vma);
2576 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2579 * @mm: Pointer to mm
2581 * Returns 0 on success, otherwise error code
2583 int ksm_enable_merge_any(struct mm_struct *mm)
2587 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2590 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2591 err = __ksm_enter(mm);
2596 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2603 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2604 * previously enabled via ksm_enable_merge_any().
2606 * Disabling merging implies unmerging any merged pages, like setting
2607 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2608 * merging on all compatible VMA's remains enabled.
2610 * @mm: Pointer to mm
2612 * Returns 0 on success, otherwise error code
2614 int ksm_disable_merge_any(struct mm_struct *mm)
2618 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2621 err = ksm_del_vmas(mm);
2627 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2631 int ksm_disable(struct mm_struct *mm)
2633 mmap_assert_write_locked(mm);
2635 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2637 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2638 return ksm_disable_merge_any(mm);
2639 return ksm_del_vmas(mm);
2642 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2643 unsigned long end, int advice, unsigned long *vm_flags)
2645 struct mm_struct *mm = vma->vm_mm;
2649 case MADV_MERGEABLE:
2650 if (vma->vm_flags & VM_MERGEABLE)
2652 if (!vma_ksm_compatible(vma))
2655 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2656 err = __ksm_enter(mm);
2661 *vm_flags |= VM_MERGEABLE;
2664 case MADV_UNMERGEABLE:
2665 if (!(*vm_flags & VM_MERGEABLE))
2666 return 0; /* just ignore the advice */
2668 if (vma->anon_vma) {
2669 err = unmerge_ksm_pages(vma, start, end);
2674 *vm_flags &= ~VM_MERGEABLE;
2680 EXPORT_SYMBOL_GPL(ksm_madvise);
2682 int __ksm_enter(struct mm_struct *mm)
2684 struct ksm_mm_slot *mm_slot;
2685 struct mm_slot *slot;
2688 mm_slot = mm_slot_alloc(mm_slot_cache);
2692 slot = &mm_slot->slot;
2694 /* Check ksm_run too? Would need tighter locking */
2695 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2697 spin_lock(&ksm_mmlist_lock);
2698 mm_slot_insert(mm_slots_hash, mm, slot);
2700 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2701 * insert just behind the scanning cursor, to let the area settle
2702 * down a little; when fork is followed by immediate exec, we don't
2703 * want ksmd to waste time setting up and tearing down an rmap_list.
2705 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2706 * scanning cursor, otherwise KSM pages in newly forked mms will be
2707 * missed: then we might as well insert at the end of the list.
2709 if (ksm_run & KSM_RUN_UNMERGE)
2710 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2712 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2713 spin_unlock(&ksm_mmlist_lock);
2715 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2719 wake_up_interruptible(&ksm_thread_wait);
2721 trace_ksm_enter(mm);
2725 void __ksm_exit(struct mm_struct *mm)
2727 struct ksm_mm_slot *mm_slot;
2728 struct mm_slot *slot;
2729 int easy_to_free = 0;
2732 * This process is exiting: if it's straightforward (as is the
2733 * case when ksmd was never running), free mm_slot immediately.
2734 * But if it's at the cursor or has rmap_items linked to it, use
2735 * mmap_lock to synchronize with any break_cows before pagetables
2736 * are freed, and leave the mm_slot on the list for ksmd to free.
2737 * Beware: ksm may already have noticed it exiting and freed the slot.
2740 spin_lock(&ksm_mmlist_lock);
2741 slot = mm_slot_lookup(mm_slots_hash, mm);
2742 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2743 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2744 if (!mm_slot->rmap_list) {
2745 hash_del(&slot->hash);
2746 list_del(&slot->mm_node);
2749 list_move(&slot->mm_node,
2750 &ksm_scan.mm_slot->slot.mm_node);
2753 spin_unlock(&ksm_mmlist_lock);
2756 mm_slot_free(mm_slot_cache, mm_slot);
2757 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2758 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2760 } else if (mm_slot) {
2761 mmap_write_lock(mm);
2762 mmap_write_unlock(mm);
2768 struct page *ksm_might_need_to_copy(struct page *page,
2769 struct vm_area_struct *vma, unsigned long address)
2771 struct folio *folio = page_folio(page);
2772 struct anon_vma *anon_vma = folio_anon_vma(folio);
2773 struct page *new_page;
2775 if (PageKsm(page)) {
2776 if (page_stable_node(page) &&
2777 !(ksm_run & KSM_RUN_UNMERGE))
2778 return page; /* no need to copy it */
2779 } else if (!anon_vma) {
2780 return page; /* no need to copy it */
2781 } else if (page->index == linear_page_index(vma, address) &&
2782 anon_vma->root == vma->anon_vma->root) {
2783 return page; /* still no need to copy it */
2785 if (!PageUptodate(page))
2786 return page; /* let do_swap_page report the error */
2788 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2790 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2795 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2797 memory_failure_queue(page_to_pfn(page), 0);
2798 return ERR_PTR(-EHWPOISON);
2800 SetPageDirty(new_page);
2801 __SetPageUptodate(new_page);
2802 __SetPageLocked(new_page);
2804 count_vm_event(KSM_SWPIN_COPY);
2811 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2813 struct ksm_stable_node *stable_node;
2814 struct ksm_rmap_item *rmap_item;
2815 int search_new_forks = 0;
2817 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2820 * Rely on the page lock to protect against concurrent modifications
2821 * to that page's node of the stable tree.
2823 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2825 stable_node = folio_stable_node(folio);
2829 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2830 struct anon_vma *anon_vma = rmap_item->anon_vma;
2831 struct anon_vma_chain *vmac;
2832 struct vm_area_struct *vma;
2835 if (!anon_vma_trylock_read(anon_vma)) {
2836 if (rwc->try_lock) {
2837 rwc->contended = true;
2840 anon_vma_lock_read(anon_vma);
2842 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2849 /* Ignore the stable/unstable/sqnr flags */
2850 addr = rmap_item->address & PAGE_MASK;
2852 if (addr < vma->vm_start || addr >= vma->vm_end)
2855 * Initially we examine only the vma which covers this
2856 * rmap_item; but later, if there is still work to do,
2857 * we examine covering vmas in other mms: in case they
2858 * were forked from the original since ksmd passed.
2860 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2863 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2866 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2867 anon_vma_unlock_read(anon_vma);
2870 if (rwc->done && rwc->done(folio)) {
2871 anon_vma_unlock_read(anon_vma);
2875 anon_vma_unlock_read(anon_vma);
2877 if (!search_new_forks++)
2881 #ifdef CONFIG_MEMORY_FAILURE
2883 * Collect processes when the error hit an ksm page.
2885 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2888 struct ksm_stable_node *stable_node;
2889 struct ksm_rmap_item *rmap_item;
2890 struct folio *folio = page_folio(page);
2891 struct vm_area_struct *vma;
2892 struct task_struct *tsk;
2894 stable_node = folio_stable_node(folio);
2897 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2898 struct anon_vma *av = rmap_item->anon_vma;
2900 anon_vma_lock_read(av);
2901 read_lock(&tasklist_lock);
2902 for_each_process(tsk) {
2903 struct anon_vma_chain *vmac;
2905 struct task_struct *t =
2906 task_early_kill(tsk, force_early);
2909 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2913 if (vma->vm_mm == t->mm) {
2914 addr = rmap_item->address & PAGE_MASK;
2915 add_to_kill_ksm(t, page, vma, to_kill,
2920 read_unlock(&tasklist_lock);
2921 anon_vma_unlock_read(av);
2926 #ifdef CONFIG_MIGRATION
2927 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2929 struct ksm_stable_node *stable_node;
2931 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2932 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2933 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2935 stable_node = folio_stable_node(folio);
2937 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2938 stable_node->kpfn = folio_pfn(newfolio);
2940 * newfolio->mapping was set in advance; now we need smp_wmb()
2941 * to make sure that the new stable_node->kpfn is visible
2942 * to get_ksm_page() before it can see that folio->mapping
2943 * has gone stale (or that folio_test_swapcache has been cleared).
2946 set_page_stable_node(&folio->page, NULL);
2949 #endif /* CONFIG_MIGRATION */
2951 #ifdef CONFIG_MEMORY_HOTREMOVE
2952 static void wait_while_offlining(void)
2954 while (ksm_run & KSM_RUN_OFFLINE) {
2955 mutex_unlock(&ksm_thread_mutex);
2956 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2957 TASK_UNINTERRUPTIBLE);
2958 mutex_lock(&ksm_thread_mutex);
2962 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2963 unsigned long start_pfn,
2964 unsigned long end_pfn)
2966 if (stable_node->kpfn >= start_pfn &&
2967 stable_node->kpfn < end_pfn) {
2969 * Don't get_ksm_page, page has already gone:
2970 * which is why we keep kpfn instead of page*
2972 remove_node_from_stable_tree(stable_node);
2978 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2979 unsigned long start_pfn,
2980 unsigned long end_pfn,
2981 struct rb_root *root)
2983 struct ksm_stable_node *dup;
2984 struct hlist_node *hlist_safe;
2986 if (!is_stable_node_chain(stable_node)) {
2987 VM_BUG_ON(is_stable_node_dup(stable_node));
2988 return stable_node_dup_remove_range(stable_node, start_pfn,
2992 hlist_for_each_entry_safe(dup, hlist_safe,
2993 &stable_node->hlist, hlist_dup) {
2994 VM_BUG_ON(!is_stable_node_dup(dup));
2995 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2997 if (hlist_empty(&stable_node->hlist)) {
2998 free_stable_node_chain(stable_node, root);
2999 return true; /* notify caller that tree was rebalanced */
3004 static void ksm_check_stable_tree(unsigned long start_pfn,
3005 unsigned long end_pfn)
3007 struct ksm_stable_node *stable_node, *next;
3008 struct rb_node *node;
3011 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3012 node = rb_first(root_stable_tree + nid);
3014 stable_node = rb_entry(node, struct ksm_stable_node, node);
3015 if (stable_node_chain_remove_range(stable_node,
3019 node = rb_first(root_stable_tree + nid);
3021 node = rb_next(node);
3025 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3026 if (stable_node->kpfn >= start_pfn &&
3027 stable_node->kpfn < end_pfn)
3028 remove_node_from_stable_tree(stable_node);
3033 static int ksm_memory_callback(struct notifier_block *self,
3034 unsigned long action, void *arg)
3036 struct memory_notify *mn = arg;
3039 case MEM_GOING_OFFLINE:
3041 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3042 * and remove_all_stable_nodes() while memory is going offline:
3043 * it is unsafe for them to touch the stable tree at this time.
3044 * But unmerge_ksm_pages(), rmap lookups and other entry points
3045 * which do not need the ksm_thread_mutex are all safe.
3047 mutex_lock(&ksm_thread_mutex);
3048 ksm_run |= KSM_RUN_OFFLINE;
3049 mutex_unlock(&ksm_thread_mutex);
3054 * Most of the work is done by page migration; but there might
3055 * be a few stable_nodes left over, still pointing to struct
3056 * pages which have been offlined: prune those from the tree,
3057 * otherwise get_ksm_page() might later try to access a
3058 * non-existent struct page.
3060 ksm_check_stable_tree(mn->start_pfn,
3061 mn->start_pfn + mn->nr_pages);
3063 case MEM_CANCEL_OFFLINE:
3064 mutex_lock(&ksm_thread_mutex);
3065 ksm_run &= ~KSM_RUN_OFFLINE;
3066 mutex_unlock(&ksm_thread_mutex);
3068 smp_mb(); /* wake_up_bit advises this */
3069 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3075 static void wait_while_offlining(void)
3078 #endif /* CONFIG_MEMORY_HOTREMOVE */
3080 #ifdef CONFIG_PROC_FS
3081 long ksm_process_profit(struct mm_struct *mm)
3083 return mm->ksm_merging_pages * PAGE_SIZE -
3084 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3086 #endif /* CONFIG_PROC_FS */
3090 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3093 #define KSM_ATTR_RO(_name) \
3094 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3095 #define KSM_ATTR(_name) \
3096 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3098 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3099 struct kobj_attribute *attr, char *buf)
3101 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3104 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3105 struct kobj_attribute *attr,
3106 const char *buf, size_t count)
3111 err = kstrtouint(buf, 10, &msecs);
3115 ksm_thread_sleep_millisecs = msecs;
3116 wake_up_interruptible(&ksm_iter_wait);
3120 KSM_ATTR(sleep_millisecs);
3122 static ssize_t pages_to_scan_show(struct kobject *kobj,
3123 struct kobj_attribute *attr, char *buf)
3125 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3128 static ssize_t pages_to_scan_store(struct kobject *kobj,
3129 struct kobj_attribute *attr,
3130 const char *buf, size_t count)
3132 unsigned int nr_pages;
3135 err = kstrtouint(buf, 10, &nr_pages);
3139 ksm_thread_pages_to_scan = nr_pages;
3143 KSM_ATTR(pages_to_scan);
3145 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3148 return sysfs_emit(buf, "%lu\n", ksm_run);
3151 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3152 const char *buf, size_t count)
3157 err = kstrtouint(buf, 10, &flags);
3160 if (flags > KSM_RUN_UNMERGE)
3164 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3165 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3166 * breaking COW to free the pages_shared (but leaves mm_slots
3167 * on the list for when ksmd may be set running again).
3170 mutex_lock(&ksm_thread_mutex);
3171 wait_while_offlining();
3172 if (ksm_run != flags) {
3174 if (flags & KSM_RUN_UNMERGE) {
3175 set_current_oom_origin();
3176 err = unmerge_and_remove_all_rmap_items();
3177 clear_current_oom_origin();
3179 ksm_run = KSM_RUN_STOP;
3184 mutex_unlock(&ksm_thread_mutex);
3186 if (flags & KSM_RUN_MERGE)
3187 wake_up_interruptible(&ksm_thread_wait);
3194 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3195 struct kobj_attribute *attr, char *buf)
3197 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3200 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3201 struct kobj_attribute *attr,
3202 const char *buf, size_t count)
3207 err = kstrtoul(buf, 10, &knob);
3213 mutex_lock(&ksm_thread_mutex);
3214 wait_while_offlining();
3215 if (ksm_merge_across_nodes != knob) {
3216 if (ksm_pages_shared || remove_all_stable_nodes())
3218 else if (root_stable_tree == one_stable_tree) {
3219 struct rb_root *buf;
3221 * This is the first time that we switch away from the
3222 * default of merging across nodes: must now allocate
3223 * a buffer to hold as many roots as may be needed.
3224 * Allocate stable and unstable together:
3225 * MAXSMP NODES_SHIFT 10 will use 16kB.
3227 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3229 /* Let us assume that RB_ROOT is NULL is zero */
3233 root_stable_tree = buf;
3234 root_unstable_tree = buf + nr_node_ids;
3235 /* Stable tree is empty but not the unstable */
3236 root_unstable_tree[0] = one_unstable_tree[0];
3240 ksm_merge_across_nodes = knob;
3241 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3244 mutex_unlock(&ksm_thread_mutex);
3246 return err ? err : count;
3248 KSM_ATTR(merge_across_nodes);
3251 static ssize_t use_zero_pages_show(struct kobject *kobj,
3252 struct kobj_attribute *attr, char *buf)
3254 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3256 static ssize_t use_zero_pages_store(struct kobject *kobj,
3257 struct kobj_attribute *attr,
3258 const char *buf, size_t count)
3263 err = kstrtobool(buf, &value);
3267 ksm_use_zero_pages = value;
3271 KSM_ATTR(use_zero_pages);
3273 static ssize_t max_page_sharing_show(struct kobject *kobj,
3274 struct kobj_attribute *attr, char *buf)
3276 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3279 static ssize_t max_page_sharing_store(struct kobject *kobj,
3280 struct kobj_attribute *attr,
3281 const char *buf, size_t count)
3286 err = kstrtoint(buf, 10, &knob);
3290 * When a KSM page is created it is shared by 2 mappings. This
3291 * being a signed comparison, it implicitly verifies it's not
3297 if (READ_ONCE(ksm_max_page_sharing) == knob)
3300 mutex_lock(&ksm_thread_mutex);
3301 wait_while_offlining();
3302 if (ksm_max_page_sharing != knob) {
3303 if (ksm_pages_shared || remove_all_stable_nodes())
3306 ksm_max_page_sharing = knob;
3308 mutex_unlock(&ksm_thread_mutex);
3310 return err ? err : count;
3312 KSM_ATTR(max_page_sharing);
3314 static ssize_t pages_shared_show(struct kobject *kobj,
3315 struct kobj_attribute *attr, char *buf)
3317 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3319 KSM_ATTR_RO(pages_shared);
3321 static ssize_t pages_sharing_show(struct kobject *kobj,
3322 struct kobj_attribute *attr, char *buf)
3324 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3326 KSM_ATTR_RO(pages_sharing);
3328 static ssize_t pages_unshared_show(struct kobject *kobj,
3329 struct kobj_attribute *attr, char *buf)
3331 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3333 KSM_ATTR_RO(pages_unshared);
3335 static ssize_t pages_volatile_show(struct kobject *kobj,
3336 struct kobj_attribute *attr, char *buf)
3338 long ksm_pages_volatile;
3340 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3341 - ksm_pages_sharing - ksm_pages_unshared;
3343 * It was not worth any locking to calculate that statistic,
3344 * but it might therefore sometimes be negative: conceal that.
3346 if (ksm_pages_volatile < 0)
3347 ksm_pages_volatile = 0;
3348 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3350 KSM_ATTR_RO(pages_volatile);
3352 static ssize_t general_profit_show(struct kobject *kobj,
3353 struct kobj_attribute *attr, char *buf)
3355 long general_profit;
3357 general_profit = ksm_pages_sharing * PAGE_SIZE -
3358 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3360 return sysfs_emit(buf, "%ld\n", general_profit);
3362 KSM_ATTR_RO(general_profit);
3364 static ssize_t stable_node_dups_show(struct kobject *kobj,
3365 struct kobj_attribute *attr, char *buf)
3367 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3369 KSM_ATTR_RO(stable_node_dups);
3371 static ssize_t stable_node_chains_show(struct kobject *kobj,
3372 struct kobj_attribute *attr, char *buf)
3374 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3376 KSM_ATTR_RO(stable_node_chains);
3379 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3380 struct kobj_attribute *attr,
3383 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3387 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3388 struct kobj_attribute *attr,
3389 const char *buf, size_t count)
3394 err = kstrtouint(buf, 10, &msecs);
3398 ksm_stable_node_chains_prune_millisecs = msecs;
3402 KSM_ATTR(stable_node_chains_prune_millisecs);
3404 static ssize_t full_scans_show(struct kobject *kobj,
3405 struct kobj_attribute *attr, char *buf)
3407 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3409 KSM_ATTR_RO(full_scans);
3411 static struct attribute *ksm_attrs[] = {
3412 &sleep_millisecs_attr.attr,
3413 &pages_to_scan_attr.attr,
3415 &pages_shared_attr.attr,
3416 &pages_sharing_attr.attr,
3417 &pages_unshared_attr.attr,
3418 &pages_volatile_attr.attr,
3419 &full_scans_attr.attr,
3421 &merge_across_nodes_attr.attr,
3423 &max_page_sharing_attr.attr,
3424 &stable_node_chains_attr.attr,
3425 &stable_node_dups_attr.attr,
3426 &stable_node_chains_prune_millisecs_attr.attr,
3427 &use_zero_pages_attr.attr,
3428 &general_profit_attr.attr,
3432 static const struct attribute_group ksm_attr_group = {
3436 #endif /* CONFIG_SYSFS */
3438 static int __init ksm_init(void)
3440 struct task_struct *ksm_thread;
3443 /* The correct value depends on page size and endianness */
3444 zero_checksum = calc_checksum(ZERO_PAGE(0));
3445 /* Default to false for backwards compatibility */
3446 ksm_use_zero_pages = false;
3448 err = ksm_slab_init();
3452 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3453 if (IS_ERR(ksm_thread)) {
3454 pr_err("ksm: creating kthread failed\n");
3455 err = PTR_ERR(ksm_thread);
3460 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3462 pr_err("ksm: register sysfs failed\n");
3463 kthread_stop(ksm_thread);
3467 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3469 #endif /* CONFIG_SYSFS */
3471 #ifdef CONFIG_MEMORY_HOTREMOVE
3472 /* There is no significance to this priority 100 */
3473 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3482 subsys_initcall(ksm_init);