Merge tag '9p-6.4-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh...
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)         (x)
53 #define DO_NUMA(x)      do { (x); } while (0)
54 #else
55 #define NUMA(x)         (0)
56 #define DO_NUMA(x)      do { } while (0)
57 #endif
58
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125         struct mm_slot slot;
126         struct ksm_rmap_item *rmap_list;
127 };
128
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139         struct ksm_mm_slot *mm_slot;
140         unsigned long address;
141         struct ksm_rmap_item **rmap_list;
142         unsigned long seqnr;
143 };
144
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158         union {
159                 struct rb_node node;    /* when node of stable tree */
160                 struct {                /* when listed for migration */
161                         struct list_head *head;
162                         struct {
163                                 struct hlist_node hlist_dup;
164                                 struct list_head list;
165                         };
166                 };
167         };
168         struct hlist_head hlist;
169         union {
170                 unsigned long kpfn;
171                 unsigned long chain_prune_time;
172         };
173         /*
174          * STABLE_NODE_CHAIN can be any negative number in
175          * rmap_hlist_len negative range, but better not -1 to be able
176          * to reliably detect underflows.
177          */
178 #define STABLE_NODE_CHAIN -1024
179         int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181         int nid;
182 #endif
183 };
184
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198         struct ksm_rmap_item *rmap_list;
199         union {
200                 struct anon_vma *anon_vma;      /* when stable */
201 #ifdef CONFIG_NUMA
202                 int nid;                /* when node of unstable tree */
203 #endif
204         };
205         struct mm_struct *mm;
206         unsigned long address;          /* + low bits used for flags below */
207         unsigned int oldchecksum;       /* when unstable */
208         union {
209                 struct rb_node node;    /* when node of unstable tree */
210                 struct {                /* when listed from stable tree */
211                         struct ksm_stable_node *head;
212                         struct hlist_node hlist;
213                 };
214         };
215 };
216
217 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
219 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
220
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233
234 static struct ksm_mm_slot ksm_mm_head = {
235         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238         .mm_slot = &ksm_mm_head,
239 };
240
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes  1U
287 #define ksm_nr_node_ids         1
288 #endif
289
290 #define KSM_RUN_STOP    0
291 #define KSM_RUN_MERGE   1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303                 sizeof(struct __struct), __alignof__(struct __struct),\
304                 (__flags), NULL)
305
306 static int __init ksm_slab_init(void)
307 {
308         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309         if (!rmap_item_cache)
310                 goto out;
311
312         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313         if (!stable_node_cache)
314                 goto out_free1;
315
316         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
317         if (!mm_slot_cache)
318                 goto out_free2;
319
320         return 0;
321
322 out_free2:
323         kmem_cache_destroy(stable_node_cache);
324 out_free1:
325         kmem_cache_destroy(rmap_item_cache);
326 out:
327         return -ENOMEM;
328 }
329
330 static void __init ksm_slab_free(void)
331 {
332         kmem_cache_destroy(mm_slot_cache);
333         kmem_cache_destroy(stable_node_cache);
334         kmem_cache_destroy(rmap_item_cache);
335         mm_slot_cache = NULL;
336 }
337
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
339 {
340         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
344 {
345         return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349                                              struct ksm_stable_node *chain)
350 {
351         VM_BUG_ON(is_stable_node_dup(dup));
352         dup->head = STABLE_NODE_DUP_HEAD;
353         VM_BUG_ON(!is_stable_node_chain(chain));
354         hlist_add_head(&dup->hlist_dup, &chain->hlist);
355         ksm_stable_node_dups++;
356 }
357
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
359 {
360         VM_BUG_ON(!is_stable_node_dup(dup));
361         hlist_del(&dup->hlist_dup);
362         ksm_stable_node_dups--;
363 }
364
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
366 {
367         VM_BUG_ON(is_stable_node_chain(dup));
368         if (is_stable_node_dup(dup))
369                 __stable_node_dup_del(dup);
370         else
371                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373         dup->head = NULL;
374 #endif
375 }
376
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
378 {
379         struct ksm_rmap_item *rmap_item;
380
381         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382                                                 __GFP_NORETRY | __GFP_NOWARN);
383         if (rmap_item)
384                 ksm_rmap_items++;
385         return rmap_item;
386 }
387
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
389 {
390         ksm_rmap_items--;
391         rmap_item->mm->ksm_rmap_items--;
392         rmap_item->mm = NULL;   /* debug safety */
393         kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
396 static inline struct ksm_stable_node *alloc_stable_node(void)
397 {
398         /*
399          * The allocation can take too long with GFP_KERNEL when memory is under
400          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401          * grants access to memory reserves, helping to avoid this problem.
402          */
403         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
407 {
408         VM_BUG_ON(stable_node->rmap_hlist_len &&
409                   !is_stable_node_chain(stable_node));
410         kmem_cache_free(stable_node_cache, stable_node);
411 }
412
413 /*
414  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415  * page tables after it has passed through ksm_exit() - which, if necessary,
416  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
417  * a special flag: they can just back out as soon as mm_users goes to zero.
418  * ksm_test_exit() is used throughout to make this test for exit: in some
419  * places for correctness, in some places just to avoid unnecessary work.
420  */
421 static inline bool ksm_test_exit(struct mm_struct *mm)
422 {
423         return atomic_read(&mm->mm_users) == 0;
424 }
425
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427                         struct mm_walk *walk)
428 {
429         struct page *page = NULL;
430         spinlock_t *ptl;
431         pte_t *pte;
432         int ret;
433
434         if (pmd_leaf(*pmd) || !pmd_present(*pmd))
435                 return 0;
436
437         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438         if (pte_present(*pte)) {
439                 page = vm_normal_page(walk->vma, addr, *pte);
440         } else if (!pte_none(*pte)) {
441                 swp_entry_t entry = pte_to_swp_entry(*pte);
442
443                 /*
444                  * As KSM pages remain KSM pages until freed, no need to wait
445                  * here for migration to end.
446                  */
447                 if (is_migration_entry(entry))
448                         page = pfn_swap_entry_to_page(entry);
449         }
450         ret = page && PageKsm(page);
451         pte_unmap_unlock(pte, ptl);
452         return ret;
453 }
454
455 static const struct mm_walk_ops break_ksm_ops = {
456         .pmd_entry = break_ksm_pmd_entry,
457 };
458
459 /*
460  * We use break_ksm to break COW on a ksm page by triggering unsharing,
461  * such that the ksm page will get replaced by an exclusive anonymous page.
462  *
463  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
464  * in case the application has unmapped and remapped mm,addr meanwhile.
465  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
466  * mmap of /dev/mem, where we would not want to touch it.
467  *
468  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
469  * of the process that owns 'vma'.  We also do not want to enforce
470  * protection keys here anyway.
471  */
472 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
473 {
474         vm_fault_t ret = 0;
475
476         do {
477                 int ksm_page;
478
479                 cond_resched();
480                 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
481                                                &break_ksm_ops, NULL);
482                 if (WARN_ON_ONCE(ksm_page < 0))
483                         return ksm_page;
484                 if (!ksm_page)
485                         return 0;
486                 ret = handle_mm_fault(vma, addr,
487                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
488                                       NULL);
489         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490         /*
491          * We must loop until we no longer find a KSM page because
492          * handle_mm_fault() may back out if there's any difficulty e.g. if
493          * pte accessed bit gets updated concurrently.
494          *
495          * VM_FAULT_SIGBUS could occur if we race with truncation of the
496          * backing file, which also invalidates anonymous pages: that's
497          * okay, that truncation will have unmapped the PageKsm for us.
498          *
499          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501          * current task has TIF_MEMDIE set, and will be OOM killed on return
502          * to user; and ksmd, having no mm, would never be chosen for that.
503          *
504          * But if the mm is in a limited mem_cgroup, then the fault may fail
505          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506          * even ksmd can fail in this way - though it's usually breaking ksm
507          * just to undo a merge it made a moment before, so unlikely to oom.
508          *
509          * That's a pity: we might therefore have more kernel pages allocated
510          * than we're counting as nodes in the stable tree; but ksm_do_scan
511          * will retry to break_cow on each pass, so should recover the page
512          * in due course.  The important thing is to not let VM_MERGEABLE
513          * be cleared while any such pages might remain in the area.
514          */
515         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517
518 static bool vma_ksm_compatible(struct vm_area_struct *vma)
519 {
520         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
521                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
522                              VM_MIXEDMAP))
523                 return false;           /* just ignore the advice */
524
525         if (vma_is_dax(vma))
526                 return false;
527
528 #ifdef VM_SAO
529         if (vma->vm_flags & VM_SAO)
530                 return false;
531 #endif
532 #ifdef VM_SPARC_ADI
533         if (vma->vm_flags & VM_SPARC_ADI)
534                 return false;
535 #endif
536
537         return true;
538 }
539
540 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
541                 unsigned long addr)
542 {
543         struct vm_area_struct *vma;
544         if (ksm_test_exit(mm))
545                 return NULL;
546         vma = vma_lookup(mm, addr);
547         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
548                 return NULL;
549         return vma;
550 }
551
552 static void break_cow(struct ksm_rmap_item *rmap_item)
553 {
554         struct mm_struct *mm = rmap_item->mm;
555         unsigned long addr = rmap_item->address;
556         struct vm_area_struct *vma;
557
558         /*
559          * It is not an accident that whenever we want to break COW
560          * to undo, we also need to drop a reference to the anon_vma.
561          */
562         put_anon_vma(rmap_item->anon_vma);
563
564         mmap_read_lock(mm);
565         vma = find_mergeable_vma(mm, addr);
566         if (vma)
567                 break_ksm(vma, addr);
568         mmap_read_unlock(mm);
569 }
570
571 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
572 {
573         struct mm_struct *mm = rmap_item->mm;
574         unsigned long addr = rmap_item->address;
575         struct vm_area_struct *vma;
576         struct page *page;
577
578         mmap_read_lock(mm);
579         vma = find_mergeable_vma(mm, addr);
580         if (!vma)
581                 goto out;
582
583         page = follow_page(vma, addr, FOLL_GET);
584         if (IS_ERR_OR_NULL(page))
585                 goto out;
586         if (is_zone_device_page(page))
587                 goto out_putpage;
588         if (PageAnon(page)) {
589                 flush_anon_page(vma, page, addr);
590                 flush_dcache_page(page);
591         } else {
592 out_putpage:
593                 put_page(page);
594 out:
595                 page = NULL;
596         }
597         mmap_read_unlock(mm);
598         return page;
599 }
600
601 /*
602  * This helper is used for getting right index into array of tree roots.
603  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
604  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
605  * every node has its own stable and unstable tree.
606  */
607 static inline int get_kpfn_nid(unsigned long kpfn)
608 {
609         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
610 }
611
612 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
613                                                    struct rb_root *root)
614 {
615         struct ksm_stable_node *chain = alloc_stable_node();
616         VM_BUG_ON(is_stable_node_chain(dup));
617         if (likely(chain)) {
618                 INIT_HLIST_HEAD(&chain->hlist);
619                 chain->chain_prune_time = jiffies;
620                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
621 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
622                 chain->nid = NUMA_NO_NODE; /* debug */
623 #endif
624                 ksm_stable_node_chains++;
625
626                 /*
627                  * Put the stable node chain in the first dimension of
628                  * the stable tree and at the same time remove the old
629                  * stable node.
630                  */
631                 rb_replace_node(&dup->node, &chain->node, root);
632
633                 /*
634                  * Move the old stable node to the second dimension
635                  * queued in the hlist_dup. The invariant is that all
636                  * dup stable_nodes in the chain->hlist point to pages
637                  * that are write protected and have the exact same
638                  * content.
639                  */
640                 stable_node_chain_add_dup(dup, chain);
641         }
642         return chain;
643 }
644
645 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
646                                           struct rb_root *root)
647 {
648         rb_erase(&chain->node, root);
649         free_stable_node(chain);
650         ksm_stable_node_chains--;
651 }
652
653 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
654 {
655         struct ksm_rmap_item *rmap_item;
656
657         /* check it's not STABLE_NODE_CHAIN or negative */
658         BUG_ON(stable_node->rmap_hlist_len < 0);
659
660         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
661                 if (rmap_item->hlist.next) {
662                         ksm_pages_sharing--;
663                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
664                 } else {
665                         ksm_pages_shared--;
666                 }
667
668                 rmap_item->mm->ksm_merging_pages--;
669
670                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
671                 stable_node->rmap_hlist_len--;
672                 put_anon_vma(rmap_item->anon_vma);
673                 rmap_item->address &= PAGE_MASK;
674                 cond_resched();
675         }
676
677         /*
678          * We need the second aligned pointer of the migrate_nodes
679          * list_head to stay clear from the rb_parent_color union
680          * (aligned and different than any node) and also different
681          * from &migrate_nodes. This will verify that future list.h changes
682          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
683          */
684         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
685         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
686
687         trace_ksm_remove_ksm_page(stable_node->kpfn);
688         if (stable_node->head == &migrate_nodes)
689                 list_del(&stable_node->list);
690         else
691                 stable_node_dup_del(stable_node);
692         free_stable_node(stable_node);
693 }
694
695 enum get_ksm_page_flags {
696         GET_KSM_PAGE_NOLOCK,
697         GET_KSM_PAGE_LOCK,
698         GET_KSM_PAGE_TRYLOCK
699 };
700
701 /*
702  * get_ksm_page: checks if the page indicated by the stable node
703  * is still its ksm page, despite having held no reference to it.
704  * In which case we can trust the content of the page, and it
705  * returns the gotten page; but if the page has now been zapped,
706  * remove the stale node from the stable tree and return NULL.
707  * But beware, the stable node's page might be being migrated.
708  *
709  * You would expect the stable_node to hold a reference to the ksm page.
710  * But if it increments the page's count, swapping out has to wait for
711  * ksmd to come around again before it can free the page, which may take
712  * seconds or even minutes: much too unresponsive.  So instead we use a
713  * "keyhole reference": access to the ksm page from the stable node peeps
714  * out through its keyhole to see if that page still holds the right key,
715  * pointing back to this stable node.  This relies on freeing a PageAnon
716  * page to reset its page->mapping to NULL, and relies on no other use of
717  * a page to put something that might look like our key in page->mapping.
718  * is on its way to being freed; but it is an anomaly to bear in mind.
719  */
720 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
721                                  enum get_ksm_page_flags flags)
722 {
723         struct page *page;
724         void *expected_mapping;
725         unsigned long kpfn;
726
727         expected_mapping = (void *)((unsigned long)stable_node |
728                                         PAGE_MAPPING_KSM);
729 again:
730         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
731         page = pfn_to_page(kpfn);
732         if (READ_ONCE(page->mapping) != expected_mapping)
733                 goto stale;
734
735         /*
736          * We cannot do anything with the page while its refcount is 0.
737          * Usually 0 means free, or tail of a higher-order page: in which
738          * case this node is no longer referenced, and should be freed;
739          * however, it might mean that the page is under page_ref_freeze().
740          * The __remove_mapping() case is easy, again the node is now stale;
741          * the same is in reuse_ksm_page() case; but if page is swapcache
742          * in folio_migrate_mapping(), it might still be our page,
743          * in which case it's essential to keep the node.
744          */
745         while (!get_page_unless_zero(page)) {
746                 /*
747                  * Another check for page->mapping != expected_mapping would
748                  * work here too.  We have chosen the !PageSwapCache test to
749                  * optimize the common case, when the page is or is about to
750                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
751                  * in the ref_freeze section of __remove_mapping(); but Anon
752                  * page->mapping reset to NULL later, in free_pages_prepare().
753                  */
754                 if (!PageSwapCache(page))
755                         goto stale;
756                 cpu_relax();
757         }
758
759         if (READ_ONCE(page->mapping) != expected_mapping) {
760                 put_page(page);
761                 goto stale;
762         }
763
764         if (flags == GET_KSM_PAGE_TRYLOCK) {
765                 if (!trylock_page(page)) {
766                         put_page(page);
767                         return ERR_PTR(-EBUSY);
768                 }
769         } else if (flags == GET_KSM_PAGE_LOCK)
770                 lock_page(page);
771
772         if (flags != GET_KSM_PAGE_NOLOCK) {
773                 if (READ_ONCE(page->mapping) != expected_mapping) {
774                         unlock_page(page);
775                         put_page(page);
776                         goto stale;
777                 }
778         }
779         return page;
780
781 stale:
782         /*
783          * We come here from above when page->mapping or !PageSwapCache
784          * suggests that the node is stale; but it might be under migration.
785          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
786          * before checking whether node->kpfn has been changed.
787          */
788         smp_rmb();
789         if (READ_ONCE(stable_node->kpfn) != kpfn)
790                 goto again;
791         remove_node_from_stable_tree(stable_node);
792         return NULL;
793 }
794
795 /*
796  * Removing rmap_item from stable or unstable tree.
797  * This function will clean the information from the stable/unstable tree.
798  */
799 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
800 {
801         if (rmap_item->address & STABLE_FLAG) {
802                 struct ksm_stable_node *stable_node;
803                 struct page *page;
804
805                 stable_node = rmap_item->head;
806                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
807                 if (!page)
808                         goto out;
809
810                 hlist_del(&rmap_item->hlist);
811                 unlock_page(page);
812                 put_page(page);
813
814                 if (!hlist_empty(&stable_node->hlist))
815                         ksm_pages_sharing--;
816                 else
817                         ksm_pages_shared--;
818
819                 rmap_item->mm->ksm_merging_pages--;
820
821                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
822                 stable_node->rmap_hlist_len--;
823
824                 put_anon_vma(rmap_item->anon_vma);
825                 rmap_item->head = NULL;
826                 rmap_item->address &= PAGE_MASK;
827
828         } else if (rmap_item->address & UNSTABLE_FLAG) {
829                 unsigned char age;
830                 /*
831                  * Usually ksmd can and must skip the rb_erase, because
832                  * root_unstable_tree was already reset to RB_ROOT.
833                  * But be careful when an mm is exiting: do the rb_erase
834                  * if this rmap_item was inserted by this scan, rather
835                  * than left over from before.
836                  */
837                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
838                 BUG_ON(age > 1);
839                 if (!age)
840                         rb_erase(&rmap_item->node,
841                                  root_unstable_tree + NUMA(rmap_item->nid));
842                 ksm_pages_unshared--;
843                 rmap_item->address &= PAGE_MASK;
844         }
845 out:
846         cond_resched();         /* we're called from many long loops */
847 }
848
849 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
850 {
851         while (*rmap_list) {
852                 struct ksm_rmap_item *rmap_item = *rmap_list;
853                 *rmap_list = rmap_item->rmap_list;
854                 remove_rmap_item_from_tree(rmap_item);
855                 free_rmap_item(rmap_item);
856         }
857 }
858
859 /*
860  * Though it's very tempting to unmerge rmap_items from stable tree rather
861  * than check every pte of a given vma, the locking doesn't quite work for
862  * that - an rmap_item is assigned to the stable tree after inserting ksm
863  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
864  * rmap_items from parent to child at fork time (so as not to waste time
865  * if exit comes before the next scan reaches it).
866  *
867  * Similarly, although we'd like to remove rmap_items (so updating counts
868  * and freeing memory) when unmerging an area, it's easier to leave that
869  * to the next pass of ksmd - consider, for example, how ksmd might be
870  * in cmp_and_merge_page on one of the rmap_items we would be removing.
871  */
872 static int unmerge_ksm_pages(struct vm_area_struct *vma,
873                              unsigned long start, unsigned long end)
874 {
875         unsigned long addr;
876         int err = 0;
877
878         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
879                 if (ksm_test_exit(vma->vm_mm))
880                         break;
881                 if (signal_pending(current))
882                         err = -ERESTARTSYS;
883                 else
884                         err = break_ksm(vma, addr);
885         }
886         return err;
887 }
888
889 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
890 {
891         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
892 }
893
894 static inline struct ksm_stable_node *page_stable_node(struct page *page)
895 {
896         return folio_stable_node(page_folio(page));
897 }
898
899 static inline void set_page_stable_node(struct page *page,
900                                         struct ksm_stable_node *stable_node)
901 {
902         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
903         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
904 }
905
906 #ifdef CONFIG_SYSFS
907 /*
908  * Only called through the sysfs control interface:
909  */
910 static int remove_stable_node(struct ksm_stable_node *stable_node)
911 {
912         struct page *page;
913         int err;
914
915         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
916         if (!page) {
917                 /*
918                  * get_ksm_page did remove_node_from_stable_tree itself.
919                  */
920                 return 0;
921         }
922
923         /*
924          * Page could be still mapped if this races with __mmput() running in
925          * between ksm_exit() and exit_mmap(). Just refuse to let
926          * merge_across_nodes/max_page_sharing be switched.
927          */
928         err = -EBUSY;
929         if (!page_mapped(page)) {
930                 /*
931                  * The stable node did not yet appear stale to get_ksm_page(),
932                  * since that allows for an unmapped ksm page to be recognized
933                  * right up until it is freed; but the node is safe to remove.
934                  * This page might be in a pagevec waiting to be freed,
935                  * or it might be PageSwapCache (perhaps under writeback),
936                  * or it might have been removed from swapcache a moment ago.
937                  */
938                 set_page_stable_node(page, NULL);
939                 remove_node_from_stable_tree(stable_node);
940                 err = 0;
941         }
942
943         unlock_page(page);
944         put_page(page);
945         return err;
946 }
947
948 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
949                                     struct rb_root *root)
950 {
951         struct ksm_stable_node *dup;
952         struct hlist_node *hlist_safe;
953
954         if (!is_stable_node_chain(stable_node)) {
955                 VM_BUG_ON(is_stable_node_dup(stable_node));
956                 if (remove_stable_node(stable_node))
957                         return true;
958                 else
959                         return false;
960         }
961
962         hlist_for_each_entry_safe(dup, hlist_safe,
963                                   &stable_node->hlist, hlist_dup) {
964                 VM_BUG_ON(!is_stable_node_dup(dup));
965                 if (remove_stable_node(dup))
966                         return true;
967         }
968         BUG_ON(!hlist_empty(&stable_node->hlist));
969         free_stable_node_chain(stable_node, root);
970         return false;
971 }
972
973 static int remove_all_stable_nodes(void)
974 {
975         struct ksm_stable_node *stable_node, *next;
976         int nid;
977         int err = 0;
978
979         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
980                 while (root_stable_tree[nid].rb_node) {
981                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
982                                                 struct ksm_stable_node, node);
983                         if (remove_stable_node_chain(stable_node,
984                                                      root_stable_tree + nid)) {
985                                 err = -EBUSY;
986                                 break;  /* proceed to next nid */
987                         }
988                         cond_resched();
989                 }
990         }
991         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
992                 if (remove_stable_node(stable_node))
993                         err = -EBUSY;
994                 cond_resched();
995         }
996         return err;
997 }
998
999 static int unmerge_and_remove_all_rmap_items(void)
1000 {
1001         struct ksm_mm_slot *mm_slot;
1002         struct mm_slot *slot;
1003         struct mm_struct *mm;
1004         struct vm_area_struct *vma;
1005         int err = 0;
1006
1007         spin_lock(&ksm_mmlist_lock);
1008         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1009                           struct mm_slot, mm_node);
1010         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1011         spin_unlock(&ksm_mmlist_lock);
1012
1013         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1014              mm_slot = ksm_scan.mm_slot) {
1015                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1016
1017                 mm = mm_slot->slot.mm;
1018                 mmap_read_lock(mm);
1019
1020                 /*
1021                  * Exit right away if mm is exiting to avoid lockdep issue in
1022                  * the maple tree
1023                  */
1024                 if (ksm_test_exit(mm))
1025                         goto mm_exiting;
1026
1027                 for_each_vma(vmi, vma) {
1028                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1029                                 continue;
1030                         err = unmerge_ksm_pages(vma,
1031                                                 vma->vm_start, vma->vm_end);
1032                         if (err)
1033                                 goto error;
1034                 }
1035
1036 mm_exiting:
1037                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1038                 mmap_read_unlock(mm);
1039
1040                 spin_lock(&ksm_mmlist_lock);
1041                 slot = list_entry(mm_slot->slot.mm_node.next,
1042                                   struct mm_slot, mm_node);
1043                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1044                 if (ksm_test_exit(mm)) {
1045                         hash_del(&mm_slot->slot.hash);
1046                         list_del(&mm_slot->slot.mm_node);
1047                         spin_unlock(&ksm_mmlist_lock);
1048
1049                         mm_slot_free(mm_slot_cache, mm_slot);
1050                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1051                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1052                         mmdrop(mm);
1053                 } else
1054                         spin_unlock(&ksm_mmlist_lock);
1055         }
1056
1057         /* Clean up stable nodes, but don't worry if some are still busy */
1058         remove_all_stable_nodes();
1059         ksm_scan.seqnr = 0;
1060         return 0;
1061
1062 error:
1063         mmap_read_unlock(mm);
1064         spin_lock(&ksm_mmlist_lock);
1065         ksm_scan.mm_slot = &ksm_mm_head;
1066         spin_unlock(&ksm_mmlist_lock);
1067         return err;
1068 }
1069 #endif /* CONFIG_SYSFS */
1070
1071 static u32 calc_checksum(struct page *page)
1072 {
1073         u32 checksum;
1074         void *addr = kmap_atomic(page);
1075         checksum = xxhash(addr, PAGE_SIZE, 0);
1076         kunmap_atomic(addr);
1077         return checksum;
1078 }
1079
1080 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1081                               pte_t *orig_pte)
1082 {
1083         struct mm_struct *mm = vma->vm_mm;
1084         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1085         int swapped;
1086         int err = -EFAULT;
1087         struct mmu_notifier_range range;
1088         bool anon_exclusive;
1089
1090         pvmw.address = page_address_in_vma(page, vma);
1091         if (pvmw.address == -EFAULT)
1092                 goto out;
1093
1094         BUG_ON(PageTransCompound(page));
1095
1096         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1097                                 pvmw.address + PAGE_SIZE);
1098         mmu_notifier_invalidate_range_start(&range);
1099
1100         if (!page_vma_mapped_walk(&pvmw))
1101                 goto out_mn;
1102         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1103                 goto out_unlock;
1104
1105         anon_exclusive = PageAnonExclusive(page);
1106         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1107             anon_exclusive || mm_tlb_flush_pending(mm)) {
1108                 pte_t entry;
1109
1110                 swapped = PageSwapCache(page);
1111                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1112                 /*
1113                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1114                  * take any lock, therefore the check that we are going to make
1115                  * with the pagecount against the mapcount is racy and
1116                  * O_DIRECT can happen right after the check.
1117                  * So we clear the pte and flush the tlb before the check
1118                  * this assure us that no O_DIRECT can happen after the check
1119                  * or in the middle of the check.
1120                  *
1121                  * No need to notify as we are downgrading page table to read
1122                  * only not changing it to point to a new page.
1123                  *
1124                  * See Documentation/mm/mmu_notifier.rst
1125                  */
1126                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1127                 /*
1128                  * Check that no O_DIRECT or similar I/O is in progress on the
1129                  * page
1130                  */
1131                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1132                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1133                         goto out_unlock;
1134                 }
1135
1136                 /* See page_try_share_anon_rmap(): clear PTE first. */
1137                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1138                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1139                         goto out_unlock;
1140                 }
1141
1142                 if (pte_dirty(entry))
1143                         set_page_dirty(page);
1144                 entry = pte_mkclean(entry);
1145
1146                 if (pte_write(entry))
1147                         entry = pte_wrprotect(entry);
1148
1149                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1150         }
1151         *orig_pte = *pvmw.pte;
1152         err = 0;
1153
1154 out_unlock:
1155         page_vma_mapped_walk_done(&pvmw);
1156 out_mn:
1157         mmu_notifier_invalidate_range_end(&range);
1158 out:
1159         return err;
1160 }
1161
1162 /**
1163  * replace_page - replace page in vma by new ksm page
1164  * @vma:      vma that holds the pte pointing to page
1165  * @page:     the page we are replacing by kpage
1166  * @kpage:    the ksm page we replace page by
1167  * @orig_pte: the original value of the pte
1168  *
1169  * Returns 0 on success, -EFAULT on failure.
1170  */
1171 static int replace_page(struct vm_area_struct *vma, struct page *page,
1172                         struct page *kpage, pte_t orig_pte)
1173 {
1174         struct mm_struct *mm = vma->vm_mm;
1175         struct folio *folio;
1176         pmd_t *pmd;
1177         pmd_t pmde;
1178         pte_t *ptep;
1179         pte_t newpte;
1180         spinlock_t *ptl;
1181         unsigned long addr;
1182         int err = -EFAULT;
1183         struct mmu_notifier_range range;
1184
1185         addr = page_address_in_vma(page, vma);
1186         if (addr == -EFAULT)
1187                 goto out;
1188
1189         pmd = mm_find_pmd(mm, addr);
1190         if (!pmd)
1191                 goto out;
1192         /*
1193          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1194          * without holding anon_vma lock for write.  So when looking for a
1195          * genuine pmde (in which to find pte), test present and !THP together.
1196          */
1197         pmde = *pmd;
1198         barrier();
1199         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1200                 goto out;
1201
1202         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1203                                 addr + PAGE_SIZE);
1204         mmu_notifier_invalidate_range_start(&range);
1205
1206         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1207         if (!pte_same(*ptep, orig_pte)) {
1208                 pte_unmap_unlock(ptep, ptl);
1209                 goto out_mn;
1210         }
1211         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1212         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1213
1214         /*
1215          * No need to check ksm_use_zero_pages here: we can only have a
1216          * zero_page here if ksm_use_zero_pages was enabled already.
1217          */
1218         if (!is_zero_pfn(page_to_pfn(kpage))) {
1219                 get_page(kpage);
1220                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1221                 newpte = mk_pte(kpage, vma->vm_page_prot);
1222         } else {
1223                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1224                                                vma->vm_page_prot));
1225                 /*
1226                  * We're replacing an anonymous page with a zero page, which is
1227                  * not anonymous. We need to do proper accounting otherwise we
1228                  * will get wrong values in /proc, and a BUG message in dmesg
1229                  * when tearing down the mm.
1230                  */
1231                 dec_mm_counter(mm, MM_ANONPAGES);
1232         }
1233
1234         flush_cache_page(vma, addr, pte_pfn(*ptep));
1235         /*
1236          * No need to notify as we are replacing a read only page with another
1237          * read only page with the same content.
1238          *
1239          * See Documentation/mm/mmu_notifier.rst
1240          */
1241         ptep_clear_flush(vma, addr, ptep);
1242         set_pte_at_notify(mm, addr, ptep, newpte);
1243
1244         folio = page_folio(page);
1245         page_remove_rmap(page, vma, false);
1246         if (!folio_mapped(folio))
1247                 folio_free_swap(folio);
1248         folio_put(folio);
1249
1250         pte_unmap_unlock(ptep, ptl);
1251         err = 0;
1252 out_mn:
1253         mmu_notifier_invalidate_range_end(&range);
1254 out:
1255         return err;
1256 }
1257
1258 /*
1259  * try_to_merge_one_page - take two pages and merge them into one
1260  * @vma: the vma that holds the pte pointing to page
1261  * @page: the PageAnon page that we want to replace with kpage
1262  * @kpage: the PageKsm page that we want to map instead of page,
1263  *         or NULL the first time when we want to use page as kpage.
1264  *
1265  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1266  */
1267 static int try_to_merge_one_page(struct vm_area_struct *vma,
1268                                  struct page *page, struct page *kpage)
1269 {
1270         pte_t orig_pte = __pte(0);
1271         int err = -EFAULT;
1272
1273         if (page == kpage)                      /* ksm page forked */
1274                 return 0;
1275
1276         if (!PageAnon(page))
1277                 goto out;
1278
1279         /*
1280          * We need the page lock to read a stable PageSwapCache in
1281          * write_protect_page().  We use trylock_page() instead of
1282          * lock_page() because we don't want to wait here - we
1283          * prefer to continue scanning and merging different pages,
1284          * then come back to this page when it is unlocked.
1285          */
1286         if (!trylock_page(page))
1287                 goto out;
1288
1289         if (PageTransCompound(page)) {
1290                 if (split_huge_page(page))
1291                         goto out_unlock;
1292         }
1293
1294         /*
1295          * If this anonymous page is mapped only here, its pte may need
1296          * to be write-protected.  If it's mapped elsewhere, all of its
1297          * ptes are necessarily already write-protected.  But in either
1298          * case, we need to lock and check page_count is not raised.
1299          */
1300         if (write_protect_page(vma, page, &orig_pte) == 0) {
1301                 if (!kpage) {
1302                         /*
1303                          * While we hold page lock, upgrade page from
1304                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1305                          * stable_tree_insert() will update stable_node.
1306                          */
1307                         set_page_stable_node(page, NULL);
1308                         mark_page_accessed(page);
1309                         /*
1310                          * Page reclaim just frees a clean page with no dirty
1311                          * ptes: make sure that the ksm page would be swapped.
1312                          */
1313                         if (!PageDirty(page))
1314                                 SetPageDirty(page);
1315                         err = 0;
1316                 } else if (pages_identical(page, kpage))
1317                         err = replace_page(vma, page, kpage, orig_pte);
1318         }
1319
1320 out_unlock:
1321         unlock_page(page);
1322 out:
1323         return err;
1324 }
1325
1326 /*
1327  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1328  * but no new kernel page is allocated: kpage must already be a ksm page.
1329  *
1330  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1331  */
1332 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1333                                       struct page *page, struct page *kpage)
1334 {
1335         struct mm_struct *mm = rmap_item->mm;
1336         struct vm_area_struct *vma;
1337         int err = -EFAULT;
1338
1339         mmap_read_lock(mm);
1340         vma = find_mergeable_vma(mm, rmap_item->address);
1341         if (!vma)
1342                 goto out;
1343
1344         err = try_to_merge_one_page(vma, page, kpage);
1345         if (err)
1346                 goto out;
1347
1348         /* Unstable nid is in union with stable anon_vma: remove first */
1349         remove_rmap_item_from_tree(rmap_item);
1350
1351         /* Must get reference to anon_vma while still holding mmap_lock */
1352         rmap_item->anon_vma = vma->anon_vma;
1353         get_anon_vma(vma->anon_vma);
1354 out:
1355         mmap_read_unlock(mm);
1356         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1357                                 rmap_item, mm, err);
1358         return err;
1359 }
1360
1361 /*
1362  * try_to_merge_two_pages - take two identical pages and prepare them
1363  * to be merged into one page.
1364  *
1365  * This function returns the kpage if we successfully merged two identical
1366  * pages into one ksm page, NULL otherwise.
1367  *
1368  * Note that this function upgrades page to ksm page: if one of the pages
1369  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1370  */
1371 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1372                                            struct page *page,
1373                                            struct ksm_rmap_item *tree_rmap_item,
1374                                            struct page *tree_page)
1375 {
1376         int err;
1377
1378         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1379         if (!err) {
1380                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1381                                                         tree_page, page);
1382                 /*
1383                  * If that fails, we have a ksm page with only one pte
1384                  * pointing to it: so break it.
1385                  */
1386                 if (err)
1387                         break_cow(rmap_item);
1388         }
1389         return err ? NULL : page;
1390 }
1391
1392 static __always_inline
1393 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1394 {
1395         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1396         /*
1397          * Check that at least one mapping still exists, otherwise
1398          * there's no much point to merge and share with this
1399          * stable_node, as the underlying tree_page of the other
1400          * sharer is going to be freed soon.
1401          */
1402         return stable_node->rmap_hlist_len &&
1403                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1404 }
1405
1406 static __always_inline
1407 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1408 {
1409         return __is_page_sharing_candidate(stable_node, 0);
1410 }
1411
1412 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1413                                     struct ksm_stable_node **_stable_node,
1414                                     struct rb_root *root,
1415                                     bool prune_stale_stable_nodes)
1416 {
1417         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1418         struct hlist_node *hlist_safe;
1419         struct page *_tree_page, *tree_page = NULL;
1420         int nr = 0;
1421         int found_rmap_hlist_len;
1422
1423         if (!prune_stale_stable_nodes ||
1424             time_before(jiffies, stable_node->chain_prune_time +
1425                         msecs_to_jiffies(
1426                                 ksm_stable_node_chains_prune_millisecs)))
1427                 prune_stale_stable_nodes = false;
1428         else
1429                 stable_node->chain_prune_time = jiffies;
1430
1431         hlist_for_each_entry_safe(dup, hlist_safe,
1432                                   &stable_node->hlist, hlist_dup) {
1433                 cond_resched();
1434                 /*
1435                  * We must walk all stable_node_dup to prune the stale
1436                  * stable nodes during lookup.
1437                  *
1438                  * get_ksm_page can drop the nodes from the
1439                  * stable_node->hlist if they point to freed pages
1440                  * (that's why we do a _safe walk). The "dup"
1441                  * stable_node parameter itself will be freed from
1442                  * under us if it returns NULL.
1443                  */
1444                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1445                 if (!_tree_page)
1446                         continue;
1447                 nr += 1;
1448                 if (is_page_sharing_candidate(dup)) {
1449                         if (!found ||
1450                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1451                                 if (found)
1452                                         put_page(tree_page);
1453                                 found = dup;
1454                                 found_rmap_hlist_len = found->rmap_hlist_len;
1455                                 tree_page = _tree_page;
1456
1457                                 /* skip put_page for found dup */
1458                                 if (!prune_stale_stable_nodes)
1459                                         break;
1460                                 continue;
1461                         }
1462                 }
1463                 put_page(_tree_page);
1464         }
1465
1466         if (found) {
1467                 /*
1468                  * nr is counting all dups in the chain only if
1469                  * prune_stale_stable_nodes is true, otherwise we may
1470                  * break the loop at nr == 1 even if there are
1471                  * multiple entries.
1472                  */
1473                 if (prune_stale_stable_nodes && nr == 1) {
1474                         /*
1475                          * If there's not just one entry it would
1476                          * corrupt memory, better BUG_ON. In KSM
1477                          * context with no lock held it's not even
1478                          * fatal.
1479                          */
1480                         BUG_ON(stable_node->hlist.first->next);
1481
1482                         /*
1483                          * There's just one entry and it is below the
1484                          * deduplication limit so drop the chain.
1485                          */
1486                         rb_replace_node(&stable_node->node, &found->node,
1487                                         root);
1488                         free_stable_node(stable_node);
1489                         ksm_stable_node_chains--;
1490                         ksm_stable_node_dups--;
1491                         /*
1492                          * NOTE: the caller depends on the stable_node
1493                          * to be equal to stable_node_dup if the chain
1494                          * was collapsed.
1495                          */
1496                         *_stable_node = found;
1497                         /*
1498                          * Just for robustness, as stable_node is
1499                          * otherwise left as a stable pointer, the
1500                          * compiler shall optimize it away at build
1501                          * time.
1502                          */
1503                         stable_node = NULL;
1504                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1505                            __is_page_sharing_candidate(found, 1)) {
1506                         /*
1507                          * If the found stable_node dup can accept one
1508                          * more future merge (in addition to the one
1509                          * that is underway) and is not at the head of
1510                          * the chain, put it there so next search will
1511                          * be quicker in the !prune_stale_stable_nodes
1512                          * case.
1513                          *
1514                          * NOTE: it would be inaccurate to use nr > 1
1515                          * instead of checking the hlist.first pointer
1516                          * directly, because in the
1517                          * prune_stale_stable_nodes case "nr" isn't
1518                          * the position of the found dup in the chain,
1519                          * but the total number of dups in the chain.
1520                          */
1521                         hlist_del(&found->hlist_dup);
1522                         hlist_add_head(&found->hlist_dup,
1523                                        &stable_node->hlist);
1524                 }
1525         }
1526
1527         *_stable_node_dup = found;
1528         return tree_page;
1529 }
1530
1531 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1532                                                struct rb_root *root)
1533 {
1534         if (!is_stable_node_chain(stable_node))
1535                 return stable_node;
1536         if (hlist_empty(&stable_node->hlist)) {
1537                 free_stable_node_chain(stable_node, root);
1538                 return NULL;
1539         }
1540         return hlist_entry(stable_node->hlist.first,
1541                            typeof(*stable_node), hlist_dup);
1542 }
1543
1544 /*
1545  * Like for get_ksm_page, this function can free the *_stable_node and
1546  * *_stable_node_dup if the returned tree_page is NULL.
1547  *
1548  * It can also free and overwrite *_stable_node with the found
1549  * stable_node_dup if the chain is collapsed (in which case
1550  * *_stable_node will be equal to *_stable_node_dup like if the chain
1551  * never existed). It's up to the caller to verify tree_page is not
1552  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1553  *
1554  * *_stable_node_dup is really a second output parameter of this
1555  * function and will be overwritten in all cases, the caller doesn't
1556  * need to initialize it.
1557  */
1558 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1559                                         struct ksm_stable_node **_stable_node,
1560                                         struct rb_root *root,
1561                                         bool prune_stale_stable_nodes)
1562 {
1563         struct ksm_stable_node *stable_node = *_stable_node;
1564         if (!is_stable_node_chain(stable_node)) {
1565                 if (is_page_sharing_candidate(stable_node)) {
1566                         *_stable_node_dup = stable_node;
1567                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1568                 }
1569                 /*
1570                  * _stable_node_dup set to NULL means the stable_node
1571                  * reached the ksm_max_page_sharing limit.
1572                  */
1573                 *_stable_node_dup = NULL;
1574                 return NULL;
1575         }
1576         return stable_node_dup(_stable_node_dup, _stable_node, root,
1577                                prune_stale_stable_nodes);
1578 }
1579
1580 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1581                                                 struct ksm_stable_node **s_n,
1582                                                 struct rb_root *root)
1583 {
1584         return __stable_node_chain(s_n_d, s_n, root, true);
1585 }
1586
1587 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1588                                           struct ksm_stable_node *s_n,
1589                                           struct rb_root *root)
1590 {
1591         struct ksm_stable_node *old_stable_node = s_n;
1592         struct page *tree_page;
1593
1594         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1595         /* not pruning dups so s_n cannot have changed */
1596         VM_BUG_ON(s_n != old_stable_node);
1597         return tree_page;
1598 }
1599
1600 /*
1601  * stable_tree_search - search for page inside the stable tree
1602  *
1603  * This function checks if there is a page inside the stable tree
1604  * with identical content to the page that we are scanning right now.
1605  *
1606  * This function returns the stable tree node of identical content if found,
1607  * NULL otherwise.
1608  */
1609 static struct page *stable_tree_search(struct page *page)
1610 {
1611         int nid;
1612         struct rb_root *root;
1613         struct rb_node **new;
1614         struct rb_node *parent;
1615         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1616         struct ksm_stable_node *page_node;
1617
1618         page_node = page_stable_node(page);
1619         if (page_node && page_node->head != &migrate_nodes) {
1620                 /* ksm page forked */
1621                 get_page(page);
1622                 return page;
1623         }
1624
1625         nid = get_kpfn_nid(page_to_pfn(page));
1626         root = root_stable_tree + nid;
1627 again:
1628         new = &root->rb_node;
1629         parent = NULL;
1630
1631         while (*new) {
1632                 struct page *tree_page;
1633                 int ret;
1634
1635                 cond_resched();
1636                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1637                 stable_node_any = NULL;
1638                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1639                 /*
1640                  * NOTE: stable_node may have been freed by
1641                  * chain_prune() if the returned stable_node_dup is
1642                  * not NULL. stable_node_dup may have been inserted in
1643                  * the rbtree instead as a regular stable_node (in
1644                  * order to collapse the stable_node chain if a single
1645                  * stable_node dup was found in it). In such case the
1646                  * stable_node is overwritten by the callee to point
1647                  * to the stable_node_dup that was collapsed in the
1648                  * stable rbtree and stable_node will be equal to
1649                  * stable_node_dup like if the chain never existed.
1650                  */
1651                 if (!stable_node_dup) {
1652                         /*
1653                          * Either all stable_node dups were full in
1654                          * this stable_node chain, or this chain was
1655                          * empty and should be rb_erased.
1656                          */
1657                         stable_node_any = stable_node_dup_any(stable_node,
1658                                                               root);
1659                         if (!stable_node_any) {
1660                                 /* rb_erase just run */
1661                                 goto again;
1662                         }
1663                         /*
1664                          * Take any of the stable_node dups page of
1665                          * this stable_node chain to let the tree walk
1666                          * continue. All KSM pages belonging to the
1667                          * stable_node dups in a stable_node chain
1668                          * have the same content and they're
1669                          * write protected at all times. Any will work
1670                          * fine to continue the walk.
1671                          */
1672                         tree_page = get_ksm_page(stable_node_any,
1673                                                  GET_KSM_PAGE_NOLOCK);
1674                 }
1675                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1676                 if (!tree_page) {
1677                         /*
1678                          * If we walked over a stale stable_node,
1679                          * get_ksm_page() will call rb_erase() and it
1680                          * may rebalance the tree from under us. So
1681                          * restart the search from scratch. Returning
1682                          * NULL would be safe too, but we'd generate
1683                          * false negative insertions just because some
1684                          * stable_node was stale.
1685                          */
1686                         goto again;
1687                 }
1688
1689                 ret = memcmp_pages(page, tree_page);
1690                 put_page(tree_page);
1691
1692                 parent = *new;
1693                 if (ret < 0)
1694                         new = &parent->rb_left;
1695                 else if (ret > 0)
1696                         new = &parent->rb_right;
1697                 else {
1698                         if (page_node) {
1699                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1700                                 /*
1701                                  * Test if the migrated page should be merged
1702                                  * into a stable node dup. If the mapcount is
1703                                  * 1 we can migrate it with another KSM page
1704                                  * without adding it to the chain.
1705                                  */
1706                                 if (page_mapcount(page) > 1)
1707                                         goto chain_append;
1708                         }
1709
1710                         if (!stable_node_dup) {
1711                                 /*
1712                                  * If the stable_node is a chain and
1713                                  * we got a payload match in memcmp
1714                                  * but we cannot merge the scanned
1715                                  * page in any of the existing
1716                                  * stable_node dups because they're
1717                                  * all full, we need to wait the
1718                                  * scanned page to find itself a match
1719                                  * in the unstable tree to create a
1720                                  * brand new KSM page to add later to
1721                                  * the dups of this stable_node.
1722                                  */
1723                                 return NULL;
1724                         }
1725
1726                         /*
1727                          * Lock and unlock the stable_node's page (which
1728                          * might already have been migrated) so that page
1729                          * migration is sure to notice its raised count.
1730                          * It would be more elegant to return stable_node
1731                          * than kpage, but that involves more changes.
1732                          */
1733                         tree_page = get_ksm_page(stable_node_dup,
1734                                                  GET_KSM_PAGE_TRYLOCK);
1735
1736                         if (PTR_ERR(tree_page) == -EBUSY)
1737                                 return ERR_PTR(-EBUSY);
1738
1739                         if (unlikely(!tree_page))
1740                                 /*
1741                                  * The tree may have been rebalanced,
1742                                  * so re-evaluate parent and new.
1743                                  */
1744                                 goto again;
1745                         unlock_page(tree_page);
1746
1747                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1748                             NUMA(stable_node_dup->nid)) {
1749                                 put_page(tree_page);
1750                                 goto replace;
1751                         }
1752                         return tree_page;
1753                 }
1754         }
1755
1756         if (!page_node)
1757                 return NULL;
1758
1759         list_del(&page_node->list);
1760         DO_NUMA(page_node->nid = nid);
1761         rb_link_node(&page_node->node, parent, new);
1762         rb_insert_color(&page_node->node, root);
1763 out:
1764         if (is_page_sharing_candidate(page_node)) {
1765                 get_page(page);
1766                 return page;
1767         } else
1768                 return NULL;
1769
1770 replace:
1771         /*
1772          * If stable_node was a chain and chain_prune collapsed it,
1773          * stable_node has been updated to be the new regular
1774          * stable_node. A collapse of the chain is indistinguishable
1775          * from the case there was no chain in the stable
1776          * rbtree. Otherwise stable_node is the chain and
1777          * stable_node_dup is the dup to replace.
1778          */
1779         if (stable_node_dup == stable_node) {
1780                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1781                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1782                 /* there is no chain */
1783                 if (page_node) {
1784                         VM_BUG_ON(page_node->head != &migrate_nodes);
1785                         list_del(&page_node->list);
1786                         DO_NUMA(page_node->nid = nid);
1787                         rb_replace_node(&stable_node_dup->node,
1788                                         &page_node->node,
1789                                         root);
1790                         if (is_page_sharing_candidate(page_node))
1791                                 get_page(page);
1792                         else
1793                                 page = NULL;
1794                 } else {
1795                         rb_erase(&stable_node_dup->node, root);
1796                         page = NULL;
1797                 }
1798         } else {
1799                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1800                 __stable_node_dup_del(stable_node_dup);
1801                 if (page_node) {
1802                         VM_BUG_ON(page_node->head != &migrate_nodes);
1803                         list_del(&page_node->list);
1804                         DO_NUMA(page_node->nid = nid);
1805                         stable_node_chain_add_dup(page_node, stable_node);
1806                         if (is_page_sharing_candidate(page_node))
1807                                 get_page(page);
1808                         else
1809                                 page = NULL;
1810                 } else {
1811                         page = NULL;
1812                 }
1813         }
1814         stable_node_dup->head = &migrate_nodes;
1815         list_add(&stable_node_dup->list, stable_node_dup->head);
1816         return page;
1817
1818 chain_append:
1819         /* stable_node_dup could be null if it reached the limit */
1820         if (!stable_node_dup)
1821                 stable_node_dup = stable_node_any;
1822         /*
1823          * If stable_node was a chain and chain_prune collapsed it,
1824          * stable_node has been updated to be the new regular
1825          * stable_node. A collapse of the chain is indistinguishable
1826          * from the case there was no chain in the stable
1827          * rbtree. Otherwise stable_node is the chain and
1828          * stable_node_dup is the dup to replace.
1829          */
1830         if (stable_node_dup == stable_node) {
1831                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1832                 /* chain is missing so create it */
1833                 stable_node = alloc_stable_node_chain(stable_node_dup,
1834                                                       root);
1835                 if (!stable_node)
1836                         return NULL;
1837         }
1838         /*
1839          * Add this stable_node dup that was
1840          * migrated to the stable_node chain
1841          * of the current nid for this page
1842          * content.
1843          */
1844         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1845         VM_BUG_ON(page_node->head != &migrate_nodes);
1846         list_del(&page_node->list);
1847         DO_NUMA(page_node->nid = nid);
1848         stable_node_chain_add_dup(page_node, stable_node);
1849         goto out;
1850 }
1851
1852 /*
1853  * stable_tree_insert - insert stable tree node pointing to new ksm page
1854  * into the stable tree.
1855  *
1856  * This function returns the stable tree node just allocated on success,
1857  * NULL otherwise.
1858  */
1859 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1860 {
1861         int nid;
1862         unsigned long kpfn;
1863         struct rb_root *root;
1864         struct rb_node **new;
1865         struct rb_node *parent;
1866         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1867         bool need_chain = false;
1868
1869         kpfn = page_to_pfn(kpage);
1870         nid = get_kpfn_nid(kpfn);
1871         root = root_stable_tree + nid;
1872 again:
1873         parent = NULL;
1874         new = &root->rb_node;
1875
1876         while (*new) {
1877                 struct page *tree_page;
1878                 int ret;
1879
1880                 cond_resched();
1881                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1882                 stable_node_any = NULL;
1883                 tree_page = chain(&stable_node_dup, stable_node, root);
1884                 if (!stable_node_dup) {
1885                         /*
1886                          * Either all stable_node dups were full in
1887                          * this stable_node chain, or this chain was
1888                          * empty and should be rb_erased.
1889                          */
1890                         stable_node_any = stable_node_dup_any(stable_node,
1891                                                               root);
1892                         if (!stable_node_any) {
1893                                 /* rb_erase just run */
1894                                 goto again;
1895                         }
1896                         /*
1897                          * Take any of the stable_node dups page of
1898                          * this stable_node chain to let the tree walk
1899                          * continue. All KSM pages belonging to the
1900                          * stable_node dups in a stable_node chain
1901                          * have the same content and they're
1902                          * write protected at all times. Any will work
1903                          * fine to continue the walk.
1904                          */
1905                         tree_page = get_ksm_page(stable_node_any,
1906                                                  GET_KSM_PAGE_NOLOCK);
1907                 }
1908                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1909                 if (!tree_page) {
1910                         /*
1911                          * If we walked over a stale stable_node,
1912                          * get_ksm_page() will call rb_erase() and it
1913                          * may rebalance the tree from under us. So
1914                          * restart the search from scratch. Returning
1915                          * NULL would be safe too, but we'd generate
1916                          * false negative insertions just because some
1917                          * stable_node was stale.
1918                          */
1919                         goto again;
1920                 }
1921
1922                 ret = memcmp_pages(kpage, tree_page);
1923                 put_page(tree_page);
1924
1925                 parent = *new;
1926                 if (ret < 0)
1927                         new = &parent->rb_left;
1928                 else if (ret > 0)
1929                         new = &parent->rb_right;
1930                 else {
1931                         need_chain = true;
1932                         break;
1933                 }
1934         }
1935
1936         stable_node_dup = alloc_stable_node();
1937         if (!stable_node_dup)
1938                 return NULL;
1939
1940         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1941         stable_node_dup->kpfn = kpfn;
1942         set_page_stable_node(kpage, stable_node_dup);
1943         stable_node_dup->rmap_hlist_len = 0;
1944         DO_NUMA(stable_node_dup->nid = nid);
1945         if (!need_chain) {
1946                 rb_link_node(&stable_node_dup->node, parent, new);
1947                 rb_insert_color(&stable_node_dup->node, root);
1948         } else {
1949                 if (!is_stable_node_chain(stable_node)) {
1950                         struct ksm_stable_node *orig = stable_node;
1951                         /* chain is missing so create it */
1952                         stable_node = alloc_stable_node_chain(orig, root);
1953                         if (!stable_node) {
1954                                 free_stable_node(stable_node_dup);
1955                                 return NULL;
1956                         }
1957                 }
1958                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1959         }
1960
1961         return stable_node_dup;
1962 }
1963
1964 /*
1965  * unstable_tree_search_insert - search for identical page,
1966  * else insert rmap_item into the unstable tree.
1967  *
1968  * This function searches for a page in the unstable tree identical to the
1969  * page currently being scanned; and if no identical page is found in the
1970  * tree, we insert rmap_item as a new object into the unstable tree.
1971  *
1972  * This function returns pointer to rmap_item found to be identical
1973  * to the currently scanned page, NULL otherwise.
1974  *
1975  * This function does both searching and inserting, because they share
1976  * the same walking algorithm in an rbtree.
1977  */
1978 static
1979 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1980                                               struct page *page,
1981                                               struct page **tree_pagep)
1982 {
1983         struct rb_node **new;
1984         struct rb_root *root;
1985         struct rb_node *parent = NULL;
1986         int nid;
1987
1988         nid = get_kpfn_nid(page_to_pfn(page));
1989         root = root_unstable_tree + nid;
1990         new = &root->rb_node;
1991
1992         while (*new) {
1993                 struct ksm_rmap_item *tree_rmap_item;
1994                 struct page *tree_page;
1995                 int ret;
1996
1997                 cond_resched();
1998                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1999                 tree_page = get_mergeable_page(tree_rmap_item);
2000                 if (!tree_page)
2001                         return NULL;
2002
2003                 /*
2004                  * Don't substitute a ksm page for a forked page.
2005                  */
2006                 if (page == tree_page) {
2007                         put_page(tree_page);
2008                         return NULL;
2009                 }
2010
2011                 ret = memcmp_pages(page, tree_page);
2012
2013                 parent = *new;
2014                 if (ret < 0) {
2015                         put_page(tree_page);
2016                         new = &parent->rb_left;
2017                 } else if (ret > 0) {
2018                         put_page(tree_page);
2019                         new = &parent->rb_right;
2020                 } else if (!ksm_merge_across_nodes &&
2021                            page_to_nid(tree_page) != nid) {
2022                         /*
2023                          * If tree_page has been migrated to another NUMA node,
2024                          * it will be flushed out and put in the right unstable
2025                          * tree next time: only merge with it when across_nodes.
2026                          */
2027                         put_page(tree_page);
2028                         return NULL;
2029                 } else {
2030                         *tree_pagep = tree_page;
2031                         return tree_rmap_item;
2032                 }
2033         }
2034
2035         rmap_item->address |= UNSTABLE_FLAG;
2036         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2037         DO_NUMA(rmap_item->nid = nid);
2038         rb_link_node(&rmap_item->node, parent, new);
2039         rb_insert_color(&rmap_item->node, root);
2040
2041         ksm_pages_unshared++;
2042         return NULL;
2043 }
2044
2045 /*
2046  * stable_tree_append - add another rmap_item to the linked list of
2047  * rmap_items hanging off a given node of the stable tree, all sharing
2048  * the same ksm page.
2049  */
2050 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2051                                struct ksm_stable_node *stable_node,
2052                                bool max_page_sharing_bypass)
2053 {
2054         /*
2055          * rmap won't find this mapping if we don't insert the
2056          * rmap_item in the right stable_node
2057          * duplicate. page_migration could break later if rmap breaks,
2058          * so we can as well crash here. We really need to check for
2059          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2060          * for other negative values as an underflow if detected here
2061          * for the first time (and not when decreasing rmap_hlist_len)
2062          * would be sign of memory corruption in the stable_node.
2063          */
2064         BUG_ON(stable_node->rmap_hlist_len < 0);
2065
2066         stable_node->rmap_hlist_len++;
2067         if (!max_page_sharing_bypass)
2068                 /* possibly non fatal but unexpected overflow, only warn */
2069                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2070                              ksm_max_page_sharing);
2071
2072         rmap_item->head = stable_node;
2073         rmap_item->address |= STABLE_FLAG;
2074         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2075
2076         if (rmap_item->hlist.next)
2077                 ksm_pages_sharing++;
2078         else
2079                 ksm_pages_shared++;
2080
2081         rmap_item->mm->ksm_merging_pages++;
2082 }
2083
2084 /*
2085  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2086  * if not, compare checksum to previous and if it's the same, see if page can
2087  * be inserted into the unstable tree, or merged with a page already there and
2088  * both transferred to the stable tree.
2089  *
2090  * @page: the page that we are searching identical page to.
2091  * @rmap_item: the reverse mapping into the virtual address of this page
2092  */
2093 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2094 {
2095         struct mm_struct *mm = rmap_item->mm;
2096         struct ksm_rmap_item *tree_rmap_item;
2097         struct page *tree_page = NULL;
2098         struct ksm_stable_node *stable_node;
2099         struct page *kpage;
2100         unsigned int checksum;
2101         int err;
2102         bool max_page_sharing_bypass = false;
2103
2104         stable_node = page_stable_node(page);
2105         if (stable_node) {
2106                 if (stable_node->head != &migrate_nodes &&
2107                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2108                     NUMA(stable_node->nid)) {
2109                         stable_node_dup_del(stable_node);
2110                         stable_node->head = &migrate_nodes;
2111                         list_add(&stable_node->list, stable_node->head);
2112                 }
2113                 if (stable_node->head != &migrate_nodes &&
2114                     rmap_item->head == stable_node)
2115                         return;
2116                 /*
2117                  * If it's a KSM fork, allow it to go over the sharing limit
2118                  * without warnings.
2119                  */
2120                 if (!is_page_sharing_candidate(stable_node))
2121                         max_page_sharing_bypass = true;
2122         }
2123
2124         /* We first start with searching the page inside the stable tree */
2125         kpage = stable_tree_search(page);
2126         if (kpage == page && rmap_item->head == stable_node) {
2127                 put_page(kpage);
2128                 return;
2129         }
2130
2131         remove_rmap_item_from_tree(rmap_item);
2132
2133         if (kpage) {
2134                 if (PTR_ERR(kpage) == -EBUSY)
2135                         return;
2136
2137                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2138                 if (!err) {
2139                         /*
2140                          * The page was successfully merged:
2141                          * add its rmap_item to the stable tree.
2142                          */
2143                         lock_page(kpage);
2144                         stable_tree_append(rmap_item, page_stable_node(kpage),
2145                                            max_page_sharing_bypass);
2146                         unlock_page(kpage);
2147                 }
2148                 put_page(kpage);
2149                 return;
2150         }
2151
2152         /*
2153          * If the hash value of the page has changed from the last time
2154          * we calculated it, this page is changing frequently: therefore we
2155          * don't want to insert it in the unstable tree, and we don't want
2156          * to waste our time searching for something identical to it there.
2157          */
2158         checksum = calc_checksum(page);
2159         if (rmap_item->oldchecksum != checksum) {
2160                 rmap_item->oldchecksum = checksum;
2161                 return;
2162         }
2163
2164         /*
2165          * Same checksum as an empty page. We attempt to merge it with the
2166          * appropriate zero page if the user enabled this via sysfs.
2167          */
2168         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2169                 struct vm_area_struct *vma;
2170
2171                 mmap_read_lock(mm);
2172                 vma = find_mergeable_vma(mm, rmap_item->address);
2173                 if (vma) {
2174                         err = try_to_merge_one_page(vma, page,
2175                                         ZERO_PAGE(rmap_item->address));
2176                         trace_ksm_merge_one_page(
2177                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2178                                 rmap_item, mm, err);
2179                 } else {
2180                         /*
2181                          * If the vma is out of date, we do not need to
2182                          * continue.
2183                          */
2184                         err = 0;
2185                 }
2186                 mmap_read_unlock(mm);
2187                 /*
2188                  * In case of failure, the page was not really empty, so we
2189                  * need to continue. Otherwise we're done.
2190                  */
2191                 if (!err)
2192                         return;
2193         }
2194         tree_rmap_item =
2195                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2196         if (tree_rmap_item) {
2197                 bool split;
2198
2199                 kpage = try_to_merge_two_pages(rmap_item, page,
2200                                                 tree_rmap_item, tree_page);
2201                 /*
2202                  * If both pages we tried to merge belong to the same compound
2203                  * page, then we actually ended up increasing the reference
2204                  * count of the same compound page twice, and split_huge_page
2205                  * failed.
2206                  * Here we set a flag if that happened, and we use it later to
2207                  * try split_huge_page again. Since we call put_page right
2208                  * afterwards, the reference count will be correct and
2209                  * split_huge_page should succeed.
2210                  */
2211                 split = PageTransCompound(page)
2212                         && compound_head(page) == compound_head(tree_page);
2213                 put_page(tree_page);
2214                 if (kpage) {
2215                         /*
2216                          * The pages were successfully merged: insert new
2217                          * node in the stable tree and add both rmap_items.
2218                          */
2219                         lock_page(kpage);
2220                         stable_node = stable_tree_insert(kpage);
2221                         if (stable_node) {
2222                                 stable_tree_append(tree_rmap_item, stable_node,
2223                                                    false);
2224                                 stable_tree_append(rmap_item, stable_node,
2225                                                    false);
2226                         }
2227                         unlock_page(kpage);
2228
2229                         /*
2230                          * If we fail to insert the page into the stable tree,
2231                          * we will have 2 virtual addresses that are pointing
2232                          * to a ksm page left outside the stable tree,
2233                          * in which case we need to break_cow on both.
2234                          */
2235                         if (!stable_node) {
2236                                 break_cow(tree_rmap_item);
2237                                 break_cow(rmap_item);
2238                         }
2239                 } else if (split) {
2240                         /*
2241                          * We are here if we tried to merge two pages and
2242                          * failed because they both belonged to the same
2243                          * compound page. We will split the page now, but no
2244                          * merging will take place.
2245                          * We do not want to add the cost of a full lock; if
2246                          * the page is locked, it is better to skip it and
2247                          * perhaps try again later.
2248                          */
2249                         if (!trylock_page(page))
2250                                 return;
2251                         split_huge_page(page);
2252                         unlock_page(page);
2253                 }
2254         }
2255 }
2256
2257 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2258                                             struct ksm_rmap_item **rmap_list,
2259                                             unsigned long addr)
2260 {
2261         struct ksm_rmap_item *rmap_item;
2262
2263         while (*rmap_list) {
2264                 rmap_item = *rmap_list;
2265                 if ((rmap_item->address & PAGE_MASK) == addr)
2266                         return rmap_item;
2267                 if (rmap_item->address > addr)
2268                         break;
2269                 *rmap_list = rmap_item->rmap_list;
2270                 remove_rmap_item_from_tree(rmap_item);
2271                 free_rmap_item(rmap_item);
2272         }
2273
2274         rmap_item = alloc_rmap_item();
2275         if (rmap_item) {
2276                 /* It has already been zeroed */
2277                 rmap_item->mm = mm_slot->slot.mm;
2278                 rmap_item->mm->ksm_rmap_items++;
2279                 rmap_item->address = addr;
2280                 rmap_item->rmap_list = *rmap_list;
2281                 *rmap_list = rmap_item;
2282         }
2283         return rmap_item;
2284 }
2285
2286 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2287 {
2288         struct mm_struct *mm;
2289         struct ksm_mm_slot *mm_slot;
2290         struct mm_slot *slot;
2291         struct vm_area_struct *vma;
2292         struct ksm_rmap_item *rmap_item;
2293         struct vma_iterator vmi;
2294         int nid;
2295
2296         if (list_empty(&ksm_mm_head.slot.mm_node))
2297                 return NULL;
2298
2299         mm_slot = ksm_scan.mm_slot;
2300         if (mm_slot == &ksm_mm_head) {
2301                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2302
2303                 /*
2304                  * A number of pages can hang around indefinitely on per-cpu
2305                  * pagevecs, raised page count preventing write_protect_page
2306                  * from merging them.  Though it doesn't really matter much,
2307                  * it is puzzling to see some stuck in pages_volatile until
2308                  * other activity jostles them out, and they also prevented
2309                  * LTP's KSM test from succeeding deterministically; so drain
2310                  * them here (here rather than on entry to ksm_do_scan(),
2311                  * so we don't IPI too often when pages_to_scan is set low).
2312                  */
2313                 lru_add_drain_all();
2314
2315                 /*
2316                  * Whereas stale stable_nodes on the stable_tree itself
2317                  * get pruned in the regular course of stable_tree_search(),
2318                  * those moved out to the migrate_nodes list can accumulate:
2319                  * so prune them once before each full scan.
2320                  */
2321                 if (!ksm_merge_across_nodes) {
2322                         struct ksm_stable_node *stable_node, *next;
2323                         struct page *page;
2324
2325                         list_for_each_entry_safe(stable_node, next,
2326                                                  &migrate_nodes, list) {
2327                                 page = get_ksm_page(stable_node,
2328                                                     GET_KSM_PAGE_NOLOCK);
2329                                 if (page)
2330                                         put_page(page);
2331                                 cond_resched();
2332                         }
2333                 }
2334
2335                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2336                         root_unstable_tree[nid] = RB_ROOT;
2337
2338                 spin_lock(&ksm_mmlist_lock);
2339                 slot = list_entry(mm_slot->slot.mm_node.next,
2340                                   struct mm_slot, mm_node);
2341                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2342                 ksm_scan.mm_slot = mm_slot;
2343                 spin_unlock(&ksm_mmlist_lock);
2344                 /*
2345                  * Although we tested list_empty() above, a racing __ksm_exit
2346                  * of the last mm on the list may have removed it since then.
2347                  */
2348                 if (mm_slot == &ksm_mm_head)
2349                         return NULL;
2350 next_mm:
2351                 ksm_scan.address = 0;
2352                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2353         }
2354
2355         slot = &mm_slot->slot;
2356         mm = slot->mm;
2357         vma_iter_init(&vmi, mm, ksm_scan.address);
2358
2359         mmap_read_lock(mm);
2360         if (ksm_test_exit(mm))
2361                 goto no_vmas;
2362
2363         for_each_vma(vmi, vma) {
2364                 if (!(vma->vm_flags & VM_MERGEABLE))
2365                         continue;
2366                 if (ksm_scan.address < vma->vm_start)
2367                         ksm_scan.address = vma->vm_start;
2368                 if (!vma->anon_vma)
2369                         ksm_scan.address = vma->vm_end;
2370
2371                 while (ksm_scan.address < vma->vm_end) {
2372                         if (ksm_test_exit(mm))
2373                                 break;
2374                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2375                         if (IS_ERR_OR_NULL(*page)) {
2376                                 ksm_scan.address += PAGE_SIZE;
2377                                 cond_resched();
2378                                 continue;
2379                         }
2380                         if (is_zone_device_page(*page))
2381                                 goto next_page;
2382                         if (PageAnon(*page)) {
2383                                 flush_anon_page(vma, *page, ksm_scan.address);
2384                                 flush_dcache_page(*page);
2385                                 rmap_item = get_next_rmap_item(mm_slot,
2386                                         ksm_scan.rmap_list, ksm_scan.address);
2387                                 if (rmap_item) {
2388                                         ksm_scan.rmap_list =
2389                                                         &rmap_item->rmap_list;
2390                                         ksm_scan.address += PAGE_SIZE;
2391                                 } else
2392                                         put_page(*page);
2393                                 mmap_read_unlock(mm);
2394                                 return rmap_item;
2395                         }
2396 next_page:
2397                         put_page(*page);
2398                         ksm_scan.address += PAGE_SIZE;
2399                         cond_resched();
2400                 }
2401         }
2402
2403         if (ksm_test_exit(mm)) {
2404 no_vmas:
2405                 ksm_scan.address = 0;
2406                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2407         }
2408         /*
2409          * Nuke all the rmap_items that are above this current rmap:
2410          * because there were no VM_MERGEABLE vmas with such addresses.
2411          */
2412         remove_trailing_rmap_items(ksm_scan.rmap_list);
2413
2414         spin_lock(&ksm_mmlist_lock);
2415         slot = list_entry(mm_slot->slot.mm_node.next,
2416                           struct mm_slot, mm_node);
2417         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2418         if (ksm_scan.address == 0) {
2419                 /*
2420                  * We've completed a full scan of all vmas, holding mmap_lock
2421                  * throughout, and found no VM_MERGEABLE: so do the same as
2422                  * __ksm_exit does to remove this mm from all our lists now.
2423                  * This applies either when cleaning up after __ksm_exit
2424                  * (but beware: we can reach here even before __ksm_exit),
2425                  * or when all VM_MERGEABLE areas have been unmapped (and
2426                  * mmap_lock then protects against race with MADV_MERGEABLE).
2427                  */
2428                 hash_del(&mm_slot->slot.hash);
2429                 list_del(&mm_slot->slot.mm_node);
2430                 spin_unlock(&ksm_mmlist_lock);
2431
2432                 mm_slot_free(mm_slot_cache, mm_slot);
2433                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2434                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2435                 mmap_read_unlock(mm);
2436                 mmdrop(mm);
2437         } else {
2438                 mmap_read_unlock(mm);
2439                 /*
2440                  * mmap_read_unlock(mm) first because after
2441                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2442                  * already have been freed under us by __ksm_exit()
2443                  * because the "mm_slot" is still hashed and
2444                  * ksm_scan.mm_slot doesn't point to it anymore.
2445                  */
2446                 spin_unlock(&ksm_mmlist_lock);
2447         }
2448
2449         /* Repeat until we've completed scanning the whole list */
2450         mm_slot = ksm_scan.mm_slot;
2451         if (mm_slot != &ksm_mm_head)
2452                 goto next_mm;
2453
2454         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2455         ksm_scan.seqnr++;
2456         return NULL;
2457 }
2458
2459 /**
2460  * ksm_do_scan  - the ksm scanner main worker function.
2461  * @scan_npages:  number of pages we want to scan before we return.
2462  */
2463 static void ksm_do_scan(unsigned int scan_npages)
2464 {
2465         struct ksm_rmap_item *rmap_item;
2466         struct page *page;
2467
2468         while (scan_npages-- && likely(!freezing(current))) {
2469                 cond_resched();
2470                 rmap_item = scan_get_next_rmap_item(&page);
2471                 if (!rmap_item)
2472                         return;
2473                 cmp_and_merge_page(page, rmap_item);
2474                 put_page(page);
2475         }
2476 }
2477
2478 static int ksmd_should_run(void)
2479 {
2480         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2481 }
2482
2483 static int ksm_scan_thread(void *nothing)
2484 {
2485         unsigned int sleep_ms;
2486
2487         set_freezable();
2488         set_user_nice(current, 5);
2489
2490         while (!kthread_should_stop()) {
2491                 mutex_lock(&ksm_thread_mutex);
2492                 wait_while_offlining();
2493                 if (ksmd_should_run())
2494                         ksm_do_scan(ksm_thread_pages_to_scan);
2495                 mutex_unlock(&ksm_thread_mutex);
2496
2497                 try_to_freeze();
2498
2499                 if (ksmd_should_run()) {
2500                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2501                         wait_event_interruptible_timeout(ksm_iter_wait,
2502                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2503                                 msecs_to_jiffies(sleep_ms));
2504                 } else {
2505                         wait_event_freezable(ksm_thread_wait,
2506                                 ksmd_should_run() || kthread_should_stop());
2507                 }
2508         }
2509         return 0;
2510 }
2511
2512 static void __ksm_add_vma(struct vm_area_struct *vma)
2513 {
2514         unsigned long vm_flags = vma->vm_flags;
2515
2516         if (vm_flags & VM_MERGEABLE)
2517                 return;
2518
2519         if (vma_ksm_compatible(vma))
2520                 vm_flags_set(vma, VM_MERGEABLE);
2521 }
2522
2523 static int __ksm_del_vma(struct vm_area_struct *vma)
2524 {
2525         int err;
2526
2527         if (!(vma->vm_flags & VM_MERGEABLE))
2528                 return 0;
2529
2530         if (vma->anon_vma) {
2531                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2532                 if (err)
2533                         return err;
2534         }
2535
2536         vm_flags_clear(vma, VM_MERGEABLE);
2537         return 0;
2538 }
2539 /**
2540  * ksm_add_vma - Mark vma as mergeable if compatible
2541  *
2542  * @vma:  Pointer to vma
2543  */
2544 void ksm_add_vma(struct vm_area_struct *vma)
2545 {
2546         struct mm_struct *mm = vma->vm_mm;
2547
2548         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2549                 __ksm_add_vma(vma);
2550 }
2551
2552 static void ksm_add_vmas(struct mm_struct *mm)
2553 {
2554         struct vm_area_struct *vma;
2555
2556         VMA_ITERATOR(vmi, mm, 0);
2557         for_each_vma(vmi, vma)
2558                 __ksm_add_vma(vma);
2559 }
2560
2561 static int ksm_del_vmas(struct mm_struct *mm)
2562 {
2563         struct vm_area_struct *vma;
2564         int err;
2565
2566         VMA_ITERATOR(vmi, mm, 0);
2567         for_each_vma(vmi, vma) {
2568                 err = __ksm_del_vma(vma);
2569                 if (err)
2570                         return err;
2571         }
2572         return 0;
2573 }
2574
2575 /**
2576  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2577  *                        compatible VMA's
2578  *
2579  * @mm:  Pointer to mm
2580  *
2581  * Returns 0 on success, otherwise error code
2582  */
2583 int ksm_enable_merge_any(struct mm_struct *mm)
2584 {
2585         int err;
2586
2587         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2588                 return 0;
2589
2590         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2591                 err = __ksm_enter(mm);
2592                 if (err)
2593                         return err;
2594         }
2595
2596         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2597         ksm_add_vmas(mm);
2598
2599         return 0;
2600 }
2601
2602 /**
2603  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2604  *                         previously enabled via ksm_enable_merge_any().
2605  *
2606  * Disabling merging implies unmerging any merged pages, like setting
2607  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2608  * merging on all compatible VMA's remains enabled.
2609  *
2610  * @mm: Pointer to mm
2611  *
2612  * Returns 0 on success, otherwise error code
2613  */
2614 int ksm_disable_merge_any(struct mm_struct *mm)
2615 {
2616         int err;
2617
2618         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2619                 return 0;
2620
2621         err = ksm_del_vmas(mm);
2622         if (err) {
2623                 ksm_add_vmas(mm);
2624                 return err;
2625         }
2626
2627         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2628         return 0;
2629 }
2630
2631 int ksm_disable(struct mm_struct *mm)
2632 {
2633         mmap_assert_write_locked(mm);
2634
2635         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2636                 return 0;
2637         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2638                 return ksm_disable_merge_any(mm);
2639         return ksm_del_vmas(mm);
2640 }
2641
2642 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2643                 unsigned long end, int advice, unsigned long *vm_flags)
2644 {
2645         struct mm_struct *mm = vma->vm_mm;
2646         int err;
2647
2648         switch (advice) {
2649         case MADV_MERGEABLE:
2650                 if (vma->vm_flags & VM_MERGEABLE)
2651                         return 0;
2652                 if (!vma_ksm_compatible(vma))
2653                         return 0;
2654
2655                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2656                         err = __ksm_enter(mm);
2657                         if (err)
2658                                 return err;
2659                 }
2660
2661                 *vm_flags |= VM_MERGEABLE;
2662                 break;
2663
2664         case MADV_UNMERGEABLE:
2665                 if (!(*vm_flags & VM_MERGEABLE))
2666                         return 0;               /* just ignore the advice */
2667
2668                 if (vma->anon_vma) {
2669                         err = unmerge_ksm_pages(vma, start, end);
2670                         if (err)
2671                                 return err;
2672                 }
2673
2674                 *vm_flags &= ~VM_MERGEABLE;
2675                 break;
2676         }
2677
2678         return 0;
2679 }
2680 EXPORT_SYMBOL_GPL(ksm_madvise);
2681
2682 int __ksm_enter(struct mm_struct *mm)
2683 {
2684         struct ksm_mm_slot *mm_slot;
2685         struct mm_slot *slot;
2686         int needs_wakeup;
2687
2688         mm_slot = mm_slot_alloc(mm_slot_cache);
2689         if (!mm_slot)
2690                 return -ENOMEM;
2691
2692         slot = &mm_slot->slot;
2693
2694         /* Check ksm_run too?  Would need tighter locking */
2695         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2696
2697         spin_lock(&ksm_mmlist_lock);
2698         mm_slot_insert(mm_slots_hash, mm, slot);
2699         /*
2700          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2701          * insert just behind the scanning cursor, to let the area settle
2702          * down a little; when fork is followed by immediate exec, we don't
2703          * want ksmd to waste time setting up and tearing down an rmap_list.
2704          *
2705          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2706          * scanning cursor, otherwise KSM pages in newly forked mms will be
2707          * missed: then we might as well insert at the end of the list.
2708          */
2709         if (ksm_run & KSM_RUN_UNMERGE)
2710                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2711         else
2712                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2713         spin_unlock(&ksm_mmlist_lock);
2714
2715         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2716         mmgrab(mm);
2717
2718         if (needs_wakeup)
2719                 wake_up_interruptible(&ksm_thread_wait);
2720
2721         trace_ksm_enter(mm);
2722         return 0;
2723 }
2724
2725 void __ksm_exit(struct mm_struct *mm)
2726 {
2727         struct ksm_mm_slot *mm_slot;
2728         struct mm_slot *slot;
2729         int easy_to_free = 0;
2730
2731         /*
2732          * This process is exiting: if it's straightforward (as is the
2733          * case when ksmd was never running), free mm_slot immediately.
2734          * But if it's at the cursor or has rmap_items linked to it, use
2735          * mmap_lock to synchronize with any break_cows before pagetables
2736          * are freed, and leave the mm_slot on the list for ksmd to free.
2737          * Beware: ksm may already have noticed it exiting and freed the slot.
2738          */
2739
2740         spin_lock(&ksm_mmlist_lock);
2741         slot = mm_slot_lookup(mm_slots_hash, mm);
2742         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2743         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2744                 if (!mm_slot->rmap_list) {
2745                         hash_del(&slot->hash);
2746                         list_del(&slot->mm_node);
2747                         easy_to_free = 1;
2748                 } else {
2749                         list_move(&slot->mm_node,
2750                                   &ksm_scan.mm_slot->slot.mm_node);
2751                 }
2752         }
2753         spin_unlock(&ksm_mmlist_lock);
2754
2755         if (easy_to_free) {
2756                 mm_slot_free(mm_slot_cache, mm_slot);
2757                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2758                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2759                 mmdrop(mm);
2760         } else if (mm_slot) {
2761                 mmap_write_lock(mm);
2762                 mmap_write_unlock(mm);
2763         }
2764
2765         trace_ksm_exit(mm);
2766 }
2767
2768 struct page *ksm_might_need_to_copy(struct page *page,
2769                         struct vm_area_struct *vma, unsigned long address)
2770 {
2771         struct folio *folio = page_folio(page);
2772         struct anon_vma *anon_vma = folio_anon_vma(folio);
2773         struct page *new_page;
2774
2775         if (PageKsm(page)) {
2776                 if (page_stable_node(page) &&
2777                     !(ksm_run & KSM_RUN_UNMERGE))
2778                         return page;    /* no need to copy it */
2779         } else if (!anon_vma) {
2780                 return page;            /* no need to copy it */
2781         } else if (page->index == linear_page_index(vma, address) &&
2782                         anon_vma->root == vma->anon_vma->root) {
2783                 return page;            /* still no need to copy it */
2784         }
2785         if (!PageUptodate(page))
2786                 return page;            /* let do_swap_page report the error */
2787
2788         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2789         if (new_page &&
2790             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2791                 put_page(new_page);
2792                 new_page = NULL;
2793         }
2794         if (new_page) {
2795                 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2796                         put_page(new_page);
2797                         memory_failure_queue(page_to_pfn(page), 0);
2798                         return ERR_PTR(-EHWPOISON);
2799                 }
2800                 SetPageDirty(new_page);
2801                 __SetPageUptodate(new_page);
2802                 __SetPageLocked(new_page);
2803 #ifdef CONFIG_SWAP
2804                 count_vm_event(KSM_SWPIN_COPY);
2805 #endif
2806         }
2807
2808         return new_page;
2809 }
2810
2811 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2812 {
2813         struct ksm_stable_node *stable_node;
2814         struct ksm_rmap_item *rmap_item;
2815         int search_new_forks = 0;
2816
2817         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2818
2819         /*
2820          * Rely on the page lock to protect against concurrent modifications
2821          * to that page's node of the stable tree.
2822          */
2823         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2824
2825         stable_node = folio_stable_node(folio);
2826         if (!stable_node)
2827                 return;
2828 again:
2829         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2830                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2831                 struct anon_vma_chain *vmac;
2832                 struct vm_area_struct *vma;
2833
2834                 cond_resched();
2835                 if (!anon_vma_trylock_read(anon_vma)) {
2836                         if (rwc->try_lock) {
2837                                 rwc->contended = true;
2838                                 return;
2839                         }
2840                         anon_vma_lock_read(anon_vma);
2841                 }
2842                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2843                                                0, ULONG_MAX) {
2844                         unsigned long addr;
2845
2846                         cond_resched();
2847                         vma = vmac->vma;
2848
2849                         /* Ignore the stable/unstable/sqnr flags */
2850                         addr = rmap_item->address & PAGE_MASK;
2851
2852                         if (addr < vma->vm_start || addr >= vma->vm_end)
2853                                 continue;
2854                         /*
2855                          * Initially we examine only the vma which covers this
2856                          * rmap_item; but later, if there is still work to do,
2857                          * we examine covering vmas in other mms: in case they
2858                          * were forked from the original since ksmd passed.
2859                          */
2860                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2861                                 continue;
2862
2863                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2864                                 continue;
2865
2866                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2867                                 anon_vma_unlock_read(anon_vma);
2868                                 return;
2869                         }
2870                         if (rwc->done && rwc->done(folio)) {
2871                                 anon_vma_unlock_read(anon_vma);
2872                                 return;
2873                         }
2874                 }
2875                 anon_vma_unlock_read(anon_vma);
2876         }
2877         if (!search_new_forks++)
2878                 goto again;
2879 }
2880
2881 #ifdef CONFIG_MEMORY_FAILURE
2882 /*
2883  * Collect processes when the error hit an ksm page.
2884  */
2885 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2886                        int force_early)
2887 {
2888         struct ksm_stable_node *stable_node;
2889         struct ksm_rmap_item *rmap_item;
2890         struct folio *folio = page_folio(page);
2891         struct vm_area_struct *vma;
2892         struct task_struct *tsk;
2893
2894         stable_node = folio_stable_node(folio);
2895         if (!stable_node)
2896                 return;
2897         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2898                 struct anon_vma *av = rmap_item->anon_vma;
2899
2900                 anon_vma_lock_read(av);
2901                 read_lock(&tasklist_lock);
2902                 for_each_process(tsk) {
2903                         struct anon_vma_chain *vmac;
2904                         unsigned long addr;
2905                         struct task_struct *t =
2906                                 task_early_kill(tsk, force_early);
2907                         if (!t)
2908                                 continue;
2909                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2910                                                        ULONG_MAX)
2911                         {
2912                                 vma = vmac->vma;
2913                                 if (vma->vm_mm == t->mm) {
2914                                         addr = rmap_item->address & PAGE_MASK;
2915                                         add_to_kill_ksm(t, page, vma, to_kill,
2916                                                         addr);
2917                                 }
2918                         }
2919                 }
2920                 read_unlock(&tasklist_lock);
2921                 anon_vma_unlock_read(av);
2922         }
2923 }
2924 #endif
2925
2926 #ifdef CONFIG_MIGRATION
2927 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2928 {
2929         struct ksm_stable_node *stable_node;
2930
2931         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2932         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2933         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2934
2935         stable_node = folio_stable_node(folio);
2936         if (stable_node) {
2937                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2938                 stable_node->kpfn = folio_pfn(newfolio);
2939                 /*
2940                  * newfolio->mapping was set in advance; now we need smp_wmb()
2941                  * to make sure that the new stable_node->kpfn is visible
2942                  * to get_ksm_page() before it can see that folio->mapping
2943                  * has gone stale (or that folio_test_swapcache has been cleared).
2944                  */
2945                 smp_wmb();
2946                 set_page_stable_node(&folio->page, NULL);
2947         }
2948 }
2949 #endif /* CONFIG_MIGRATION */
2950
2951 #ifdef CONFIG_MEMORY_HOTREMOVE
2952 static void wait_while_offlining(void)
2953 {
2954         while (ksm_run & KSM_RUN_OFFLINE) {
2955                 mutex_unlock(&ksm_thread_mutex);
2956                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2957                             TASK_UNINTERRUPTIBLE);
2958                 mutex_lock(&ksm_thread_mutex);
2959         }
2960 }
2961
2962 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2963                                          unsigned long start_pfn,
2964                                          unsigned long end_pfn)
2965 {
2966         if (stable_node->kpfn >= start_pfn &&
2967             stable_node->kpfn < end_pfn) {
2968                 /*
2969                  * Don't get_ksm_page, page has already gone:
2970                  * which is why we keep kpfn instead of page*
2971                  */
2972                 remove_node_from_stable_tree(stable_node);
2973                 return true;
2974         }
2975         return false;
2976 }
2977
2978 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2979                                            unsigned long start_pfn,
2980                                            unsigned long end_pfn,
2981                                            struct rb_root *root)
2982 {
2983         struct ksm_stable_node *dup;
2984         struct hlist_node *hlist_safe;
2985
2986         if (!is_stable_node_chain(stable_node)) {
2987                 VM_BUG_ON(is_stable_node_dup(stable_node));
2988                 return stable_node_dup_remove_range(stable_node, start_pfn,
2989                                                     end_pfn);
2990         }
2991
2992         hlist_for_each_entry_safe(dup, hlist_safe,
2993                                   &stable_node->hlist, hlist_dup) {
2994                 VM_BUG_ON(!is_stable_node_dup(dup));
2995                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2996         }
2997         if (hlist_empty(&stable_node->hlist)) {
2998                 free_stable_node_chain(stable_node, root);
2999                 return true; /* notify caller that tree was rebalanced */
3000         } else
3001                 return false;
3002 }
3003
3004 static void ksm_check_stable_tree(unsigned long start_pfn,
3005                                   unsigned long end_pfn)
3006 {
3007         struct ksm_stable_node *stable_node, *next;
3008         struct rb_node *node;
3009         int nid;
3010
3011         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3012                 node = rb_first(root_stable_tree + nid);
3013                 while (node) {
3014                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3015                         if (stable_node_chain_remove_range(stable_node,
3016                                                            start_pfn, end_pfn,
3017                                                            root_stable_tree +
3018                                                            nid))
3019                                 node = rb_first(root_stable_tree + nid);
3020                         else
3021                                 node = rb_next(node);
3022                         cond_resched();
3023                 }
3024         }
3025         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3026                 if (stable_node->kpfn >= start_pfn &&
3027                     stable_node->kpfn < end_pfn)
3028                         remove_node_from_stable_tree(stable_node);
3029                 cond_resched();
3030         }
3031 }
3032
3033 static int ksm_memory_callback(struct notifier_block *self,
3034                                unsigned long action, void *arg)
3035 {
3036         struct memory_notify *mn = arg;
3037
3038         switch (action) {
3039         case MEM_GOING_OFFLINE:
3040                 /*
3041                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3042                  * and remove_all_stable_nodes() while memory is going offline:
3043                  * it is unsafe for them to touch the stable tree at this time.
3044                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3045                  * which do not need the ksm_thread_mutex are all safe.
3046                  */
3047                 mutex_lock(&ksm_thread_mutex);
3048                 ksm_run |= KSM_RUN_OFFLINE;
3049                 mutex_unlock(&ksm_thread_mutex);
3050                 break;
3051
3052         case MEM_OFFLINE:
3053                 /*
3054                  * Most of the work is done by page migration; but there might
3055                  * be a few stable_nodes left over, still pointing to struct
3056                  * pages which have been offlined: prune those from the tree,
3057                  * otherwise get_ksm_page() might later try to access a
3058                  * non-existent struct page.
3059                  */
3060                 ksm_check_stable_tree(mn->start_pfn,
3061                                       mn->start_pfn + mn->nr_pages);
3062                 fallthrough;
3063         case MEM_CANCEL_OFFLINE:
3064                 mutex_lock(&ksm_thread_mutex);
3065                 ksm_run &= ~KSM_RUN_OFFLINE;
3066                 mutex_unlock(&ksm_thread_mutex);
3067
3068                 smp_mb();       /* wake_up_bit advises this */
3069                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3070                 break;
3071         }
3072         return NOTIFY_OK;
3073 }
3074 #else
3075 static void wait_while_offlining(void)
3076 {
3077 }
3078 #endif /* CONFIG_MEMORY_HOTREMOVE */
3079
3080 #ifdef CONFIG_PROC_FS
3081 long ksm_process_profit(struct mm_struct *mm)
3082 {
3083         return mm->ksm_merging_pages * PAGE_SIZE -
3084                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3085 }
3086 #endif /* CONFIG_PROC_FS */
3087
3088 #ifdef CONFIG_SYSFS
3089 /*
3090  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3091  */
3092
3093 #define KSM_ATTR_RO(_name) \
3094         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3095 #define KSM_ATTR(_name) \
3096         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3097
3098 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3099                                     struct kobj_attribute *attr, char *buf)
3100 {
3101         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3102 }
3103
3104 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3105                                      struct kobj_attribute *attr,
3106                                      const char *buf, size_t count)
3107 {
3108         unsigned int msecs;
3109         int err;
3110
3111         err = kstrtouint(buf, 10, &msecs);
3112         if (err)
3113                 return -EINVAL;
3114
3115         ksm_thread_sleep_millisecs = msecs;
3116         wake_up_interruptible(&ksm_iter_wait);
3117
3118         return count;
3119 }
3120 KSM_ATTR(sleep_millisecs);
3121
3122 static ssize_t pages_to_scan_show(struct kobject *kobj,
3123                                   struct kobj_attribute *attr, char *buf)
3124 {
3125         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3126 }
3127
3128 static ssize_t pages_to_scan_store(struct kobject *kobj,
3129                                    struct kobj_attribute *attr,
3130                                    const char *buf, size_t count)
3131 {
3132         unsigned int nr_pages;
3133         int err;
3134
3135         err = kstrtouint(buf, 10, &nr_pages);
3136         if (err)
3137                 return -EINVAL;
3138
3139         ksm_thread_pages_to_scan = nr_pages;
3140
3141         return count;
3142 }
3143 KSM_ATTR(pages_to_scan);
3144
3145 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3146                         char *buf)
3147 {
3148         return sysfs_emit(buf, "%lu\n", ksm_run);
3149 }
3150
3151 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3152                          const char *buf, size_t count)
3153 {
3154         unsigned int flags;
3155         int err;
3156
3157         err = kstrtouint(buf, 10, &flags);
3158         if (err)
3159                 return -EINVAL;
3160         if (flags > KSM_RUN_UNMERGE)
3161                 return -EINVAL;
3162
3163         /*
3164          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3165          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3166          * breaking COW to free the pages_shared (but leaves mm_slots
3167          * on the list for when ksmd may be set running again).
3168          */
3169
3170         mutex_lock(&ksm_thread_mutex);
3171         wait_while_offlining();
3172         if (ksm_run != flags) {
3173                 ksm_run = flags;
3174                 if (flags & KSM_RUN_UNMERGE) {
3175                         set_current_oom_origin();
3176                         err = unmerge_and_remove_all_rmap_items();
3177                         clear_current_oom_origin();
3178                         if (err) {
3179                                 ksm_run = KSM_RUN_STOP;
3180                                 count = err;
3181                         }
3182                 }
3183         }
3184         mutex_unlock(&ksm_thread_mutex);
3185
3186         if (flags & KSM_RUN_MERGE)
3187                 wake_up_interruptible(&ksm_thread_wait);
3188
3189         return count;
3190 }
3191 KSM_ATTR(run);
3192
3193 #ifdef CONFIG_NUMA
3194 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3195                                        struct kobj_attribute *attr, char *buf)
3196 {
3197         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3198 }
3199
3200 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3201                                    struct kobj_attribute *attr,
3202                                    const char *buf, size_t count)
3203 {
3204         int err;
3205         unsigned long knob;
3206
3207         err = kstrtoul(buf, 10, &knob);
3208         if (err)
3209                 return err;
3210         if (knob > 1)
3211                 return -EINVAL;
3212
3213         mutex_lock(&ksm_thread_mutex);
3214         wait_while_offlining();
3215         if (ksm_merge_across_nodes != knob) {
3216                 if (ksm_pages_shared || remove_all_stable_nodes())
3217                         err = -EBUSY;
3218                 else if (root_stable_tree == one_stable_tree) {
3219                         struct rb_root *buf;
3220                         /*
3221                          * This is the first time that we switch away from the
3222                          * default of merging across nodes: must now allocate
3223                          * a buffer to hold as many roots as may be needed.
3224                          * Allocate stable and unstable together:
3225                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3226                          */
3227                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3228                                       GFP_KERNEL);
3229                         /* Let us assume that RB_ROOT is NULL is zero */
3230                         if (!buf)
3231                                 err = -ENOMEM;
3232                         else {
3233                                 root_stable_tree = buf;
3234                                 root_unstable_tree = buf + nr_node_ids;
3235                                 /* Stable tree is empty but not the unstable */
3236                                 root_unstable_tree[0] = one_unstable_tree[0];
3237                         }
3238                 }
3239                 if (!err) {
3240                         ksm_merge_across_nodes = knob;
3241                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3242                 }
3243         }
3244         mutex_unlock(&ksm_thread_mutex);
3245
3246         return err ? err : count;
3247 }
3248 KSM_ATTR(merge_across_nodes);
3249 #endif
3250
3251 static ssize_t use_zero_pages_show(struct kobject *kobj,
3252                                    struct kobj_attribute *attr, char *buf)
3253 {
3254         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3255 }
3256 static ssize_t use_zero_pages_store(struct kobject *kobj,
3257                                    struct kobj_attribute *attr,
3258                                    const char *buf, size_t count)
3259 {
3260         int err;
3261         bool value;
3262
3263         err = kstrtobool(buf, &value);
3264         if (err)
3265                 return -EINVAL;
3266
3267         ksm_use_zero_pages = value;
3268
3269         return count;
3270 }
3271 KSM_ATTR(use_zero_pages);
3272
3273 static ssize_t max_page_sharing_show(struct kobject *kobj,
3274                                      struct kobj_attribute *attr, char *buf)
3275 {
3276         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3277 }
3278
3279 static ssize_t max_page_sharing_store(struct kobject *kobj,
3280                                       struct kobj_attribute *attr,
3281                                       const char *buf, size_t count)
3282 {
3283         int err;
3284         int knob;
3285
3286         err = kstrtoint(buf, 10, &knob);
3287         if (err)
3288                 return err;
3289         /*
3290          * When a KSM page is created it is shared by 2 mappings. This
3291          * being a signed comparison, it implicitly verifies it's not
3292          * negative.
3293          */
3294         if (knob < 2)
3295                 return -EINVAL;
3296
3297         if (READ_ONCE(ksm_max_page_sharing) == knob)
3298                 return count;
3299
3300         mutex_lock(&ksm_thread_mutex);
3301         wait_while_offlining();
3302         if (ksm_max_page_sharing != knob) {
3303                 if (ksm_pages_shared || remove_all_stable_nodes())
3304                         err = -EBUSY;
3305                 else
3306                         ksm_max_page_sharing = knob;
3307         }
3308         mutex_unlock(&ksm_thread_mutex);
3309
3310         return err ? err : count;
3311 }
3312 KSM_ATTR(max_page_sharing);
3313
3314 static ssize_t pages_shared_show(struct kobject *kobj,
3315                                  struct kobj_attribute *attr, char *buf)
3316 {
3317         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3318 }
3319 KSM_ATTR_RO(pages_shared);
3320
3321 static ssize_t pages_sharing_show(struct kobject *kobj,
3322                                   struct kobj_attribute *attr, char *buf)
3323 {
3324         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3325 }
3326 KSM_ATTR_RO(pages_sharing);
3327
3328 static ssize_t pages_unshared_show(struct kobject *kobj,
3329                                    struct kobj_attribute *attr, char *buf)
3330 {
3331         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3332 }
3333 KSM_ATTR_RO(pages_unshared);
3334
3335 static ssize_t pages_volatile_show(struct kobject *kobj,
3336                                    struct kobj_attribute *attr, char *buf)
3337 {
3338         long ksm_pages_volatile;
3339
3340         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3341                                 - ksm_pages_sharing - ksm_pages_unshared;
3342         /*
3343          * It was not worth any locking to calculate that statistic,
3344          * but it might therefore sometimes be negative: conceal that.
3345          */
3346         if (ksm_pages_volatile < 0)
3347                 ksm_pages_volatile = 0;
3348         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3349 }
3350 KSM_ATTR_RO(pages_volatile);
3351
3352 static ssize_t general_profit_show(struct kobject *kobj,
3353                                    struct kobj_attribute *attr, char *buf)
3354 {
3355         long general_profit;
3356
3357         general_profit = ksm_pages_sharing * PAGE_SIZE -
3358                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3359
3360         return sysfs_emit(buf, "%ld\n", general_profit);
3361 }
3362 KSM_ATTR_RO(general_profit);
3363
3364 static ssize_t stable_node_dups_show(struct kobject *kobj,
3365                                      struct kobj_attribute *attr, char *buf)
3366 {
3367         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3368 }
3369 KSM_ATTR_RO(stable_node_dups);
3370
3371 static ssize_t stable_node_chains_show(struct kobject *kobj,
3372                                        struct kobj_attribute *attr, char *buf)
3373 {
3374         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3375 }
3376 KSM_ATTR_RO(stable_node_chains);
3377
3378 static ssize_t
3379 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3380                                         struct kobj_attribute *attr,
3381                                         char *buf)
3382 {
3383         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3384 }
3385
3386 static ssize_t
3387 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3388                                          struct kobj_attribute *attr,
3389                                          const char *buf, size_t count)
3390 {
3391         unsigned int msecs;
3392         int err;
3393
3394         err = kstrtouint(buf, 10, &msecs);
3395         if (err)
3396                 return -EINVAL;
3397
3398         ksm_stable_node_chains_prune_millisecs = msecs;
3399
3400         return count;
3401 }
3402 KSM_ATTR(stable_node_chains_prune_millisecs);
3403
3404 static ssize_t full_scans_show(struct kobject *kobj,
3405                                struct kobj_attribute *attr, char *buf)
3406 {
3407         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3408 }
3409 KSM_ATTR_RO(full_scans);
3410
3411 static struct attribute *ksm_attrs[] = {
3412         &sleep_millisecs_attr.attr,
3413         &pages_to_scan_attr.attr,
3414         &run_attr.attr,
3415         &pages_shared_attr.attr,
3416         &pages_sharing_attr.attr,
3417         &pages_unshared_attr.attr,
3418         &pages_volatile_attr.attr,
3419         &full_scans_attr.attr,
3420 #ifdef CONFIG_NUMA
3421         &merge_across_nodes_attr.attr,
3422 #endif
3423         &max_page_sharing_attr.attr,
3424         &stable_node_chains_attr.attr,
3425         &stable_node_dups_attr.attr,
3426         &stable_node_chains_prune_millisecs_attr.attr,
3427         &use_zero_pages_attr.attr,
3428         &general_profit_attr.attr,
3429         NULL,
3430 };
3431
3432 static const struct attribute_group ksm_attr_group = {
3433         .attrs = ksm_attrs,
3434         .name = "ksm",
3435 };
3436 #endif /* CONFIG_SYSFS */
3437
3438 static int __init ksm_init(void)
3439 {
3440         struct task_struct *ksm_thread;
3441         int err;
3442
3443         /* The correct value depends on page size and endianness */
3444         zero_checksum = calc_checksum(ZERO_PAGE(0));
3445         /* Default to false for backwards compatibility */
3446         ksm_use_zero_pages = false;
3447
3448         err = ksm_slab_init();
3449         if (err)
3450                 goto out;
3451
3452         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3453         if (IS_ERR(ksm_thread)) {
3454                 pr_err("ksm: creating kthread failed\n");
3455                 err = PTR_ERR(ksm_thread);
3456                 goto out_free;
3457         }
3458
3459 #ifdef CONFIG_SYSFS
3460         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3461         if (err) {
3462                 pr_err("ksm: register sysfs failed\n");
3463                 kthread_stop(ksm_thread);
3464                 goto out_free;
3465         }
3466 #else
3467         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3468
3469 #endif /* CONFIG_SYSFS */
3470
3471 #ifdef CONFIG_MEMORY_HOTREMOVE
3472         /* There is no significance to this priority 100 */
3473         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3474 #endif
3475         return 0;
3476
3477 out_free:
3478         ksm_slab_free();
3479 out:
3480         return err;
3481 }
3482 subsys_initcall(ksm_init);