Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /*
55  * A few notes about the KSM scanning process,
56  * to make it easier to understand the data structures below:
57  *
58  * In order to reduce excessive scanning, KSM sorts the memory pages by their
59  * contents into a data structure that holds pointers to the pages' locations.
60  *
61  * Since the contents of the pages may change at any moment, KSM cannot just
62  * insert the pages into a normal sorted tree and expect it to find anything.
63  * Therefore KSM uses two data structures - the stable and the unstable tree.
64  *
65  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66  * by their contents.  Because each such page is write-protected, searching on
67  * this tree is fully assured to be working (except when pages are unmapped),
68  * and therefore this tree is called the stable tree.
69  *
70  * In addition to the stable tree, KSM uses a second data structure called the
71  * unstable tree: this tree holds pointers to pages which have been found to
72  * be "unchanged for a period of time".  The unstable tree sorts these pages
73  * by their contents, but since they are not write-protected, KSM cannot rely
74  * upon the unstable tree to work correctly - the unstable tree is liable to
75  * be corrupted as its contents are modified, and so it is called unstable.
76  *
77  * KSM solves this problem by several techniques:
78  *
79  * 1) The unstable tree is flushed every time KSM completes scanning all
80  *    memory areas, and then the tree is rebuilt again from the beginning.
81  * 2) KSM will only insert into the unstable tree, pages whose hash value
82  *    has not changed since the previous scan of all memory areas.
83  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84  *    colors of the nodes and not on their contents, assuring that even when
85  *    the tree gets "corrupted" it won't get out of balance, so scanning time
86  *    remains the same (also, searching and inserting nodes in an rbtree uses
87  *    the same algorithm, so we have no overhead when we flush and rebuild).
88  * 4) KSM never flushes the stable tree, which means that even if it were to
89  *    take 10 attempts to find a page in the unstable tree, once it is found,
90  *    it is secured in the stable tree.  (When we scan a new page, we first
91  *    compare it against the stable tree, and then against the unstable tree.)
92  *
93  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94  * stable trees and multiple unstable trees: one of each for each NUMA node.
95  */
96
97 /**
98  * struct mm_slot - ksm information per mm that is being scanned
99  * @link: link to the mm_slots hash list
100  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102  * @mm: the mm that this information is valid for
103  */
104 struct mm_slot {
105         struct hlist_node link;
106         struct list_head mm_list;
107         struct rmap_item *rmap_list;
108         struct mm_struct *mm;
109 };
110
111 /**
112  * struct ksm_scan - cursor for scanning
113  * @mm_slot: the current mm_slot we are scanning
114  * @address: the next address inside that to be scanned
115  * @rmap_list: link to the next rmap to be scanned in the rmap_list
116  * @seqnr: count of completed full scans (needed when removing unstable node)
117  *
118  * There is only the one ksm_scan instance of this cursor structure.
119  */
120 struct ksm_scan {
121         struct mm_slot *mm_slot;
122         unsigned long address;
123         struct rmap_item **rmap_list;
124         unsigned long seqnr;
125 };
126
127 /**
128  * struct stable_node - node of the stable rbtree
129  * @node: rb node of this ksm page in the stable tree
130  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131  * @list: linked into migrate_nodes, pending placement in the proper node tree
132  * @hlist: hlist head of rmap_items using this ksm page
133  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
134  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
135  */
136 struct stable_node {
137         union {
138                 struct rb_node node;    /* when node of stable tree */
139                 struct {                /* when listed for migration */
140                         struct list_head *head;
141                         struct list_head list;
142                 };
143         };
144         struct hlist_head hlist;
145         unsigned long kpfn;
146 #ifdef CONFIG_NUMA
147         int nid;
148 #endif
149 };
150
151 /**
152  * struct rmap_item - reverse mapping item for virtual addresses
153  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
154  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
155  * @nid: NUMA node id of unstable tree in which linked (may not match page)
156  * @mm: the memory structure this rmap_item is pointing into
157  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
158  * @oldchecksum: previous checksum of the page at that virtual address
159  * @node: rb node of this rmap_item in the unstable tree
160  * @head: pointer to stable_node heading this list in the stable tree
161  * @hlist: link into hlist of rmap_items hanging off that stable_node
162  */
163 struct rmap_item {
164         struct rmap_item *rmap_list;
165         union {
166                 struct anon_vma *anon_vma;      /* when stable */
167 #ifdef CONFIG_NUMA
168                 int nid;                /* when node of unstable tree */
169 #endif
170         };
171         struct mm_struct *mm;
172         unsigned long address;          /* + low bits used for flags below */
173         unsigned int oldchecksum;       /* when unstable */
174         union {
175                 struct rb_node node;    /* when node of unstable tree */
176                 struct {                /* when listed from stable tree */
177                         struct stable_node *head;
178                         struct hlist_node hlist;
179                 };
180         };
181 };
182
183 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
184 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
185 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
186
187 /* The stable and unstable tree heads */
188 static struct rb_root one_stable_tree[1] = { RB_ROOT };
189 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
190 static struct rb_root *root_stable_tree = one_stable_tree;
191 static struct rb_root *root_unstable_tree = one_unstable_tree;
192
193 /* Recently migrated nodes of stable tree, pending proper placement */
194 static LIST_HEAD(migrate_nodes);
195
196 #define MM_SLOTS_HASH_BITS 10
197 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
198
199 static struct mm_slot ksm_mm_head = {
200         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
201 };
202 static struct ksm_scan ksm_scan = {
203         .mm_slot = &ksm_mm_head,
204 };
205
206 static struct kmem_cache *rmap_item_cache;
207 static struct kmem_cache *stable_node_cache;
208 static struct kmem_cache *mm_slot_cache;
209
210 /* The number of nodes in the stable tree */
211 static unsigned long ksm_pages_shared;
212
213 /* The number of page slots additionally sharing those nodes */
214 static unsigned long ksm_pages_sharing;
215
216 /* The number of nodes in the unstable tree */
217 static unsigned long ksm_pages_unshared;
218
219 /* The number of rmap_items in use: to calculate pages_volatile */
220 static unsigned long ksm_rmap_items;
221
222 /* Number of pages ksmd should scan in one batch */
223 static unsigned int ksm_thread_pages_to_scan = 100;
224
225 /* Milliseconds ksmd should sleep between batches */
226 static unsigned int ksm_thread_sleep_millisecs = 20;
227
228 /* Checksum of an empty (zeroed) page */
229 static unsigned int zero_checksum __read_mostly;
230
231 /* Whether to merge empty (zeroed) pages with actual zero pages */
232 static bool ksm_use_zero_pages __read_mostly;
233
234 #ifdef CONFIG_NUMA
235 /* Zeroed when merging across nodes is not allowed */
236 static unsigned int ksm_merge_across_nodes = 1;
237 static int ksm_nr_node_ids = 1;
238 #else
239 #define ksm_merge_across_nodes  1U
240 #define ksm_nr_node_ids         1
241 #endif
242
243 #define KSM_RUN_STOP    0
244 #define KSM_RUN_MERGE   1
245 #define KSM_RUN_UNMERGE 2
246 #define KSM_RUN_OFFLINE 4
247 static unsigned long ksm_run = KSM_RUN_STOP;
248 static void wait_while_offlining(void);
249
250 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
251 static DEFINE_MUTEX(ksm_thread_mutex);
252 static DEFINE_SPINLOCK(ksm_mmlist_lock);
253
254 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
255                 sizeof(struct __struct), __alignof__(struct __struct),\
256                 (__flags), NULL)
257
258 static int __init ksm_slab_init(void)
259 {
260         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
261         if (!rmap_item_cache)
262                 goto out;
263
264         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
265         if (!stable_node_cache)
266                 goto out_free1;
267
268         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
269         if (!mm_slot_cache)
270                 goto out_free2;
271
272         return 0;
273
274 out_free2:
275         kmem_cache_destroy(stable_node_cache);
276 out_free1:
277         kmem_cache_destroy(rmap_item_cache);
278 out:
279         return -ENOMEM;
280 }
281
282 static void __init ksm_slab_free(void)
283 {
284         kmem_cache_destroy(mm_slot_cache);
285         kmem_cache_destroy(stable_node_cache);
286         kmem_cache_destroy(rmap_item_cache);
287         mm_slot_cache = NULL;
288 }
289
290 static inline struct rmap_item *alloc_rmap_item(void)
291 {
292         struct rmap_item *rmap_item;
293
294         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
295                                                 __GFP_NORETRY | __GFP_NOWARN);
296         if (rmap_item)
297                 ksm_rmap_items++;
298         return rmap_item;
299 }
300
301 static inline void free_rmap_item(struct rmap_item *rmap_item)
302 {
303         ksm_rmap_items--;
304         rmap_item->mm = NULL;   /* debug safety */
305         kmem_cache_free(rmap_item_cache, rmap_item);
306 }
307
308 static inline struct stable_node *alloc_stable_node(void)
309 {
310         /*
311          * The allocation can take too long with GFP_KERNEL when memory is under
312          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
313          * grants access to memory reserves, helping to avoid this problem.
314          */
315         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
316 }
317
318 static inline void free_stable_node(struct stable_node *stable_node)
319 {
320         kmem_cache_free(stable_node_cache, stable_node);
321 }
322
323 static inline struct mm_slot *alloc_mm_slot(void)
324 {
325         if (!mm_slot_cache)     /* initialization failed */
326                 return NULL;
327         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
328 }
329
330 static inline void free_mm_slot(struct mm_slot *mm_slot)
331 {
332         kmem_cache_free(mm_slot_cache, mm_slot);
333 }
334
335 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
336 {
337         struct mm_slot *slot;
338
339         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
340                 if (slot->mm == mm)
341                         return slot;
342
343         return NULL;
344 }
345
346 static void insert_to_mm_slots_hash(struct mm_struct *mm,
347                                     struct mm_slot *mm_slot)
348 {
349         mm_slot->mm = mm;
350         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
351 }
352
353 /*
354  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
355  * page tables after it has passed through ksm_exit() - which, if necessary,
356  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
357  * a special flag: they can just back out as soon as mm_users goes to zero.
358  * ksm_test_exit() is used throughout to make this test for exit: in some
359  * places for correctness, in some places just to avoid unnecessary work.
360  */
361 static inline bool ksm_test_exit(struct mm_struct *mm)
362 {
363         return atomic_read(&mm->mm_users) == 0;
364 }
365
366 /*
367  * We use break_ksm to break COW on a ksm page: it's a stripped down
368  *
369  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
370  *              put_page(page);
371  *
372  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
373  * in case the application has unmapped and remapped mm,addr meanwhile.
374  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
375  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
376  *
377  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
378  * of the process that owns 'vma'.  We also do not want to enforce
379  * protection keys here anyway.
380  */
381 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
382 {
383         struct page *page;
384         int ret = 0;
385
386         do {
387                 cond_resched();
388                 page = follow_page(vma, addr,
389                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
390                 if (IS_ERR_OR_NULL(page))
391                         break;
392                 if (PageKsm(page))
393                         ret = handle_mm_fault(vma, addr,
394                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
395                 else
396                         ret = VM_FAULT_WRITE;
397                 put_page(page);
398         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
399         /*
400          * We must loop because handle_mm_fault() may back out if there's
401          * any difficulty e.g. if pte accessed bit gets updated concurrently.
402          *
403          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
404          * COW has been broken, even if the vma does not permit VM_WRITE;
405          * but note that a concurrent fault might break PageKsm for us.
406          *
407          * VM_FAULT_SIGBUS could occur if we race with truncation of the
408          * backing file, which also invalidates anonymous pages: that's
409          * okay, that truncation will have unmapped the PageKsm for us.
410          *
411          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
412          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
413          * current task has TIF_MEMDIE set, and will be OOM killed on return
414          * to user; and ksmd, having no mm, would never be chosen for that.
415          *
416          * But if the mm is in a limited mem_cgroup, then the fault may fail
417          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
418          * even ksmd can fail in this way - though it's usually breaking ksm
419          * just to undo a merge it made a moment before, so unlikely to oom.
420          *
421          * That's a pity: we might therefore have more kernel pages allocated
422          * than we're counting as nodes in the stable tree; but ksm_do_scan
423          * will retry to break_cow on each pass, so should recover the page
424          * in due course.  The important thing is to not let VM_MERGEABLE
425          * be cleared while any such pages might remain in the area.
426          */
427         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
428 }
429
430 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
431                 unsigned long addr)
432 {
433         struct vm_area_struct *vma;
434         if (ksm_test_exit(mm))
435                 return NULL;
436         vma = find_vma(mm, addr);
437         if (!vma || vma->vm_start > addr)
438                 return NULL;
439         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
440                 return NULL;
441         return vma;
442 }
443
444 static void break_cow(struct rmap_item *rmap_item)
445 {
446         struct mm_struct *mm = rmap_item->mm;
447         unsigned long addr = rmap_item->address;
448         struct vm_area_struct *vma;
449
450         /*
451          * It is not an accident that whenever we want to break COW
452          * to undo, we also need to drop a reference to the anon_vma.
453          */
454         put_anon_vma(rmap_item->anon_vma);
455
456         down_read(&mm->mmap_sem);
457         vma = find_mergeable_vma(mm, addr);
458         if (vma)
459                 break_ksm(vma, addr);
460         up_read(&mm->mmap_sem);
461 }
462
463 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
464 {
465         struct mm_struct *mm = rmap_item->mm;
466         unsigned long addr = rmap_item->address;
467         struct vm_area_struct *vma;
468         struct page *page;
469
470         down_read(&mm->mmap_sem);
471         vma = find_mergeable_vma(mm, addr);
472         if (!vma)
473                 goto out;
474
475         page = follow_page(vma, addr, FOLL_GET);
476         if (IS_ERR_OR_NULL(page))
477                 goto out;
478         if (PageAnon(page)) {
479                 flush_anon_page(vma, page, addr);
480                 flush_dcache_page(page);
481         } else {
482                 put_page(page);
483 out:
484                 page = NULL;
485         }
486         up_read(&mm->mmap_sem);
487         return page;
488 }
489
490 /*
491  * This helper is used for getting right index into array of tree roots.
492  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
493  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
494  * every node has its own stable and unstable tree.
495  */
496 static inline int get_kpfn_nid(unsigned long kpfn)
497 {
498         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
499 }
500
501 static void remove_node_from_stable_tree(struct stable_node *stable_node)
502 {
503         struct rmap_item *rmap_item;
504
505         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
506                 if (rmap_item->hlist.next)
507                         ksm_pages_sharing--;
508                 else
509                         ksm_pages_shared--;
510                 put_anon_vma(rmap_item->anon_vma);
511                 rmap_item->address &= PAGE_MASK;
512                 cond_resched();
513         }
514
515         if (stable_node->head == &migrate_nodes)
516                 list_del(&stable_node->list);
517         else
518                 rb_erase(&stable_node->node,
519                          root_stable_tree + NUMA(stable_node->nid));
520         free_stable_node(stable_node);
521 }
522
523 /*
524  * get_ksm_page: checks if the page indicated by the stable node
525  * is still its ksm page, despite having held no reference to it.
526  * In which case we can trust the content of the page, and it
527  * returns the gotten page; but if the page has now been zapped,
528  * remove the stale node from the stable tree and return NULL.
529  * But beware, the stable node's page might be being migrated.
530  *
531  * You would expect the stable_node to hold a reference to the ksm page.
532  * But if it increments the page's count, swapping out has to wait for
533  * ksmd to come around again before it can free the page, which may take
534  * seconds or even minutes: much too unresponsive.  So instead we use a
535  * "keyhole reference": access to the ksm page from the stable node peeps
536  * out through its keyhole to see if that page still holds the right key,
537  * pointing back to this stable node.  This relies on freeing a PageAnon
538  * page to reset its page->mapping to NULL, and relies on no other use of
539  * a page to put something that might look like our key in page->mapping.
540  * is on its way to being freed; but it is an anomaly to bear in mind.
541  */
542 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
543 {
544         struct page *page;
545         void *expected_mapping;
546         unsigned long kpfn;
547
548         expected_mapping = (void *)((unsigned long)stable_node |
549                                         PAGE_MAPPING_KSM);
550 again:
551         kpfn = READ_ONCE(stable_node->kpfn);
552         page = pfn_to_page(kpfn);
553
554         /*
555          * page is computed from kpfn, so on most architectures reading
556          * page->mapping is naturally ordered after reading node->kpfn,
557          * but on Alpha we need to be more careful.
558          */
559         smp_read_barrier_depends();
560         if (READ_ONCE(page->mapping) != expected_mapping)
561                 goto stale;
562
563         /*
564          * We cannot do anything with the page while its refcount is 0.
565          * Usually 0 means free, or tail of a higher-order page: in which
566          * case this node is no longer referenced, and should be freed;
567          * however, it might mean that the page is under page_freeze_refs().
568          * The __remove_mapping() case is easy, again the node is now stale;
569          * but if page is swapcache in migrate_page_move_mapping(), it might
570          * still be our page, in which case it's essential to keep the node.
571          */
572         while (!get_page_unless_zero(page)) {
573                 /*
574                  * Another check for page->mapping != expected_mapping would
575                  * work here too.  We have chosen the !PageSwapCache test to
576                  * optimize the common case, when the page is or is about to
577                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
578                  * in the freeze_refs section of __remove_mapping(); but Anon
579                  * page->mapping reset to NULL later, in free_pages_prepare().
580                  */
581                 if (!PageSwapCache(page))
582                         goto stale;
583                 cpu_relax();
584         }
585
586         if (READ_ONCE(page->mapping) != expected_mapping) {
587                 put_page(page);
588                 goto stale;
589         }
590
591         if (lock_it) {
592                 lock_page(page);
593                 if (READ_ONCE(page->mapping) != expected_mapping) {
594                         unlock_page(page);
595                         put_page(page);
596                         goto stale;
597                 }
598         }
599         return page;
600
601 stale:
602         /*
603          * We come here from above when page->mapping or !PageSwapCache
604          * suggests that the node is stale; but it might be under migration.
605          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
606          * before checking whether node->kpfn has been changed.
607          */
608         smp_rmb();
609         if (READ_ONCE(stable_node->kpfn) != kpfn)
610                 goto again;
611         remove_node_from_stable_tree(stable_node);
612         return NULL;
613 }
614
615 /*
616  * Removing rmap_item from stable or unstable tree.
617  * This function will clean the information from the stable/unstable tree.
618  */
619 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
620 {
621         if (rmap_item->address & STABLE_FLAG) {
622                 struct stable_node *stable_node;
623                 struct page *page;
624
625                 stable_node = rmap_item->head;
626                 page = get_ksm_page(stable_node, true);
627                 if (!page)
628                         goto out;
629
630                 hlist_del(&rmap_item->hlist);
631                 unlock_page(page);
632                 put_page(page);
633
634                 if (!hlist_empty(&stable_node->hlist))
635                         ksm_pages_sharing--;
636                 else
637                         ksm_pages_shared--;
638
639                 put_anon_vma(rmap_item->anon_vma);
640                 rmap_item->address &= PAGE_MASK;
641
642         } else if (rmap_item->address & UNSTABLE_FLAG) {
643                 unsigned char age;
644                 /*
645                  * Usually ksmd can and must skip the rb_erase, because
646                  * root_unstable_tree was already reset to RB_ROOT.
647                  * But be careful when an mm is exiting: do the rb_erase
648                  * if this rmap_item was inserted by this scan, rather
649                  * than left over from before.
650                  */
651                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
652                 BUG_ON(age > 1);
653                 if (!age)
654                         rb_erase(&rmap_item->node,
655                                  root_unstable_tree + NUMA(rmap_item->nid));
656                 ksm_pages_unshared--;
657                 rmap_item->address &= PAGE_MASK;
658         }
659 out:
660         cond_resched();         /* we're called from many long loops */
661 }
662
663 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
664                                        struct rmap_item **rmap_list)
665 {
666         while (*rmap_list) {
667                 struct rmap_item *rmap_item = *rmap_list;
668                 *rmap_list = rmap_item->rmap_list;
669                 remove_rmap_item_from_tree(rmap_item);
670                 free_rmap_item(rmap_item);
671         }
672 }
673
674 /*
675  * Though it's very tempting to unmerge rmap_items from stable tree rather
676  * than check every pte of a given vma, the locking doesn't quite work for
677  * that - an rmap_item is assigned to the stable tree after inserting ksm
678  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
679  * rmap_items from parent to child at fork time (so as not to waste time
680  * if exit comes before the next scan reaches it).
681  *
682  * Similarly, although we'd like to remove rmap_items (so updating counts
683  * and freeing memory) when unmerging an area, it's easier to leave that
684  * to the next pass of ksmd - consider, for example, how ksmd might be
685  * in cmp_and_merge_page on one of the rmap_items we would be removing.
686  */
687 static int unmerge_ksm_pages(struct vm_area_struct *vma,
688                              unsigned long start, unsigned long end)
689 {
690         unsigned long addr;
691         int err = 0;
692
693         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
694                 if (ksm_test_exit(vma->vm_mm))
695                         break;
696                 if (signal_pending(current))
697                         err = -ERESTARTSYS;
698                 else
699                         err = break_ksm(vma, addr);
700         }
701         return err;
702 }
703
704 #ifdef CONFIG_SYSFS
705 /*
706  * Only called through the sysfs control interface:
707  */
708 static int remove_stable_node(struct stable_node *stable_node)
709 {
710         struct page *page;
711         int err;
712
713         page = get_ksm_page(stable_node, true);
714         if (!page) {
715                 /*
716                  * get_ksm_page did remove_node_from_stable_tree itself.
717                  */
718                 return 0;
719         }
720
721         if (WARN_ON_ONCE(page_mapped(page))) {
722                 /*
723                  * This should not happen: but if it does, just refuse to let
724                  * merge_across_nodes be switched - there is no need to panic.
725                  */
726                 err = -EBUSY;
727         } else {
728                 /*
729                  * The stable node did not yet appear stale to get_ksm_page(),
730                  * since that allows for an unmapped ksm page to be recognized
731                  * right up until it is freed; but the node is safe to remove.
732                  * This page might be in a pagevec waiting to be freed,
733                  * or it might be PageSwapCache (perhaps under writeback),
734                  * or it might have been removed from swapcache a moment ago.
735                  */
736                 set_page_stable_node(page, NULL);
737                 remove_node_from_stable_tree(stable_node);
738                 err = 0;
739         }
740
741         unlock_page(page);
742         put_page(page);
743         return err;
744 }
745
746 static int remove_all_stable_nodes(void)
747 {
748         struct stable_node *stable_node, *next;
749         int nid;
750         int err = 0;
751
752         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
753                 while (root_stable_tree[nid].rb_node) {
754                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
755                                                 struct stable_node, node);
756                         if (remove_stable_node(stable_node)) {
757                                 err = -EBUSY;
758                                 break;  /* proceed to next nid */
759                         }
760                         cond_resched();
761                 }
762         }
763         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
764                 if (remove_stable_node(stable_node))
765                         err = -EBUSY;
766                 cond_resched();
767         }
768         return err;
769 }
770
771 static int unmerge_and_remove_all_rmap_items(void)
772 {
773         struct mm_slot *mm_slot;
774         struct mm_struct *mm;
775         struct vm_area_struct *vma;
776         int err = 0;
777
778         spin_lock(&ksm_mmlist_lock);
779         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
780                                                 struct mm_slot, mm_list);
781         spin_unlock(&ksm_mmlist_lock);
782
783         for (mm_slot = ksm_scan.mm_slot;
784                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
785                 mm = mm_slot->mm;
786                 down_read(&mm->mmap_sem);
787                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
788                         if (ksm_test_exit(mm))
789                                 break;
790                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
791                                 continue;
792                         err = unmerge_ksm_pages(vma,
793                                                 vma->vm_start, vma->vm_end);
794                         if (err)
795                                 goto error;
796                 }
797
798                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
799                 up_read(&mm->mmap_sem);
800
801                 spin_lock(&ksm_mmlist_lock);
802                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
803                                                 struct mm_slot, mm_list);
804                 if (ksm_test_exit(mm)) {
805                         hash_del(&mm_slot->link);
806                         list_del(&mm_slot->mm_list);
807                         spin_unlock(&ksm_mmlist_lock);
808
809                         free_mm_slot(mm_slot);
810                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
811                         mmdrop(mm);
812                 } else
813                         spin_unlock(&ksm_mmlist_lock);
814         }
815
816         /* Clean up stable nodes, but don't worry if some are still busy */
817         remove_all_stable_nodes();
818         ksm_scan.seqnr = 0;
819         return 0;
820
821 error:
822         up_read(&mm->mmap_sem);
823         spin_lock(&ksm_mmlist_lock);
824         ksm_scan.mm_slot = &ksm_mm_head;
825         spin_unlock(&ksm_mmlist_lock);
826         return err;
827 }
828 #endif /* CONFIG_SYSFS */
829
830 static u32 calc_checksum(struct page *page)
831 {
832         u32 checksum;
833         void *addr = kmap_atomic(page);
834         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835         kunmap_atomic(addr);
836         return checksum;
837 }
838
839 static int memcmp_pages(struct page *page1, struct page *page2)
840 {
841         char *addr1, *addr2;
842         int ret;
843
844         addr1 = kmap_atomic(page1);
845         addr2 = kmap_atomic(page2);
846         ret = memcmp(addr1, addr2, PAGE_SIZE);
847         kunmap_atomic(addr2);
848         kunmap_atomic(addr1);
849         return ret;
850 }
851
852 static inline int pages_identical(struct page *page1, struct page *page2)
853 {
854         return !memcmp_pages(page1, page2);
855 }
856
857 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858                               pte_t *orig_pte)
859 {
860         struct mm_struct *mm = vma->vm_mm;
861         struct page_vma_mapped_walk pvmw = {
862                 .page = page,
863                 .vma = vma,
864         };
865         int swapped;
866         int err = -EFAULT;
867         unsigned long mmun_start;       /* For mmu_notifiers */
868         unsigned long mmun_end;         /* For mmu_notifiers */
869
870         pvmw.address = page_address_in_vma(page, vma);
871         if (pvmw.address == -EFAULT)
872                 goto out;
873
874         BUG_ON(PageTransCompound(page));
875
876         mmun_start = pvmw.address;
877         mmun_end   = pvmw.address + PAGE_SIZE;
878         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879
880         if (!page_vma_mapped_walk(&pvmw))
881                 goto out_mn;
882         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
883                 goto out_unlock;
884
885         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
886             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
887                 pte_t entry;
888
889                 swapped = PageSwapCache(page);
890                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
891                 /*
892                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
893                  * take any lock, therefore the check that we are going to make
894                  * with the pagecount against the mapcount is racey and
895                  * O_DIRECT can happen right after the check.
896                  * So we clear the pte and flush the tlb before the check
897                  * this assure us that no O_DIRECT can happen after the check
898                  * or in the middle of the check.
899                  */
900                 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
901                 /*
902                  * Check that no O_DIRECT or similar I/O is in progress on the
903                  * page
904                  */
905                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
906                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
907                         goto out_unlock;
908                 }
909                 if (pte_dirty(entry))
910                         set_page_dirty(page);
911
912                 if (pte_protnone(entry))
913                         entry = pte_mkclean(pte_clear_savedwrite(entry));
914                 else
915                         entry = pte_mkclean(pte_wrprotect(entry));
916                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
917         }
918         *orig_pte = *pvmw.pte;
919         err = 0;
920
921 out_unlock:
922         page_vma_mapped_walk_done(&pvmw);
923 out_mn:
924         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
925 out:
926         return err;
927 }
928
929 /**
930  * replace_page - replace page in vma by new ksm page
931  * @vma:      vma that holds the pte pointing to page
932  * @page:     the page we are replacing by kpage
933  * @kpage:    the ksm page we replace page by
934  * @orig_pte: the original value of the pte
935  *
936  * Returns 0 on success, -EFAULT on failure.
937  */
938 static int replace_page(struct vm_area_struct *vma, struct page *page,
939                         struct page *kpage, pte_t orig_pte)
940 {
941         struct mm_struct *mm = vma->vm_mm;
942         pmd_t *pmd;
943         pte_t *ptep;
944         pte_t newpte;
945         spinlock_t *ptl;
946         unsigned long addr;
947         int err = -EFAULT;
948         unsigned long mmun_start;       /* For mmu_notifiers */
949         unsigned long mmun_end;         /* For mmu_notifiers */
950
951         addr = page_address_in_vma(page, vma);
952         if (addr == -EFAULT)
953                 goto out;
954
955         pmd = mm_find_pmd(mm, addr);
956         if (!pmd)
957                 goto out;
958
959         mmun_start = addr;
960         mmun_end   = addr + PAGE_SIZE;
961         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
962
963         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
964         if (!pte_same(*ptep, orig_pte)) {
965                 pte_unmap_unlock(ptep, ptl);
966                 goto out_mn;
967         }
968
969         /*
970          * No need to check ksm_use_zero_pages here: we can only have a
971          * zero_page here if ksm_use_zero_pages was enabled alreaady.
972          */
973         if (!is_zero_pfn(page_to_pfn(kpage))) {
974                 get_page(kpage);
975                 page_add_anon_rmap(kpage, vma, addr, false);
976                 newpte = mk_pte(kpage, vma->vm_page_prot);
977         } else {
978                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
979                                                vma->vm_page_prot));
980         }
981
982         flush_cache_page(vma, addr, pte_pfn(*ptep));
983         ptep_clear_flush_notify(vma, addr, ptep);
984         set_pte_at_notify(mm, addr, ptep, newpte);
985
986         page_remove_rmap(page, false);
987         if (!page_mapped(page))
988                 try_to_free_swap(page);
989         put_page(page);
990
991         pte_unmap_unlock(ptep, ptl);
992         err = 0;
993 out_mn:
994         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
995 out:
996         return err;
997 }
998
999 /*
1000  * try_to_merge_one_page - take two pages and merge them into one
1001  * @vma: the vma that holds the pte pointing to page
1002  * @page: the PageAnon page that we want to replace with kpage
1003  * @kpage: the PageKsm page that we want to map instead of page,
1004  *         or NULL the first time when we want to use page as kpage.
1005  *
1006  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1007  */
1008 static int try_to_merge_one_page(struct vm_area_struct *vma,
1009                                  struct page *page, struct page *kpage)
1010 {
1011         pte_t orig_pte = __pte(0);
1012         int err = -EFAULT;
1013
1014         if (page == kpage)                      /* ksm page forked */
1015                 return 0;
1016
1017         if (!PageAnon(page))
1018                 goto out;
1019
1020         /*
1021          * We need the page lock to read a stable PageSwapCache in
1022          * write_protect_page().  We use trylock_page() instead of
1023          * lock_page() because we don't want to wait here - we
1024          * prefer to continue scanning and merging different pages,
1025          * then come back to this page when it is unlocked.
1026          */
1027         if (!trylock_page(page))
1028                 goto out;
1029
1030         if (PageTransCompound(page)) {
1031                 if (split_huge_page(page))
1032                         goto out_unlock;
1033         }
1034
1035         /*
1036          * If this anonymous page is mapped only here, its pte may need
1037          * to be write-protected.  If it's mapped elsewhere, all of its
1038          * ptes are necessarily already write-protected.  But in either
1039          * case, we need to lock and check page_count is not raised.
1040          */
1041         if (write_protect_page(vma, page, &orig_pte) == 0) {
1042                 if (!kpage) {
1043                         /*
1044                          * While we hold page lock, upgrade page from
1045                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1046                          * stable_tree_insert() will update stable_node.
1047                          */
1048                         set_page_stable_node(page, NULL);
1049                         mark_page_accessed(page);
1050                         /*
1051                          * Page reclaim just frees a clean page with no dirty
1052                          * ptes: make sure that the ksm page would be swapped.
1053                          */
1054                         if (!PageDirty(page))
1055                                 SetPageDirty(page);
1056                         err = 0;
1057                 } else if (pages_identical(page, kpage))
1058                         err = replace_page(vma, page, kpage, orig_pte);
1059         }
1060
1061         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1062                 munlock_vma_page(page);
1063                 if (!PageMlocked(kpage)) {
1064                         unlock_page(page);
1065                         lock_page(kpage);
1066                         mlock_vma_page(kpage);
1067                         page = kpage;           /* for final unlock */
1068                 }
1069         }
1070
1071 out_unlock:
1072         unlock_page(page);
1073 out:
1074         return err;
1075 }
1076
1077 /*
1078  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1079  * but no new kernel page is allocated: kpage must already be a ksm page.
1080  *
1081  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1082  */
1083 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1084                                       struct page *page, struct page *kpage)
1085 {
1086         struct mm_struct *mm = rmap_item->mm;
1087         struct vm_area_struct *vma;
1088         int err = -EFAULT;
1089
1090         down_read(&mm->mmap_sem);
1091         vma = find_mergeable_vma(mm, rmap_item->address);
1092         if (!vma)
1093                 goto out;
1094
1095         err = try_to_merge_one_page(vma, page, kpage);
1096         if (err)
1097                 goto out;
1098
1099         /* Unstable nid is in union with stable anon_vma: remove first */
1100         remove_rmap_item_from_tree(rmap_item);
1101
1102         /* Must get reference to anon_vma while still holding mmap_sem */
1103         rmap_item->anon_vma = vma->anon_vma;
1104         get_anon_vma(vma->anon_vma);
1105 out:
1106         up_read(&mm->mmap_sem);
1107         return err;
1108 }
1109
1110 /*
1111  * try_to_merge_two_pages - take two identical pages and prepare them
1112  * to be merged into one page.
1113  *
1114  * This function returns the kpage if we successfully merged two identical
1115  * pages into one ksm page, NULL otherwise.
1116  *
1117  * Note that this function upgrades page to ksm page: if one of the pages
1118  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1119  */
1120 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1121                                            struct page *page,
1122                                            struct rmap_item *tree_rmap_item,
1123                                            struct page *tree_page)
1124 {
1125         int err;
1126
1127         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1128         if (!err) {
1129                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1130                                                         tree_page, page);
1131                 /*
1132                  * If that fails, we have a ksm page with only one pte
1133                  * pointing to it: so break it.
1134                  */
1135                 if (err)
1136                         break_cow(rmap_item);
1137         }
1138         return err ? NULL : page;
1139 }
1140
1141 /*
1142  * stable_tree_search - search for page inside the stable tree
1143  *
1144  * This function checks if there is a page inside the stable tree
1145  * with identical content to the page that we are scanning right now.
1146  *
1147  * This function returns the stable tree node of identical content if found,
1148  * NULL otherwise.
1149  */
1150 static struct page *stable_tree_search(struct page *page)
1151 {
1152         int nid;
1153         struct rb_root *root;
1154         struct rb_node **new;
1155         struct rb_node *parent;
1156         struct stable_node *stable_node;
1157         struct stable_node *page_node;
1158
1159         page_node = page_stable_node(page);
1160         if (page_node && page_node->head != &migrate_nodes) {
1161                 /* ksm page forked */
1162                 get_page(page);
1163                 return page;
1164         }
1165
1166         nid = get_kpfn_nid(page_to_pfn(page));
1167         root = root_stable_tree + nid;
1168 again:
1169         new = &root->rb_node;
1170         parent = NULL;
1171
1172         while (*new) {
1173                 struct page *tree_page;
1174                 int ret;
1175
1176                 cond_resched();
1177                 stable_node = rb_entry(*new, struct stable_node, node);
1178                 tree_page = get_ksm_page(stable_node, false);
1179                 if (!tree_page) {
1180                         /*
1181                          * If we walked over a stale stable_node,
1182                          * get_ksm_page() will call rb_erase() and it
1183                          * may rebalance the tree from under us. So
1184                          * restart the search from scratch. Returning
1185                          * NULL would be safe too, but we'd generate
1186                          * false negative insertions just because some
1187                          * stable_node was stale.
1188                          */
1189                         goto again;
1190                 }
1191
1192                 ret = memcmp_pages(page, tree_page);
1193                 put_page(tree_page);
1194
1195                 parent = *new;
1196                 if (ret < 0)
1197                         new = &parent->rb_left;
1198                 else if (ret > 0)
1199                         new = &parent->rb_right;
1200                 else {
1201                         /*
1202                          * Lock and unlock the stable_node's page (which
1203                          * might already have been migrated) so that page
1204                          * migration is sure to notice its raised count.
1205                          * It would be more elegant to return stable_node
1206                          * than kpage, but that involves more changes.
1207                          */
1208                         tree_page = get_ksm_page(stable_node, true);
1209                         if (tree_page) {
1210                                 unlock_page(tree_page);
1211                                 if (get_kpfn_nid(stable_node->kpfn) !=
1212                                                 NUMA(stable_node->nid)) {
1213                                         put_page(tree_page);
1214                                         goto replace;
1215                                 }
1216                                 return tree_page;
1217                         }
1218                         /*
1219                          * There is now a place for page_node, but the tree may
1220                          * have been rebalanced, so re-evaluate parent and new.
1221                          */
1222                         if (page_node)
1223                                 goto again;
1224                         return NULL;
1225                 }
1226         }
1227
1228         if (!page_node)
1229                 return NULL;
1230
1231         list_del(&page_node->list);
1232         DO_NUMA(page_node->nid = nid);
1233         rb_link_node(&page_node->node, parent, new);
1234         rb_insert_color(&page_node->node, root);
1235         get_page(page);
1236         return page;
1237
1238 replace:
1239         if (page_node) {
1240                 list_del(&page_node->list);
1241                 DO_NUMA(page_node->nid = nid);
1242                 rb_replace_node(&stable_node->node, &page_node->node, root);
1243                 get_page(page);
1244         } else {
1245                 rb_erase(&stable_node->node, root);
1246                 page = NULL;
1247         }
1248         stable_node->head = &migrate_nodes;
1249         list_add(&stable_node->list, stable_node->head);
1250         return page;
1251 }
1252
1253 /*
1254  * stable_tree_insert - insert stable tree node pointing to new ksm page
1255  * into the stable tree.
1256  *
1257  * This function returns the stable tree node just allocated on success,
1258  * NULL otherwise.
1259  */
1260 static struct stable_node *stable_tree_insert(struct page *kpage)
1261 {
1262         int nid;
1263         unsigned long kpfn;
1264         struct rb_root *root;
1265         struct rb_node **new;
1266         struct rb_node *parent;
1267         struct stable_node *stable_node;
1268
1269         kpfn = page_to_pfn(kpage);
1270         nid = get_kpfn_nid(kpfn);
1271         root = root_stable_tree + nid;
1272 again:
1273         parent = NULL;
1274         new = &root->rb_node;
1275
1276         while (*new) {
1277                 struct page *tree_page;
1278                 int ret;
1279
1280                 cond_resched();
1281                 stable_node = rb_entry(*new, struct stable_node, node);
1282                 tree_page = get_ksm_page(stable_node, false);
1283                 if (!tree_page) {
1284                         /*
1285                          * If we walked over a stale stable_node,
1286                          * get_ksm_page() will call rb_erase() and it
1287                          * may rebalance the tree from under us. So
1288                          * restart the search from scratch. Returning
1289                          * NULL would be safe too, but we'd generate
1290                          * false negative insertions just because some
1291                          * stable_node was stale.
1292                          */
1293                         goto again;
1294                 }
1295
1296                 ret = memcmp_pages(kpage, tree_page);
1297                 put_page(tree_page);
1298
1299                 parent = *new;
1300                 if (ret < 0)
1301                         new = &parent->rb_left;
1302                 else if (ret > 0)
1303                         new = &parent->rb_right;
1304                 else {
1305                         /*
1306                          * It is not a bug that stable_tree_search() didn't
1307                          * find this node: because at that time our page was
1308                          * not yet write-protected, so may have changed since.
1309                          */
1310                         return NULL;
1311                 }
1312         }
1313
1314         stable_node = alloc_stable_node();
1315         if (!stable_node)
1316                 return NULL;
1317
1318         INIT_HLIST_HEAD(&stable_node->hlist);
1319         stable_node->kpfn = kpfn;
1320         set_page_stable_node(kpage, stable_node);
1321         DO_NUMA(stable_node->nid = nid);
1322         rb_link_node(&stable_node->node, parent, new);
1323         rb_insert_color(&stable_node->node, root);
1324
1325         return stable_node;
1326 }
1327
1328 /*
1329  * unstable_tree_search_insert - search for identical page,
1330  * else insert rmap_item into the unstable tree.
1331  *
1332  * This function searches for a page in the unstable tree identical to the
1333  * page currently being scanned; and if no identical page is found in the
1334  * tree, we insert rmap_item as a new object into the unstable tree.
1335  *
1336  * This function returns pointer to rmap_item found to be identical
1337  * to the currently scanned page, NULL otherwise.
1338  *
1339  * This function does both searching and inserting, because they share
1340  * the same walking algorithm in an rbtree.
1341  */
1342 static
1343 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1344                                               struct page *page,
1345                                               struct page **tree_pagep)
1346 {
1347         struct rb_node **new;
1348         struct rb_root *root;
1349         struct rb_node *parent = NULL;
1350         int nid;
1351
1352         nid = get_kpfn_nid(page_to_pfn(page));
1353         root = root_unstable_tree + nid;
1354         new = &root->rb_node;
1355
1356         while (*new) {
1357                 struct rmap_item *tree_rmap_item;
1358                 struct page *tree_page;
1359                 int ret;
1360
1361                 cond_resched();
1362                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1363                 tree_page = get_mergeable_page(tree_rmap_item);
1364                 if (!tree_page)
1365                         return NULL;
1366
1367                 /*
1368                  * Don't substitute a ksm page for a forked page.
1369                  */
1370                 if (page == tree_page) {
1371                         put_page(tree_page);
1372                         return NULL;
1373                 }
1374
1375                 ret = memcmp_pages(page, tree_page);
1376
1377                 parent = *new;
1378                 if (ret < 0) {
1379                         put_page(tree_page);
1380                         new = &parent->rb_left;
1381                 } else if (ret > 0) {
1382                         put_page(tree_page);
1383                         new = &parent->rb_right;
1384                 } else if (!ksm_merge_across_nodes &&
1385                            page_to_nid(tree_page) != nid) {
1386                         /*
1387                          * If tree_page has been migrated to another NUMA node,
1388                          * it will be flushed out and put in the right unstable
1389                          * tree next time: only merge with it when across_nodes.
1390                          */
1391                         put_page(tree_page);
1392                         return NULL;
1393                 } else {
1394                         *tree_pagep = tree_page;
1395                         return tree_rmap_item;
1396                 }
1397         }
1398
1399         rmap_item->address |= UNSTABLE_FLAG;
1400         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1401         DO_NUMA(rmap_item->nid = nid);
1402         rb_link_node(&rmap_item->node, parent, new);
1403         rb_insert_color(&rmap_item->node, root);
1404
1405         ksm_pages_unshared++;
1406         return NULL;
1407 }
1408
1409 /*
1410  * stable_tree_append - add another rmap_item to the linked list of
1411  * rmap_items hanging off a given node of the stable tree, all sharing
1412  * the same ksm page.
1413  */
1414 static void stable_tree_append(struct rmap_item *rmap_item,
1415                                struct stable_node *stable_node)
1416 {
1417         rmap_item->head = stable_node;
1418         rmap_item->address |= STABLE_FLAG;
1419         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1420
1421         if (rmap_item->hlist.next)
1422                 ksm_pages_sharing++;
1423         else
1424                 ksm_pages_shared++;
1425 }
1426
1427 /*
1428  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1429  * if not, compare checksum to previous and if it's the same, see if page can
1430  * be inserted into the unstable tree, or merged with a page already there and
1431  * both transferred to the stable tree.
1432  *
1433  * @page: the page that we are searching identical page to.
1434  * @rmap_item: the reverse mapping into the virtual address of this page
1435  */
1436 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1437 {
1438         struct rmap_item *tree_rmap_item;
1439         struct page *tree_page = NULL;
1440         struct stable_node *stable_node;
1441         struct page *kpage;
1442         unsigned int checksum;
1443         int err;
1444
1445         stable_node = page_stable_node(page);
1446         if (stable_node) {
1447                 if (stable_node->head != &migrate_nodes &&
1448                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1449                         rb_erase(&stable_node->node,
1450                                  root_stable_tree + NUMA(stable_node->nid));
1451                         stable_node->head = &migrate_nodes;
1452                         list_add(&stable_node->list, stable_node->head);
1453                 }
1454                 if (stable_node->head != &migrate_nodes &&
1455                     rmap_item->head == stable_node)
1456                         return;
1457         }
1458
1459         /* We first start with searching the page inside the stable tree */
1460         kpage = stable_tree_search(page);
1461         if (kpage == page && rmap_item->head == stable_node) {
1462                 put_page(kpage);
1463                 return;
1464         }
1465
1466         remove_rmap_item_from_tree(rmap_item);
1467
1468         if (kpage) {
1469                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1470                 if (!err) {
1471                         /*
1472                          * The page was successfully merged:
1473                          * add its rmap_item to the stable tree.
1474                          */
1475                         lock_page(kpage);
1476                         stable_tree_append(rmap_item, page_stable_node(kpage));
1477                         unlock_page(kpage);
1478                 }
1479                 put_page(kpage);
1480                 return;
1481         }
1482
1483         /*
1484          * If the hash value of the page has changed from the last time
1485          * we calculated it, this page is changing frequently: therefore we
1486          * don't want to insert it in the unstable tree, and we don't want
1487          * to waste our time searching for something identical to it there.
1488          */
1489         checksum = calc_checksum(page);
1490         if (rmap_item->oldchecksum != checksum) {
1491                 rmap_item->oldchecksum = checksum;
1492                 return;
1493         }
1494
1495         /*
1496          * Same checksum as an empty page. We attempt to merge it with the
1497          * appropriate zero page if the user enabled this via sysfs.
1498          */
1499         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1500                 struct vm_area_struct *vma;
1501
1502                 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1503                 err = try_to_merge_one_page(vma, page,
1504                                             ZERO_PAGE(rmap_item->address));
1505                 /*
1506                  * In case of failure, the page was not really empty, so we
1507                  * need to continue. Otherwise we're done.
1508                  */
1509                 if (!err)
1510                         return;
1511         }
1512         tree_rmap_item =
1513                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1514         if (tree_rmap_item) {
1515                 kpage = try_to_merge_two_pages(rmap_item, page,
1516                                                 tree_rmap_item, tree_page);
1517                 put_page(tree_page);
1518                 if (kpage) {
1519                         /*
1520                          * The pages were successfully merged: insert new
1521                          * node in the stable tree and add both rmap_items.
1522                          */
1523                         lock_page(kpage);
1524                         stable_node = stable_tree_insert(kpage);
1525                         if (stable_node) {
1526                                 stable_tree_append(tree_rmap_item, stable_node);
1527                                 stable_tree_append(rmap_item, stable_node);
1528                         }
1529                         unlock_page(kpage);
1530
1531                         /*
1532                          * If we fail to insert the page into the stable tree,
1533                          * we will have 2 virtual addresses that are pointing
1534                          * to a ksm page left outside the stable tree,
1535                          * in which case we need to break_cow on both.
1536                          */
1537                         if (!stable_node) {
1538                                 break_cow(tree_rmap_item);
1539                                 break_cow(rmap_item);
1540                         }
1541                 }
1542         }
1543 }
1544
1545 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1546                                             struct rmap_item **rmap_list,
1547                                             unsigned long addr)
1548 {
1549         struct rmap_item *rmap_item;
1550
1551         while (*rmap_list) {
1552                 rmap_item = *rmap_list;
1553                 if ((rmap_item->address & PAGE_MASK) == addr)
1554                         return rmap_item;
1555                 if (rmap_item->address > addr)
1556                         break;
1557                 *rmap_list = rmap_item->rmap_list;
1558                 remove_rmap_item_from_tree(rmap_item);
1559                 free_rmap_item(rmap_item);
1560         }
1561
1562         rmap_item = alloc_rmap_item();
1563         if (rmap_item) {
1564                 /* It has already been zeroed */
1565                 rmap_item->mm = mm_slot->mm;
1566                 rmap_item->address = addr;
1567                 rmap_item->rmap_list = *rmap_list;
1568                 *rmap_list = rmap_item;
1569         }
1570         return rmap_item;
1571 }
1572
1573 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1574 {
1575         struct mm_struct *mm;
1576         struct mm_slot *slot;
1577         struct vm_area_struct *vma;
1578         struct rmap_item *rmap_item;
1579         int nid;
1580
1581         if (list_empty(&ksm_mm_head.mm_list))
1582                 return NULL;
1583
1584         slot = ksm_scan.mm_slot;
1585         if (slot == &ksm_mm_head) {
1586                 /*
1587                  * A number of pages can hang around indefinitely on per-cpu
1588                  * pagevecs, raised page count preventing write_protect_page
1589                  * from merging them.  Though it doesn't really matter much,
1590                  * it is puzzling to see some stuck in pages_volatile until
1591                  * other activity jostles them out, and they also prevented
1592                  * LTP's KSM test from succeeding deterministically; so drain
1593                  * them here (here rather than on entry to ksm_do_scan(),
1594                  * so we don't IPI too often when pages_to_scan is set low).
1595                  */
1596                 lru_add_drain_all();
1597
1598                 /*
1599                  * Whereas stale stable_nodes on the stable_tree itself
1600                  * get pruned in the regular course of stable_tree_search(),
1601                  * those moved out to the migrate_nodes list can accumulate:
1602                  * so prune them once before each full scan.
1603                  */
1604                 if (!ksm_merge_across_nodes) {
1605                         struct stable_node *stable_node, *next;
1606                         struct page *page;
1607
1608                         list_for_each_entry_safe(stable_node, next,
1609                                                  &migrate_nodes, list) {
1610                                 page = get_ksm_page(stable_node, false);
1611                                 if (page)
1612                                         put_page(page);
1613                                 cond_resched();
1614                         }
1615                 }
1616
1617                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1618                         root_unstable_tree[nid] = RB_ROOT;
1619
1620                 spin_lock(&ksm_mmlist_lock);
1621                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1622                 ksm_scan.mm_slot = slot;
1623                 spin_unlock(&ksm_mmlist_lock);
1624                 /*
1625                  * Although we tested list_empty() above, a racing __ksm_exit
1626                  * of the last mm on the list may have removed it since then.
1627                  */
1628                 if (slot == &ksm_mm_head)
1629                         return NULL;
1630 next_mm:
1631                 ksm_scan.address = 0;
1632                 ksm_scan.rmap_list = &slot->rmap_list;
1633         }
1634
1635         mm = slot->mm;
1636         down_read(&mm->mmap_sem);
1637         if (ksm_test_exit(mm))
1638                 vma = NULL;
1639         else
1640                 vma = find_vma(mm, ksm_scan.address);
1641
1642         for (; vma; vma = vma->vm_next) {
1643                 if (!(vma->vm_flags & VM_MERGEABLE))
1644                         continue;
1645                 if (ksm_scan.address < vma->vm_start)
1646                         ksm_scan.address = vma->vm_start;
1647                 if (!vma->anon_vma)
1648                         ksm_scan.address = vma->vm_end;
1649
1650                 while (ksm_scan.address < vma->vm_end) {
1651                         if (ksm_test_exit(mm))
1652                                 break;
1653                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1654                         if (IS_ERR_OR_NULL(*page)) {
1655                                 ksm_scan.address += PAGE_SIZE;
1656                                 cond_resched();
1657                                 continue;
1658                         }
1659                         if (PageAnon(*page)) {
1660                                 flush_anon_page(vma, *page, ksm_scan.address);
1661                                 flush_dcache_page(*page);
1662                                 rmap_item = get_next_rmap_item(slot,
1663                                         ksm_scan.rmap_list, ksm_scan.address);
1664                                 if (rmap_item) {
1665                                         ksm_scan.rmap_list =
1666                                                         &rmap_item->rmap_list;
1667                                         ksm_scan.address += PAGE_SIZE;
1668                                 } else
1669                                         put_page(*page);
1670                                 up_read(&mm->mmap_sem);
1671                                 return rmap_item;
1672                         }
1673                         put_page(*page);
1674                         ksm_scan.address += PAGE_SIZE;
1675                         cond_resched();
1676                 }
1677         }
1678
1679         if (ksm_test_exit(mm)) {
1680                 ksm_scan.address = 0;
1681                 ksm_scan.rmap_list = &slot->rmap_list;
1682         }
1683         /*
1684          * Nuke all the rmap_items that are above this current rmap:
1685          * because there were no VM_MERGEABLE vmas with such addresses.
1686          */
1687         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1688
1689         spin_lock(&ksm_mmlist_lock);
1690         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1691                                                 struct mm_slot, mm_list);
1692         if (ksm_scan.address == 0) {
1693                 /*
1694                  * We've completed a full scan of all vmas, holding mmap_sem
1695                  * throughout, and found no VM_MERGEABLE: so do the same as
1696                  * __ksm_exit does to remove this mm from all our lists now.
1697                  * This applies either when cleaning up after __ksm_exit
1698                  * (but beware: we can reach here even before __ksm_exit),
1699                  * or when all VM_MERGEABLE areas have been unmapped (and
1700                  * mmap_sem then protects against race with MADV_MERGEABLE).
1701                  */
1702                 hash_del(&slot->link);
1703                 list_del(&slot->mm_list);
1704                 spin_unlock(&ksm_mmlist_lock);
1705
1706                 free_mm_slot(slot);
1707                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1708                 up_read(&mm->mmap_sem);
1709                 mmdrop(mm);
1710         } else {
1711                 up_read(&mm->mmap_sem);
1712                 /*
1713                  * up_read(&mm->mmap_sem) first because after
1714                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1715                  * already have been freed under us by __ksm_exit()
1716                  * because the "mm_slot" is still hashed and
1717                  * ksm_scan.mm_slot doesn't point to it anymore.
1718                  */
1719                 spin_unlock(&ksm_mmlist_lock);
1720         }
1721
1722         /* Repeat until we've completed scanning the whole list */
1723         slot = ksm_scan.mm_slot;
1724         if (slot != &ksm_mm_head)
1725                 goto next_mm;
1726
1727         ksm_scan.seqnr++;
1728         return NULL;
1729 }
1730
1731 /**
1732  * ksm_do_scan  - the ksm scanner main worker function.
1733  * @scan_npages - number of pages we want to scan before we return.
1734  */
1735 static void ksm_do_scan(unsigned int scan_npages)
1736 {
1737         struct rmap_item *rmap_item;
1738         struct page *uninitialized_var(page);
1739
1740         while (scan_npages-- && likely(!freezing(current))) {
1741                 cond_resched();
1742                 rmap_item = scan_get_next_rmap_item(&page);
1743                 if (!rmap_item)
1744                         return;
1745                 cmp_and_merge_page(page, rmap_item);
1746                 put_page(page);
1747         }
1748 }
1749
1750 static int ksmd_should_run(void)
1751 {
1752         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1753 }
1754
1755 static int ksm_scan_thread(void *nothing)
1756 {
1757         set_freezable();
1758         set_user_nice(current, 5);
1759
1760         while (!kthread_should_stop()) {
1761                 mutex_lock(&ksm_thread_mutex);
1762                 wait_while_offlining();
1763                 if (ksmd_should_run())
1764                         ksm_do_scan(ksm_thread_pages_to_scan);
1765                 mutex_unlock(&ksm_thread_mutex);
1766
1767                 try_to_freeze();
1768
1769                 if (ksmd_should_run()) {
1770                         schedule_timeout_interruptible(
1771                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1772                 } else {
1773                         wait_event_freezable(ksm_thread_wait,
1774                                 ksmd_should_run() || kthread_should_stop());
1775                 }
1776         }
1777         return 0;
1778 }
1779
1780 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1781                 unsigned long end, int advice, unsigned long *vm_flags)
1782 {
1783         struct mm_struct *mm = vma->vm_mm;
1784         int err;
1785
1786         switch (advice) {
1787         case MADV_MERGEABLE:
1788                 /*
1789                  * Be somewhat over-protective for now!
1790                  */
1791                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1792                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1793                                  VM_HUGETLB | VM_MIXEDMAP))
1794                         return 0;               /* just ignore the advice */
1795
1796 #ifdef VM_SAO
1797                 if (*vm_flags & VM_SAO)
1798                         return 0;
1799 #endif
1800
1801                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1802                         err = __ksm_enter(mm);
1803                         if (err)
1804                                 return err;
1805                 }
1806
1807                 *vm_flags |= VM_MERGEABLE;
1808                 break;
1809
1810         case MADV_UNMERGEABLE:
1811                 if (!(*vm_flags & VM_MERGEABLE))
1812                         return 0;               /* just ignore the advice */
1813
1814                 if (vma->anon_vma) {
1815                         err = unmerge_ksm_pages(vma, start, end);
1816                         if (err)
1817                                 return err;
1818                 }
1819
1820                 *vm_flags &= ~VM_MERGEABLE;
1821                 break;
1822         }
1823
1824         return 0;
1825 }
1826
1827 int __ksm_enter(struct mm_struct *mm)
1828 {
1829         struct mm_slot *mm_slot;
1830         int needs_wakeup;
1831
1832         mm_slot = alloc_mm_slot();
1833         if (!mm_slot)
1834                 return -ENOMEM;
1835
1836         /* Check ksm_run too?  Would need tighter locking */
1837         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1838
1839         spin_lock(&ksm_mmlist_lock);
1840         insert_to_mm_slots_hash(mm, mm_slot);
1841         /*
1842          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1843          * insert just behind the scanning cursor, to let the area settle
1844          * down a little; when fork is followed by immediate exec, we don't
1845          * want ksmd to waste time setting up and tearing down an rmap_list.
1846          *
1847          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1848          * scanning cursor, otherwise KSM pages in newly forked mms will be
1849          * missed: then we might as well insert at the end of the list.
1850          */
1851         if (ksm_run & KSM_RUN_UNMERGE)
1852                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1853         else
1854                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1855         spin_unlock(&ksm_mmlist_lock);
1856
1857         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1858         mmgrab(mm);
1859
1860         if (needs_wakeup)
1861                 wake_up_interruptible(&ksm_thread_wait);
1862
1863         return 0;
1864 }
1865
1866 void __ksm_exit(struct mm_struct *mm)
1867 {
1868         struct mm_slot *mm_slot;
1869         int easy_to_free = 0;
1870
1871         /*
1872          * This process is exiting: if it's straightforward (as is the
1873          * case when ksmd was never running), free mm_slot immediately.
1874          * But if it's at the cursor or has rmap_items linked to it, use
1875          * mmap_sem to synchronize with any break_cows before pagetables
1876          * are freed, and leave the mm_slot on the list for ksmd to free.
1877          * Beware: ksm may already have noticed it exiting and freed the slot.
1878          */
1879
1880         spin_lock(&ksm_mmlist_lock);
1881         mm_slot = get_mm_slot(mm);
1882         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1883                 if (!mm_slot->rmap_list) {
1884                         hash_del(&mm_slot->link);
1885                         list_del(&mm_slot->mm_list);
1886                         easy_to_free = 1;
1887                 } else {
1888                         list_move(&mm_slot->mm_list,
1889                                   &ksm_scan.mm_slot->mm_list);
1890                 }
1891         }
1892         spin_unlock(&ksm_mmlist_lock);
1893
1894         if (easy_to_free) {
1895                 free_mm_slot(mm_slot);
1896                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1897                 mmdrop(mm);
1898         } else if (mm_slot) {
1899                 down_write(&mm->mmap_sem);
1900                 up_write(&mm->mmap_sem);
1901         }
1902 }
1903
1904 struct page *ksm_might_need_to_copy(struct page *page,
1905                         struct vm_area_struct *vma, unsigned long address)
1906 {
1907         struct anon_vma *anon_vma = page_anon_vma(page);
1908         struct page *new_page;
1909
1910         if (PageKsm(page)) {
1911                 if (page_stable_node(page) &&
1912                     !(ksm_run & KSM_RUN_UNMERGE))
1913                         return page;    /* no need to copy it */
1914         } else if (!anon_vma) {
1915                 return page;            /* no need to copy it */
1916         } else if (anon_vma->root == vma->anon_vma->root &&
1917                  page->index == linear_page_index(vma, address)) {
1918                 return page;            /* still no need to copy it */
1919         }
1920         if (!PageUptodate(page))
1921                 return page;            /* let do_swap_page report the error */
1922
1923         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1924         if (new_page) {
1925                 copy_user_highpage(new_page, page, address, vma);
1926
1927                 SetPageDirty(new_page);
1928                 __SetPageUptodate(new_page);
1929                 __SetPageLocked(new_page);
1930         }
1931
1932         return new_page;
1933 }
1934
1935 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1936 {
1937         struct stable_node *stable_node;
1938         struct rmap_item *rmap_item;
1939         int search_new_forks = 0;
1940
1941         VM_BUG_ON_PAGE(!PageKsm(page), page);
1942
1943         /*
1944          * Rely on the page lock to protect against concurrent modifications
1945          * to that page's node of the stable tree.
1946          */
1947         VM_BUG_ON_PAGE(!PageLocked(page), page);
1948
1949         stable_node = page_stable_node(page);
1950         if (!stable_node)
1951                 return;
1952 again:
1953         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1954                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1955                 struct anon_vma_chain *vmac;
1956                 struct vm_area_struct *vma;
1957
1958                 cond_resched();
1959                 anon_vma_lock_read(anon_vma);
1960                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1961                                                0, ULONG_MAX) {
1962                         cond_resched();
1963                         vma = vmac->vma;
1964                         if (rmap_item->address < vma->vm_start ||
1965                             rmap_item->address >= vma->vm_end)
1966                                 continue;
1967                         /*
1968                          * Initially we examine only the vma which covers this
1969                          * rmap_item; but later, if there is still work to do,
1970                          * we examine covering vmas in other mms: in case they
1971                          * were forked from the original since ksmd passed.
1972                          */
1973                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1974                                 continue;
1975
1976                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1977                                 continue;
1978
1979                         if (!rwc->rmap_one(page, vma,
1980                                         rmap_item->address, rwc->arg)) {
1981                                 anon_vma_unlock_read(anon_vma);
1982                                 return;
1983                         }
1984                         if (rwc->done && rwc->done(page)) {
1985                                 anon_vma_unlock_read(anon_vma);
1986                                 return;
1987                         }
1988                 }
1989                 anon_vma_unlock_read(anon_vma);
1990         }
1991         if (!search_new_forks++)
1992                 goto again;
1993 }
1994
1995 #ifdef CONFIG_MIGRATION
1996 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1997 {
1998         struct stable_node *stable_node;
1999
2000         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2001         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2002         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2003
2004         stable_node = page_stable_node(newpage);
2005         if (stable_node) {
2006                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2007                 stable_node->kpfn = page_to_pfn(newpage);
2008                 /*
2009                  * newpage->mapping was set in advance; now we need smp_wmb()
2010                  * to make sure that the new stable_node->kpfn is visible
2011                  * to get_ksm_page() before it can see that oldpage->mapping
2012                  * has gone stale (or that PageSwapCache has been cleared).
2013                  */
2014                 smp_wmb();
2015                 set_page_stable_node(oldpage, NULL);
2016         }
2017 }
2018 #endif /* CONFIG_MIGRATION */
2019
2020 #ifdef CONFIG_MEMORY_HOTREMOVE
2021 static void wait_while_offlining(void)
2022 {
2023         while (ksm_run & KSM_RUN_OFFLINE) {
2024                 mutex_unlock(&ksm_thread_mutex);
2025                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2026                             TASK_UNINTERRUPTIBLE);
2027                 mutex_lock(&ksm_thread_mutex);
2028         }
2029 }
2030
2031 static void ksm_check_stable_tree(unsigned long start_pfn,
2032                                   unsigned long end_pfn)
2033 {
2034         struct stable_node *stable_node, *next;
2035         struct rb_node *node;
2036         int nid;
2037
2038         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2039                 node = rb_first(root_stable_tree + nid);
2040                 while (node) {
2041                         stable_node = rb_entry(node, struct stable_node, node);
2042                         if (stable_node->kpfn >= start_pfn &&
2043                             stable_node->kpfn < end_pfn) {
2044                                 /*
2045                                  * Don't get_ksm_page, page has already gone:
2046                                  * which is why we keep kpfn instead of page*
2047                                  */
2048                                 remove_node_from_stable_tree(stable_node);
2049                                 node = rb_first(root_stable_tree + nid);
2050                         } else
2051                                 node = rb_next(node);
2052                         cond_resched();
2053                 }
2054         }
2055         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2056                 if (stable_node->kpfn >= start_pfn &&
2057                     stable_node->kpfn < end_pfn)
2058                         remove_node_from_stable_tree(stable_node);
2059                 cond_resched();
2060         }
2061 }
2062
2063 static int ksm_memory_callback(struct notifier_block *self,
2064                                unsigned long action, void *arg)
2065 {
2066         struct memory_notify *mn = arg;
2067
2068         switch (action) {
2069         case MEM_GOING_OFFLINE:
2070                 /*
2071                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2072                  * and remove_all_stable_nodes() while memory is going offline:
2073                  * it is unsafe for them to touch the stable tree at this time.
2074                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2075                  * which do not need the ksm_thread_mutex are all safe.
2076                  */
2077                 mutex_lock(&ksm_thread_mutex);
2078                 ksm_run |= KSM_RUN_OFFLINE;
2079                 mutex_unlock(&ksm_thread_mutex);
2080                 break;
2081
2082         case MEM_OFFLINE:
2083                 /*
2084                  * Most of the work is done by page migration; but there might
2085                  * be a few stable_nodes left over, still pointing to struct
2086                  * pages which have been offlined: prune those from the tree,
2087                  * otherwise get_ksm_page() might later try to access a
2088                  * non-existent struct page.
2089                  */
2090                 ksm_check_stable_tree(mn->start_pfn,
2091                                       mn->start_pfn + mn->nr_pages);
2092                 /* fallthrough */
2093
2094         case MEM_CANCEL_OFFLINE:
2095                 mutex_lock(&ksm_thread_mutex);
2096                 ksm_run &= ~KSM_RUN_OFFLINE;
2097                 mutex_unlock(&ksm_thread_mutex);
2098
2099                 smp_mb();       /* wake_up_bit advises this */
2100                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2101                 break;
2102         }
2103         return NOTIFY_OK;
2104 }
2105 #else
2106 static void wait_while_offlining(void)
2107 {
2108 }
2109 #endif /* CONFIG_MEMORY_HOTREMOVE */
2110
2111 #ifdef CONFIG_SYSFS
2112 /*
2113  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2114  */
2115
2116 #define KSM_ATTR_RO(_name) \
2117         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2118 #define KSM_ATTR(_name) \
2119         static struct kobj_attribute _name##_attr = \
2120                 __ATTR(_name, 0644, _name##_show, _name##_store)
2121
2122 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2123                                     struct kobj_attribute *attr, char *buf)
2124 {
2125         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2126 }
2127
2128 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2129                                      struct kobj_attribute *attr,
2130                                      const char *buf, size_t count)
2131 {
2132         unsigned long msecs;
2133         int err;
2134
2135         err = kstrtoul(buf, 10, &msecs);
2136         if (err || msecs > UINT_MAX)
2137                 return -EINVAL;
2138
2139         ksm_thread_sleep_millisecs = msecs;
2140
2141         return count;
2142 }
2143 KSM_ATTR(sleep_millisecs);
2144
2145 static ssize_t pages_to_scan_show(struct kobject *kobj,
2146                                   struct kobj_attribute *attr, char *buf)
2147 {
2148         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2149 }
2150
2151 static ssize_t pages_to_scan_store(struct kobject *kobj,
2152                                    struct kobj_attribute *attr,
2153                                    const char *buf, size_t count)
2154 {
2155         int err;
2156         unsigned long nr_pages;
2157
2158         err = kstrtoul(buf, 10, &nr_pages);
2159         if (err || nr_pages > UINT_MAX)
2160                 return -EINVAL;
2161
2162         ksm_thread_pages_to_scan = nr_pages;
2163
2164         return count;
2165 }
2166 KSM_ATTR(pages_to_scan);
2167
2168 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2169                         char *buf)
2170 {
2171         return sprintf(buf, "%lu\n", ksm_run);
2172 }
2173
2174 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2175                          const char *buf, size_t count)
2176 {
2177         int err;
2178         unsigned long flags;
2179
2180         err = kstrtoul(buf, 10, &flags);
2181         if (err || flags > UINT_MAX)
2182                 return -EINVAL;
2183         if (flags > KSM_RUN_UNMERGE)
2184                 return -EINVAL;
2185
2186         /*
2187          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2188          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2189          * breaking COW to free the pages_shared (but leaves mm_slots
2190          * on the list for when ksmd may be set running again).
2191          */
2192
2193         mutex_lock(&ksm_thread_mutex);
2194         wait_while_offlining();
2195         if (ksm_run != flags) {
2196                 ksm_run = flags;
2197                 if (flags & KSM_RUN_UNMERGE) {
2198                         set_current_oom_origin();
2199                         err = unmerge_and_remove_all_rmap_items();
2200                         clear_current_oom_origin();
2201                         if (err) {
2202                                 ksm_run = KSM_RUN_STOP;
2203                                 count = err;
2204                         }
2205                 }
2206         }
2207         mutex_unlock(&ksm_thread_mutex);
2208
2209         if (flags & KSM_RUN_MERGE)
2210                 wake_up_interruptible(&ksm_thread_wait);
2211
2212         return count;
2213 }
2214 KSM_ATTR(run);
2215
2216 #ifdef CONFIG_NUMA
2217 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2218                                 struct kobj_attribute *attr, char *buf)
2219 {
2220         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2221 }
2222
2223 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2224                                    struct kobj_attribute *attr,
2225                                    const char *buf, size_t count)
2226 {
2227         int err;
2228         unsigned long knob;
2229
2230         err = kstrtoul(buf, 10, &knob);
2231         if (err)
2232                 return err;
2233         if (knob > 1)
2234                 return -EINVAL;
2235
2236         mutex_lock(&ksm_thread_mutex);
2237         wait_while_offlining();
2238         if (ksm_merge_across_nodes != knob) {
2239                 if (ksm_pages_shared || remove_all_stable_nodes())
2240                         err = -EBUSY;
2241                 else if (root_stable_tree == one_stable_tree) {
2242                         struct rb_root *buf;
2243                         /*
2244                          * This is the first time that we switch away from the
2245                          * default of merging across nodes: must now allocate
2246                          * a buffer to hold as many roots as may be needed.
2247                          * Allocate stable and unstable together:
2248                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2249                          */
2250                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2251                                       GFP_KERNEL);
2252                         /* Let us assume that RB_ROOT is NULL is zero */
2253                         if (!buf)
2254                                 err = -ENOMEM;
2255                         else {
2256                                 root_stable_tree = buf;
2257                                 root_unstable_tree = buf + nr_node_ids;
2258                                 /* Stable tree is empty but not the unstable */
2259                                 root_unstable_tree[0] = one_unstable_tree[0];
2260                         }
2261                 }
2262                 if (!err) {
2263                         ksm_merge_across_nodes = knob;
2264                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2265                 }
2266         }
2267         mutex_unlock(&ksm_thread_mutex);
2268
2269         return err ? err : count;
2270 }
2271 KSM_ATTR(merge_across_nodes);
2272 #endif
2273
2274 static ssize_t use_zero_pages_show(struct kobject *kobj,
2275                                 struct kobj_attribute *attr, char *buf)
2276 {
2277         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2278 }
2279 static ssize_t use_zero_pages_store(struct kobject *kobj,
2280                                    struct kobj_attribute *attr,
2281                                    const char *buf, size_t count)
2282 {
2283         int err;
2284         bool value;
2285
2286         err = kstrtobool(buf, &value);
2287         if (err)
2288                 return -EINVAL;
2289
2290         ksm_use_zero_pages = value;
2291
2292         return count;
2293 }
2294 KSM_ATTR(use_zero_pages);
2295
2296 static ssize_t pages_shared_show(struct kobject *kobj,
2297                                  struct kobj_attribute *attr, char *buf)
2298 {
2299         return sprintf(buf, "%lu\n", ksm_pages_shared);
2300 }
2301 KSM_ATTR_RO(pages_shared);
2302
2303 static ssize_t pages_sharing_show(struct kobject *kobj,
2304                                   struct kobj_attribute *attr, char *buf)
2305 {
2306         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2307 }
2308 KSM_ATTR_RO(pages_sharing);
2309
2310 static ssize_t pages_unshared_show(struct kobject *kobj,
2311                                    struct kobj_attribute *attr, char *buf)
2312 {
2313         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2314 }
2315 KSM_ATTR_RO(pages_unshared);
2316
2317 static ssize_t pages_volatile_show(struct kobject *kobj,
2318                                    struct kobj_attribute *attr, char *buf)
2319 {
2320         long ksm_pages_volatile;
2321
2322         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2323                                 - ksm_pages_sharing - ksm_pages_unshared;
2324         /*
2325          * It was not worth any locking to calculate that statistic,
2326          * but it might therefore sometimes be negative: conceal that.
2327          */
2328         if (ksm_pages_volatile < 0)
2329                 ksm_pages_volatile = 0;
2330         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2331 }
2332 KSM_ATTR_RO(pages_volatile);
2333
2334 static ssize_t full_scans_show(struct kobject *kobj,
2335                                struct kobj_attribute *attr, char *buf)
2336 {
2337         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2338 }
2339 KSM_ATTR_RO(full_scans);
2340
2341 static struct attribute *ksm_attrs[] = {
2342         &sleep_millisecs_attr.attr,
2343         &pages_to_scan_attr.attr,
2344         &run_attr.attr,
2345         &pages_shared_attr.attr,
2346         &pages_sharing_attr.attr,
2347         &pages_unshared_attr.attr,
2348         &pages_volatile_attr.attr,
2349         &full_scans_attr.attr,
2350 #ifdef CONFIG_NUMA
2351         &merge_across_nodes_attr.attr,
2352 #endif
2353         &use_zero_pages_attr.attr,
2354         NULL,
2355 };
2356
2357 static struct attribute_group ksm_attr_group = {
2358         .attrs = ksm_attrs,
2359         .name = "ksm",
2360 };
2361 #endif /* CONFIG_SYSFS */
2362
2363 static int __init ksm_init(void)
2364 {
2365         struct task_struct *ksm_thread;
2366         int err;
2367
2368         /* The correct value depends on page size and endianness */
2369         zero_checksum = calc_checksum(ZERO_PAGE(0));
2370         /* Default to false for backwards compatibility */
2371         ksm_use_zero_pages = false;
2372
2373         err = ksm_slab_init();
2374         if (err)
2375                 goto out;
2376
2377         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2378         if (IS_ERR(ksm_thread)) {
2379                 pr_err("ksm: creating kthread failed\n");
2380                 err = PTR_ERR(ksm_thread);
2381                 goto out_free;
2382         }
2383
2384 #ifdef CONFIG_SYSFS
2385         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2386         if (err) {
2387                 pr_err("ksm: register sysfs failed\n");
2388                 kthread_stop(ksm_thread);
2389                 goto out_free;
2390         }
2391 #else
2392         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2393
2394 #endif /* CONFIG_SYSFS */
2395
2396 #ifdef CONFIG_MEMORY_HOTREMOVE
2397         /* There is no significance to this priority 100 */
2398         hotplug_memory_notifier(ksm_memory_callback, 100);
2399 #endif
2400         return 0;
2401
2402 out_free:
2403         ksm_slab_free();
2404 out:
2405         return err;
2406 }
2407 subsys_initcall(ksm_init);