Merge tag 'dmaengine-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[platform/kernel/linux-rpi.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)         (x)
47 #define DO_NUMA(x)      do { (x); } while (0)
48 #else
49 #define NUMA(x)         (0)
50 #define DO_NUMA(x)      do { } while (0)
51 #endif
52
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same struct stable_node structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121         struct hlist_node link;
122         struct list_head mm_list;
123         struct rmap_item *rmap_list;
124         struct mm_struct *mm;
125 };
126
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137         struct mm_slot *mm_slot;
138         unsigned long address;
139         struct rmap_item **rmap_list;
140         unsigned long seqnr;
141 };
142
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156         union {
157                 struct rb_node node;    /* when node of stable tree */
158                 struct {                /* when listed for migration */
159                         struct list_head *head;
160                         struct {
161                                 struct hlist_node hlist_dup;
162                                 struct list_head list;
163                         };
164                 };
165         };
166         struct hlist_head hlist;
167         union {
168                 unsigned long kpfn;
169                 unsigned long chain_prune_time;
170         };
171         /*
172          * STABLE_NODE_CHAIN can be any negative number in
173          * rmap_hlist_len negative range, but better not -1 to be able
174          * to reliably detect underflows.
175          */
176 #define STABLE_NODE_CHAIN -1024
177         int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179         int nid;
180 #endif
181 };
182
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196         struct rmap_item *rmap_list;
197         union {
198                 struct anon_vma *anon_vma;      /* when stable */
199 #ifdef CONFIG_NUMA
200                 int nid;                /* when node of unstable tree */
201 #endif
202         };
203         struct mm_struct *mm;
204         unsigned long address;          /* + low bits used for flags below */
205         unsigned int oldchecksum;       /* when unstable */
206         union {
207                 struct rb_node node;    /* when node of unstable tree */
208                 struct {                /* when listed from stable tree */
209                         struct stable_node *head;
210                         struct hlist_node hlist;
211                 };
212         };
213 };
214
215 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
217 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
218
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231
232 static struct mm_slot ksm_mm_head = {
233         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236         .mm_slot = &ksm_mm_head,
237 };
238
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
263
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes  1U
285 #define ksm_nr_node_ids         1
286 #endif
287
288 #define KSM_RUN_STOP    0
289 #define KSM_RUN_MERGE   1
290 #define KSM_RUN_UNMERGE 2
291 #define KSM_RUN_OFFLINE 4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301                 sizeof(struct __struct), __alignof__(struct __struct),\
302                 (__flags), NULL)
303
304 static int __init ksm_slab_init(void)
305 {
306         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307         if (!rmap_item_cache)
308                 goto out;
309
310         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311         if (!stable_node_cache)
312                 goto out_free1;
313
314         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315         if (!mm_slot_cache)
316                 goto out_free2;
317
318         return 0;
319
320 out_free2:
321         kmem_cache_destroy(stable_node_cache);
322 out_free1:
323         kmem_cache_destroy(rmap_item_cache);
324 out:
325         return -ENOMEM;
326 }
327
328 static void __init ksm_slab_free(void)
329 {
330         kmem_cache_destroy(mm_slot_cache);
331         kmem_cache_destroy(stable_node_cache);
332         kmem_cache_destroy(rmap_item_cache);
333         mm_slot_cache = NULL;
334 }
335
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343         return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347                                              struct stable_node *chain)
348 {
349         VM_BUG_ON(is_stable_node_dup(dup));
350         dup->head = STABLE_NODE_DUP_HEAD;
351         VM_BUG_ON(!is_stable_node_chain(chain));
352         hlist_add_head(&dup->hlist_dup, &chain->hlist);
353         ksm_stable_node_dups++;
354 }
355
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358         VM_BUG_ON(!is_stable_node_dup(dup));
359         hlist_del(&dup->hlist_dup);
360         ksm_stable_node_dups--;
361 }
362
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365         VM_BUG_ON(is_stable_node_chain(dup));
366         if (is_stable_node_dup(dup))
367                 __stable_node_dup_del(dup);
368         else
369                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371         dup->head = NULL;
372 #endif
373 }
374
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377         struct rmap_item *rmap_item;
378
379         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380                                                 __GFP_NORETRY | __GFP_NOWARN);
381         if (rmap_item)
382                 ksm_rmap_items++;
383         return rmap_item;
384 }
385
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388         ksm_rmap_items--;
389         rmap_item->mm = NULL;   /* debug safety */
390         kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395         /*
396          * The allocation can take too long with GFP_KERNEL when memory is under
397          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398          * grants access to memory reserves, helping to avoid this problem.
399          */
400         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405         VM_BUG_ON(stable_node->rmap_hlist_len &&
406                   !is_stable_node_chain(stable_node));
407         kmem_cache_free(stable_node_cache, stable_node);
408 }
409
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412         if (!mm_slot_cache)     /* initialization failed */
413                 return NULL;
414         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419         kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424         struct mm_slot *slot;
425
426         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427                 if (slot->mm == mm)
428                         return slot;
429
430         return NULL;
431 }
432
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434                                     struct mm_slot *mm_slot)
435 {
436         mm_slot->mm = mm;
437         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439
440 /*
441  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442  * page tables after it has passed through ksm_exit() - which, if necessary,
443  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
444  * a special flag: they can just back out as soon as mm_users goes to zero.
445  * ksm_test_exit() is used throughout to make this test for exit: in some
446  * places for correctness, in some places just to avoid unnecessary work.
447  */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450         return atomic_read(&mm->mm_users) == 0;
451 }
452
453 /*
454  * We use break_ksm to break COW on a ksm page: it's a stripped down
455  *
456  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457  *              put_page(page);
458  *
459  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460  * in case the application has unmapped and remapped mm,addr meanwhile.
461  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
462  * mmap of /dev/mem, where we would not want to touch it.
463  *
464  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465  * of the process that owns 'vma'.  We also do not want to enforce
466  * protection keys here anyway.
467  */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470         struct page *page;
471         vm_fault_t ret = 0;
472
473         do {
474                 cond_resched();
475                 page = follow_page(vma, addr,
476                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477                 if (IS_ERR_OR_NULL(page))
478                         break;
479                 if (PageKsm(page))
480                         ret = handle_mm_fault(vma, addr,
481                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482                                               NULL);
483                 else
484                         ret = VM_FAULT_WRITE;
485                 put_page(page);
486         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487         /*
488          * We must loop because handle_mm_fault() may back out if there's
489          * any difficulty e.g. if pte accessed bit gets updated concurrently.
490          *
491          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492          * COW has been broken, even if the vma does not permit VM_WRITE;
493          * but note that a concurrent fault might break PageKsm for us.
494          *
495          * VM_FAULT_SIGBUS could occur if we race with truncation of the
496          * backing file, which also invalidates anonymous pages: that's
497          * okay, that truncation will have unmapped the PageKsm for us.
498          *
499          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501          * current task has TIF_MEMDIE set, and will be OOM killed on return
502          * to user; and ksmd, having no mm, would never be chosen for that.
503          *
504          * But if the mm is in a limited mem_cgroup, then the fault may fail
505          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506          * even ksmd can fail in this way - though it's usually breaking ksm
507          * just to undo a merge it made a moment before, so unlikely to oom.
508          *
509          * That's a pity: we might therefore have more kernel pages allocated
510          * than we're counting as nodes in the stable tree; but ksm_do_scan
511          * will retry to break_cow on each pass, so should recover the page
512          * in due course.  The important thing is to not let VM_MERGEABLE
513          * be cleared while any such pages might remain in the area.
514          */
515         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519                 unsigned long addr)
520 {
521         struct vm_area_struct *vma;
522         if (ksm_test_exit(mm))
523                 return NULL;
524         vma = vma_lookup(mm, addr);
525         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
526                 return NULL;
527         return vma;
528 }
529
530 static void break_cow(struct rmap_item *rmap_item)
531 {
532         struct mm_struct *mm = rmap_item->mm;
533         unsigned long addr = rmap_item->address;
534         struct vm_area_struct *vma;
535
536         /*
537          * It is not an accident that whenever we want to break COW
538          * to undo, we also need to drop a reference to the anon_vma.
539          */
540         put_anon_vma(rmap_item->anon_vma);
541
542         mmap_read_lock(mm);
543         vma = find_mergeable_vma(mm, addr);
544         if (vma)
545                 break_ksm(vma, addr);
546         mmap_read_unlock(mm);
547 }
548
549 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
550 {
551         struct mm_struct *mm = rmap_item->mm;
552         unsigned long addr = rmap_item->address;
553         struct vm_area_struct *vma;
554         struct page *page;
555
556         mmap_read_lock(mm);
557         vma = find_mergeable_vma(mm, addr);
558         if (!vma)
559                 goto out;
560
561         page = follow_page(vma, addr, FOLL_GET);
562         if (IS_ERR_OR_NULL(page))
563                 goto out;
564         if (PageAnon(page)) {
565                 flush_anon_page(vma, page, addr);
566                 flush_dcache_page(page);
567         } else {
568                 put_page(page);
569 out:
570                 page = NULL;
571         }
572         mmap_read_unlock(mm);
573         return page;
574 }
575
576 /*
577  * This helper is used for getting right index into array of tree roots.
578  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580  * every node has its own stable and unstable tree.
581  */
582 static inline int get_kpfn_nid(unsigned long kpfn)
583 {
584         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
585 }
586
587 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
588                                                    struct rb_root *root)
589 {
590         struct stable_node *chain = alloc_stable_node();
591         VM_BUG_ON(is_stable_node_chain(dup));
592         if (likely(chain)) {
593                 INIT_HLIST_HEAD(&chain->hlist);
594                 chain->chain_prune_time = jiffies;
595                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
597                 chain->nid = NUMA_NO_NODE; /* debug */
598 #endif
599                 ksm_stable_node_chains++;
600
601                 /*
602                  * Put the stable node chain in the first dimension of
603                  * the stable tree and at the same time remove the old
604                  * stable node.
605                  */
606                 rb_replace_node(&dup->node, &chain->node, root);
607
608                 /*
609                  * Move the old stable node to the second dimension
610                  * queued in the hlist_dup. The invariant is that all
611                  * dup stable_nodes in the chain->hlist point to pages
612                  * that are write protected and have the exact same
613                  * content.
614                  */
615                 stable_node_chain_add_dup(dup, chain);
616         }
617         return chain;
618 }
619
620 static inline void free_stable_node_chain(struct stable_node *chain,
621                                           struct rb_root *root)
622 {
623         rb_erase(&chain->node, root);
624         free_stable_node(chain);
625         ksm_stable_node_chains--;
626 }
627
628 static void remove_node_from_stable_tree(struct stable_node *stable_node)
629 {
630         struct rmap_item *rmap_item;
631
632         /* check it's not STABLE_NODE_CHAIN or negative */
633         BUG_ON(stable_node->rmap_hlist_len < 0);
634
635         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
636                 if (rmap_item->hlist.next)
637                         ksm_pages_sharing--;
638                 else
639                         ksm_pages_shared--;
640                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
641                 stable_node->rmap_hlist_len--;
642                 put_anon_vma(rmap_item->anon_vma);
643                 rmap_item->address &= PAGE_MASK;
644                 cond_resched();
645         }
646
647         /*
648          * We need the second aligned pointer of the migrate_nodes
649          * list_head to stay clear from the rb_parent_color union
650          * (aligned and different than any node) and also different
651          * from &migrate_nodes. This will verify that future list.h changes
652          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
653          */
654 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
655         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
656         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
657 #endif
658
659         if (stable_node->head == &migrate_nodes)
660                 list_del(&stable_node->list);
661         else
662                 stable_node_dup_del(stable_node);
663         free_stable_node(stable_node);
664 }
665
666 enum get_ksm_page_flags {
667         GET_KSM_PAGE_NOLOCK,
668         GET_KSM_PAGE_LOCK,
669         GET_KSM_PAGE_TRYLOCK
670 };
671
672 /*
673  * get_ksm_page: checks if the page indicated by the stable node
674  * is still its ksm page, despite having held no reference to it.
675  * In which case we can trust the content of the page, and it
676  * returns the gotten page; but if the page has now been zapped,
677  * remove the stale node from the stable tree and return NULL.
678  * But beware, the stable node's page might be being migrated.
679  *
680  * You would expect the stable_node to hold a reference to the ksm page.
681  * But if it increments the page's count, swapping out has to wait for
682  * ksmd to come around again before it can free the page, which may take
683  * seconds or even minutes: much too unresponsive.  So instead we use a
684  * "keyhole reference": access to the ksm page from the stable node peeps
685  * out through its keyhole to see if that page still holds the right key,
686  * pointing back to this stable node.  This relies on freeing a PageAnon
687  * page to reset its page->mapping to NULL, and relies on no other use of
688  * a page to put something that might look like our key in page->mapping.
689  * is on its way to being freed; but it is an anomaly to bear in mind.
690  */
691 static struct page *get_ksm_page(struct stable_node *stable_node,
692                                  enum get_ksm_page_flags flags)
693 {
694         struct page *page;
695         void *expected_mapping;
696         unsigned long kpfn;
697
698         expected_mapping = (void *)((unsigned long)stable_node |
699                                         PAGE_MAPPING_KSM);
700 again:
701         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
702         page = pfn_to_page(kpfn);
703         if (READ_ONCE(page->mapping) != expected_mapping)
704                 goto stale;
705
706         /*
707          * We cannot do anything with the page while its refcount is 0.
708          * Usually 0 means free, or tail of a higher-order page: in which
709          * case this node is no longer referenced, and should be freed;
710          * however, it might mean that the page is under page_ref_freeze().
711          * The __remove_mapping() case is easy, again the node is now stale;
712          * the same is in reuse_ksm_page() case; but if page is swapcache
713          * in migrate_page_move_mapping(), it might still be our page,
714          * in which case it's essential to keep the node.
715          */
716         while (!get_page_unless_zero(page)) {
717                 /*
718                  * Another check for page->mapping != expected_mapping would
719                  * work here too.  We have chosen the !PageSwapCache test to
720                  * optimize the common case, when the page is or is about to
721                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
722                  * in the ref_freeze section of __remove_mapping(); but Anon
723                  * page->mapping reset to NULL later, in free_pages_prepare().
724                  */
725                 if (!PageSwapCache(page))
726                         goto stale;
727                 cpu_relax();
728         }
729
730         if (READ_ONCE(page->mapping) != expected_mapping) {
731                 put_page(page);
732                 goto stale;
733         }
734
735         if (flags == GET_KSM_PAGE_TRYLOCK) {
736                 if (!trylock_page(page)) {
737                         put_page(page);
738                         return ERR_PTR(-EBUSY);
739                 }
740         } else if (flags == GET_KSM_PAGE_LOCK)
741                 lock_page(page);
742
743         if (flags != GET_KSM_PAGE_NOLOCK) {
744                 if (READ_ONCE(page->mapping) != expected_mapping) {
745                         unlock_page(page);
746                         put_page(page);
747                         goto stale;
748                 }
749         }
750         return page;
751
752 stale:
753         /*
754          * We come here from above when page->mapping or !PageSwapCache
755          * suggests that the node is stale; but it might be under migration.
756          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
757          * before checking whether node->kpfn has been changed.
758          */
759         smp_rmb();
760         if (READ_ONCE(stable_node->kpfn) != kpfn)
761                 goto again;
762         remove_node_from_stable_tree(stable_node);
763         return NULL;
764 }
765
766 /*
767  * Removing rmap_item from stable or unstable tree.
768  * This function will clean the information from the stable/unstable tree.
769  */
770 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
771 {
772         if (rmap_item->address & STABLE_FLAG) {
773                 struct stable_node *stable_node;
774                 struct page *page;
775
776                 stable_node = rmap_item->head;
777                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
778                 if (!page)
779                         goto out;
780
781                 hlist_del(&rmap_item->hlist);
782                 unlock_page(page);
783                 put_page(page);
784
785                 if (!hlist_empty(&stable_node->hlist))
786                         ksm_pages_sharing--;
787                 else
788                         ksm_pages_shared--;
789                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
790                 stable_node->rmap_hlist_len--;
791
792                 put_anon_vma(rmap_item->anon_vma);
793                 rmap_item->head = NULL;
794                 rmap_item->address &= PAGE_MASK;
795
796         } else if (rmap_item->address & UNSTABLE_FLAG) {
797                 unsigned char age;
798                 /*
799                  * Usually ksmd can and must skip the rb_erase, because
800                  * root_unstable_tree was already reset to RB_ROOT.
801                  * But be careful when an mm is exiting: do the rb_erase
802                  * if this rmap_item was inserted by this scan, rather
803                  * than left over from before.
804                  */
805                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
806                 BUG_ON(age > 1);
807                 if (!age)
808                         rb_erase(&rmap_item->node,
809                                  root_unstable_tree + NUMA(rmap_item->nid));
810                 ksm_pages_unshared--;
811                 rmap_item->address &= PAGE_MASK;
812         }
813 out:
814         cond_resched();         /* we're called from many long loops */
815 }
816
817 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
818 {
819         while (*rmap_list) {
820                 struct rmap_item *rmap_item = *rmap_list;
821                 *rmap_list = rmap_item->rmap_list;
822                 remove_rmap_item_from_tree(rmap_item);
823                 free_rmap_item(rmap_item);
824         }
825 }
826
827 /*
828  * Though it's very tempting to unmerge rmap_items from stable tree rather
829  * than check every pte of a given vma, the locking doesn't quite work for
830  * that - an rmap_item is assigned to the stable tree after inserting ksm
831  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
832  * rmap_items from parent to child at fork time (so as not to waste time
833  * if exit comes before the next scan reaches it).
834  *
835  * Similarly, although we'd like to remove rmap_items (so updating counts
836  * and freeing memory) when unmerging an area, it's easier to leave that
837  * to the next pass of ksmd - consider, for example, how ksmd might be
838  * in cmp_and_merge_page on one of the rmap_items we would be removing.
839  */
840 static int unmerge_ksm_pages(struct vm_area_struct *vma,
841                              unsigned long start, unsigned long end)
842 {
843         unsigned long addr;
844         int err = 0;
845
846         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
847                 if (ksm_test_exit(vma->vm_mm))
848                         break;
849                 if (signal_pending(current))
850                         err = -ERESTARTSYS;
851                 else
852                         err = break_ksm(vma, addr);
853         }
854         return err;
855 }
856
857 static inline struct stable_node *page_stable_node(struct page *page)
858 {
859         return PageKsm(page) ? page_rmapping(page) : NULL;
860 }
861
862 static inline void set_page_stable_node(struct page *page,
863                                         struct stable_node *stable_node)
864 {
865         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
866 }
867
868 #ifdef CONFIG_SYSFS
869 /*
870  * Only called through the sysfs control interface:
871  */
872 static int remove_stable_node(struct stable_node *stable_node)
873 {
874         struct page *page;
875         int err;
876
877         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
878         if (!page) {
879                 /*
880                  * get_ksm_page did remove_node_from_stable_tree itself.
881                  */
882                 return 0;
883         }
884
885         /*
886          * Page could be still mapped if this races with __mmput() running in
887          * between ksm_exit() and exit_mmap(). Just refuse to let
888          * merge_across_nodes/max_page_sharing be switched.
889          */
890         err = -EBUSY;
891         if (!page_mapped(page)) {
892                 /*
893                  * The stable node did not yet appear stale to get_ksm_page(),
894                  * since that allows for an unmapped ksm page to be recognized
895                  * right up until it is freed; but the node is safe to remove.
896                  * This page might be in a pagevec waiting to be freed,
897                  * or it might be PageSwapCache (perhaps under writeback),
898                  * or it might have been removed from swapcache a moment ago.
899                  */
900                 set_page_stable_node(page, NULL);
901                 remove_node_from_stable_tree(stable_node);
902                 err = 0;
903         }
904
905         unlock_page(page);
906         put_page(page);
907         return err;
908 }
909
910 static int remove_stable_node_chain(struct stable_node *stable_node,
911                                     struct rb_root *root)
912 {
913         struct stable_node *dup;
914         struct hlist_node *hlist_safe;
915
916         if (!is_stable_node_chain(stable_node)) {
917                 VM_BUG_ON(is_stable_node_dup(stable_node));
918                 if (remove_stable_node(stable_node))
919                         return true;
920                 else
921                         return false;
922         }
923
924         hlist_for_each_entry_safe(dup, hlist_safe,
925                                   &stable_node->hlist, hlist_dup) {
926                 VM_BUG_ON(!is_stable_node_dup(dup));
927                 if (remove_stable_node(dup))
928                         return true;
929         }
930         BUG_ON(!hlist_empty(&stable_node->hlist));
931         free_stable_node_chain(stable_node, root);
932         return false;
933 }
934
935 static int remove_all_stable_nodes(void)
936 {
937         struct stable_node *stable_node, *next;
938         int nid;
939         int err = 0;
940
941         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
942                 while (root_stable_tree[nid].rb_node) {
943                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
944                                                 struct stable_node, node);
945                         if (remove_stable_node_chain(stable_node,
946                                                      root_stable_tree + nid)) {
947                                 err = -EBUSY;
948                                 break;  /* proceed to next nid */
949                         }
950                         cond_resched();
951                 }
952         }
953         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
954                 if (remove_stable_node(stable_node))
955                         err = -EBUSY;
956                 cond_resched();
957         }
958         return err;
959 }
960
961 static int unmerge_and_remove_all_rmap_items(void)
962 {
963         struct mm_slot *mm_slot;
964         struct mm_struct *mm;
965         struct vm_area_struct *vma;
966         int err = 0;
967
968         spin_lock(&ksm_mmlist_lock);
969         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
970                                                 struct mm_slot, mm_list);
971         spin_unlock(&ksm_mmlist_lock);
972
973         for (mm_slot = ksm_scan.mm_slot;
974                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
975                 mm = mm_slot->mm;
976                 mmap_read_lock(mm);
977                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
978                         if (ksm_test_exit(mm))
979                                 break;
980                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
981                                 continue;
982                         err = unmerge_ksm_pages(vma,
983                                                 vma->vm_start, vma->vm_end);
984                         if (err)
985                                 goto error;
986                 }
987
988                 remove_trailing_rmap_items(&mm_slot->rmap_list);
989                 mmap_read_unlock(mm);
990
991                 spin_lock(&ksm_mmlist_lock);
992                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
993                                                 struct mm_slot, mm_list);
994                 if (ksm_test_exit(mm)) {
995                         hash_del(&mm_slot->link);
996                         list_del(&mm_slot->mm_list);
997                         spin_unlock(&ksm_mmlist_lock);
998
999                         free_mm_slot(mm_slot);
1000                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1001                         mmdrop(mm);
1002                 } else
1003                         spin_unlock(&ksm_mmlist_lock);
1004         }
1005
1006         /* Clean up stable nodes, but don't worry if some are still busy */
1007         remove_all_stable_nodes();
1008         ksm_scan.seqnr = 0;
1009         return 0;
1010
1011 error:
1012         mmap_read_unlock(mm);
1013         spin_lock(&ksm_mmlist_lock);
1014         ksm_scan.mm_slot = &ksm_mm_head;
1015         spin_unlock(&ksm_mmlist_lock);
1016         return err;
1017 }
1018 #endif /* CONFIG_SYSFS */
1019
1020 static u32 calc_checksum(struct page *page)
1021 {
1022         u32 checksum;
1023         void *addr = kmap_atomic(page);
1024         checksum = xxhash(addr, PAGE_SIZE, 0);
1025         kunmap_atomic(addr);
1026         return checksum;
1027 }
1028
1029 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1030                               pte_t *orig_pte)
1031 {
1032         struct mm_struct *mm = vma->vm_mm;
1033         struct page_vma_mapped_walk pvmw = {
1034                 .page = page,
1035                 .vma = vma,
1036         };
1037         int swapped;
1038         int err = -EFAULT;
1039         struct mmu_notifier_range range;
1040
1041         pvmw.address = page_address_in_vma(page, vma);
1042         if (pvmw.address == -EFAULT)
1043                 goto out;
1044
1045         BUG_ON(PageTransCompound(page));
1046
1047         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1048                                 pvmw.address,
1049                                 pvmw.address + PAGE_SIZE);
1050         mmu_notifier_invalidate_range_start(&range);
1051
1052         if (!page_vma_mapped_walk(&pvmw))
1053                 goto out_mn;
1054         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1055                 goto out_unlock;
1056
1057         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1058             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1059                                                 mm_tlb_flush_pending(mm)) {
1060                 pte_t entry;
1061
1062                 swapped = PageSwapCache(page);
1063                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1064                 /*
1065                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1066                  * take any lock, therefore the check that we are going to make
1067                  * with the pagecount against the mapcount is racy and
1068                  * O_DIRECT can happen right after the check.
1069                  * So we clear the pte and flush the tlb before the check
1070                  * this assure us that no O_DIRECT can happen after the check
1071                  * or in the middle of the check.
1072                  *
1073                  * No need to notify as we are downgrading page table to read
1074                  * only not changing it to point to a new page.
1075                  *
1076                  * See Documentation/vm/mmu_notifier.rst
1077                  */
1078                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1079                 /*
1080                  * Check that no O_DIRECT or similar I/O is in progress on the
1081                  * page
1082                  */
1083                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1084                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1085                         goto out_unlock;
1086                 }
1087                 if (pte_dirty(entry))
1088                         set_page_dirty(page);
1089
1090                 if (pte_protnone(entry))
1091                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1092                 else
1093                         entry = pte_mkclean(pte_wrprotect(entry));
1094                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1095         }
1096         *orig_pte = *pvmw.pte;
1097         err = 0;
1098
1099 out_unlock:
1100         page_vma_mapped_walk_done(&pvmw);
1101 out_mn:
1102         mmu_notifier_invalidate_range_end(&range);
1103 out:
1104         return err;
1105 }
1106
1107 /**
1108  * replace_page - replace page in vma by new ksm page
1109  * @vma:      vma that holds the pte pointing to page
1110  * @page:     the page we are replacing by kpage
1111  * @kpage:    the ksm page we replace page by
1112  * @orig_pte: the original value of the pte
1113  *
1114  * Returns 0 on success, -EFAULT on failure.
1115  */
1116 static int replace_page(struct vm_area_struct *vma, struct page *page,
1117                         struct page *kpage, pte_t orig_pte)
1118 {
1119         struct mm_struct *mm = vma->vm_mm;
1120         pmd_t *pmd;
1121         pte_t *ptep;
1122         pte_t newpte;
1123         spinlock_t *ptl;
1124         unsigned long addr;
1125         int err = -EFAULT;
1126         struct mmu_notifier_range range;
1127
1128         addr = page_address_in_vma(page, vma);
1129         if (addr == -EFAULT)
1130                 goto out;
1131
1132         pmd = mm_find_pmd(mm, addr);
1133         if (!pmd)
1134                 goto out;
1135
1136         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1137                                 addr + PAGE_SIZE);
1138         mmu_notifier_invalidate_range_start(&range);
1139
1140         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1141         if (!pte_same(*ptep, orig_pte)) {
1142                 pte_unmap_unlock(ptep, ptl);
1143                 goto out_mn;
1144         }
1145
1146         /*
1147          * No need to check ksm_use_zero_pages here: we can only have a
1148          * zero_page here if ksm_use_zero_pages was enabled already.
1149          */
1150         if (!is_zero_pfn(page_to_pfn(kpage))) {
1151                 get_page(kpage);
1152                 page_add_anon_rmap(kpage, vma, addr, false);
1153                 newpte = mk_pte(kpage, vma->vm_page_prot);
1154         } else {
1155                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1156                                                vma->vm_page_prot));
1157                 /*
1158                  * We're replacing an anonymous page with a zero page, which is
1159                  * not anonymous. We need to do proper accounting otherwise we
1160                  * will get wrong values in /proc, and a BUG message in dmesg
1161                  * when tearing down the mm.
1162                  */
1163                 dec_mm_counter(mm, MM_ANONPAGES);
1164         }
1165
1166         flush_cache_page(vma, addr, pte_pfn(*ptep));
1167         /*
1168          * No need to notify as we are replacing a read only page with another
1169          * read only page with the same content.
1170          *
1171          * See Documentation/vm/mmu_notifier.rst
1172          */
1173         ptep_clear_flush(vma, addr, ptep);
1174         set_pte_at_notify(mm, addr, ptep, newpte);
1175
1176         page_remove_rmap(page, false);
1177         if (!page_mapped(page))
1178                 try_to_free_swap(page);
1179         put_page(page);
1180
1181         pte_unmap_unlock(ptep, ptl);
1182         err = 0;
1183 out_mn:
1184         mmu_notifier_invalidate_range_end(&range);
1185 out:
1186         return err;
1187 }
1188
1189 /*
1190  * try_to_merge_one_page - take two pages and merge them into one
1191  * @vma: the vma that holds the pte pointing to page
1192  * @page: the PageAnon page that we want to replace with kpage
1193  * @kpage: the PageKsm page that we want to map instead of page,
1194  *         or NULL the first time when we want to use page as kpage.
1195  *
1196  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1197  */
1198 static int try_to_merge_one_page(struct vm_area_struct *vma,
1199                                  struct page *page, struct page *kpage)
1200 {
1201         pte_t orig_pte = __pte(0);
1202         int err = -EFAULT;
1203
1204         if (page == kpage)                      /* ksm page forked */
1205                 return 0;
1206
1207         if (!PageAnon(page))
1208                 goto out;
1209
1210         /*
1211          * We need the page lock to read a stable PageSwapCache in
1212          * write_protect_page().  We use trylock_page() instead of
1213          * lock_page() because we don't want to wait here - we
1214          * prefer to continue scanning and merging different pages,
1215          * then come back to this page when it is unlocked.
1216          */
1217         if (!trylock_page(page))
1218                 goto out;
1219
1220         if (PageTransCompound(page)) {
1221                 if (split_huge_page(page))
1222                         goto out_unlock;
1223         }
1224
1225         /*
1226          * If this anonymous page is mapped only here, its pte may need
1227          * to be write-protected.  If it's mapped elsewhere, all of its
1228          * ptes are necessarily already write-protected.  But in either
1229          * case, we need to lock and check page_count is not raised.
1230          */
1231         if (write_protect_page(vma, page, &orig_pte) == 0) {
1232                 if (!kpage) {
1233                         /*
1234                          * While we hold page lock, upgrade page from
1235                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1236                          * stable_tree_insert() will update stable_node.
1237                          */
1238                         set_page_stable_node(page, NULL);
1239                         mark_page_accessed(page);
1240                         /*
1241                          * Page reclaim just frees a clean page with no dirty
1242                          * ptes: make sure that the ksm page would be swapped.
1243                          */
1244                         if (!PageDirty(page))
1245                                 SetPageDirty(page);
1246                         err = 0;
1247                 } else if (pages_identical(page, kpage))
1248                         err = replace_page(vma, page, kpage, orig_pte);
1249         }
1250
1251         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1252                 munlock_vma_page(page);
1253                 if (!PageMlocked(kpage)) {
1254                         unlock_page(page);
1255                         lock_page(kpage);
1256                         mlock_vma_page(kpage);
1257                         page = kpage;           /* for final unlock */
1258                 }
1259         }
1260
1261 out_unlock:
1262         unlock_page(page);
1263 out:
1264         return err;
1265 }
1266
1267 /*
1268  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1269  * but no new kernel page is allocated: kpage must already be a ksm page.
1270  *
1271  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1272  */
1273 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1274                                       struct page *page, struct page *kpage)
1275 {
1276         struct mm_struct *mm = rmap_item->mm;
1277         struct vm_area_struct *vma;
1278         int err = -EFAULT;
1279
1280         mmap_read_lock(mm);
1281         vma = find_mergeable_vma(mm, rmap_item->address);
1282         if (!vma)
1283                 goto out;
1284
1285         err = try_to_merge_one_page(vma, page, kpage);
1286         if (err)
1287                 goto out;
1288
1289         /* Unstable nid is in union with stable anon_vma: remove first */
1290         remove_rmap_item_from_tree(rmap_item);
1291
1292         /* Must get reference to anon_vma while still holding mmap_lock */
1293         rmap_item->anon_vma = vma->anon_vma;
1294         get_anon_vma(vma->anon_vma);
1295 out:
1296         mmap_read_unlock(mm);
1297         return err;
1298 }
1299
1300 /*
1301  * try_to_merge_two_pages - take two identical pages and prepare them
1302  * to be merged into one page.
1303  *
1304  * This function returns the kpage if we successfully merged two identical
1305  * pages into one ksm page, NULL otherwise.
1306  *
1307  * Note that this function upgrades page to ksm page: if one of the pages
1308  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1309  */
1310 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1311                                            struct page *page,
1312                                            struct rmap_item *tree_rmap_item,
1313                                            struct page *tree_page)
1314 {
1315         int err;
1316
1317         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1318         if (!err) {
1319                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1320                                                         tree_page, page);
1321                 /*
1322                  * If that fails, we have a ksm page with only one pte
1323                  * pointing to it: so break it.
1324                  */
1325                 if (err)
1326                         break_cow(rmap_item);
1327         }
1328         return err ? NULL : page;
1329 }
1330
1331 static __always_inline
1332 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1333 {
1334         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1335         /*
1336          * Check that at least one mapping still exists, otherwise
1337          * there's no much point to merge and share with this
1338          * stable_node, as the underlying tree_page of the other
1339          * sharer is going to be freed soon.
1340          */
1341         return stable_node->rmap_hlist_len &&
1342                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1343 }
1344
1345 static __always_inline
1346 bool is_page_sharing_candidate(struct stable_node *stable_node)
1347 {
1348         return __is_page_sharing_candidate(stable_node, 0);
1349 }
1350
1351 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1352                                     struct stable_node **_stable_node,
1353                                     struct rb_root *root,
1354                                     bool prune_stale_stable_nodes)
1355 {
1356         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1357         struct hlist_node *hlist_safe;
1358         struct page *_tree_page, *tree_page = NULL;
1359         int nr = 0;
1360         int found_rmap_hlist_len;
1361
1362         if (!prune_stale_stable_nodes ||
1363             time_before(jiffies, stable_node->chain_prune_time +
1364                         msecs_to_jiffies(
1365                                 ksm_stable_node_chains_prune_millisecs)))
1366                 prune_stale_stable_nodes = false;
1367         else
1368                 stable_node->chain_prune_time = jiffies;
1369
1370         hlist_for_each_entry_safe(dup, hlist_safe,
1371                                   &stable_node->hlist, hlist_dup) {
1372                 cond_resched();
1373                 /*
1374                  * We must walk all stable_node_dup to prune the stale
1375                  * stable nodes during lookup.
1376                  *
1377                  * get_ksm_page can drop the nodes from the
1378                  * stable_node->hlist if they point to freed pages
1379                  * (that's why we do a _safe walk). The "dup"
1380                  * stable_node parameter itself will be freed from
1381                  * under us if it returns NULL.
1382                  */
1383                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1384                 if (!_tree_page)
1385                         continue;
1386                 nr += 1;
1387                 if (is_page_sharing_candidate(dup)) {
1388                         if (!found ||
1389                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1390                                 if (found)
1391                                         put_page(tree_page);
1392                                 found = dup;
1393                                 found_rmap_hlist_len = found->rmap_hlist_len;
1394                                 tree_page = _tree_page;
1395
1396                                 /* skip put_page for found dup */
1397                                 if (!prune_stale_stable_nodes)
1398                                         break;
1399                                 continue;
1400                         }
1401                 }
1402                 put_page(_tree_page);
1403         }
1404
1405         if (found) {
1406                 /*
1407                  * nr is counting all dups in the chain only if
1408                  * prune_stale_stable_nodes is true, otherwise we may
1409                  * break the loop at nr == 1 even if there are
1410                  * multiple entries.
1411                  */
1412                 if (prune_stale_stable_nodes && nr == 1) {
1413                         /*
1414                          * If there's not just one entry it would
1415                          * corrupt memory, better BUG_ON. In KSM
1416                          * context with no lock held it's not even
1417                          * fatal.
1418                          */
1419                         BUG_ON(stable_node->hlist.first->next);
1420
1421                         /*
1422                          * There's just one entry and it is below the
1423                          * deduplication limit so drop the chain.
1424                          */
1425                         rb_replace_node(&stable_node->node, &found->node,
1426                                         root);
1427                         free_stable_node(stable_node);
1428                         ksm_stable_node_chains--;
1429                         ksm_stable_node_dups--;
1430                         /*
1431                          * NOTE: the caller depends on the stable_node
1432                          * to be equal to stable_node_dup if the chain
1433                          * was collapsed.
1434                          */
1435                         *_stable_node = found;
1436                         /*
1437                          * Just for robustness, as stable_node is
1438                          * otherwise left as a stable pointer, the
1439                          * compiler shall optimize it away at build
1440                          * time.
1441                          */
1442                         stable_node = NULL;
1443                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1444                            __is_page_sharing_candidate(found, 1)) {
1445                         /*
1446                          * If the found stable_node dup can accept one
1447                          * more future merge (in addition to the one
1448                          * that is underway) and is not at the head of
1449                          * the chain, put it there so next search will
1450                          * be quicker in the !prune_stale_stable_nodes
1451                          * case.
1452                          *
1453                          * NOTE: it would be inaccurate to use nr > 1
1454                          * instead of checking the hlist.first pointer
1455                          * directly, because in the
1456                          * prune_stale_stable_nodes case "nr" isn't
1457                          * the position of the found dup in the chain,
1458                          * but the total number of dups in the chain.
1459                          */
1460                         hlist_del(&found->hlist_dup);
1461                         hlist_add_head(&found->hlist_dup,
1462                                        &stable_node->hlist);
1463                 }
1464         }
1465
1466         *_stable_node_dup = found;
1467         return tree_page;
1468 }
1469
1470 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1471                                                struct rb_root *root)
1472 {
1473         if (!is_stable_node_chain(stable_node))
1474                 return stable_node;
1475         if (hlist_empty(&stable_node->hlist)) {
1476                 free_stable_node_chain(stable_node, root);
1477                 return NULL;
1478         }
1479         return hlist_entry(stable_node->hlist.first,
1480                            typeof(*stable_node), hlist_dup);
1481 }
1482
1483 /*
1484  * Like for get_ksm_page, this function can free the *_stable_node and
1485  * *_stable_node_dup if the returned tree_page is NULL.
1486  *
1487  * It can also free and overwrite *_stable_node with the found
1488  * stable_node_dup if the chain is collapsed (in which case
1489  * *_stable_node will be equal to *_stable_node_dup like if the chain
1490  * never existed). It's up to the caller to verify tree_page is not
1491  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1492  *
1493  * *_stable_node_dup is really a second output parameter of this
1494  * function and will be overwritten in all cases, the caller doesn't
1495  * need to initialize it.
1496  */
1497 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1498                                         struct stable_node **_stable_node,
1499                                         struct rb_root *root,
1500                                         bool prune_stale_stable_nodes)
1501 {
1502         struct stable_node *stable_node = *_stable_node;
1503         if (!is_stable_node_chain(stable_node)) {
1504                 if (is_page_sharing_candidate(stable_node)) {
1505                         *_stable_node_dup = stable_node;
1506                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1507                 }
1508                 /*
1509                  * _stable_node_dup set to NULL means the stable_node
1510                  * reached the ksm_max_page_sharing limit.
1511                  */
1512                 *_stable_node_dup = NULL;
1513                 return NULL;
1514         }
1515         return stable_node_dup(_stable_node_dup, _stable_node, root,
1516                                prune_stale_stable_nodes);
1517 }
1518
1519 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1520                                                 struct stable_node **s_n,
1521                                                 struct rb_root *root)
1522 {
1523         return __stable_node_chain(s_n_d, s_n, root, true);
1524 }
1525
1526 static __always_inline struct page *chain(struct stable_node **s_n_d,
1527                                           struct stable_node *s_n,
1528                                           struct rb_root *root)
1529 {
1530         struct stable_node *old_stable_node = s_n;
1531         struct page *tree_page;
1532
1533         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1534         /* not pruning dups so s_n cannot have changed */
1535         VM_BUG_ON(s_n != old_stable_node);
1536         return tree_page;
1537 }
1538
1539 /*
1540  * stable_tree_search - search for page inside the stable tree
1541  *
1542  * This function checks if there is a page inside the stable tree
1543  * with identical content to the page that we are scanning right now.
1544  *
1545  * This function returns the stable tree node of identical content if found,
1546  * NULL otherwise.
1547  */
1548 static struct page *stable_tree_search(struct page *page)
1549 {
1550         int nid;
1551         struct rb_root *root;
1552         struct rb_node **new;
1553         struct rb_node *parent;
1554         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1555         struct stable_node *page_node;
1556
1557         page_node = page_stable_node(page);
1558         if (page_node && page_node->head != &migrate_nodes) {
1559                 /* ksm page forked */
1560                 get_page(page);
1561                 return page;
1562         }
1563
1564         nid = get_kpfn_nid(page_to_pfn(page));
1565         root = root_stable_tree + nid;
1566 again:
1567         new = &root->rb_node;
1568         parent = NULL;
1569
1570         while (*new) {
1571                 struct page *tree_page;
1572                 int ret;
1573
1574                 cond_resched();
1575                 stable_node = rb_entry(*new, struct stable_node, node);
1576                 stable_node_any = NULL;
1577                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1578                 /*
1579                  * NOTE: stable_node may have been freed by
1580                  * chain_prune() if the returned stable_node_dup is
1581                  * not NULL. stable_node_dup may have been inserted in
1582                  * the rbtree instead as a regular stable_node (in
1583                  * order to collapse the stable_node chain if a single
1584                  * stable_node dup was found in it). In such case the
1585                  * stable_node is overwritten by the calleee to point
1586                  * to the stable_node_dup that was collapsed in the
1587                  * stable rbtree and stable_node will be equal to
1588                  * stable_node_dup like if the chain never existed.
1589                  */
1590                 if (!stable_node_dup) {
1591                         /*
1592                          * Either all stable_node dups were full in
1593                          * this stable_node chain, or this chain was
1594                          * empty and should be rb_erased.
1595                          */
1596                         stable_node_any = stable_node_dup_any(stable_node,
1597                                                               root);
1598                         if (!stable_node_any) {
1599                                 /* rb_erase just run */
1600                                 goto again;
1601                         }
1602                         /*
1603                          * Take any of the stable_node dups page of
1604                          * this stable_node chain to let the tree walk
1605                          * continue. All KSM pages belonging to the
1606                          * stable_node dups in a stable_node chain
1607                          * have the same content and they're
1608                          * write protected at all times. Any will work
1609                          * fine to continue the walk.
1610                          */
1611                         tree_page = get_ksm_page(stable_node_any,
1612                                                  GET_KSM_PAGE_NOLOCK);
1613                 }
1614                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1615                 if (!tree_page) {
1616                         /*
1617                          * If we walked over a stale stable_node,
1618                          * get_ksm_page() will call rb_erase() and it
1619                          * may rebalance the tree from under us. So
1620                          * restart the search from scratch. Returning
1621                          * NULL would be safe too, but we'd generate
1622                          * false negative insertions just because some
1623                          * stable_node was stale.
1624                          */
1625                         goto again;
1626                 }
1627
1628                 ret = memcmp_pages(page, tree_page);
1629                 put_page(tree_page);
1630
1631                 parent = *new;
1632                 if (ret < 0)
1633                         new = &parent->rb_left;
1634                 else if (ret > 0)
1635                         new = &parent->rb_right;
1636                 else {
1637                         if (page_node) {
1638                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1639                                 /*
1640                                  * Test if the migrated page should be merged
1641                                  * into a stable node dup. If the mapcount is
1642                                  * 1 we can migrate it with another KSM page
1643                                  * without adding it to the chain.
1644                                  */
1645                                 if (page_mapcount(page) > 1)
1646                                         goto chain_append;
1647                         }
1648
1649                         if (!stable_node_dup) {
1650                                 /*
1651                                  * If the stable_node is a chain and
1652                                  * we got a payload match in memcmp
1653                                  * but we cannot merge the scanned
1654                                  * page in any of the existing
1655                                  * stable_node dups because they're
1656                                  * all full, we need to wait the
1657                                  * scanned page to find itself a match
1658                                  * in the unstable tree to create a
1659                                  * brand new KSM page to add later to
1660                                  * the dups of this stable_node.
1661                                  */
1662                                 return NULL;
1663                         }
1664
1665                         /*
1666                          * Lock and unlock the stable_node's page (which
1667                          * might already have been migrated) so that page
1668                          * migration is sure to notice its raised count.
1669                          * It would be more elegant to return stable_node
1670                          * than kpage, but that involves more changes.
1671                          */
1672                         tree_page = get_ksm_page(stable_node_dup,
1673                                                  GET_KSM_PAGE_TRYLOCK);
1674
1675                         if (PTR_ERR(tree_page) == -EBUSY)
1676                                 return ERR_PTR(-EBUSY);
1677
1678                         if (unlikely(!tree_page))
1679                                 /*
1680                                  * The tree may have been rebalanced,
1681                                  * so re-evaluate parent and new.
1682                                  */
1683                                 goto again;
1684                         unlock_page(tree_page);
1685
1686                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1687                             NUMA(stable_node_dup->nid)) {
1688                                 put_page(tree_page);
1689                                 goto replace;
1690                         }
1691                         return tree_page;
1692                 }
1693         }
1694
1695         if (!page_node)
1696                 return NULL;
1697
1698         list_del(&page_node->list);
1699         DO_NUMA(page_node->nid = nid);
1700         rb_link_node(&page_node->node, parent, new);
1701         rb_insert_color(&page_node->node, root);
1702 out:
1703         if (is_page_sharing_candidate(page_node)) {
1704                 get_page(page);
1705                 return page;
1706         } else
1707                 return NULL;
1708
1709 replace:
1710         /*
1711          * If stable_node was a chain and chain_prune collapsed it,
1712          * stable_node has been updated to be the new regular
1713          * stable_node. A collapse of the chain is indistinguishable
1714          * from the case there was no chain in the stable
1715          * rbtree. Otherwise stable_node is the chain and
1716          * stable_node_dup is the dup to replace.
1717          */
1718         if (stable_node_dup == stable_node) {
1719                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1720                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1721                 /* there is no chain */
1722                 if (page_node) {
1723                         VM_BUG_ON(page_node->head != &migrate_nodes);
1724                         list_del(&page_node->list);
1725                         DO_NUMA(page_node->nid = nid);
1726                         rb_replace_node(&stable_node_dup->node,
1727                                         &page_node->node,
1728                                         root);
1729                         if (is_page_sharing_candidate(page_node))
1730                                 get_page(page);
1731                         else
1732                                 page = NULL;
1733                 } else {
1734                         rb_erase(&stable_node_dup->node, root);
1735                         page = NULL;
1736                 }
1737         } else {
1738                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1739                 __stable_node_dup_del(stable_node_dup);
1740                 if (page_node) {
1741                         VM_BUG_ON(page_node->head != &migrate_nodes);
1742                         list_del(&page_node->list);
1743                         DO_NUMA(page_node->nid = nid);
1744                         stable_node_chain_add_dup(page_node, stable_node);
1745                         if (is_page_sharing_candidate(page_node))
1746                                 get_page(page);
1747                         else
1748                                 page = NULL;
1749                 } else {
1750                         page = NULL;
1751                 }
1752         }
1753         stable_node_dup->head = &migrate_nodes;
1754         list_add(&stable_node_dup->list, stable_node_dup->head);
1755         return page;
1756
1757 chain_append:
1758         /* stable_node_dup could be null if it reached the limit */
1759         if (!stable_node_dup)
1760                 stable_node_dup = stable_node_any;
1761         /*
1762          * If stable_node was a chain and chain_prune collapsed it,
1763          * stable_node has been updated to be the new regular
1764          * stable_node. A collapse of the chain is indistinguishable
1765          * from the case there was no chain in the stable
1766          * rbtree. Otherwise stable_node is the chain and
1767          * stable_node_dup is the dup to replace.
1768          */
1769         if (stable_node_dup == stable_node) {
1770                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1771                 /* chain is missing so create it */
1772                 stable_node = alloc_stable_node_chain(stable_node_dup,
1773                                                       root);
1774                 if (!stable_node)
1775                         return NULL;
1776         }
1777         /*
1778          * Add this stable_node dup that was
1779          * migrated to the stable_node chain
1780          * of the current nid for this page
1781          * content.
1782          */
1783         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1784         VM_BUG_ON(page_node->head != &migrate_nodes);
1785         list_del(&page_node->list);
1786         DO_NUMA(page_node->nid = nid);
1787         stable_node_chain_add_dup(page_node, stable_node);
1788         goto out;
1789 }
1790
1791 /*
1792  * stable_tree_insert - insert stable tree node pointing to new ksm page
1793  * into the stable tree.
1794  *
1795  * This function returns the stable tree node just allocated on success,
1796  * NULL otherwise.
1797  */
1798 static struct stable_node *stable_tree_insert(struct page *kpage)
1799 {
1800         int nid;
1801         unsigned long kpfn;
1802         struct rb_root *root;
1803         struct rb_node **new;
1804         struct rb_node *parent;
1805         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1806         bool need_chain = false;
1807
1808         kpfn = page_to_pfn(kpage);
1809         nid = get_kpfn_nid(kpfn);
1810         root = root_stable_tree + nid;
1811 again:
1812         parent = NULL;
1813         new = &root->rb_node;
1814
1815         while (*new) {
1816                 struct page *tree_page;
1817                 int ret;
1818
1819                 cond_resched();
1820                 stable_node = rb_entry(*new, struct stable_node, node);
1821                 stable_node_any = NULL;
1822                 tree_page = chain(&stable_node_dup, stable_node, root);
1823                 if (!stable_node_dup) {
1824                         /*
1825                          * Either all stable_node dups were full in
1826                          * this stable_node chain, or this chain was
1827                          * empty and should be rb_erased.
1828                          */
1829                         stable_node_any = stable_node_dup_any(stable_node,
1830                                                               root);
1831                         if (!stable_node_any) {
1832                                 /* rb_erase just run */
1833                                 goto again;
1834                         }
1835                         /*
1836                          * Take any of the stable_node dups page of
1837                          * this stable_node chain to let the tree walk
1838                          * continue. All KSM pages belonging to the
1839                          * stable_node dups in a stable_node chain
1840                          * have the same content and they're
1841                          * write protected at all times. Any will work
1842                          * fine to continue the walk.
1843                          */
1844                         tree_page = get_ksm_page(stable_node_any,
1845                                                  GET_KSM_PAGE_NOLOCK);
1846                 }
1847                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1848                 if (!tree_page) {
1849                         /*
1850                          * If we walked over a stale stable_node,
1851                          * get_ksm_page() will call rb_erase() and it
1852                          * may rebalance the tree from under us. So
1853                          * restart the search from scratch. Returning
1854                          * NULL would be safe too, but we'd generate
1855                          * false negative insertions just because some
1856                          * stable_node was stale.
1857                          */
1858                         goto again;
1859                 }
1860
1861                 ret = memcmp_pages(kpage, tree_page);
1862                 put_page(tree_page);
1863
1864                 parent = *new;
1865                 if (ret < 0)
1866                         new = &parent->rb_left;
1867                 else if (ret > 0)
1868                         new = &parent->rb_right;
1869                 else {
1870                         need_chain = true;
1871                         break;
1872                 }
1873         }
1874
1875         stable_node_dup = alloc_stable_node();
1876         if (!stable_node_dup)
1877                 return NULL;
1878
1879         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1880         stable_node_dup->kpfn = kpfn;
1881         set_page_stable_node(kpage, stable_node_dup);
1882         stable_node_dup->rmap_hlist_len = 0;
1883         DO_NUMA(stable_node_dup->nid = nid);
1884         if (!need_chain) {
1885                 rb_link_node(&stable_node_dup->node, parent, new);
1886                 rb_insert_color(&stable_node_dup->node, root);
1887         } else {
1888                 if (!is_stable_node_chain(stable_node)) {
1889                         struct stable_node *orig = stable_node;
1890                         /* chain is missing so create it */
1891                         stable_node = alloc_stable_node_chain(orig, root);
1892                         if (!stable_node) {
1893                                 free_stable_node(stable_node_dup);
1894                                 return NULL;
1895                         }
1896                 }
1897                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1898         }
1899
1900         return stable_node_dup;
1901 }
1902
1903 /*
1904  * unstable_tree_search_insert - search for identical page,
1905  * else insert rmap_item into the unstable tree.
1906  *
1907  * This function searches for a page in the unstable tree identical to the
1908  * page currently being scanned; and if no identical page is found in the
1909  * tree, we insert rmap_item as a new object into the unstable tree.
1910  *
1911  * This function returns pointer to rmap_item found to be identical
1912  * to the currently scanned page, NULL otherwise.
1913  *
1914  * This function does both searching and inserting, because they share
1915  * the same walking algorithm in an rbtree.
1916  */
1917 static
1918 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919                                               struct page *page,
1920                                               struct page **tree_pagep)
1921 {
1922         struct rb_node **new;
1923         struct rb_root *root;
1924         struct rb_node *parent = NULL;
1925         int nid;
1926
1927         nid = get_kpfn_nid(page_to_pfn(page));
1928         root = root_unstable_tree + nid;
1929         new = &root->rb_node;
1930
1931         while (*new) {
1932                 struct rmap_item *tree_rmap_item;
1933                 struct page *tree_page;
1934                 int ret;
1935
1936                 cond_resched();
1937                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1938                 tree_page = get_mergeable_page(tree_rmap_item);
1939                 if (!tree_page)
1940                         return NULL;
1941
1942                 /*
1943                  * Don't substitute a ksm page for a forked page.
1944                  */
1945                 if (page == tree_page) {
1946                         put_page(tree_page);
1947                         return NULL;
1948                 }
1949
1950                 ret = memcmp_pages(page, tree_page);
1951
1952                 parent = *new;
1953                 if (ret < 0) {
1954                         put_page(tree_page);
1955                         new = &parent->rb_left;
1956                 } else if (ret > 0) {
1957                         put_page(tree_page);
1958                         new = &parent->rb_right;
1959                 } else if (!ksm_merge_across_nodes &&
1960                            page_to_nid(tree_page) != nid) {
1961                         /*
1962                          * If tree_page has been migrated to another NUMA node,
1963                          * it will be flushed out and put in the right unstable
1964                          * tree next time: only merge with it when across_nodes.
1965                          */
1966                         put_page(tree_page);
1967                         return NULL;
1968                 } else {
1969                         *tree_pagep = tree_page;
1970                         return tree_rmap_item;
1971                 }
1972         }
1973
1974         rmap_item->address |= UNSTABLE_FLAG;
1975         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1976         DO_NUMA(rmap_item->nid = nid);
1977         rb_link_node(&rmap_item->node, parent, new);
1978         rb_insert_color(&rmap_item->node, root);
1979
1980         ksm_pages_unshared++;
1981         return NULL;
1982 }
1983
1984 /*
1985  * stable_tree_append - add another rmap_item to the linked list of
1986  * rmap_items hanging off a given node of the stable tree, all sharing
1987  * the same ksm page.
1988  */
1989 static void stable_tree_append(struct rmap_item *rmap_item,
1990                                struct stable_node *stable_node,
1991                                bool max_page_sharing_bypass)
1992 {
1993         /*
1994          * rmap won't find this mapping if we don't insert the
1995          * rmap_item in the right stable_node
1996          * duplicate. page_migration could break later if rmap breaks,
1997          * so we can as well crash here. We really need to check for
1998          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1999          * for other negative values as an underflow if detected here
2000          * for the first time (and not when decreasing rmap_hlist_len)
2001          * would be sign of memory corruption in the stable_node.
2002          */
2003         BUG_ON(stable_node->rmap_hlist_len < 0);
2004
2005         stable_node->rmap_hlist_len++;
2006         if (!max_page_sharing_bypass)
2007                 /* possibly non fatal but unexpected overflow, only warn */
2008                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2009                              ksm_max_page_sharing);
2010
2011         rmap_item->head = stable_node;
2012         rmap_item->address |= STABLE_FLAG;
2013         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2014
2015         if (rmap_item->hlist.next)
2016                 ksm_pages_sharing++;
2017         else
2018                 ksm_pages_shared++;
2019 }
2020
2021 /*
2022  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2023  * if not, compare checksum to previous and if it's the same, see if page can
2024  * be inserted into the unstable tree, or merged with a page already there and
2025  * both transferred to the stable tree.
2026  *
2027  * @page: the page that we are searching identical page to.
2028  * @rmap_item: the reverse mapping into the virtual address of this page
2029  */
2030 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031 {
2032         struct mm_struct *mm = rmap_item->mm;
2033         struct rmap_item *tree_rmap_item;
2034         struct page *tree_page = NULL;
2035         struct stable_node *stable_node;
2036         struct page *kpage;
2037         unsigned int checksum;
2038         int err;
2039         bool max_page_sharing_bypass = false;
2040
2041         stable_node = page_stable_node(page);
2042         if (stable_node) {
2043                 if (stable_node->head != &migrate_nodes &&
2044                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2045                     NUMA(stable_node->nid)) {
2046                         stable_node_dup_del(stable_node);
2047                         stable_node->head = &migrate_nodes;
2048                         list_add(&stable_node->list, stable_node->head);
2049                 }
2050                 if (stable_node->head != &migrate_nodes &&
2051                     rmap_item->head == stable_node)
2052                         return;
2053                 /*
2054                  * If it's a KSM fork, allow it to go over the sharing limit
2055                  * without warnings.
2056                  */
2057                 if (!is_page_sharing_candidate(stable_node))
2058                         max_page_sharing_bypass = true;
2059         }
2060
2061         /* We first start with searching the page inside the stable tree */
2062         kpage = stable_tree_search(page);
2063         if (kpage == page && rmap_item->head == stable_node) {
2064                 put_page(kpage);
2065                 return;
2066         }
2067
2068         remove_rmap_item_from_tree(rmap_item);
2069
2070         if (kpage) {
2071                 if (PTR_ERR(kpage) == -EBUSY)
2072                         return;
2073
2074                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2075                 if (!err) {
2076                         /*
2077                          * The page was successfully merged:
2078                          * add its rmap_item to the stable tree.
2079                          */
2080                         lock_page(kpage);
2081                         stable_tree_append(rmap_item, page_stable_node(kpage),
2082                                            max_page_sharing_bypass);
2083                         unlock_page(kpage);
2084                 }
2085                 put_page(kpage);
2086                 return;
2087         }
2088
2089         /*
2090          * If the hash value of the page has changed from the last time
2091          * we calculated it, this page is changing frequently: therefore we
2092          * don't want to insert it in the unstable tree, and we don't want
2093          * to waste our time searching for something identical to it there.
2094          */
2095         checksum = calc_checksum(page);
2096         if (rmap_item->oldchecksum != checksum) {
2097                 rmap_item->oldchecksum = checksum;
2098                 return;
2099         }
2100
2101         /*
2102          * Same checksum as an empty page. We attempt to merge it with the
2103          * appropriate zero page if the user enabled this via sysfs.
2104          */
2105         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2106                 struct vm_area_struct *vma;
2107
2108                 mmap_read_lock(mm);
2109                 vma = find_mergeable_vma(mm, rmap_item->address);
2110                 if (vma) {
2111                         err = try_to_merge_one_page(vma, page,
2112                                         ZERO_PAGE(rmap_item->address));
2113                 } else {
2114                         /*
2115                          * If the vma is out of date, we do not need to
2116                          * continue.
2117                          */
2118                         err = 0;
2119                 }
2120                 mmap_read_unlock(mm);
2121                 /*
2122                  * In case of failure, the page was not really empty, so we
2123                  * need to continue. Otherwise we're done.
2124                  */
2125                 if (!err)
2126                         return;
2127         }
2128         tree_rmap_item =
2129                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2130         if (tree_rmap_item) {
2131                 bool split;
2132
2133                 kpage = try_to_merge_two_pages(rmap_item, page,
2134                                                 tree_rmap_item, tree_page);
2135                 /*
2136                  * If both pages we tried to merge belong to the same compound
2137                  * page, then we actually ended up increasing the reference
2138                  * count of the same compound page twice, and split_huge_page
2139                  * failed.
2140                  * Here we set a flag if that happened, and we use it later to
2141                  * try split_huge_page again. Since we call put_page right
2142                  * afterwards, the reference count will be correct and
2143                  * split_huge_page should succeed.
2144                  */
2145                 split = PageTransCompound(page)
2146                         && compound_head(page) == compound_head(tree_page);
2147                 put_page(tree_page);
2148                 if (kpage) {
2149                         /*
2150                          * The pages were successfully merged: insert new
2151                          * node in the stable tree and add both rmap_items.
2152                          */
2153                         lock_page(kpage);
2154                         stable_node = stable_tree_insert(kpage);
2155                         if (stable_node) {
2156                                 stable_tree_append(tree_rmap_item, stable_node,
2157                                                    false);
2158                                 stable_tree_append(rmap_item, stable_node,
2159                                                    false);
2160                         }
2161                         unlock_page(kpage);
2162
2163                         /*
2164                          * If we fail to insert the page into the stable tree,
2165                          * we will have 2 virtual addresses that are pointing
2166                          * to a ksm page left outside the stable tree,
2167                          * in which case we need to break_cow on both.
2168                          */
2169                         if (!stable_node) {
2170                                 break_cow(tree_rmap_item);
2171                                 break_cow(rmap_item);
2172                         }
2173                 } else if (split) {
2174                         /*
2175                          * We are here if we tried to merge two pages and
2176                          * failed because they both belonged to the same
2177                          * compound page. We will split the page now, but no
2178                          * merging will take place.
2179                          * We do not want to add the cost of a full lock; if
2180                          * the page is locked, it is better to skip it and
2181                          * perhaps try again later.
2182                          */
2183                         if (!trylock_page(page))
2184                                 return;
2185                         split_huge_page(page);
2186                         unlock_page(page);
2187                 }
2188         }
2189 }
2190
2191 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2192                                             struct rmap_item **rmap_list,
2193                                             unsigned long addr)
2194 {
2195         struct rmap_item *rmap_item;
2196
2197         while (*rmap_list) {
2198                 rmap_item = *rmap_list;
2199                 if ((rmap_item->address & PAGE_MASK) == addr)
2200                         return rmap_item;
2201                 if (rmap_item->address > addr)
2202                         break;
2203                 *rmap_list = rmap_item->rmap_list;
2204                 remove_rmap_item_from_tree(rmap_item);
2205                 free_rmap_item(rmap_item);
2206         }
2207
2208         rmap_item = alloc_rmap_item();
2209         if (rmap_item) {
2210                 /* It has already been zeroed */
2211                 rmap_item->mm = mm_slot->mm;
2212                 rmap_item->address = addr;
2213                 rmap_item->rmap_list = *rmap_list;
2214                 *rmap_list = rmap_item;
2215         }
2216         return rmap_item;
2217 }
2218
2219 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2220 {
2221         struct mm_struct *mm;
2222         struct mm_slot *slot;
2223         struct vm_area_struct *vma;
2224         struct rmap_item *rmap_item;
2225         int nid;
2226
2227         if (list_empty(&ksm_mm_head.mm_list))
2228                 return NULL;
2229
2230         slot = ksm_scan.mm_slot;
2231         if (slot == &ksm_mm_head) {
2232                 /*
2233                  * A number of pages can hang around indefinitely on per-cpu
2234                  * pagevecs, raised page count preventing write_protect_page
2235                  * from merging them.  Though it doesn't really matter much,
2236                  * it is puzzling to see some stuck in pages_volatile until
2237                  * other activity jostles them out, and they also prevented
2238                  * LTP's KSM test from succeeding deterministically; so drain
2239                  * them here (here rather than on entry to ksm_do_scan(),
2240                  * so we don't IPI too often when pages_to_scan is set low).
2241                  */
2242                 lru_add_drain_all();
2243
2244                 /*
2245                  * Whereas stale stable_nodes on the stable_tree itself
2246                  * get pruned in the regular course of stable_tree_search(),
2247                  * those moved out to the migrate_nodes list can accumulate:
2248                  * so prune them once before each full scan.
2249                  */
2250                 if (!ksm_merge_across_nodes) {
2251                         struct stable_node *stable_node, *next;
2252                         struct page *page;
2253
2254                         list_for_each_entry_safe(stable_node, next,
2255                                                  &migrate_nodes, list) {
2256                                 page = get_ksm_page(stable_node,
2257                                                     GET_KSM_PAGE_NOLOCK);
2258                                 if (page)
2259                                         put_page(page);
2260                                 cond_resched();
2261                         }
2262                 }
2263
2264                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2265                         root_unstable_tree[nid] = RB_ROOT;
2266
2267                 spin_lock(&ksm_mmlist_lock);
2268                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2269                 ksm_scan.mm_slot = slot;
2270                 spin_unlock(&ksm_mmlist_lock);
2271                 /*
2272                  * Although we tested list_empty() above, a racing __ksm_exit
2273                  * of the last mm on the list may have removed it since then.
2274                  */
2275                 if (slot == &ksm_mm_head)
2276                         return NULL;
2277 next_mm:
2278                 ksm_scan.address = 0;
2279                 ksm_scan.rmap_list = &slot->rmap_list;
2280         }
2281
2282         mm = slot->mm;
2283         mmap_read_lock(mm);
2284         if (ksm_test_exit(mm))
2285                 vma = NULL;
2286         else
2287                 vma = find_vma(mm, ksm_scan.address);
2288
2289         for (; vma; vma = vma->vm_next) {
2290                 if (!(vma->vm_flags & VM_MERGEABLE))
2291                         continue;
2292                 if (ksm_scan.address < vma->vm_start)
2293                         ksm_scan.address = vma->vm_start;
2294                 if (!vma->anon_vma)
2295                         ksm_scan.address = vma->vm_end;
2296
2297                 while (ksm_scan.address < vma->vm_end) {
2298                         if (ksm_test_exit(mm))
2299                                 break;
2300                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2301                         if (IS_ERR_OR_NULL(*page)) {
2302                                 ksm_scan.address += PAGE_SIZE;
2303                                 cond_resched();
2304                                 continue;
2305                         }
2306                         if (PageAnon(*page)) {
2307                                 flush_anon_page(vma, *page, ksm_scan.address);
2308                                 flush_dcache_page(*page);
2309                                 rmap_item = get_next_rmap_item(slot,
2310                                         ksm_scan.rmap_list, ksm_scan.address);
2311                                 if (rmap_item) {
2312                                         ksm_scan.rmap_list =
2313                                                         &rmap_item->rmap_list;
2314                                         ksm_scan.address += PAGE_SIZE;
2315                                 } else
2316                                         put_page(*page);
2317                                 mmap_read_unlock(mm);
2318                                 return rmap_item;
2319                         }
2320                         put_page(*page);
2321                         ksm_scan.address += PAGE_SIZE;
2322                         cond_resched();
2323                 }
2324         }
2325
2326         if (ksm_test_exit(mm)) {
2327                 ksm_scan.address = 0;
2328                 ksm_scan.rmap_list = &slot->rmap_list;
2329         }
2330         /*
2331          * Nuke all the rmap_items that are above this current rmap:
2332          * because there were no VM_MERGEABLE vmas with such addresses.
2333          */
2334         remove_trailing_rmap_items(ksm_scan.rmap_list);
2335
2336         spin_lock(&ksm_mmlist_lock);
2337         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2338                                                 struct mm_slot, mm_list);
2339         if (ksm_scan.address == 0) {
2340                 /*
2341                  * We've completed a full scan of all vmas, holding mmap_lock
2342                  * throughout, and found no VM_MERGEABLE: so do the same as
2343                  * __ksm_exit does to remove this mm from all our lists now.
2344                  * This applies either when cleaning up after __ksm_exit
2345                  * (but beware: we can reach here even before __ksm_exit),
2346                  * or when all VM_MERGEABLE areas have been unmapped (and
2347                  * mmap_lock then protects against race with MADV_MERGEABLE).
2348                  */
2349                 hash_del(&slot->link);
2350                 list_del(&slot->mm_list);
2351                 spin_unlock(&ksm_mmlist_lock);
2352
2353                 free_mm_slot(slot);
2354                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2355                 mmap_read_unlock(mm);
2356                 mmdrop(mm);
2357         } else {
2358                 mmap_read_unlock(mm);
2359                 /*
2360                  * mmap_read_unlock(mm) first because after
2361                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2362                  * already have been freed under us by __ksm_exit()
2363                  * because the "mm_slot" is still hashed and
2364                  * ksm_scan.mm_slot doesn't point to it anymore.
2365                  */
2366                 spin_unlock(&ksm_mmlist_lock);
2367         }
2368
2369         /* Repeat until we've completed scanning the whole list */
2370         slot = ksm_scan.mm_slot;
2371         if (slot != &ksm_mm_head)
2372                 goto next_mm;
2373
2374         ksm_scan.seqnr++;
2375         return NULL;
2376 }
2377
2378 /**
2379  * ksm_do_scan  - the ksm scanner main worker function.
2380  * @scan_npages:  number of pages we want to scan before we return.
2381  */
2382 static void ksm_do_scan(unsigned int scan_npages)
2383 {
2384         struct rmap_item *rmap_item;
2385         struct page *page;
2386
2387         while (scan_npages-- && likely(!freezing(current))) {
2388                 cond_resched();
2389                 rmap_item = scan_get_next_rmap_item(&page);
2390                 if (!rmap_item)
2391                         return;
2392                 cmp_and_merge_page(page, rmap_item);
2393                 put_page(page);
2394         }
2395 }
2396
2397 static int ksmd_should_run(void)
2398 {
2399         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2400 }
2401
2402 static int ksm_scan_thread(void *nothing)
2403 {
2404         unsigned int sleep_ms;
2405
2406         set_freezable();
2407         set_user_nice(current, 5);
2408
2409         while (!kthread_should_stop()) {
2410                 mutex_lock(&ksm_thread_mutex);
2411                 wait_while_offlining();
2412                 if (ksmd_should_run())
2413                         ksm_do_scan(ksm_thread_pages_to_scan);
2414                 mutex_unlock(&ksm_thread_mutex);
2415
2416                 try_to_freeze();
2417
2418                 if (ksmd_should_run()) {
2419                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2420                         wait_event_interruptible_timeout(ksm_iter_wait,
2421                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2422                                 msecs_to_jiffies(sleep_ms));
2423                 } else {
2424                         wait_event_freezable(ksm_thread_wait,
2425                                 ksmd_should_run() || kthread_should_stop());
2426                 }
2427         }
2428         return 0;
2429 }
2430
2431 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2432                 unsigned long end, int advice, unsigned long *vm_flags)
2433 {
2434         struct mm_struct *mm = vma->vm_mm;
2435         int err;
2436
2437         switch (advice) {
2438         case MADV_MERGEABLE:
2439                 /*
2440                  * Be somewhat over-protective for now!
2441                  */
2442                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2443                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2444                                  VM_HUGETLB | VM_MIXEDMAP))
2445                         return 0;               /* just ignore the advice */
2446
2447                 if (vma_is_dax(vma))
2448                         return 0;
2449
2450 #ifdef VM_SAO
2451                 if (*vm_flags & VM_SAO)
2452                         return 0;
2453 #endif
2454 #ifdef VM_SPARC_ADI
2455                 if (*vm_flags & VM_SPARC_ADI)
2456                         return 0;
2457 #endif
2458
2459                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2460                         err = __ksm_enter(mm);
2461                         if (err)
2462                                 return err;
2463                 }
2464
2465                 *vm_flags |= VM_MERGEABLE;
2466                 break;
2467
2468         case MADV_UNMERGEABLE:
2469                 if (!(*vm_flags & VM_MERGEABLE))
2470                         return 0;               /* just ignore the advice */
2471
2472                 if (vma->anon_vma) {
2473                         err = unmerge_ksm_pages(vma, start, end);
2474                         if (err)
2475                                 return err;
2476                 }
2477
2478                 *vm_flags &= ~VM_MERGEABLE;
2479                 break;
2480         }
2481
2482         return 0;
2483 }
2484 EXPORT_SYMBOL_GPL(ksm_madvise);
2485
2486 int __ksm_enter(struct mm_struct *mm)
2487 {
2488         struct mm_slot *mm_slot;
2489         int needs_wakeup;
2490
2491         mm_slot = alloc_mm_slot();
2492         if (!mm_slot)
2493                 return -ENOMEM;
2494
2495         /* Check ksm_run too?  Would need tighter locking */
2496         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2497
2498         spin_lock(&ksm_mmlist_lock);
2499         insert_to_mm_slots_hash(mm, mm_slot);
2500         /*
2501          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2502          * insert just behind the scanning cursor, to let the area settle
2503          * down a little; when fork is followed by immediate exec, we don't
2504          * want ksmd to waste time setting up and tearing down an rmap_list.
2505          *
2506          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2507          * scanning cursor, otherwise KSM pages in newly forked mms will be
2508          * missed: then we might as well insert at the end of the list.
2509          */
2510         if (ksm_run & KSM_RUN_UNMERGE)
2511                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2512         else
2513                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2514         spin_unlock(&ksm_mmlist_lock);
2515
2516         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2517         mmgrab(mm);
2518
2519         if (needs_wakeup)
2520                 wake_up_interruptible(&ksm_thread_wait);
2521
2522         return 0;
2523 }
2524
2525 void __ksm_exit(struct mm_struct *mm)
2526 {
2527         struct mm_slot *mm_slot;
2528         int easy_to_free = 0;
2529
2530         /*
2531          * This process is exiting: if it's straightforward (as is the
2532          * case when ksmd was never running), free mm_slot immediately.
2533          * But if it's at the cursor or has rmap_items linked to it, use
2534          * mmap_lock to synchronize with any break_cows before pagetables
2535          * are freed, and leave the mm_slot on the list for ksmd to free.
2536          * Beware: ksm may already have noticed it exiting and freed the slot.
2537          */
2538
2539         spin_lock(&ksm_mmlist_lock);
2540         mm_slot = get_mm_slot(mm);
2541         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2542                 if (!mm_slot->rmap_list) {
2543                         hash_del(&mm_slot->link);
2544                         list_del(&mm_slot->mm_list);
2545                         easy_to_free = 1;
2546                 } else {
2547                         list_move(&mm_slot->mm_list,
2548                                   &ksm_scan.mm_slot->mm_list);
2549                 }
2550         }
2551         spin_unlock(&ksm_mmlist_lock);
2552
2553         if (easy_to_free) {
2554                 free_mm_slot(mm_slot);
2555                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2556                 mmdrop(mm);
2557         } else if (mm_slot) {
2558                 mmap_write_lock(mm);
2559                 mmap_write_unlock(mm);
2560         }
2561 }
2562
2563 struct page *ksm_might_need_to_copy(struct page *page,
2564                         struct vm_area_struct *vma, unsigned long address)
2565 {
2566         struct anon_vma *anon_vma = page_anon_vma(page);
2567         struct page *new_page;
2568
2569         if (PageKsm(page)) {
2570                 if (page_stable_node(page) &&
2571                     !(ksm_run & KSM_RUN_UNMERGE))
2572                         return page;    /* no need to copy it */
2573         } else if (!anon_vma) {
2574                 return page;            /* no need to copy it */
2575         } else if (anon_vma->root == vma->anon_vma->root &&
2576                  page->index == linear_page_index(vma, address)) {
2577                 return page;            /* still no need to copy it */
2578         }
2579         if (!PageUptodate(page))
2580                 return page;            /* let do_swap_page report the error */
2581
2582         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2583         if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2584                 put_page(new_page);
2585                 new_page = NULL;
2586         }
2587         if (new_page) {
2588                 copy_user_highpage(new_page, page, address, vma);
2589
2590                 SetPageDirty(new_page);
2591                 __SetPageUptodate(new_page);
2592                 __SetPageLocked(new_page);
2593         }
2594
2595         return new_page;
2596 }
2597
2598 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2599 {
2600         struct stable_node *stable_node;
2601         struct rmap_item *rmap_item;
2602         int search_new_forks = 0;
2603
2604         VM_BUG_ON_PAGE(!PageKsm(page), page);
2605
2606         /*
2607          * Rely on the page lock to protect against concurrent modifications
2608          * to that page's node of the stable tree.
2609          */
2610         VM_BUG_ON_PAGE(!PageLocked(page), page);
2611
2612         stable_node = page_stable_node(page);
2613         if (!stable_node)
2614                 return;
2615 again:
2616         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2617                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2618                 struct anon_vma_chain *vmac;
2619                 struct vm_area_struct *vma;
2620
2621                 cond_resched();
2622                 anon_vma_lock_read(anon_vma);
2623                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2624                                                0, ULONG_MAX) {
2625                         unsigned long addr;
2626
2627                         cond_resched();
2628                         vma = vmac->vma;
2629
2630                         /* Ignore the stable/unstable/sqnr flags */
2631                         addr = rmap_item->address & PAGE_MASK;
2632
2633                         if (addr < vma->vm_start || addr >= vma->vm_end)
2634                                 continue;
2635                         /*
2636                          * Initially we examine only the vma which covers this
2637                          * rmap_item; but later, if there is still work to do,
2638                          * we examine covering vmas in other mms: in case they
2639                          * were forked from the original since ksmd passed.
2640                          */
2641                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2642                                 continue;
2643
2644                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2645                                 continue;
2646
2647                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2648                                 anon_vma_unlock_read(anon_vma);
2649                                 return;
2650                         }
2651                         if (rwc->done && rwc->done(page)) {
2652                                 anon_vma_unlock_read(anon_vma);
2653                                 return;
2654                         }
2655                 }
2656                 anon_vma_unlock_read(anon_vma);
2657         }
2658         if (!search_new_forks++)
2659                 goto again;
2660 }
2661
2662 #ifdef CONFIG_MIGRATION
2663 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2664 {
2665         struct stable_node *stable_node;
2666
2667         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2668         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2669         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2670
2671         stable_node = page_stable_node(newpage);
2672         if (stable_node) {
2673                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2674                 stable_node->kpfn = page_to_pfn(newpage);
2675                 /*
2676                  * newpage->mapping was set in advance; now we need smp_wmb()
2677                  * to make sure that the new stable_node->kpfn is visible
2678                  * to get_ksm_page() before it can see that oldpage->mapping
2679                  * has gone stale (or that PageSwapCache has been cleared).
2680                  */
2681                 smp_wmb();
2682                 set_page_stable_node(oldpage, NULL);
2683         }
2684 }
2685 #endif /* CONFIG_MIGRATION */
2686
2687 #ifdef CONFIG_MEMORY_HOTREMOVE
2688 static void wait_while_offlining(void)
2689 {
2690         while (ksm_run & KSM_RUN_OFFLINE) {
2691                 mutex_unlock(&ksm_thread_mutex);
2692                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2693                             TASK_UNINTERRUPTIBLE);
2694                 mutex_lock(&ksm_thread_mutex);
2695         }
2696 }
2697
2698 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2699                                          unsigned long start_pfn,
2700                                          unsigned long end_pfn)
2701 {
2702         if (stable_node->kpfn >= start_pfn &&
2703             stable_node->kpfn < end_pfn) {
2704                 /*
2705                  * Don't get_ksm_page, page has already gone:
2706                  * which is why we keep kpfn instead of page*
2707                  */
2708                 remove_node_from_stable_tree(stable_node);
2709                 return true;
2710         }
2711         return false;
2712 }
2713
2714 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2715                                            unsigned long start_pfn,
2716                                            unsigned long end_pfn,
2717                                            struct rb_root *root)
2718 {
2719         struct stable_node *dup;
2720         struct hlist_node *hlist_safe;
2721
2722         if (!is_stable_node_chain(stable_node)) {
2723                 VM_BUG_ON(is_stable_node_dup(stable_node));
2724                 return stable_node_dup_remove_range(stable_node, start_pfn,
2725                                                     end_pfn);
2726         }
2727
2728         hlist_for_each_entry_safe(dup, hlist_safe,
2729                                   &stable_node->hlist, hlist_dup) {
2730                 VM_BUG_ON(!is_stable_node_dup(dup));
2731                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2732         }
2733         if (hlist_empty(&stable_node->hlist)) {
2734                 free_stable_node_chain(stable_node, root);
2735                 return true; /* notify caller that tree was rebalanced */
2736         } else
2737                 return false;
2738 }
2739
2740 static void ksm_check_stable_tree(unsigned long start_pfn,
2741                                   unsigned long end_pfn)
2742 {
2743         struct stable_node *stable_node, *next;
2744         struct rb_node *node;
2745         int nid;
2746
2747         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2748                 node = rb_first(root_stable_tree + nid);
2749                 while (node) {
2750                         stable_node = rb_entry(node, struct stable_node, node);
2751                         if (stable_node_chain_remove_range(stable_node,
2752                                                            start_pfn, end_pfn,
2753                                                            root_stable_tree +
2754                                                            nid))
2755                                 node = rb_first(root_stable_tree + nid);
2756                         else
2757                                 node = rb_next(node);
2758                         cond_resched();
2759                 }
2760         }
2761         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2762                 if (stable_node->kpfn >= start_pfn &&
2763                     stable_node->kpfn < end_pfn)
2764                         remove_node_from_stable_tree(stable_node);
2765                 cond_resched();
2766         }
2767 }
2768
2769 static int ksm_memory_callback(struct notifier_block *self,
2770                                unsigned long action, void *arg)
2771 {
2772         struct memory_notify *mn = arg;
2773
2774         switch (action) {
2775         case MEM_GOING_OFFLINE:
2776                 /*
2777                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2778                  * and remove_all_stable_nodes() while memory is going offline:
2779                  * it is unsafe for them to touch the stable tree at this time.
2780                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2781                  * which do not need the ksm_thread_mutex are all safe.
2782                  */
2783                 mutex_lock(&ksm_thread_mutex);
2784                 ksm_run |= KSM_RUN_OFFLINE;
2785                 mutex_unlock(&ksm_thread_mutex);
2786                 break;
2787
2788         case MEM_OFFLINE:
2789                 /*
2790                  * Most of the work is done by page migration; but there might
2791                  * be a few stable_nodes left over, still pointing to struct
2792                  * pages which have been offlined: prune those from the tree,
2793                  * otherwise get_ksm_page() might later try to access a
2794                  * non-existent struct page.
2795                  */
2796                 ksm_check_stable_tree(mn->start_pfn,
2797                                       mn->start_pfn + mn->nr_pages);
2798                 fallthrough;
2799         case MEM_CANCEL_OFFLINE:
2800                 mutex_lock(&ksm_thread_mutex);
2801                 ksm_run &= ~KSM_RUN_OFFLINE;
2802                 mutex_unlock(&ksm_thread_mutex);
2803
2804                 smp_mb();       /* wake_up_bit advises this */
2805                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2806                 break;
2807         }
2808         return NOTIFY_OK;
2809 }
2810 #else
2811 static void wait_while_offlining(void)
2812 {
2813 }
2814 #endif /* CONFIG_MEMORY_HOTREMOVE */
2815
2816 #ifdef CONFIG_SYSFS
2817 /*
2818  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2819  */
2820
2821 #define KSM_ATTR_RO(_name) \
2822         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2823 #define KSM_ATTR(_name) \
2824         static struct kobj_attribute _name##_attr = \
2825                 __ATTR(_name, 0644, _name##_show, _name##_store)
2826
2827 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2828                                     struct kobj_attribute *attr, char *buf)
2829 {
2830         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2831 }
2832
2833 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2834                                      struct kobj_attribute *attr,
2835                                      const char *buf, size_t count)
2836 {
2837         unsigned int msecs;
2838         int err;
2839
2840         err = kstrtouint(buf, 10, &msecs);
2841         if (err)
2842                 return -EINVAL;
2843
2844         ksm_thread_sleep_millisecs = msecs;
2845         wake_up_interruptible(&ksm_iter_wait);
2846
2847         return count;
2848 }
2849 KSM_ATTR(sleep_millisecs);
2850
2851 static ssize_t pages_to_scan_show(struct kobject *kobj,
2852                                   struct kobj_attribute *attr, char *buf)
2853 {
2854         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2855 }
2856
2857 static ssize_t pages_to_scan_store(struct kobject *kobj,
2858                                    struct kobj_attribute *attr,
2859                                    const char *buf, size_t count)
2860 {
2861         unsigned int nr_pages;
2862         int err;
2863
2864         err = kstrtouint(buf, 10, &nr_pages);
2865         if (err)
2866                 return -EINVAL;
2867
2868         ksm_thread_pages_to_scan = nr_pages;
2869
2870         return count;
2871 }
2872 KSM_ATTR(pages_to_scan);
2873
2874 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2875                         char *buf)
2876 {
2877         return sysfs_emit(buf, "%lu\n", ksm_run);
2878 }
2879
2880 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2881                          const char *buf, size_t count)
2882 {
2883         unsigned int flags;
2884         int err;
2885
2886         err = kstrtouint(buf, 10, &flags);
2887         if (err)
2888                 return -EINVAL;
2889         if (flags > KSM_RUN_UNMERGE)
2890                 return -EINVAL;
2891
2892         /*
2893          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2894          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2895          * breaking COW to free the pages_shared (but leaves mm_slots
2896          * on the list for when ksmd may be set running again).
2897          */
2898
2899         mutex_lock(&ksm_thread_mutex);
2900         wait_while_offlining();
2901         if (ksm_run != flags) {
2902                 ksm_run = flags;
2903                 if (flags & KSM_RUN_UNMERGE) {
2904                         set_current_oom_origin();
2905                         err = unmerge_and_remove_all_rmap_items();
2906                         clear_current_oom_origin();
2907                         if (err) {
2908                                 ksm_run = KSM_RUN_STOP;
2909                                 count = err;
2910                         }
2911                 }
2912         }
2913         mutex_unlock(&ksm_thread_mutex);
2914
2915         if (flags & KSM_RUN_MERGE)
2916                 wake_up_interruptible(&ksm_thread_wait);
2917
2918         return count;
2919 }
2920 KSM_ATTR(run);
2921
2922 #ifdef CONFIG_NUMA
2923 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2924                                        struct kobj_attribute *attr, char *buf)
2925 {
2926         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2927 }
2928
2929 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2930                                    struct kobj_attribute *attr,
2931                                    const char *buf, size_t count)
2932 {
2933         int err;
2934         unsigned long knob;
2935
2936         err = kstrtoul(buf, 10, &knob);
2937         if (err)
2938                 return err;
2939         if (knob > 1)
2940                 return -EINVAL;
2941
2942         mutex_lock(&ksm_thread_mutex);
2943         wait_while_offlining();
2944         if (ksm_merge_across_nodes != knob) {
2945                 if (ksm_pages_shared || remove_all_stable_nodes())
2946                         err = -EBUSY;
2947                 else if (root_stable_tree == one_stable_tree) {
2948                         struct rb_root *buf;
2949                         /*
2950                          * This is the first time that we switch away from the
2951                          * default of merging across nodes: must now allocate
2952                          * a buffer to hold as many roots as may be needed.
2953                          * Allocate stable and unstable together:
2954                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2955                          */
2956                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2957                                       GFP_KERNEL);
2958                         /* Let us assume that RB_ROOT is NULL is zero */
2959                         if (!buf)
2960                                 err = -ENOMEM;
2961                         else {
2962                                 root_stable_tree = buf;
2963                                 root_unstable_tree = buf + nr_node_ids;
2964                                 /* Stable tree is empty but not the unstable */
2965                                 root_unstable_tree[0] = one_unstable_tree[0];
2966                         }
2967                 }
2968                 if (!err) {
2969                         ksm_merge_across_nodes = knob;
2970                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2971                 }
2972         }
2973         mutex_unlock(&ksm_thread_mutex);
2974
2975         return err ? err : count;
2976 }
2977 KSM_ATTR(merge_across_nodes);
2978 #endif
2979
2980 static ssize_t use_zero_pages_show(struct kobject *kobj,
2981                                    struct kobj_attribute *attr, char *buf)
2982 {
2983         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2984 }
2985 static ssize_t use_zero_pages_store(struct kobject *kobj,
2986                                    struct kobj_attribute *attr,
2987                                    const char *buf, size_t count)
2988 {
2989         int err;
2990         bool value;
2991
2992         err = kstrtobool(buf, &value);
2993         if (err)
2994                 return -EINVAL;
2995
2996         ksm_use_zero_pages = value;
2997
2998         return count;
2999 }
3000 KSM_ATTR(use_zero_pages);
3001
3002 static ssize_t max_page_sharing_show(struct kobject *kobj,
3003                                      struct kobj_attribute *attr, char *buf)
3004 {
3005         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3006 }
3007
3008 static ssize_t max_page_sharing_store(struct kobject *kobj,
3009                                       struct kobj_attribute *attr,
3010                                       const char *buf, size_t count)
3011 {
3012         int err;
3013         int knob;
3014
3015         err = kstrtoint(buf, 10, &knob);
3016         if (err)
3017                 return err;
3018         /*
3019          * When a KSM page is created it is shared by 2 mappings. This
3020          * being a signed comparison, it implicitly verifies it's not
3021          * negative.
3022          */
3023         if (knob < 2)
3024                 return -EINVAL;
3025
3026         if (READ_ONCE(ksm_max_page_sharing) == knob)
3027                 return count;
3028
3029         mutex_lock(&ksm_thread_mutex);
3030         wait_while_offlining();
3031         if (ksm_max_page_sharing != knob) {
3032                 if (ksm_pages_shared || remove_all_stable_nodes())
3033                         err = -EBUSY;
3034                 else
3035                         ksm_max_page_sharing = knob;
3036         }
3037         mutex_unlock(&ksm_thread_mutex);
3038
3039         return err ? err : count;
3040 }
3041 KSM_ATTR(max_page_sharing);
3042
3043 static ssize_t pages_shared_show(struct kobject *kobj,
3044                                  struct kobj_attribute *attr, char *buf)
3045 {
3046         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3047 }
3048 KSM_ATTR_RO(pages_shared);
3049
3050 static ssize_t pages_sharing_show(struct kobject *kobj,
3051                                   struct kobj_attribute *attr, char *buf)
3052 {
3053         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3054 }
3055 KSM_ATTR_RO(pages_sharing);
3056
3057 static ssize_t pages_unshared_show(struct kobject *kobj,
3058                                    struct kobj_attribute *attr, char *buf)
3059 {
3060         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3061 }
3062 KSM_ATTR_RO(pages_unshared);
3063
3064 static ssize_t pages_volatile_show(struct kobject *kobj,
3065                                    struct kobj_attribute *attr, char *buf)
3066 {
3067         long ksm_pages_volatile;
3068
3069         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3070                                 - ksm_pages_sharing - ksm_pages_unshared;
3071         /*
3072          * It was not worth any locking to calculate that statistic,
3073          * but it might therefore sometimes be negative: conceal that.
3074          */
3075         if (ksm_pages_volatile < 0)
3076                 ksm_pages_volatile = 0;
3077         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3078 }
3079 KSM_ATTR_RO(pages_volatile);
3080
3081 static ssize_t stable_node_dups_show(struct kobject *kobj,
3082                                      struct kobj_attribute *attr, char *buf)
3083 {
3084         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3085 }
3086 KSM_ATTR_RO(stable_node_dups);
3087
3088 static ssize_t stable_node_chains_show(struct kobject *kobj,
3089                                        struct kobj_attribute *attr, char *buf)
3090 {
3091         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3092 }
3093 KSM_ATTR_RO(stable_node_chains);
3094
3095 static ssize_t
3096 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3097                                         struct kobj_attribute *attr,
3098                                         char *buf)
3099 {
3100         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3101 }
3102
3103 static ssize_t
3104 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3105                                          struct kobj_attribute *attr,
3106                                          const char *buf, size_t count)
3107 {
3108         unsigned int msecs;
3109         int err;
3110
3111         err = kstrtouint(buf, 10, &msecs);
3112         if (err)
3113                 return -EINVAL;
3114
3115         ksm_stable_node_chains_prune_millisecs = msecs;
3116
3117         return count;
3118 }
3119 KSM_ATTR(stable_node_chains_prune_millisecs);
3120
3121 static ssize_t full_scans_show(struct kobject *kobj,
3122                                struct kobj_attribute *attr, char *buf)
3123 {
3124         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3125 }
3126 KSM_ATTR_RO(full_scans);
3127
3128 static struct attribute *ksm_attrs[] = {
3129         &sleep_millisecs_attr.attr,
3130         &pages_to_scan_attr.attr,
3131         &run_attr.attr,
3132         &pages_shared_attr.attr,
3133         &pages_sharing_attr.attr,
3134         &pages_unshared_attr.attr,
3135         &pages_volatile_attr.attr,
3136         &full_scans_attr.attr,
3137 #ifdef CONFIG_NUMA
3138         &merge_across_nodes_attr.attr,
3139 #endif
3140         &max_page_sharing_attr.attr,
3141         &stable_node_chains_attr.attr,
3142         &stable_node_dups_attr.attr,
3143         &stable_node_chains_prune_millisecs_attr.attr,
3144         &use_zero_pages_attr.attr,
3145         NULL,
3146 };
3147
3148 static const struct attribute_group ksm_attr_group = {
3149         .attrs = ksm_attrs,
3150         .name = "ksm",
3151 };
3152 #endif /* CONFIG_SYSFS */
3153
3154 static int __init ksm_init(void)
3155 {
3156         struct task_struct *ksm_thread;
3157         int err;
3158
3159         /* The correct value depends on page size and endianness */
3160         zero_checksum = calc_checksum(ZERO_PAGE(0));
3161         /* Default to false for backwards compatibility */
3162         ksm_use_zero_pages = false;
3163
3164         err = ksm_slab_init();
3165         if (err)
3166                 goto out;
3167
3168         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3169         if (IS_ERR(ksm_thread)) {
3170                 pr_err("ksm: creating kthread failed\n");
3171                 err = PTR_ERR(ksm_thread);
3172                 goto out_free;
3173         }
3174
3175 #ifdef CONFIG_SYSFS
3176         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3177         if (err) {
3178                 pr_err("ksm: register sysfs failed\n");
3179                 kthread_stop(ksm_thread);
3180                 goto out_free;
3181         }
3182 #else
3183         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3184
3185 #endif /* CONFIG_SYSFS */
3186
3187 #ifdef CONFIG_MEMORY_HOTREMOVE
3188         /* There is no significance to this priority 100 */
3189         hotplug_memory_notifier(ksm_memory_callback, 100);
3190 #endif
3191         return 0;
3192
3193 out_free:
3194         ksm_slab_free();
3195 out:
3196         return err;
3197 }
3198 subsys_initcall(ksm_init);