Merge "kfence: Use pt_regs to generate stack trace on faults" into tizen
[platform/kernel/linux-rpi.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15 #ifndef CONFIG_LKSM
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same struct stable_node structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219 #define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220                                 /* to mask all the flags */
221
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234
235 static struct mm_slot ksm_mm_head = {
236         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239         .mm_slot = &ksm_mm_head,
240 };
241
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes  1U
288 #define ksm_nr_node_ids         1
289 #endif
290
291 #define KSM_RUN_STOP    0
292 #define KSM_RUN_MERGE   1
293 #define KSM_RUN_UNMERGE 2
294 #define KSM_RUN_OFFLINE 4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304                 sizeof(struct __struct), __alignof__(struct __struct),\
305                 (__flags), NULL)
306
307 static int __init ksm_slab_init(void)
308 {
309         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310         if (!rmap_item_cache)
311                 goto out;
312
313         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314         if (!stable_node_cache)
315                 goto out_free1;
316
317         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318         if (!mm_slot_cache)
319                 goto out_free2;
320
321         return 0;
322
323 out_free2:
324         kmem_cache_destroy(stable_node_cache);
325 out_free1:
326         kmem_cache_destroy(rmap_item_cache);
327 out:
328         return -ENOMEM;
329 }
330
331 static void __init ksm_slab_free(void)
332 {
333         kmem_cache_destroy(mm_slot_cache);
334         kmem_cache_destroy(stable_node_cache);
335         kmem_cache_destroy(rmap_item_cache);
336         mm_slot_cache = NULL;
337 }
338
339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340 {
341         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 }
343
344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345 {
346         return dup->head == STABLE_NODE_DUP_HEAD;
347 }
348
349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350                                              struct stable_node *chain)
351 {
352         VM_BUG_ON(is_stable_node_dup(dup));
353         dup->head = STABLE_NODE_DUP_HEAD;
354         VM_BUG_ON(!is_stable_node_chain(chain));
355         hlist_add_head(&dup->hlist_dup, &chain->hlist);
356         ksm_stable_node_dups++;
357 }
358
359 static inline void __stable_node_dup_del(struct stable_node *dup)
360 {
361         VM_BUG_ON(!is_stable_node_dup(dup));
362         hlist_del(&dup->hlist_dup);
363         ksm_stable_node_dups--;
364 }
365
366 static inline void stable_node_dup_del(struct stable_node *dup)
367 {
368         VM_BUG_ON(is_stable_node_chain(dup));
369         if (is_stable_node_dup(dup))
370                 __stable_node_dup_del(dup);
371         else
372                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374         dup->head = NULL;
375 #endif
376 }
377
378 static inline struct rmap_item *alloc_rmap_item(void)
379 {
380         struct rmap_item *rmap_item;
381
382         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383                                                 __GFP_NORETRY | __GFP_NOWARN);
384         if (rmap_item)
385                 ksm_rmap_items++;
386         return rmap_item;
387 }
388
389 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 {
391         ksm_rmap_items--;
392         rmap_item->mm = NULL;   /* debug safety */
393         kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
396 static inline struct stable_node *alloc_stable_node(void)
397 {
398         /*
399          * The allocation can take too long with GFP_KERNEL when memory is under
400          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401          * grants access to memory reserves, helping to avoid this problem.
402          */
403         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
406 static inline void free_stable_node(struct stable_node *stable_node)
407 {
408         VM_BUG_ON(stable_node->rmap_hlist_len &&
409                   !is_stable_node_chain(stable_node));
410         kmem_cache_free(stable_node_cache, stable_node);
411 }
412
413 static inline struct mm_slot *alloc_mm_slot(void)
414 {
415         if (!mm_slot_cache)     /* initialization failed */
416                 return NULL;
417         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 }
419
420 static inline void free_mm_slot(struct mm_slot *mm_slot)
421 {
422         kmem_cache_free(mm_slot_cache, mm_slot);
423 }
424
425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426 {
427         struct mm_slot *slot;
428
429         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430                 if (slot->mm == mm)
431                         return slot;
432
433         return NULL;
434 }
435
436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437                                     struct mm_slot *mm_slot)
438 {
439         mm_slot->mm = mm;
440         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441 }
442
443 /*
444  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445  * page tables after it has passed through ksm_exit() - which, if necessary,
446  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
447  * a special flag: they can just back out as soon as mm_users goes to zero.
448  * ksm_test_exit() is used throughout to make this test for exit: in some
449  * places for correctness, in some places just to avoid unnecessary work.
450  */
451 static inline bool ksm_test_exit(struct mm_struct *mm)
452 {
453         return atomic_read(&mm->mm_users) == 0;
454 }
455
456 /*
457  * We use break_ksm to break COW on a ksm page: it's a stripped down
458  *
459  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
460  *              put_page(page);
461  *
462  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463  * in case the application has unmapped and remapped mm,addr meanwhile.
464  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
465  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466  *
467  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468  * of the process that owns 'vma'.  We also do not want to enforce
469  * protection keys here anyway.
470  */
471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472 {
473         struct page *page;
474         vm_fault_t ret = 0;
475
476         do {
477                 cond_resched();
478                 page = follow_page(vma, addr,
479                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480                 if (IS_ERR_OR_NULL(page))
481                         break;
482                 if (PageKsm(page))
483                         ret = handle_mm_fault(vma, addr,
484                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
485                                               NULL);
486                 else
487                         ret = VM_FAULT_WRITE;
488                 put_page(page);
489         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490         /*
491          * We must loop because handle_mm_fault() may back out if there's
492          * any difficulty e.g. if pte accessed bit gets updated concurrently.
493          *
494          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
495          * COW has been broken, even if the vma does not permit VM_WRITE;
496          * but note that a concurrent fault might break PageKsm for us.
497          *
498          * VM_FAULT_SIGBUS could occur if we race with truncation of the
499          * backing file, which also invalidates anonymous pages: that's
500          * okay, that truncation will have unmapped the PageKsm for us.
501          *
502          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
503          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
504          * current task has TIF_MEMDIE set, and will be OOM killed on return
505          * to user; and ksmd, having no mm, would never be chosen for that.
506          *
507          * But if the mm is in a limited mem_cgroup, then the fault may fail
508          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
509          * even ksmd can fail in this way - though it's usually breaking ksm
510          * just to undo a merge it made a moment before, so unlikely to oom.
511          *
512          * That's a pity: we might therefore have more kernel pages allocated
513          * than we're counting as nodes in the stable tree; but ksm_do_scan
514          * will retry to break_cow on each pass, so should recover the page
515          * in due course.  The important thing is to not let VM_MERGEABLE
516          * be cleared while any such pages might remain in the area.
517          */
518         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
519 }
520
521 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
522                 unsigned long addr)
523 {
524         struct vm_area_struct *vma;
525         if (ksm_test_exit(mm))
526                 return NULL;
527         vma = find_vma(mm, addr);
528         if (!vma || vma->vm_start > addr)
529                 return NULL;
530         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
531                 return NULL;
532         return vma;
533 }
534
535 static void break_cow(struct rmap_item *rmap_item)
536 {
537         struct mm_struct *mm = rmap_item->mm;
538         unsigned long addr = rmap_item->address;
539         struct vm_area_struct *vma;
540
541         /*
542          * It is not an accident that whenever we want to break COW
543          * to undo, we also need to drop a reference to the anon_vma.
544          */
545         put_anon_vma(rmap_item->anon_vma);
546
547         mmap_read_lock(mm);
548         vma = find_mergeable_vma(mm, addr);
549         if (vma)
550                 break_ksm(vma, addr);
551         mmap_read_unlock(mm);
552 }
553
554 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
555 {
556         struct mm_struct *mm = rmap_item->mm;
557         unsigned long addr = rmap_item->address;
558         struct vm_area_struct *vma;
559         struct page *page;
560
561         mmap_read_lock(mm);
562         vma = find_mergeable_vma(mm, addr);
563         if (!vma)
564                 goto out;
565
566         page = follow_page(vma, addr, FOLL_GET);
567         if (IS_ERR_OR_NULL(page))
568                 goto out;
569         if (PageAnon(page)) {
570                 flush_anon_page(vma, page, addr);
571                 flush_dcache_page(page);
572         } else {
573                 put_page(page);
574 out:
575                 page = NULL;
576         }
577         mmap_read_unlock(mm);
578         return page;
579 }
580
581 /*
582  * This helper is used for getting right index into array of tree roots.
583  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
584  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
585  * every node has its own stable and unstable tree.
586  */
587 static inline int get_kpfn_nid(unsigned long kpfn)
588 {
589         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
590 }
591
592 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
593                                                    struct rb_root *root)
594 {
595         struct stable_node *chain = alloc_stable_node();
596         VM_BUG_ON(is_stable_node_chain(dup));
597         if (likely(chain)) {
598                 INIT_HLIST_HEAD(&chain->hlist);
599                 chain->chain_prune_time = jiffies;
600                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
601 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
602                 chain->nid = NUMA_NO_NODE; /* debug */
603 #endif
604                 ksm_stable_node_chains++;
605
606                 /*
607                  * Put the stable node chain in the first dimension of
608                  * the stable tree and at the same time remove the old
609                  * stable node.
610                  */
611                 rb_replace_node(&dup->node, &chain->node, root);
612
613                 /*
614                  * Move the old stable node to the second dimension
615                  * queued in the hlist_dup. The invariant is that all
616                  * dup stable_nodes in the chain->hlist point to pages
617                  * that are write protected and have the exact same
618                  * content.
619                  */
620                 stable_node_chain_add_dup(dup, chain);
621         }
622         return chain;
623 }
624
625 static inline void free_stable_node_chain(struct stable_node *chain,
626                                           struct rb_root *root)
627 {
628         rb_erase(&chain->node, root);
629         free_stable_node(chain);
630         ksm_stable_node_chains--;
631 }
632
633 static void remove_node_from_stable_tree(struct stable_node *stable_node)
634 {
635         struct rmap_item *rmap_item;
636
637         /* check it's not STABLE_NODE_CHAIN or negative */
638         BUG_ON(stable_node->rmap_hlist_len < 0);
639
640         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
641                 if (rmap_item->hlist.next)
642                         ksm_pages_sharing--;
643                 else
644                         ksm_pages_shared--;
645                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
646                 stable_node->rmap_hlist_len--;
647                 put_anon_vma(rmap_item->anon_vma);
648                 rmap_item->address &= PAGE_MASK;
649                 cond_resched();
650         }
651
652         /*
653          * We need the second aligned pointer of the migrate_nodes
654          * list_head to stay clear from the rb_parent_color union
655          * (aligned and different than any node) and also different
656          * from &migrate_nodes. This will verify that future list.h changes
657          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
658          */
659 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
660         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
661         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
662 #endif
663
664         if (stable_node->head == &migrate_nodes)
665                 list_del(&stable_node->list);
666         else
667                 stable_node_dup_del(stable_node);
668         free_stable_node(stable_node);
669 }
670
671 enum get_ksm_page_flags {
672         GET_KSM_PAGE_NOLOCK,
673         GET_KSM_PAGE_LOCK,
674         GET_KSM_PAGE_TRYLOCK
675 };
676
677 /*
678  * get_ksm_page: checks if the page indicated by the stable node
679  * is still its ksm page, despite having held no reference to it.
680  * In which case we can trust the content of the page, and it
681  * returns the gotten page; but if the page has now been zapped,
682  * remove the stale node from the stable tree and return NULL.
683  * But beware, the stable node's page might be being migrated.
684  *
685  * You would expect the stable_node to hold a reference to the ksm page.
686  * But if it increments the page's count, swapping out has to wait for
687  * ksmd to come around again before it can free the page, which may take
688  * seconds or even minutes: much too unresponsive.  So instead we use a
689  * "keyhole reference": access to the ksm page from the stable node peeps
690  * out through its keyhole to see if that page still holds the right key,
691  * pointing back to this stable node.  This relies on freeing a PageAnon
692  * page to reset its page->mapping to NULL, and relies on no other use of
693  * a page to put something that might look like our key in page->mapping.
694  * is on its way to being freed; but it is an anomaly to bear in mind.
695  */
696 static struct page *get_ksm_page(struct stable_node *stable_node,
697                                  enum get_ksm_page_flags flags)
698 {
699         struct page *page;
700         void *expected_mapping;
701         unsigned long kpfn;
702
703         expected_mapping = (void *)((unsigned long)stable_node |
704                                         PAGE_MAPPING_KSM);
705 again:
706         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
707         page = pfn_to_page(kpfn);
708         if (READ_ONCE(page->mapping) != expected_mapping)
709                 goto stale;
710
711         /*
712          * We cannot do anything with the page while its refcount is 0.
713          * Usually 0 means free, or tail of a higher-order page: in which
714          * case this node is no longer referenced, and should be freed;
715          * however, it might mean that the page is under page_ref_freeze().
716          * The __remove_mapping() case is easy, again the node is now stale;
717          * the same is in reuse_ksm_page() case; but if page is swapcache
718          * in migrate_page_move_mapping(), it might still be our page,
719          * in which case it's essential to keep the node.
720          */
721         while (!get_page_unless_zero(page)) {
722                 /*
723                  * Another check for page->mapping != expected_mapping would
724                  * work here too.  We have chosen the !PageSwapCache test to
725                  * optimize the common case, when the page is or is about to
726                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
727                  * in the ref_freeze section of __remove_mapping(); but Anon
728                  * page->mapping reset to NULL later, in free_pages_prepare().
729                  */
730                 if (!PageSwapCache(page))
731                         goto stale;
732                 cpu_relax();
733         }
734
735         if (READ_ONCE(page->mapping) != expected_mapping) {
736                 put_page(page);
737                 goto stale;
738         }
739
740         if (flags == GET_KSM_PAGE_TRYLOCK) {
741                 if (!trylock_page(page)) {
742                         put_page(page);
743                         return ERR_PTR(-EBUSY);
744                 }
745         } else if (flags == GET_KSM_PAGE_LOCK)
746                 lock_page(page);
747
748         if (flags != GET_KSM_PAGE_NOLOCK) {
749                 if (READ_ONCE(page->mapping) != expected_mapping) {
750                         unlock_page(page);
751                         put_page(page);
752                         goto stale;
753                 }
754         }
755         return page;
756
757 stale:
758         /*
759          * We come here from above when page->mapping or !PageSwapCache
760          * suggests that the node is stale; but it might be under migration.
761          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
762          * before checking whether node->kpfn has been changed.
763          */
764         smp_rmb();
765         if (READ_ONCE(stable_node->kpfn) != kpfn)
766                 goto again;
767         remove_node_from_stable_tree(stable_node);
768         return NULL;
769 }
770
771 /*
772  * Removing rmap_item from stable or unstable tree.
773  * This function will clean the information from the stable/unstable tree.
774  */
775 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
776 {
777         if (rmap_item->address & STABLE_FLAG) {
778                 struct stable_node *stable_node;
779                 struct page *page;
780
781                 stable_node = rmap_item->head;
782                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
783                 if (!page)
784                         goto out;
785
786                 hlist_del(&rmap_item->hlist);
787                 unlock_page(page);
788                 put_page(page);
789
790                 if (!hlist_empty(&stable_node->hlist))
791                         ksm_pages_sharing--;
792                 else
793                         ksm_pages_shared--;
794                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795                 stable_node->rmap_hlist_len--;
796
797                 put_anon_vma(rmap_item->anon_vma);
798                 rmap_item->head = NULL;
799                 rmap_item->address &= PAGE_MASK;
800
801         } else if (rmap_item->address & UNSTABLE_FLAG) {
802                 unsigned char age;
803                 /*
804                  * Usually ksmd can and must skip the rb_erase, because
805                  * root_unstable_tree was already reset to RB_ROOT.
806                  * But be careful when an mm is exiting: do the rb_erase
807                  * if this rmap_item was inserted by this scan, rather
808                  * than left over from before.
809                  */
810                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
811                 BUG_ON(age > 1);
812                 if (!age)
813                         rb_erase(&rmap_item->node,
814                                  root_unstable_tree + NUMA(rmap_item->nid));
815                 ksm_pages_unshared--;
816                 rmap_item->address &= PAGE_MASK;
817         }
818 out:
819         cond_resched();         /* we're called from many long loops */
820 }
821
822 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
823                                        struct rmap_item **rmap_list)
824 {
825         while (*rmap_list) {
826                 struct rmap_item *rmap_item = *rmap_list;
827                 *rmap_list = rmap_item->rmap_list;
828                 remove_rmap_item_from_tree(rmap_item);
829                 free_rmap_item(rmap_item);
830         }
831 }
832
833 /*
834  * Though it's very tempting to unmerge rmap_items from stable tree rather
835  * than check every pte of a given vma, the locking doesn't quite work for
836  * that - an rmap_item is assigned to the stable tree after inserting ksm
837  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
838  * rmap_items from parent to child at fork time (so as not to waste time
839  * if exit comes before the next scan reaches it).
840  *
841  * Similarly, although we'd like to remove rmap_items (so updating counts
842  * and freeing memory) when unmerging an area, it's easier to leave that
843  * to the next pass of ksmd - consider, for example, how ksmd might be
844  * in cmp_and_merge_page on one of the rmap_items we would be removing.
845  */
846 static int unmerge_ksm_pages(struct vm_area_struct *vma,
847                              unsigned long start, unsigned long end)
848 {
849         unsigned long addr;
850         int err = 0;
851
852         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
853                 if (ksm_test_exit(vma->vm_mm))
854                         break;
855                 if (signal_pending(current))
856                         err = -ERESTARTSYS;
857                 else
858                         err = break_ksm(vma, addr);
859         }
860         return err;
861 }
862
863 static inline struct stable_node *page_stable_node(struct page *page)
864 {
865         return PageKsm(page) ? page_rmapping(page) : NULL;
866 }
867
868 static inline void set_page_stable_node(struct page *page,
869                                         struct stable_node *stable_node)
870 {
871         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
872 }
873
874 #ifdef CONFIG_SYSFS
875 /*
876  * Only called through the sysfs control interface:
877  */
878 static int remove_stable_node(struct stable_node *stable_node)
879 {
880         struct page *page;
881         int err;
882
883         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
884         if (!page) {
885                 /*
886                  * get_ksm_page did remove_node_from_stable_tree itself.
887                  */
888                 return 0;
889         }
890
891         /*
892          * Page could be still mapped if this races with __mmput() running in
893          * between ksm_exit() and exit_mmap(). Just refuse to let
894          * merge_across_nodes/max_page_sharing be switched.
895          */
896         err = -EBUSY;
897         if (!page_mapped(page)) {
898                 /*
899                  * The stable node did not yet appear stale to get_ksm_page(),
900                  * since that allows for an unmapped ksm page to be recognized
901                  * right up until it is freed; but the node is safe to remove.
902                  * This page might be in a pagevec waiting to be freed,
903                  * or it might be PageSwapCache (perhaps under writeback),
904                  * or it might have been removed from swapcache a moment ago.
905                  */
906                 set_page_stable_node(page, NULL);
907                 remove_node_from_stable_tree(stable_node);
908                 err = 0;
909         }
910
911         unlock_page(page);
912         put_page(page);
913         return err;
914 }
915
916 static int remove_stable_node_chain(struct stable_node *stable_node,
917                                     struct rb_root *root)
918 {
919         struct stable_node *dup;
920         struct hlist_node *hlist_safe;
921
922         if (!is_stable_node_chain(stable_node)) {
923                 VM_BUG_ON(is_stable_node_dup(stable_node));
924                 if (remove_stable_node(stable_node))
925                         return true;
926                 else
927                         return false;
928         }
929
930         hlist_for_each_entry_safe(dup, hlist_safe,
931                                   &stable_node->hlist, hlist_dup) {
932                 VM_BUG_ON(!is_stable_node_dup(dup));
933                 if (remove_stable_node(dup))
934                         return true;
935         }
936         BUG_ON(!hlist_empty(&stable_node->hlist));
937         free_stable_node_chain(stable_node, root);
938         return false;
939 }
940
941 static int remove_all_stable_nodes(void)
942 {
943         struct stable_node *stable_node, *next;
944         int nid;
945         int err = 0;
946
947         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
948                 while (root_stable_tree[nid].rb_node) {
949                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
950                                                 struct stable_node, node);
951                         if (remove_stable_node_chain(stable_node,
952                                                      root_stable_tree + nid)) {
953                                 err = -EBUSY;
954                                 break;  /* proceed to next nid */
955                         }
956                         cond_resched();
957                 }
958         }
959         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
960                 if (remove_stable_node(stable_node))
961                         err = -EBUSY;
962                 cond_resched();
963         }
964         return err;
965 }
966
967 static int unmerge_and_remove_all_rmap_items(void)
968 {
969         struct mm_slot *mm_slot;
970         struct mm_struct *mm;
971         struct vm_area_struct *vma;
972         int err = 0;
973
974         spin_lock(&ksm_mmlist_lock);
975         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
976                                                 struct mm_slot, mm_list);
977         spin_unlock(&ksm_mmlist_lock);
978
979         for (mm_slot = ksm_scan.mm_slot;
980                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
981                 mm = mm_slot->mm;
982                 mmap_read_lock(mm);
983                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
984                         if (ksm_test_exit(mm))
985                                 break;
986                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
987                                 continue;
988                         err = unmerge_ksm_pages(vma,
989                                                 vma->vm_start, vma->vm_end);
990                         if (err)
991                                 goto error;
992                 }
993
994                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
995                 mmap_read_unlock(mm);
996
997                 spin_lock(&ksm_mmlist_lock);
998                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
999                                                 struct mm_slot, mm_list);
1000                 if (ksm_test_exit(mm)) {
1001                         hash_del(&mm_slot->link);
1002                         list_del(&mm_slot->mm_list);
1003                         spin_unlock(&ksm_mmlist_lock);
1004
1005                         free_mm_slot(mm_slot);
1006                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1007                         mmdrop(mm);
1008                 } else
1009                         spin_unlock(&ksm_mmlist_lock);
1010         }
1011
1012         /* Clean up stable nodes, but don't worry if some are still busy */
1013         remove_all_stable_nodes();
1014         ksm_scan.seqnr = 0;
1015         return 0;
1016
1017 error:
1018         mmap_read_unlock(mm);
1019         spin_lock(&ksm_mmlist_lock);
1020         ksm_scan.mm_slot = &ksm_mm_head;
1021         spin_unlock(&ksm_mmlist_lock);
1022         return err;
1023 }
1024 #endif /* CONFIG_SYSFS */
1025
1026 static u32 calc_checksum(struct page *page)
1027 {
1028         u32 checksum;
1029         void *addr = kmap_atomic(page);
1030         checksum = xxhash(addr, PAGE_SIZE, 0);
1031         kunmap_atomic(addr);
1032         return checksum;
1033 }
1034
1035 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1036                               pte_t *orig_pte)
1037 {
1038         struct mm_struct *mm = vma->vm_mm;
1039         struct page_vma_mapped_walk pvmw = {
1040                 .page = page,
1041                 .vma = vma,
1042         };
1043         int swapped;
1044         int err = -EFAULT;
1045         struct mmu_notifier_range range;
1046
1047         pvmw.address = page_address_in_vma(page, vma);
1048         if (pvmw.address == -EFAULT)
1049                 goto out;
1050
1051         BUG_ON(PageTransCompound(page));
1052
1053         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1054                                 pvmw.address,
1055                                 pvmw.address + PAGE_SIZE);
1056         mmu_notifier_invalidate_range_start(&range);
1057
1058         if (!page_vma_mapped_walk(&pvmw))
1059                 goto out_mn;
1060         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1061                 goto out_unlock;
1062
1063         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1064             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1065                                                 mm_tlb_flush_pending(mm)) {
1066                 pte_t entry;
1067
1068                 swapped = PageSwapCache(page);
1069                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1070                 /*
1071                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1072                  * take any lock, therefore the check that we are going to make
1073                  * with the pagecount against the mapcount is racey and
1074                  * O_DIRECT can happen right after the check.
1075                  * So we clear the pte and flush the tlb before the check
1076                  * this assure us that no O_DIRECT can happen after the check
1077                  * or in the middle of the check.
1078                  *
1079                  * No need to notify as we are downgrading page table to read
1080                  * only not changing it to point to a new page.
1081                  *
1082                  * See Documentation/vm/mmu_notifier.rst
1083                  */
1084                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1085                 /*
1086                  * Check that no O_DIRECT or similar I/O is in progress on the
1087                  * page
1088                  */
1089                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1090                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1091                         goto out_unlock;
1092                 }
1093                 if (pte_dirty(entry))
1094                         set_page_dirty(page);
1095
1096                 if (pte_protnone(entry))
1097                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1098                 else
1099                         entry = pte_mkclean(pte_wrprotect(entry));
1100                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1101         }
1102         *orig_pte = *pvmw.pte;
1103         err = 0;
1104
1105 out_unlock:
1106         page_vma_mapped_walk_done(&pvmw);
1107 out_mn:
1108         mmu_notifier_invalidate_range_end(&range);
1109 out:
1110         return err;
1111 }
1112
1113 /**
1114  * replace_page - replace page in vma by new ksm page
1115  * @vma:      vma that holds the pte pointing to page
1116  * @page:     the page we are replacing by kpage
1117  * @kpage:    the ksm page we replace page by
1118  * @orig_pte: the original value of the pte
1119  *
1120  * Returns 0 on success, -EFAULT on failure.
1121  */
1122 static int replace_page(struct vm_area_struct *vma, struct page *page,
1123                         struct page *kpage, pte_t orig_pte)
1124 {
1125         struct mm_struct *mm = vma->vm_mm;
1126         pmd_t *pmd;
1127         pte_t *ptep;
1128         pte_t newpte;
1129         spinlock_t *ptl;
1130         unsigned long addr;
1131         int err = -EFAULT;
1132         struct mmu_notifier_range range;
1133
1134         addr = page_address_in_vma(page, vma);
1135         if (addr == -EFAULT)
1136                 goto out;
1137
1138         pmd = mm_find_pmd(mm, addr);
1139         if (!pmd)
1140                 goto out;
1141
1142         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1143                                 addr + PAGE_SIZE);
1144         mmu_notifier_invalidate_range_start(&range);
1145
1146         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1147         if (!pte_same(*ptep, orig_pte)) {
1148                 pte_unmap_unlock(ptep, ptl);
1149                 goto out_mn;
1150         }
1151
1152         /*
1153          * No need to check ksm_use_zero_pages here: we can only have a
1154          * zero_page here if ksm_use_zero_pages was enabled already.
1155          */
1156         if (!is_zero_pfn(page_to_pfn(kpage))) {
1157                 get_page(kpage);
1158                 page_add_anon_rmap(kpage, vma, addr, false);
1159                 newpte = mk_pte(kpage, vma->vm_page_prot);
1160         } else {
1161                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1162                                                vma->vm_page_prot));
1163                 /*
1164                  * We're replacing an anonymous page with a zero page, which is
1165                  * not anonymous. We need to do proper accounting otherwise we
1166                  * will get wrong values in /proc, and a BUG message in dmesg
1167                  * when tearing down the mm.
1168                  */
1169                 dec_mm_counter(mm, MM_ANONPAGES);
1170         }
1171
1172         flush_cache_page(vma, addr, pte_pfn(*ptep));
1173         /*
1174          * No need to notify as we are replacing a read only page with another
1175          * read only page with the same content.
1176          *
1177          * See Documentation/vm/mmu_notifier.rst
1178          */
1179         ptep_clear_flush(vma, addr, ptep);
1180         set_pte_at_notify(mm, addr, ptep, newpte);
1181
1182         page_remove_rmap(page, false);
1183         if (!page_mapped(page))
1184                 try_to_free_swap(page);
1185         put_page(page);
1186
1187         pte_unmap_unlock(ptep, ptl);
1188         err = 0;
1189 out_mn:
1190         mmu_notifier_invalidate_range_end(&range);
1191 out:
1192         return err;
1193 }
1194
1195 /*
1196  * try_to_merge_one_page - take two pages and merge them into one
1197  * @vma: the vma that holds the pte pointing to page
1198  * @page: the PageAnon page that we want to replace with kpage
1199  * @kpage: the PageKsm page that we want to map instead of page,
1200  *         or NULL the first time when we want to use page as kpage.
1201  *
1202  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1203  */
1204 static int try_to_merge_one_page(struct vm_area_struct *vma,
1205                                  struct page *page, struct page *kpage)
1206 {
1207         pte_t orig_pte = __pte(0);
1208         int err = -EFAULT;
1209
1210         if (page == kpage)                      /* ksm page forked */
1211                 return 0;
1212
1213         if (!PageAnon(page))
1214                 goto out;
1215
1216         /*
1217          * We need the page lock to read a stable PageSwapCache in
1218          * write_protect_page().  We use trylock_page() instead of
1219          * lock_page() because we don't want to wait here - we
1220          * prefer to continue scanning and merging different pages,
1221          * then come back to this page when it is unlocked.
1222          */
1223         if (!trylock_page(page))
1224                 goto out;
1225
1226         if (PageTransCompound(page)) {
1227                 if (split_huge_page(page))
1228                         goto out_unlock;
1229         }
1230
1231         /*
1232          * If this anonymous page is mapped only here, its pte may need
1233          * to be write-protected.  If it's mapped elsewhere, all of its
1234          * ptes are necessarily already write-protected.  But in either
1235          * case, we need to lock and check page_count is not raised.
1236          */
1237         if (write_protect_page(vma, page, &orig_pte) == 0) {
1238                 if (!kpage) {
1239                         /*
1240                          * While we hold page lock, upgrade page from
1241                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1242                          * stable_tree_insert() will update stable_node.
1243                          */
1244                         set_page_stable_node(page, NULL);
1245                         mark_page_accessed(page);
1246                         /*
1247                          * Page reclaim just frees a clean page with no dirty
1248                          * ptes: make sure that the ksm page would be swapped.
1249                          */
1250                         if (!PageDirty(page))
1251                                 SetPageDirty(page);
1252                         err = 0;
1253                 } else if (pages_identical(page, kpage))
1254                         err = replace_page(vma, page, kpage, orig_pte);
1255         }
1256
1257         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1258                 munlock_vma_page(page);
1259                 if (!PageMlocked(kpage)) {
1260                         unlock_page(page);
1261                         lock_page(kpage);
1262                         mlock_vma_page(kpage);
1263                         page = kpage;           /* for final unlock */
1264                 }
1265         }
1266
1267 out_unlock:
1268         unlock_page(page);
1269 out:
1270         return err;
1271 }
1272
1273 /*
1274  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1275  * but no new kernel page is allocated: kpage must already be a ksm page.
1276  *
1277  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1278  */
1279 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1280                                       struct page *page, struct page *kpage)
1281 {
1282         struct mm_struct *mm = rmap_item->mm;
1283         struct vm_area_struct *vma;
1284         int err = -EFAULT;
1285
1286         mmap_read_lock(mm);
1287         vma = find_mergeable_vma(mm, rmap_item->address);
1288         if (!vma)
1289                 goto out;
1290
1291         err = try_to_merge_one_page(vma, page, kpage);
1292         if (err)
1293                 goto out;
1294
1295         /* Unstable nid is in union with stable anon_vma: remove first */
1296         remove_rmap_item_from_tree(rmap_item);
1297
1298         /* Must get reference to anon_vma while still holding mmap_lock */
1299         rmap_item->anon_vma = vma->anon_vma;
1300         get_anon_vma(vma->anon_vma);
1301 out:
1302         mmap_read_unlock(mm);
1303         return err;
1304 }
1305
1306 /*
1307  * try_to_merge_two_pages - take two identical pages and prepare them
1308  * to be merged into one page.
1309  *
1310  * This function returns the kpage if we successfully merged two identical
1311  * pages into one ksm page, NULL otherwise.
1312  *
1313  * Note that this function upgrades page to ksm page: if one of the pages
1314  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1315  */
1316 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1317                                            struct page *page,
1318                                            struct rmap_item *tree_rmap_item,
1319                                            struct page *tree_page)
1320 {
1321         int err;
1322
1323         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1324         if (!err) {
1325                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1326                                                         tree_page, page);
1327                 /*
1328                  * If that fails, we have a ksm page with only one pte
1329                  * pointing to it: so break it.
1330                  */
1331                 if (err)
1332                         break_cow(rmap_item);
1333         }
1334         return err ? NULL : page;
1335 }
1336
1337 static __always_inline
1338 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1339 {
1340         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1341         /*
1342          * Check that at least one mapping still exists, otherwise
1343          * there's no much point to merge and share with this
1344          * stable_node, as the underlying tree_page of the other
1345          * sharer is going to be freed soon.
1346          */
1347         return stable_node->rmap_hlist_len &&
1348                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1349 }
1350
1351 static __always_inline
1352 bool is_page_sharing_candidate(struct stable_node *stable_node)
1353 {
1354         return __is_page_sharing_candidate(stable_node, 0);
1355 }
1356
1357 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1358                                     struct stable_node **_stable_node,
1359                                     struct rb_root *root,
1360                                     bool prune_stale_stable_nodes)
1361 {
1362         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1363         struct hlist_node *hlist_safe;
1364         struct page *_tree_page, *tree_page = NULL;
1365         int nr = 0;
1366         int found_rmap_hlist_len;
1367
1368         if (!prune_stale_stable_nodes ||
1369             time_before(jiffies, stable_node->chain_prune_time +
1370                         msecs_to_jiffies(
1371                                 ksm_stable_node_chains_prune_millisecs)))
1372                 prune_stale_stable_nodes = false;
1373         else
1374                 stable_node->chain_prune_time = jiffies;
1375
1376         hlist_for_each_entry_safe(dup, hlist_safe,
1377                                   &stable_node->hlist, hlist_dup) {
1378                 cond_resched();
1379                 /*
1380                  * We must walk all stable_node_dup to prune the stale
1381                  * stable nodes during lookup.
1382                  *
1383                  * get_ksm_page can drop the nodes from the
1384                  * stable_node->hlist if they point to freed pages
1385                  * (that's why we do a _safe walk). The "dup"
1386                  * stable_node parameter itself will be freed from
1387                  * under us if it returns NULL.
1388                  */
1389                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1390                 if (!_tree_page)
1391                         continue;
1392                 nr += 1;
1393                 if (is_page_sharing_candidate(dup)) {
1394                         if (!found ||
1395                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1396                                 if (found)
1397                                         put_page(tree_page);
1398                                 found = dup;
1399                                 found_rmap_hlist_len = found->rmap_hlist_len;
1400                                 tree_page = _tree_page;
1401
1402                                 /* skip put_page for found dup */
1403                                 if (!prune_stale_stable_nodes)
1404                                         break;
1405                                 continue;
1406                         }
1407                 }
1408                 put_page(_tree_page);
1409         }
1410
1411         if (found) {
1412                 /*
1413                  * nr is counting all dups in the chain only if
1414                  * prune_stale_stable_nodes is true, otherwise we may
1415                  * break the loop at nr == 1 even if there are
1416                  * multiple entries.
1417                  */
1418                 if (prune_stale_stable_nodes && nr == 1) {
1419                         /*
1420                          * If there's not just one entry it would
1421                          * corrupt memory, better BUG_ON. In KSM
1422                          * context with no lock held it's not even
1423                          * fatal.
1424                          */
1425                         BUG_ON(stable_node->hlist.first->next);
1426
1427                         /*
1428                          * There's just one entry and it is below the
1429                          * deduplication limit so drop the chain.
1430                          */
1431                         rb_replace_node(&stable_node->node, &found->node,
1432                                         root);
1433                         free_stable_node(stable_node);
1434                         ksm_stable_node_chains--;
1435                         ksm_stable_node_dups--;
1436                         /*
1437                          * NOTE: the caller depends on the stable_node
1438                          * to be equal to stable_node_dup if the chain
1439                          * was collapsed.
1440                          */
1441                         *_stable_node = found;
1442                         /*
1443                          * Just for robustneess as stable_node is
1444                          * otherwise left as a stable pointer, the
1445                          * compiler shall optimize it away at build
1446                          * time.
1447                          */
1448                         stable_node = NULL;
1449                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1450                            __is_page_sharing_candidate(found, 1)) {
1451                         /*
1452                          * If the found stable_node dup can accept one
1453                          * more future merge (in addition to the one
1454                          * that is underway) and is not at the head of
1455                          * the chain, put it there so next search will
1456                          * be quicker in the !prune_stale_stable_nodes
1457                          * case.
1458                          *
1459                          * NOTE: it would be inaccurate to use nr > 1
1460                          * instead of checking the hlist.first pointer
1461                          * directly, because in the
1462                          * prune_stale_stable_nodes case "nr" isn't
1463                          * the position of the found dup in the chain,
1464                          * but the total number of dups in the chain.
1465                          */
1466                         hlist_del(&found->hlist_dup);
1467                         hlist_add_head(&found->hlist_dup,
1468                                        &stable_node->hlist);
1469                 }
1470         }
1471
1472         *_stable_node_dup = found;
1473         return tree_page;
1474 }
1475
1476 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1477                                                struct rb_root *root)
1478 {
1479         if (!is_stable_node_chain(stable_node))
1480                 return stable_node;
1481         if (hlist_empty(&stable_node->hlist)) {
1482                 free_stable_node_chain(stable_node, root);
1483                 return NULL;
1484         }
1485         return hlist_entry(stable_node->hlist.first,
1486                            typeof(*stable_node), hlist_dup);
1487 }
1488
1489 /*
1490  * Like for get_ksm_page, this function can free the *_stable_node and
1491  * *_stable_node_dup if the returned tree_page is NULL.
1492  *
1493  * It can also free and overwrite *_stable_node with the found
1494  * stable_node_dup if the chain is collapsed (in which case
1495  * *_stable_node will be equal to *_stable_node_dup like if the chain
1496  * never existed). It's up to the caller to verify tree_page is not
1497  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1498  *
1499  * *_stable_node_dup is really a second output parameter of this
1500  * function and will be overwritten in all cases, the caller doesn't
1501  * need to initialize it.
1502  */
1503 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1504                                         struct stable_node **_stable_node,
1505                                         struct rb_root *root,
1506                                         bool prune_stale_stable_nodes)
1507 {
1508         struct stable_node *stable_node = *_stable_node;
1509         if (!is_stable_node_chain(stable_node)) {
1510                 if (is_page_sharing_candidate(stable_node)) {
1511                         *_stable_node_dup = stable_node;
1512                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1513                 }
1514                 /*
1515                  * _stable_node_dup set to NULL means the stable_node
1516                  * reached the ksm_max_page_sharing limit.
1517                  */
1518                 *_stable_node_dup = NULL;
1519                 return NULL;
1520         }
1521         return stable_node_dup(_stable_node_dup, _stable_node, root,
1522                                prune_stale_stable_nodes);
1523 }
1524
1525 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1526                                                 struct stable_node **s_n,
1527                                                 struct rb_root *root)
1528 {
1529         return __stable_node_chain(s_n_d, s_n, root, true);
1530 }
1531
1532 static __always_inline struct page *chain(struct stable_node **s_n_d,
1533                                           struct stable_node *s_n,
1534                                           struct rb_root *root)
1535 {
1536         struct stable_node *old_stable_node = s_n;
1537         struct page *tree_page;
1538
1539         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1540         /* not pruning dups so s_n cannot have changed */
1541         VM_BUG_ON(s_n != old_stable_node);
1542         return tree_page;
1543 }
1544
1545 /*
1546  * stable_tree_search - search for page inside the stable tree
1547  *
1548  * This function checks if there is a page inside the stable tree
1549  * with identical content to the page that we are scanning right now.
1550  *
1551  * This function returns the stable tree node of identical content if found,
1552  * NULL otherwise.
1553  */
1554 static struct page *stable_tree_search(struct page *page)
1555 {
1556         int nid;
1557         struct rb_root *root;
1558         struct rb_node **new;
1559         struct rb_node *parent;
1560         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1561         struct stable_node *page_node;
1562
1563         page_node = page_stable_node(page);
1564         if (page_node && page_node->head != &migrate_nodes) {
1565                 /* ksm page forked */
1566                 get_page(page);
1567                 return page;
1568         }
1569
1570         nid = get_kpfn_nid(page_to_pfn(page));
1571         root = root_stable_tree + nid;
1572 again:
1573         new = &root->rb_node;
1574         parent = NULL;
1575
1576         while (*new) {
1577                 struct page *tree_page;
1578                 int ret;
1579
1580                 cond_resched();
1581                 stable_node = rb_entry(*new, struct stable_node, node);
1582                 stable_node_any = NULL;
1583                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1584                 /*
1585                  * NOTE: stable_node may have been freed by
1586                  * chain_prune() if the returned stable_node_dup is
1587                  * not NULL. stable_node_dup may have been inserted in
1588                  * the rbtree instead as a regular stable_node (in
1589                  * order to collapse the stable_node chain if a single
1590                  * stable_node dup was found in it). In such case the
1591                  * stable_node is overwritten by the calleee to point
1592                  * to the stable_node_dup that was collapsed in the
1593                  * stable rbtree and stable_node will be equal to
1594                  * stable_node_dup like if the chain never existed.
1595                  */
1596                 if (!stable_node_dup) {
1597                         /*
1598                          * Either all stable_node dups were full in
1599                          * this stable_node chain, or this chain was
1600                          * empty and should be rb_erased.
1601                          */
1602                         stable_node_any = stable_node_dup_any(stable_node,
1603                                                               root);
1604                         if (!stable_node_any) {
1605                                 /* rb_erase just run */
1606                                 goto again;
1607                         }
1608                         /*
1609                          * Take any of the stable_node dups page of
1610                          * this stable_node chain to let the tree walk
1611                          * continue. All KSM pages belonging to the
1612                          * stable_node dups in a stable_node chain
1613                          * have the same content and they're
1614                          * write protected at all times. Any will work
1615                          * fine to continue the walk.
1616                          */
1617                         tree_page = get_ksm_page(stable_node_any,
1618                                                  GET_KSM_PAGE_NOLOCK);
1619                 }
1620                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1621                 if (!tree_page) {
1622                         /*
1623                          * If we walked over a stale stable_node,
1624                          * get_ksm_page() will call rb_erase() and it
1625                          * may rebalance the tree from under us. So
1626                          * restart the search from scratch. Returning
1627                          * NULL would be safe too, but we'd generate
1628                          * false negative insertions just because some
1629                          * stable_node was stale.
1630                          */
1631                         goto again;
1632                 }
1633
1634                 ret = memcmp_pages(page, tree_page);
1635                 put_page(tree_page);
1636
1637                 parent = *new;
1638                 if (ret < 0)
1639                         new = &parent->rb_left;
1640                 else if (ret > 0)
1641                         new = &parent->rb_right;
1642                 else {
1643                         if (page_node) {
1644                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1645                                 /*
1646                                  * Test if the migrated page should be merged
1647                                  * into a stable node dup. If the mapcount is
1648                                  * 1 we can migrate it with another KSM page
1649                                  * without adding it to the chain.
1650                                  */
1651                                 if (page_mapcount(page) > 1)
1652                                         goto chain_append;
1653                         }
1654
1655                         if (!stable_node_dup) {
1656                                 /*
1657                                  * If the stable_node is a chain and
1658                                  * we got a payload match in memcmp
1659                                  * but we cannot merge the scanned
1660                                  * page in any of the existing
1661                                  * stable_node dups because they're
1662                                  * all full, we need to wait the
1663                                  * scanned page to find itself a match
1664                                  * in the unstable tree to create a
1665                                  * brand new KSM page to add later to
1666                                  * the dups of this stable_node.
1667                                  */
1668                                 return NULL;
1669                         }
1670
1671                         /*
1672                          * Lock and unlock the stable_node's page (which
1673                          * might already have been migrated) so that page
1674                          * migration is sure to notice its raised count.
1675                          * It would be more elegant to return stable_node
1676                          * than kpage, but that involves more changes.
1677                          */
1678                         tree_page = get_ksm_page(stable_node_dup,
1679                                                  GET_KSM_PAGE_TRYLOCK);
1680
1681                         if (PTR_ERR(tree_page) == -EBUSY)
1682                                 return ERR_PTR(-EBUSY);
1683
1684                         if (unlikely(!tree_page))
1685                                 /*
1686                                  * The tree may have been rebalanced,
1687                                  * so re-evaluate parent and new.
1688                                  */
1689                                 goto again;
1690                         unlock_page(tree_page);
1691
1692                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1693                             NUMA(stable_node_dup->nid)) {
1694                                 put_page(tree_page);
1695                                 goto replace;
1696                         }
1697                         return tree_page;
1698                 }
1699         }
1700
1701         if (!page_node)
1702                 return NULL;
1703
1704         list_del(&page_node->list);
1705         DO_NUMA(page_node->nid = nid);
1706         rb_link_node(&page_node->node, parent, new);
1707         rb_insert_color(&page_node->node, root);
1708 out:
1709         if (is_page_sharing_candidate(page_node)) {
1710                 get_page(page);
1711                 return page;
1712         } else
1713                 return NULL;
1714
1715 replace:
1716         /*
1717          * If stable_node was a chain and chain_prune collapsed it,
1718          * stable_node has been updated to be the new regular
1719          * stable_node. A collapse of the chain is indistinguishable
1720          * from the case there was no chain in the stable
1721          * rbtree. Otherwise stable_node is the chain and
1722          * stable_node_dup is the dup to replace.
1723          */
1724         if (stable_node_dup == stable_node) {
1725                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1726                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1727                 /* there is no chain */
1728                 if (page_node) {
1729                         VM_BUG_ON(page_node->head != &migrate_nodes);
1730                         list_del(&page_node->list);
1731                         DO_NUMA(page_node->nid = nid);
1732                         rb_replace_node(&stable_node_dup->node,
1733                                         &page_node->node,
1734                                         root);
1735                         if (is_page_sharing_candidate(page_node))
1736                                 get_page(page);
1737                         else
1738                                 page = NULL;
1739                 } else {
1740                         rb_erase(&stable_node_dup->node, root);
1741                         page = NULL;
1742                 }
1743         } else {
1744                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1745                 __stable_node_dup_del(stable_node_dup);
1746                 if (page_node) {
1747                         VM_BUG_ON(page_node->head != &migrate_nodes);
1748                         list_del(&page_node->list);
1749                         DO_NUMA(page_node->nid = nid);
1750                         stable_node_chain_add_dup(page_node, stable_node);
1751                         if (is_page_sharing_candidate(page_node))
1752                                 get_page(page);
1753                         else
1754                                 page = NULL;
1755                 } else {
1756                         page = NULL;
1757                 }
1758         }
1759         stable_node_dup->head = &migrate_nodes;
1760         list_add(&stable_node_dup->list, stable_node_dup->head);
1761         return page;
1762
1763 chain_append:
1764         /* stable_node_dup could be null if it reached the limit */
1765         if (!stable_node_dup)
1766                 stable_node_dup = stable_node_any;
1767         /*
1768          * If stable_node was a chain and chain_prune collapsed it,
1769          * stable_node has been updated to be the new regular
1770          * stable_node. A collapse of the chain is indistinguishable
1771          * from the case there was no chain in the stable
1772          * rbtree. Otherwise stable_node is the chain and
1773          * stable_node_dup is the dup to replace.
1774          */
1775         if (stable_node_dup == stable_node) {
1776                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1777                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1778                 /* chain is missing so create it */
1779                 stable_node = alloc_stable_node_chain(stable_node_dup,
1780                                                       root);
1781                 if (!stable_node)
1782                         return NULL;
1783         }
1784         /*
1785          * Add this stable_node dup that was
1786          * migrated to the stable_node chain
1787          * of the current nid for this page
1788          * content.
1789          */
1790         VM_BUG_ON(!is_stable_node_chain(stable_node));
1791         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1792         VM_BUG_ON(page_node->head != &migrate_nodes);
1793         list_del(&page_node->list);
1794         DO_NUMA(page_node->nid = nid);
1795         stable_node_chain_add_dup(page_node, stable_node);
1796         goto out;
1797 }
1798
1799 /*
1800  * stable_tree_insert - insert stable tree node pointing to new ksm page
1801  * into the stable tree.
1802  *
1803  * This function returns the stable tree node just allocated on success,
1804  * NULL otherwise.
1805  */
1806 static struct stable_node *stable_tree_insert(struct page *kpage)
1807 {
1808         int nid;
1809         unsigned long kpfn;
1810         struct rb_root *root;
1811         struct rb_node **new;
1812         struct rb_node *parent;
1813         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1814         bool need_chain = false;
1815
1816         kpfn = page_to_pfn(kpage);
1817         nid = get_kpfn_nid(kpfn);
1818         root = root_stable_tree + nid;
1819 again:
1820         parent = NULL;
1821         new = &root->rb_node;
1822
1823         while (*new) {
1824                 struct page *tree_page;
1825                 int ret;
1826
1827                 cond_resched();
1828                 stable_node = rb_entry(*new, struct stable_node, node);
1829                 stable_node_any = NULL;
1830                 tree_page = chain(&stable_node_dup, stable_node, root);
1831                 if (!stable_node_dup) {
1832                         /*
1833                          * Either all stable_node dups were full in
1834                          * this stable_node chain, or this chain was
1835                          * empty and should be rb_erased.
1836                          */
1837                         stable_node_any = stable_node_dup_any(stable_node,
1838                                                               root);
1839                         if (!stable_node_any) {
1840                                 /* rb_erase just run */
1841                                 goto again;
1842                         }
1843                         /*
1844                          * Take any of the stable_node dups page of
1845                          * this stable_node chain to let the tree walk
1846                          * continue. All KSM pages belonging to the
1847                          * stable_node dups in a stable_node chain
1848                          * have the same content and they're
1849                          * write protected at all times. Any will work
1850                          * fine to continue the walk.
1851                          */
1852                         tree_page = get_ksm_page(stable_node_any,
1853                                                  GET_KSM_PAGE_NOLOCK);
1854                 }
1855                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1856                 if (!tree_page) {
1857                         /*
1858                          * If we walked over a stale stable_node,
1859                          * get_ksm_page() will call rb_erase() and it
1860                          * may rebalance the tree from under us. So
1861                          * restart the search from scratch. Returning
1862                          * NULL would be safe too, but we'd generate
1863                          * false negative insertions just because some
1864                          * stable_node was stale.
1865                          */
1866                         goto again;
1867                 }
1868
1869                 ret = memcmp_pages(kpage, tree_page);
1870                 put_page(tree_page);
1871
1872                 parent = *new;
1873                 if (ret < 0)
1874                         new = &parent->rb_left;
1875                 else if (ret > 0)
1876                         new = &parent->rb_right;
1877                 else {
1878                         need_chain = true;
1879                         break;
1880                 }
1881         }
1882
1883         stable_node_dup = alloc_stable_node();
1884         if (!stable_node_dup)
1885                 return NULL;
1886
1887         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1888         stable_node_dup->kpfn = kpfn;
1889         set_page_stable_node(kpage, stable_node_dup);
1890         stable_node_dup->rmap_hlist_len = 0;
1891         DO_NUMA(stable_node_dup->nid = nid);
1892         if (!need_chain) {
1893                 rb_link_node(&stable_node_dup->node, parent, new);
1894                 rb_insert_color(&stable_node_dup->node, root);
1895         } else {
1896                 if (!is_stable_node_chain(stable_node)) {
1897                         struct stable_node *orig = stable_node;
1898                         /* chain is missing so create it */
1899                         stable_node = alloc_stable_node_chain(orig, root);
1900                         if (!stable_node) {
1901                                 free_stable_node(stable_node_dup);
1902                                 return NULL;
1903                         }
1904                 }
1905                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1906         }
1907
1908         return stable_node_dup;
1909 }
1910
1911 /*
1912  * unstable_tree_search_insert - search for identical page,
1913  * else insert rmap_item into the unstable tree.
1914  *
1915  * This function searches for a page in the unstable tree identical to the
1916  * page currently being scanned; and if no identical page is found in the
1917  * tree, we insert rmap_item as a new object into the unstable tree.
1918  *
1919  * This function returns pointer to rmap_item found to be identical
1920  * to the currently scanned page, NULL otherwise.
1921  *
1922  * This function does both searching and inserting, because they share
1923  * the same walking algorithm in an rbtree.
1924  */
1925 static
1926 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1927                                               struct page *page,
1928                                               struct page **tree_pagep)
1929 {
1930         struct rb_node **new;
1931         struct rb_root *root;
1932         struct rb_node *parent = NULL;
1933         int nid;
1934
1935         nid = get_kpfn_nid(page_to_pfn(page));
1936         root = root_unstable_tree + nid;
1937         new = &root->rb_node;
1938
1939         while (*new) {
1940                 struct rmap_item *tree_rmap_item;
1941                 struct page *tree_page;
1942                 int ret;
1943
1944                 cond_resched();
1945                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1946                 tree_page = get_mergeable_page(tree_rmap_item);
1947                 if (!tree_page)
1948                         return NULL;
1949
1950                 /*
1951                  * Don't substitute a ksm page for a forked page.
1952                  */
1953                 if (page == tree_page) {
1954                         put_page(tree_page);
1955                         return NULL;
1956                 }
1957
1958                 ret = memcmp_pages(page, tree_page);
1959
1960                 parent = *new;
1961                 if (ret < 0) {
1962                         put_page(tree_page);
1963                         new = &parent->rb_left;
1964                 } else if (ret > 0) {
1965                         put_page(tree_page);
1966                         new = &parent->rb_right;
1967                 } else if (!ksm_merge_across_nodes &&
1968                            page_to_nid(tree_page) != nid) {
1969                         /*
1970                          * If tree_page has been migrated to another NUMA node,
1971                          * it will be flushed out and put in the right unstable
1972                          * tree next time: only merge with it when across_nodes.
1973                          */
1974                         put_page(tree_page);
1975                         return NULL;
1976                 } else {
1977                         *tree_pagep = tree_page;
1978                         return tree_rmap_item;
1979                 }
1980         }
1981
1982         rmap_item->address |= UNSTABLE_FLAG;
1983         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1984         DO_NUMA(rmap_item->nid = nid);
1985         rb_link_node(&rmap_item->node, parent, new);
1986         rb_insert_color(&rmap_item->node, root);
1987
1988         ksm_pages_unshared++;
1989         return NULL;
1990 }
1991
1992 /*
1993  * stable_tree_append - add another rmap_item to the linked list of
1994  * rmap_items hanging off a given node of the stable tree, all sharing
1995  * the same ksm page.
1996  */
1997 static void stable_tree_append(struct rmap_item *rmap_item,
1998                                struct stable_node *stable_node,
1999                                bool max_page_sharing_bypass)
2000 {
2001         /*
2002          * rmap won't find this mapping if we don't insert the
2003          * rmap_item in the right stable_node
2004          * duplicate. page_migration could break later if rmap breaks,
2005          * so we can as well crash here. We really need to check for
2006          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2007          * for other negative values as an underflow if detected here
2008          * for the first time (and not when decreasing rmap_hlist_len)
2009          * would be sign of memory corruption in the stable_node.
2010          */
2011         BUG_ON(stable_node->rmap_hlist_len < 0);
2012
2013         stable_node->rmap_hlist_len++;
2014         if (!max_page_sharing_bypass)
2015                 /* possibly non fatal but unexpected overflow, only warn */
2016                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2017                              ksm_max_page_sharing);
2018
2019         rmap_item->head = stable_node;
2020         rmap_item->address |= STABLE_FLAG;
2021         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2022
2023         if (rmap_item->hlist.next)
2024                 ksm_pages_sharing++;
2025         else
2026                 ksm_pages_shared++;
2027 }
2028
2029 /*
2030  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2031  * if not, compare checksum to previous and if it's the same, see if page can
2032  * be inserted into the unstable tree, or merged with a page already there and
2033  * both transferred to the stable tree.
2034  *
2035  * @page: the page that we are searching identical page to.
2036  * @rmap_item: the reverse mapping into the virtual address of this page
2037  */
2038 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2039 {
2040         struct mm_struct *mm = rmap_item->mm;
2041         struct rmap_item *tree_rmap_item;
2042         struct page *tree_page = NULL;
2043         struct stable_node *stable_node;
2044         struct page *kpage;
2045         unsigned int checksum;
2046         int err;
2047         bool max_page_sharing_bypass = false;
2048
2049         stable_node = page_stable_node(page);
2050         if (stable_node) {
2051                 if (stable_node->head != &migrate_nodes &&
2052                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2053                     NUMA(stable_node->nid)) {
2054                         stable_node_dup_del(stable_node);
2055                         stable_node->head = &migrate_nodes;
2056                         list_add(&stable_node->list, stable_node->head);
2057                 }
2058                 if (stable_node->head != &migrate_nodes &&
2059                     rmap_item->head == stable_node)
2060                         return;
2061                 /*
2062                  * If it's a KSM fork, allow it to go over the sharing limit
2063                  * without warnings.
2064                  */
2065                 if (!is_page_sharing_candidate(stable_node))
2066                         max_page_sharing_bypass = true;
2067         }
2068
2069         /* We first start with searching the page inside the stable tree */
2070         kpage = stable_tree_search(page);
2071         if (kpage == page && rmap_item->head == stable_node) {
2072                 put_page(kpage);
2073                 return;
2074         }
2075
2076         remove_rmap_item_from_tree(rmap_item);
2077
2078         if (kpage) {
2079                 if (PTR_ERR(kpage) == -EBUSY)
2080                         return;
2081
2082                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2083                 if (!err) {
2084                         /*
2085                          * The page was successfully merged:
2086                          * add its rmap_item to the stable tree.
2087                          */
2088                         lock_page(kpage);
2089                         stable_tree_append(rmap_item, page_stable_node(kpage),
2090                                            max_page_sharing_bypass);
2091                         unlock_page(kpage);
2092                 }
2093                 put_page(kpage);
2094                 return;
2095         }
2096
2097         /*
2098          * If the hash value of the page has changed from the last time
2099          * we calculated it, this page is changing frequently: therefore we
2100          * don't want to insert it in the unstable tree, and we don't want
2101          * to waste our time searching for something identical to it there.
2102          */
2103         checksum = calc_checksum(page);
2104         if (rmap_item->oldchecksum != checksum) {
2105                 rmap_item->oldchecksum = checksum;
2106                 return;
2107         }
2108
2109         /*
2110          * Same checksum as an empty page. We attempt to merge it with the
2111          * appropriate zero page if the user enabled this via sysfs.
2112          */
2113         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2114                 struct vm_area_struct *vma;
2115
2116                 mmap_read_lock(mm);
2117                 vma = find_mergeable_vma(mm, rmap_item->address);
2118                 if (vma) {
2119                         err = try_to_merge_one_page(vma, page,
2120                                         ZERO_PAGE(rmap_item->address));
2121                 } else {
2122                         /*
2123                          * If the vma is out of date, we do not need to
2124                          * continue.
2125                          */
2126                         err = 0;
2127                 }
2128                 mmap_read_unlock(mm);
2129                 /*
2130                  * In case of failure, the page was not really empty, so we
2131                  * need to continue. Otherwise we're done.
2132                  */
2133                 if (!err)
2134                         return;
2135         }
2136         tree_rmap_item =
2137                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2138         if (tree_rmap_item) {
2139                 bool split;
2140
2141                 kpage = try_to_merge_two_pages(rmap_item, page,
2142                                                 tree_rmap_item, tree_page);
2143                 /*
2144                  * If both pages we tried to merge belong to the same compound
2145                  * page, then we actually ended up increasing the reference
2146                  * count of the same compound page twice, and split_huge_page
2147                  * failed.
2148                  * Here we set a flag if that happened, and we use it later to
2149                  * try split_huge_page again. Since we call put_page right
2150                  * afterwards, the reference count will be correct and
2151                  * split_huge_page should succeed.
2152                  */
2153                 split = PageTransCompound(page)
2154                         && compound_head(page) == compound_head(tree_page);
2155                 put_page(tree_page);
2156                 if (kpage) {
2157                         /*
2158                          * The pages were successfully merged: insert new
2159                          * node in the stable tree and add both rmap_items.
2160                          */
2161                         lock_page(kpage);
2162                         stable_node = stable_tree_insert(kpage);
2163                         if (stable_node) {
2164                                 stable_tree_append(tree_rmap_item, stable_node,
2165                                                    false);
2166                                 stable_tree_append(rmap_item, stable_node,
2167                                                    false);
2168                         }
2169                         unlock_page(kpage);
2170
2171                         /*
2172                          * If we fail to insert the page into the stable tree,
2173                          * we will have 2 virtual addresses that are pointing
2174                          * to a ksm page left outside the stable tree,
2175                          * in which case we need to break_cow on both.
2176                          */
2177                         if (!stable_node) {
2178                                 break_cow(tree_rmap_item);
2179                                 break_cow(rmap_item);
2180                         }
2181                 } else if (split) {
2182                         /*
2183                          * We are here if we tried to merge two pages and
2184                          * failed because they both belonged to the same
2185                          * compound page. We will split the page now, but no
2186                          * merging will take place.
2187                          * We do not want to add the cost of a full lock; if
2188                          * the page is locked, it is better to skip it and
2189                          * perhaps try again later.
2190                          */
2191                         if (!trylock_page(page))
2192                                 return;
2193                         split_huge_page(page);
2194                         unlock_page(page);
2195                 }
2196         }
2197 }
2198
2199 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2200                                             struct rmap_item **rmap_list,
2201                                             unsigned long addr)
2202 {
2203         struct rmap_item *rmap_item;
2204
2205         while (*rmap_list) {
2206                 rmap_item = *rmap_list;
2207                 if ((rmap_item->address & PAGE_MASK) == addr)
2208                         return rmap_item;
2209                 if (rmap_item->address > addr)
2210                         break;
2211                 *rmap_list = rmap_item->rmap_list;
2212                 remove_rmap_item_from_tree(rmap_item);
2213                 free_rmap_item(rmap_item);
2214         }
2215
2216         rmap_item = alloc_rmap_item();
2217         if (rmap_item) {
2218                 /* It has already been zeroed */
2219                 rmap_item->mm = mm_slot->mm;
2220                 rmap_item->address = addr;
2221                 rmap_item->rmap_list = *rmap_list;
2222                 *rmap_list = rmap_item;
2223         }
2224         return rmap_item;
2225 }
2226
2227 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2228 {
2229         struct mm_struct *mm;
2230         struct mm_slot *slot;
2231         struct vm_area_struct *vma;
2232         struct rmap_item *rmap_item;
2233         int nid;
2234
2235         if (list_empty(&ksm_mm_head.mm_list))
2236                 return NULL;
2237
2238         slot = ksm_scan.mm_slot;
2239         if (slot == &ksm_mm_head) {
2240                 /*
2241                  * A number of pages can hang around indefinitely on per-cpu
2242                  * pagevecs, raised page count preventing write_protect_page
2243                  * from merging them.  Though it doesn't really matter much,
2244                  * it is puzzling to see some stuck in pages_volatile until
2245                  * other activity jostles them out, and they also prevented
2246                  * LTP's KSM test from succeeding deterministically; so drain
2247                  * them here (here rather than on entry to ksm_do_scan(),
2248                  * so we don't IPI too often when pages_to_scan is set low).
2249                  */
2250                 lru_add_drain_all();
2251
2252                 /*
2253                  * Whereas stale stable_nodes on the stable_tree itself
2254                  * get pruned in the regular course of stable_tree_search(),
2255                  * those moved out to the migrate_nodes list can accumulate:
2256                  * so prune them once before each full scan.
2257                  */
2258                 if (!ksm_merge_across_nodes) {
2259                         struct stable_node *stable_node, *next;
2260                         struct page *page;
2261
2262                         list_for_each_entry_safe(stable_node, next,
2263                                                  &migrate_nodes, list) {
2264                                 page = get_ksm_page(stable_node,
2265                                                     GET_KSM_PAGE_NOLOCK);
2266                                 if (page)
2267                                         put_page(page);
2268                                 cond_resched();
2269                         }
2270                 }
2271
2272                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2273                         root_unstable_tree[nid] = RB_ROOT;
2274
2275                 spin_lock(&ksm_mmlist_lock);
2276                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2277                 ksm_scan.mm_slot = slot;
2278                 spin_unlock(&ksm_mmlist_lock);
2279                 /*
2280                  * Although we tested list_empty() above, a racing __ksm_exit
2281                  * of the last mm on the list may have removed it since then.
2282                  */
2283                 if (slot == &ksm_mm_head)
2284                         return NULL;
2285 next_mm:
2286                 ksm_scan.address = 0;
2287                 ksm_scan.rmap_list = &slot->rmap_list;
2288         }
2289
2290         mm = slot->mm;
2291         mmap_read_lock(mm);
2292         if (ksm_test_exit(mm))
2293                 vma = NULL;
2294         else
2295                 vma = find_vma(mm, ksm_scan.address);
2296
2297         for (; vma; vma = vma->vm_next) {
2298                 if (!(vma->vm_flags & VM_MERGEABLE))
2299                         continue;
2300                 if (ksm_scan.address < vma->vm_start)
2301                         ksm_scan.address = vma->vm_start;
2302                 if (!vma->anon_vma)
2303                         ksm_scan.address = vma->vm_end;
2304
2305                 while (ksm_scan.address < vma->vm_end) {
2306                         if (ksm_test_exit(mm))
2307                                 break;
2308                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2309                         if (IS_ERR_OR_NULL(*page)) {
2310                                 ksm_scan.address += PAGE_SIZE;
2311                                 cond_resched();
2312                                 continue;
2313                         }
2314                         if (PageAnon(*page)) {
2315                                 flush_anon_page(vma, *page, ksm_scan.address);
2316                                 flush_dcache_page(*page);
2317                                 rmap_item = get_next_rmap_item(slot,
2318                                         ksm_scan.rmap_list, ksm_scan.address);
2319                                 if (rmap_item) {
2320                                         ksm_scan.rmap_list =
2321                                                         &rmap_item->rmap_list;
2322                                         ksm_scan.address += PAGE_SIZE;
2323                                 } else
2324                                         put_page(*page);
2325                                 mmap_read_unlock(mm);
2326                                 return rmap_item;
2327                         }
2328                         put_page(*page);
2329                         ksm_scan.address += PAGE_SIZE;
2330                         cond_resched();
2331                 }
2332         }
2333
2334         if (ksm_test_exit(mm)) {
2335                 ksm_scan.address = 0;
2336                 ksm_scan.rmap_list = &slot->rmap_list;
2337         }
2338         /*
2339          * Nuke all the rmap_items that are above this current rmap:
2340          * because there were no VM_MERGEABLE vmas with such addresses.
2341          */
2342         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2343
2344         spin_lock(&ksm_mmlist_lock);
2345         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2346                                                 struct mm_slot, mm_list);
2347         if (ksm_scan.address == 0) {
2348                 /*
2349                  * We've completed a full scan of all vmas, holding mmap_lock
2350                  * throughout, and found no VM_MERGEABLE: so do the same as
2351                  * __ksm_exit does to remove this mm from all our lists now.
2352                  * This applies either when cleaning up after __ksm_exit
2353                  * (but beware: we can reach here even before __ksm_exit),
2354                  * or when all VM_MERGEABLE areas have been unmapped (and
2355                  * mmap_lock then protects against race with MADV_MERGEABLE).
2356                  */
2357                 hash_del(&slot->link);
2358                 list_del(&slot->mm_list);
2359                 spin_unlock(&ksm_mmlist_lock);
2360
2361                 free_mm_slot(slot);
2362                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2363                 mmap_read_unlock(mm);
2364                 mmdrop(mm);
2365         } else {
2366                 mmap_read_unlock(mm);
2367                 /*
2368                  * mmap_read_unlock(mm) first because after
2369                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2370                  * already have been freed under us by __ksm_exit()
2371                  * because the "mm_slot" is still hashed and
2372                  * ksm_scan.mm_slot doesn't point to it anymore.
2373                  */
2374                 spin_unlock(&ksm_mmlist_lock);
2375         }
2376
2377         /* Repeat until we've completed scanning the whole list */
2378         slot = ksm_scan.mm_slot;
2379         if (slot != &ksm_mm_head)
2380                 goto next_mm;
2381
2382         ksm_scan.seqnr++;
2383         return NULL;
2384 }
2385
2386 /**
2387  * ksm_do_scan  - the ksm scanner main worker function.
2388  * @scan_npages:  number of pages we want to scan before we return.
2389  */
2390 static void ksm_do_scan(unsigned int scan_npages)
2391 {
2392         struct rmap_item *rmap_item;
2393         struct page *page;
2394
2395         while (scan_npages-- && likely(!freezing(current))) {
2396                 cond_resched();
2397                 rmap_item = scan_get_next_rmap_item(&page);
2398                 if (!rmap_item)
2399                         return;
2400                 cmp_and_merge_page(page, rmap_item);
2401                 put_page(page);
2402         }
2403 }
2404
2405 static int ksmd_should_run(void)
2406 {
2407         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2408 }
2409
2410 static int ksm_scan_thread(void *nothing)
2411 {
2412         unsigned int sleep_ms;
2413
2414         set_freezable();
2415         set_user_nice(current, 5);
2416
2417         while (!kthread_should_stop()) {
2418                 mutex_lock(&ksm_thread_mutex);
2419                 wait_while_offlining();
2420                 if (ksmd_should_run())
2421                         ksm_do_scan(ksm_thread_pages_to_scan);
2422                 mutex_unlock(&ksm_thread_mutex);
2423
2424                 try_to_freeze();
2425
2426                 if (ksmd_should_run()) {
2427                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2428                         wait_event_interruptible_timeout(ksm_iter_wait,
2429                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2430                                 msecs_to_jiffies(sleep_ms));
2431                 } else {
2432                         wait_event_freezable(ksm_thread_wait,
2433                                 ksmd_should_run() || kthread_should_stop());
2434                 }
2435         }
2436         return 0;
2437 }
2438
2439 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2440                 unsigned long end, int advice, unsigned long *vm_flags)
2441 {
2442         struct mm_struct *mm = vma->vm_mm;
2443         int err;
2444
2445         switch (advice) {
2446         case MADV_MERGEABLE:
2447                 /*
2448                  * Be somewhat over-protective for now!
2449                  */
2450                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2451                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2452                                  VM_HUGETLB | VM_MIXEDMAP))
2453                         return 0;               /* just ignore the advice */
2454
2455                 if (vma_is_dax(vma))
2456                         return 0;
2457
2458 #ifdef VM_SAO
2459                 if (*vm_flags & VM_SAO)
2460                         return 0;
2461 #endif
2462 #ifdef VM_SPARC_ADI
2463                 if (*vm_flags & VM_SPARC_ADI)
2464                         return 0;
2465 #endif
2466
2467                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2468                         err = __ksm_enter(mm);
2469                         if (err)
2470                                 return err;
2471                 }
2472
2473                 *vm_flags |= VM_MERGEABLE;
2474                 break;
2475
2476         case MADV_UNMERGEABLE:
2477                 if (!(*vm_flags & VM_MERGEABLE))
2478                         return 0;               /* just ignore the advice */
2479
2480                 if (vma->anon_vma) {
2481                         err = unmerge_ksm_pages(vma, start, end);
2482                         if (err)
2483                                 return err;
2484                 }
2485
2486                 *vm_flags &= ~VM_MERGEABLE;
2487                 break;
2488         }
2489
2490         return 0;
2491 }
2492 EXPORT_SYMBOL_GPL(ksm_madvise);
2493
2494 int __ksm_enter(struct mm_struct *mm)
2495 {
2496         struct mm_slot *mm_slot;
2497         int needs_wakeup;
2498
2499         mm_slot = alloc_mm_slot();
2500         if (!mm_slot)
2501                 return -ENOMEM;
2502
2503         /* Check ksm_run too?  Would need tighter locking */
2504         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2505
2506         spin_lock(&ksm_mmlist_lock);
2507         insert_to_mm_slots_hash(mm, mm_slot);
2508         /*
2509          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2510          * insert just behind the scanning cursor, to let the area settle
2511          * down a little; when fork is followed by immediate exec, we don't
2512          * want ksmd to waste time setting up and tearing down an rmap_list.
2513          *
2514          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2515          * scanning cursor, otherwise KSM pages in newly forked mms will be
2516          * missed: then we might as well insert at the end of the list.
2517          */
2518         if (ksm_run & KSM_RUN_UNMERGE)
2519                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2520         else
2521                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2522         spin_unlock(&ksm_mmlist_lock);
2523
2524         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2525         mmgrab(mm);
2526
2527         if (needs_wakeup)
2528                 wake_up_interruptible(&ksm_thread_wait);
2529
2530         return 0;
2531 }
2532
2533 void __ksm_exit(struct mm_struct *mm)
2534 {
2535         struct mm_slot *mm_slot;
2536         int easy_to_free = 0;
2537
2538         /*
2539          * This process is exiting: if it's straightforward (as is the
2540          * case when ksmd was never running), free mm_slot immediately.
2541          * But if it's at the cursor or has rmap_items linked to it, use
2542          * mmap_lock to synchronize with any break_cows before pagetables
2543          * are freed, and leave the mm_slot on the list for ksmd to free.
2544          * Beware: ksm may already have noticed it exiting and freed the slot.
2545          */
2546
2547         spin_lock(&ksm_mmlist_lock);
2548         mm_slot = get_mm_slot(mm);
2549         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2550                 if (!mm_slot->rmap_list) {
2551                         hash_del(&mm_slot->link);
2552                         list_del(&mm_slot->mm_list);
2553                         easy_to_free = 1;
2554                 } else {
2555                         list_move(&mm_slot->mm_list,
2556                                   &ksm_scan.mm_slot->mm_list);
2557                 }
2558         }
2559         spin_unlock(&ksm_mmlist_lock);
2560
2561         if (easy_to_free) {
2562                 free_mm_slot(mm_slot);
2563                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2564                 mmdrop(mm);
2565         } else if (mm_slot) {
2566                 mmap_write_lock(mm);
2567                 mmap_write_unlock(mm);
2568         }
2569 }
2570
2571 struct page *ksm_might_need_to_copy(struct page *page,
2572                         struct vm_area_struct *vma, unsigned long address)
2573 {
2574         struct anon_vma *anon_vma = page_anon_vma(page);
2575         struct page *new_page;
2576
2577         if (PageKsm(page)) {
2578                 if (page_stable_node(page) &&
2579                     !(ksm_run & KSM_RUN_UNMERGE))
2580                         return page;    /* no need to copy it */
2581         } else if (!anon_vma) {
2582                 return page;            /* no need to copy it */
2583         } else if (anon_vma->root == vma->anon_vma->root &&
2584                  page->index == linear_page_index(vma, address)) {
2585                 return page;            /* still no need to copy it */
2586         }
2587         if (!PageUptodate(page))
2588                 return page;            /* let do_swap_page report the error */
2589
2590         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2591         if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2592                 put_page(new_page);
2593                 new_page = NULL;
2594         }
2595         if (new_page) {
2596                 copy_user_highpage(new_page, page, address, vma);
2597
2598                 SetPageDirty(new_page);
2599                 __SetPageUptodate(new_page);
2600                 __SetPageLocked(new_page);
2601         }
2602
2603         return new_page;
2604 }
2605
2606 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2607 {
2608         struct stable_node *stable_node;
2609         struct rmap_item *rmap_item;
2610         int search_new_forks = 0;
2611
2612         VM_BUG_ON_PAGE(!PageKsm(page), page);
2613
2614         /*
2615          * Rely on the page lock to protect against concurrent modifications
2616          * to that page's node of the stable tree.
2617          */
2618         VM_BUG_ON_PAGE(!PageLocked(page), page);
2619
2620         stable_node = page_stable_node(page);
2621         if (!stable_node)
2622                 return;
2623 again:
2624         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2625                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2626                 struct anon_vma_chain *vmac;
2627                 struct vm_area_struct *vma;
2628
2629                 cond_resched();
2630                 anon_vma_lock_read(anon_vma);
2631                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2632                                                0, ULONG_MAX) {
2633                         unsigned long addr;
2634
2635                         cond_resched();
2636                         vma = vmac->vma;
2637
2638                         /* Ignore the stable/unstable/sqnr flags */
2639                         addr = rmap_item->address & ~KSM_FLAG_MASK;
2640
2641                         if (addr < vma->vm_start || addr >= vma->vm_end)
2642                                 continue;
2643                         /*
2644                          * Initially we examine only the vma which covers this
2645                          * rmap_item; but later, if there is still work to do,
2646                          * we examine covering vmas in other mms: in case they
2647                          * were forked from the original since ksmd passed.
2648                          */
2649                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2650                                 continue;
2651
2652                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2653                                 continue;
2654
2655                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2656                                 anon_vma_unlock_read(anon_vma);
2657                                 return;
2658                         }
2659                         if (rwc->done && rwc->done(page)) {
2660                                 anon_vma_unlock_read(anon_vma);
2661                                 return;
2662                         }
2663                 }
2664                 anon_vma_unlock_read(anon_vma);
2665         }
2666         if (!search_new_forks++)
2667                 goto again;
2668 }
2669
2670 #ifdef CONFIG_MIGRATION
2671 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2672 {
2673         struct stable_node *stable_node;
2674
2675         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2676         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2677         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2678
2679         stable_node = page_stable_node(newpage);
2680         if (stable_node) {
2681                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2682                 stable_node->kpfn = page_to_pfn(newpage);
2683                 /*
2684                  * newpage->mapping was set in advance; now we need smp_wmb()
2685                  * to make sure that the new stable_node->kpfn is visible
2686                  * to get_ksm_page() before it can see that oldpage->mapping
2687                  * has gone stale (or that PageSwapCache has been cleared).
2688                  */
2689                 smp_wmb();
2690                 set_page_stable_node(oldpage, NULL);
2691         }
2692 }
2693 #endif /* CONFIG_MIGRATION */
2694
2695 #ifdef CONFIG_MEMORY_HOTREMOVE
2696 static void wait_while_offlining(void)
2697 {
2698         while (ksm_run & KSM_RUN_OFFLINE) {
2699                 mutex_unlock(&ksm_thread_mutex);
2700                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2701                             TASK_UNINTERRUPTIBLE);
2702                 mutex_lock(&ksm_thread_mutex);
2703         }
2704 }
2705
2706 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2707                                          unsigned long start_pfn,
2708                                          unsigned long end_pfn)
2709 {
2710         if (stable_node->kpfn >= start_pfn &&
2711             stable_node->kpfn < end_pfn) {
2712                 /*
2713                  * Don't get_ksm_page, page has already gone:
2714                  * which is why we keep kpfn instead of page*
2715                  */
2716                 remove_node_from_stable_tree(stable_node);
2717                 return true;
2718         }
2719         return false;
2720 }
2721
2722 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2723                                            unsigned long start_pfn,
2724                                            unsigned long end_pfn,
2725                                            struct rb_root *root)
2726 {
2727         struct stable_node *dup;
2728         struct hlist_node *hlist_safe;
2729
2730         if (!is_stable_node_chain(stable_node)) {
2731                 VM_BUG_ON(is_stable_node_dup(stable_node));
2732                 return stable_node_dup_remove_range(stable_node, start_pfn,
2733                                                     end_pfn);
2734         }
2735
2736         hlist_for_each_entry_safe(dup, hlist_safe,
2737                                   &stable_node->hlist, hlist_dup) {
2738                 VM_BUG_ON(!is_stable_node_dup(dup));
2739                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2740         }
2741         if (hlist_empty(&stable_node->hlist)) {
2742                 free_stable_node_chain(stable_node, root);
2743                 return true; /* notify caller that tree was rebalanced */
2744         } else
2745                 return false;
2746 }
2747
2748 static void ksm_check_stable_tree(unsigned long start_pfn,
2749                                   unsigned long end_pfn)
2750 {
2751         struct stable_node *stable_node, *next;
2752         struct rb_node *node;
2753         int nid;
2754
2755         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2756                 node = rb_first(root_stable_tree + nid);
2757                 while (node) {
2758                         stable_node = rb_entry(node, struct stable_node, node);
2759                         if (stable_node_chain_remove_range(stable_node,
2760                                                            start_pfn, end_pfn,
2761                                                            root_stable_tree +
2762                                                            nid))
2763                                 node = rb_first(root_stable_tree + nid);
2764                         else
2765                                 node = rb_next(node);
2766                         cond_resched();
2767                 }
2768         }
2769         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2770                 if (stable_node->kpfn >= start_pfn &&
2771                     stable_node->kpfn < end_pfn)
2772                         remove_node_from_stable_tree(stable_node);
2773                 cond_resched();
2774         }
2775 }
2776
2777 static int ksm_memory_callback(struct notifier_block *self,
2778                                unsigned long action, void *arg)
2779 {
2780         struct memory_notify *mn = arg;
2781
2782         switch (action) {
2783         case MEM_GOING_OFFLINE:
2784                 /*
2785                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2786                  * and remove_all_stable_nodes() while memory is going offline:
2787                  * it is unsafe for them to touch the stable tree at this time.
2788                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2789                  * which do not need the ksm_thread_mutex are all safe.
2790                  */
2791                 mutex_lock(&ksm_thread_mutex);
2792                 ksm_run |= KSM_RUN_OFFLINE;
2793                 mutex_unlock(&ksm_thread_mutex);
2794                 break;
2795
2796         case MEM_OFFLINE:
2797                 /*
2798                  * Most of the work is done by page migration; but there might
2799                  * be a few stable_nodes left over, still pointing to struct
2800                  * pages which have been offlined: prune those from the tree,
2801                  * otherwise get_ksm_page() might later try to access a
2802                  * non-existent struct page.
2803                  */
2804                 ksm_check_stable_tree(mn->start_pfn,
2805                                       mn->start_pfn + mn->nr_pages);
2806                 fallthrough;
2807         case MEM_CANCEL_OFFLINE:
2808                 mutex_lock(&ksm_thread_mutex);
2809                 ksm_run &= ~KSM_RUN_OFFLINE;
2810                 mutex_unlock(&ksm_thread_mutex);
2811
2812                 smp_mb();       /* wake_up_bit advises this */
2813                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2814                 break;
2815         }
2816         return NOTIFY_OK;
2817 }
2818 #else
2819 static void wait_while_offlining(void)
2820 {
2821 }
2822 #endif /* CONFIG_MEMORY_HOTREMOVE */
2823
2824 #ifdef CONFIG_SYSFS
2825 /*
2826  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2827  */
2828
2829 #define KSM_ATTR_RO(_name) \
2830         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2831 #define KSM_ATTR(_name) \
2832         static struct kobj_attribute _name##_attr = \
2833                 __ATTR(_name, 0644, _name##_show, _name##_store)
2834
2835 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2836                                     struct kobj_attribute *attr, char *buf)
2837 {
2838         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2839 }
2840
2841 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2842                                      struct kobj_attribute *attr,
2843                                      const char *buf, size_t count)
2844 {
2845         unsigned long msecs;
2846         int err;
2847
2848         err = kstrtoul(buf, 10, &msecs);
2849         if (err || msecs > UINT_MAX)
2850                 return -EINVAL;
2851
2852         ksm_thread_sleep_millisecs = msecs;
2853         wake_up_interruptible(&ksm_iter_wait);
2854
2855         return count;
2856 }
2857 KSM_ATTR(sleep_millisecs);
2858
2859 static ssize_t pages_to_scan_show(struct kobject *kobj,
2860                                   struct kobj_attribute *attr, char *buf)
2861 {
2862         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2863 }
2864
2865 static ssize_t pages_to_scan_store(struct kobject *kobj,
2866                                    struct kobj_attribute *attr,
2867                                    const char *buf, size_t count)
2868 {
2869         int err;
2870         unsigned long nr_pages;
2871
2872         err = kstrtoul(buf, 10, &nr_pages);
2873         if (err || nr_pages > UINT_MAX)
2874                 return -EINVAL;
2875
2876         ksm_thread_pages_to_scan = nr_pages;
2877
2878         return count;
2879 }
2880 KSM_ATTR(pages_to_scan);
2881
2882 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2883                         char *buf)
2884 {
2885         return sprintf(buf, "%lu\n", ksm_run);
2886 }
2887
2888 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2889                          const char *buf, size_t count)
2890 {
2891         int err;
2892         unsigned long flags;
2893
2894         err = kstrtoul(buf, 10, &flags);
2895         if (err || flags > UINT_MAX)
2896                 return -EINVAL;
2897         if (flags > KSM_RUN_UNMERGE)
2898                 return -EINVAL;
2899
2900         /*
2901          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2902          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2903          * breaking COW to free the pages_shared (but leaves mm_slots
2904          * on the list for when ksmd may be set running again).
2905          */
2906
2907         mutex_lock(&ksm_thread_mutex);
2908         wait_while_offlining();
2909         if (ksm_run != flags) {
2910                 ksm_run = flags;
2911                 if (flags & KSM_RUN_UNMERGE) {
2912                         set_current_oom_origin();
2913                         err = unmerge_and_remove_all_rmap_items();
2914                         clear_current_oom_origin();
2915                         if (err) {
2916                                 ksm_run = KSM_RUN_STOP;
2917                                 count = err;
2918                         }
2919                 }
2920         }
2921         mutex_unlock(&ksm_thread_mutex);
2922
2923         if (flags & KSM_RUN_MERGE)
2924                 wake_up_interruptible(&ksm_thread_wait);
2925
2926         return count;
2927 }
2928 KSM_ATTR(run);
2929
2930 #ifdef CONFIG_NUMA
2931 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2932                                 struct kobj_attribute *attr, char *buf)
2933 {
2934         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2935 }
2936
2937 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2938                                    struct kobj_attribute *attr,
2939                                    const char *buf, size_t count)
2940 {
2941         int err;
2942         unsigned long knob;
2943
2944         err = kstrtoul(buf, 10, &knob);
2945         if (err)
2946                 return err;
2947         if (knob > 1)
2948                 return -EINVAL;
2949
2950         mutex_lock(&ksm_thread_mutex);
2951         wait_while_offlining();
2952         if (ksm_merge_across_nodes != knob) {
2953                 if (ksm_pages_shared || remove_all_stable_nodes())
2954                         err = -EBUSY;
2955                 else if (root_stable_tree == one_stable_tree) {
2956                         struct rb_root *buf;
2957                         /*
2958                          * This is the first time that we switch away from the
2959                          * default of merging across nodes: must now allocate
2960                          * a buffer to hold as many roots as may be needed.
2961                          * Allocate stable and unstable together:
2962                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2963                          */
2964                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2965                                       GFP_KERNEL);
2966                         /* Let us assume that RB_ROOT is NULL is zero */
2967                         if (!buf)
2968                                 err = -ENOMEM;
2969                         else {
2970                                 root_stable_tree = buf;
2971                                 root_unstable_tree = buf + nr_node_ids;
2972                                 /* Stable tree is empty but not the unstable */
2973                                 root_unstable_tree[0] = one_unstable_tree[0];
2974                         }
2975                 }
2976                 if (!err) {
2977                         ksm_merge_across_nodes = knob;
2978                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2979                 }
2980         }
2981         mutex_unlock(&ksm_thread_mutex);
2982
2983         return err ? err : count;
2984 }
2985 KSM_ATTR(merge_across_nodes);
2986 #endif
2987
2988 static ssize_t use_zero_pages_show(struct kobject *kobj,
2989                                 struct kobj_attribute *attr, char *buf)
2990 {
2991         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2992 }
2993 static ssize_t use_zero_pages_store(struct kobject *kobj,
2994                                    struct kobj_attribute *attr,
2995                                    const char *buf, size_t count)
2996 {
2997         int err;
2998         bool value;
2999
3000         err = kstrtobool(buf, &value);
3001         if (err)
3002                 return -EINVAL;
3003
3004         ksm_use_zero_pages = value;
3005
3006         return count;
3007 }
3008 KSM_ATTR(use_zero_pages);
3009
3010 static ssize_t max_page_sharing_show(struct kobject *kobj,
3011                                      struct kobj_attribute *attr, char *buf)
3012 {
3013         return sprintf(buf, "%u\n", ksm_max_page_sharing);
3014 }
3015
3016 static ssize_t max_page_sharing_store(struct kobject *kobj,
3017                                       struct kobj_attribute *attr,
3018                                       const char *buf, size_t count)
3019 {
3020         int err;
3021         int knob;
3022
3023         err = kstrtoint(buf, 10, &knob);
3024         if (err)
3025                 return err;
3026         /*
3027          * When a KSM page is created it is shared by 2 mappings. This
3028          * being a signed comparison, it implicitly verifies it's not
3029          * negative.
3030          */
3031         if (knob < 2)
3032                 return -EINVAL;
3033
3034         if (READ_ONCE(ksm_max_page_sharing) == knob)
3035                 return count;
3036
3037         mutex_lock(&ksm_thread_mutex);
3038         wait_while_offlining();
3039         if (ksm_max_page_sharing != knob) {
3040                 if (ksm_pages_shared || remove_all_stable_nodes())
3041                         err = -EBUSY;
3042                 else
3043                         ksm_max_page_sharing = knob;
3044         }
3045         mutex_unlock(&ksm_thread_mutex);
3046
3047         return err ? err : count;
3048 }
3049 KSM_ATTR(max_page_sharing);
3050
3051 static ssize_t pages_shared_show(struct kobject *kobj,
3052                                  struct kobj_attribute *attr, char *buf)
3053 {
3054         return sprintf(buf, "%lu\n", ksm_pages_shared);
3055 }
3056 KSM_ATTR_RO(pages_shared);
3057
3058 static ssize_t pages_sharing_show(struct kobject *kobj,
3059                                   struct kobj_attribute *attr, char *buf)
3060 {
3061         return sprintf(buf, "%lu\n", ksm_pages_sharing);
3062 }
3063 KSM_ATTR_RO(pages_sharing);
3064
3065 static ssize_t pages_unshared_show(struct kobject *kobj,
3066                                    struct kobj_attribute *attr, char *buf)
3067 {
3068         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3069 }
3070 KSM_ATTR_RO(pages_unshared);
3071
3072 static ssize_t pages_volatile_show(struct kobject *kobj,
3073                                    struct kobj_attribute *attr, char *buf)
3074 {
3075         long ksm_pages_volatile;
3076
3077         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3078                                 - ksm_pages_sharing - ksm_pages_unshared;
3079         /*
3080          * It was not worth any locking to calculate that statistic,
3081          * but it might therefore sometimes be negative: conceal that.
3082          */
3083         if (ksm_pages_volatile < 0)
3084                 ksm_pages_volatile = 0;
3085         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3086 }
3087 KSM_ATTR_RO(pages_volatile);
3088
3089 static ssize_t stable_node_dups_show(struct kobject *kobj,
3090                                      struct kobj_attribute *attr, char *buf)
3091 {
3092         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3093 }
3094 KSM_ATTR_RO(stable_node_dups);
3095
3096 static ssize_t stable_node_chains_show(struct kobject *kobj,
3097                                        struct kobj_attribute *attr, char *buf)
3098 {
3099         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3100 }
3101 KSM_ATTR_RO(stable_node_chains);
3102
3103 static ssize_t
3104 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3105                                         struct kobj_attribute *attr,
3106                                         char *buf)
3107 {
3108         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3109 }
3110
3111 static ssize_t
3112 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3113                                          struct kobj_attribute *attr,
3114                                          const char *buf, size_t count)
3115 {
3116         unsigned long msecs;
3117         int err;
3118
3119         err = kstrtoul(buf, 10, &msecs);
3120         if (err || msecs > UINT_MAX)
3121                 return -EINVAL;
3122
3123         ksm_stable_node_chains_prune_millisecs = msecs;
3124
3125         return count;
3126 }
3127 KSM_ATTR(stable_node_chains_prune_millisecs);
3128
3129 static ssize_t full_scans_show(struct kobject *kobj,
3130                                struct kobj_attribute *attr, char *buf)
3131 {
3132         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3133 }
3134 KSM_ATTR_RO(full_scans);
3135
3136 static struct attribute *ksm_attrs[] = {
3137         &sleep_millisecs_attr.attr,
3138         &pages_to_scan_attr.attr,
3139         &run_attr.attr,
3140         &pages_shared_attr.attr,
3141         &pages_sharing_attr.attr,
3142         &pages_unshared_attr.attr,
3143         &pages_volatile_attr.attr,
3144         &full_scans_attr.attr,
3145 #ifdef CONFIG_NUMA
3146         &merge_across_nodes_attr.attr,
3147 #endif
3148         &max_page_sharing_attr.attr,
3149         &stable_node_chains_attr.attr,
3150         &stable_node_dups_attr.attr,
3151         &stable_node_chains_prune_millisecs_attr.attr,
3152         &use_zero_pages_attr.attr,
3153         NULL,
3154 };
3155
3156 static const struct attribute_group ksm_attr_group = {
3157         .attrs = ksm_attrs,
3158         .name = "ksm",
3159 };
3160 #endif /* CONFIG_SYSFS */
3161
3162 static int __init ksm_init(void)
3163 {
3164         struct task_struct *ksm_thread;
3165         int err;
3166
3167         /* The correct value depends on page size and endianness */
3168         zero_checksum = calc_checksum(ZERO_PAGE(0));
3169         /* Default to false for backwards compatibility */
3170         ksm_use_zero_pages = false;
3171
3172         err = ksm_slab_init();
3173         if (err)
3174                 goto out;
3175
3176         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3177         if (IS_ERR(ksm_thread)) {
3178                 pr_err("ksm: creating kthread failed\n");
3179                 err = PTR_ERR(ksm_thread);
3180                 goto out_free;
3181         }
3182
3183 #ifdef CONFIG_SYSFS
3184         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3185         if (err) {
3186                 pr_err("ksm: register sysfs failed\n");
3187                 kthread_stop(ksm_thread);
3188                 goto out_free;
3189         }
3190 #else
3191         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3192
3193 #endif /* CONFIG_SYSFS */
3194
3195 #ifdef CONFIG_MEMORY_HOTREMOVE
3196         /* There is no significance to this priority 100 */
3197         hotplug_memory_notifier(ksm_memory_callback, 100);
3198 #endif
3199         return 0;
3200
3201 out_free:
3202         ksm_slab_free();
3203 out:
3204         return err;
3205 }
3206 subsys_initcall(ksm_init);
3207
3208 #endif /* CONFIG_LKSM */