tizen 2.4 release
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_OPTIMIZE_KSM
45 #include <asm/checksum.h>
46 #endif
47
48 #ifdef CONFIG_NUMA
49 #define NUMA(x)         (x)
50 #define DO_NUMA(x)      do { (x); } while (0)
51 #else
52 #define NUMA(x)         (0)
53 #define DO_NUMA(x)      do { } while (0)
54 #endif
55
56 /*
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * In addition to the stable tree, KSM uses a second data structure called the
73  * unstable tree: this tree holds pointers to pages which have been found to
74  * be "unchanged for a period of time".  The unstable tree sorts these pages
75  * by their contents, but since they are not write-protected, KSM cannot rely
76  * upon the unstable tree to work correctly - the unstable tree is liable to
77  * be corrupted as its contents are modified, and so it is called unstable.
78  *
79  * KSM solves this problem by several techniques:
80  *
81  * 1) The unstable tree is flushed every time KSM completes scanning all
82  *    memory areas, and then the tree is rebuilt again from the beginning.
83  * 2) KSM will only insert into the unstable tree, pages whose hash value
84  *    has not changed since the previous scan of all memory areas.
85  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
86  *    colors of the nodes and not on their contents, assuring that even when
87  *    the tree gets "corrupted" it won't get out of balance, so scanning time
88  *    remains the same (also, searching and inserting nodes in an rbtree uses
89  *    the same algorithm, so we have no overhead when we flush and rebuild).
90  * 4) KSM never flushes the stable tree, which means that even if it were to
91  *    take 10 attempts to find a page in the unstable tree, once it is found,
92  *    it is secured in the stable tree.  (When we scan a new page, we first
93  *    compare it against the stable tree, and then against the unstable tree.)
94  *
95  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
96  * stable trees and multiple unstable trees: one of each for each NUMA node.
97  */
98
99 /**
100  * struct mm_slot - ksm information per mm that is being scanned
101  * @link: link to the mm_slots hash list
102  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
103  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
104  * @mm: the mm that this information is valid for
105  */
106 struct mm_slot {
107         struct hlist_node link;
108         struct list_head mm_list;
109         struct rmap_item *rmap_list;
110         struct mm_struct *mm;
111 };
112
113 /**
114  * struct ksm_scan - cursor for scanning
115  * @mm_slot: the current mm_slot we are scanning
116  * @address: the next address inside that to be scanned
117  * @rmap_list: link to the next rmap to be scanned in the rmap_list
118  * @seqnr: count of completed full scans (needed when removing unstable node)
119  *
120  * There is only the one ksm_scan instance of this cursor structure.
121  */
122 struct ksm_scan {
123         struct mm_slot *mm_slot;
124         unsigned long address;
125         struct rmap_item **rmap_list;
126         unsigned long seqnr;
127 };
128
129 /**
130  * struct stable_node - node of the stable rbtree
131  * @node: rb node of this ksm page in the stable tree
132  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
133  * @list: linked into migrate_nodes, pending placement in the proper node tree
134  * @hlist: hlist head of rmap_items using this ksm page
135  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
136  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
137  */
138 struct stable_node {
139         union {
140                 struct rb_node node;    /* when node of stable tree */
141                 struct {                /* when listed for migration */
142                         struct list_head *head;
143                         struct list_head list;
144                 };
145         };
146         struct hlist_head hlist;
147         unsigned long kpfn;
148 #ifdef CONFIG_NUMA
149         int nid;
150 #endif
151 };
152
153 /**
154  * struct rmap_item - reverse mapping item for virtual addresses
155  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
156  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
157  * @nid: NUMA node id of unstable tree in which linked (may not match page)
158  * @mm: the memory structure this rmap_item is pointing into
159  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
160  * @oldchecksum: previous checksum of the page at that virtual address
161  * @node: rb node of this rmap_item in the unstable tree
162  * @head: pointer to stable_node heading this list in the stable tree
163  * @hlist: link into hlist of rmap_items hanging off that stable_node
164  */
165 struct rmap_item {
166         struct rmap_item *rmap_list;
167         union {
168                 struct anon_vma *anon_vma;      /* when stable */
169 #ifdef CONFIG_NUMA
170                 int nid;                /* when node of unstable tree */
171 #endif
172         };
173         struct mm_struct *mm;
174         unsigned long address;          /* + low bits used for flags below */
175         unsigned int oldchecksum;       /* when unstable */
176         union {
177                 struct rb_node node;    /* when node of unstable tree */
178                 struct {                /* when listed from stable tree */
179                         struct stable_node *head;
180                         struct hlist_node hlist;
181                 };
182         };
183 };
184
185 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
186 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
187 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
188
189 /* The stable and unstable tree heads */
190 static struct rb_root one_stable_tree[1] = { RB_ROOT };
191 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
192 static struct rb_root *root_stable_tree = one_stable_tree;
193 static struct rb_root *root_unstable_tree = one_unstable_tree;
194
195 /* Recently migrated nodes of stable tree, pending proper placement */
196 static LIST_HEAD(migrate_nodes);
197
198 #define MM_SLOTS_HASH_BITS 10
199 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
200
201 static struct mm_slot ksm_mm_head = {
202         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
203 };
204 static struct ksm_scan ksm_scan = {
205         .mm_slot = &ksm_mm_head,
206 };
207
208 static struct kmem_cache *rmap_item_cache;
209 static struct kmem_cache *stable_node_cache;
210 static struct kmem_cache *mm_slot_cache;
211
212 /* The number of nodes in the stable tree */
213 static unsigned long ksm_pages_shared;
214
215 /* The number of page slots additionally sharing those nodes */
216 static unsigned long ksm_pages_sharing;
217
218 /* The number of nodes in the unstable tree */
219 static unsigned long ksm_pages_unshared;
220
221 /* The number of rmap_items in use: to calculate pages_volatile */
222 static unsigned long ksm_rmap_items;
223
224 /* Number of pages ksmd should scan in one batch */
225 static unsigned int ksm_thread_pages_to_scan = 100;
226
227 /* Milliseconds ksmd should sleep between batches */
228 static unsigned int ksm_thread_sleep_millisecs = 20;
229
230 #ifdef CONFIG_NUMA
231 /* Zeroed when merging across nodes is not allowed */
232 static unsigned int ksm_merge_across_nodes = 1;
233 static int ksm_nr_node_ids = 1;
234 #else
235 #define ksm_merge_across_nodes  1U
236 #define ksm_nr_node_ids         1
237 #endif
238
239 #define KSM_RUN_STOP    0
240 #define KSM_RUN_MERGE   1
241 #define KSM_RUN_UNMERGE 2
242 #define KSM_RUN_OFFLINE 4
243 static unsigned long ksm_run = KSM_RUN_STOP;
244 static void wait_while_offlining(void);
245
246 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
247 static DEFINE_MUTEX(ksm_thread_mutex);
248 static DEFINE_SPINLOCK(ksm_mmlist_lock);
249
250 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
251                 sizeof(struct __struct), __alignof__(struct __struct),\
252                 (__flags), NULL)
253
254 static int __init ksm_slab_init(void)
255 {
256         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
257         if (!rmap_item_cache)
258                 goto out;
259
260         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
261         if (!stable_node_cache)
262                 goto out_free1;
263
264         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
265         if (!mm_slot_cache)
266                 goto out_free2;
267
268         return 0;
269
270 out_free2:
271         kmem_cache_destroy(stable_node_cache);
272 out_free1:
273         kmem_cache_destroy(rmap_item_cache);
274 out:
275         return -ENOMEM;
276 }
277
278 static void __init ksm_slab_free(void)
279 {
280         kmem_cache_destroy(mm_slot_cache);
281         kmem_cache_destroy(stable_node_cache);
282         kmem_cache_destroy(rmap_item_cache);
283         mm_slot_cache = NULL;
284 }
285
286 static inline struct rmap_item *alloc_rmap_item(void)
287 {
288         struct rmap_item *rmap_item;
289
290         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
291         if (rmap_item)
292                 ksm_rmap_items++;
293         return rmap_item;
294 }
295
296 static inline void free_rmap_item(struct rmap_item *rmap_item)
297 {
298         ksm_rmap_items--;
299         rmap_item->mm = NULL;   /* debug safety */
300         kmem_cache_free(rmap_item_cache, rmap_item);
301 }
302
303 static inline struct stable_node *alloc_stable_node(void)
304 {
305         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
306 }
307
308 static inline void free_stable_node(struct stable_node *stable_node)
309 {
310         kmem_cache_free(stable_node_cache, stable_node);
311 }
312
313 static inline struct mm_slot *alloc_mm_slot(void)
314 {
315         if (!mm_slot_cache)     /* initialization failed */
316                 return NULL;
317         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
318 }
319
320 static inline void free_mm_slot(struct mm_slot *mm_slot)
321 {
322         kmem_cache_free(mm_slot_cache, mm_slot);
323 }
324
325 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
326 {
327         struct mm_slot *slot;
328
329         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
330                 if (slot->mm == mm)
331                         return slot;
332
333         return NULL;
334 }
335
336 static void insert_to_mm_slots_hash(struct mm_struct *mm,
337                                     struct mm_slot *mm_slot)
338 {
339         mm_slot->mm = mm;
340         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
341 }
342
343 /*
344  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
345  * page tables after it has passed through ksm_exit() - which, if necessary,
346  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
347  * a special flag: they can just back out as soon as mm_users goes to zero.
348  * ksm_test_exit() is used throughout to make this test for exit: in some
349  * places for correctness, in some places just to avoid unnecessary work.
350  */
351 static inline bool ksm_test_exit(struct mm_struct *mm)
352 {
353         return atomic_read(&mm->mm_users) == 0;
354 }
355
356 /*
357  * We use break_ksm to break COW on a ksm page: it's a stripped down
358  *
359  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
360  *              put_page(page);
361  *
362  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
363  * in case the application has unmapped and remapped mm,addr meanwhile.
364  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
365  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
366  */
367 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
368 {
369         struct page *page;
370         int ret = 0;
371
372         do {
373                 cond_resched();
374                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
375                 if (IS_ERR_OR_NULL(page))
376                         break;
377                 if (PageKsm(page))
378                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
379                                                         FAULT_FLAG_WRITE);
380                 else
381                         ret = VM_FAULT_WRITE;
382                 put_page(page);
383         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
384         /*
385          * We must loop because handle_mm_fault() may back out if there's
386          * any difficulty e.g. if pte accessed bit gets updated concurrently.
387          *
388          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
389          * COW has been broken, even if the vma does not permit VM_WRITE;
390          * but note that a concurrent fault might break PageKsm for us.
391          *
392          * VM_FAULT_SIGBUS could occur if we race with truncation of the
393          * backing file, which also invalidates anonymous pages: that's
394          * okay, that truncation will have unmapped the PageKsm for us.
395          *
396          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
397          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
398          * current task has TIF_MEMDIE set, and will be OOM killed on return
399          * to user; and ksmd, having no mm, would never be chosen for that.
400          *
401          * But if the mm is in a limited mem_cgroup, then the fault may fail
402          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
403          * even ksmd can fail in this way - though it's usually breaking ksm
404          * just to undo a merge it made a moment before, so unlikely to oom.
405          *
406          * That's a pity: we might therefore have more kernel pages allocated
407          * than we're counting as nodes in the stable tree; but ksm_do_scan
408          * will retry to break_cow on each pass, so should recover the page
409          * in due course.  The important thing is to not let VM_MERGEABLE
410          * be cleared while any such pages might remain in the area.
411          */
412         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
413 }
414
415 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
416                 unsigned long addr)
417 {
418         struct vm_area_struct *vma;
419         if (ksm_test_exit(mm))
420                 return NULL;
421         vma = find_vma(mm, addr);
422         if (!vma || vma->vm_start > addr)
423                 return NULL;
424         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
425                 return NULL;
426         return vma;
427 }
428
429 static void break_cow(struct rmap_item *rmap_item)
430 {
431         struct mm_struct *mm = rmap_item->mm;
432         unsigned long addr = rmap_item->address;
433         struct vm_area_struct *vma;
434
435         /*
436          * It is not an accident that whenever we want to break COW
437          * to undo, we also need to drop a reference to the anon_vma.
438          */
439         put_anon_vma(rmap_item->anon_vma);
440
441         down_read(&mm->mmap_sem);
442         vma = find_mergeable_vma(mm, addr);
443         if (vma)
444                 break_ksm(vma, addr);
445         up_read(&mm->mmap_sem);
446 }
447
448 static struct page *page_trans_compound_anon(struct page *page)
449 {
450         if (PageTransCompound(page)) {
451                 struct page *head = compound_head(page);
452                 /*
453                  * head may actually be splitted and freed from under
454                  * us but it's ok here.
455                  */
456                 if (PageAnon(head))
457                         return head;
458         }
459         return NULL;
460 }
461
462 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
463 {
464         struct mm_struct *mm = rmap_item->mm;
465         unsigned long addr = rmap_item->address;
466         struct vm_area_struct *vma;
467         struct page *page;
468
469         down_read(&mm->mmap_sem);
470         vma = find_mergeable_vma(mm, addr);
471         if (!vma)
472                 goto out;
473
474         page = follow_page(vma, addr, FOLL_GET);
475         if (IS_ERR_OR_NULL(page))
476                 goto out;
477         if (PageAnon(page) || page_trans_compound_anon(page)) {
478                 flush_anon_page(vma, page, addr);
479                 flush_dcache_page(page);
480         } else {
481                 put_page(page);
482 out:            page = NULL;
483         }
484         up_read(&mm->mmap_sem);
485         return page;
486 }
487
488 /*
489  * This helper is used for getting right index into array of tree roots.
490  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
491  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
492  * every node has its own stable and unstable tree.
493  */
494 static inline int get_kpfn_nid(unsigned long kpfn)
495 {
496         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
497 }
498
499 static void remove_node_from_stable_tree(struct stable_node *stable_node)
500 {
501         struct rmap_item *rmap_item;
502
503         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
504                 if (rmap_item->hlist.next)
505                         ksm_pages_sharing--;
506                 else
507                         ksm_pages_shared--;
508                 put_anon_vma(rmap_item->anon_vma);
509                 rmap_item->address &= PAGE_MASK;
510                 cond_resched();
511         }
512
513         if (stable_node->head == &migrate_nodes)
514                 list_del(&stable_node->list);
515         else
516                 rb_erase(&stable_node->node,
517                          root_stable_tree + NUMA(stable_node->nid));
518         free_stable_node(stable_node);
519 }
520
521 /*
522  * get_ksm_page: checks if the page indicated by the stable node
523  * is still its ksm page, despite having held no reference to it.
524  * In which case we can trust the content of the page, and it
525  * returns the gotten page; but if the page has now been zapped,
526  * remove the stale node from the stable tree and return NULL.
527  * But beware, the stable node's page might be being migrated.
528  *
529  * You would expect the stable_node to hold a reference to the ksm page.
530  * But if it increments the page's count, swapping out has to wait for
531  * ksmd to come around again before it can free the page, which may take
532  * seconds or even minutes: much too unresponsive.  So instead we use a
533  * "keyhole reference": access to the ksm page from the stable node peeps
534  * out through its keyhole to see if that page still holds the right key,
535  * pointing back to this stable node.  This relies on freeing a PageAnon
536  * page to reset its page->mapping to NULL, and relies on no other use of
537  * a page to put something that might look like our key in page->mapping.
538  * is on its way to being freed; but it is an anomaly to bear in mind.
539  */
540 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
541 {
542         struct page *page;
543         void *expected_mapping;
544         unsigned long kpfn;
545
546         expected_mapping = (void *)stable_node +
547                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
548 again:
549         kpfn = ACCESS_ONCE(stable_node->kpfn);
550         page = pfn_to_page(kpfn);
551
552         /*
553          * page is computed from kpfn, so on most architectures reading
554          * page->mapping is naturally ordered after reading node->kpfn,
555          * but on Alpha we need to be more careful.
556          */
557         smp_read_barrier_depends();
558         if (ACCESS_ONCE(page->mapping) != expected_mapping)
559                 goto stale;
560
561         /*
562          * We cannot do anything with the page while its refcount is 0.
563          * Usually 0 means free, or tail of a higher-order page: in which
564          * case this node is no longer referenced, and should be freed;
565          * however, it might mean that the page is under page_freeze_refs().
566          * The __remove_mapping() case is easy, again the node is now stale;
567          * but if page is swapcache in migrate_page_move_mapping(), it might
568          * still be our page, in which case it's essential to keep the node.
569          */
570         while (!get_page_unless_zero(page)) {
571                 /*
572                  * Another check for page->mapping != expected_mapping would
573                  * work here too.  We have chosen the !PageSwapCache test to
574                  * optimize the common case, when the page is or is about to
575                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
576                  * in the freeze_refs section of __remove_mapping(); but Anon
577                  * page->mapping reset to NULL later, in free_pages_prepare().
578                  */
579                 if (!PageSwapCache(page))
580                         goto stale;
581                 cpu_relax();
582         }
583
584         if (ACCESS_ONCE(page->mapping) != expected_mapping) {
585                 put_page(page);
586                 goto stale;
587         }
588
589         if (lock_it) {
590                 lock_page(page);
591                 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
592                         unlock_page(page);
593                         put_page(page);
594                         goto stale;
595                 }
596         }
597         return page;
598
599 stale:
600         /*
601          * We come here from above when page->mapping or !PageSwapCache
602          * suggests that the node is stale; but it might be under migration.
603          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
604          * before checking whether node->kpfn has been changed.
605          */
606         smp_rmb();
607         if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
608                 goto again;
609         remove_node_from_stable_tree(stable_node);
610         return NULL;
611 }
612
613 /*
614  * Removing rmap_item from stable or unstable tree.
615  * This function will clean the information from the stable/unstable tree.
616  */
617 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
618 {
619         if (rmap_item->address & STABLE_FLAG) {
620                 struct stable_node *stable_node;
621                 struct page *page;
622
623                 stable_node = rmap_item->head;
624                 page = get_ksm_page(stable_node, true);
625                 if (!page)
626                         goto out;
627
628                 hlist_del(&rmap_item->hlist);
629                 unlock_page(page);
630                 put_page(page);
631
632                 if (stable_node->hlist.first)
633                         ksm_pages_sharing--;
634                 else
635                         ksm_pages_shared--;
636
637                 put_anon_vma(rmap_item->anon_vma);
638                 rmap_item->address &= PAGE_MASK;
639
640         } else if (rmap_item->address & UNSTABLE_FLAG) {
641                 unsigned char age;
642                 /*
643                  * Usually ksmd can and must skip the rb_erase, because
644                  * root_unstable_tree was already reset to RB_ROOT.
645                  * But be careful when an mm is exiting: do the rb_erase
646                  * if this rmap_item was inserted by this scan, rather
647                  * than left over from before.
648                  */
649                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
650                 BUG_ON(age > 1);
651                 if (!age)
652                         rb_erase(&rmap_item->node,
653                                  root_unstable_tree + NUMA(rmap_item->nid));
654                 ksm_pages_unshared--;
655                 rmap_item->address &= PAGE_MASK;
656         }
657 out:
658         cond_resched();         /* we're called from many long loops */
659 }
660
661 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
662                                        struct rmap_item **rmap_list)
663 {
664         while (*rmap_list) {
665                 struct rmap_item *rmap_item = *rmap_list;
666                 *rmap_list = rmap_item->rmap_list;
667                 remove_rmap_item_from_tree(rmap_item);
668                 free_rmap_item(rmap_item);
669         }
670 }
671
672 /*
673  * Though it's very tempting to unmerge rmap_items from stable tree rather
674  * than check every pte of a given vma, the locking doesn't quite work for
675  * that - an rmap_item is assigned to the stable tree after inserting ksm
676  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
677  * rmap_items from parent to child at fork time (so as not to waste time
678  * if exit comes before the next scan reaches it).
679  *
680  * Similarly, although we'd like to remove rmap_items (so updating counts
681  * and freeing memory) when unmerging an area, it's easier to leave that
682  * to the next pass of ksmd - consider, for example, how ksmd might be
683  * in cmp_and_merge_page on one of the rmap_items we would be removing.
684  */
685 static int unmerge_ksm_pages(struct vm_area_struct *vma,
686                              unsigned long start, unsigned long end)
687 {
688         unsigned long addr;
689         int err = 0;
690
691         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
692                 if (ksm_test_exit(vma->vm_mm))
693                         break;
694                 if (signal_pending(current))
695                         err = -ERESTARTSYS;
696                 else
697                         err = break_ksm(vma, addr);
698         }
699         return err;
700 }
701
702 #ifdef CONFIG_SYSFS
703 /*
704  * Only called through the sysfs control interface:
705  */
706 static int remove_stable_node(struct stable_node *stable_node)
707 {
708         struct page *page;
709         int err;
710
711         page = get_ksm_page(stable_node, true);
712         if (!page) {
713                 /*
714                  * get_ksm_page did remove_node_from_stable_tree itself.
715                  */
716                 return 0;
717         }
718
719         if (WARN_ON_ONCE(page_mapped(page))) {
720                 /*
721                  * This should not happen: but if it does, just refuse to let
722                  * merge_across_nodes be switched - there is no need to panic.
723                  */
724                 err = -EBUSY;
725         } else {
726                 /*
727                  * The stable node did not yet appear stale to get_ksm_page(),
728                  * since that allows for an unmapped ksm page to be recognized
729                  * right up until it is freed; but the node is safe to remove.
730                  * This page might be in a pagevec waiting to be freed,
731                  * or it might be PageSwapCache (perhaps under writeback),
732                  * or it might have been removed from swapcache a moment ago.
733                  */
734                 set_page_stable_node(page, NULL);
735                 remove_node_from_stable_tree(stable_node);
736                 err = 0;
737         }
738
739         unlock_page(page);
740         put_page(page);
741         return err;
742 }
743
744 static int remove_all_stable_nodes(void)
745 {
746         struct stable_node *stable_node;
747         struct list_head *this, *next;
748         int nid;
749         int err = 0;
750
751         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
752                 while (root_stable_tree[nid].rb_node) {
753                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
754                                                 struct stable_node, node);
755                         if (remove_stable_node(stable_node)) {
756                                 err = -EBUSY;
757                                 break;  /* proceed to next nid */
758                         }
759                         cond_resched();
760                 }
761         }
762         list_for_each_safe(this, next, &migrate_nodes) {
763                 stable_node = list_entry(this, struct stable_node, list);
764                 if (remove_stable_node(stable_node))
765                         err = -EBUSY;
766                 cond_resched();
767         }
768         return err;
769 }
770
771 static int unmerge_and_remove_all_rmap_items(void)
772 {
773         struct mm_slot *mm_slot;
774         struct mm_struct *mm;
775         struct vm_area_struct *vma;
776         int err = 0;
777
778         spin_lock(&ksm_mmlist_lock);
779         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
780                                                 struct mm_slot, mm_list);
781         spin_unlock(&ksm_mmlist_lock);
782
783         for (mm_slot = ksm_scan.mm_slot;
784                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
785                 mm = mm_slot->mm;
786                 down_read(&mm->mmap_sem);
787                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
788                         if (ksm_test_exit(mm))
789                                 break;
790                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
791                                 continue;
792                         err = unmerge_ksm_pages(vma,
793                                                 vma->vm_start, vma->vm_end);
794                         if (err)
795                                 goto error;
796                 }
797
798                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
799
800                 spin_lock(&ksm_mmlist_lock);
801                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
802                                                 struct mm_slot, mm_list);
803                 if (ksm_test_exit(mm)) {
804                         hash_del(&mm_slot->link);
805                         list_del(&mm_slot->mm_list);
806                         spin_unlock(&ksm_mmlist_lock);
807
808                         free_mm_slot(mm_slot);
809                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
810                         up_read(&mm->mmap_sem);
811                         mmdrop(mm);
812                 } else {
813                         spin_unlock(&ksm_mmlist_lock);
814                         up_read(&mm->mmap_sem);
815                 }
816         }
817
818         /* Clean up stable nodes, but don't worry if some are still busy */
819         remove_all_stable_nodes();
820         ksm_scan.seqnr = 0;
821         return 0;
822
823 error:
824         up_read(&mm->mmap_sem);
825         spin_lock(&ksm_mmlist_lock);
826         ksm_scan.mm_slot = &ksm_mm_head;
827         spin_unlock(&ksm_mmlist_lock);
828         return err;
829 }
830 #endif /* CONFIG_SYSFS */
831
832 static u32 calc_checksum(struct page *page)
833 {
834         u32 checksum;
835         void *addr = kmap_atomic(page);
836 #ifdef CONFIG_OPTIMIZE_KSM
837         checksum = csum_partial(addr, PAGE_SIZE / 4, 17);
838 #else
839         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
840 #endif
841         kunmap_atomic(addr);
842         return checksum;
843 }
844
845 static int memcmp_pages(struct page *page1, struct page *page2)
846 {
847         char *addr1, *addr2;
848         int ret;
849
850         addr1 = kmap_atomic(page1);
851         addr2 = kmap_atomic(page2);
852 #ifdef CONFIG_KSM_ASSEMBLY_MEMCMP
853         ret = memcmpksm(addr1, addr2, PAGE_SIZE);
854 #else
855         ret = memcmp(addr1, addr2, PAGE_SIZE);
856 #endif
857         kunmap_atomic(addr2);
858         kunmap_atomic(addr1);
859         return ret;
860 }
861
862 static inline int pages_identical(struct page *page1, struct page *page2)
863 {
864         return !memcmp_pages(page1, page2);
865 }
866
867 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
868                               pte_t *orig_pte)
869 {
870         struct mm_struct *mm = vma->vm_mm;
871         unsigned long addr;
872         pte_t *ptep;
873         spinlock_t *ptl;
874         int swapped;
875         int err = -EFAULT;
876         unsigned long mmun_start;       /* For mmu_notifiers */
877         unsigned long mmun_end;         /* For mmu_notifiers */
878
879         addr = page_address_in_vma(page, vma);
880         if (addr == -EFAULT)
881                 goto out;
882
883         BUG_ON(PageTransCompound(page));
884
885         mmun_start = addr;
886         mmun_end   = addr + PAGE_SIZE;
887         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
888
889         ptep = page_check_address(page, mm, addr, &ptl, 0);
890         if (!ptep)
891                 goto out_mn;
892
893         if (pte_write(*ptep) || pte_dirty(*ptep)) {
894                 pte_t entry;
895
896                 swapped = PageSwapCache(page);
897                 flush_cache_page(vma, addr, page_to_pfn(page));
898                 /*
899                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
900                  * take any lock, therefore the check that we are going to make
901                  * with the pagecount against the mapcount is racey and
902                  * O_DIRECT can happen right after the check.
903                  * So we clear the pte and flush the tlb before the check
904                  * this assure us that no O_DIRECT can happen after the check
905                  * or in the middle of the check.
906                  */
907                 entry = ptep_clear_flush(vma, addr, ptep);
908                 /*
909                  * Check that no O_DIRECT or similar I/O is in progress on the
910                  * page
911                  */
912                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
913                         set_pte_at(mm, addr, ptep, entry);
914                         goto out_unlock;
915                 }
916                 if (pte_dirty(entry))
917                         set_page_dirty(page);
918                 entry = pte_mkclean(pte_wrprotect(entry));
919                 set_pte_at_notify(mm, addr, ptep, entry);
920         }
921         *orig_pte = *ptep;
922         err = 0;
923
924 out_unlock:
925         pte_unmap_unlock(ptep, ptl);
926 out_mn:
927         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
928 out:
929         return err;
930 }
931
932 /**
933  * replace_page - replace page in vma by new ksm page
934  * @vma:      vma that holds the pte pointing to page
935  * @page:     the page we are replacing by kpage
936  * @kpage:    the ksm page we replace page by
937  * @orig_pte: the original value of the pte
938  *
939  * Returns 0 on success, -EFAULT on failure.
940  */
941 static int replace_page(struct vm_area_struct *vma, struct page *page,
942                         struct page *kpage, pte_t orig_pte)
943 {
944         struct mm_struct *mm = vma->vm_mm;
945         pmd_t *pmd;
946         pte_t *ptep;
947         spinlock_t *ptl;
948         unsigned long addr;
949         int err = -EFAULT;
950         unsigned long mmun_start;       /* For mmu_notifiers */
951         unsigned long mmun_end;         /* For mmu_notifiers */
952
953         addr = page_address_in_vma(page, vma);
954         if (addr == -EFAULT)
955                 goto out;
956
957         pmd = mm_find_pmd(mm, addr);
958         if (!pmd)
959                 goto out;
960         BUG_ON(pmd_trans_huge(*pmd));
961
962         mmun_start = addr;
963         mmun_end   = addr + PAGE_SIZE;
964         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
965
966         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
967         if (!pte_same(*ptep, orig_pte)) {
968                 pte_unmap_unlock(ptep, ptl);
969                 goto out_mn;
970         }
971
972         get_page(kpage);
973         page_add_anon_rmap(kpage, vma, addr);
974
975         flush_cache_page(vma, addr, pte_pfn(*ptep));
976         ptep_clear_flush(vma, addr, ptep);
977         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
978
979         page_remove_rmap(page);
980         if (!page_mapped(page))
981                 try_to_free_swap(page);
982         put_page(page);
983
984         pte_unmap_unlock(ptep, ptl);
985         err = 0;
986 out_mn:
987         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
988 out:
989         return err;
990 }
991
992 static int page_trans_compound_anon_split(struct page *page)
993 {
994         int ret = 0;
995         struct page *transhuge_head = page_trans_compound_anon(page);
996         if (transhuge_head) {
997                 /* Get the reference on the head to split it. */
998                 if (get_page_unless_zero(transhuge_head)) {
999                         /*
1000                          * Recheck we got the reference while the head
1001                          * was still anonymous.
1002                          */
1003                         if (PageAnon(transhuge_head))
1004                                 ret = split_huge_page(transhuge_head);
1005                         else
1006                                 /*
1007                                  * Retry later if split_huge_page run
1008                                  * from under us.
1009                                  */
1010                                 ret = 1;
1011                         put_page(transhuge_head);
1012                 } else
1013                         /* Retry later if split_huge_page run from under us. */
1014                         ret = 1;
1015         }
1016         return ret;
1017 }
1018
1019 /*
1020  * try_to_merge_one_page - take two pages and merge them into one
1021  * @vma: the vma that holds the pte pointing to page
1022  * @page: the PageAnon page that we want to replace with kpage
1023  * @kpage: the PageKsm page that we want to map instead of page,
1024  *         or NULL the first time when we want to use page as kpage.
1025  *
1026  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1027  */
1028 static int try_to_merge_one_page(struct vm_area_struct *vma,
1029                                  struct page *page, struct page *kpage)
1030 {
1031         pte_t orig_pte = __pte(0);
1032         int err = -EFAULT;
1033
1034         if (page == kpage)                      /* ksm page forked */
1035                 return 0;
1036
1037         if (!(vma->vm_flags & VM_MERGEABLE))
1038                 goto out;
1039         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1040                 goto out;
1041         BUG_ON(PageTransCompound(page));
1042         if (!PageAnon(page))
1043                 goto out;
1044
1045         /*
1046          * We need the page lock to read a stable PageSwapCache in
1047          * write_protect_page().  We use trylock_page() instead of
1048          * lock_page() because we don't want to wait here - we
1049          * prefer to continue scanning and merging different pages,
1050          * then come back to this page when it is unlocked.
1051          */
1052         if (!trylock_page(page))
1053                 goto out;
1054         /*
1055          * If this anonymous page is mapped only here, its pte may need
1056          * to be write-protected.  If it's mapped elsewhere, all of its
1057          * ptes are necessarily already write-protected.  But in either
1058          * case, we need to lock and check page_count is not raised.
1059          */
1060         if (write_protect_page(vma, page, &orig_pte) == 0) {
1061                 if (!kpage) {
1062                         /*
1063                          * While we hold page lock, upgrade page from
1064                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1065                          * stable_tree_insert() will update stable_node.
1066                          */
1067                         set_page_stable_node(page, NULL);
1068                         mark_page_accessed(page);
1069                         err = 0;
1070                 } else if (pages_identical(page, kpage))
1071                         err = replace_page(vma, page, kpage, orig_pte);
1072         }
1073
1074         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1075                 munlock_vma_page(page);
1076                 if (!PageMlocked(kpage)) {
1077                         unlock_page(page);
1078                         lock_page(kpage);
1079                         mlock_vma_page(kpage);
1080                         page = kpage;           /* for final unlock */
1081                 }
1082         }
1083
1084         unlock_page(page);
1085 out:
1086         return err;
1087 }
1088
1089 /*
1090  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1091  * but no new kernel page is allocated: kpage must already be a ksm page.
1092  *
1093  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1094  */
1095 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1096                                       struct page *page, struct page *kpage)
1097 {
1098         struct mm_struct *mm = rmap_item->mm;
1099         struct vm_area_struct *vma;
1100         int err = -EFAULT;
1101
1102         down_read(&mm->mmap_sem);
1103         if (ksm_test_exit(mm))
1104                 goto out;
1105         vma = find_vma(mm, rmap_item->address);
1106         if (!vma || vma->vm_start > rmap_item->address)
1107                 goto out;
1108
1109         err = try_to_merge_one_page(vma, page, kpage);
1110         if (err)
1111                 goto out;
1112
1113         /* Unstable nid is in union with stable anon_vma: remove first */
1114         remove_rmap_item_from_tree(rmap_item);
1115
1116         /* Must get reference to anon_vma while still holding mmap_sem */
1117         rmap_item->anon_vma = vma->anon_vma;
1118         get_anon_vma(vma->anon_vma);
1119 out:
1120         up_read(&mm->mmap_sem);
1121         return err;
1122 }
1123
1124 /*
1125  * try_to_merge_two_pages - take two identical pages and prepare them
1126  * to be merged into one page.
1127  *
1128  * This function returns the kpage if we successfully merged two identical
1129  * pages into one ksm page, NULL otherwise.
1130  *
1131  * Note that this function upgrades page to ksm page: if one of the pages
1132  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1133  */
1134 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1135                                            struct page *page,
1136                                            struct rmap_item *tree_rmap_item,
1137                                            struct page *tree_page)
1138 {
1139         int err;
1140
1141         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1142         if (!err) {
1143                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1144                                                         tree_page, page);
1145                 /*
1146                  * If that fails, we have a ksm page with only one pte
1147                  * pointing to it: so break it.
1148                  */
1149                 if (err)
1150                         break_cow(rmap_item);
1151         }
1152         return err ? NULL : page;
1153 }
1154
1155 /*
1156  * stable_tree_search - search for page inside the stable tree
1157  *
1158  * This function checks if there is a page inside the stable tree
1159  * with identical content to the page that we are scanning right now.
1160  *
1161  * This function returns the stable tree node of identical content if found,
1162  * NULL otherwise.
1163  */
1164 static struct page *stable_tree_search(struct page *page)
1165 {
1166         int nid;
1167         struct rb_root *root;
1168         struct rb_node **new;
1169         struct rb_node *parent;
1170         struct stable_node *stable_node;
1171         struct stable_node *page_node;
1172
1173         page_node = page_stable_node(page);
1174         if (page_node && page_node->head != &migrate_nodes) {
1175                 /* ksm page forked */
1176                 get_page(page);
1177                 return page;
1178         }
1179
1180         nid = get_kpfn_nid(page_to_pfn(page));
1181         root = root_stable_tree + nid;
1182 again:
1183         new = &root->rb_node;
1184         parent = NULL;
1185
1186         while (*new) {
1187                 struct page *tree_page;
1188                 int ret;
1189
1190                 cond_resched();
1191                 stable_node = rb_entry(*new, struct stable_node, node);
1192                 tree_page = get_ksm_page(stable_node, false);
1193                 if (!tree_page)
1194                         return NULL;
1195
1196                 ret = memcmp_pages(page, tree_page);
1197                 put_page(tree_page);
1198
1199                 parent = *new;
1200                 if (ret < 0)
1201                         new = &parent->rb_left;
1202                 else if (ret > 0)
1203                         new = &parent->rb_right;
1204                 else {
1205                         /*
1206                          * Lock and unlock the stable_node's page (which
1207                          * might already have been migrated) so that page
1208                          * migration is sure to notice its raised count.
1209                          * It would be more elegant to return stable_node
1210                          * than kpage, but that involves more changes.
1211                          */
1212                         tree_page = get_ksm_page(stable_node, true);
1213                         if (tree_page) {
1214                                 unlock_page(tree_page);
1215                                 if (get_kpfn_nid(stable_node->kpfn) !=
1216                                                 NUMA(stable_node->nid)) {
1217                                         put_page(tree_page);
1218                                         goto replace;
1219                                 }
1220                                 return tree_page;
1221                         }
1222                         /*
1223                          * There is now a place for page_node, but the tree may
1224                          * have been rebalanced, so re-evaluate parent and new.
1225                          */
1226                         if (page_node)
1227                                 goto again;
1228                         return NULL;
1229                 }
1230         }
1231
1232         if (!page_node)
1233                 return NULL;
1234
1235         list_del(&page_node->list);
1236         DO_NUMA(page_node->nid = nid);
1237         rb_link_node(&page_node->node, parent, new);
1238         rb_insert_color(&page_node->node, root);
1239         get_page(page);
1240         return page;
1241
1242 replace:
1243         if (page_node) {
1244                 list_del(&page_node->list);
1245                 DO_NUMA(page_node->nid = nid);
1246                 rb_replace_node(&stable_node->node, &page_node->node, root);
1247                 get_page(page);
1248         } else {
1249                 rb_erase(&stable_node->node, root);
1250                 page = NULL;
1251         }
1252         stable_node->head = &migrate_nodes;
1253         list_add(&stable_node->list, stable_node->head);
1254         return page;
1255 }
1256
1257 /*
1258  * stable_tree_insert - insert stable tree node pointing to new ksm page
1259  * into the stable tree.
1260  *
1261  * This function returns the stable tree node just allocated on success,
1262  * NULL otherwise.
1263  */
1264 static struct stable_node *stable_tree_insert(struct page *kpage)
1265 {
1266         int nid;
1267         unsigned long kpfn;
1268         struct rb_root *root;
1269         struct rb_node **new;
1270         struct rb_node *parent = NULL;
1271         struct stable_node *stable_node;
1272
1273         kpfn = page_to_pfn(kpage);
1274         nid = get_kpfn_nid(kpfn);
1275         root = root_stable_tree + nid;
1276         new = &root->rb_node;
1277
1278         while (*new) {
1279                 struct page *tree_page;
1280                 int ret;
1281
1282                 cond_resched();
1283                 stable_node = rb_entry(*new, struct stable_node, node);
1284                 tree_page = get_ksm_page(stable_node, false);
1285                 if (!tree_page)
1286                         return NULL;
1287
1288                 ret = memcmp_pages(kpage, tree_page);
1289                 put_page(tree_page);
1290
1291                 parent = *new;
1292                 if (ret < 0)
1293                         new = &parent->rb_left;
1294                 else if (ret > 0)
1295                         new = &parent->rb_right;
1296                 else {
1297                         /*
1298                          * It is not a bug that stable_tree_search() didn't
1299                          * find this node: because at that time our page was
1300                          * not yet write-protected, so may have changed since.
1301                          */
1302                         return NULL;
1303                 }
1304         }
1305
1306         stable_node = alloc_stable_node();
1307         if (!stable_node)
1308                 return NULL;
1309
1310         INIT_HLIST_HEAD(&stable_node->hlist);
1311         stable_node->kpfn = kpfn;
1312         set_page_stable_node(kpage, stable_node);
1313         DO_NUMA(stable_node->nid = nid);
1314         rb_link_node(&stable_node->node, parent, new);
1315         rb_insert_color(&stable_node->node, root);
1316
1317         return stable_node;
1318 }
1319
1320 /*
1321  * unstable_tree_search_insert - search for identical page,
1322  * else insert rmap_item into the unstable tree.
1323  *
1324  * This function searches for a page in the unstable tree identical to the
1325  * page currently being scanned; and if no identical page is found in the
1326  * tree, we insert rmap_item as a new object into the unstable tree.
1327  *
1328  * This function returns pointer to rmap_item found to be identical
1329  * to the currently scanned page, NULL otherwise.
1330  *
1331  * This function does both searching and inserting, because they share
1332  * the same walking algorithm in an rbtree.
1333  */
1334 static
1335 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1336                                               struct page *page,
1337                                               struct page **tree_pagep)
1338 {
1339         struct rb_node **new;
1340         struct rb_root *root;
1341         struct rb_node *parent = NULL;
1342         int nid;
1343
1344         nid = get_kpfn_nid(page_to_pfn(page));
1345         root = root_unstable_tree + nid;
1346         new = &root->rb_node;
1347
1348         while (*new) {
1349                 struct rmap_item *tree_rmap_item;
1350                 struct page *tree_page;
1351                 int ret;
1352
1353                 cond_resched();
1354                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1355                 tree_page = get_mergeable_page(tree_rmap_item);
1356                 if (IS_ERR_OR_NULL(tree_page))
1357                         return NULL;
1358
1359                 /*
1360                  * Don't substitute a ksm page for a forked page.
1361                  */
1362                 if (page == tree_page) {
1363                         put_page(tree_page);
1364                         return NULL;
1365                 }
1366
1367                 ret = memcmp_pages(page, tree_page);
1368
1369                 parent = *new;
1370                 if (ret < 0) {
1371                         put_page(tree_page);
1372                         new = &parent->rb_left;
1373                 } else if (ret > 0) {
1374                         put_page(tree_page);
1375                         new = &parent->rb_right;
1376                 } else if (!ksm_merge_across_nodes &&
1377                            page_to_nid(tree_page) != nid) {
1378                         /*
1379                          * If tree_page has been migrated to another NUMA node,
1380                          * it will be flushed out and put in the right unstable
1381                          * tree next time: only merge with it when across_nodes.
1382                          */
1383                         put_page(tree_page);
1384                         return NULL;
1385                 } else {
1386                         *tree_pagep = tree_page;
1387                         return tree_rmap_item;
1388                 }
1389         }
1390
1391         rmap_item->address |= UNSTABLE_FLAG;
1392         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1393         DO_NUMA(rmap_item->nid = nid);
1394         rb_link_node(&rmap_item->node, parent, new);
1395         rb_insert_color(&rmap_item->node, root);
1396
1397         ksm_pages_unshared++;
1398         return NULL;
1399 }
1400
1401 /*
1402  * stable_tree_append - add another rmap_item to the linked list of
1403  * rmap_items hanging off a given node of the stable tree, all sharing
1404  * the same ksm page.
1405  */
1406 static void stable_tree_append(struct rmap_item *rmap_item,
1407                                struct stable_node *stable_node)
1408 {
1409         rmap_item->head = stable_node;
1410         rmap_item->address |= STABLE_FLAG;
1411         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1412
1413         if (rmap_item->hlist.next)
1414                 ksm_pages_sharing++;
1415         else
1416                 ksm_pages_shared++;
1417 }
1418
1419 /*
1420  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1421  * if not, compare checksum to previous and if it's the same, see if page can
1422  * be inserted into the unstable tree, or merged with a page already there and
1423  * both transferred to the stable tree.
1424  *
1425  * @page: the page that we are searching identical page to.
1426  * @rmap_item: the reverse mapping into the virtual address of this page
1427  */
1428 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1429 {
1430         struct rmap_item *tree_rmap_item;
1431         struct page *tree_page = NULL;
1432         struct stable_node *stable_node;
1433         struct page *kpage;
1434         unsigned int checksum;
1435         int err;
1436
1437         stable_node = page_stable_node(page);
1438         if (stable_node) {
1439                 if (stable_node->head != &migrate_nodes &&
1440                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1441                         rb_erase(&stable_node->node,
1442                                  root_stable_tree + NUMA(stable_node->nid));
1443                         stable_node->head = &migrate_nodes;
1444                         list_add(&stable_node->list, stable_node->head);
1445                 }
1446                 if (stable_node->head != &migrate_nodes &&
1447                     rmap_item->head == stable_node)
1448                         return;
1449         }
1450
1451         /* We first start with searching the page inside the stable tree */
1452         kpage = stable_tree_search(page);
1453         if (kpage == page && rmap_item->head == stable_node) {
1454                 put_page(kpage);
1455                 return;
1456         }
1457
1458         remove_rmap_item_from_tree(rmap_item);
1459
1460         if (kpage) {
1461                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1462                 if (!err) {
1463                         /*
1464                          * The page was successfully merged:
1465                          * add its rmap_item to the stable tree.
1466                          */
1467                         lock_page(kpage);
1468                         stable_tree_append(rmap_item, page_stable_node(kpage));
1469                         unlock_page(kpage);
1470                 }
1471                 put_page(kpage);
1472                 return;
1473         }
1474
1475         /*
1476          * If the hash value of the page has changed from the last time
1477          * we calculated it, this page is changing frequently: therefore we
1478          * don't want to insert it in the unstable tree, and we don't want
1479          * to waste our time searching for something identical to it there.
1480          */
1481         checksum = calc_checksum(page);
1482         if (rmap_item->oldchecksum != checksum) {
1483                 rmap_item->oldchecksum = checksum;
1484                 return;
1485         }
1486
1487         tree_rmap_item =
1488                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1489         if (tree_rmap_item) {
1490                 kpage = try_to_merge_two_pages(rmap_item, page,
1491                                                 tree_rmap_item, tree_page);
1492                 put_page(tree_page);
1493                 if (kpage) {
1494                         /*
1495                          * The pages were successfully merged: insert new
1496                          * node in the stable tree and add both rmap_items.
1497                          */
1498                         lock_page(kpage);
1499                         stable_node = stable_tree_insert(kpage);
1500                         if (stable_node) {
1501                                 stable_tree_append(tree_rmap_item, stable_node);
1502                                 stable_tree_append(rmap_item, stable_node);
1503                         }
1504                         unlock_page(kpage);
1505
1506                         /*
1507                          * If we fail to insert the page into the stable tree,
1508                          * we will have 2 virtual addresses that are pointing
1509                          * to a ksm page left outside the stable tree,
1510                          * in which case we need to break_cow on both.
1511                          */
1512                         if (!stable_node) {
1513                                 break_cow(tree_rmap_item);
1514                                 break_cow(rmap_item);
1515                         }
1516                 }
1517         }
1518 }
1519
1520 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1521                                             struct rmap_item **rmap_list,
1522                                             unsigned long addr)
1523 {
1524         struct rmap_item *rmap_item;
1525
1526         while (*rmap_list) {
1527                 rmap_item = *rmap_list;
1528                 if ((rmap_item->address & PAGE_MASK) == addr)
1529                         return rmap_item;
1530                 if (rmap_item->address > addr)
1531                         break;
1532                 *rmap_list = rmap_item->rmap_list;
1533                 remove_rmap_item_from_tree(rmap_item);
1534                 free_rmap_item(rmap_item);
1535         }
1536
1537         rmap_item = alloc_rmap_item();
1538         if (rmap_item) {
1539                 /* It has already been zeroed */
1540                 rmap_item->mm = mm_slot->mm;
1541                 rmap_item->address = addr;
1542                 rmap_item->rmap_list = *rmap_list;
1543                 *rmap_list = rmap_item;
1544         }
1545         return rmap_item;
1546 }
1547
1548 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1549 {
1550         struct mm_struct *mm;
1551         struct mm_slot *slot;
1552         struct vm_area_struct *vma;
1553         struct rmap_item *rmap_item;
1554         int nid;
1555
1556         if (list_empty(&ksm_mm_head.mm_list))
1557                 return NULL;
1558
1559         slot = ksm_scan.mm_slot;
1560         if (slot == &ksm_mm_head) {
1561                 /*
1562                  * A number of pages can hang around indefinitely on per-cpu
1563                  * pagevecs, raised page count preventing write_protect_page
1564                  * from merging them.  Though it doesn't really matter much,
1565                  * it is puzzling to see some stuck in pages_volatile until
1566                  * other activity jostles them out, and they also prevented
1567                  * LTP's KSM test from succeeding deterministically; so drain
1568                  * them here (here rather than on entry to ksm_do_scan(),
1569                  * so we don't IPI too often when pages_to_scan is set low).
1570                  */
1571                 lru_add_drain_all();
1572
1573                 /*
1574                  * Whereas stale stable_nodes on the stable_tree itself
1575                  * get pruned in the regular course of stable_tree_search(),
1576                  * those moved out to the migrate_nodes list can accumulate:
1577                  * so prune them once before each full scan.
1578                  */
1579                 if (!ksm_merge_across_nodes) {
1580                         struct stable_node *stable_node;
1581                         struct list_head *this, *next;
1582                         struct page *page;
1583
1584                         list_for_each_safe(this, next, &migrate_nodes) {
1585                                 stable_node = list_entry(this,
1586                                                 struct stable_node, list);
1587                                 page = get_ksm_page(stable_node, false);
1588                                 if (page)
1589                                         put_page(page);
1590                                 cond_resched();
1591                         }
1592                 }
1593
1594                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1595                         root_unstable_tree[nid] = RB_ROOT;
1596
1597                 spin_lock(&ksm_mmlist_lock);
1598                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1599                 ksm_scan.mm_slot = slot;
1600                 spin_unlock(&ksm_mmlist_lock);
1601                 /*
1602                  * Although we tested list_empty() above, a racing __ksm_exit
1603                  * of the last mm on the list may have removed it since then.
1604                  */
1605                 if (slot == &ksm_mm_head)
1606                         return NULL;
1607 next_mm:
1608                 ksm_scan.address = 0;
1609                 ksm_scan.rmap_list = &slot->rmap_list;
1610         }
1611
1612         mm = slot->mm;
1613         down_read(&mm->mmap_sem);
1614         if (ksm_test_exit(mm))
1615                 vma = NULL;
1616         else
1617                 vma = find_vma(mm, ksm_scan.address);
1618
1619         for (; vma; vma = vma->vm_next) {
1620                 if (!(vma->vm_flags & VM_MERGEABLE))
1621                         continue;
1622                 if (ksm_scan.address < vma->vm_start)
1623                         ksm_scan.address = vma->vm_start;
1624                 if (!vma->anon_vma)
1625                         ksm_scan.address = vma->vm_end;
1626
1627                 while (ksm_scan.address < vma->vm_end) {
1628                         if (ksm_test_exit(mm))
1629                                 break;
1630                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1631                         if (IS_ERR_OR_NULL(*page)) {
1632                                 ksm_scan.address += PAGE_SIZE;
1633                                 cond_resched();
1634                                 continue;
1635                         }
1636                         if (PageAnon(*page) ||
1637                             page_trans_compound_anon(*page)) {
1638                                 flush_anon_page(vma, *page, ksm_scan.address);
1639                                 flush_dcache_page(*page);
1640                                 rmap_item = get_next_rmap_item(slot,
1641                                         ksm_scan.rmap_list, ksm_scan.address);
1642                                 if (rmap_item) {
1643                                         ksm_scan.rmap_list =
1644                                                         &rmap_item->rmap_list;
1645                                         ksm_scan.address += PAGE_SIZE;
1646                                 } else
1647                                         put_page(*page);
1648                                 up_read(&mm->mmap_sem);
1649                                 return rmap_item;
1650                         }
1651                         put_page(*page);
1652                         ksm_scan.address += PAGE_SIZE;
1653                         cond_resched();
1654                 }
1655         }
1656
1657         if (ksm_test_exit(mm)) {
1658                 ksm_scan.address = 0;
1659                 ksm_scan.rmap_list = &slot->rmap_list;
1660         }
1661         /*
1662          * Nuke all the rmap_items that are above this current rmap:
1663          * because there were no VM_MERGEABLE vmas with such addresses.
1664          */
1665         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1666
1667         spin_lock(&ksm_mmlist_lock);
1668         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1669                                                 struct mm_slot, mm_list);
1670         if (ksm_scan.address == 0) {
1671                 /*
1672                  * We've completed a full scan of all vmas, holding mmap_sem
1673                  * throughout, and found no VM_MERGEABLE: so do the same as
1674                  * __ksm_exit does to remove this mm from all our lists now.
1675                  * This applies either when cleaning up after __ksm_exit
1676                  * (but beware: we can reach here even before __ksm_exit),
1677                  * or when all VM_MERGEABLE areas have been unmapped (and
1678                  * mmap_sem then protects against race with MADV_MERGEABLE).
1679                  */
1680                 hash_del(&slot->link);
1681                 list_del(&slot->mm_list);
1682                 spin_unlock(&ksm_mmlist_lock);
1683
1684                 free_mm_slot(slot);
1685                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1686                 up_read(&mm->mmap_sem);
1687                 mmdrop(mm);
1688         } else {
1689                 spin_unlock(&ksm_mmlist_lock);
1690                 up_read(&mm->mmap_sem);
1691         }
1692
1693         /* Repeat until we've completed scanning the whole list */
1694         slot = ksm_scan.mm_slot;
1695         if (slot != &ksm_mm_head)
1696                 goto next_mm;
1697
1698         ksm_scan.seqnr++;
1699         return NULL;
1700 }
1701
1702 /**
1703  * ksm_do_scan  - the ksm scanner main worker function.
1704  * @scan_npages - number of pages we want to scan before we return.
1705  */
1706 static void ksm_do_scan(unsigned int scan_npages)
1707 {
1708         struct rmap_item *rmap_item;
1709         struct page *uninitialized_var(page);
1710
1711         while (scan_npages-- && likely(!freezing(current))) {
1712                 cond_resched();
1713                 rmap_item = scan_get_next_rmap_item(&page);
1714                 if (!rmap_item)
1715                         return;
1716                 cmp_and_merge_page(page, rmap_item);
1717                 put_page(page);
1718         }
1719 }
1720
1721 static int ksmd_should_run(void)
1722 {
1723         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1724 }
1725
1726 static int ksm_scan_thread(void *nothing)
1727 {
1728         set_freezable();
1729         set_user_nice(current, 5);
1730
1731         while (!kthread_should_stop()) {
1732                 mutex_lock(&ksm_thread_mutex);
1733                 wait_while_offlining();
1734                 if (ksmd_should_run())
1735                         ksm_do_scan(ksm_thread_pages_to_scan);
1736                 mutex_unlock(&ksm_thread_mutex);
1737
1738                 try_to_freeze();
1739
1740                 if (ksmd_should_run()) {
1741                         schedule_timeout_interruptible(
1742                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1743                 } else {
1744                         wait_event_freezable(ksm_thread_wait,
1745                                 ksmd_should_run() || kthread_should_stop());
1746                 }
1747         }
1748         return 0;
1749 }
1750
1751 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1752                 unsigned long end, int advice, unsigned long *vm_flags)
1753 {
1754         struct mm_struct *mm = vma->vm_mm;
1755         int err;
1756
1757         switch (advice) {
1758         case MADV_MERGEABLE:
1759                 /*
1760                  * Be somewhat over-protective for now!
1761                  */
1762                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1763                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1764                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1765                         return 0;               /* just ignore the advice */
1766
1767 #ifdef VM_SAO
1768                 if (*vm_flags & VM_SAO)
1769                         return 0;
1770 #endif
1771
1772                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1773                         err = __ksm_enter(mm);
1774                         if (err)
1775                                 return err;
1776                 }
1777
1778                 *vm_flags |= VM_MERGEABLE;
1779                 break;
1780
1781         case MADV_UNMERGEABLE:
1782                 if (!(*vm_flags & VM_MERGEABLE))
1783                         return 0;               /* just ignore the advice */
1784
1785                 if (vma->anon_vma) {
1786                         err = unmerge_ksm_pages(vma, start, end);
1787                         if (err)
1788                                 return err;
1789                 }
1790
1791                 *vm_flags &= ~VM_MERGEABLE;
1792                 break;
1793         }
1794
1795         return 0;
1796 }
1797
1798 int __ksm_enter(struct mm_struct *mm)
1799 {
1800         struct mm_slot *mm_slot;
1801         int needs_wakeup;
1802
1803         mm_slot = alloc_mm_slot();
1804         if (!mm_slot)
1805                 return -ENOMEM;
1806
1807         /* Check ksm_run too?  Would need tighter locking */
1808         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1809
1810         spin_lock(&ksm_mmlist_lock);
1811         insert_to_mm_slots_hash(mm, mm_slot);
1812         /*
1813          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1814          * insert just behind the scanning cursor, to let the area settle
1815          * down a little; when fork is followed by immediate exec, we don't
1816          * want ksmd to waste time setting up and tearing down an rmap_list.
1817          *
1818          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1819          * scanning cursor, otherwise KSM pages in newly forked mms will be
1820          * missed: then we might as well insert at the end of the list.
1821          */
1822         if (ksm_run & KSM_RUN_UNMERGE)
1823                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1824         else
1825                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1826         spin_unlock(&ksm_mmlist_lock);
1827
1828         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1829         atomic_inc(&mm->mm_count);
1830
1831         if (needs_wakeup)
1832                 wake_up_interruptible(&ksm_thread_wait);
1833
1834         return 0;
1835 }
1836
1837 void __ksm_exit(struct mm_struct *mm)
1838 {
1839         struct mm_slot *mm_slot;
1840         int easy_to_free = 0;
1841
1842         /*
1843          * This process is exiting: if it's straightforward (as is the
1844          * case when ksmd was never running), free mm_slot immediately.
1845          * But if it's at the cursor or has rmap_items linked to it, use
1846          * mmap_sem to synchronize with any break_cows before pagetables
1847          * are freed, and leave the mm_slot on the list for ksmd to free.
1848          * Beware: ksm may already have noticed it exiting and freed the slot.
1849          */
1850
1851         spin_lock(&ksm_mmlist_lock);
1852         mm_slot = get_mm_slot(mm);
1853         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1854                 if (!mm_slot->rmap_list) {
1855                         hash_del(&mm_slot->link);
1856                         list_del(&mm_slot->mm_list);
1857                         easy_to_free = 1;
1858                 } else {
1859                         list_move(&mm_slot->mm_list,
1860                                   &ksm_scan.mm_slot->mm_list);
1861                 }
1862         }
1863         spin_unlock(&ksm_mmlist_lock);
1864
1865         if (easy_to_free) {
1866                 free_mm_slot(mm_slot);
1867                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1868                 mmdrop(mm);
1869         } else if (mm_slot) {
1870                 down_write(&mm->mmap_sem);
1871                 up_write(&mm->mmap_sem);
1872         }
1873 }
1874
1875 struct page *ksm_might_need_to_copy(struct page *page,
1876                         struct vm_area_struct *vma, unsigned long address)
1877 {
1878         struct anon_vma *anon_vma = page_anon_vma(page);
1879         struct page *new_page;
1880
1881         if (PageKsm(page)) {
1882                 if (page_stable_node(page) &&
1883                     !(ksm_run & KSM_RUN_UNMERGE))
1884                         return page;    /* no need to copy it */
1885         } else if (!anon_vma) {
1886                 return page;            /* no need to copy it */
1887         } else if (anon_vma->root == vma->anon_vma->root &&
1888                  page->index == linear_page_index(vma, address)) {
1889                 return page;            /* still no need to copy it */
1890         }
1891         if (!PageUptodate(page))
1892                 return page;            /* let do_swap_page report the error */
1893
1894         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1895         if (new_page) {
1896                 copy_user_highpage(new_page, page, address, vma);
1897
1898                 SetPageDirty(new_page);
1899                 __SetPageUptodate(new_page);
1900                 __set_page_locked(new_page);
1901         }
1902
1903         return new_page;
1904 }
1905
1906 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1907                         unsigned long *vm_flags)
1908 {
1909         struct stable_node *stable_node;
1910         struct rmap_item *rmap_item;
1911         unsigned int mapcount = page_mapcount(page);
1912         int referenced = 0;
1913         int search_new_forks = 0;
1914
1915         VM_BUG_ON(!PageKsm(page));
1916         VM_BUG_ON(!PageLocked(page));
1917
1918         stable_node = page_stable_node(page);
1919         if (!stable_node)
1920                 return 0;
1921 again:
1922         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1923                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1924                 struct anon_vma_chain *vmac;
1925                 struct vm_area_struct *vma;
1926
1927                 anon_vma_lock_read(anon_vma);
1928                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1929                                                0, ULONG_MAX) {
1930                         vma = vmac->vma;
1931                         if (rmap_item->address < vma->vm_start ||
1932                             rmap_item->address >= vma->vm_end)
1933                                 continue;
1934                         /*
1935                          * Initially we examine only the vma which covers this
1936                          * rmap_item; but later, if there is still work to do,
1937                          * we examine covering vmas in other mms: in case they
1938                          * were forked from the original since ksmd passed.
1939                          */
1940                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1941                                 continue;
1942
1943                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1944                                 continue;
1945
1946                         referenced += page_referenced_one(page, vma,
1947                                 rmap_item->address, &mapcount, vm_flags);
1948                         if (!search_new_forks || !mapcount)
1949                                 break;
1950                 }
1951                 anon_vma_unlock_read(anon_vma);
1952                 if (!mapcount)
1953                         goto out;
1954         }
1955         if (!search_new_forks++)
1956                 goto again;
1957 out:
1958         return referenced;
1959 }
1960
1961 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1962 {
1963         struct stable_node *stable_node;
1964         struct rmap_item *rmap_item;
1965         int ret = SWAP_AGAIN;
1966         int search_new_forks = 0;
1967
1968         VM_BUG_ON(!PageKsm(page));
1969         VM_BUG_ON(!PageLocked(page));
1970
1971         stable_node = page_stable_node(page);
1972         if (!stable_node)
1973                 return SWAP_FAIL;
1974 again:
1975         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1976                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1977                 struct anon_vma_chain *vmac;
1978                 struct vm_area_struct *vma;
1979
1980                 anon_vma_lock_read(anon_vma);
1981                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1982                                                0, ULONG_MAX) {
1983                         vma = vmac->vma;
1984                         if (rmap_item->address < vma->vm_start ||
1985                             rmap_item->address >= vma->vm_end)
1986                                 continue;
1987                         /*
1988                          * Initially we examine only the vma which covers this
1989                          * rmap_item; but later, if there is still work to do,
1990                          * we examine covering vmas in other mms: in case they
1991                          * were forked from the original since ksmd passed.
1992                          */
1993                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1994                                 continue;
1995
1996                         ret = try_to_unmap_one(page, vma,
1997                                         rmap_item->address, flags);
1998                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1999                                 anon_vma_unlock_read(anon_vma);
2000                                 goto out;
2001                         }
2002                 }
2003                 anon_vma_unlock_read(anon_vma);
2004         }
2005         if (!search_new_forks++)
2006                 goto again;
2007 out:
2008         return ret;
2009 }
2010
2011 #ifdef CONFIG_MIGRATION
2012 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
2013                   struct vm_area_struct *, unsigned long, void *), void *arg)
2014 {
2015         struct stable_node *stable_node;
2016         struct rmap_item *rmap_item;
2017         int ret = SWAP_AGAIN;
2018         int search_new_forks = 0;
2019
2020         VM_BUG_ON(!PageKsm(page));
2021         VM_BUG_ON(!PageLocked(page));
2022
2023         stable_node = page_stable_node(page);
2024         if (!stable_node)
2025                 return ret;
2026 again:
2027         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2028                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2029                 struct anon_vma_chain *vmac;
2030                 struct vm_area_struct *vma;
2031
2032                 anon_vma_lock_read(anon_vma);
2033                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2034                                                0, ULONG_MAX) {
2035                         vma = vmac->vma;
2036                         if (rmap_item->address < vma->vm_start ||
2037                             rmap_item->address >= vma->vm_end)
2038                                 continue;
2039                         /*
2040                          * Initially we examine only the vma which covers this
2041                          * rmap_item; but later, if there is still work to do,
2042                          * we examine covering vmas in other mms: in case they
2043                          * were forked from the original since ksmd passed.
2044                          */
2045                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2046                                 continue;
2047
2048                         ret = rmap_one(page, vma, rmap_item->address, arg);
2049                         if (ret != SWAP_AGAIN) {
2050                                 anon_vma_unlock_read(anon_vma);
2051                                 goto out;
2052                         }
2053                 }
2054                 anon_vma_unlock_read(anon_vma);
2055         }
2056         if (!search_new_forks++)
2057                 goto again;
2058 out:
2059         return ret;
2060 }
2061
2062 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2063 {
2064         struct stable_node *stable_node;
2065
2066         VM_BUG_ON(!PageLocked(oldpage));
2067         VM_BUG_ON(!PageLocked(newpage));
2068         VM_BUG_ON(newpage->mapping != oldpage->mapping);
2069
2070         stable_node = page_stable_node(newpage);
2071         if (stable_node) {
2072                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2073                 stable_node->kpfn = page_to_pfn(newpage);
2074                 /*
2075                  * newpage->mapping was set in advance; now we need smp_wmb()
2076                  * to make sure that the new stable_node->kpfn is visible
2077                  * to get_ksm_page() before it can see that oldpage->mapping
2078                  * has gone stale (or that PageSwapCache has been cleared).
2079                  */
2080                 smp_wmb();
2081                 set_page_stable_node(oldpage, NULL);
2082         }
2083 }
2084 #endif /* CONFIG_MIGRATION */
2085
2086 #ifdef CONFIG_MEMORY_HOTREMOVE
2087 static int just_wait(void *word)
2088 {
2089         schedule();
2090         return 0;
2091 }
2092
2093 static void wait_while_offlining(void)
2094 {
2095         while (ksm_run & KSM_RUN_OFFLINE) {
2096                 mutex_unlock(&ksm_thread_mutex);
2097                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2098                                 just_wait, TASK_UNINTERRUPTIBLE);
2099                 mutex_lock(&ksm_thread_mutex);
2100         }
2101 }
2102
2103 static void ksm_check_stable_tree(unsigned long start_pfn,
2104                                   unsigned long end_pfn)
2105 {
2106         struct stable_node *stable_node;
2107         struct list_head *this, *next;
2108         struct rb_node *node;
2109         int nid;
2110
2111         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2112                 node = rb_first(root_stable_tree + nid);
2113                 while (node) {
2114                         stable_node = rb_entry(node, struct stable_node, node);
2115                         if (stable_node->kpfn >= start_pfn &&
2116                             stable_node->kpfn < end_pfn) {
2117                                 /*
2118                                  * Don't get_ksm_page, page has already gone:
2119                                  * which is why we keep kpfn instead of page*
2120                                  */
2121                                 remove_node_from_stable_tree(stable_node);
2122                                 node = rb_first(root_stable_tree + nid);
2123                         } else
2124                                 node = rb_next(node);
2125                         cond_resched();
2126                 }
2127         }
2128         list_for_each_safe(this, next, &migrate_nodes) {
2129                 stable_node = list_entry(this, struct stable_node, list);
2130                 if (stable_node->kpfn >= start_pfn &&
2131                     stable_node->kpfn < end_pfn)
2132                         remove_node_from_stable_tree(stable_node);
2133                 cond_resched();
2134         }
2135 }
2136
2137 static int ksm_memory_callback(struct notifier_block *self,
2138                                unsigned long action, void *arg)
2139 {
2140         struct memory_notify *mn = arg;
2141
2142         switch (action) {
2143         case MEM_GOING_OFFLINE:
2144                 /*
2145                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2146                  * and remove_all_stable_nodes() while memory is going offline:
2147                  * it is unsafe for them to touch the stable tree at this time.
2148                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2149                  * which do not need the ksm_thread_mutex are all safe.
2150                  */
2151                 mutex_lock(&ksm_thread_mutex);
2152                 ksm_run |= KSM_RUN_OFFLINE;
2153                 mutex_unlock(&ksm_thread_mutex);
2154                 break;
2155
2156         case MEM_OFFLINE:
2157                 /*
2158                  * Most of the work is done by page migration; but there might
2159                  * be a few stable_nodes left over, still pointing to struct
2160                  * pages which have been offlined: prune those from the tree,
2161                  * otherwise get_ksm_page() might later try to access a
2162                  * non-existent struct page.
2163                  */
2164                 ksm_check_stable_tree(mn->start_pfn,
2165                                       mn->start_pfn + mn->nr_pages);
2166                 /* fallthrough */
2167
2168         case MEM_CANCEL_OFFLINE:
2169                 mutex_lock(&ksm_thread_mutex);
2170                 ksm_run &= ~KSM_RUN_OFFLINE;
2171                 mutex_unlock(&ksm_thread_mutex);
2172
2173                 smp_mb();       /* wake_up_bit advises this */
2174                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2175                 break;
2176         }
2177         return NOTIFY_OK;
2178 }
2179 #else
2180 static void wait_while_offlining(void)
2181 {
2182 }
2183 #endif /* CONFIG_MEMORY_HOTREMOVE */
2184
2185 #ifdef CONFIG_SYSFS
2186 /*
2187  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2188  */
2189
2190 #define KSM_ATTR_RO(_name) \
2191         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2192 #define KSM_ATTR(_name) \
2193         static struct kobj_attribute _name##_attr = \
2194                 __ATTR(_name, 0644, _name##_show, _name##_store)
2195
2196 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2197                                     struct kobj_attribute *attr, char *buf)
2198 {
2199         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2200 }
2201
2202 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2203                                      struct kobj_attribute *attr,
2204                                      const char *buf, size_t count)
2205 {
2206         unsigned long msecs;
2207         int err;
2208
2209         err = strict_strtoul(buf, 10, &msecs);
2210         if (err || msecs > UINT_MAX)
2211                 return -EINVAL;
2212
2213         ksm_thread_sleep_millisecs = msecs;
2214
2215         return count;
2216 }
2217 KSM_ATTR(sleep_millisecs);
2218
2219 static ssize_t pages_to_scan_show(struct kobject *kobj,
2220                                   struct kobj_attribute *attr, char *buf)
2221 {
2222         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2223 }
2224
2225 static ssize_t pages_to_scan_store(struct kobject *kobj,
2226                                    struct kobj_attribute *attr,
2227                                    const char *buf, size_t count)
2228 {
2229         int err;
2230         unsigned long nr_pages;
2231
2232         err = strict_strtoul(buf, 10, &nr_pages);
2233         if (err || nr_pages > UINT_MAX)
2234                 return -EINVAL;
2235
2236         ksm_thread_pages_to_scan = nr_pages;
2237
2238         return count;
2239 }
2240 KSM_ATTR(pages_to_scan);
2241
2242 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2243                         char *buf)
2244 {
2245         return sprintf(buf, "%lu\n", ksm_run);
2246 }
2247
2248 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2249                          const char *buf, size_t count)
2250 {
2251         int err;
2252         unsigned long flags;
2253
2254         err = strict_strtoul(buf, 10, &flags);
2255         if (err || flags > UINT_MAX)
2256                 return -EINVAL;
2257         if (flags > KSM_RUN_UNMERGE)
2258                 return -EINVAL;
2259
2260         /*
2261          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2262          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2263          * breaking COW to free the pages_shared (but leaves mm_slots
2264          * on the list for when ksmd may be set running again).
2265          */
2266
2267         mutex_lock(&ksm_thread_mutex);
2268         wait_while_offlining();
2269         if (ksm_run != flags) {
2270                 ksm_run = flags;
2271                 if (flags & KSM_RUN_UNMERGE) {
2272                         set_current_oom_origin();
2273                         err = unmerge_and_remove_all_rmap_items();
2274                         clear_current_oom_origin();
2275                         if (err) {
2276                                 ksm_run = KSM_RUN_STOP;
2277                                 count = err;
2278                         }
2279                 }
2280         }
2281         mutex_unlock(&ksm_thread_mutex);
2282
2283         if (flags & KSM_RUN_MERGE)
2284                 wake_up_interruptible(&ksm_thread_wait);
2285
2286         return count;
2287 }
2288 KSM_ATTR(run);
2289
2290 #ifdef CONFIG_NUMA
2291 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2292                                 struct kobj_attribute *attr, char *buf)
2293 {
2294         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2295 }
2296
2297 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2298                                    struct kobj_attribute *attr,
2299                                    const char *buf, size_t count)
2300 {
2301         int err;
2302         unsigned long knob;
2303
2304         err = kstrtoul(buf, 10, &knob);
2305         if (err)
2306                 return err;
2307         if (knob > 1)
2308                 return -EINVAL;
2309
2310         mutex_lock(&ksm_thread_mutex);
2311         wait_while_offlining();
2312         if (ksm_merge_across_nodes != knob) {
2313                 if (ksm_pages_shared || remove_all_stable_nodes())
2314                         err = -EBUSY;
2315                 else if (root_stable_tree == one_stable_tree) {
2316                         struct rb_root *buf;
2317                         /*
2318                          * This is the first time that we switch away from the
2319                          * default of merging across nodes: must now allocate
2320                          * a buffer to hold as many roots as may be needed.
2321                          * Allocate stable and unstable together:
2322                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2323                          */
2324                         buf = kcalloc(nr_node_ids + nr_node_ids,
2325                                 sizeof(*buf), GFP_KERNEL | __GFP_ZERO);
2326                         /* Let us assume that RB_ROOT is NULL is zero */
2327                         if (!buf)
2328                                 err = -ENOMEM;
2329                         else {
2330                                 root_stable_tree = buf;
2331                                 root_unstable_tree = buf + nr_node_ids;
2332                                 /* Stable tree is empty but not the unstable */
2333                                 root_unstable_tree[0] = one_unstable_tree[0];
2334                         }
2335                 }
2336                 if (!err) {
2337                         ksm_merge_across_nodes = knob;
2338                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2339                 }
2340         }
2341         mutex_unlock(&ksm_thread_mutex);
2342
2343         return err ? err : count;
2344 }
2345 KSM_ATTR(merge_across_nodes);
2346 #endif
2347
2348 static ssize_t pages_shared_show(struct kobject *kobj,
2349                                  struct kobj_attribute *attr, char *buf)
2350 {
2351         return sprintf(buf, "%lu\n", ksm_pages_shared);
2352 }
2353 KSM_ATTR_RO(pages_shared);
2354
2355 static ssize_t pages_sharing_show(struct kobject *kobj,
2356                                   struct kobj_attribute *attr, char *buf)
2357 {
2358         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2359 }
2360 KSM_ATTR_RO(pages_sharing);
2361
2362 static ssize_t pages_unshared_show(struct kobject *kobj,
2363                                    struct kobj_attribute *attr, char *buf)
2364 {
2365         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2366 }
2367 KSM_ATTR_RO(pages_unshared);
2368
2369 static ssize_t pages_volatile_show(struct kobject *kobj,
2370                                    struct kobj_attribute *attr, char *buf)
2371 {
2372         long ksm_pages_volatile;
2373
2374         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2375                                 - ksm_pages_sharing - ksm_pages_unshared;
2376         /*
2377          * It was not worth any locking to calculate that statistic,
2378          * but it might therefore sometimes be negative: conceal that.
2379          */
2380         if (ksm_pages_volatile < 0)
2381                 ksm_pages_volatile = 0;
2382         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2383 }
2384 KSM_ATTR_RO(pages_volatile);
2385
2386 static ssize_t full_scans_show(struct kobject *kobj,
2387                                struct kobj_attribute *attr, char *buf)
2388 {
2389         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2390 }
2391 KSM_ATTR_RO(full_scans);
2392
2393 static struct attribute *ksm_attrs[] = {
2394         &sleep_millisecs_attr.attr,
2395         &pages_to_scan_attr.attr,
2396         &run_attr.attr,
2397         &pages_shared_attr.attr,
2398         &pages_sharing_attr.attr,
2399         &pages_unshared_attr.attr,
2400         &pages_volatile_attr.attr,
2401         &full_scans_attr.attr,
2402 #ifdef CONFIG_NUMA
2403         &merge_across_nodes_attr.attr,
2404 #endif
2405         NULL,
2406 };
2407
2408 static struct attribute_group ksm_attr_group = {
2409         .attrs = ksm_attrs,
2410         .name = "ksm",
2411 };
2412 #endif /* CONFIG_SYSFS */
2413
2414 static int __init ksm_init(void)
2415 {
2416         struct task_struct *ksm_thread;
2417         int err;
2418
2419         err = ksm_slab_init();
2420         if (err)
2421                 goto out;
2422
2423         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2424         if (IS_ERR(ksm_thread)) {
2425                 printk(KERN_ERR "ksm: creating kthread failed\n");
2426                 err = PTR_ERR(ksm_thread);
2427                 goto out_free;
2428         }
2429
2430 #ifdef CONFIG_SYSFS
2431         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2432         if (err) {
2433                 printk(KERN_ERR "ksm: register sysfs failed\n");
2434                 kthread_stop(ksm_thread);
2435                 goto out_free;
2436         }
2437 #else
2438         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2439
2440 #endif /* CONFIG_SYSFS */
2441
2442 #ifdef CONFIG_MEMORY_HOTREMOVE
2443         /* There is no significance to this priority 100 */
2444         hotplug_memory_notifier(ksm_memory_callback, 100);
2445 #endif
2446         return 0;
2447
2448 out_free:
2449         ksm_slab_free();
2450 out:
2451         return err;
2452 }
2453 module_init(ksm_init)