mm/autonuma: use can_change_(pte|pmd)_writable() to replace savedwrite
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 #include "mm_slot.h"
46
47 #ifdef CONFIG_NUMA
48 #define NUMA(x)         (x)
49 #define DO_NUMA(x)      do { (x); } while (0)
50 #else
51 #define NUMA(x)         (0)
52 #define DO_NUMA(x)      do { } while (0)
53 #endif
54
55 /**
56  * DOC: Overview
57  *
58  * A few notes about the KSM scanning process,
59  * to make it easier to understand the data structures below:
60  *
61  * In order to reduce excessive scanning, KSM sorts the memory pages by their
62  * contents into a data structure that holds pointers to the pages' locations.
63  *
64  * Since the contents of the pages may change at any moment, KSM cannot just
65  * insert the pages into a normal sorted tree and expect it to find anything.
66  * Therefore KSM uses two data structures - the stable and the unstable tree.
67  *
68  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
69  * by their contents.  Because each such page is write-protected, searching on
70  * this tree is fully assured to be working (except when pages are unmapped),
71  * and therefore this tree is called the stable tree.
72  *
73  * The stable tree node includes information required for reverse
74  * mapping from a KSM page to virtual addresses that map this page.
75  *
76  * In order to avoid large latencies of the rmap walks on KSM pages,
77  * KSM maintains two types of nodes in the stable tree:
78  *
79  * * the regular nodes that keep the reverse mapping structures in a
80  *   linked list
81  * * the "chains" that link nodes ("dups") that represent the same
82  *   write protected memory content, but each "dup" corresponds to a
83  *   different KSM page copy of that content
84  *
85  * Internally, the regular nodes, "dups" and "chains" are represented
86  * using the same struct ksm_stable_node structure.
87  *
88  * In addition to the stable tree, KSM uses a second data structure called the
89  * unstable tree: this tree holds pointers to pages which have been found to
90  * be "unchanged for a period of time".  The unstable tree sorts these pages
91  * by their contents, but since they are not write-protected, KSM cannot rely
92  * upon the unstable tree to work correctly - the unstable tree is liable to
93  * be corrupted as its contents are modified, and so it is called unstable.
94  *
95  * KSM solves this problem by several techniques:
96  *
97  * 1) The unstable tree is flushed every time KSM completes scanning all
98  *    memory areas, and then the tree is rebuilt again from the beginning.
99  * 2) KSM will only insert into the unstable tree, pages whose hash value
100  *    has not changed since the previous scan of all memory areas.
101  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
102  *    colors of the nodes and not on their contents, assuring that even when
103  *    the tree gets "corrupted" it won't get out of balance, so scanning time
104  *    remains the same (also, searching and inserting nodes in an rbtree uses
105  *    the same algorithm, so we have no overhead when we flush and rebuild).
106  * 4) KSM never flushes the stable tree, which means that even if it were to
107  *    take 10 attempts to find a page in the unstable tree, once it is found,
108  *    it is secured in the stable tree.  (When we scan a new page, we first
109  *    compare it against the stable tree, and then against the unstable tree.)
110  *
111  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
112  * stable trees and multiple unstable trees: one of each for each NUMA node.
113  */
114
115 /**
116  * struct ksm_mm_slot - ksm information per mm that is being scanned
117  * @slot: hash lookup from mm to mm_slot
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  */
120 struct ksm_mm_slot {
121         struct mm_slot slot;
122         struct ksm_rmap_item *rmap_list;
123 };
124
125 /**
126  * struct ksm_scan - cursor for scanning
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  * @rmap_list: link to the next rmap to be scanned in the rmap_list
130  * @seqnr: count of completed full scans (needed when removing unstable node)
131  *
132  * There is only the one ksm_scan instance of this cursor structure.
133  */
134 struct ksm_scan {
135         struct ksm_mm_slot *mm_slot;
136         unsigned long address;
137         struct ksm_rmap_item **rmap_list;
138         unsigned long seqnr;
139 };
140
141 /**
142  * struct ksm_stable_node - node of the stable rbtree
143  * @node: rb node of this ksm page in the stable tree
144  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
145  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
146  * @list: linked into migrate_nodes, pending placement in the proper node tree
147  * @hlist: hlist head of rmap_items using this ksm page
148  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
149  * @chain_prune_time: time of the last full garbage collection
150  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
151  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
152  */
153 struct ksm_stable_node {
154         union {
155                 struct rb_node node;    /* when node of stable tree */
156                 struct {                /* when listed for migration */
157                         struct list_head *head;
158                         struct {
159                                 struct hlist_node hlist_dup;
160                                 struct list_head list;
161                         };
162                 };
163         };
164         struct hlist_head hlist;
165         union {
166                 unsigned long kpfn;
167                 unsigned long chain_prune_time;
168         };
169         /*
170          * STABLE_NODE_CHAIN can be any negative number in
171          * rmap_hlist_len negative range, but better not -1 to be able
172          * to reliably detect underflows.
173          */
174 #define STABLE_NODE_CHAIN -1024
175         int rmap_hlist_len;
176 #ifdef CONFIG_NUMA
177         int nid;
178 #endif
179 };
180
181 /**
182  * struct ksm_rmap_item - reverse mapping item for virtual addresses
183  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
184  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
185  * @nid: NUMA node id of unstable tree in which linked (may not match page)
186  * @mm: the memory structure this rmap_item is pointing into
187  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
188  * @oldchecksum: previous checksum of the page at that virtual address
189  * @node: rb node of this rmap_item in the unstable tree
190  * @head: pointer to stable_node heading this list in the stable tree
191  * @hlist: link into hlist of rmap_items hanging off that stable_node
192  */
193 struct ksm_rmap_item {
194         struct ksm_rmap_item *rmap_list;
195         union {
196                 struct anon_vma *anon_vma;      /* when stable */
197 #ifdef CONFIG_NUMA
198                 int nid;                /* when node of unstable tree */
199 #endif
200         };
201         struct mm_struct *mm;
202         unsigned long address;          /* + low bits used for flags below */
203         unsigned int oldchecksum;       /* when unstable */
204         union {
205                 struct rb_node node;    /* when node of unstable tree */
206                 struct {                /* when listed from stable tree */
207                         struct ksm_stable_node *head;
208                         struct hlist_node hlist;
209                 };
210         };
211 };
212
213 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
214 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
215 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
216
217 /* The stable and unstable tree heads */
218 static struct rb_root one_stable_tree[1] = { RB_ROOT };
219 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
220 static struct rb_root *root_stable_tree = one_stable_tree;
221 static struct rb_root *root_unstable_tree = one_unstable_tree;
222
223 /* Recently migrated nodes of stable tree, pending proper placement */
224 static LIST_HEAD(migrate_nodes);
225 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
226
227 #define MM_SLOTS_HASH_BITS 10
228 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
229
230 static struct ksm_mm_slot ksm_mm_head = {
231         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
232 };
233 static struct ksm_scan ksm_scan = {
234         .mm_slot = &ksm_mm_head,
235 };
236
237 static struct kmem_cache *rmap_item_cache;
238 static struct kmem_cache *stable_node_cache;
239 static struct kmem_cache *mm_slot_cache;
240
241 /* The number of nodes in the stable tree */
242 static unsigned long ksm_pages_shared;
243
244 /* The number of page slots additionally sharing those nodes */
245 static unsigned long ksm_pages_sharing;
246
247 /* The number of nodes in the unstable tree */
248 static unsigned long ksm_pages_unshared;
249
250 /* The number of rmap_items in use: to calculate pages_volatile */
251 static unsigned long ksm_rmap_items;
252
253 /* The number of stable_node chains */
254 static unsigned long ksm_stable_node_chains;
255
256 /* The number of stable_node dups linked to the stable_node chains */
257 static unsigned long ksm_stable_node_dups;
258
259 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
260 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
261
262 /* Maximum number of page slots sharing a stable node */
263 static int ksm_max_page_sharing = 256;
264
265 /* Number of pages ksmd should scan in one batch */
266 static unsigned int ksm_thread_pages_to_scan = 100;
267
268 /* Milliseconds ksmd should sleep between batches */
269 static unsigned int ksm_thread_sleep_millisecs = 20;
270
271 /* Checksum of an empty (zeroed) page */
272 static unsigned int zero_checksum __read_mostly;
273
274 /* Whether to merge empty (zeroed) pages with actual zero pages */
275 static bool ksm_use_zero_pages __read_mostly;
276
277 #ifdef CONFIG_NUMA
278 /* Zeroed when merging across nodes is not allowed */
279 static unsigned int ksm_merge_across_nodes = 1;
280 static int ksm_nr_node_ids = 1;
281 #else
282 #define ksm_merge_across_nodes  1U
283 #define ksm_nr_node_ids         1
284 #endif
285
286 #define KSM_RUN_STOP    0
287 #define KSM_RUN_MERGE   1
288 #define KSM_RUN_UNMERGE 2
289 #define KSM_RUN_OFFLINE 4
290 static unsigned long ksm_run = KSM_RUN_STOP;
291 static void wait_while_offlining(void);
292
293 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
294 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
295 static DEFINE_MUTEX(ksm_thread_mutex);
296 static DEFINE_SPINLOCK(ksm_mmlist_lock);
297
298 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
299                 sizeof(struct __struct), __alignof__(struct __struct),\
300                 (__flags), NULL)
301
302 static int __init ksm_slab_init(void)
303 {
304         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
305         if (!rmap_item_cache)
306                 goto out;
307
308         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
309         if (!stable_node_cache)
310                 goto out_free1;
311
312         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
313         if (!mm_slot_cache)
314                 goto out_free2;
315
316         return 0;
317
318 out_free2:
319         kmem_cache_destroy(stable_node_cache);
320 out_free1:
321         kmem_cache_destroy(rmap_item_cache);
322 out:
323         return -ENOMEM;
324 }
325
326 static void __init ksm_slab_free(void)
327 {
328         kmem_cache_destroy(mm_slot_cache);
329         kmem_cache_destroy(stable_node_cache);
330         kmem_cache_destroy(rmap_item_cache);
331         mm_slot_cache = NULL;
332 }
333
334 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
335 {
336         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
337 }
338
339 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
340 {
341         return dup->head == STABLE_NODE_DUP_HEAD;
342 }
343
344 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
345                                              struct ksm_stable_node *chain)
346 {
347         VM_BUG_ON(is_stable_node_dup(dup));
348         dup->head = STABLE_NODE_DUP_HEAD;
349         VM_BUG_ON(!is_stable_node_chain(chain));
350         hlist_add_head(&dup->hlist_dup, &chain->hlist);
351         ksm_stable_node_dups++;
352 }
353
354 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
355 {
356         VM_BUG_ON(!is_stable_node_dup(dup));
357         hlist_del(&dup->hlist_dup);
358         ksm_stable_node_dups--;
359 }
360
361 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
362 {
363         VM_BUG_ON(is_stable_node_chain(dup));
364         if (is_stable_node_dup(dup))
365                 __stable_node_dup_del(dup);
366         else
367                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
368 #ifdef CONFIG_DEBUG_VM
369         dup->head = NULL;
370 #endif
371 }
372
373 static inline struct ksm_rmap_item *alloc_rmap_item(void)
374 {
375         struct ksm_rmap_item *rmap_item;
376
377         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
378                                                 __GFP_NORETRY | __GFP_NOWARN);
379         if (rmap_item)
380                 ksm_rmap_items++;
381         return rmap_item;
382 }
383
384 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
385 {
386         ksm_rmap_items--;
387         rmap_item->mm->ksm_rmap_items--;
388         rmap_item->mm = NULL;   /* debug safety */
389         kmem_cache_free(rmap_item_cache, rmap_item);
390 }
391
392 static inline struct ksm_stable_node *alloc_stable_node(void)
393 {
394         /*
395          * The allocation can take too long with GFP_KERNEL when memory is under
396          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
397          * grants access to memory reserves, helping to avoid this problem.
398          */
399         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
400 }
401
402 static inline void free_stable_node(struct ksm_stable_node *stable_node)
403 {
404         VM_BUG_ON(stable_node->rmap_hlist_len &&
405                   !is_stable_node_chain(stable_node));
406         kmem_cache_free(stable_node_cache, stable_node);
407 }
408
409 /*
410  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
411  * page tables after it has passed through ksm_exit() - which, if necessary,
412  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
413  * a special flag: they can just back out as soon as mm_users goes to zero.
414  * ksm_test_exit() is used throughout to make this test for exit: in some
415  * places for correctness, in some places just to avoid unnecessary work.
416  */
417 static inline bool ksm_test_exit(struct mm_struct *mm)
418 {
419         return atomic_read(&mm->mm_users) == 0;
420 }
421
422 /*
423  * We use break_ksm to break COW on a ksm page: it's a stripped down
424  *
425  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
426  *              put_page(page);
427  *
428  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
429  * in case the application has unmapped and remapped mm,addr meanwhile.
430  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
431  * mmap of /dev/mem, where we would not want to touch it.
432  *
433  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
434  * of the process that owns 'vma'.  We also do not want to enforce
435  * protection keys here anyway.
436  */
437 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
438 {
439         struct page *page;
440         vm_fault_t ret = 0;
441
442         do {
443                 cond_resched();
444                 page = follow_page(vma, addr,
445                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
446                 if (IS_ERR_OR_NULL(page))
447                         break;
448                 if (PageKsm(page))
449                         ret = handle_mm_fault(vma, addr,
450                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
451                                               NULL);
452                 else
453                         ret = VM_FAULT_WRITE;
454                 put_page(page);
455         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
456         /*
457          * We must loop because handle_mm_fault() may back out if there's
458          * any difficulty e.g. if pte accessed bit gets updated concurrently.
459          *
460          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
461          * COW has been broken, even if the vma does not permit VM_WRITE;
462          * but note that a concurrent fault might break PageKsm for us.
463          *
464          * VM_FAULT_SIGBUS could occur if we race with truncation of the
465          * backing file, which also invalidates anonymous pages: that's
466          * okay, that truncation will have unmapped the PageKsm for us.
467          *
468          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
469          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
470          * current task has TIF_MEMDIE set, and will be OOM killed on return
471          * to user; and ksmd, having no mm, would never be chosen for that.
472          *
473          * But if the mm is in a limited mem_cgroup, then the fault may fail
474          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
475          * even ksmd can fail in this way - though it's usually breaking ksm
476          * just to undo a merge it made a moment before, so unlikely to oom.
477          *
478          * That's a pity: we might therefore have more kernel pages allocated
479          * than we're counting as nodes in the stable tree; but ksm_do_scan
480          * will retry to break_cow on each pass, so should recover the page
481          * in due course.  The important thing is to not let VM_MERGEABLE
482          * be cleared while any such pages might remain in the area.
483          */
484         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
485 }
486
487 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
488                 unsigned long addr)
489 {
490         struct vm_area_struct *vma;
491         if (ksm_test_exit(mm))
492                 return NULL;
493         vma = vma_lookup(mm, addr);
494         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
495                 return NULL;
496         return vma;
497 }
498
499 static void break_cow(struct ksm_rmap_item *rmap_item)
500 {
501         struct mm_struct *mm = rmap_item->mm;
502         unsigned long addr = rmap_item->address;
503         struct vm_area_struct *vma;
504
505         /*
506          * It is not an accident that whenever we want to break COW
507          * to undo, we also need to drop a reference to the anon_vma.
508          */
509         put_anon_vma(rmap_item->anon_vma);
510
511         mmap_read_lock(mm);
512         vma = find_mergeable_vma(mm, addr);
513         if (vma)
514                 break_ksm(vma, addr);
515         mmap_read_unlock(mm);
516 }
517
518 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
519 {
520         struct mm_struct *mm = rmap_item->mm;
521         unsigned long addr = rmap_item->address;
522         struct vm_area_struct *vma;
523         struct page *page;
524
525         mmap_read_lock(mm);
526         vma = find_mergeable_vma(mm, addr);
527         if (!vma)
528                 goto out;
529
530         page = follow_page(vma, addr, FOLL_GET);
531         if (IS_ERR_OR_NULL(page))
532                 goto out;
533         if (is_zone_device_page(page))
534                 goto out_putpage;
535         if (PageAnon(page)) {
536                 flush_anon_page(vma, page, addr);
537                 flush_dcache_page(page);
538         } else {
539 out_putpage:
540                 put_page(page);
541 out:
542                 page = NULL;
543         }
544         mmap_read_unlock(mm);
545         return page;
546 }
547
548 /*
549  * This helper is used for getting right index into array of tree roots.
550  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
551  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
552  * every node has its own stable and unstable tree.
553  */
554 static inline int get_kpfn_nid(unsigned long kpfn)
555 {
556         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
557 }
558
559 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
560                                                    struct rb_root *root)
561 {
562         struct ksm_stable_node *chain = alloc_stable_node();
563         VM_BUG_ON(is_stable_node_chain(dup));
564         if (likely(chain)) {
565                 INIT_HLIST_HEAD(&chain->hlist);
566                 chain->chain_prune_time = jiffies;
567                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
568 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
569                 chain->nid = NUMA_NO_NODE; /* debug */
570 #endif
571                 ksm_stable_node_chains++;
572
573                 /*
574                  * Put the stable node chain in the first dimension of
575                  * the stable tree and at the same time remove the old
576                  * stable node.
577                  */
578                 rb_replace_node(&dup->node, &chain->node, root);
579
580                 /*
581                  * Move the old stable node to the second dimension
582                  * queued in the hlist_dup. The invariant is that all
583                  * dup stable_nodes in the chain->hlist point to pages
584                  * that are write protected and have the exact same
585                  * content.
586                  */
587                 stable_node_chain_add_dup(dup, chain);
588         }
589         return chain;
590 }
591
592 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
593                                           struct rb_root *root)
594 {
595         rb_erase(&chain->node, root);
596         free_stable_node(chain);
597         ksm_stable_node_chains--;
598 }
599
600 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
601 {
602         struct ksm_rmap_item *rmap_item;
603
604         /* check it's not STABLE_NODE_CHAIN or negative */
605         BUG_ON(stable_node->rmap_hlist_len < 0);
606
607         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
608                 if (rmap_item->hlist.next)
609                         ksm_pages_sharing--;
610                 else
611                         ksm_pages_shared--;
612
613                 rmap_item->mm->ksm_merging_pages--;
614
615                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
616                 stable_node->rmap_hlist_len--;
617                 put_anon_vma(rmap_item->anon_vma);
618                 rmap_item->address &= PAGE_MASK;
619                 cond_resched();
620         }
621
622         /*
623          * We need the second aligned pointer of the migrate_nodes
624          * list_head to stay clear from the rb_parent_color union
625          * (aligned and different than any node) and also different
626          * from &migrate_nodes. This will verify that future list.h changes
627          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
628          */
629         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
630         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
631
632         if (stable_node->head == &migrate_nodes)
633                 list_del(&stable_node->list);
634         else
635                 stable_node_dup_del(stable_node);
636         free_stable_node(stable_node);
637 }
638
639 enum get_ksm_page_flags {
640         GET_KSM_PAGE_NOLOCK,
641         GET_KSM_PAGE_LOCK,
642         GET_KSM_PAGE_TRYLOCK
643 };
644
645 /*
646  * get_ksm_page: checks if the page indicated by the stable node
647  * is still its ksm page, despite having held no reference to it.
648  * In which case we can trust the content of the page, and it
649  * returns the gotten page; but if the page has now been zapped,
650  * remove the stale node from the stable tree and return NULL.
651  * But beware, the stable node's page might be being migrated.
652  *
653  * You would expect the stable_node to hold a reference to the ksm page.
654  * But if it increments the page's count, swapping out has to wait for
655  * ksmd to come around again before it can free the page, which may take
656  * seconds or even minutes: much too unresponsive.  So instead we use a
657  * "keyhole reference": access to the ksm page from the stable node peeps
658  * out through its keyhole to see if that page still holds the right key,
659  * pointing back to this stable node.  This relies on freeing a PageAnon
660  * page to reset its page->mapping to NULL, and relies on no other use of
661  * a page to put something that might look like our key in page->mapping.
662  * is on its way to being freed; but it is an anomaly to bear in mind.
663  */
664 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
665                                  enum get_ksm_page_flags flags)
666 {
667         struct page *page;
668         void *expected_mapping;
669         unsigned long kpfn;
670
671         expected_mapping = (void *)((unsigned long)stable_node |
672                                         PAGE_MAPPING_KSM);
673 again:
674         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
675         page = pfn_to_page(kpfn);
676         if (READ_ONCE(page->mapping) != expected_mapping)
677                 goto stale;
678
679         /*
680          * We cannot do anything with the page while its refcount is 0.
681          * Usually 0 means free, or tail of a higher-order page: in which
682          * case this node is no longer referenced, and should be freed;
683          * however, it might mean that the page is under page_ref_freeze().
684          * The __remove_mapping() case is easy, again the node is now stale;
685          * the same is in reuse_ksm_page() case; but if page is swapcache
686          * in folio_migrate_mapping(), it might still be our page,
687          * in which case it's essential to keep the node.
688          */
689         while (!get_page_unless_zero(page)) {
690                 /*
691                  * Another check for page->mapping != expected_mapping would
692                  * work here too.  We have chosen the !PageSwapCache test to
693                  * optimize the common case, when the page is or is about to
694                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
695                  * in the ref_freeze section of __remove_mapping(); but Anon
696                  * page->mapping reset to NULL later, in free_pages_prepare().
697                  */
698                 if (!PageSwapCache(page))
699                         goto stale;
700                 cpu_relax();
701         }
702
703         if (READ_ONCE(page->mapping) != expected_mapping) {
704                 put_page(page);
705                 goto stale;
706         }
707
708         if (flags == GET_KSM_PAGE_TRYLOCK) {
709                 if (!trylock_page(page)) {
710                         put_page(page);
711                         return ERR_PTR(-EBUSY);
712                 }
713         } else if (flags == GET_KSM_PAGE_LOCK)
714                 lock_page(page);
715
716         if (flags != GET_KSM_PAGE_NOLOCK) {
717                 if (READ_ONCE(page->mapping) != expected_mapping) {
718                         unlock_page(page);
719                         put_page(page);
720                         goto stale;
721                 }
722         }
723         return page;
724
725 stale:
726         /*
727          * We come here from above when page->mapping or !PageSwapCache
728          * suggests that the node is stale; but it might be under migration.
729          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
730          * before checking whether node->kpfn has been changed.
731          */
732         smp_rmb();
733         if (READ_ONCE(stable_node->kpfn) != kpfn)
734                 goto again;
735         remove_node_from_stable_tree(stable_node);
736         return NULL;
737 }
738
739 /*
740  * Removing rmap_item from stable or unstable tree.
741  * This function will clean the information from the stable/unstable tree.
742  */
743 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
744 {
745         if (rmap_item->address & STABLE_FLAG) {
746                 struct ksm_stable_node *stable_node;
747                 struct page *page;
748
749                 stable_node = rmap_item->head;
750                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
751                 if (!page)
752                         goto out;
753
754                 hlist_del(&rmap_item->hlist);
755                 unlock_page(page);
756                 put_page(page);
757
758                 if (!hlist_empty(&stable_node->hlist))
759                         ksm_pages_sharing--;
760                 else
761                         ksm_pages_shared--;
762
763                 rmap_item->mm->ksm_merging_pages--;
764
765                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766                 stable_node->rmap_hlist_len--;
767
768                 put_anon_vma(rmap_item->anon_vma);
769                 rmap_item->head = NULL;
770                 rmap_item->address &= PAGE_MASK;
771
772         } else if (rmap_item->address & UNSTABLE_FLAG) {
773                 unsigned char age;
774                 /*
775                  * Usually ksmd can and must skip the rb_erase, because
776                  * root_unstable_tree was already reset to RB_ROOT.
777                  * But be careful when an mm is exiting: do the rb_erase
778                  * if this rmap_item was inserted by this scan, rather
779                  * than left over from before.
780                  */
781                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
782                 BUG_ON(age > 1);
783                 if (!age)
784                         rb_erase(&rmap_item->node,
785                                  root_unstable_tree + NUMA(rmap_item->nid));
786                 ksm_pages_unshared--;
787                 rmap_item->address &= PAGE_MASK;
788         }
789 out:
790         cond_resched();         /* we're called from many long loops */
791 }
792
793 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
794 {
795         while (*rmap_list) {
796                 struct ksm_rmap_item *rmap_item = *rmap_list;
797                 *rmap_list = rmap_item->rmap_list;
798                 remove_rmap_item_from_tree(rmap_item);
799                 free_rmap_item(rmap_item);
800         }
801 }
802
803 /*
804  * Though it's very tempting to unmerge rmap_items from stable tree rather
805  * than check every pte of a given vma, the locking doesn't quite work for
806  * that - an rmap_item is assigned to the stable tree after inserting ksm
807  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
808  * rmap_items from parent to child at fork time (so as not to waste time
809  * if exit comes before the next scan reaches it).
810  *
811  * Similarly, although we'd like to remove rmap_items (so updating counts
812  * and freeing memory) when unmerging an area, it's easier to leave that
813  * to the next pass of ksmd - consider, for example, how ksmd might be
814  * in cmp_and_merge_page on one of the rmap_items we would be removing.
815  */
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817                              unsigned long start, unsigned long end)
818 {
819         unsigned long addr;
820         int err = 0;
821
822         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823                 if (ksm_test_exit(vma->vm_mm))
824                         break;
825                 if (signal_pending(current))
826                         err = -ERESTARTSYS;
827                 else
828                         err = break_ksm(vma, addr);
829         }
830         return err;
831 }
832
833 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
834 {
835         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
836 }
837
838 static inline struct ksm_stable_node *page_stable_node(struct page *page)
839 {
840         return folio_stable_node(page_folio(page));
841 }
842
843 static inline void set_page_stable_node(struct page *page,
844                                         struct ksm_stable_node *stable_node)
845 {
846         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
847         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
848 }
849
850 #ifdef CONFIG_SYSFS
851 /*
852  * Only called through the sysfs control interface:
853  */
854 static int remove_stable_node(struct ksm_stable_node *stable_node)
855 {
856         struct page *page;
857         int err;
858
859         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
860         if (!page) {
861                 /*
862                  * get_ksm_page did remove_node_from_stable_tree itself.
863                  */
864                 return 0;
865         }
866
867         /*
868          * Page could be still mapped if this races with __mmput() running in
869          * between ksm_exit() and exit_mmap(). Just refuse to let
870          * merge_across_nodes/max_page_sharing be switched.
871          */
872         err = -EBUSY;
873         if (!page_mapped(page)) {
874                 /*
875                  * The stable node did not yet appear stale to get_ksm_page(),
876                  * since that allows for an unmapped ksm page to be recognized
877                  * right up until it is freed; but the node is safe to remove.
878                  * This page might be in a pagevec waiting to be freed,
879                  * or it might be PageSwapCache (perhaps under writeback),
880                  * or it might have been removed from swapcache a moment ago.
881                  */
882                 set_page_stable_node(page, NULL);
883                 remove_node_from_stable_tree(stable_node);
884                 err = 0;
885         }
886
887         unlock_page(page);
888         put_page(page);
889         return err;
890 }
891
892 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
893                                     struct rb_root *root)
894 {
895         struct ksm_stable_node *dup;
896         struct hlist_node *hlist_safe;
897
898         if (!is_stable_node_chain(stable_node)) {
899                 VM_BUG_ON(is_stable_node_dup(stable_node));
900                 if (remove_stable_node(stable_node))
901                         return true;
902                 else
903                         return false;
904         }
905
906         hlist_for_each_entry_safe(dup, hlist_safe,
907                                   &stable_node->hlist, hlist_dup) {
908                 VM_BUG_ON(!is_stable_node_dup(dup));
909                 if (remove_stable_node(dup))
910                         return true;
911         }
912         BUG_ON(!hlist_empty(&stable_node->hlist));
913         free_stable_node_chain(stable_node, root);
914         return false;
915 }
916
917 static int remove_all_stable_nodes(void)
918 {
919         struct ksm_stable_node *stable_node, *next;
920         int nid;
921         int err = 0;
922
923         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
924                 while (root_stable_tree[nid].rb_node) {
925                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
926                                                 struct ksm_stable_node, node);
927                         if (remove_stable_node_chain(stable_node,
928                                                      root_stable_tree + nid)) {
929                                 err = -EBUSY;
930                                 break;  /* proceed to next nid */
931                         }
932                         cond_resched();
933                 }
934         }
935         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
936                 if (remove_stable_node(stable_node))
937                         err = -EBUSY;
938                 cond_resched();
939         }
940         return err;
941 }
942
943 static int unmerge_and_remove_all_rmap_items(void)
944 {
945         struct ksm_mm_slot *mm_slot;
946         struct mm_slot *slot;
947         struct mm_struct *mm;
948         struct vm_area_struct *vma;
949         int err = 0;
950
951         spin_lock(&ksm_mmlist_lock);
952         slot = list_entry(ksm_mm_head.slot.mm_node.next,
953                           struct mm_slot, mm_node);
954         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
955         spin_unlock(&ksm_mmlist_lock);
956
957         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
958              mm_slot = ksm_scan.mm_slot) {
959                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
960
961                 mm = mm_slot->slot.mm;
962                 mmap_read_lock(mm);
963                 for_each_vma(vmi, vma) {
964                         if (ksm_test_exit(mm))
965                                 break;
966                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
967                                 continue;
968                         err = unmerge_ksm_pages(vma,
969                                                 vma->vm_start, vma->vm_end);
970                         if (err)
971                                 goto error;
972                 }
973
974                 remove_trailing_rmap_items(&mm_slot->rmap_list);
975                 mmap_read_unlock(mm);
976
977                 spin_lock(&ksm_mmlist_lock);
978                 slot = list_entry(mm_slot->slot.mm_node.next,
979                                   struct mm_slot, mm_node);
980                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
981                 if (ksm_test_exit(mm)) {
982                         hash_del(&mm_slot->slot.hash);
983                         list_del(&mm_slot->slot.mm_node);
984                         spin_unlock(&ksm_mmlist_lock);
985
986                         mm_slot_free(mm_slot_cache, mm_slot);
987                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
988                         mmdrop(mm);
989                 } else
990                         spin_unlock(&ksm_mmlist_lock);
991         }
992
993         /* Clean up stable nodes, but don't worry if some are still busy */
994         remove_all_stable_nodes();
995         ksm_scan.seqnr = 0;
996         return 0;
997
998 error:
999         mmap_read_unlock(mm);
1000         spin_lock(&ksm_mmlist_lock);
1001         ksm_scan.mm_slot = &ksm_mm_head;
1002         spin_unlock(&ksm_mmlist_lock);
1003         return err;
1004 }
1005 #endif /* CONFIG_SYSFS */
1006
1007 static u32 calc_checksum(struct page *page)
1008 {
1009         u32 checksum;
1010         void *addr = kmap_atomic(page);
1011         checksum = xxhash(addr, PAGE_SIZE, 0);
1012         kunmap_atomic(addr);
1013         return checksum;
1014 }
1015
1016 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1017                               pte_t *orig_pte)
1018 {
1019         struct mm_struct *mm = vma->vm_mm;
1020         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1021         int swapped;
1022         int err = -EFAULT;
1023         struct mmu_notifier_range range;
1024         bool anon_exclusive;
1025
1026         pvmw.address = page_address_in_vma(page, vma);
1027         if (pvmw.address == -EFAULT)
1028                 goto out;
1029
1030         BUG_ON(PageTransCompound(page));
1031
1032         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1033                                 pvmw.address,
1034                                 pvmw.address + PAGE_SIZE);
1035         mmu_notifier_invalidate_range_start(&range);
1036
1037         if (!page_vma_mapped_walk(&pvmw))
1038                 goto out_mn;
1039         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1040                 goto out_unlock;
1041
1042         anon_exclusive = PageAnonExclusive(page);
1043         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1044             anon_exclusive || mm_tlb_flush_pending(mm)) {
1045                 pte_t entry;
1046
1047                 swapped = PageSwapCache(page);
1048                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1049                 /*
1050                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1051                  * take any lock, therefore the check that we are going to make
1052                  * with the pagecount against the mapcount is racy and
1053                  * O_DIRECT can happen right after the check.
1054                  * So we clear the pte and flush the tlb before the check
1055                  * this assure us that no O_DIRECT can happen after the check
1056                  * or in the middle of the check.
1057                  *
1058                  * No need to notify as we are downgrading page table to read
1059                  * only not changing it to point to a new page.
1060                  *
1061                  * See Documentation/mm/mmu_notifier.rst
1062                  */
1063                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1064                 /*
1065                  * Check that no O_DIRECT or similar I/O is in progress on the
1066                  * page
1067                  */
1068                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1069                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1070                         goto out_unlock;
1071                 }
1072
1073                 /* See page_try_share_anon_rmap(): clear PTE first. */
1074                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1075                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1076                         goto out_unlock;
1077                 }
1078
1079                 if (pte_dirty(entry))
1080                         set_page_dirty(page);
1081                 entry = pte_mkclean(entry);
1082
1083                 if (pte_write(entry))
1084                         entry = pte_wrprotect(entry);
1085
1086                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1087         }
1088         *orig_pte = *pvmw.pte;
1089         err = 0;
1090
1091 out_unlock:
1092         page_vma_mapped_walk_done(&pvmw);
1093 out_mn:
1094         mmu_notifier_invalidate_range_end(&range);
1095 out:
1096         return err;
1097 }
1098
1099 /**
1100  * replace_page - replace page in vma by new ksm page
1101  * @vma:      vma that holds the pte pointing to page
1102  * @page:     the page we are replacing by kpage
1103  * @kpage:    the ksm page we replace page by
1104  * @orig_pte: the original value of the pte
1105  *
1106  * Returns 0 on success, -EFAULT on failure.
1107  */
1108 static int replace_page(struct vm_area_struct *vma, struct page *page,
1109                         struct page *kpage, pte_t orig_pte)
1110 {
1111         struct mm_struct *mm = vma->vm_mm;
1112         struct folio *folio;
1113         pmd_t *pmd;
1114         pmd_t pmde;
1115         pte_t *ptep;
1116         pte_t newpte;
1117         spinlock_t *ptl;
1118         unsigned long addr;
1119         int err = -EFAULT;
1120         struct mmu_notifier_range range;
1121
1122         addr = page_address_in_vma(page, vma);
1123         if (addr == -EFAULT)
1124                 goto out;
1125
1126         pmd = mm_find_pmd(mm, addr);
1127         if (!pmd)
1128                 goto out;
1129         /*
1130          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1131          * without holding anon_vma lock for write.  So when looking for a
1132          * genuine pmde (in which to find pte), test present and !THP together.
1133          */
1134         pmde = *pmd;
1135         barrier();
1136         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1137                 goto out;
1138
1139         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1140                                 addr + PAGE_SIZE);
1141         mmu_notifier_invalidate_range_start(&range);
1142
1143         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1144         if (!pte_same(*ptep, orig_pte)) {
1145                 pte_unmap_unlock(ptep, ptl);
1146                 goto out_mn;
1147         }
1148         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1149         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1150
1151         /*
1152          * No need to check ksm_use_zero_pages here: we can only have a
1153          * zero_page here if ksm_use_zero_pages was enabled already.
1154          */
1155         if (!is_zero_pfn(page_to_pfn(kpage))) {
1156                 get_page(kpage);
1157                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1158                 newpte = mk_pte(kpage, vma->vm_page_prot);
1159         } else {
1160                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1161                                                vma->vm_page_prot));
1162                 /*
1163                  * We're replacing an anonymous page with a zero page, which is
1164                  * not anonymous. We need to do proper accounting otherwise we
1165                  * will get wrong values in /proc, and a BUG message in dmesg
1166                  * when tearing down the mm.
1167                  */
1168                 dec_mm_counter(mm, MM_ANONPAGES);
1169         }
1170
1171         flush_cache_page(vma, addr, pte_pfn(*ptep));
1172         /*
1173          * No need to notify as we are replacing a read only page with another
1174          * read only page with the same content.
1175          *
1176          * See Documentation/mm/mmu_notifier.rst
1177          */
1178         ptep_clear_flush(vma, addr, ptep);
1179         set_pte_at_notify(mm, addr, ptep, newpte);
1180
1181         folio = page_folio(page);
1182         page_remove_rmap(page, vma, false);
1183         if (!folio_mapped(folio))
1184                 folio_free_swap(folio);
1185         folio_put(folio);
1186
1187         pte_unmap_unlock(ptep, ptl);
1188         err = 0;
1189 out_mn:
1190         mmu_notifier_invalidate_range_end(&range);
1191 out:
1192         return err;
1193 }
1194
1195 /*
1196  * try_to_merge_one_page - take two pages and merge them into one
1197  * @vma: the vma that holds the pte pointing to page
1198  * @page: the PageAnon page that we want to replace with kpage
1199  * @kpage: the PageKsm page that we want to map instead of page,
1200  *         or NULL the first time when we want to use page as kpage.
1201  *
1202  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1203  */
1204 static int try_to_merge_one_page(struct vm_area_struct *vma,
1205                                  struct page *page, struct page *kpage)
1206 {
1207         pte_t orig_pte = __pte(0);
1208         int err = -EFAULT;
1209
1210         if (page == kpage)                      /* ksm page forked */
1211                 return 0;
1212
1213         if (!PageAnon(page))
1214                 goto out;
1215
1216         /*
1217          * We need the page lock to read a stable PageSwapCache in
1218          * write_protect_page().  We use trylock_page() instead of
1219          * lock_page() because we don't want to wait here - we
1220          * prefer to continue scanning and merging different pages,
1221          * then come back to this page when it is unlocked.
1222          */
1223         if (!trylock_page(page))
1224                 goto out;
1225
1226         if (PageTransCompound(page)) {
1227                 if (split_huge_page(page))
1228                         goto out_unlock;
1229         }
1230
1231         /*
1232          * If this anonymous page is mapped only here, its pte may need
1233          * to be write-protected.  If it's mapped elsewhere, all of its
1234          * ptes are necessarily already write-protected.  But in either
1235          * case, we need to lock and check page_count is not raised.
1236          */
1237         if (write_protect_page(vma, page, &orig_pte) == 0) {
1238                 if (!kpage) {
1239                         /*
1240                          * While we hold page lock, upgrade page from
1241                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1242                          * stable_tree_insert() will update stable_node.
1243                          */
1244                         set_page_stable_node(page, NULL);
1245                         mark_page_accessed(page);
1246                         /*
1247                          * Page reclaim just frees a clean page with no dirty
1248                          * ptes: make sure that the ksm page would be swapped.
1249                          */
1250                         if (!PageDirty(page))
1251                                 SetPageDirty(page);
1252                         err = 0;
1253                 } else if (pages_identical(page, kpage))
1254                         err = replace_page(vma, page, kpage, orig_pte);
1255         }
1256
1257 out_unlock:
1258         unlock_page(page);
1259 out:
1260         return err;
1261 }
1262
1263 /*
1264  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1265  * but no new kernel page is allocated: kpage must already be a ksm page.
1266  *
1267  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1268  */
1269 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1270                                       struct page *page, struct page *kpage)
1271 {
1272         struct mm_struct *mm = rmap_item->mm;
1273         struct vm_area_struct *vma;
1274         int err = -EFAULT;
1275
1276         mmap_read_lock(mm);
1277         vma = find_mergeable_vma(mm, rmap_item->address);
1278         if (!vma)
1279                 goto out;
1280
1281         err = try_to_merge_one_page(vma, page, kpage);
1282         if (err)
1283                 goto out;
1284
1285         /* Unstable nid is in union with stable anon_vma: remove first */
1286         remove_rmap_item_from_tree(rmap_item);
1287
1288         /* Must get reference to anon_vma while still holding mmap_lock */
1289         rmap_item->anon_vma = vma->anon_vma;
1290         get_anon_vma(vma->anon_vma);
1291 out:
1292         mmap_read_unlock(mm);
1293         return err;
1294 }
1295
1296 /*
1297  * try_to_merge_two_pages - take two identical pages and prepare them
1298  * to be merged into one page.
1299  *
1300  * This function returns the kpage if we successfully merged two identical
1301  * pages into one ksm page, NULL otherwise.
1302  *
1303  * Note that this function upgrades page to ksm page: if one of the pages
1304  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1305  */
1306 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1307                                            struct page *page,
1308                                            struct ksm_rmap_item *tree_rmap_item,
1309                                            struct page *tree_page)
1310 {
1311         int err;
1312
1313         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1314         if (!err) {
1315                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1316                                                         tree_page, page);
1317                 /*
1318                  * If that fails, we have a ksm page with only one pte
1319                  * pointing to it: so break it.
1320                  */
1321                 if (err)
1322                         break_cow(rmap_item);
1323         }
1324         return err ? NULL : page;
1325 }
1326
1327 static __always_inline
1328 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1329 {
1330         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1331         /*
1332          * Check that at least one mapping still exists, otherwise
1333          * there's no much point to merge and share with this
1334          * stable_node, as the underlying tree_page of the other
1335          * sharer is going to be freed soon.
1336          */
1337         return stable_node->rmap_hlist_len &&
1338                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1339 }
1340
1341 static __always_inline
1342 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1343 {
1344         return __is_page_sharing_candidate(stable_node, 0);
1345 }
1346
1347 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1348                                     struct ksm_stable_node **_stable_node,
1349                                     struct rb_root *root,
1350                                     bool prune_stale_stable_nodes)
1351 {
1352         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1353         struct hlist_node *hlist_safe;
1354         struct page *_tree_page, *tree_page = NULL;
1355         int nr = 0;
1356         int found_rmap_hlist_len;
1357
1358         if (!prune_stale_stable_nodes ||
1359             time_before(jiffies, stable_node->chain_prune_time +
1360                         msecs_to_jiffies(
1361                                 ksm_stable_node_chains_prune_millisecs)))
1362                 prune_stale_stable_nodes = false;
1363         else
1364                 stable_node->chain_prune_time = jiffies;
1365
1366         hlist_for_each_entry_safe(dup, hlist_safe,
1367                                   &stable_node->hlist, hlist_dup) {
1368                 cond_resched();
1369                 /*
1370                  * We must walk all stable_node_dup to prune the stale
1371                  * stable nodes during lookup.
1372                  *
1373                  * get_ksm_page can drop the nodes from the
1374                  * stable_node->hlist if they point to freed pages
1375                  * (that's why we do a _safe walk). The "dup"
1376                  * stable_node parameter itself will be freed from
1377                  * under us if it returns NULL.
1378                  */
1379                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1380                 if (!_tree_page)
1381                         continue;
1382                 nr += 1;
1383                 if (is_page_sharing_candidate(dup)) {
1384                         if (!found ||
1385                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1386                                 if (found)
1387                                         put_page(tree_page);
1388                                 found = dup;
1389                                 found_rmap_hlist_len = found->rmap_hlist_len;
1390                                 tree_page = _tree_page;
1391
1392                                 /* skip put_page for found dup */
1393                                 if (!prune_stale_stable_nodes)
1394                                         break;
1395                                 continue;
1396                         }
1397                 }
1398                 put_page(_tree_page);
1399         }
1400
1401         if (found) {
1402                 /*
1403                  * nr is counting all dups in the chain only if
1404                  * prune_stale_stable_nodes is true, otherwise we may
1405                  * break the loop at nr == 1 even if there are
1406                  * multiple entries.
1407                  */
1408                 if (prune_stale_stable_nodes && nr == 1) {
1409                         /*
1410                          * If there's not just one entry it would
1411                          * corrupt memory, better BUG_ON. In KSM
1412                          * context with no lock held it's not even
1413                          * fatal.
1414                          */
1415                         BUG_ON(stable_node->hlist.first->next);
1416
1417                         /*
1418                          * There's just one entry and it is below the
1419                          * deduplication limit so drop the chain.
1420                          */
1421                         rb_replace_node(&stable_node->node, &found->node,
1422                                         root);
1423                         free_stable_node(stable_node);
1424                         ksm_stable_node_chains--;
1425                         ksm_stable_node_dups--;
1426                         /*
1427                          * NOTE: the caller depends on the stable_node
1428                          * to be equal to stable_node_dup if the chain
1429                          * was collapsed.
1430                          */
1431                         *_stable_node = found;
1432                         /*
1433                          * Just for robustness, as stable_node is
1434                          * otherwise left as a stable pointer, the
1435                          * compiler shall optimize it away at build
1436                          * time.
1437                          */
1438                         stable_node = NULL;
1439                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1440                            __is_page_sharing_candidate(found, 1)) {
1441                         /*
1442                          * If the found stable_node dup can accept one
1443                          * more future merge (in addition to the one
1444                          * that is underway) and is not at the head of
1445                          * the chain, put it there so next search will
1446                          * be quicker in the !prune_stale_stable_nodes
1447                          * case.
1448                          *
1449                          * NOTE: it would be inaccurate to use nr > 1
1450                          * instead of checking the hlist.first pointer
1451                          * directly, because in the
1452                          * prune_stale_stable_nodes case "nr" isn't
1453                          * the position of the found dup in the chain,
1454                          * but the total number of dups in the chain.
1455                          */
1456                         hlist_del(&found->hlist_dup);
1457                         hlist_add_head(&found->hlist_dup,
1458                                        &stable_node->hlist);
1459                 }
1460         }
1461
1462         *_stable_node_dup = found;
1463         return tree_page;
1464 }
1465
1466 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1467                                                struct rb_root *root)
1468 {
1469         if (!is_stable_node_chain(stable_node))
1470                 return stable_node;
1471         if (hlist_empty(&stable_node->hlist)) {
1472                 free_stable_node_chain(stable_node, root);
1473                 return NULL;
1474         }
1475         return hlist_entry(stable_node->hlist.first,
1476                            typeof(*stable_node), hlist_dup);
1477 }
1478
1479 /*
1480  * Like for get_ksm_page, this function can free the *_stable_node and
1481  * *_stable_node_dup if the returned tree_page is NULL.
1482  *
1483  * It can also free and overwrite *_stable_node with the found
1484  * stable_node_dup if the chain is collapsed (in which case
1485  * *_stable_node will be equal to *_stable_node_dup like if the chain
1486  * never existed). It's up to the caller to verify tree_page is not
1487  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1488  *
1489  * *_stable_node_dup is really a second output parameter of this
1490  * function and will be overwritten in all cases, the caller doesn't
1491  * need to initialize it.
1492  */
1493 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1494                                         struct ksm_stable_node **_stable_node,
1495                                         struct rb_root *root,
1496                                         bool prune_stale_stable_nodes)
1497 {
1498         struct ksm_stable_node *stable_node = *_stable_node;
1499         if (!is_stable_node_chain(stable_node)) {
1500                 if (is_page_sharing_candidate(stable_node)) {
1501                         *_stable_node_dup = stable_node;
1502                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1503                 }
1504                 /*
1505                  * _stable_node_dup set to NULL means the stable_node
1506                  * reached the ksm_max_page_sharing limit.
1507                  */
1508                 *_stable_node_dup = NULL;
1509                 return NULL;
1510         }
1511         return stable_node_dup(_stable_node_dup, _stable_node, root,
1512                                prune_stale_stable_nodes);
1513 }
1514
1515 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1516                                                 struct ksm_stable_node **s_n,
1517                                                 struct rb_root *root)
1518 {
1519         return __stable_node_chain(s_n_d, s_n, root, true);
1520 }
1521
1522 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1523                                           struct ksm_stable_node *s_n,
1524                                           struct rb_root *root)
1525 {
1526         struct ksm_stable_node *old_stable_node = s_n;
1527         struct page *tree_page;
1528
1529         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1530         /* not pruning dups so s_n cannot have changed */
1531         VM_BUG_ON(s_n != old_stable_node);
1532         return tree_page;
1533 }
1534
1535 /*
1536  * stable_tree_search - search for page inside the stable tree
1537  *
1538  * This function checks if there is a page inside the stable tree
1539  * with identical content to the page that we are scanning right now.
1540  *
1541  * This function returns the stable tree node of identical content if found,
1542  * NULL otherwise.
1543  */
1544 static struct page *stable_tree_search(struct page *page)
1545 {
1546         int nid;
1547         struct rb_root *root;
1548         struct rb_node **new;
1549         struct rb_node *parent;
1550         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1551         struct ksm_stable_node *page_node;
1552
1553         page_node = page_stable_node(page);
1554         if (page_node && page_node->head != &migrate_nodes) {
1555                 /* ksm page forked */
1556                 get_page(page);
1557                 return page;
1558         }
1559
1560         nid = get_kpfn_nid(page_to_pfn(page));
1561         root = root_stable_tree + nid;
1562 again:
1563         new = &root->rb_node;
1564         parent = NULL;
1565
1566         while (*new) {
1567                 struct page *tree_page;
1568                 int ret;
1569
1570                 cond_resched();
1571                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1572                 stable_node_any = NULL;
1573                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1574                 /*
1575                  * NOTE: stable_node may have been freed by
1576                  * chain_prune() if the returned stable_node_dup is
1577                  * not NULL. stable_node_dup may have been inserted in
1578                  * the rbtree instead as a regular stable_node (in
1579                  * order to collapse the stable_node chain if a single
1580                  * stable_node dup was found in it). In such case the
1581                  * stable_node is overwritten by the callee to point
1582                  * to the stable_node_dup that was collapsed in the
1583                  * stable rbtree and stable_node will be equal to
1584                  * stable_node_dup like if the chain never existed.
1585                  */
1586                 if (!stable_node_dup) {
1587                         /*
1588                          * Either all stable_node dups were full in
1589                          * this stable_node chain, or this chain was
1590                          * empty and should be rb_erased.
1591                          */
1592                         stable_node_any = stable_node_dup_any(stable_node,
1593                                                               root);
1594                         if (!stable_node_any) {
1595                                 /* rb_erase just run */
1596                                 goto again;
1597                         }
1598                         /*
1599                          * Take any of the stable_node dups page of
1600                          * this stable_node chain to let the tree walk
1601                          * continue. All KSM pages belonging to the
1602                          * stable_node dups in a stable_node chain
1603                          * have the same content and they're
1604                          * write protected at all times. Any will work
1605                          * fine to continue the walk.
1606                          */
1607                         tree_page = get_ksm_page(stable_node_any,
1608                                                  GET_KSM_PAGE_NOLOCK);
1609                 }
1610                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1611                 if (!tree_page) {
1612                         /*
1613                          * If we walked over a stale stable_node,
1614                          * get_ksm_page() will call rb_erase() and it
1615                          * may rebalance the tree from under us. So
1616                          * restart the search from scratch. Returning
1617                          * NULL would be safe too, but we'd generate
1618                          * false negative insertions just because some
1619                          * stable_node was stale.
1620                          */
1621                         goto again;
1622                 }
1623
1624                 ret = memcmp_pages(page, tree_page);
1625                 put_page(tree_page);
1626
1627                 parent = *new;
1628                 if (ret < 0)
1629                         new = &parent->rb_left;
1630                 else if (ret > 0)
1631                         new = &parent->rb_right;
1632                 else {
1633                         if (page_node) {
1634                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1635                                 /*
1636                                  * Test if the migrated page should be merged
1637                                  * into a stable node dup. If the mapcount is
1638                                  * 1 we can migrate it with another KSM page
1639                                  * without adding it to the chain.
1640                                  */
1641                                 if (page_mapcount(page) > 1)
1642                                         goto chain_append;
1643                         }
1644
1645                         if (!stable_node_dup) {
1646                                 /*
1647                                  * If the stable_node is a chain and
1648                                  * we got a payload match in memcmp
1649                                  * but we cannot merge the scanned
1650                                  * page in any of the existing
1651                                  * stable_node dups because they're
1652                                  * all full, we need to wait the
1653                                  * scanned page to find itself a match
1654                                  * in the unstable tree to create a
1655                                  * brand new KSM page to add later to
1656                                  * the dups of this stable_node.
1657                                  */
1658                                 return NULL;
1659                         }
1660
1661                         /*
1662                          * Lock and unlock the stable_node's page (which
1663                          * might already have been migrated) so that page
1664                          * migration is sure to notice its raised count.
1665                          * It would be more elegant to return stable_node
1666                          * than kpage, but that involves more changes.
1667                          */
1668                         tree_page = get_ksm_page(stable_node_dup,
1669                                                  GET_KSM_PAGE_TRYLOCK);
1670
1671                         if (PTR_ERR(tree_page) == -EBUSY)
1672                                 return ERR_PTR(-EBUSY);
1673
1674                         if (unlikely(!tree_page))
1675                                 /*
1676                                  * The tree may have been rebalanced,
1677                                  * so re-evaluate parent and new.
1678                                  */
1679                                 goto again;
1680                         unlock_page(tree_page);
1681
1682                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1683                             NUMA(stable_node_dup->nid)) {
1684                                 put_page(tree_page);
1685                                 goto replace;
1686                         }
1687                         return tree_page;
1688                 }
1689         }
1690
1691         if (!page_node)
1692                 return NULL;
1693
1694         list_del(&page_node->list);
1695         DO_NUMA(page_node->nid = nid);
1696         rb_link_node(&page_node->node, parent, new);
1697         rb_insert_color(&page_node->node, root);
1698 out:
1699         if (is_page_sharing_candidate(page_node)) {
1700                 get_page(page);
1701                 return page;
1702         } else
1703                 return NULL;
1704
1705 replace:
1706         /*
1707          * If stable_node was a chain and chain_prune collapsed it,
1708          * stable_node has been updated to be the new regular
1709          * stable_node. A collapse of the chain is indistinguishable
1710          * from the case there was no chain in the stable
1711          * rbtree. Otherwise stable_node is the chain and
1712          * stable_node_dup is the dup to replace.
1713          */
1714         if (stable_node_dup == stable_node) {
1715                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1716                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1717                 /* there is no chain */
1718                 if (page_node) {
1719                         VM_BUG_ON(page_node->head != &migrate_nodes);
1720                         list_del(&page_node->list);
1721                         DO_NUMA(page_node->nid = nid);
1722                         rb_replace_node(&stable_node_dup->node,
1723                                         &page_node->node,
1724                                         root);
1725                         if (is_page_sharing_candidate(page_node))
1726                                 get_page(page);
1727                         else
1728                                 page = NULL;
1729                 } else {
1730                         rb_erase(&stable_node_dup->node, root);
1731                         page = NULL;
1732                 }
1733         } else {
1734                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1735                 __stable_node_dup_del(stable_node_dup);
1736                 if (page_node) {
1737                         VM_BUG_ON(page_node->head != &migrate_nodes);
1738                         list_del(&page_node->list);
1739                         DO_NUMA(page_node->nid = nid);
1740                         stable_node_chain_add_dup(page_node, stable_node);
1741                         if (is_page_sharing_candidate(page_node))
1742                                 get_page(page);
1743                         else
1744                                 page = NULL;
1745                 } else {
1746                         page = NULL;
1747                 }
1748         }
1749         stable_node_dup->head = &migrate_nodes;
1750         list_add(&stable_node_dup->list, stable_node_dup->head);
1751         return page;
1752
1753 chain_append:
1754         /* stable_node_dup could be null if it reached the limit */
1755         if (!stable_node_dup)
1756                 stable_node_dup = stable_node_any;
1757         /*
1758          * If stable_node was a chain and chain_prune collapsed it,
1759          * stable_node has been updated to be the new regular
1760          * stable_node. A collapse of the chain is indistinguishable
1761          * from the case there was no chain in the stable
1762          * rbtree. Otherwise stable_node is the chain and
1763          * stable_node_dup is the dup to replace.
1764          */
1765         if (stable_node_dup == stable_node) {
1766                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1767                 /* chain is missing so create it */
1768                 stable_node = alloc_stable_node_chain(stable_node_dup,
1769                                                       root);
1770                 if (!stable_node)
1771                         return NULL;
1772         }
1773         /*
1774          * Add this stable_node dup that was
1775          * migrated to the stable_node chain
1776          * of the current nid for this page
1777          * content.
1778          */
1779         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1780         VM_BUG_ON(page_node->head != &migrate_nodes);
1781         list_del(&page_node->list);
1782         DO_NUMA(page_node->nid = nid);
1783         stable_node_chain_add_dup(page_node, stable_node);
1784         goto out;
1785 }
1786
1787 /*
1788  * stable_tree_insert - insert stable tree node pointing to new ksm page
1789  * into the stable tree.
1790  *
1791  * This function returns the stable tree node just allocated on success,
1792  * NULL otherwise.
1793  */
1794 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1795 {
1796         int nid;
1797         unsigned long kpfn;
1798         struct rb_root *root;
1799         struct rb_node **new;
1800         struct rb_node *parent;
1801         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1802         bool need_chain = false;
1803
1804         kpfn = page_to_pfn(kpage);
1805         nid = get_kpfn_nid(kpfn);
1806         root = root_stable_tree + nid;
1807 again:
1808         parent = NULL;
1809         new = &root->rb_node;
1810
1811         while (*new) {
1812                 struct page *tree_page;
1813                 int ret;
1814
1815                 cond_resched();
1816                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1817                 stable_node_any = NULL;
1818                 tree_page = chain(&stable_node_dup, stable_node, root);
1819                 if (!stable_node_dup) {
1820                         /*
1821                          * Either all stable_node dups were full in
1822                          * this stable_node chain, or this chain was
1823                          * empty and should be rb_erased.
1824                          */
1825                         stable_node_any = stable_node_dup_any(stable_node,
1826                                                               root);
1827                         if (!stable_node_any) {
1828                                 /* rb_erase just run */
1829                                 goto again;
1830                         }
1831                         /*
1832                          * Take any of the stable_node dups page of
1833                          * this stable_node chain to let the tree walk
1834                          * continue. All KSM pages belonging to the
1835                          * stable_node dups in a stable_node chain
1836                          * have the same content and they're
1837                          * write protected at all times. Any will work
1838                          * fine to continue the walk.
1839                          */
1840                         tree_page = get_ksm_page(stable_node_any,
1841                                                  GET_KSM_PAGE_NOLOCK);
1842                 }
1843                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1844                 if (!tree_page) {
1845                         /*
1846                          * If we walked over a stale stable_node,
1847                          * get_ksm_page() will call rb_erase() and it
1848                          * may rebalance the tree from under us. So
1849                          * restart the search from scratch. Returning
1850                          * NULL would be safe too, but we'd generate
1851                          * false negative insertions just because some
1852                          * stable_node was stale.
1853                          */
1854                         goto again;
1855                 }
1856
1857                 ret = memcmp_pages(kpage, tree_page);
1858                 put_page(tree_page);
1859
1860                 parent = *new;
1861                 if (ret < 0)
1862                         new = &parent->rb_left;
1863                 else if (ret > 0)
1864                         new = &parent->rb_right;
1865                 else {
1866                         need_chain = true;
1867                         break;
1868                 }
1869         }
1870
1871         stable_node_dup = alloc_stable_node();
1872         if (!stable_node_dup)
1873                 return NULL;
1874
1875         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1876         stable_node_dup->kpfn = kpfn;
1877         set_page_stable_node(kpage, stable_node_dup);
1878         stable_node_dup->rmap_hlist_len = 0;
1879         DO_NUMA(stable_node_dup->nid = nid);
1880         if (!need_chain) {
1881                 rb_link_node(&stable_node_dup->node, parent, new);
1882                 rb_insert_color(&stable_node_dup->node, root);
1883         } else {
1884                 if (!is_stable_node_chain(stable_node)) {
1885                         struct ksm_stable_node *orig = stable_node;
1886                         /* chain is missing so create it */
1887                         stable_node = alloc_stable_node_chain(orig, root);
1888                         if (!stable_node) {
1889                                 free_stable_node(stable_node_dup);
1890                                 return NULL;
1891                         }
1892                 }
1893                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1894         }
1895
1896         return stable_node_dup;
1897 }
1898
1899 /*
1900  * unstable_tree_search_insert - search for identical page,
1901  * else insert rmap_item into the unstable tree.
1902  *
1903  * This function searches for a page in the unstable tree identical to the
1904  * page currently being scanned; and if no identical page is found in the
1905  * tree, we insert rmap_item as a new object into the unstable tree.
1906  *
1907  * This function returns pointer to rmap_item found to be identical
1908  * to the currently scanned page, NULL otherwise.
1909  *
1910  * This function does both searching and inserting, because they share
1911  * the same walking algorithm in an rbtree.
1912  */
1913 static
1914 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1915                                               struct page *page,
1916                                               struct page **tree_pagep)
1917 {
1918         struct rb_node **new;
1919         struct rb_root *root;
1920         struct rb_node *parent = NULL;
1921         int nid;
1922
1923         nid = get_kpfn_nid(page_to_pfn(page));
1924         root = root_unstable_tree + nid;
1925         new = &root->rb_node;
1926
1927         while (*new) {
1928                 struct ksm_rmap_item *tree_rmap_item;
1929                 struct page *tree_page;
1930                 int ret;
1931
1932                 cond_resched();
1933                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1934                 tree_page = get_mergeable_page(tree_rmap_item);
1935                 if (!tree_page)
1936                         return NULL;
1937
1938                 /*
1939                  * Don't substitute a ksm page for a forked page.
1940                  */
1941                 if (page == tree_page) {
1942                         put_page(tree_page);
1943                         return NULL;
1944                 }
1945
1946                 ret = memcmp_pages(page, tree_page);
1947
1948                 parent = *new;
1949                 if (ret < 0) {
1950                         put_page(tree_page);
1951                         new = &parent->rb_left;
1952                 } else if (ret > 0) {
1953                         put_page(tree_page);
1954                         new = &parent->rb_right;
1955                 } else if (!ksm_merge_across_nodes &&
1956                            page_to_nid(tree_page) != nid) {
1957                         /*
1958                          * If tree_page has been migrated to another NUMA node,
1959                          * it will be flushed out and put in the right unstable
1960                          * tree next time: only merge with it when across_nodes.
1961                          */
1962                         put_page(tree_page);
1963                         return NULL;
1964                 } else {
1965                         *tree_pagep = tree_page;
1966                         return tree_rmap_item;
1967                 }
1968         }
1969
1970         rmap_item->address |= UNSTABLE_FLAG;
1971         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1972         DO_NUMA(rmap_item->nid = nid);
1973         rb_link_node(&rmap_item->node, parent, new);
1974         rb_insert_color(&rmap_item->node, root);
1975
1976         ksm_pages_unshared++;
1977         return NULL;
1978 }
1979
1980 /*
1981  * stable_tree_append - add another rmap_item to the linked list of
1982  * rmap_items hanging off a given node of the stable tree, all sharing
1983  * the same ksm page.
1984  */
1985 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
1986                                struct ksm_stable_node *stable_node,
1987                                bool max_page_sharing_bypass)
1988 {
1989         /*
1990          * rmap won't find this mapping if we don't insert the
1991          * rmap_item in the right stable_node
1992          * duplicate. page_migration could break later if rmap breaks,
1993          * so we can as well crash here. We really need to check for
1994          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1995          * for other negative values as an underflow if detected here
1996          * for the first time (and not when decreasing rmap_hlist_len)
1997          * would be sign of memory corruption in the stable_node.
1998          */
1999         BUG_ON(stable_node->rmap_hlist_len < 0);
2000
2001         stable_node->rmap_hlist_len++;
2002         if (!max_page_sharing_bypass)
2003                 /* possibly non fatal but unexpected overflow, only warn */
2004                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2005                              ksm_max_page_sharing);
2006
2007         rmap_item->head = stable_node;
2008         rmap_item->address |= STABLE_FLAG;
2009         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2010
2011         if (rmap_item->hlist.next)
2012                 ksm_pages_sharing++;
2013         else
2014                 ksm_pages_shared++;
2015
2016         rmap_item->mm->ksm_merging_pages++;
2017 }
2018
2019 /*
2020  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2021  * if not, compare checksum to previous and if it's the same, see if page can
2022  * be inserted into the unstable tree, or merged with a page already there and
2023  * both transferred to the stable tree.
2024  *
2025  * @page: the page that we are searching identical page to.
2026  * @rmap_item: the reverse mapping into the virtual address of this page
2027  */
2028 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2029 {
2030         struct mm_struct *mm = rmap_item->mm;
2031         struct ksm_rmap_item *tree_rmap_item;
2032         struct page *tree_page = NULL;
2033         struct ksm_stable_node *stable_node;
2034         struct page *kpage;
2035         unsigned int checksum;
2036         int err;
2037         bool max_page_sharing_bypass = false;
2038
2039         stable_node = page_stable_node(page);
2040         if (stable_node) {
2041                 if (stable_node->head != &migrate_nodes &&
2042                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2043                     NUMA(stable_node->nid)) {
2044                         stable_node_dup_del(stable_node);
2045                         stable_node->head = &migrate_nodes;
2046                         list_add(&stable_node->list, stable_node->head);
2047                 }
2048                 if (stable_node->head != &migrate_nodes &&
2049                     rmap_item->head == stable_node)
2050                         return;
2051                 /*
2052                  * If it's a KSM fork, allow it to go over the sharing limit
2053                  * without warnings.
2054                  */
2055                 if (!is_page_sharing_candidate(stable_node))
2056                         max_page_sharing_bypass = true;
2057         }
2058
2059         /* We first start with searching the page inside the stable tree */
2060         kpage = stable_tree_search(page);
2061         if (kpage == page && rmap_item->head == stable_node) {
2062                 put_page(kpage);
2063                 return;
2064         }
2065
2066         remove_rmap_item_from_tree(rmap_item);
2067
2068         if (kpage) {
2069                 if (PTR_ERR(kpage) == -EBUSY)
2070                         return;
2071
2072                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2073                 if (!err) {
2074                         /*
2075                          * The page was successfully merged:
2076                          * add its rmap_item to the stable tree.
2077                          */
2078                         lock_page(kpage);
2079                         stable_tree_append(rmap_item, page_stable_node(kpage),
2080                                            max_page_sharing_bypass);
2081                         unlock_page(kpage);
2082                 }
2083                 put_page(kpage);
2084                 return;
2085         }
2086
2087         /*
2088          * If the hash value of the page has changed from the last time
2089          * we calculated it, this page is changing frequently: therefore we
2090          * don't want to insert it in the unstable tree, and we don't want
2091          * to waste our time searching for something identical to it there.
2092          */
2093         checksum = calc_checksum(page);
2094         if (rmap_item->oldchecksum != checksum) {
2095                 rmap_item->oldchecksum = checksum;
2096                 return;
2097         }
2098
2099         /*
2100          * Same checksum as an empty page. We attempt to merge it with the
2101          * appropriate zero page if the user enabled this via sysfs.
2102          */
2103         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2104                 struct vm_area_struct *vma;
2105
2106                 mmap_read_lock(mm);
2107                 vma = find_mergeable_vma(mm, rmap_item->address);
2108                 if (vma) {
2109                         err = try_to_merge_one_page(vma, page,
2110                                         ZERO_PAGE(rmap_item->address));
2111                 } else {
2112                         /*
2113                          * If the vma is out of date, we do not need to
2114                          * continue.
2115                          */
2116                         err = 0;
2117                 }
2118                 mmap_read_unlock(mm);
2119                 /*
2120                  * In case of failure, the page was not really empty, so we
2121                  * need to continue. Otherwise we're done.
2122                  */
2123                 if (!err)
2124                         return;
2125         }
2126         tree_rmap_item =
2127                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2128         if (tree_rmap_item) {
2129                 bool split;
2130
2131                 kpage = try_to_merge_two_pages(rmap_item, page,
2132                                                 tree_rmap_item, tree_page);
2133                 /*
2134                  * If both pages we tried to merge belong to the same compound
2135                  * page, then we actually ended up increasing the reference
2136                  * count of the same compound page twice, and split_huge_page
2137                  * failed.
2138                  * Here we set a flag if that happened, and we use it later to
2139                  * try split_huge_page again. Since we call put_page right
2140                  * afterwards, the reference count will be correct and
2141                  * split_huge_page should succeed.
2142                  */
2143                 split = PageTransCompound(page)
2144                         && compound_head(page) == compound_head(tree_page);
2145                 put_page(tree_page);
2146                 if (kpage) {
2147                         /*
2148                          * The pages were successfully merged: insert new
2149                          * node in the stable tree and add both rmap_items.
2150                          */
2151                         lock_page(kpage);
2152                         stable_node = stable_tree_insert(kpage);
2153                         if (stable_node) {
2154                                 stable_tree_append(tree_rmap_item, stable_node,
2155                                                    false);
2156                                 stable_tree_append(rmap_item, stable_node,
2157                                                    false);
2158                         }
2159                         unlock_page(kpage);
2160
2161                         /*
2162                          * If we fail to insert the page into the stable tree,
2163                          * we will have 2 virtual addresses that are pointing
2164                          * to a ksm page left outside the stable tree,
2165                          * in which case we need to break_cow on both.
2166                          */
2167                         if (!stable_node) {
2168                                 break_cow(tree_rmap_item);
2169                                 break_cow(rmap_item);
2170                         }
2171                 } else if (split) {
2172                         /*
2173                          * We are here if we tried to merge two pages and
2174                          * failed because they both belonged to the same
2175                          * compound page. We will split the page now, but no
2176                          * merging will take place.
2177                          * We do not want to add the cost of a full lock; if
2178                          * the page is locked, it is better to skip it and
2179                          * perhaps try again later.
2180                          */
2181                         if (!trylock_page(page))
2182                                 return;
2183                         split_huge_page(page);
2184                         unlock_page(page);
2185                 }
2186         }
2187 }
2188
2189 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2190                                             struct ksm_rmap_item **rmap_list,
2191                                             unsigned long addr)
2192 {
2193         struct ksm_rmap_item *rmap_item;
2194
2195         while (*rmap_list) {
2196                 rmap_item = *rmap_list;
2197                 if ((rmap_item->address & PAGE_MASK) == addr)
2198                         return rmap_item;
2199                 if (rmap_item->address > addr)
2200                         break;
2201                 *rmap_list = rmap_item->rmap_list;
2202                 remove_rmap_item_from_tree(rmap_item);
2203                 free_rmap_item(rmap_item);
2204         }
2205
2206         rmap_item = alloc_rmap_item();
2207         if (rmap_item) {
2208                 /* It has already been zeroed */
2209                 rmap_item->mm = mm_slot->slot.mm;
2210                 rmap_item->mm->ksm_rmap_items++;
2211                 rmap_item->address = addr;
2212                 rmap_item->rmap_list = *rmap_list;
2213                 *rmap_list = rmap_item;
2214         }
2215         return rmap_item;
2216 }
2217
2218 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2219 {
2220         struct mm_struct *mm;
2221         struct ksm_mm_slot *mm_slot;
2222         struct mm_slot *slot;
2223         struct vm_area_struct *vma;
2224         struct ksm_rmap_item *rmap_item;
2225         struct vma_iterator vmi;
2226         int nid;
2227
2228         if (list_empty(&ksm_mm_head.slot.mm_node))
2229                 return NULL;
2230
2231         mm_slot = ksm_scan.mm_slot;
2232         if (mm_slot == &ksm_mm_head) {
2233                 /*
2234                  * A number of pages can hang around indefinitely on per-cpu
2235                  * pagevecs, raised page count preventing write_protect_page
2236                  * from merging them.  Though it doesn't really matter much,
2237                  * it is puzzling to see some stuck in pages_volatile until
2238                  * other activity jostles them out, and they also prevented
2239                  * LTP's KSM test from succeeding deterministically; so drain
2240                  * them here (here rather than on entry to ksm_do_scan(),
2241                  * so we don't IPI too often when pages_to_scan is set low).
2242                  */
2243                 lru_add_drain_all();
2244
2245                 /*
2246                  * Whereas stale stable_nodes on the stable_tree itself
2247                  * get pruned in the regular course of stable_tree_search(),
2248                  * those moved out to the migrate_nodes list can accumulate:
2249                  * so prune them once before each full scan.
2250                  */
2251                 if (!ksm_merge_across_nodes) {
2252                         struct ksm_stable_node *stable_node, *next;
2253                         struct page *page;
2254
2255                         list_for_each_entry_safe(stable_node, next,
2256                                                  &migrate_nodes, list) {
2257                                 page = get_ksm_page(stable_node,
2258                                                     GET_KSM_PAGE_NOLOCK);
2259                                 if (page)
2260                                         put_page(page);
2261                                 cond_resched();
2262                         }
2263                 }
2264
2265                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2266                         root_unstable_tree[nid] = RB_ROOT;
2267
2268                 spin_lock(&ksm_mmlist_lock);
2269                 slot = list_entry(mm_slot->slot.mm_node.next,
2270                                   struct mm_slot, mm_node);
2271                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2272                 ksm_scan.mm_slot = mm_slot;
2273                 spin_unlock(&ksm_mmlist_lock);
2274                 /*
2275                  * Although we tested list_empty() above, a racing __ksm_exit
2276                  * of the last mm on the list may have removed it since then.
2277                  */
2278                 if (mm_slot == &ksm_mm_head)
2279                         return NULL;
2280 next_mm:
2281                 ksm_scan.address = 0;
2282                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2283         }
2284
2285         slot = &mm_slot->slot;
2286         mm = slot->mm;
2287         vma_iter_init(&vmi, mm, ksm_scan.address);
2288
2289         mmap_read_lock(mm);
2290         if (ksm_test_exit(mm))
2291                 goto no_vmas;
2292
2293         for_each_vma(vmi, vma) {
2294                 if (!(vma->vm_flags & VM_MERGEABLE))
2295                         continue;
2296                 if (ksm_scan.address < vma->vm_start)
2297                         ksm_scan.address = vma->vm_start;
2298                 if (!vma->anon_vma)
2299                         ksm_scan.address = vma->vm_end;
2300
2301                 while (ksm_scan.address < vma->vm_end) {
2302                         if (ksm_test_exit(mm))
2303                                 break;
2304                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2305                         if (IS_ERR_OR_NULL(*page)) {
2306                                 ksm_scan.address += PAGE_SIZE;
2307                                 cond_resched();
2308                                 continue;
2309                         }
2310                         if (is_zone_device_page(*page))
2311                                 goto next_page;
2312                         if (PageAnon(*page)) {
2313                                 flush_anon_page(vma, *page, ksm_scan.address);
2314                                 flush_dcache_page(*page);
2315                                 rmap_item = get_next_rmap_item(mm_slot,
2316                                         ksm_scan.rmap_list, ksm_scan.address);
2317                                 if (rmap_item) {
2318                                         ksm_scan.rmap_list =
2319                                                         &rmap_item->rmap_list;
2320                                         ksm_scan.address += PAGE_SIZE;
2321                                 } else
2322                                         put_page(*page);
2323                                 mmap_read_unlock(mm);
2324                                 return rmap_item;
2325                         }
2326 next_page:
2327                         put_page(*page);
2328                         ksm_scan.address += PAGE_SIZE;
2329                         cond_resched();
2330                 }
2331         }
2332
2333         if (ksm_test_exit(mm)) {
2334 no_vmas:
2335                 ksm_scan.address = 0;
2336                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2337         }
2338         /*
2339          * Nuke all the rmap_items that are above this current rmap:
2340          * because there were no VM_MERGEABLE vmas with such addresses.
2341          */
2342         remove_trailing_rmap_items(ksm_scan.rmap_list);
2343
2344         spin_lock(&ksm_mmlist_lock);
2345         slot = list_entry(mm_slot->slot.mm_node.next,
2346                           struct mm_slot, mm_node);
2347         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2348         if (ksm_scan.address == 0) {
2349                 /*
2350                  * We've completed a full scan of all vmas, holding mmap_lock
2351                  * throughout, and found no VM_MERGEABLE: so do the same as
2352                  * __ksm_exit does to remove this mm from all our lists now.
2353                  * This applies either when cleaning up after __ksm_exit
2354                  * (but beware: we can reach here even before __ksm_exit),
2355                  * or when all VM_MERGEABLE areas have been unmapped (and
2356                  * mmap_lock then protects against race with MADV_MERGEABLE).
2357                  */
2358                 hash_del(&mm_slot->slot.hash);
2359                 list_del(&mm_slot->slot.mm_node);
2360                 spin_unlock(&ksm_mmlist_lock);
2361
2362                 mm_slot_free(mm_slot_cache, mm_slot);
2363                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2364                 mmap_read_unlock(mm);
2365                 mmdrop(mm);
2366         } else {
2367                 mmap_read_unlock(mm);
2368                 /*
2369                  * mmap_read_unlock(mm) first because after
2370                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2371                  * already have been freed under us by __ksm_exit()
2372                  * because the "mm_slot" is still hashed and
2373                  * ksm_scan.mm_slot doesn't point to it anymore.
2374                  */
2375                 spin_unlock(&ksm_mmlist_lock);
2376         }
2377
2378         /* Repeat until we've completed scanning the whole list */
2379         mm_slot = ksm_scan.mm_slot;
2380         if (mm_slot != &ksm_mm_head)
2381                 goto next_mm;
2382
2383         ksm_scan.seqnr++;
2384         return NULL;
2385 }
2386
2387 /**
2388  * ksm_do_scan  - the ksm scanner main worker function.
2389  * @scan_npages:  number of pages we want to scan before we return.
2390  */
2391 static void ksm_do_scan(unsigned int scan_npages)
2392 {
2393         struct ksm_rmap_item *rmap_item;
2394         struct page *page;
2395
2396         while (scan_npages-- && likely(!freezing(current))) {
2397                 cond_resched();
2398                 rmap_item = scan_get_next_rmap_item(&page);
2399                 if (!rmap_item)
2400                         return;
2401                 cmp_and_merge_page(page, rmap_item);
2402                 put_page(page);
2403         }
2404 }
2405
2406 static int ksmd_should_run(void)
2407 {
2408         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2409 }
2410
2411 static int ksm_scan_thread(void *nothing)
2412 {
2413         unsigned int sleep_ms;
2414
2415         set_freezable();
2416         set_user_nice(current, 5);
2417
2418         while (!kthread_should_stop()) {
2419                 mutex_lock(&ksm_thread_mutex);
2420                 wait_while_offlining();
2421                 if (ksmd_should_run())
2422                         ksm_do_scan(ksm_thread_pages_to_scan);
2423                 mutex_unlock(&ksm_thread_mutex);
2424
2425                 try_to_freeze();
2426
2427                 if (ksmd_should_run()) {
2428                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2429                         wait_event_interruptible_timeout(ksm_iter_wait,
2430                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2431                                 msecs_to_jiffies(sleep_ms));
2432                 } else {
2433                         wait_event_freezable(ksm_thread_wait,
2434                                 ksmd_should_run() || kthread_should_stop());
2435                 }
2436         }
2437         return 0;
2438 }
2439
2440 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2441                 unsigned long end, int advice, unsigned long *vm_flags)
2442 {
2443         struct mm_struct *mm = vma->vm_mm;
2444         int err;
2445
2446         switch (advice) {
2447         case MADV_MERGEABLE:
2448                 /*
2449                  * Be somewhat over-protective for now!
2450                  */
2451                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2452                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2453                                  VM_HUGETLB | VM_MIXEDMAP))
2454                         return 0;               /* just ignore the advice */
2455
2456                 if (vma_is_dax(vma))
2457                         return 0;
2458
2459 #ifdef VM_SAO
2460                 if (*vm_flags & VM_SAO)
2461                         return 0;
2462 #endif
2463 #ifdef VM_SPARC_ADI
2464                 if (*vm_flags & VM_SPARC_ADI)
2465                         return 0;
2466 #endif
2467
2468                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2469                         err = __ksm_enter(mm);
2470                         if (err)
2471                                 return err;
2472                 }
2473
2474                 *vm_flags |= VM_MERGEABLE;
2475                 break;
2476
2477         case MADV_UNMERGEABLE:
2478                 if (!(*vm_flags & VM_MERGEABLE))
2479                         return 0;               /* just ignore the advice */
2480
2481                 if (vma->anon_vma) {
2482                         err = unmerge_ksm_pages(vma, start, end);
2483                         if (err)
2484                                 return err;
2485                 }
2486
2487                 *vm_flags &= ~VM_MERGEABLE;
2488                 break;
2489         }
2490
2491         return 0;
2492 }
2493 EXPORT_SYMBOL_GPL(ksm_madvise);
2494
2495 int __ksm_enter(struct mm_struct *mm)
2496 {
2497         struct ksm_mm_slot *mm_slot;
2498         struct mm_slot *slot;
2499         int needs_wakeup;
2500
2501         mm_slot = mm_slot_alloc(mm_slot_cache);
2502         if (!mm_slot)
2503                 return -ENOMEM;
2504
2505         slot = &mm_slot->slot;
2506
2507         /* Check ksm_run too?  Would need tighter locking */
2508         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2509
2510         spin_lock(&ksm_mmlist_lock);
2511         mm_slot_insert(mm_slots_hash, mm, slot);
2512         /*
2513          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2514          * insert just behind the scanning cursor, to let the area settle
2515          * down a little; when fork is followed by immediate exec, we don't
2516          * want ksmd to waste time setting up and tearing down an rmap_list.
2517          *
2518          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2519          * scanning cursor, otherwise KSM pages in newly forked mms will be
2520          * missed: then we might as well insert at the end of the list.
2521          */
2522         if (ksm_run & KSM_RUN_UNMERGE)
2523                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2524         else
2525                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2526         spin_unlock(&ksm_mmlist_lock);
2527
2528         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2529         mmgrab(mm);
2530
2531         if (needs_wakeup)
2532                 wake_up_interruptible(&ksm_thread_wait);
2533
2534         return 0;
2535 }
2536
2537 void __ksm_exit(struct mm_struct *mm)
2538 {
2539         struct ksm_mm_slot *mm_slot;
2540         struct mm_slot *slot;
2541         int easy_to_free = 0;
2542
2543         /*
2544          * This process is exiting: if it's straightforward (as is the
2545          * case when ksmd was never running), free mm_slot immediately.
2546          * But if it's at the cursor or has rmap_items linked to it, use
2547          * mmap_lock to synchronize with any break_cows before pagetables
2548          * are freed, and leave the mm_slot on the list for ksmd to free.
2549          * Beware: ksm may already have noticed it exiting and freed the slot.
2550          */
2551
2552         spin_lock(&ksm_mmlist_lock);
2553         slot = mm_slot_lookup(mm_slots_hash, mm);
2554         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2555         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2556                 if (!mm_slot->rmap_list) {
2557                         hash_del(&slot->hash);
2558                         list_del(&slot->mm_node);
2559                         easy_to_free = 1;
2560                 } else {
2561                         list_move(&slot->mm_node,
2562                                   &ksm_scan.mm_slot->slot.mm_node);
2563                 }
2564         }
2565         spin_unlock(&ksm_mmlist_lock);
2566
2567         if (easy_to_free) {
2568                 mm_slot_free(mm_slot_cache, mm_slot);
2569                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2570                 mmdrop(mm);
2571         } else if (mm_slot) {
2572                 mmap_write_lock(mm);
2573                 mmap_write_unlock(mm);
2574         }
2575 }
2576
2577 struct page *ksm_might_need_to_copy(struct page *page,
2578                         struct vm_area_struct *vma, unsigned long address)
2579 {
2580         struct folio *folio = page_folio(page);
2581         struct anon_vma *anon_vma = folio_anon_vma(folio);
2582         struct page *new_page;
2583
2584         if (PageKsm(page)) {
2585                 if (page_stable_node(page) &&
2586                     !(ksm_run & KSM_RUN_UNMERGE))
2587                         return page;    /* no need to copy it */
2588         } else if (!anon_vma) {
2589                 return page;            /* no need to copy it */
2590         } else if (page->index == linear_page_index(vma, address) &&
2591                         anon_vma->root == vma->anon_vma->root) {
2592                 return page;            /* still no need to copy it */
2593         }
2594         if (!PageUptodate(page))
2595                 return page;            /* let do_swap_page report the error */
2596
2597         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2598         if (new_page &&
2599             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2600                 put_page(new_page);
2601                 new_page = NULL;
2602         }
2603         if (new_page) {
2604                 copy_user_highpage(new_page, page, address, vma);
2605
2606                 SetPageDirty(new_page);
2607                 __SetPageUptodate(new_page);
2608                 __SetPageLocked(new_page);
2609 #ifdef CONFIG_SWAP
2610                 count_vm_event(KSM_SWPIN_COPY);
2611 #endif
2612         }
2613
2614         return new_page;
2615 }
2616
2617 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2618 {
2619         struct ksm_stable_node *stable_node;
2620         struct ksm_rmap_item *rmap_item;
2621         int search_new_forks = 0;
2622
2623         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2624
2625         /*
2626          * Rely on the page lock to protect against concurrent modifications
2627          * to that page's node of the stable tree.
2628          */
2629         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2630
2631         stable_node = folio_stable_node(folio);
2632         if (!stable_node)
2633                 return;
2634 again:
2635         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2636                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2637                 struct anon_vma_chain *vmac;
2638                 struct vm_area_struct *vma;
2639
2640                 cond_resched();
2641                 if (!anon_vma_trylock_read(anon_vma)) {
2642                         if (rwc->try_lock) {
2643                                 rwc->contended = true;
2644                                 return;
2645                         }
2646                         anon_vma_lock_read(anon_vma);
2647                 }
2648                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2649                                                0, ULONG_MAX) {
2650                         unsigned long addr;
2651
2652                         cond_resched();
2653                         vma = vmac->vma;
2654
2655                         /* Ignore the stable/unstable/sqnr flags */
2656                         addr = rmap_item->address & PAGE_MASK;
2657
2658                         if (addr < vma->vm_start || addr >= vma->vm_end)
2659                                 continue;
2660                         /*
2661                          * Initially we examine only the vma which covers this
2662                          * rmap_item; but later, if there is still work to do,
2663                          * we examine covering vmas in other mms: in case they
2664                          * were forked from the original since ksmd passed.
2665                          */
2666                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2667                                 continue;
2668
2669                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2670                                 continue;
2671
2672                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2673                                 anon_vma_unlock_read(anon_vma);
2674                                 return;
2675                         }
2676                         if (rwc->done && rwc->done(folio)) {
2677                                 anon_vma_unlock_read(anon_vma);
2678                                 return;
2679                         }
2680                 }
2681                 anon_vma_unlock_read(anon_vma);
2682         }
2683         if (!search_new_forks++)
2684                 goto again;
2685 }
2686
2687 #ifdef CONFIG_MIGRATION
2688 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2689 {
2690         struct ksm_stable_node *stable_node;
2691
2692         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2693         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2694         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2695
2696         stable_node = folio_stable_node(folio);
2697         if (stable_node) {
2698                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2699                 stable_node->kpfn = folio_pfn(newfolio);
2700                 /*
2701                  * newfolio->mapping was set in advance; now we need smp_wmb()
2702                  * to make sure that the new stable_node->kpfn is visible
2703                  * to get_ksm_page() before it can see that folio->mapping
2704                  * has gone stale (or that folio_test_swapcache has been cleared).
2705                  */
2706                 smp_wmb();
2707                 set_page_stable_node(&folio->page, NULL);
2708         }
2709 }
2710 #endif /* CONFIG_MIGRATION */
2711
2712 #ifdef CONFIG_MEMORY_HOTREMOVE
2713 static void wait_while_offlining(void)
2714 {
2715         while (ksm_run & KSM_RUN_OFFLINE) {
2716                 mutex_unlock(&ksm_thread_mutex);
2717                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2718                             TASK_UNINTERRUPTIBLE);
2719                 mutex_lock(&ksm_thread_mutex);
2720         }
2721 }
2722
2723 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2724                                          unsigned long start_pfn,
2725                                          unsigned long end_pfn)
2726 {
2727         if (stable_node->kpfn >= start_pfn &&
2728             stable_node->kpfn < end_pfn) {
2729                 /*
2730                  * Don't get_ksm_page, page has already gone:
2731                  * which is why we keep kpfn instead of page*
2732                  */
2733                 remove_node_from_stable_tree(stable_node);
2734                 return true;
2735         }
2736         return false;
2737 }
2738
2739 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2740                                            unsigned long start_pfn,
2741                                            unsigned long end_pfn,
2742                                            struct rb_root *root)
2743 {
2744         struct ksm_stable_node *dup;
2745         struct hlist_node *hlist_safe;
2746
2747         if (!is_stable_node_chain(stable_node)) {
2748                 VM_BUG_ON(is_stable_node_dup(stable_node));
2749                 return stable_node_dup_remove_range(stable_node, start_pfn,
2750                                                     end_pfn);
2751         }
2752
2753         hlist_for_each_entry_safe(dup, hlist_safe,
2754                                   &stable_node->hlist, hlist_dup) {
2755                 VM_BUG_ON(!is_stable_node_dup(dup));
2756                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2757         }
2758         if (hlist_empty(&stable_node->hlist)) {
2759                 free_stable_node_chain(stable_node, root);
2760                 return true; /* notify caller that tree was rebalanced */
2761         } else
2762                 return false;
2763 }
2764
2765 static void ksm_check_stable_tree(unsigned long start_pfn,
2766                                   unsigned long end_pfn)
2767 {
2768         struct ksm_stable_node *stable_node, *next;
2769         struct rb_node *node;
2770         int nid;
2771
2772         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2773                 node = rb_first(root_stable_tree + nid);
2774                 while (node) {
2775                         stable_node = rb_entry(node, struct ksm_stable_node, node);
2776                         if (stable_node_chain_remove_range(stable_node,
2777                                                            start_pfn, end_pfn,
2778                                                            root_stable_tree +
2779                                                            nid))
2780                                 node = rb_first(root_stable_tree + nid);
2781                         else
2782                                 node = rb_next(node);
2783                         cond_resched();
2784                 }
2785         }
2786         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2787                 if (stable_node->kpfn >= start_pfn &&
2788                     stable_node->kpfn < end_pfn)
2789                         remove_node_from_stable_tree(stable_node);
2790                 cond_resched();
2791         }
2792 }
2793
2794 static int ksm_memory_callback(struct notifier_block *self,
2795                                unsigned long action, void *arg)
2796 {
2797         struct memory_notify *mn = arg;
2798
2799         switch (action) {
2800         case MEM_GOING_OFFLINE:
2801                 /*
2802                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2803                  * and remove_all_stable_nodes() while memory is going offline:
2804                  * it is unsafe for them to touch the stable tree at this time.
2805                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2806                  * which do not need the ksm_thread_mutex are all safe.
2807                  */
2808                 mutex_lock(&ksm_thread_mutex);
2809                 ksm_run |= KSM_RUN_OFFLINE;
2810                 mutex_unlock(&ksm_thread_mutex);
2811                 break;
2812
2813         case MEM_OFFLINE:
2814                 /*
2815                  * Most of the work is done by page migration; but there might
2816                  * be a few stable_nodes left over, still pointing to struct
2817                  * pages which have been offlined: prune those from the tree,
2818                  * otherwise get_ksm_page() might later try to access a
2819                  * non-existent struct page.
2820                  */
2821                 ksm_check_stable_tree(mn->start_pfn,
2822                                       mn->start_pfn + mn->nr_pages);
2823                 fallthrough;
2824         case MEM_CANCEL_OFFLINE:
2825                 mutex_lock(&ksm_thread_mutex);
2826                 ksm_run &= ~KSM_RUN_OFFLINE;
2827                 mutex_unlock(&ksm_thread_mutex);
2828
2829                 smp_mb();       /* wake_up_bit advises this */
2830                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2831                 break;
2832         }
2833         return NOTIFY_OK;
2834 }
2835 #else
2836 static void wait_while_offlining(void)
2837 {
2838 }
2839 #endif /* CONFIG_MEMORY_HOTREMOVE */
2840
2841 #ifdef CONFIG_SYSFS
2842 /*
2843  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2844  */
2845
2846 #define KSM_ATTR_RO(_name) \
2847         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2848 #define KSM_ATTR(_name) \
2849         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2850
2851 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2852                                     struct kobj_attribute *attr, char *buf)
2853 {
2854         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2855 }
2856
2857 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2858                                      struct kobj_attribute *attr,
2859                                      const char *buf, size_t count)
2860 {
2861         unsigned int msecs;
2862         int err;
2863
2864         err = kstrtouint(buf, 10, &msecs);
2865         if (err)
2866                 return -EINVAL;
2867
2868         ksm_thread_sleep_millisecs = msecs;
2869         wake_up_interruptible(&ksm_iter_wait);
2870
2871         return count;
2872 }
2873 KSM_ATTR(sleep_millisecs);
2874
2875 static ssize_t pages_to_scan_show(struct kobject *kobj,
2876                                   struct kobj_attribute *attr, char *buf)
2877 {
2878         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2879 }
2880
2881 static ssize_t pages_to_scan_store(struct kobject *kobj,
2882                                    struct kobj_attribute *attr,
2883                                    const char *buf, size_t count)
2884 {
2885         unsigned int nr_pages;
2886         int err;
2887
2888         err = kstrtouint(buf, 10, &nr_pages);
2889         if (err)
2890                 return -EINVAL;
2891
2892         ksm_thread_pages_to_scan = nr_pages;
2893
2894         return count;
2895 }
2896 KSM_ATTR(pages_to_scan);
2897
2898 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2899                         char *buf)
2900 {
2901         return sysfs_emit(buf, "%lu\n", ksm_run);
2902 }
2903
2904 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2905                          const char *buf, size_t count)
2906 {
2907         unsigned int flags;
2908         int err;
2909
2910         err = kstrtouint(buf, 10, &flags);
2911         if (err)
2912                 return -EINVAL;
2913         if (flags > KSM_RUN_UNMERGE)
2914                 return -EINVAL;
2915
2916         /*
2917          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2918          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2919          * breaking COW to free the pages_shared (but leaves mm_slots
2920          * on the list for when ksmd may be set running again).
2921          */
2922
2923         mutex_lock(&ksm_thread_mutex);
2924         wait_while_offlining();
2925         if (ksm_run != flags) {
2926                 ksm_run = flags;
2927                 if (flags & KSM_RUN_UNMERGE) {
2928                         set_current_oom_origin();
2929                         err = unmerge_and_remove_all_rmap_items();
2930                         clear_current_oom_origin();
2931                         if (err) {
2932                                 ksm_run = KSM_RUN_STOP;
2933                                 count = err;
2934                         }
2935                 }
2936         }
2937         mutex_unlock(&ksm_thread_mutex);
2938
2939         if (flags & KSM_RUN_MERGE)
2940                 wake_up_interruptible(&ksm_thread_wait);
2941
2942         return count;
2943 }
2944 KSM_ATTR(run);
2945
2946 #ifdef CONFIG_NUMA
2947 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2948                                        struct kobj_attribute *attr, char *buf)
2949 {
2950         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2951 }
2952
2953 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2954                                    struct kobj_attribute *attr,
2955                                    const char *buf, size_t count)
2956 {
2957         int err;
2958         unsigned long knob;
2959
2960         err = kstrtoul(buf, 10, &knob);
2961         if (err)
2962                 return err;
2963         if (knob > 1)
2964                 return -EINVAL;
2965
2966         mutex_lock(&ksm_thread_mutex);
2967         wait_while_offlining();
2968         if (ksm_merge_across_nodes != knob) {
2969                 if (ksm_pages_shared || remove_all_stable_nodes())
2970                         err = -EBUSY;
2971                 else if (root_stable_tree == one_stable_tree) {
2972                         struct rb_root *buf;
2973                         /*
2974                          * This is the first time that we switch away from the
2975                          * default of merging across nodes: must now allocate
2976                          * a buffer to hold as many roots as may be needed.
2977                          * Allocate stable and unstable together:
2978                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2979                          */
2980                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2981                                       GFP_KERNEL);
2982                         /* Let us assume that RB_ROOT is NULL is zero */
2983                         if (!buf)
2984                                 err = -ENOMEM;
2985                         else {
2986                                 root_stable_tree = buf;
2987                                 root_unstable_tree = buf + nr_node_ids;
2988                                 /* Stable tree is empty but not the unstable */
2989                                 root_unstable_tree[0] = one_unstable_tree[0];
2990                         }
2991                 }
2992                 if (!err) {
2993                         ksm_merge_across_nodes = knob;
2994                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2995                 }
2996         }
2997         mutex_unlock(&ksm_thread_mutex);
2998
2999         return err ? err : count;
3000 }
3001 KSM_ATTR(merge_across_nodes);
3002 #endif
3003
3004 static ssize_t use_zero_pages_show(struct kobject *kobj,
3005                                    struct kobj_attribute *attr, char *buf)
3006 {
3007         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3008 }
3009 static ssize_t use_zero_pages_store(struct kobject *kobj,
3010                                    struct kobj_attribute *attr,
3011                                    const char *buf, size_t count)
3012 {
3013         int err;
3014         bool value;
3015
3016         err = kstrtobool(buf, &value);
3017         if (err)
3018                 return -EINVAL;
3019
3020         ksm_use_zero_pages = value;
3021
3022         return count;
3023 }
3024 KSM_ATTR(use_zero_pages);
3025
3026 static ssize_t max_page_sharing_show(struct kobject *kobj,
3027                                      struct kobj_attribute *attr, char *buf)
3028 {
3029         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3030 }
3031
3032 static ssize_t max_page_sharing_store(struct kobject *kobj,
3033                                       struct kobj_attribute *attr,
3034                                       const char *buf, size_t count)
3035 {
3036         int err;
3037         int knob;
3038
3039         err = kstrtoint(buf, 10, &knob);
3040         if (err)
3041                 return err;
3042         /*
3043          * When a KSM page is created it is shared by 2 mappings. This
3044          * being a signed comparison, it implicitly verifies it's not
3045          * negative.
3046          */
3047         if (knob < 2)
3048                 return -EINVAL;
3049
3050         if (READ_ONCE(ksm_max_page_sharing) == knob)
3051                 return count;
3052
3053         mutex_lock(&ksm_thread_mutex);
3054         wait_while_offlining();
3055         if (ksm_max_page_sharing != knob) {
3056                 if (ksm_pages_shared || remove_all_stable_nodes())
3057                         err = -EBUSY;
3058                 else
3059                         ksm_max_page_sharing = knob;
3060         }
3061         mutex_unlock(&ksm_thread_mutex);
3062
3063         return err ? err : count;
3064 }
3065 KSM_ATTR(max_page_sharing);
3066
3067 static ssize_t pages_shared_show(struct kobject *kobj,
3068                                  struct kobj_attribute *attr, char *buf)
3069 {
3070         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3071 }
3072 KSM_ATTR_RO(pages_shared);
3073
3074 static ssize_t pages_sharing_show(struct kobject *kobj,
3075                                   struct kobj_attribute *attr, char *buf)
3076 {
3077         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3078 }
3079 KSM_ATTR_RO(pages_sharing);
3080
3081 static ssize_t pages_unshared_show(struct kobject *kobj,
3082                                    struct kobj_attribute *attr, char *buf)
3083 {
3084         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3085 }
3086 KSM_ATTR_RO(pages_unshared);
3087
3088 static ssize_t pages_volatile_show(struct kobject *kobj,
3089                                    struct kobj_attribute *attr, char *buf)
3090 {
3091         long ksm_pages_volatile;
3092
3093         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3094                                 - ksm_pages_sharing - ksm_pages_unshared;
3095         /*
3096          * It was not worth any locking to calculate that statistic,
3097          * but it might therefore sometimes be negative: conceal that.
3098          */
3099         if (ksm_pages_volatile < 0)
3100                 ksm_pages_volatile = 0;
3101         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3102 }
3103 KSM_ATTR_RO(pages_volatile);
3104
3105 static ssize_t stable_node_dups_show(struct kobject *kobj,
3106                                      struct kobj_attribute *attr, char *buf)
3107 {
3108         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3109 }
3110 KSM_ATTR_RO(stable_node_dups);
3111
3112 static ssize_t stable_node_chains_show(struct kobject *kobj,
3113                                        struct kobj_attribute *attr, char *buf)
3114 {
3115         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3116 }
3117 KSM_ATTR_RO(stable_node_chains);
3118
3119 static ssize_t
3120 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3121                                         struct kobj_attribute *attr,
3122                                         char *buf)
3123 {
3124         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3125 }
3126
3127 static ssize_t
3128 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3129                                          struct kobj_attribute *attr,
3130                                          const char *buf, size_t count)
3131 {
3132         unsigned int msecs;
3133         int err;
3134
3135         err = kstrtouint(buf, 10, &msecs);
3136         if (err)
3137                 return -EINVAL;
3138
3139         ksm_stable_node_chains_prune_millisecs = msecs;
3140
3141         return count;
3142 }
3143 KSM_ATTR(stable_node_chains_prune_millisecs);
3144
3145 static ssize_t full_scans_show(struct kobject *kobj,
3146                                struct kobj_attribute *attr, char *buf)
3147 {
3148         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3149 }
3150 KSM_ATTR_RO(full_scans);
3151
3152 static struct attribute *ksm_attrs[] = {
3153         &sleep_millisecs_attr.attr,
3154         &pages_to_scan_attr.attr,
3155         &run_attr.attr,
3156         &pages_shared_attr.attr,
3157         &pages_sharing_attr.attr,
3158         &pages_unshared_attr.attr,
3159         &pages_volatile_attr.attr,
3160         &full_scans_attr.attr,
3161 #ifdef CONFIG_NUMA
3162         &merge_across_nodes_attr.attr,
3163 #endif
3164         &max_page_sharing_attr.attr,
3165         &stable_node_chains_attr.attr,
3166         &stable_node_dups_attr.attr,
3167         &stable_node_chains_prune_millisecs_attr.attr,
3168         &use_zero_pages_attr.attr,
3169         NULL,
3170 };
3171
3172 static const struct attribute_group ksm_attr_group = {
3173         .attrs = ksm_attrs,
3174         .name = "ksm",
3175 };
3176 #endif /* CONFIG_SYSFS */
3177
3178 static int __init ksm_init(void)
3179 {
3180         struct task_struct *ksm_thread;
3181         int err;
3182
3183         /* The correct value depends on page size and endianness */
3184         zero_checksum = calc_checksum(ZERO_PAGE(0));
3185         /* Default to false for backwards compatibility */
3186         ksm_use_zero_pages = false;
3187
3188         err = ksm_slab_init();
3189         if (err)
3190                 goto out;
3191
3192         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3193         if (IS_ERR(ksm_thread)) {
3194                 pr_err("ksm: creating kthread failed\n");
3195                 err = PTR_ERR(ksm_thread);
3196                 goto out_free;
3197         }
3198
3199 #ifdef CONFIG_SYSFS
3200         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3201         if (err) {
3202                 pr_err("ksm: register sysfs failed\n");
3203                 kthread_stop(ksm_thread);
3204                 goto out_free;
3205         }
3206 #else
3207         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3208
3209 #endif /* CONFIG_SYSFS */
3210
3211 #ifdef CONFIG_MEMORY_HOTREMOVE
3212         /* There is no significance to this priority 100 */
3213         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3214 #endif
3215         return 0;
3216
3217 out_free:
3218         ksm_slab_free();
3219 out:
3220         return err;
3221 }
3222 subsys_initcall(ksm_init);