Merge tag 'for-6.1-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 #include "mm_slot.h"
46
47 #ifdef CONFIG_NUMA
48 #define NUMA(x)         (x)
49 #define DO_NUMA(x)      do { (x); } while (0)
50 #else
51 #define NUMA(x)         (0)
52 #define DO_NUMA(x)      do { } while (0)
53 #endif
54
55 /**
56  * DOC: Overview
57  *
58  * A few notes about the KSM scanning process,
59  * to make it easier to understand the data structures below:
60  *
61  * In order to reduce excessive scanning, KSM sorts the memory pages by their
62  * contents into a data structure that holds pointers to the pages' locations.
63  *
64  * Since the contents of the pages may change at any moment, KSM cannot just
65  * insert the pages into a normal sorted tree and expect it to find anything.
66  * Therefore KSM uses two data structures - the stable and the unstable tree.
67  *
68  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
69  * by their contents.  Because each such page is write-protected, searching on
70  * this tree is fully assured to be working (except when pages are unmapped),
71  * and therefore this tree is called the stable tree.
72  *
73  * The stable tree node includes information required for reverse
74  * mapping from a KSM page to virtual addresses that map this page.
75  *
76  * In order to avoid large latencies of the rmap walks on KSM pages,
77  * KSM maintains two types of nodes in the stable tree:
78  *
79  * * the regular nodes that keep the reverse mapping structures in a
80  *   linked list
81  * * the "chains" that link nodes ("dups") that represent the same
82  *   write protected memory content, but each "dup" corresponds to a
83  *   different KSM page copy of that content
84  *
85  * Internally, the regular nodes, "dups" and "chains" are represented
86  * using the same struct ksm_stable_node structure.
87  *
88  * In addition to the stable tree, KSM uses a second data structure called the
89  * unstable tree: this tree holds pointers to pages which have been found to
90  * be "unchanged for a period of time".  The unstable tree sorts these pages
91  * by their contents, but since they are not write-protected, KSM cannot rely
92  * upon the unstable tree to work correctly - the unstable tree is liable to
93  * be corrupted as its contents are modified, and so it is called unstable.
94  *
95  * KSM solves this problem by several techniques:
96  *
97  * 1) The unstable tree is flushed every time KSM completes scanning all
98  *    memory areas, and then the tree is rebuilt again from the beginning.
99  * 2) KSM will only insert into the unstable tree, pages whose hash value
100  *    has not changed since the previous scan of all memory areas.
101  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
102  *    colors of the nodes and not on their contents, assuring that even when
103  *    the tree gets "corrupted" it won't get out of balance, so scanning time
104  *    remains the same (also, searching and inserting nodes in an rbtree uses
105  *    the same algorithm, so we have no overhead when we flush and rebuild).
106  * 4) KSM never flushes the stable tree, which means that even if it were to
107  *    take 10 attempts to find a page in the unstable tree, once it is found,
108  *    it is secured in the stable tree.  (When we scan a new page, we first
109  *    compare it against the stable tree, and then against the unstable tree.)
110  *
111  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
112  * stable trees and multiple unstable trees: one of each for each NUMA node.
113  */
114
115 /**
116  * struct ksm_mm_slot - ksm information per mm that is being scanned
117  * @slot: hash lookup from mm to mm_slot
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  */
120 struct ksm_mm_slot {
121         struct mm_slot slot;
122         struct ksm_rmap_item *rmap_list;
123 };
124
125 /**
126  * struct ksm_scan - cursor for scanning
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  * @rmap_list: link to the next rmap to be scanned in the rmap_list
130  * @seqnr: count of completed full scans (needed when removing unstable node)
131  *
132  * There is only the one ksm_scan instance of this cursor structure.
133  */
134 struct ksm_scan {
135         struct ksm_mm_slot *mm_slot;
136         unsigned long address;
137         struct ksm_rmap_item **rmap_list;
138         unsigned long seqnr;
139 };
140
141 /**
142  * struct ksm_stable_node - node of the stable rbtree
143  * @node: rb node of this ksm page in the stable tree
144  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
145  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
146  * @list: linked into migrate_nodes, pending placement in the proper node tree
147  * @hlist: hlist head of rmap_items using this ksm page
148  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
149  * @chain_prune_time: time of the last full garbage collection
150  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
151  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
152  */
153 struct ksm_stable_node {
154         union {
155                 struct rb_node node;    /* when node of stable tree */
156                 struct {                /* when listed for migration */
157                         struct list_head *head;
158                         struct {
159                                 struct hlist_node hlist_dup;
160                                 struct list_head list;
161                         };
162                 };
163         };
164         struct hlist_head hlist;
165         union {
166                 unsigned long kpfn;
167                 unsigned long chain_prune_time;
168         };
169         /*
170          * STABLE_NODE_CHAIN can be any negative number in
171          * rmap_hlist_len negative range, but better not -1 to be able
172          * to reliably detect underflows.
173          */
174 #define STABLE_NODE_CHAIN -1024
175         int rmap_hlist_len;
176 #ifdef CONFIG_NUMA
177         int nid;
178 #endif
179 };
180
181 /**
182  * struct ksm_rmap_item - reverse mapping item for virtual addresses
183  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
184  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
185  * @nid: NUMA node id of unstable tree in which linked (may not match page)
186  * @mm: the memory structure this rmap_item is pointing into
187  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
188  * @oldchecksum: previous checksum of the page at that virtual address
189  * @node: rb node of this rmap_item in the unstable tree
190  * @head: pointer to stable_node heading this list in the stable tree
191  * @hlist: link into hlist of rmap_items hanging off that stable_node
192  */
193 struct ksm_rmap_item {
194         struct ksm_rmap_item *rmap_list;
195         union {
196                 struct anon_vma *anon_vma;      /* when stable */
197 #ifdef CONFIG_NUMA
198                 int nid;                /* when node of unstable tree */
199 #endif
200         };
201         struct mm_struct *mm;
202         unsigned long address;          /* + low bits used for flags below */
203         unsigned int oldchecksum;       /* when unstable */
204         union {
205                 struct rb_node node;    /* when node of unstable tree */
206                 struct {                /* when listed from stable tree */
207                         struct ksm_stable_node *head;
208                         struct hlist_node hlist;
209                 };
210         };
211 };
212
213 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
214 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
215 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
216
217 /* The stable and unstable tree heads */
218 static struct rb_root one_stable_tree[1] = { RB_ROOT };
219 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
220 static struct rb_root *root_stable_tree = one_stable_tree;
221 static struct rb_root *root_unstable_tree = one_unstable_tree;
222
223 /* Recently migrated nodes of stable tree, pending proper placement */
224 static LIST_HEAD(migrate_nodes);
225 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
226
227 #define MM_SLOTS_HASH_BITS 10
228 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
229
230 static struct ksm_mm_slot ksm_mm_head = {
231         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
232 };
233 static struct ksm_scan ksm_scan = {
234         .mm_slot = &ksm_mm_head,
235 };
236
237 static struct kmem_cache *rmap_item_cache;
238 static struct kmem_cache *stable_node_cache;
239 static struct kmem_cache *mm_slot_cache;
240
241 /* The number of nodes in the stable tree */
242 static unsigned long ksm_pages_shared;
243
244 /* The number of page slots additionally sharing those nodes */
245 static unsigned long ksm_pages_sharing;
246
247 /* The number of nodes in the unstable tree */
248 static unsigned long ksm_pages_unshared;
249
250 /* The number of rmap_items in use: to calculate pages_volatile */
251 static unsigned long ksm_rmap_items;
252
253 /* The number of stable_node chains */
254 static unsigned long ksm_stable_node_chains;
255
256 /* The number of stable_node dups linked to the stable_node chains */
257 static unsigned long ksm_stable_node_dups;
258
259 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
260 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
261
262 /* Maximum number of page slots sharing a stable node */
263 static int ksm_max_page_sharing = 256;
264
265 /* Number of pages ksmd should scan in one batch */
266 static unsigned int ksm_thread_pages_to_scan = 100;
267
268 /* Milliseconds ksmd should sleep between batches */
269 static unsigned int ksm_thread_sleep_millisecs = 20;
270
271 /* Checksum of an empty (zeroed) page */
272 static unsigned int zero_checksum __read_mostly;
273
274 /* Whether to merge empty (zeroed) pages with actual zero pages */
275 static bool ksm_use_zero_pages __read_mostly;
276
277 #ifdef CONFIG_NUMA
278 /* Zeroed when merging across nodes is not allowed */
279 static unsigned int ksm_merge_across_nodes = 1;
280 static int ksm_nr_node_ids = 1;
281 #else
282 #define ksm_merge_across_nodes  1U
283 #define ksm_nr_node_ids         1
284 #endif
285
286 #define KSM_RUN_STOP    0
287 #define KSM_RUN_MERGE   1
288 #define KSM_RUN_UNMERGE 2
289 #define KSM_RUN_OFFLINE 4
290 static unsigned long ksm_run = KSM_RUN_STOP;
291 static void wait_while_offlining(void);
292
293 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
294 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
295 static DEFINE_MUTEX(ksm_thread_mutex);
296 static DEFINE_SPINLOCK(ksm_mmlist_lock);
297
298 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
299                 sizeof(struct __struct), __alignof__(struct __struct),\
300                 (__flags), NULL)
301
302 static int __init ksm_slab_init(void)
303 {
304         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
305         if (!rmap_item_cache)
306                 goto out;
307
308         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
309         if (!stable_node_cache)
310                 goto out_free1;
311
312         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
313         if (!mm_slot_cache)
314                 goto out_free2;
315
316         return 0;
317
318 out_free2:
319         kmem_cache_destroy(stable_node_cache);
320 out_free1:
321         kmem_cache_destroy(rmap_item_cache);
322 out:
323         return -ENOMEM;
324 }
325
326 static void __init ksm_slab_free(void)
327 {
328         kmem_cache_destroy(mm_slot_cache);
329         kmem_cache_destroy(stable_node_cache);
330         kmem_cache_destroy(rmap_item_cache);
331         mm_slot_cache = NULL;
332 }
333
334 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
335 {
336         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
337 }
338
339 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
340 {
341         return dup->head == STABLE_NODE_DUP_HEAD;
342 }
343
344 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
345                                              struct ksm_stable_node *chain)
346 {
347         VM_BUG_ON(is_stable_node_dup(dup));
348         dup->head = STABLE_NODE_DUP_HEAD;
349         VM_BUG_ON(!is_stable_node_chain(chain));
350         hlist_add_head(&dup->hlist_dup, &chain->hlist);
351         ksm_stable_node_dups++;
352 }
353
354 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
355 {
356         VM_BUG_ON(!is_stable_node_dup(dup));
357         hlist_del(&dup->hlist_dup);
358         ksm_stable_node_dups--;
359 }
360
361 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
362 {
363         VM_BUG_ON(is_stable_node_chain(dup));
364         if (is_stable_node_dup(dup))
365                 __stable_node_dup_del(dup);
366         else
367                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
368 #ifdef CONFIG_DEBUG_VM
369         dup->head = NULL;
370 #endif
371 }
372
373 static inline struct ksm_rmap_item *alloc_rmap_item(void)
374 {
375         struct ksm_rmap_item *rmap_item;
376
377         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
378                                                 __GFP_NORETRY | __GFP_NOWARN);
379         if (rmap_item)
380                 ksm_rmap_items++;
381         return rmap_item;
382 }
383
384 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
385 {
386         ksm_rmap_items--;
387         rmap_item->mm->ksm_rmap_items--;
388         rmap_item->mm = NULL;   /* debug safety */
389         kmem_cache_free(rmap_item_cache, rmap_item);
390 }
391
392 static inline struct ksm_stable_node *alloc_stable_node(void)
393 {
394         /*
395          * The allocation can take too long with GFP_KERNEL when memory is under
396          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
397          * grants access to memory reserves, helping to avoid this problem.
398          */
399         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
400 }
401
402 static inline void free_stable_node(struct ksm_stable_node *stable_node)
403 {
404         VM_BUG_ON(stable_node->rmap_hlist_len &&
405                   !is_stable_node_chain(stable_node));
406         kmem_cache_free(stable_node_cache, stable_node);
407 }
408
409 /*
410  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
411  * page tables after it has passed through ksm_exit() - which, if necessary,
412  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
413  * a special flag: they can just back out as soon as mm_users goes to zero.
414  * ksm_test_exit() is used throughout to make this test for exit: in some
415  * places for correctness, in some places just to avoid unnecessary work.
416  */
417 static inline bool ksm_test_exit(struct mm_struct *mm)
418 {
419         return atomic_read(&mm->mm_users) == 0;
420 }
421
422 /*
423  * We use break_ksm to break COW on a ksm page: it's a stripped down
424  *
425  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
426  *              put_page(page);
427  *
428  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
429  * in case the application has unmapped and remapped mm,addr meanwhile.
430  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
431  * mmap of /dev/mem, where we would not want to touch it.
432  *
433  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
434  * of the process that owns 'vma'.  We also do not want to enforce
435  * protection keys here anyway.
436  */
437 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
438 {
439         struct page *page;
440         vm_fault_t ret = 0;
441
442         do {
443                 cond_resched();
444                 page = follow_page(vma, addr,
445                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
446                 if (IS_ERR_OR_NULL(page))
447                         break;
448                 if (PageKsm(page))
449                         ret = handle_mm_fault(vma, addr,
450                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
451                                               NULL);
452                 else
453                         ret = VM_FAULT_WRITE;
454                 put_page(page);
455         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
456         /*
457          * We must loop because handle_mm_fault() may back out if there's
458          * any difficulty e.g. if pte accessed bit gets updated concurrently.
459          *
460          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
461          * COW has been broken, even if the vma does not permit VM_WRITE;
462          * but note that a concurrent fault might break PageKsm for us.
463          *
464          * VM_FAULT_SIGBUS could occur if we race with truncation of the
465          * backing file, which also invalidates anonymous pages: that's
466          * okay, that truncation will have unmapped the PageKsm for us.
467          *
468          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
469          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
470          * current task has TIF_MEMDIE set, and will be OOM killed on return
471          * to user; and ksmd, having no mm, would never be chosen for that.
472          *
473          * But if the mm is in a limited mem_cgroup, then the fault may fail
474          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
475          * even ksmd can fail in this way - though it's usually breaking ksm
476          * just to undo a merge it made a moment before, so unlikely to oom.
477          *
478          * That's a pity: we might therefore have more kernel pages allocated
479          * than we're counting as nodes in the stable tree; but ksm_do_scan
480          * will retry to break_cow on each pass, so should recover the page
481          * in due course.  The important thing is to not let VM_MERGEABLE
482          * be cleared while any such pages might remain in the area.
483          */
484         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
485 }
486
487 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
488                 unsigned long addr)
489 {
490         struct vm_area_struct *vma;
491         if (ksm_test_exit(mm))
492                 return NULL;
493         vma = vma_lookup(mm, addr);
494         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
495                 return NULL;
496         return vma;
497 }
498
499 static void break_cow(struct ksm_rmap_item *rmap_item)
500 {
501         struct mm_struct *mm = rmap_item->mm;
502         unsigned long addr = rmap_item->address;
503         struct vm_area_struct *vma;
504
505         /*
506          * It is not an accident that whenever we want to break COW
507          * to undo, we also need to drop a reference to the anon_vma.
508          */
509         put_anon_vma(rmap_item->anon_vma);
510
511         mmap_read_lock(mm);
512         vma = find_mergeable_vma(mm, addr);
513         if (vma)
514                 break_ksm(vma, addr);
515         mmap_read_unlock(mm);
516 }
517
518 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
519 {
520         struct mm_struct *mm = rmap_item->mm;
521         unsigned long addr = rmap_item->address;
522         struct vm_area_struct *vma;
523         struct page *page;
524
525         mmap_read_lock(mm);
526         vma = find_mergeable_vma(mm, addr);
527         if (!vma)
528                 goto out;
529
530         page = follow_page(vma, addr, FOLL_GET);
531         if (IS_ERR_OR_NULL(page))
532                 goto out;
533         if (is_zone_device_page(page))
534                 goto out_putpage;
535         if (PageAnon(page)) {
536                 flush_anon_page(vma, page, addr);
537                 flush_dcache_page(page);
538         } else {
539 out_putpage:
540                 put_page(page);
541 out:
542                 page = NULL;
543         }
544         mmap_read_unlock(mm);
545         return page;
546 }
547
548 /*
549  * This helper is used for getting right index into array of tree roots.
550  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
551  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
552  * every node has its own stable and unstable tree.
553  */
554 static inline int get_kpfn_nid(unsigned long kpfn)
555 {
556         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
557 }
558
559 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
560                                                    struct rb_root *root)
561 {
562         struct ksm_stable_node *chain = alloc_stable_node();
563         VM_BUG_ON(is_stable_node_chain(dup));
564         if (likely(chain)) {
565                 INIT_HLIST_HEAD(&chain->hlist);
566                 chain->chain_prune_time = jiffies;
567                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
568 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
569                 chain->nid = NUMA_NO_NODE; /* debug */
570 #endif
571                 ksm_stable_node_chains++;
572
573                 /*
574                  * Put the stable node chain in the first dimension of
575                  * the stable tree and at the same time remove the old
576                  * stable node.
577                  */
578                 rb_replace_node(&dup->node, &chain->node, root);
579
580                 /*
581                  * Move the old stable node to the second dimension
582                  * queued in the hlist_dup. The invariant is that all
583                  * dup stable_nodes in the chain->hlist point to pages
584                  * that are write protected and have the exact same
585                  * content.
586                  */
587                 stable_node_chain_add_dup(dup, chain);
588         }
589         return chain;
590 }
591
592 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
593                                           struct rb_root *root)
594 {
595         rb_erase(&chain->node, root);
596         free_stable_node(chain);
597         ksm_stable_node_chains--;
598 }
599
600 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
601 {
602         struct ksm_rmap_item *rmap_item;
603
604         /* check it's not STABLE_NODE_CHAIN or negative */
605         BUG_ON(stable_node->rmap_hlist_len < 0);
606
607         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
608                 if (rmap_item->hlist.next)
609                         ksm_pages_sharing--;
610                 else
611                         ksm_pages_shared--;
612
613                 rmap_item->mm->ksm_merging_pages--;
614
615                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
616                 stable_node->rmap_hlist_len--;
617                 put_anon_vma(rmap_item->anon_vma);
618                 rmap_item->address &= PAGE_MASK;
619                 cond_resched();
620         }
621
622         /*
623          * We need the second aligned pointer of the migrate_nodes
624          * list_head to stay clear from the rb_parent_color union
625          * (aligned and different than any node) and also different
626          * from &migrate_nodes. This will verify that future list.h changes
627          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
628          */
629         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
630         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
631
632         if (stable_node->head == &migrate_nodes)
633                 list_del(&stable_node->list);
634         else
635                 stable_node_dup_del(stable_node);
636         free_stable_node(stable_node);
637 }
638
639 enum get_ksm_page_flags {
640         GET_KSM_PAGE_NOLOCK,
641         GET_KSM_PAGE_LOCK,
642         GET_KSM_PAGE_TRYLOCK
643 };
644
645 /*
646  * get_ksm_page: checks if the page indicated by the stable node
647  * is still its ksm page, despite having held no reference to it.
648  * In which case we can trust the content of the page, and it
649  * returns the gotten page; but if the page has now been zapped,
650  * remove the stale node from the stable tree and return NULL.
651  * But beware, the stable node's page might be being migrated.
652  *
653  * You would expect the stable_node to hold a reference to the ksm page.
654  * But if it increments the page's count, swapping out has to wait for
655  * ksmd to come around again before it can free the page, which may take
656  * seconds or even minutes: much too unresponsive.  So instead we use a
657  * "keyhole reference": access to the ksm page from the stable node peeps
658  * out through its keyhole to see if that page still holds the right key,
659  * pointing back to this stable node.  This relies on freeing a PageAnon
660  * page to reset its page->mapping to NULL, and relies on no other use of
661  * a page to put something that might look like our key in page->mapping.
662  * is on its way to being freed; but it is an anomaly to bear in mind.
663  */
664 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
665                                  enum get_ksm_page_flags flags)
666 {
667         struct page *page;
668         void *expected_mapping;
669         unsigned long kpfn;
670
671         expected_mapping = (void *)((unsigned long)stable_node |
672                                         PAGE_MAPPING_KSM);
673 again:
674         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
675         page = pfn_to_page(kpfn);
676         if (READ_ONCE(page->mapping) != expected_mapping)
677                 goto stale;
678
679         /*
680          * We cannot do anything with the page while its refcount is 0.
681          * Usually 0 means free, or tail of a higher-order page: in which
682          * case this node is no longer referenced, and should be freed;
683          * however, it might mean that the page is under page_ref_freeze().
684          * The __remove_mapping() case is easy, again the node is now stale;
685          * the same is in reuse_ksm_page() case; but if page is swapcache
686          * in folio_migrate_mapping(), it might still be our page,
687          * in which case it's essential to keep the node.
688          */
689         while (!get_page_unless_zero(page)) {
690                 /*
691                  * Another check for page->mapping != expected_mapping would
692                  * work here too.  We have chosen the !PageSwapCache test to
693                  * optimize the common case, when the page is or is about to
694                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
695                  * in the ref_freeze section of __remove_mapping(); but Anon
696                  * page->mapping reset to NULL later, in free_pages_prepare().
697                  */
698                 if (!PageSwapCache(page))
699                         goto stale;
700                 cpu_relax();
701         }
702
703         if (READ_ONCE(page->mapping) != expected_mapping) {
704                 put_page(page);
705                 goto stale;
706         }
707
708         if (flags == GET_KSM_PAGE_TRYLOCK) {
709                 if (!trylock_page(page)) {
710                         put_page(page);
711                         return ERR_PTR(-EBUSY);
712                 }
713         } else if (flags == GET_KSM_PAGE_LOCK)
714                 lock_page(page);
715
716         if (flags != GET_KSM_PAGE_NOLOCK) {
717                 if (READ_ONCE(page->mapping) != expected_mapping) {
718                         unlock_page(page);
719                         put_page(page);
720                         goto stale;
721                 }
722         }
723         return page;
724
725 stale:
726         /*
727          * We come here from above when page->mapping or !PageSwapCache
728          * suggests that the node is stale; but it might be under migration.
729          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
730          * before checking whether node->kpfn has been changed.
731          */
732         smp_rmb();
733         if (READ_ONCE(stable_node->kpfn) != kpfn)
734                 goto again;
735         remove_node_from_stable_tree(stable_node);
736         return NULL;
737 }
738
739 /*
740  * Removing rmap_item from stable or unstable tree.
741  * This function will clean the information from the stable/unstable tree.
742  */
743 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
744 {
745         if (rmap_item->address & STABLE_FLAG) {
746                 struct ksm_stable_node *stable_node;
747                 struct page *page;
748
749                 stable_node = rmap_item->head;
750                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
751                 if (!page)
752                         goto out;
753
754                 hlist_del(&rmap_item->hlist);
755                 unlock_page(page);
756                 put_page(page);
757
758                 if (!hlist_empty(&stable_node->hlist))
759                         ksm_pages_sharing--;
760                 else
761                         ksm_pages_shared--;
762
763                 rmap_item->mm->ksm_merging_pages--;
764
765                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766                 stable_node->rmap_hlist_len--;
767
768                 put_anon_vma(rmap_item->anon_vma);
769                 rmap_item->head = NULL;
770                 rmap_item->address &= PAGE_MASK;
771
772         } else if (rmap_item->address & UNSTABLE_FLAG) {
773                 unsigned char age;
774                 /*
775                  * Usually ksmd can and must skip the rb_erase, because
776                  * root_unstable_tree was already reset to RB_ROOT.
777                  * But be careful when an mm is exiting: do the rb_erase
778                  * if this rmap_item was inserted by this scan, rather
779                  * than left over from before.
780                  */
781                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
782                 BUG_ON(age > 1);
783                 if (!age)
784                         rb_erase(&rmap_item->node,
785                                  root_unstable_tree + NUMA(rmap_item->nid));
786                 ksm_pages_unshared--;
787                 rmap_item->address &= PAGE_MASK;
788         }
789 out:
790         cond_resched();         /* we're called from many long loops */
791 }
792
793 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
794 {
795         while (*rmap_list) {
796                 struct ksm_rmap_item *rmap_item = *rmap_list;
797                 *rmap_list = rmap_item->rmap_list;
798                 remove_rmap_item_from_tree(rmap_item);
799                 free_rmap_item(rmap_item);
800         }
801 }
802
803 /*
804  * Though it's very tempting to unmerge rmap_items from stable tree rather
805  * than check every pte of a given vma, the locking doesn't quite work for
806  * that - an rmap_item is assigned to the stable tree after inserting ksm
807  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
808  * rmap_items from parent to child at fork time (so as not to waste time
809  * if exit comes before the next scan reaches it).
810  *
811  * Similarly, although we'd like to remove rmap_items (so updating counts
812  * and freeing memory) when unmerging an area, it's easier to leave that
813  * to the next pass of ksmd - consider, for example, how ksmd might be
814  * in cmp_and_merge_page on one of the rmap_items we would be removing.
815  */
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817                              unsigned long start, unsigned long end)
818 {
819         unsigned long addr;
820         int err = 0;
821
822         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823                 if (ksm_test_exit(vma->vm_mm))
824                         break;
825                 if (signal_pending(current))
826                         err = -ERESTARTSYS;
827                 else
828                         err = break_ksm(vma, addr);
829         }
830         return err;
831 }
832
833 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
834 {
835         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
836 }
837
838 static inline struct ksm_stable_node *page_stable_node(struct page *page)
839 {
840         return folio_stable_node(page_folio(page));
841 }
842
843 static inline void set_page_stable_node(struct page *page,
844                                         struct ksm_stable_node *stable_node)
845 {
846         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
847         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
848 }
849
850 #ifdef CONFIG_SYSFS
851 /*
852  * Only called through the sysfs control interface:
853  */
854 static int remove_stable_node(struct ksm_stable_node *stable_node)
855 {
856         struct page *page;
857         int err;
858
859         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
860         if (!page) {
861                 /*
862                  * get_ksm_page did remove_node_from_stable_tree itself.
863                  */
864                 return 0;
865         }
866
867         /*
868          * Page could be still mapped if this races with __mmput() running in
869          * between ksm_exit() and exit_mmap(). Just refuse to let
870          * merge_across_nodes/max_page_sharing be switched.
871          */
872         err = -EBUSY;
873         if (!page_mapped(page)) {
874                 /*
875                  * The stable node did not yet appear stale to get_ksm_page(),
876                  * since that allows for an unmapped ksm page to be recognized
877                  * right up until it is freed; but the node is safe to remove.
878                  * This page might be in a pagevec waiting to be freed,
879                  * or it might be PageSwapCache (perhaps under writeback),
880                  * or it might have been removed from swapcache a moment ago.
881                  */
882                 set_page_stable_node(page, NULL);
883                 remove_node_from_stable_tree(stable_node);
884                 err = 0;
885         }
886
887         unlock_page(page);
888         put_page(page);
889         return err;
890 }
891
892 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
893                                     struct rb_root *root)
894 {
895         struct ksm_stable_node *dup;
896         struct hlist_node *hlist_safe;
897
898         if (!is_stable_node_chain(stable_node)) {
899                 VM_BUG_ON(is_stable_node_dup(stable_node));
900                 if (remove_stable_node(stable_node))
901                         return true;
902                 else
903                         return false;
904         }
905
906         hlist_for_each_entry_safe(dup, hlist_safe,
907                                   &stable_node->hlist, hlist_dup) {
908                 VM_BUG_ON(!is_stable_node_dup(dup));
909                 if (remove_stable_node(dup))
910                         return true;
911         }
912         BUG_ON(!hlist_empty(&stable_node->hlist));
913         free_stable_node_chain(stable_node, root);
914         return false;
915 }
916
917 static int remove_all_stable_nodes(void)
918 {
919         struct ksm_stable_node *stable_node, *next;
920         int nid;
921         int err = 0;
922
923         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
924                 while (root_stable_tree[nid].rb_node) {
925                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
926                                                 struct ksm_stable_node, node);
927                         if (remove_stable_node_chain(stable_node,
928                                                      root_stable_tree + nid)) {
929                                 err = -EBUSY;
930                                 break;  /* proceed to next nid */
931                         }
932                         cond_resched();
933                 }
934         }
935         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
936                 if (remove_stable_node(stable_node))
937                         err = -EBUSY;
938                 cond_resched();
939         }
940         return err;
941 }
942
943 static int unmerge_and_remove_all_rmap_items(void)
944 {
945         struct ksm_mm_slot *mm_slot;
946         struct mm_slot *slot;
947         struct mm_struct *mm;
948         struct vm_area_struct *vma;
949         int err = 0;
950
951         spin_lock(&ksm_mmlist_lock);
952         slot = list_entry(ksm_mm_head.slot.mm_node.next,
953                           struct mm_slot, mm_node);
954         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
955         spin_unlock(&ksm_mmlist_lock);
956
957         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
958              mm_slot = ksm_scan.mm_slot) {
959                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
960
961                 mm = mm_slot->slot.mm;
962                 mmap_read_lock(mm);
963                 for_each_vma(vmi, vma) {
964                         if (ksm_test_exit(mm))
965                                 break;
966                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
967                                 continue;
968                         err = unmerge_ksm_pages(vma,
969                                                 vma->vm_start, vma->vm_end);
970                         if (err)
971                                 goto error;
972                 }
973
974                 remove_trailing_rmap_items(&mm_slot->rmap_list);
975                 mmap_read_unlock(mm);
976
977                 spin_lock(&ksm_mmlist_lock);
978                 slot = list_entry(mm_slot->slot.mm_node.next,
979                                   struct mm_slot, mm_node);
980                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
981                 if (ksm_test_exit(mm)) {
982                         hash_del(&mm_slot->slot.hash);
983                         list_del(&mm_slot->slot.mm_node);
984                         spin_unlock(&ksm_mmlist_lock);
985
986                         mm_slot_free(mm_slot_cache, mm_slot);
987                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
988                         mmdrop(mm);
989                 } else
990                         spin_unlock(&ksm_mmlist_lock);
991         }
992
993         /* Clean up stable nodes, but don't worry if some are still busy */
994         remove_all_stable_nodes();
995         ksm_scan.seqnr = 0;
996         return 0;
997
998 error:
999         mmap_read_unlock(mm);
1000         spin_lock(&ksm_mmlist_lock);
1001         ksm_scan.mm_slot = &ksm_mm_head;
1002         spin_unlock(&ksm_mmlist_lock);
1003         return err;
1004 }
1005 #endif /* CONFIG_SYSFS */
1006
1007 static u32 calc_checksum(struct page *page)
1008 {
1009         u32 checksum;
1010         void *addr = kmap_atomic(page);
1011         checksum = xxhash(addr, PAGE_SIZE, 0);
1012         kunmap_atomic(addr);
1013         return checksum;
1014 }
1015
1016 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1017                               pte_t *orig_pte)
1018 {
1019         struct mm_struct *mm = vma->vm_mm;
1020         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1021         int swapped;
1022         int err = -EFAULT;
1023         struct mmu_notifier_range range;
1024         bool anon_exclusive;
1025
1026         pvmw.address = page_address_in_vma(page, vma);
1027         if (pvmw.address == -EFAULT)
1028                 goto out;
1029
1030         BUG_ON(PageTransCompound(page));
1031
1032         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1033                                 pvmw.address,
1034                                 pvmw.address + PAGE_SIZE);
1035         mmu_notifier_invalidate_range_start(&range);
1036
1037         if (!page_vma_mapped_walk(&pvmw))
1038                 goto out_mn;
1039         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1040                 goto out_unlock;
1041
1042         anon_exclusive = PageAnonExclusive(page);
1043         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1044             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1045             anon_exclusive || mm_tlb_flush_pending(mm)) {
1046                 pte_t entry;
1047
1048                 swapped = PageSwapCache(page);
1049                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1050                 /*
1051                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1052                  * take any lock, therefore the check that we are going to make
1053                  * with the pagecount against the mapcount is racy and
1054                  * O_DIRECT can happen right after the check.
1055                  * So we clear the pte and flush the tlb before the check
1056                  * this assure us that no O_DIRECT can happen after the check
1057                  * or in the middle of the check.
1058                  *
1059                  * No need to notify as we are downgrading page table to read
1060                  * only not changing it to point to a new page.
1061                  *
1062                  * See Documentation/mm/mmu_notifier.rst
1063                  */
1064                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1065                 /*
1066                  * Check that no O_DIRECT or similar I/O is in progress on the
1067                  * page
1068                  */
1069                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1070                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1071                         goto out_unlock;
1072                 }
1073
1074                 /* See page_try_share_anon_rmap(): clear PTE first. */
1075                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1076                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1077                         goto out_unlock;
1078                 }
1079
1080                 if (pte_dirty(entry))
1081                         set_page_dirty(page);
1082
1083                 if (pte_protnone(entry))
1084                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1085                 else
1086                         entry = pte_mkclean(pte_wrprotect(entry));
1087                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1088         }
1089         *orig_pte = *pvmw.pte;
1090         err = 0;
1091
1092 out_unlock:
1093         page_vma_mapped_walk_done(&pvmw);
1094 out_mn:
1095         mmu_notifier_invalidate_range_end(&range);
1096 out:
1097         return err;
1098 }
1099
1100 /**
1101  * replace_page - replace page in vma by new ksm page
1102  * @vma:      vma that holds the pte pointing to page
1103  * @page:     the page we are replacing by kpage
1104  * @kpage:    the ksm page we replace page by
1105  * @orig_pte: the original value of the pte
1106  *
1107  * Returns 0 on success, -EFAULT on failure.
1108  */
1109 static int replace_page(struct vm_area_struct *vma, struct page *page,
1110                         struct page *kpage, pte_t orig_pte)
1111 {
1112         struct mm_struct *mm = vma->vm_mm;
1113         struct folio *folio;
1114         pmd_t *pmd;
1115         pmd_t pmde;
1116         pte_t *ptep;
1117         pte_t newpte;
1118         spinlock_t *ptl;
1119         unsigned long addr;
1120         int err = -EFAULT;
1121         struct mmu_notifier_range range;
1122
1123         addr = page_address_in_vma(page, vma);
1124         if (addr == -EFAULT)
1125                 goto out;
1126
1127         pmd = mm_find_pmd(mm, addr);
1128         if (!pmd)
1129                 goto out;
1130         /*
1131          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1132          * without holding anon_vma lock for write.  So when looking for a
1133          * genuine pmde (in which to find pte), test present and !THP together.
1134          */
1135         pmde = *pmd;
1136         barrier();
1137         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1138                 goto out;
1139
1140         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1141                                 addr + PAGE_SIZE);
1142         mmu_notifier_invalidate_range_start(&range);
1143
1144         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1145         if (!pte_same(*ptep, orig_pte)) {
1146                 pte_unmap_unlock(ptep, ptl);
1147                 goto out_mn;
1148         }
1149         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1150         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1151
1152         /*
1153          * No need to check ksm_use_zero_pages here: we can only have a
1154          * zero_page here if ksm_use_zero_pages was enabled already.
1155          */
1156         if (!is_zero_pfn(page_to_pfn(kpage))) {
1157                 get_page(kpage);
1158                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1159                 newpte = mk_pte(kpage, vma->vm_page_prot);
1160         } else {
1161                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1162                                                vma->vm_page_prot));
1163                 /*
1164                  * We're replacing an anonymous page with a zero page, which is
1165                  * not anonymous. We need to do proper accounting otherwise we
1166                  * will get wrong values in /proc, and a BUG message in dmesg
1167                  * when tearing down the mm.
1168                  */
1169                 dec_mm_counter(mm, MM_ANONPAGES);
1170         }
1171
1172         flush_cache_page(vma, addr, pte_pfn(*ptep));
1173         /*
1174          * No need to notify as we are replacing a read only page with another
1175          * read only page with the same content.
1176          *
1177          * See Documentation/mm/mmu_notifier.rst
1178          */
1179         ptep_clear_flush(vma, addr, ptep);
1180         set_pte_at_notify(mm, addr, ptep, newpte);
1181
1182         folio = page_folio(page);
1183         page_remove_rmap(page, vma, false);
1184         if (!folio_mapped(folio))
1185                 folio_free_swap(folio);
1186         folio_put(folio);
1187
1188         pte_unmap_unlock(ptep, ptl);
1189         err = 0;
1190 out_mn:
1191         mmu_notifier_invalidate_range_end(&range);
1192 out:
1193         return err;
1194 }
1195
1196 /*
1197  * try_to_merge_one_page - take two pages and merge them into one
1198  * @vma: the vma that holds the pte pointing to page
1199  * @page: the PageAnon page that we want to replace with kpage
1200  * @kpage: the PageKsm page that we want to map instead of page,
1201  *         or NULL the first time when we want to use page as kpage.
1202  *
1203  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1204  */
1205 static int try_to_merge_one_page(struct vm_area_struct *vma,
1206                                  struct page *page, struct page *kpage)
1207 {
1208         pte_t orig_pte = __pte(0);
1209         int err = -EFAULT;
1210
1211         if (page == kpage)                      /* ksm page forked */
1212                 return 0;
1213
1214         if (!PageAnon(page))
1215                 goto out;
1216
1217         /*
1218          * We need the page lock to read a stable PageSwapCache in
1219          * write_protect_page().  We use trylock_page() instead of
1220          * lock_page() because we don't want to wait here - we
1221          * prefer to continue scanning and merging different pages,
1222          * then come back to this page when it is unlocked.
1223          */
1224         if (!trylock_page(page))
1225                 goto out;
1226
1227         if (PageTransCompound(page)) {
1228                 if (split_huge_page(page))
1229                         goto out_unlock;
1230         }
1231
1232         /*
1233          * If this anonymous page is mapped only here, its pte may need
1234          * to be write-protected.  If it's mapped elsewhere, all of its
1235          * ptes are necessarily already write-protected.  But in either
1236          * case, we need to lock and check page_count is not raised.
1237          */
1238         if (write_protect_page(vma, page, &orig_pte) == 0) {
1239                 if (!kpage) {
1240                         /*
1241                          * While we hold page lock, upgrade page from
1242                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1243                          * stable_tree_insert() will update stable_node.
1244                          */
1245                         set_page_stable_node(page, NULL);
1246                         mark_page_accessed(page);
1247                         /*
1248                          * Page reclaim just frees a clean page with no dirty
1249                          * ptes: make sure that the ksm page would be swapped.
1250                          */
1251                         if (!PageDirty(page))
1252                                 SetPageDirty(page);
1253                         err = 0;
1254                 } else if (pages_identical(page, kpage))
1255                         err = replace_page(vma, page, kpage, orig_pte);
1256         }
1257
1258 out_unlock:
1259         unlock_page(page);
1260 out:
1261         return err;
1262 }
1263
1264 /*
1265  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1266  * but no new kernel page is allocated: kpage must already be a ksm page.
1267  *
1268  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1269  */
1270 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1271                                       struct page *page, struct page *kpage)
1272 {
1273         struct mm_struct *mm = rmap_item->mm;
1274         struct vm_area_struct *vma;
1275         int err = -EFAULT;
1276
1277         mmap_read_lock(mm);
1278         vma = find_mergeable_vma(mm, rmap_item->address);
1279         if (!vma)
1280                 goto out;
1281
1282         err = try_to_merge_one_page(vma, page, kpage);
1283         if (err)
1284                 goto out;
1285
1286         /* Unstable nid is in union with stable anon_vma: remove first */
1287         remove_rmap_item_from_tree(rmap_item);
1288
1289         /* Must get reference to anon_vma while still holding mmap_lock */
1290         rmap_item->anon_vma = vma->anon_vma;
1291         get_anon_vma(vma->anon_vma);
1292 out:
1293         mmap_read_unlock(mm);
1294         return err;
1295 }
1296
1297 /*
1298  * try_to_merge_two_pages - take two identical pages and prepare them
1299  * to be merged into one page.
1300  *
1301  * This function returns the kpage if we successfully merged two identical
1302  * pages into one ksm page, NULL otherwise.
1303  *
1304  * Note that this function upgrades page to ksm page: if one of the pages
1305  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1306  */
1307 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1308                                            struct page *page,
1309                                            struct ksm_rmap_item *tree_rmap_item,
1310                                            struct page *tree_page)
1311 {
1312         int err;
1313
1314         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1315         if (!err) {
1316                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1317                                                         tree_page, page);
1318                 /*
1319                  * If that fails, we have a ksm page with only one pte
1320                  * pointing to it: so break it.
1321                  */
1322                 if (err)
1323                         break_cow(rmap_item);
1324         }
1325         return err ? NULL : page;
1326 }
1327
1328 static __always_inline
1329 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1330 {
1331         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1332         /*
1333          * Check that at least one mapping still exists, otherwise
1334          * there's no much point to merge and share with this
1335          * stable_node, as the underlying tree_page of the other
1336          * sharer is going to be freed soon.
1337          */
1338         return stable_node->rmap_hlist_len &&
1339                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1340 }
1341
1342 static __always_inline
1343 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1344 {
1345         return __is_page_sharing_candidate(stable_node, 0);
1346 }
1347
1348 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1349                                     struct ksm_stable_node **_stable_node,
1350                                     struct rb_root *root,
1351                                     bool prune_stale_stable_nodes)
1352 {
1353         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1354         struct hlist_node *hlist_safe;
1355         struct page *_tree_page, *tree_page = NULL;
1356         int nr = 0;
1357         int found_rmap_hlist_len;
1358
1359         if (!prune_stale_stable_nodes ||
1360             time_before(jiffies, stable_node->chain_prune_time +
1361                         msecs_to_jiffies(
1362                                 ksm_stable_node_chains_prune_millisecs)))
1363                 prune_stale_stable_nodes = false;
1364         else
1365                 stable_node->chain_prune_time = jiffies;
1366
1367         hlist_for_each_entry_safe(dup, hlist_safe,
1368                                   &stable_node->hlist, hlist_dup) {
1369                 cond_resched();
1370                 /*
1371                  * We must walk all stable_node_dup to prune the stale
1372                  * stable nodes during lookup.
1373                  *
1374                  * get_ksm_page can drop the nodes from the
1375                  * stable_node->hlist if they point to freed pages
1376                  * (that's why we do a _safe walk). The "dup"
1377                  * stable_node parameter itself will be freed from
1378                  * under us if it returns NULL.
1379                  */
1380                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1381                 if (!_tree_page)
1382                         continue;
1383                 nr += 1;
1384                 if (is_page_sharing_candidate(dup)) {
1385                         if (!found ||
1386                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1387                                 if (found)
1388                                         put_page(tree_page);
1389                                 found = dup;
1390                                 found_rmap_hlist_len = found->rmap_hlist_len;
1391                                 tree_page = _tree_page;
1392
1393                                 /* skip put_page for found dup */
1394                                 if (!prune_stale_stable_nodes)
1395                                         break;
1396                                 continue;
1397                         }
1398                 }
1399                 put_page(_tree_page);
1400         }
1401
1402         if (found) {
1403                 /*
1404                  * nr is counting all dups in the chain only if
1405                  * prune_stale_stable_nodes is true, otherwise we may
1406                  * break the loop at nr == 1 even if there are
1407                  * multiple entries.
1408                  */
1409                 if (prune_stale_stable_nodes && nr == 1) {
1410                         /*
1411                          * If there's not just one entry it would
1412                          * corrupt memory, better BUG_ON. In KSM
1413                          * context with no lock held it's not even
1414                          * fatal.
1415                          */
1416                         BUG_ON(stable_node->hlist.first->next);
1417
1418                         /*
1419                          * There's just one entry and it is below the
1420                          * deduplication limit so drop the chain.
1421                          */
1422                         rb_replace_node(&stable_node->node, &found->node,
1423                                         root);
1424                         free_stable_node(stable_node);
1425                         ksm_stable_node_chains--;
1426                         ksm_stable_node_dups--;
1427                         /*
1428                          * NOTE: the caller depends on the stable_node
1429                          * to be equal to stable_node_dup if the chain
1430                          * was collapsed.
1431                          */
1432                         *_stable_node = found;
1433                         /*
1434                          * Just for robustness, as stable_node is
1435                          * otherwise left as a stable pointer, the
1436                          * compiler shall optimize it away at build
1437                          * time.
1438                          */
1439                         stable_node = NULL;
1440                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1441                            __is_page_sharing_candidate(found, 1)) {
1442                         /*
1443                          * If the found stable_node dup can accept one
1444                          * more future merge (in addition to the one
1445                          * that is underway) and is not at the head of
1446                          * the chain, put it there so next search will
1447                          * be quicker in the !prune_stale_stable_nodes
1448                          * case.
1449                          *
1450                          * NOTE: it would be inaccurate to use nr > 1
1451                          * instead of checking the hlist.first pointer
1452                          * directly, because in the
1453                          * prune_stale_stable_nodes case "nr" isn't
1454                          * the position of the found dup in the chain,
1455                          * but the total number of dups in the chain.
1456                          */
1457                         hlist_del(&found->hlist_dup);
1458                         hlist_add_head(&found->hlist_dup,
1459                                        &stable_node->hlist);
1460                 }
1461         }
1462
1463         *_stable_node_dup = found;
1464         return tree_page;
1465 }
1466
1467 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1468                                                struct rb_root *root)
1469 {
1470         if (!is_stable_node_chain(stable_node))
1471                 return stable_node;
1472         if (hlist_empty(&stable_node->hlist)) {
1473                 free_stable_node_chain(stable_node, root);
1474                 return NULL;
1475         }
1476         return hlist_entry(stable_node->hlist.first,
1477                            typeof(*stable_node), hlist_dup);
1478 }
1479
1480 /*
1481  * Like for get_ksm_page, this function can free the *_stable_node and
1482  * *_stable_node_dup if the returned tree_page is NULL.
1483  *
1484  * It can also free and overwrite *_stable_node with the found
1485  * stable_node_dup if the chain is collapsed (in which case
1486  * *_stable_node will be equal to *_stable_node_dup like if the chain
1487  * never existed). It's up to the caller to verify tree_page is not
1488  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1489  *
1490  * *_stable_node_dup is really a second output parameter of this
1491  * function and will be overwritten in all cases, the caller doesn't
1492  * need to initialize it.
1493  */
1494 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1495                                         struct ksm_stable_node **_stable_node,
1496                                         struct rb_root *root,
1497                                         bool prune_stale_stable_nodes)
1498 {
1499         struct ksm_stable_node *stable_node = *_stable_node;
1500         if (!is_stable_node_chain(stable_node)) {
1501                 if (is_page_sharing_candidate(stable_node)) {
1502                         *_stable_node_dup = stable_node;
1503                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1504                 }
1505                 /*
1506                  * _stable_node_dup set to NULL means the stable_node
1507                  * reached the ksm_max_page_sharing limit.
1508                  */
1509                 *_stable_node_dup = NULL;
1510                 return NULL;
1511         }
1512         return stable_node_dup(_stable_node_dup, _stable_node, root,
1513                                prune_stale_stable_nodes);
1514 }
1515
1516 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1517                                                 struct ksm_stable_node **s_n,
1518                                                 struct rb_root *root)
1519 {
1520         return __stable_node_chain(s_n_d, s_n, root, true);
1521 }
1522
1523 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1524                                           struct ksm_stable_node *s_n,
1525                                           struct rb_root *root)
1526 {
1527         struct ksm_stable_node *old_stable_node = s_n;
1528         struct page *tree_page;
1529
1530         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1531         /* not pruning dups so s_n cannot have changed */
1532         VM_BUG_ON(s_n != old_stable_node);
1533         return tree_page;
1534 }
1535
1536 /*
1537  * stable_tree_search - search for page inside the stable tree
1538  *
1539  * This function checks if there is a page inside the stable tree
1540  * with identical content to the page that we are scanning right now.
1541  *
1542  * This function returns the stable tree node of identical content if found,
1543  * NULL otherwise.
1544  */
1545 static struct page *stable_tree_search(struct page *page)
1546 {
1547         int nid;
1548         struct rb_root *root;
1549         struct rb_node **new;
1550         struct rb_node *parent;
1551         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1552         struct ksm_stable_node *page_node;
1553
1554         page_node = page_stable_node(page);
1555         if (page_node && page_node->head != &migrate_nodes) {
1556                 /* ksm page forked */
1557                 get_page(page);
1558                 return page;
1559         }
1560
1561         nid = get_kpfn_nid(page_to_pfn(page));
1562         root = root_stable_tree + nid;
1563 again:
1564         new = &root->rb_node;
1565         parent = NULL;
1566
1567         while (*new) {
1568                 struct page *tree_page;
1569                 int ret;
1570
1571                 cond_resched();
1572                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1573                 stable_node_any = NULL;
1574                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1575                 /*
1576                  * NOTE: stable_node may have been freed by
1577                  * chain_prune() if the returned stable_node_dup is
1578                  * not NULL. stable_node_dup may have been inserted in
1579                  * the rbtree instead as a regular stable_node (in
1580                  * order to collapse the stable_node chain if a single
1581                  * stable_node dup was found in it). In such case the
1582                  * stable_node is overwritten by the callee to point
1583                  * to the stable_node_dup that was collapsed in the
1584                  * stable rbtree and stable_node will be equal to
1585                  * stable_node_dup like if the chain never existed.
1586                  */
1587                 if (!stable_node_dup) {
1588                         /*
1589                          * Either all stable_node dups were full in
1590                          * this stable_node chain, or this chain was
1591                          * empty and should be rb_erased.
1592                          */
1593                         stable_node_any = stable_node_dup_any(stable_node,
1594                                                               root);
1595                         if (!stable_node_any) {
1596                                 /* rb_erase just run */
1597                                 goto again;
1598                         }
1599                         /*
1600                          * Take any of the stable_node dups page of
1601                          * this stable_node chain to let the tree walk
1602                          * continue. All KSM pages belonging to the
1603                          * stable_node dups in a stable_node chain
1604                          * have the same content and they're
1605                          * write protected at all times. Any will work
1606                          * fine to continue the walk.
1607                          */
1608                         tree_page = get_ksm_page(stable_node_any,
1609                                                  GET_KSM_PAGE_NOLOCK);
1610                 }
1611                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1612                 if (!tree_page) {
1613                         /*
1614                          * If we walked over a stale stable_node,
1615                          * get_ksm_page() will call rb_erase() and it
1616                          * may rebalance the tree from under us. So
1617                          * restart the search from scratch. Returning
1618                          * NULL would be safe too, but we'd generate
1619                          * false negative insertions just because some
1620                          * stable_node was stale.
1621                          */
1622                         goto again;
1623                 }
1624
1625                 ret = memcmp_pages(page, tree_page);
1626                 put_page(tree_page);
1627
1628                 parent = *new;
1629                 if (ret < 0)
1630                         new = &parent->rb_left;
1631                 else if (ret > 0)
1632                         new = &parent->rb_right;
1633                 else {
1634                         if (page_node) {
1635                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1636                                 /*
1637                                  * Test if the migrated page should be merged
1638                                  * into a stable node dup. If the mapcount is
1639                                  * 1 we can migrate it with another KSM page
1640                                  * without adding it to the chain.
1641                                  */
1642                                 if (page_mapcount(page) > 1)
1643                                         goto chain_append;
1644                         }
1645
1646                         if (!stable_node_dup) {
1647                                 /*
1648                                  * If the stable_node is a chain and
1649                                  * we got a payload match in memcmp
1650                                  * but we cannot merge the scanned
1651                                  * page in any of the existing
1652                                  * stable_node dups because they're
1653                                  * all full, we need to wait the
1654                                  * scanned page to find itself a match
1655                                  * in the unstable tree to create a
1656                                  * brand new KSM page to add later to
1657                                  * the dups of this stable_node.
1658                                  */
1659                                 return NULL;
1660                         }
1661
1662                         /*
1663                          * Lock and unlock the stable_node's page (which
1664                          * might already have been migrated) so that page
1665                          * migration is sure to notice its raised count.
1666                          * It would be more elegant to return stable_node
1667                          * than kpage, but that involves more changes.
1668                          */
1669                         tree_page = get_ksm_page(stable_node_dup,
1670                                                  GET_KSM_PAGE_TRYLOCK);
1671
1672                         if (PTR_ERR(tree_page) == -EBUSY)
1673                                 return ERR_PTR(-EBUSY);
1674
1675                         if (unlikely(!tree_page))
1676                                 /*
1677                                  * The tree may have been rebalanced,
1678                                  * so re-evaluate parent and new.
1679                                  */
1680                                 goto again;
1681                         unlock_page(tree_page);
1682
1683                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1684                             NUMA(stable_node_dup->nid)) {
1685                                 put_page(tree_page);
1686                                 goto replace;
1687                         }
1688                         return tree_page;
1689                 }
1690         }
1691
1692         if (!page_node)
1693                 return NULL;
1694
1695         list_del(&page_node->list);
1696         DO_NUMA(page_node->nid = nid);
1697         rb_link_node(&page_node->node, parent, new);
1698         rb_insert_color(&page_node->node, root);
1699 out:
1700         if (is_page_sharing_candidate(page_node)) {
1701                 get_page(page);
1702                 return page;
1703         } else
1704                 return NULL;
1705
1706 replace:
1707         /*
1708          * If stable_node was a chain and chain_prune collapsed it,
1709          * stable_node has been updated to be the new regular
1710          * stable_node. A collapse of the chain is indistinguishable
1711          * from the case there was no chain in the stable
1712          * rbtree. Otherwise stable_node is the chain and
1713          * stable_node_dup is the dup to replace.
1714          */
1715         if (stable_node_dup == stable_node) {
1716                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1717                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1718                 /* there is no chain */
1719                 if (page_node) {
1720                         VM_BUG_ON(page_node->head != &migrate_nodes);
1721                         list_del(&page_node->list);
1722                         DO_NUMA(page_node->nid = nid);
1723                         rb_replace_node(&stable_node_dup->node,
1724                                         &page_node->node,
1725                                         root);
1726                         if (is_page_sharing_candidate(page_node))
1727                                 get_page(page);
1728                         else
1729                                 page = NULL;
1730                 } else {
1731                         rb_erase(&stable_node_dup->node, root);
1732                         page = NULL;
1733                 }
1734         } else {
1735                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1736                 __stable_node_dup_del(stable_node_dup);
1737                 if (page_node) {
1738                         VM_BUG_ON(page_node->head != &migrate_nodes);
1739                         list_del(&page_node->list);
1740                         DO_NUMA(page_node->nid = nid);
1741                         stable_node_chain_add_dup(page_node, stable_node);
1742                         if (is_page_sharing_candidate(page_node))
1743                                 get_page(page);
1744                         else
1745                                 page = NULL;
1746                 } else {
1747                         page = NULL;
1748                 }
1749         }
1750         stable_node_dup->head = &migrate_nodes;
1751         list_add(&stable_node_dup->list, stable_node_dup->head);
1752         return page;
1753
1754 chain_append:
1755         /* stable_node_dup could be null if it reached the limit */
1756         if (!stable_node_dup)
1757                 stable_node_dup = stable_node_any;
1758         /*
1759          * If stable_node was a chain and chain_prune collapsed it,
1760          * stable_node has been updated to be the new regular
1761          * stable_node. A collapse of the chain is indistinguishable
1762          * from the case there was no chain in the stable
1763          * rbtree. Otherwise stable_node is the chain and
1764          * stable_node_dup is the dup to replace.
1765          */
1766         if (stable_node_dup == stable_node) {
1767                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1768                 /* chain is missing so create it */
1769                 stable_node = alloc_stable_node_chain(stable_node_dup,
1770                                                       root);
1771                 if (!stable_node)
1772                         return NULL;
1773         }
1774         /*
1775          * Add this stable_node dup that was
1776          * migrated to the stable_node chain
1777          * of the current nid for this page
1778          * content.
1779          */
1780         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1781         VM_BUG_ON(page_node->head != &migrate_nodes);
1782         list_del(&page_node->list);
1783         DO_NUMA(page_node->nid = nid);
1784         stable_node_chain_add_dup(page_node, stable_node);
1785         goto out;
1786 }
1787
1788 /*
1789  * stable_tree_insert - insert stable tree node pointing to new ksm page
1790  * into the stable tree.
1791  *
1792  * This function returns the stable tree node just allocated on success,
1793  * NULL otherwise.
1794  */
1795 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1796 {
1797         int nid;
1798         unsigned long kpfn;
1799         struct rb_root *root;
1800         struct rb_node **new;
1801         struct rb_node *parent;
1802         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1803         bool need_chain = false;
1804
1805         kpfn = page_to_pfn(kpage);
1806         nid = get_kpfn_nid(kpfn);
1807         root = root_stable_tree + nid;
1808 again:
1809         parent = NULL;
1810         new = &root->rb_node;
1811
1812         while (*new) {
1813                 struct page *tree_page;
1814                 int ret;
1815
1816                 cond_resched();
1817                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1818                 stable_node_any = NULL;
1819                 tree_page = chain(&stable_node_dup, stable_node, root);
1820                 if (!stable_node_dup) {
1821                         /*
1822                          * Either all stable_node dups were full in
1823                          * this stable_node chain, or this chain was
1824                          * empty and should be rb_erased.
1825                          */
1826                         stable_node_any = stable_node_dup_any(stable_node,
1827                                                               root);
1828                         if (!stable_node_any) {
1829                                 /* rb_erase just run */
1830                                 goto again;
1831                         }
1832                         /*
1833                          * Take any of the stable_node dups page of
1834                          * this stable_node chain to let the tree walk
1835                          * continue. All KSM pages belonging to the
1836                          * stable_node dups in a stable_node chain
1837                          * have the same content and they're
1838                          * write protected at all times. Any will work
1839                          * fine to continue the walk.
1840                          */
1841                         tree_page = get_ksm_page(stable_node_any,
1842                                                  GET_KSM_PAGE_NOLOCK);
1843                 }
1844                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1845                 if (!tree_page) {
1846                         /*
1847                          * If we walked over a stale stable_node,
1848                          * get_ksm_page() will call rb_erase() and it
1849                          * may rebalance the tree from under us. So
1850                          * restart the search from scratch. Returning
1851                          * NULL would be safe too, but we'd generate
1852                          * false negative insertions just because some
1853                          * stable_node was stale.
1854                          */
1855                         goto again;
1856                 }
1857
1858                 ret = memcmp_pages(kpage, tree_page);
1859                 put_page(tree_page);
1860
1861                 parent = *new;
1862                 if (ret < 0)
1863                         new = &parent->rb_left;
1864                 else if (ret > 0)
1865                         new = &parent->rb_right;
1866                 else {
1867                         need_chain = true;
1868                         break;
1869                 }
1870         }
1871
1872         stable_node_dup = alloc_stable_node();
1873         if (!stable_node_dup)
1874                 return NULL;
1875
1876         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1877         stable_node_dup->kpfn = kpfn;
1878         set_page_stable_node(kpage, stable_node_dup);
1879         stable_node_dup->rmap_hlist_len = 0;
1880         DO_NUMA(stable_node_dup->nid = nid);
1881         if (!need_chain) {
1882                 rb_link_node(&stable_node_dup->node, parent, new);
1883                 rb_insert_color(&stable_node_dup->node, root);
1884         } else {
1885                 if (!is_stable_node_chain(stable_node)) {
1886                         struct ksm_stable_node *orig = stable_node;
1887                         /* chain is missing so create it */
1888                         stable_node = alloc_stable_node_chain(orig, root);
1889                         if (!stable_node) {
1890                                 free_stable_node(stable_node_dup);
1891                                 return NULL;
1892                         }
1893                 }
1894                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1895         }
1896
1897         return stable_node_dup;
1898 }
1899
1900 /*
1901  * unstable_tree_search_insert - search for identical page,
1902  * else insert rmap_item into the unstable tree.
1903  *
1904  * This function searches for a page in the unstable tree identical to the
1905  * page currently being scanned; and if no identical page is found in the
1906  * tree, we insert rmap_item as a new object into the unstable tree.
1907  *
1908  * This function returns pointer to rmap_item found to be identical
1909  * to the currently scanned page, NULL otherwise.
1910  *
1911  * This function does both searching and inserting, because they share
1912  * the same walking algorithm in an rbtree.
1913  */
1914 static
1915 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1916                                               struct page *page,
1917                                               struct page **tree_pagep)
1918 {
1919         struct rb_node **new;
1920         struct rb_root *root;
1921         struct rb_node *parent = NULL;
1922         int nid;
1923
1924         nid = get_kpfn_nid(page_to_pfn(page));
1925         root = root_unstable_tree + nid;
1926         new = &root->rb_node;
1927
1928         while (*new) {
1929                 struct ksm_rmap_item *tree_rmap_item;
1930                 struct page *tree_page;
1931                 int ret;
1932
1933                 cond_resched();
1934                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1935                 tree_page = get_mergeable_page(tree_rmap_item);
1936                 if (!tree_page)
1937                         return NULL;
1938
1939                 /*
1940                  * Don't substitute a ksm page for a forked page.
1941                  */
1942                 if (page == tree_page) {
1943                         put_page(tree_page);
1944                         return NULL;
1945                 }
1946
1947                 ret = memcmp_pages(page, tree_page);
1948
1949                 parent = *new;
1950                 if (ret < 0) {
1951                         put_page(tree_page);
1952                         new = &parent->rb_left;
1953                 } else if (ret > 0) {
1954                         put_page(tree_page);
1955                         new = &parent->rb_right;
1956                 } else if (!ksm_merge_across_nodes &&
1957                            page_to_nid(tree_page) != nid) {
1958                         /*
1959                          * If tree_page has been migrated to another NUMA node,
1960                          * it will be flushed out and put in the right unstable
1961                          * tree next time: only merge with it when across_nodes.
1962                          */
1963                         put_page(tree_page);
1964                         return NULL;
1965                 } else {
1966                         *tree_pagep = tree_page;
1967                         return tree_rmap_item;
1968                 }
1969         }
1970
1971         rmap_item->address |= UNSTABLE_FLAG;
1972         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1973         DO_NUMA(rmap_item->nid = nid);
1974         rb_link_node(&rmap_item->node, parent, new);
1975         rb_insert_color(&rmap_item->node, root);
1976
1977         ksm_pages_unshared++;
1978         return NULL;
1979 }
1980
1981 /*
1982  * stable_tree_append - add another rmap_item to the linked list of
1983  * rmap_items hanging off a given node of the stable tree, all sharing
1984  * the same ksm page.
1985  */
1986 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
1987                                struct ksm_stable_node *stable_node,
1988                                bool max_page_sharing_bypass)
1989 {
1990         /*
1991          * rmap won't find this mapping if we don't insert the
1992          * rmap_item in the right stable_node
1993          * duplicate. page_migration could break later if rmap breaks,
1994          * so we can as well crash here. We really need to check for
1995          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1996          * for other negative values as an underflow if detected here
1997          * for the first time (and not when decreasing rmap_hlist_len)
1998          * would be sign of memory corruption in the stable_node.
1999          */
2000         BUG_ON(stable_node->rmap_hlist_len < 0);
2001
2002         stable_node->rmap_hlist_len++;
2003         if (!max_page_sharing_bypass)
2004                 /* possibly non fatal but unexpected overflow, only warn */
2005                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2006                              ksm_max_page_sharing);
2007
2008         rmap_item->head = stable_node;
2009         rmap_item->address |= STABLE_FLAG;
2010         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2011
2012         if (rmap_item->hlist.next)
2013                 ksm_pages_sharing++;
2014         else
2015                 ksm_pages_shared++;
2016
2017         rmap_item->mm->ksm_merging_pages++;
2018 }
2019
2020 /*
2021  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2022  * if not, compare checksum to previous and if it's the same, see if page can
2023  * be inserted into the unstable tree, or merged with a page already there and
2024  * both transferred to the stable tree.
2025  *
2026  * @page: the page that we are searching identical page to.
2027  * @rmap_item: the reverse mapping into the virtual address of this page
2028  */
2029 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2030 {
2031         struct mm_struct *mm = rmap_item->mm;
2032         struct ksm_rmap_item *tree_rmap_item;
2033         struct page *tree_page = NULL;
2034         struct ksm_stable_node *stable_node;
2035         struct page *kpage;
2036         unsigned int checksum;
2037         int err;
2038         bool max_page_sharing_bypass = false;
2039
2040         stable_node = page_stable_node(page);
2041         if (stable_node) {
2042                 if (stable_node->head != &migrate_nodes &&
2043                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2044                     NUMA(stable_node->nid)) {
2045                         stable_node_dup_del(stable_node);
2046                         stable_node->head = &migrate_nodes;
2047                         list_add(&stable_node->list, stable_node->head);
2048                 }
2049                 if (stable_node->head != &migrate_nodes &&
2050                     rmap_item->head == stable_node)
2051                         return;
2052                 /*
2053                  * If it's a KSM fork, allow it to go over the sharing limit
2054                  * without warnings.
2055                  */
2056                 if (!is_page_sharing_candidate(stable_node))
2057                         max_page_sharing_bypass = true;
2058         }
2059
2060         /* We first start with searching the page inside the stable tree */
2061         kpage = stable_tree_search(page);
2062         if (kpage == page && rmap_item->head == stable_node) {
2063                 put_page(kpage);
2064                 return;
2065         }
2066
2067         remove_rmap_item_from_tree(rmap_item);
2068
2069         if (kpage) {
2070                 if (PTR_ERR(kpage) == -EBUSY)
2071                         return;
2072
2073                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2074                 if (!err) {
2075                         /*
2076                          * The page was successfully merged:
2077                          * add its rmap_item to the stable tree.
2078                          */
2079                         lock_page(kpage);
2080                         stable_tree_append(rmap_item, page_stable_node(kpage),
2081                                            max_page_sharing_bypass);
2082                         unlock_page(kpage);
2083                 }
2084                 put_page(kpage);
2085                 return;
2086         }
2087
2088         /*
2089          * If the hash value of the page has changed from the last time
2090          * we calculated it, this page is changing frequently: therefore we
2091          * don't want to insert it in the unstable tree, and we don't want
2092          * to waste our time searching for something identical to it there.
2093          */
2094         checksum = calc_checksum(page);
2095         if (rmap_item->oldchecksum != checksum) {
2096                 rmap_item->oldchecksum = checksum;
2097                 return;
2098         }
2099
2100         /*
2101          * Same checksum as an empty page. We attempt to merge it with the
2102          * appropriate zero page if the user enabled this via sysfs.
2103          */
2104         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2105                 struct vm_area_struct *vma;
2106
2107                 mmap_read_lock(mm);
2108                 vma = find_mergeable_vma(mm, rmap_item->address);
2109                 if (vma) {
2110                         err = try_to_merge_one_page(vma, page,
2111                                         ZERO_PAGE(rmap_item->address));
2112                 } else {
2113                         /*
2114                          * If the vma is out of date, we do not need to
2115                          * continue.
2116                          */
2117                         err = 0;
2118                 }
2119                 mmap_read_unlock(mm);
2120                 /*
2121                  * In case of failure, the page was not really empty, so we
2122                  * need to continue. Otherwise we're done.
2123                  */
2124                 if (!err)
2125                         return;
2126         }
2127         tree_rmap_item =
2128                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2129         if (tree_rmap_item) {
2130                 bool split;
2131
2132                 kpage = try_to_merge_two_pages(rmap_item, page,
2133                                                 tree_rmap_item, tree_page);
2134                 /*
2135                  * If both pages we tried to merge belong to the same compound
2136                  * page, then we actually ended up increasing the reference
2137                  * count of the same compound page twice, and split_huge_page
2138                  * failed.
2139                  * Here we set a flag if that happened, and we use it later to
2140                  * try split_huge_page again. Since we call put_page right
2141                  * afterwards, the reference count will be correct and
2142                  * split_huge_page should succeed.
2143                  */
2144                 split = PageTransCompound(page)
2145                         && compound_head(page) == compound_head(tree_page);
2146                 put_page(tree_page);
2147                 if (kpage) {
2148                         /*
2149                          * The pages were successfully merged: insert new
2150                          * node in the stable tree and add both rmap_items.
2151                          */
2152                         lock_page(kpage);
2153                         stable_node = stable_tree_insert(kpage);
2154                         if (stable_node) {
2155                                 stable_tree_append(tree_rmap_item, stable_node,
2156                                                    false);
2157                                 stable_tree_append(rmap_item, stable_node,
2158                                                    false);
2159                         }
2160                         unlock_page(kpage);
2161
2162                         /*
2163                          * If we fail to insert the page into the stable tree,
2164                          * we will have 2 virtual addresses that are pointing
2165                          * to a ksm page left outside the stable tree,
2166                          * in which case we need to break_cow on both.
2167                          */
2168                         if (!stable_node) {
2169                                 break_cow(tree_rmap_item);
2170                                 break_cow(rmap_item);
2171                         }
2172                 } else if (split) {
2173                         /*
2174                          * We are here if we tried to merge two pages and
2175                          * failed because they both belonged to the same
2176                          * compound page. We will split the page now, but no
2177                          * merging will take place.
2178                          * We do not want to add the cost of a full lock; if
2179                          * the page is locked, it is better to skip it and
2180                          * perhaps try again later.
2181                          */
2182                         if (!trylock_page(page))
2183                                 return;
2184                         split_huge_page(page);
2185                         unlock_page(page);
2186                 }
2187         }
2188 }
2189
2190 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2191                                             struct ksm_rmap_item **rmap_list,
2192                                             unsigned long addr)
2193 {
2194         struct ksm_rmap_item *rmap_item;
2195
2196         while (*rmap_list) {
2197                 rmap_item = *rmap_list;
2198                 if ((rmap_item->address & PAGE_MASK) == addr)
2199                         return rmap_item;
2200                 if (rmap_item->address > addr)
2201                         break;
2202                 *rmap_list = rmap_item->rmap_list;
2203                 remove_rmap_item_from_tree(rmap_item);
2204                 free_rmap_item(rmap_item);
2205         }
2206
2207         rmap_item = alloc_rmap_item();
2208         if (rmap_item) {
2209                 /* It has already been zeroed */
2210                 rmap_item->mm = mm_slot->slot.mm;
2211                 rmap_item->mm->ksm_rmap_items++;
2212                 rmap_item->address = addr;
2213                 rmap_item->rmap_list = *rmap_list;
2214                 *rmap_list = rmap_item;
2215         }
2216         return rmap_item;
2217 }
2218
2219 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2220 {
2221         struct mm_struct *mm;
2222         struct ksm_mm_slot *mm_slot;
2223         struct mm_slot *slot;
2224         struct vm_area_struct *vma;
2225         struct ksm_rmap_item *rmap_item;
2226         struct vma_iterator vmi;
2227         int nid;
2228
2229         if (list_empty(&ksm_mm_head.slot.mm_node))
2230                 return NULL;
2231
2232         mm_slot = ksm_scan.mm_slot;
2233         if (mm_slot == &ksm_mm_head) {
2234                 /*
2235                  * A number of pages can hang around indefinitely on per-cpu
2236                  * pagevecs, raised page count preventing write_protect_page
2237                  * from merging them.  Though it doesn't really matter much,
2238                  * it is puzzling to see some stuck in pages_volatile until
2239                  * other activity jostles them out, and they also prevented
2240                  * LTP's KSM test from succeeding deterministically; so drain
2241                  * them here (here rather than on entry to ksm_do_scan(),
2242                  * so we don't IPI too often when pages_to_scan is set low).
2243                  */
2244                 lru_add_drain_all();
2245
2246                 /*
2247                  * Whereas stale stable_nodes on the stable_tree itself
2248                  * get pruned in the regular course of stable_tree_search(),
2249                  * those moved out to the migrate_nodes list can accumulate:
2250                  * so prune them once before each full scan.
2251                  */
2252                 if (!ksm_merge_across_nodes) {
2253                         struct ksm_stable_node *stable_node, *next;
2254                         struct page *page;
2255
2256                         list_for_each_entry_safe(stable_node, next,
2257                                                  &migrate_nodes, list) {
2258                                 page = get_ksm_page(stable_node,
2259                                                     GET_KSM_PAGE_NOLOCK);
2260                                 if (page)
2261                                         put_page(page);
2262                                 cond_resched();
2263                         }
2264                 }
2265
2266                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2267                         root_unstable_tree[nid] = RB_ROOT;
2268
2269                 spin_lock(&ksm_mmlist_lock);
2270                 slot = list_entry(mm_slot->slot.mm_node.next,
2271                                   struct mm_slot, mm_node);
2272                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2273                 ksm_scan.mm_slot = mm_slot;
2274                 spin_unlock(&ksm_mmlist_lock);
2275                 /*
2276                  * Although we tested list_empty() above, a racing __ksm_exit
2277                  * of the last mm on the list may have removed it since then.
2278                  */
2279                 if (mm_slot == &ksm_mm_head)
2280                         return NULL;
2281 next_mm:
2282                 ksm_scan.address = 0;
2283                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2284         }
2285
2286         slot = &mm_slot->slot;
2287         mm = slot->mm;
2288         vma_iter_init(&vmi, mm, ksm_scan.address);
2289
2290         mmap_read_lock(mm);
2291         if (ksm_test_exit(mm))
2292                 goto no_vmas;
2293
2294         for_each_vma(vmi, vma) {
2295                 if (!(vma->vm_flags & VM_MERGEABLE))
2296                         continue;
2297                 if (ksm_scan.address < vma->vm_start)
2298                         ksm_scan.address = vma->vm_start;
2299                 if (!vma->anon_vma)
2300                         ksm_scan.address = vma->vm_end;
2301
2302                 while (ksm_scan.address < vma->vm_end) {
2303                         if (ksm_test_exit(mm))
2304                                 break;
2305                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2306                         if (IS_ERR_OR_NULL(*page)) {
2307                                 ksm_scan.address += PAGE_SIZE;
2308                                 cond_resched();
2309                                 continue;
2310                         }
2311                         if (is_zone_device_page(*page))
2312                                 goto next_page;
2313                         if (PageAnon(*page)) {
2314                                 flush_anon_page(vma, *page, ksm_scan.address);
2315                                 flush_dcache_page(*page);
2316                                 rmap_item = get_next_rmap_item(mm_slot,
2317                                         ksm_scan.rmap_list, ksm_scan.address);
2318                                 if (rmap_item) {
2319                                         ksm_scan.rmap_list =
2320                                                         &rmap_item->rmap_list;
2321                                         ksm_scan.address += PAGE_SIZE;
2322                                 } else
2323                                         put_page(*page);
2324                                 mmap_read_unlock(mm);
2325                                 return rmap_item;
2326                         }
2327 next_page:
2328                         put_page(*page);
2329                         ksm_scan.address += PAGE_SIZE;
2330                         cond_resched();
2331                 }
2332         }
2333
2334         if (ksm_test_exit(mm)) {
2335 no_vmas:
2336                 ksm_scan.address = 0;
2337                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2338         }
2339         /*
2340          * Nuke all the rmap_items that are above this current rmap:
2341          * because there were no VM_MERGEABLE vmas with such addresses.
2342          */
2343         remove_trailing_rmap_items(ksm_scan.rmap_list);
2344
2345         spin_lock(&ksm_mmlist_lock);
2346         slot = list_entry(mm_slot->slot.mm_node.next,
2347                           struct mm_slot, mm_node);
2348         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2349         if (ksm_scan.address == 0) {
2350                 /*
2351                  * We've completed a full scan of all vmas, holding mmap_lock
2352                  * throughout, and found no VM_MERGEABLE: so do the same as
2353                  * __ksm_exit does to remove this mm from all our lists now.
2354                  * This applies either when cleaning up after __ksm_exit
2355                  * (but beware: we can reach here even before __ksm_exit),
2356                  * or when all VM_MERGEABLE areas have been unmapped (and
2357                  * mmap_lock then protects against race with MADV_MERGEABLE).
2358                  */
2359                 hash_del(&mm_slot->slot.hash);
2360                 list_del(&mm_slot->slot.mm_node);
2361                 spin_unlock(&ksm_mmlist_lock);
2362
2363                 mm_slot_free(mm_slot_cache, mm_slot);
2364                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2365                 mmap_read_unlock(mm);
2366                 mmdrop(mm);
2367         } else {
2368                 mmap_read_unlock(mm);
2369                 /*
2370                  * mmap_read_unlock(mm) first because after
2371                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2372                  * already have been freed under us by __ksm_exit()
2373                  * because the "mm_slot" is still hashed and
2374                  * ksm_scan.mm_slot doesn't point to it anymore.
2375                  */
2376                 spin_unlock(&ksm_mmlist_lock);
2377         }
2378
2379         /* Repeat until we've completed scanning the whole list */
2380         mm_slot = ksm_scan.mm_slot;
2381         if (mm_slot != &ksm_mm_head)
2382                 goto next_mm;
2383
2384         ksm_scan.seqnr++;
2385         return NULL;
2386 }
2387
2388 /**
2389  * ksm_do_scan  - the ksm scanner main worker function.
2390  * @scan_npages:  number of pages we want to scan before we return.
2391  */
2392 static void ksm_do_scan(unsigned int scan_npages)
2393 {
2394         struct ksm_rmap_item *rmap_item;
2395         struct page *page;
2396
2397         while (scan_npages-- && likely(!freezing(current))) {
2398                 cond_resched();
2399                 rmap_item = scan_get_next_rmap_item(&page);
2400                 if (!rmap_item)
2401                         return;
2402                 cmp_and_merge_page(page, rmap_item);
2403                 put_page(page);
2404         }
2405 }
2406
2407 static int ksmd_should_run(void)
2408 {
2409         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2410 }
2411
2412 static int ksm_scan_thread(void *nothing)
2413 {
2414         unsigned int sleep_ms;
2415
2416         set_freezable();
2417         set_user_nice(current, 5);
2418
2419         while (!kthread_should_stop()) {
2420                 mutex_lock(&ksm_thread_mutex);
2421                 wait_while_offlining();
2422                 if (ksmd_should_run())
2423                         ksm_do_scan(ksm_thread_pages_to_scan);
2424                 mutex_unlock(&ksm_thread_mutex);
2425
2426                 try_to_freeze();
2427
2428                 if (ksmd_should_run()) {
2429                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2430                         wait_event_interruptible_timeout(ksm_iter_wait,
2431                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2432                                 msecs_to_jiffies(sleep_ms));
2433                 } else {
2434                         wait_event_freezable(ksm_thread_wait,
2435                                 ksmd_should_run() || kthread_should_stop());
2436                 }
2437         }
2438         return 0;
2439 }
2440
2441 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2442                 unsigned long end, int advice, unsigned long *vm_flags)
2443 {
2444         struct mm_struct *mm = vma->vm_mm;
2445         int err;
2446
2447         switch (advice) {
2448         case MADV_MERGEABLE:
2449                 /*
2450                  * Be somewhat over-protective for now!
2451                  */
2452                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2453                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2454                                  VM_HUGETLB | VM_MIXEDMAP))
2455                         return 0;               /* just ignore the advice */
2456
2457                 if (vma_is_dax(vma))
2458                         return 0;
2459
2460 #ifdef VM_SAO
2461                 if (*vm_flags & VM_SAO)
2462                         return 0;
2463 #endif
2464 #ifdef VM_SPARC_ADI
2465                 if (*vm_flags & VM_SPARC_ADI)
2466                         return 0;
2467 #endif
2468
2469                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2470                         err = __ksm_enter(mm);
2471                         if (err)
2472                                 return err;
2473                 }
2474
2475                 *vm_flags |= VM_MERGEABLE;
2476                 break;
2477
2478         case MADV_UNMERGEABLE:
2479                 if (!(*vm_flags & VM_MERGEABLE))
2480                         return 0;               /* just ignore the advice */
2481
2482                 if (vma->anon_vma) {
2483                         err = unmerge_ksm_pages(vma, start, end);
2484                         if (err)
2485                                 return err;
2486                 }
2487
2488                 *vm_flags &= ~VM_MERGEABLE;
2489                 break;
2490         }
2491
2492         return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(ksm_madvise);
2495
2496 int __ksm_enter(struct mm_struct *mm)
2497 {
2498         struct ksm_mm_slot *mm_slot;
2499         struct mm_slot *slot;
2500         int needs_wakeup;
2501
2502         mm_slot = mm_slot_alloc(mm_slot_cache);
2503         if (!mm_slot)
2504                 return -ENOMEM;
2505
2506         slot = &mm_slot->slot;
2507
2508         /* Check ksm_run too?  Would need tighter locking */
2509         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2510
2511         spin_lock(&ksm_mmlist_lock);
2512         mm_slot_insert(mm_slots_hash, mm, slot);
2513         /*
2514          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2515          * insert just behind the scanning cursor, to let the area settle
2516          * down a little; when fork is followed by immediate exec, we don't
2517          * want ksmd to waste time setting up and tearing down an rmap_list.
2518          *
2519          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2520          * scanning cursor, otherwise KSM pages in newly forked mms will be
2521          * missed: then we might as well insert at the end of the list.
2522          */
2523         if (ksm_run & KSM_RUN_UNMERGE)
2524                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2525         else
2526                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2527         spin_unlock(&ksm_mmlist_lock);
2528
2529         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2530         mmgrab(mm);
2531
2532         if (needs_wakeup)
2533                 wake_up_interruptible(&ksm_thread_wait);
2534
2535         return 0;
2536 }
2537
2538 void __ksm_exit(struct mm_struct *mm)
2539 {
2540         struct ksm_mm_slot *mm_slot;
2541         struct mm_slot *slot;
2542         int easy_to_free = 0;
2543
2544         /*
2545          * This process is exiting: if it's straightforward (as is the
2546          * case when ksmd was never running), free mm_slot immediately.
2547          * But if it's at the cursor or has rmap_items linked to it, use
2548          * mmap_lock to synchronize with any break_cows before pagetables
2549          * are freed, and leave the mm_slot on the list for ksmd to free.
2550          * Beware: ksm may already have noticed it exiting and freed the slot.
2551          */
2552
2553         spin_lock(&ksm_mmlist_lock);
2554         slot = mm_slot_lookup(mm_slots_hash, mm);
2555         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2556         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2557                 if (!mm_slot->rmap_list) {
2558                         hash_del(&slot->hash);
2559                         list_del(&slot->mm_node);
2560                         easy_to_free = 1;
2561                 } else {
2562                         list_move(&slot->mm_node,
2563                                   &ksm_scan.mm_slot->slot.mm_node);
2564                 }
2565         }
2566         spin_unlock(&ksm_mmlist_lock);
2567
2568         if (easy_to_free) {
2569                 mm_slot_free(mm_slot_cache, mm_slot);
2570                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2571                 mmdrop(mm);
2572         } else if (mm_slot) {
2573                 mmap_write_lock(mm);
2574                 mmap_write_unlock(mm);
2575         }
2576 }
2577
2578 struct page *ksm_might_need_to_copy(struct page *page,
2579                         struct vm_area_struct *vma, unsigned long address)
2580 {
2581         struct folio *folio = page_folio(page);
2582         struct anon_vma *anon_vma = folio_anon_vma(folio);
2583         struct page *new_page;
2584
2585         if (PageKsm(page)) {
2586                 if (page_stable_node(page) &&
2587                     !(ksm_run & KSM_RUN_UNMERGE))
2588                         return page;    /* no need to copy it */
2589         } else if (!anon_vma) {
2590                 return page;            /* no need to copy it */
2591         } else if (page->index == linear_page_index(vma, address) &&
2592                         anon_vma->root == vma->anon_vma->root) {
2593                 return page;            /* still no need to copy it */
2594         }
2595         if (!PageUptodate(page))
2596                 return page;            /* let do_swap_page report the error */
2597
2598         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2599         if (new_page &&
2600             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2601                 put_page(new_page);
2602                 new_page = NULL;
2603         }
2604         if (new_page) {
2605                 copy_user_highpage(new_page, page, address, vma);
2606
2607                 SetPageDirty(new_page);
2608                 __SetPageUptodate(new_page);
2609                 __SetPageLocked(new_page);
2610 #ifdef CONFIG_SWAP
2611                 count_vm_event(KSM_SWPIN_COPY);
2612 #endif
2613         }
2614
2615         return new_page;
2616 }
2617
2618 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2619 {
2620         struct ksm_stable_node *stable_node;
2621         struct ksm_rmap_item *rmap_item;
2622         int search_new_forks = 0;
2623
2624         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2625
2626         /*
2627          * Rely on the page lock to protect against concurrent modifications
2628          * to that page's node of the stable tree.
2629          */
2630         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2631
2632         stable_node = folio_stable_node(folio);
2633         if (!stable_node)
2634                 return;
2635 again:
2636         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2637                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2638                 struct anon_vma_chain *vmac;
2639                 struct vm_area_struct *vma;
2640
2641                 cond_resched();
2642                 if (!anon_vma_trylock_read(anon_vma)) {
2643                         if (rwc->try_lock) {
2644                                 rwc->contended = true;
2645                                 return;
2646                         }
2647                         anon_vma_lock_read(anon_vma);
2648                 }
2649                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2650                                                0, ULONG_MAX) {
2651                         unsigned long addr;
2652
2653                         cond_resched();
2654                         vma = vmac->vma;
2655
2656                         /* Ignore the stable/unstable/sqnr flags */
2657                         addr = rmap_item->address & PAGE_MASK;
2658
2659                         if (addr < vma->vm_start || addr >= vma->vm_end)
2660                                 continue;
2661                         /*
2662                          * Initially we examine only the vma which covers this
2663                          * rmap_item; but later, if there is still work to do,
2664                          * we examine covering vmas in other mms: in case they
2665                          * were forked from the original since ksmd passed.
2666                          */
2667                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2668                                 continue;
2669
2670                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2671                                 continue;
2672
2673                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2674                                 anon_vma_unlock_read(anon_vma);
2675                                 return;
2676                         }
2677                         if (rwc->done && rwc->done(folio)) {
2678                                 anon_vma_unlock_read(anon_vma);
2679                                 return;
2680                         }
2681                 }
2682                 anon_vma_unlock_read(anon_vma);
2683         }
2684         if (!search_new_forks++)
2685                 goto again;
2686 }
2687
2688 #ifdef CONFIG_MIGRATION
2689 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2690 {
2691         struct ksm_stable_node *stable_node;
2692
2693         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2694         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2695         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2696
2697         stable_node = folio_stable_node(folio);
2698         if (stable_node) {
2699                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2700                 stable_node->kpfn = folio_pfn(newfolio);
2701                 /*
2702                  * newfolio->mapping was set in advance; now we need smp_wmb()
2703                  * to make sure that the new stable_node->kpfn is visible
2704                  * to get_ksm_page() before it can see that folio->mapping
2705                  * has gone stale (or that folio_test_swapcache has been cleared).
2706                  */
2707                 smp_wmb();
2708                 set_page_stable_node(&folio->page, NULL);
2709         }
2710 }
2711 #endif /* CONFIG_MIGRATION */
2712
2713 #ifdef CONFIG_MEMORY_HOTREMOVE
2714 static void wait_while_offlining(void)
2715 {
2716         while (ksm_run & KSM_RUN_OFFLINE) {
2717                 mutex_unlock(&ksm_thread_mutex);
2718                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2719                             TASK_UNINTERRUPTIBLE);
2720                 mutex_lock(&ksm_thread_mutex);
2721         }
2722 }
2723
2724 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2725                                          unsigned long start_pfn,
2726                                          unsigned long end_pfn)
2727 {
2728         if (stable_node->kpfn >= start_pfn &&
2729             stable_node->kpfn < end_pfn) {
2730                 /*
2731                  * Don't get_ksm_page, page has already gone:
2732                  * which is why we keep kpfn instead of page*
2733                  */
2734                 remove_node_from_stable_tree(stable_node);
2735                 return true;
2736         }
2737         return false;
2738 }
2739
2740 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2741                                            unsigned long start_pfn,
2742                                            unsigned long end_pfn,
2743                                            struct rb_root *root)
2744 {
2745         struct ksm_stable_node *dup;
2746         struct hlist_node *hlist_safe;
2747
2748         if (!is_stable_node_chain(stable_node)) {
2749                 VM_BUG_ON(is_stable_node_dup(stable_node));
2750                 return stable_node_dup_remove_range(stable_node, start_pfn,
2751                                                     end_pfn);
2752         }
2753
2754         hlist_for_each_entry_safe(dup, hlist_safe,
2755                                   &stable_node->hlist, hlist_dup) {
2756                 VM_BUG_ON(!is_stable_node_dup(dup));
2757                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2758         }
2759         if (hlist_empty(&stable_node->hlist)) {
2760                 free_stable_node_chain(stable_node, root);
2761                 return true; /* notify caller that tree was rebalanced */
2762         } else
2763                 return false;
2764 }
2765
2766 static void ksm_check_stable_tree(unsigned long start_pfn,
2767                                   unsigned long end_pfn)
2768 {
2769         struct ksm_stable_node *stable_node, *next;
2770         struct rb_node *node;
2771         int nid;
2772
2773         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2774                 node = rb_first(root_stable_tree + nid);
2775                 while (node) {
2776                         stable_node = rb_entry(node, struct ksm_stable_node, node);
2777                         if (stable_node_chain_remove_range(stable_node,
2778                                                            start_pfn, end_pfn,
2779                                                            root_stable_tree +
2780                                                            nid))
2781                                 node = rb_first(root_stable_tree + nid);
2782                         else
2783                                 node = rb_next(node);
2784                         cond_resched();
2785                 }
2786         }
2787         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2788                 if (stable_node->kpfn >= start_pfn &&
2789                     stable_node->kpfn < end_pfn)
2790                         remove_node_from_stable_tree(stable_node);
2791                 cond_resched();
2792         }
2793 }
2794
2795 static int ksm_memory_callback(struct notifier_block *self,
2796                                unsigned long action, void *arg)
2797 {
2798         struct memory_notify *mn = arg;
2799
2800         switch (action) {
2801         case MEM_GOING_OFFLINE:
2802                 /*
2803                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2804                  * and remove_all_stable_nodes() while memory is going offline:
2805                  * it is unsafe for them to touch the stable tree at this time.
2806                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2807                  * which do not need the ksm_thread_mutex are all safe.
2808                  */
2809                 mutex_lock(&ksm_thread_mutex);
2810                 ksm_run |= KSM_RUN_OFFLINE;
2811                 mutex_unlock(&ksm_thread_mutex);
2812                 break;
2813
2814         case MEM_OFFLINE:
2815                 /*
2816                  * Most of the work is done by page migration; but there might
2817                  * be a few stable_nodes left over, still pointing to struct
2818                  * pages which have been offlined: prune those from the tree,
2819                  * otherwise get_ksm_page() might later try to access a
2820                  * non-existent struct page.
2821                  */
2822                 ksm_check_stable_tree(mn->start_pfn,
2823                                       mn->start_pfn + mn->nr_pages);
2824                 fallthrough;
2825         case MEM_CANCEL_OFFLINE:
2826                 mutex_lock(&ksm_thread_mutex);
2827                 ksm_run &= ~KSM_RUN_OFFLINE;
2828                 mutex_unlock(&ksm_thread_mutex);
2829
2830                 smp_mb();       /* wake_up_bit advises this */
2831                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2832                 break;
2833         }
2834         return NOTIFY_OK;
2835 }
2836 #else
2837 static void wait_while_offlining(void)
2838 {
2839 }
2840 #endif /* CONFIG_MEMORY_HOTREMOVE */
2841
2842 #ifdef CONFIG_SYSFS
2843 /*
2844  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2845  */
2846
2847 #define KSM_ATTR_RO(_name) \
2848         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2849 #define KSM_ATTR(_name) \
2850         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2851
2852 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2853                                     struct kobj_attribute *attr, char *buf)
2854 {
2855         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2856 }
2857
2858 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2859                                      struct kobj_attribute *attr,
2860                                      const char *buf, size_t count)
2861 {
2862         unsigned int msecs;
2863         int err;
2864
2865         err = kstrtouint(buf, 10, &msecs);
2866         if (err)
2867                 return -EINVAL;
2868
2869         ksm_thread_sleep_millisecs = msecs;
2870         wake_up_interruptible(&ksm_iter_wait);
2871
2872         return count;
2873 }
2874 KSM_ATTR(sleep_millisecs);
2875
2876 static ssize_t pages_to_scan_show(struct kobject *kobj,
2877                                   struct kobj_attribute *attr, char *buf)
2878 {
2879         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2880 }
2881
2882 static ssize_t pages_to_scan_store(struct kobject *kobj,
2883                                    struct kobj_attribute *attr,
2884                                    const char *buf, size_t count)
2885 {
2886         unsigned int nr_pages;
2887         int err;
2888
2889         err = kstrtouint(buf, 10, &nr_pages);
2890         if (err)
2891                 return -EINVAL;
2892
2893         ksm_thread_pages_to_scan = nr_pages;
2894
2895         return count;
2896 }
2897 KSM_ATTR(pages_to_scan);
2898
2899 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2900                         char *buf)
2901 {
2902         return sysfs_emit(buf, "%lu\n", ksm_run);
2903 }
2904
2905 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2906                          const char *buf, size_t count)
2907 {
2908         unsigned int flags;
2909         int err;
2910
2911         err = kstrtouint(buf, 10, &flags);
2912         if (err)
2913                 return -EINVAL;
2914         if (flags > KSM_RUN_UNMERGE)
2915                 return -EINVAL;
2916
2917         /*
2918          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2919          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2920          * breaking COW to free the pages_shared (but leaves mm_slots
2921          * on the list for when ksmd may be set running again).
2922          */
2923
2924         mutex_lock(&ksm_thread_mutex);
2925         wait_while_offlining();
2926         if (ksm_run != flags) {
2927                 ksm_run = flags;
2928                 if (flags & KSM_RUN_UNMERGE) {
2929                         set_current_oom_origin();
2930                         err = unmerge_and_remove_all_rmap_items();
2931                         clear_current_oom_origin();
2932                         if (err) {
2933                                 ksm_run = KSM_RUN_STOP;
2934                                 count = err;
2935                         }
2936                 }
2937         }
2938         mutex_unlock(&ksm_thread_mutex);
2939
2940         if (flags & KSM_RUN_MERGE)
2941                 wake_up_interruptible(&ksm_thread_wait);
2942
2943         return count;
2944 }
2945 KSM_ATTR(run);
2946
2947 #ifdef CONFIG_NUMA
2948 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2949                                        struct kobj_attribute *attr, char *buf)
2950 {
2951         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2952 }
2953
2954 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2955                                    struct kobj_attribute *attr,
2956                                    const char *buf, size_t count)
2957 {
2958         int err;
2959         unsigned long knob;
2960
2961         err = kstrtoul(buf, 10, &knob);
2962         if (err)
2963                 return err;
2964         if (knob > 1)
2965                 return -EINVAL;
2966
2967         mutex_lock(&ksm_thread_mutex);
2968         wait_while_offlining();
2969         if (ksm_merge_across_nodes != knob) {
2970                 if (ksm_pages_shared || remove_all_stable_nodes())
2971                         err = -EBUSY;
2972                 else if (root_stable_tree == one_stable_tree) {
2973                         struct rb_root *buf;
2974                         /*
2975                          * This is the first time that we switch away from the
2976                          * default of merging across nodes: must now allocate
2977                          * a buffer to hold as many roots as may be needed.
2978                          * Allocate stable and unstable together:
2979                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2980                          */
2981                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2982                                       GFP_KERNEL);
2983                         /* Let us assume that RB_ROOT is NULL is zero */
2984                         if (!buf)
2985                                 err = -ENOMEM;
2986                         else {
2987                                 root_stable_tree = buf;
2988                                 root_unstable_tree = buf + nr_node_ids;
2989                                 /* Stable tree is empty but not the unstable */
2990                                 root_unstable_tree[0] = one_unstable_tree[0];
2991                         }
2992                 }
2993                 if (!err) {
2994                         ksm_merge_across_nodes = knob;
2995                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2996                 }
2997         }
2998         mutex_unlock(&ksm_thread_mutex);
2999
3000         return err ? err : count;
3001 }
3002 KSM_ATTR(merge_across_nodes);
3003 #endif
3004
3005 static ssize_t use_zero_pages_show(struct kobject *kobj,
3006                                    struct kobj_attribute *attr, char *buf)
3007 {
3008         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3009 }
3010 static ssize_t use_zero_pages_store(struct kobject *kobj,
3011                                    struct kobj_attribute *attr,
3012                                    const char *buf, size_t count)
3013 {
3014         int err;
3015         bool value;
3016
3017         err = kstrtobool(buf, &value);
3018         if (err)
3019                 return -EINVAL;
3020
3021         ksm_use_zero_pages = value;
3022
3023         return count;
3024 }
3025 KSM_ATTR(use_zero_pages);
3026
3027 static ssize_t max_page_sharing_show(struct kobject *kobj,
3028                                      struct kobj_attribute *attr, char *buf)
3029 {
3030         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3031 }
3032
3033 static ssize_t max_page_sharing_store(struct kobject *kobj,
3034                                       struct kobj_attribute *attr,
3035                                       const char *buf, size_t count)
3036 {
3037         int err;
3038         int knob;
3039
3040         err = kstrtoint(buf, 10, &knob);
3041         if (err)
3042                 return err;
3043         /*
3044          * When a KSM page is created it is shared by 2 mappings. This
3045          * being a signed comparison, it implicitly verifies it's not
3046          * negative.
3047          */
3048         if (knob < 2)
3049                 return -EINVAL;
3050
3051         if (READ_ONCE(ksm_max_page_sharing) == knob)
3052                 return count;
3053
3054         mutex_lock(&ksm_thread_mutex);
3055         wait_while_offlining();
3056         if (ksm_max_page_sharing != knob) {
3057                 if (ksm_pages_shared || remove_all_stable_nodes())
3058                         err = -EBUSY;
3059                 else
3060                         ksm_max_page_sharing = knob;
3061         }
3062         mutex_unlock(&ksm_thread_mutex);
3063
3064         return err ? err : count;
3065 }
3066 KSM_ATTR(max_page_sharing);
3067
3068 static ssize_t pages_shared_show(struct kobject *kobj,
3069                                  struct kobj_attribute *attr, char *buf)
3070 {
3071         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3072 }
3073 KSM_ATTR_RO(pages_shared);
3074
3075 static ssize_t pages_sharing_show(struct kobject *kobj,
3076                                   struct kobj_attribute *attr, char *buf)
3077 {
3078         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3079 }
3080 KSM_ATTR_RO(pages_sharing);
3081
3082 static ssize_t pages_unshared_show(struct kobject *kobj,
3083                                    struct kobj_attribute *attr, char *buf)
3084 {
3085         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3086 }
3087 KSM_ATTR_RO(pages_unshared);
3088
3089 static ssize_t pages_volatile_show(struct kobject *kobj,
3090                                    struct kobj_attribute *attr, char *buf)
3091 {
3092         long ksm_pages_volatile;
3093
3094         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3095                                 - ksm_pages_sharing - ksm_pages_unshared;
3096         /*
3097          * It was not worth any locking to calculate that statistic,
3098          * but it might therefore sometimes be negative: conceal that.
3099          */
3100         if (ksm_pages_volatile < 0)
3101                 ksm_pages_volatile = 0;
3102         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3103 }
3104 KSM_ATTR_RO(pages_volatile);
3105
3106 static ssize_t stable_node_dups_show(struct kobject *kobj,
3107                                      struct kobj_attribute *attr, char *buf)
3108 {
3109         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3110 }
3111 KSM_ATTR_RO(stable_node_dups);
3112
3113 static ssize_t stable_node_chains_show(struct kobject *kobj,
3114                                        struct kobj_attribute *attr, char *buf)
3115 {
3116         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3117 }
3118 KSM_ATTR_RO(stable_node_chains);
3119
3120 static ssize_t
3121 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3122                                         struct kobj_attribute *attr,
3123                                         char *buf)
3124 {
3125         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3126 }
3127
3128 static ssize_t
3129 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3130                                          struct kobj_attribute *attr,
3131                                          const char *buf, size_t count)
3132 {
3133         unsigned int msecs;
3134         int err;
3135
3136         err = kstrtouint(buf, 10, &msecs);
3137         if (err)
3138                 return -EINVAL;
3139
3140         ksm_stable_node_chains_prune_millisecs = msecs;
3141
3142         return count;
3143 }
3144 KSM_ATTR(stable_node_chains_prune_millisecs);
3145
3146 static ssize_t full_scans_show(struct kobject *kobj,
3147                                struct kobj_attribute *attr, char *buf)
3148 {
3149         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3150 }
3151 KSM_ATTR_RO(full_scans);
3152
3153 static struct attribute *ksm_attrs[] = {
3154         &sleep_millisecs_attr.attr,
3155         &pages_to_scan_attr.attr,
3156         &run_attr.attr,
3157         &pages_shared_attr.attr,
3158         &pages_sharing_attr.attr,
3159         &pages_unshared_attr.attr,
3160         &pages_volatile_attr.attr,
3161         &full_scans_attr.attr,
3162 #ifdef CONFIG_NUMA
3163         &merge_across_nodes_attr.attr,
3164 #endif
3165         &max_page_sharing_attr.attr,
3166         &stable_node_chains_attr.attr,
3167         &stable_node_dups_attr.attr,
3168         &stable_node_chains_prune_millisecs_attr.attr,
3169         &use_zero_pages_attr.attr,
3170         NULL,
3171 };
3172
3173 static const struct attribute_group ksm_attr_group = {
3174         .attrs = ksm_attrs,
3175         .name = "ksm",
3176 };
3177 #endif /* CONFIG_SYSFS */
3178
3179 static int __init ksm_init(void)
3180 {
3181         struct task_struct *ksm_thread;
3182         int err;
3183
3184         /* The correct value depends on page size and endianness */
3185         zero_checksum = calc_checksum(ZERO_PAGE(0));
3186         /* Default to false for backwards compatibility */
3187         ksm_use_zero_pages = false;
3188
3189         err = ksm_slab_init();
3190         if (err)
3191                 goto out;
3192
3193         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3194         if (IS_ERR(ksm_thread)) {
3195                 pr_err("ksm: creating kthread failed\n");
3196                 err = PTR_ERR(ksm_thread);
3197                 goto out_free;
3198         }
3199
3200 #ifdef CONFIG_SYSFS
3201         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3202         if (err) {
3203                 pr_err("ksm: register sysfs failed\n");
3204                 kthread_stop(ksm_thread);
3205                 goto out_free;
3206         }
3207 #else
3208         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3209
3210 #endif /* CONFIG_SYSFS */
3211
3212 #ifdef CONFIG_MEMORY_HOTREMOVE
3213         /* There is no significance to this priority 100 */
3214         hotplug_memory_notifier(ksm_memory_callback, 100);
3215 #endif
3216         return 0;
3217
3218 out_free:
3219         ksm_slab_free();
3220 out:
3221         return err;
3222 }
3223 subsys_initcall(ksm_init);