Linux 4.14.66
[platform/kernel/linux-rpi.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /*
55  * A few notes about the KSM scanning process,
56  * to make it easier to understand the data structures below:
57  *
58  * In order to reduce excessive scanning, KSM sorts the memory pages by their
59  * contents into a data structure that holds pointers to the pages' locations.
60  *
61  * Since the contents of the pages may change at any moment, KSM cannot just
62  * insert the pages into a normal sorted tree and expect it to find anything.
63  * Therefore KSM uses two data structures - the stable and the unstable tree.
64  *
65  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66  * by their contents.  Because each such page is write-protected, searching on
67  * this tree is fully assured to be working (except when pages are unmapped),
68  * and therefore this tree is called the stable tree.
69  *
70  * In addition to the stable tree, KSM uses a second data structure called the
71  * unstable tree: this tree holds pointers to pages which have been found to
72  * be "unchanged for a period of time".  The unstable tree sorts these pages
73  * by their contents, but since they are not write-protected, KSM cannot rely
74  * upon the unstable tree to work correctly - the unstable tree is liable to
75  * be corrupted as its contents are modified, and so it is called unstable.
76  *
77  * KSM solves this problem by several techniques:
78  *
79  * 1) The unstable tree is flushed every time KSM completes scanning all
80  *    memory areas, and then the tree is rebuilt again from the beginning.
81  * 2) KSM will only insert into the unstable tree, pages whose hash value
82  *    has not changed since the previous scan of all memory areas.
83  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84  *    colors of the nodes and not on their contents, assuring that even when
85  *    the tree gets "corrupted" it won't get out of balance, so scanning time
86  *    remains the same (also, searching and inserting nodes in an rbtree uses
87  *    the same algorithm, so we have no overhead when we flush and rebuild).
88  * 4) KSM never flushes the stable tree, which means that even if it were to
89  *    take 10 attempts to find a page in the unstable tree, once it is found,
90  *    it is secured in the stable tree.  (When we scan a new page, we first
91  *    compare it against the stable tree, and then against the unstable tree.)
92  *
93  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94  * stable trees and multiple unstable trees: one of each for each NUMA node.
95  */
96
97 /**
98  * struct mm_slot - ksm information per mm that is being scanned
99  * @link: link to the mm_slots hash list
100  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102  * @mm: the mm that this information is valid for
103  */
104 struct mm_slot {
105         struct hlist_node link;
106         struct list_head mm_list;
107         struct rmap_item *rmap_list;
108         struct mm_struct *mm;
109 };
110
111 /**
112  * struct ksm_scan - cursor for scanning
113  * @mm_slot: the current mm_slot we are scanning
114  * @address: the next address inside that to be scanned
115  * @rmap_list: link to the next rmap to be scanned in the rmap_list
116  * @seqnr: count of completed full scans (needed when removing unstable node)
117  *
118  * There is only the one ksm_scan instance of this cursor structure.
119  */
120 struct ksm_scan {
121         struct mm_slot *mm_slot;
122         unsigned long address;
123         struct rmap_item **rmap_list;
124         unsigned long seqnr;
125 };
126
127 /**
128  * struct stable_node - node of the stable rbtree
129  * @node: rb node of this ksm page in the stable tree
130  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132  * @list: linked into migrate_nodes, pending placement in the proper node tree
133  * @hlist: hlist head of rmap_items using this ksm page
134  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135  * @chain_prune_time: time of the last full garbage collection
136  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138  */
139 struct stable_node {
140         union {
141                 struct rb_node node;    /* when node of stable tree */
142                 struct {                /* when listed for migration */
143                         struct list_head *head;
144                         struct {
145                                 struct hlist_node hlist_dup;
146                                 struct list_head list;
147                         };
148                 };
149         };
150         struct hlist_head hlist;
151         union {
152                 unsigned long kpfn;
153                 unsigned long chain_prune_time;
154         };
155         /*
156          * STABLE_NODE_CHAIN can be any negative number in
157          * rmap_hlist_len negative range, but better not -1 to be able
158          * to reliably detect underflows.
159          */
160 #define STABLE_NODE_CHAIN -1024
161         int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163         int nid;
164 #endif
165 };
166
167 /**
168  * struct rmap_item - reverse mapping item for virtual addresses
169  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171  * @nid: NUMA node id of unstable tree in which linked (may not match page)
172  * @mm: the memory structure this rmap_item is pointing into
173  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174  * @oldchecksum: previous checksum of the page at that virtual address
175  * @node: rb node of this rmap_item in the unstable tree
176  * @head: pointer to stable_node heading this list in the stable tree
177  * @hlist: link into hlist of rmap_items hanging off that stable_node
178  */
179 struct rmap_item {
180         struct rmap_item *rmap_list;
181         union {
182                 struct anon_vma *anon_vma;      /* when stable */
183 #ifdef CONFIG_NUMA
184                 int nid;                /* when node of unstable tree */
185 #endif
186         };
187         struct mm_struct *mm;
188         unsigned long address;          /* + low bits used for flags below */
189         unsigned int oldchecksum;       /* when unstable */
190         union {
191                 struct rb_node node;    /* when node of unstable tree */
192                 struct {                /* when listed from stable tree */
193                         struct stable_node *head;
194                         struct hlist_node hlist;
195                 };
196         };
197 };
198
199 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
201 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
202 #define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
203                                 /* to mask all the flags */
204
205 /* The stable and unstable tree heads */
206 static struct rb_root one_stable_tree[1] = { RB_ROOT };
207 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
208 static struct rb_root *root_stable_tree = one_stable_tree;
209 static struct rb_root *root_unstable_tree = one_unstable_tree;
210
211 /* Recently migrated nodes of stable tree, pending proper placement */
212 static LIST_HEAD(migrate_nodes);
213 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
214
215 #define MM_SLOTS_HASH_BITS 10
216 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
217
218 static struct mm_slot ksm_mm_head = {
219         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
220 };
221 static struct ksm_scan ksm_scan = {
222         .mm_slot = &ksm_mm_head,
223 };
224
225 static struct kmem_cache *rmap_item_cache;
226 static struct kmem_cache *stable_node_cache;
227 static struct kmem_cache *mm_slot_cache;
228
229 /* The number of nodes in the stable tree */
230 static unsigned long ksm_pages_shared;
231
232 /* The number of page slots additionally sharing those nodes */
233 static unsigned long ksm_pages_sharing;
234
235 /* The number of nodes in the unstable tree */
236 static unsigned long ksm_pages_unshared;
237
238 /* The number of rmap_items in use: to calculate pages_volatile */
239 static unsigned long ksm_rmap_items;
240
241 /* The number of stable_node chains */
242 static unsigned long ksm_stable_node_chains;
243
244 /* The number of stable_node dups linked to the stable_node chains */
245 static unsigned long ksm_stable_node_dups;
246
247 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
248 static int ksm_stable_node_chains_prune_millisecs = 2000;
249
250 /* Maximum number of page slots sharing a stable node */
251 static int ksm_max_page_sharing = 256;
252
253 /* Number of pages ksmd should scan in one batch */
254 static unsigned int ksm_thread_pages_to_scan = 100;
255
256 /* Milliseconds ksmd should sleep between batches */
257 static unsigned int ksm_thread_sleep_millisecs = 20;
258
259 /* Checksum of an empty (zeroed) page */
260 static unsigned int zero_checksum __read_mostly;
261
262 /* Whether to merge empty (zeroed) pages with actual zero pages */
263 static bool ksm_use_zero_pages __read_mostly;
264
265 #ifdef CONFIG_NUMA
266 /* Zeroed when merging across nodes is not allowed */
267 static unsigned int ksm_merge_across_nodes = 1;
268 static int ksm_nr_node_ids = 1;
269 #else
270 #define ksm_merge_across_nodes  1U
271 #define ksm_nr_node_ids         1
272 #endif
273
274 #define KSM_RUN_STOP    0
275 #define KSM_RUN_MERGE   1
276 #define KSM_RUN_UNMERGE 2
277 #define KSM_RUN_OFFLINE 4
278 static unsigned long ksm_run = KSM_RUN_STOP;
279 static void wait_while_offlining(void);
280
281 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
282 static DEFINE_MUTEX(ksm_thread_mutex);
283 static DEFINE_SPINLOCK(ksm_mmlist_lock);
284
285 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
286                 sizeof(struct __struct), __alignof__(struct __struct),\
287                 (__flags), NULL)
288
289 static int __init ksm_slab_init(void)
290 {
291         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
292         if (!rmap_item_cache)
293                 goto out;
294
295         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
296         if (!stable_node_cache)
297                 goto out_free1;
298
299         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
300         if (!mm_slot_cache)
301                 goto out_free2;
302
303         return 0;
304
305 out_free2:
306         kmem_cache_destroy(stable_node_cache);
307 out_free1:
308         kmem_cache_destroy(rmap_item_cache);
309 out:
310         return -ENOMEM;
311 }
312
313 static void __init ksm_slab_free(void)
314 {
315         kmem_cache_destroy(mm_slot_cache);
316         kmem_cache_destroy(stable_node_cache);
317         kmem_cache_destroy(rmap_item_cache);
318         mm_slot_cache = NULL;
319 }
320
321 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
322 {
323         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
324 }
325
326 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
327 {
328         return dup->head == STABLE_NODE_DUP_HEAD;
329 }
330
331 static inline void stable_node_chain_add_dup(struct stable_node *dup,
332                                              struct stable_node *chain)
333 {
334         VM_BUG_ON(is_stable_node_dup(dup));
335         dup->head = STABLE_NODE_DUP_HEAD;
336         VM_BUG_ON(!is_stable_node_chain(chain));
337         hlist_add_head(&dup->hlist_dup, &chain->hlist);
338         ksm_stable_node_dups++;
339 }
340
341 static inline void __stable_node_dup_del(struct stable_node *dup)
342 {
343         VM_BUG_ON(!is_stable_node_dup(dup));
344         hlist_del(&dup->hlist_dup);
345         ksm_stable_node_dups--;
346 }
347
348 static inline void stable_node_dup_del(struct stable_node *dup)
349 {
350         VM_BUG_ON(is_stable_node_chain(dup));
351         if (is_stable_node_dup(dup))
352                 __stable_node_dup_del(dup);
353         else
354                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
355 #ifdef CONFIG_DEBUG_VM
356         dup->head = NULL;
357 #endif
358 }
359
360 static inline struct rmap_item *alloc_rmap_item(void)
361 {
362         struct rmap_item *rmap_item;
363
364         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
365                                                 __GFP_NORETRY | __GFP_NOWARN);
366         if (rmap_item)
367                 ksm_rmap_items++;
368         return rmap_item;
369 }
370
371 static inline void free_rmap_item(struct rmap_item *rmap_item)
372 {
373         ksm_rmap_items--;
374         rmap_item->mm = NULL;   /* debug safety */
375         kmem_cache_free(rmap_item_cache, rmap_item);
376 }
377
378 static inline struct stable_node *alloc_stable_node(void)
379 {
380         /*
381          * The allocation can take too long with GFP_KERNEL when memory is under
382          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
383          * grants access to memory reserves, helping to avoid this problem.
384          */
385         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
386 }
387
388 static inline void free_stable_node(struct stable_node *stable_node)
389 {
390         VM_BUG_ON(stable_node->rmap_hlist_len &&
391                   !is_stable_node_chain(stable_node));
392         kmem_cache_free(stable_node_cache, stable_node);
393 }
394
395 static inline struct mm_slot *alloc_mm_slot(void)
396 {
397         if (!mm_slot_cache)     /* initialization failed */
398                 return NULL;
399         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
400 }
401
402 static inline void free_mm_slot(struct mm_slot *mm_slot)
403 {
404         kmem_cache_free(mm_slot_cache, mm_slot);
405 }
406
407 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
408 {
409         struct mm_slot *slot;
410
411         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
412                 if (slot->mm == mm)
413                         return slot;
414
415         return NULL;
416 }
417
418 static void insert_to_mm_slots_hash(struct mm_struct *mm,
419                                     struct mm_slot *mm_slot)
420 {
421         mm_slot->mm = mm;
422         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
423 }
424
425 /*
426  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
427  * page tables after it has passed through ksm_exit() - which, if necessary,
428  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
429  * a special flag: they can just back out as soon as mm_users goes to zero.
430  * ksm_test_exit() is used throughout to make this test for exit: in some
431  * places for correctness, in some places just to avoid unnecessary work.
432  */
433 static inline bool ksm_test_exit(struct mm_struct *mm)
434 {
435         return atomic_read(&mm->mm_users) == 0;
436 }
437
438 /*
439  * We use break_ksm to break COW on a ksm page: it's a stripped down
440  *
441  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
442  *              put_page(page);
443  *
444  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
445  * in case the application has unmapped and remapped mm,addr meanwhile.
446  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
447  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
448  *
449  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
450  * of the process that owns 'vma'.  We also do not want to enforce
451  * protection keys here anyway.
452  */
453 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
454 {
455         struct page *page;
456         int ret = 0;
457
458         do {
459                 cond_resched();
460                 page = follow_page(vma, addr,
461                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
462                 if (IS_ERR_OR_NULL(page))
463                         break;
464                 if (PageKsm(page))
465                         ret = handle_mm_fault(vma, addr,
466                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
467                 else
468                         ret = VM_FAULT_WRITE;
469                 put_page(page);
470         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
471         /*
472          * We must loop because handle_mm_fault() may back out if there's
473          * any difficulty e.g. if pte accessed bit gets updated concurrently.
474          *
475          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
476          * COW has been broken, even if the vma does not permit VM_WRITE;
477          * but note that a concurrent fault might break PageKsm for us.
478          *
479          * VM_FAULT_SIGBUS could occur if we race with truncation of the
480          * backing file, which also invalidates anonymous pages: that's
481          * okay, that truncation will have unmapped the PageKsm for us.
482          *
483          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
484          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
485          * current task has TIF_MEMDIE set, and will be OOM killed on return
486          * to user; and ksmd, having no mm, would never be chosen for that.
487          *
488          * But if the mm is in a limited mem_cgroup, then the fault may fail
489          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
490          * even ksmd can fail in this way - though it's usually breaking ksm
491          * just to undo a merge it made a moment before, so unlikely to oom.
492          *
493          * That's a pity: we might therefore have more kernel pages allocated
494          * than we're counting as nodes in the stable tree; but ksm_do_scan
495          * will retry to break_cow on each pass, so should recover the page
496          * in due course.  The important thing is to not let VM_MERGEABLE
497          * be cleared while any such pages might remain in the area.
498          */
499         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
500 }
501
502 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
503                 unsigned long addr)
504 {
505         struct vm_area_struct *vma;
506         if (ksm_test_exit(mm))
507                 return NULL;
508         vma = find_vma(mm, addr);
509         if (!vma || vma->vm_start > addr)
510                 return NULL;
511         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
512                 return NULL;
513         return vma;
514 }
515
516 static void break_cow(struct rmap_item *rmap_item)
517 {
518         struct mm_struct *mm = rmap_item->mm;
519         unsigned long addr = rmap_item->address;
520         struct vm_area_struct *vma;
521
522         /*
523          * It is not an accident that whenever we want to break COW
524          * to undo, we also need to drop a reference to the anon_vma.
525          */
526         put_anon_vma(rmap_item->anon_vma);
527
528         down_read(&mm->mmap_sem);
529         vma = find_mergeable_vma(mm, addr);
530         if (vma)
531                 break_ksm(vma, addr);
532         up_read(&mm->mmap_sem);
533 }
534
535 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
536 {
537         struct mm_struct *mm = rmap_item->mm;
538         unsigned long addr = rmap_item->address;
539         struct vm_area_struct *vma;
540         struct page *page;
541
542         down_read(&mm->mmap_sem);
543         vma = find_mergeable_vma(mm, addr);
544         if (!vma)
545                 goto out;
546
547         page = follow_page(vma, addr, FOLL_GET);
548         if (IS_ERR_OR_NULL(page))
549                 goto out;
550         if (PageAnon(page)) {
551                 flush_anon_page(vma, page, addr);
552                 flush_dcache_page(page);
553         } else {
554                 put_page(page);
555 out:
556                 page = NULL;
557         }
558         up_read(&mm->mmap_sem);
559         return page;
560 }
561
562 /*
563  * This helper is used for getting right index into array of tree roots.
564  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
565  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
566  * every node has its own stable and unstable tree.
567  */
568 static inline int get_kpfn_nid(unsigned long kpfn)
569 {
570         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
571 }
572
573 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
574                                                    struct rb_root *root)
575 {
576         struct stable_node *chain = alloc_stable_node();
577         VM_BUG_ON(is_stable_node_chain(dup));
578         if (likely(chain)) {
579                 INIT_HLIST_HEAD(&chain->hlist);
580                 chain->chain_prune_time = jiffies;
581                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
582 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
583                 chain->nid = -1; /* debug */
584 #endif
585                 ksm_stable_node_chains++;
586
587                 /*
588                  * Put the stable node chain in the first dimension of
589                  * the stable tree and at the same time remove the old
590                  * stable node.
591                  */
592                 rb_replace_node(&dup->node, &chain->node, root);
593
594                 /*
595                  * Move the old stable node to the second dimension
596                  * queued in the hlist_dup. The invariant is that all
597                  * dup stable_nodes in the chain->hlist point to pages
598                  * that are wrprotected and have the exact same
599                  * content.
600                  */
601                 stable_node_chain_add_dup(dup, chain);
602         }
603         return chain;
604 }
605
606 static inline void free_stable_node_chain(struct stable_node *chain,
607                                           struct rb_root *root)
608 {
609         rb_erase(&chain->node, root);
610         free_stable_node(chain);
611         ksm_stable_node_chains--;
612 }
613
614 static void remove_node_from_stable_tree(struct stable_node *stable_node)
615 {
616         struct rmap_item *rmap_item;
617
618         /* check it's not STABLE_NODE_CHAIN or negative */
619         BUG_ON(stable_node->rmap_hlist_len < 0);
620
621         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
622                 if (rmap_item->hlist.next)
623                         ksm_pages_sharing--;
624                 else
625                         ksm_pages_shared--;
626                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
627                 stable_node->rmap_hlist_len--;
628                 put_anon_vma(rmap_item->anon_vma);
629                 rmap_item->address &= PAGE_MASK;
630                 cond_resched();
631         }
632
633         /*
634          * We need the second aligned pointer of the migrate_nodes
635          * list_head to stay clear from the rb_parent_color union
636          * (aligned and different than any node) and also different
637          * from &migrate_nodes. This will verify that future list.h changes
638          * don't break STABLE_NODE_DUP_HEAD.
639          */
640 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
641         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
642         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
643 #endif
644
645         if (stable_node->head == &migrate_nodes)
646                 list_del(&stable_node->list);
647         else
648                 stable_node_dup_del(stable_node);
649         free_stable_node(stable_node);
650 }
651
652 /*
653  * get_ksm_page: checks if the page indicated by the stable node
654  * is still its ksm page, despite having held no reference to it.
655  * In which case we can trust the content of the page, and it
656  * returns the gotten page; but if the page has now been zapped,
657  * remove the stale node from the stable tree and return NULL.
658  * But beware, the stable node's page might be being migrated.
659  *
660  * You would expect the stable_node to hold a reference to the ksm page.
661  * But if it increments the page's count, swapping out has to wait for
662  * ksmd to come around again before it can free the page, which may take
663  * seconds or even minutes: much too unresponsive.  So instead we use a
664  * "keyhole reference": access to the ksm page from the stable node peeps
665  * out through its keyhole to see if that page still holds the right key,
666  * pointing back to this stable node.  This relies on freeing a PageAnon
667  * page to reset its page->mapping to NULL, and relies on no other use of
668  * a page to put something that might look like our key in page->mapping.
669  * is on its way to being freed; but it is an anomaly to bear in mind.
670  */
671 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
672 {
673         struct page *page;
674         void *expected_mapping;
675         unsigned long kpfn;
676
677         expected_mapping = (void *)((unsigned long)stable_node |
678                                         PAGE_MAPPING_KSM);
679 again:
680         kpfn = READ_ONCE(stable_node->kpfn);
681         page = pfn_to_page(kpfn);
682
683         /*
684          * page is computed from kpfn, so on most architectures reading
685          * page->mapping is naturally ordered after reading node->kpfn,
686          * but on Alpha we need to be more careful.
687          */
688         smp_read_barrier_depends();
689         if (READ_ONCE(page->mapping) != expected_mapping)
690                 goto stale;
691
692         /*
693          * We cannot do anything with the page while its refcount is 0.
694          * Usually 0 means free, or tail of a higher-order page: in which
695          * case this node is no longer referenced, and should be freed;
696          * however, it might mean that the page is under page_freeze_refs().
697          * The __remove_mapping() case is easy, again the node is now stale;
698          * but if page is swapcache in migrate_page_move_mapping(), it might
699          * still be our page, in which case it's essential to keep the node.
700          */
701         while (!get_page_unless_zero(page)) {
702                 /*
703                  * Another check for page->mapping != expected_mapping would
704                  * work here too.  We have chosen the !PageSwapCache test to
705                  * optimize the common case, when the page is or is about to
706                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
707                  * in the freeze_refs section of __remove_mapping(); but Anon
708                  * page->mapping reset to NULL later, in free_pages_prepare().
709                  */
710                 if (!PageSwapCache(page))
711                         goto stale;
712                 cpu_relax();
713         }
714
715         if (READ_ONCE(page->mapping) != expected_mapping) {
716                 put_page(page);
717                 goto stale;
718         }
719
720         if (lock_it) {
721                 lock_page(page);
722                 if (READ_ONCE(page->mapping) != expected_mapping) {
723                         unlock_page(page);
724                         put_page(page);
725                         goto stale;
726                 }
727         }
728         return page;
729
730 stale:
731         /*
732          * We come here from above when page->mapping or !PageSwapCache
733          * suggests that the node is stale; but it might be under migration.
734          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
735          * before checking whether node->kpfn has been changed.
736          */
737         smp_rmb();
738         if (READ_ONCE(stable_node->kpfn) != kpfn)
739                 goto again;
740         remove_node_from_stable_tree(stable_node);
741         return NULL;
742 }
743
744 /*
745  * Removing rmap_item from stable or unstable tree.
746  * This function will clean the information from the stable/unstable tree.
747  */
748 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
749 {
750         if (rmap_item->address & STABLE_FLAG) {
751                 struct stable_node *stable_node;
752                 struct page *page;
753
754                 stable_node = rmap_item->head;
755                 page = get_ksm_page(stable_node, true);
756                 if (!page)
757                         goto out;
758
759                 hlist_del(&rmap_item->hlist);
760                 unlock_page(page);
761                 put_page(page);
762
763                 if (!hlist_empty(&stable_node->hlist))
764                         ksm_pages_sharing--;
765                 else
766                         ksm_pages_shared--;
767                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
768                 stable_node->rmap_hlist_len--;
769
770                 put_anon_vma(rmap_item->anon_vma);
771                 rmap_item->address &= PAGE_MASK;
772
773         } else if (rmap_item->address & UNSTABLE_FLAG) {
774                 unsigned char age;
775                 /*
776                  * Usually ksmd can and must skip the rb_erase, because
777                  * root_unstable_tree was already reset to RB_ROOT.
778                  * But be careful when an mm is exiting: do the rb_erase
779                  * if this rmap_item was inserted by this scan, rather
780                  * than left over from before.
781                  */
782                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
783                 BUG_ON(age > 1);
784                 if (!age)
785                         rb_erase(&rmap_item->node,
786                                  root_unstable_tree + NUMA(rmap_item->nid));
787                 ksm_pages_unshared--;
788                 rmap_item->address &= PAGE_MASK;
789         }
790 out:
791         cond_resched();         /* we're called from many long loops */
792 }
793
794 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
795                                        struct rmap_item **rmap_list)
796 {
797         while (*rmap_list) {
798                 struct rmap_item *rmap_item = *rmap_list;
799                 *rmap_list = rmap_item->rmap_list;
800                 remove_rmap_item_from_tree(rmap_item);
801                 free_rmap_item(rmap_item);
802         }
803 }
804
805 /*
806  * Though it's very tempting to unmerge rmap_items from stable tree rather
807  * than check every pte of a given vma, the locking doesn't quite work for
808  * that - an rmap_item is assigned to the stable tree after inserting ksm
809  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
810  * rmap_items from parent to child at fork time (so as not to waste time
811  * if exit comes before the next scan reaches it).
812  *
813  * Similarly, although we'd like to remove rmap_items (so updating counts
814  * and freeing memory) when unmerging an area, it's easier to leave that
815  * to the next pass of ksmd - consider, for example, how ksmd might be
816  * in cmp_and_merge_page on one of the rmap_items we would be removing.
817  */
818 static int unmerge_ksm_pages(struct vm_area_struct *vma,
819                              unsigned long start, unsigned long end)
820 {
821         unsigned long addr;
822         int err = 0;
823
824         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
825                 if (ksm_test_exit(vma->vm_mm))
826                         break;
827                 if (signal_pending(current))
828                         err = -ERESTARTSYS;
829                 else
830                         err = break_ksm(vma, addr);
831         }
832         return err;
833 }
834
835 #ifdef CONFIG_SYSFS
836 /*
837  * Only called through the sysfs control interface:
838  */
839 static int remove_stable_node(struct stable_node *stable_node)
840 {
841         struct page *page;
842         int err;
843
844         page = get_ksm_page(stable_node, true);
845         if (!page) {
846                 /*
847                  * get_ksm_page did remove_node_from_stable_tree itself.
848                  */
849                 return 0;
850         }
851
852         if (WARN_ON_ONCE(page_mapped(page))) {
853                 /*
854                  * This should not happen: but if it does, just refuse to let
855                  * merge_across_nodes be switched - there is no need to panic.
856                  */
857                 err = -EBUSY;
858         } else {
859                 /*
860                  * The stable node did not yet appear stale to get_ksm_page(),
861                  * since that allows for an unmapped ksm page to be recognized
862                  * right up until it is freed; but the node is safe to remove.
863                  * This page might be in a pagevec waiting to be freed,
864                  * or it might be PageSwapCache (perhaps under writeback),
865                  * or it might have been removed from swapcache a moment ago.
866                  */
867                 set_page_stable_node(page, NULL);
868                 remove_node_from_stable_tree(stable_node);
869                 err = 0;
870         }
871
872         unlock_page(page);
873         put_page(page);
874         return err;
875 }
876
877 static int remove_stable_node_chain(struct stable_node *stable_node,
878                                     struct rb_root *root)
879 {
880         struct stable_node *dup;
881         struct hlist_node *hlist_safe;
882
883         if (!is_stable_node_chain(stable_node)) {
884                 VM_BUG_ON(is_stable_node_dup(stable_node));
885                 if (remove_stable_node(stable_node))
886                         return true;
887                 else
888                         return false;
889         }
890
891         hlist_for_each_entry_safe(dup, hlist_safe,
892                                   &stable_node->hlist, hlist_dup) {
893                 VM_BUG_ON(!is_stable_node_dup(dup));
894                 if (remove_stable_node(dup))
895                         return true;
896         }
897         BUG_ON(!hlist_empty(&stable_node->hlist));
898         free_stable_node_chain(stable_node, root);
899         return false;
900 }
901
902 static int remove_all_stable_nodes(void)
903 {
904         struct stable_node *stable_node, *next;
905         int nid;
906         int err = 0;
907
908         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
909                 while (root_stable_tree[nid].rb_node) {
910                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
911                                                 struct stable_node, node);
912                         if (remove_stable_node_chain(stable_node,
913                                                      root_stable_tree + nid)) {
914                                 err = -EBUSY;
915                                 break;  /* proceed to next nid */
916                         }
917                         cond_resched();
918                 }
919         }
920         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
921                 if (remove_stable_node(stable_node))
922                         err = -EBUSY;
923                 cond_resched();
924         }
925         return err;
926 }
927
928 static int unmerge_and_remove_all_rmap_items(void)
929 {
930         struct mm_slot *mm_slot;
931         struct mm_struct *mm;
932         struct vm_area_struct *vma;
933         int err = 0;
934
935         spin_lock(&ksm_mmlist_lock);
936         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
937                                                 struct mm_slot, mm_list);
938         spin_unlock(&ksm_mmlist_lock);
939
940         for (mm_slot = ksm_scan.mm_slot;
941                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
942                 mm = mm_slot->mm;
943                 down_read(&mm->mmap_sem);
944                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
945                         if (ksm_test_exit(mm))
946                                 break;
947                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
948                                 continue;
949                         err = unmerge_ksm_pages(vma,
950                                                 vma->vm_start, vma->vm_end);
951                         if (err)
952                                 goto error;
953                 }
954
955                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
956                 up_read(&mm->mmap_sem);
957
958                 spin_lock(&ksm_mmlist_lock);
959                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
960                                                 struct mm_slot, mm_list);
961                 if (ksm_test_exit(mm)) {
962                         hash_del(&mm_slot->link);
963                         list_del(&mm_slot->mm_list);
964                         spin_unlock(&ksm_mmlist_lock);
965
966                         free_mm_slot(mm_slot);
967                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
968                         mmdrop(mm);
969                 } else
970                         spin_unlock(&ksm_mmlist_lock);
971         }
972
973         /* Clean up stable nodes, but don't worry if some are still busy */
974         remove_all_stable_nodes();
975         ksm_scan.seqnr = 0;
976         return 0;
977
978 error:
979         up_read(&mm->mmap_sem);
980         spin_lock(&ksm_mmlist_lock);
981         ksm_scan.mm_slot = &ksm_mm_head;
982         spin_unlock(&ksm_mmlist_lock);
983         return err;
984 }
985 #endif /* CONFIG_SYSFS */
986
987 static u32 calc_checksum(struct page *page)
988 {
989         u32 checksum;
990         void *addr = kmap_atomic(page);
991         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
992         kunmap_atomic(addr);
993         return checksum;
994 }
995
996 static int memcmp_pages(struct page *page1, struct page *page2)
997 {
998         char *addr1, *addr2;
999         int ret;
1000
1001         addr1 = kmap_atomic(page1);
1002         addr2 = kmap_atomic(page2);
1003         ret = memcmp(addr1, addr2, PAGE_SIZE);
1004         kunmap_atomic(addr2);
1005         kunmap_atomic(addr1);
1006         return ret;
1007 }
1008
1009 static inline int pages_identical(struct page *page1, struct page *page2)
1010 {
1011         return !memcmp_pages(page1, page2);
1012 }
1013
1014 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1015                               pte_t *orig_pte)
1016 {
1017         struct mm_struct *mm = vma->vm_mm;
1018         struct page_vma_mapped_walk pvmw = {
1019                 .page = page,
1020                 .vma = vma,
1021         };
1022         int swapped;
1023         int err = -EFAULT;
1024         unsigned long mmun_start;       /* For mmu_notifiers */
1025         unsigned long mmun_end;         /* For mmu_notifiers */
1026
1027         pvmw.address = page_address_in_vma(page, vma);
1028         if (pvmw.address == -EFAULT)
1029                 goto out;
1030
1031         BUG_ON(PageTransCompound(page));
1032
1033         mmun_start = pvmw.address;
1034         mmun_end   = pvmw.address + PAGE_SIZE;
1035         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1036
1037         if (!page_vma_mapped_walk(&pvmw))
1038                 goto out_mn;
1039         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1040                 goto out_unlock;
1041
1042         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1043             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1044                                                 mm_tlb_flush_pending(mm)) {
1045                 pte_t entry;
1046
1047                 swapped = PageSwapCache(page);
1048                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1049                 /*
1050                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1051                  * take any lock, therefore the check that we are going to make
1052                  * with the pagecount against the mapcount is racey and
1053                  * O_DIRECT can happen right after the check.
1054                  * So we clear the pte and flush the tlb before the check
1055                  * this assure us that no O_DIRECT can happen after the check
1056                  * or in the middle of the check.
1057                  */
1058                 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
1059                 /*
1060                  * Check that no O_DIRECT or similar I/O is in progress on the
1061                  * page
1062                  */
1063                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1064                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1065                         goto out_unlock;
1066                 }
1067                 if (pte_dirty(entry))
1068                         set_page_dirty(page);
1069
1070                 if (pte_protnone(entry))
1071                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1072                 else
1073                         entry = pte_mkclean(pte_wrprotect(entry));
1074                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1075         }
1076         *orig_pte = *pvmw.pte;
1077         err = 0;
1078
1079 out_unlock:
1080         page_vma_mapped_walk_done(&pvmw);
1081 out_mn:
1082         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1083 out:
1084         return err;
1085 }
1086
1087 /**
1088  * replace_page - replace page in vma by new ksm page
1089  * @vma:      vma that holds the pte pointing to page
1090  * @page:     the page we are replacing by kpage
1091  * @kpage:    the ksm page we replace page by
1092  * @orig_pte: the original value of the pte
1093  *
1094  * Returns 0 on success, -EFAULT on failure.
1095  */
1096 static int replace_page(struct vm_area_struct *vma, struct page *page,
1097                         struct page *kpage, pte_t orig_pte)
1098 {
1099         struct mm_struct *mm = vma->vm_mm;
1100         pmd_t *pmd;
1101         pte_t *ptep;
1102         pte_t newpte;
1103         spinlock_t *ptl;
1104         unsigned long addr;
1105         int err = -EFAULT;
1106         unsigned long mmun_start;       /* For mmu_notifiers */
1107         unsigned long mmun_end;         /* For mmu_notifiers */
1108
1109         addr = page_address_in_vma(page, vma);
1110         if (addr == -EFAULT)
1111                 goto out;
1112
1113         pmd = mm_find_pmd(mm, addr);
1114         if (!pmd)
1115                 goto out;
1116
1117         mmun_start = addr;
1118         mmun_end   = addr + PAGE_SIZE;
1119         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1120
1121         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122         if (!pte_same(*ptep, orig_pte)) {
1123                 pte_unmap_unlock(ptep, ptl);
1124                 goto out_mn;
1125         }
1126
1127         /*
1128          * No need to check ksm_use_zero_pages here: we can only have a
1129          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1130          */
1131         if (!is_zero_pfn(page_to_pfn(kpage))) {
1132                 get_page(kpage);
1133                 page_add_anon_rmap(kpage, vma, addr, false);
1134                 newpte = mk_pte(kpage, vma->vm_page_prot);
1135         } else {
1136                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1137                                                vma->vm_page_prot));
1138                 /*
1139                  * We're replacing an anonymous page with a zero page, which is
1140                  * not anonymous. We need to do proper accounting otherwise we
1141                  * will get wrong values in /proc, and a BUG message in dmesg
1142                  * when tearing down the mm.
1143                  */
1144                 dec_mm_counter(mm, MM_ANONPAGES);
1145         }
1146
1147         flush_cache_page(vma, addr, pte_pfn(*ptep));
1148         ptep_clear_flush_notify(vma, addr, ptep);
1149         set_pte_at_notify(mm, addr, ptep, newpte);
1150
1151         page_remove_rmap(page, false);
1152         if (!page_mapped(page))
1153                 try_to_free_swap(page);
1154         put_page(page);
1155
1156         pte_unmap_unlock(ptep, ptl);
1157         err = 0;
1158 out_mn:
1159         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1160 out:
1161         return err;
1162 }
1163
1164 /*
1165  * try_to_merge_one_page - take two pages and merge them into one
1166  * @vma: the vma that holds the pte pointing to page
1167  * @page: the PageAnon page that we want to replace with kpage
1168  * @kpage: the PageKsm page that we want to map instead of page,
1169  *         or NULL the first time when we want to use page as kpage.
1170  *
1171  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1172  */
1173 static int try_to_merge_one_page(struct vm_area_struct *vma,
1174                                  struct page *page, struct page *kpage)
1175 {
1176         pte_t orig_pte = __pte(0);
1177         int err = -EFAULT;
1178
1179         if (page == kpage)                      /* ksm page forked */
1180                 return 0;
1181
1182         if (!PageAnon(page))
1183                 goto out;
1184
1185         /*
1186          * We need the page lock to read a stable PageSwapCache in
1187          * write_protect_page().  We use trylock_page() instead of
1188          * lock_page() because we don't want to wait here - we
1189          * prefer to continue scanning and merging different pages,
1190          * then come back to this page when it is unlocked.
1191          */
1192         if (!trylock_page(page))
1193                 goto out;
1194
1195         if (PageTransCompound(page)) {
1196                 if (split_huge_page(page))
1197                         goto out_unlock;
1198         }
1199
1200         /*
1201          * If this anonymous page is mapped only here, its pte may need
1202          * to be write-protected.  If it's mapped elsewhere, all of its
1203          * ptes are necessarily already write-protected.  But in either
1204          * case, we need to lock and check page_count is not raised.
1205          */
1206         if (write_protect_page(vma, page, &orig_pte) == 0) {
1207                 if (!kpage) {
1208                         /*
1209                          * While we hold page lock, upgrade page from
1210                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1211                          * stable_tree_insert() will update stable_node.
1212                          */
1213                         set_page_stable_node(page, NULL);
1214                         mark_page_accessed(page);
1215                         /*
1216                          * Page reclaim just frees a clean page with no dirty
1217                          * ptes: make sure that the ksm page would be swapped.
1218                          */
1219                         if (!PageDirty(page))
1220                                 SetPageDirty(page);
1221                         err = 0;
1222                 } else if (pages_identical(page, kpage))
1223                         err = replace_page(vma, page, kpage, orig_pte);
1224         }
1225
1226         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1227                 munlock_vma_page(page);
1228                 if (!PageMlocked(kpage)) {
1229                         unlock_page(page);
1230                         lock_page(kpage);
1231                         mlock_vma_page(kpage);
1232                         page = kpage;           /* for final unlock */
1233                 }
1234         }
1235
1236 out_unlock:
1237         unlock_page(page);
1238 out:
1239         return err;
1240 }
1241
1242 /*
1243  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1244  * but no new kernel page is allocated: kpage must already be a ksm page.
1245  *
1246  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1247  */
1248 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1249                                       struct page *page, struct page *kpage)
1250 {
1251         struct mm_struct *mm = rmap_item->mm;
1252         struct vm_area_struct *vma;
1253         int err = -EFAULT;
1254
1255         down_read(&mm->mmap_sem);
1256         vma = find_mergeable_vma(mm, rmap_item->address);
1257         if (!vma)
1258                 goto out;
1259
1260         err = try_to_merge_one_page(vma, page, kpage);
1261         if (err)
1262                 goto out;
1263
1264         /* Unstable nid is in union with stable anon_vma: remove first */
1265         remove_rmap_item_from_tree(rmap_item);
1266
1267         /* Must get reference to anon_vma while still holding mmap_sem */
1268         rmap_item->anon_vma = vma->anon_vma;
1269         get_anon_vma(vma->anon_vma);
1270 out:
1271         up_read(&mm->mmap_sem);
1272         return err;
1273 }
1274
1275 /*
1276  * try_to_merge_two_pages - take two identical pages and prepare them
1277  * to be merged into one page.
1278  *
1279  * This function returns the kpage if we successfully merged two identical
1280  * pages into one ksm page, NULL otherwise.
1281  *
1282  * Note that this function upgrades page to ksm page: if one of the pages
1283  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1284  */
1285 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1286                                            struct page *page,
1287                                            struct rmap_item *tree_rmap_item,
1288                                            struct page *tree_page)
1289 {
1290         int err;
1291
1292         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1293         if (!err) {
1294                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1295                                                         tree_page, page);
1296                 /*
1297                  * If that fails, we have a ksm page with only one pte
1298                  * pointing to it: so break it.
1299                  */
1300                 if (err)
1301                         break_cow(rmap_item);
1302         }
1303         return err ? NULL : page;
1304 }
1305
1306 static __always_inline
1307 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1308 {
1309         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1310         /*
1311          * Check that at least one mapping still exists, otherwise
1312          * there's no much point to merge and share with this
1313          * stable_node, as the underlying tree_page of the other
1314          * sharer is going to be freed soon.
1315          */
1316         return stable_node->rmap_hlist_len &&
1317                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1318 }
1319
1320 static __always_inline
1321 bool is_page_sharing_candidate(struct stable_node *stable_node)
1322 {
1323         return __is_page_sharing_candidate(stable_node, 0);
1324 }
1325
1326 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1327                              struct stable_node **_stable_node,
1328                              struct rb_root *root,
1329                              bool prune_stale_stable_nodes)
1330 {
1331         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1332         struct hlist_node *hlist_safe;
1333         struct page *_tree_page, *tree_page = NULL;
1334         int nr = 0;
1335         int found_rmap_hlist_len;
1336
1337         if (!prune_stale_stable_nodes ||
1338             time_before(jiffies, stable_node->chain_prune_time +
1339                         msecs_to_jiffies(
1340                                 ksm_stable_node_chains_prune_millisecs)))
1341                 prune_stale_stable_nodes = false;
1342         else
1343                 stable_node->chain_prune_time = jiffies;
1344
1345         hlist_for_each_entry_safe(dup, hlist_safe,
1346                                   &stable_node->hlist, hlist_dup) {
1347                 cond_resched();
1348                 /*
1349                  * We must walk all stable_node_dup to prune the stale
1350                  * stable nodes during lookup.
1351                  *
1352                  * get_ksm_page can drop the nodes from the
1353                  * stable_node->hlist if they point to freed pages
1354                  * (that's why we do a _safe walk). The "dup"
1355                  * stable_node parameter itself will be freed from
1356                  * under us if it returns NULL.
1357                  */
1358                 _tree_page = get_ksm_page(dup, false);
1359                 if (!_tree_page)
1360                         continue;
1361                 nr += 1;
1362                 if (is_page_sharing_candidate(dup)) {
1363                         if (!found ||
1364                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1365                                 if (found)
1366                                         put_page(tree_page);
1367                                 found = dup;
1368                                 found_rmap_hlist_len = found->rmap_hlist_len;
1369                                 tree_page = _tree_page;
1370
1371                                 /* skip put_page for found dup */
1372                                 if (!prune_stale_stable_nodes)
1373                                         break;
1374                                 continue;
1375                         }
1376                 }
1377                 put_page(_tree_page);
1378         }
1379
1380         if (found) {
1381                 /*
1382                  * nr is counting all dups in the chain only if
1383                  * prune_stale_stable_nodes is true, otherwise we may
1384                  * break the loop at nr == 1 even if there are
1385                  * multiple entries.
1386                  */
1387                 if (prune_stale_stable_nodes && nr == 1) {
1388                         /*
1389                          * If there's not just one entry it would
1390                          * corrupt memory, better BUG_ON. In KSM
1391                          * context with no lock held it's not even
1392                          * fatal.
1393                          */
1394                         BUG_ON(stable_node->hlist.first->next);
1395
1396                         /*
1397                          * There's just one entry and it is below the
1398                          * deduplication limit so drop the chain.
1399                          */
1400                         rb_replace_node(&stable_node->node, &found->node,
1401                                         root);
1402                         free_stable_node(stable_node);
1403                         ksm_stable_node_chains--;
1404                         ksm_stable_node_dups--;
1405                         /*
1406                          * NOTE: the caller depends on the stable_node
1407                          * to be equal to stable_node_dup if the chain
1408                          * was collapsed.
1409                          */
1410                         *_stable_node = found;
1411                         /*
1412                          * Just for robustneess as stable_node is
1413                          * otherwise left as a stable pointer, the
1414                          * compiler shall optimize it away at build
1415                          * time.
1416                          */
1417                         stable_node = NULL;
1418                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1419                            __is_page_sharing_candidate(found, 1)) {
1420                         /*
1421                          * If the found stable_node dup can accept one
1422                          * more future merge (in addition to the one
1423                          * that is underway) and is not at the head of
1424                          * the chain, put it there so next search will
1425                          * be quicker in the !prune_stale_stable_nodes
1426                          * case.
1427                          *
1428                          * NOTE: it would be inaccurate to use nr > 1
1429                          * instead of checking the hlist.first pointer
1430                          * directly, because in the
1431                          * prune_stale_stable_nodes case "nr" isn't
1432                          * the position of the found dup in the chain,
1433                          * but the total number of dups in the chain.
1434                          */
1435                         hlist_del(&found->hlist_dup);
1436                         hlist_add_head(&found->hlist_dup,
1437                                        &stable_node->hlist);
1438                 }
1439         }
1440
1441         *_stable_node_dup = found;
1442         return tree_page;
1443 }
1444
1445 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1446                                                struct rb_root *root)
1447 {
1448         if (!is_stable_node_chain(stable_node))
1449                 return stable_node;
1450         if (hlist_empty(&stable_node->hlist)) {
1451                 free_stable_node_chain(stable_node, root);
1452                 return NULL;
1453         }
1454         return hlist_entry(stable_node->hlist.first,
1455                            typeof(*stable_node), hlist_dup);
1456 }
1457
1458 /*
1459  * Like for get_ksm_page, this function can free the *_stable_node and
1460  * *_stable_node_dup if the returned tree_page is NULL.
1461  *
1462  * It can also free and overwrite *_stable_node with the found
1463  * stable_node_dup if the chain is collapsed (in which case
1464  * *_stable_node will be equal to *_stable_node_dup like if the chain
1465  * never existed). It's up to the caller to verify tree_page is not
1466  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1467  *
1468  * *_stable_node_dup is really a second output parameter of this
1469  * function and will be overwritten in all cases, the caller doesn't
1470  * need to initialize it.
1471  */
1472 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1473                                         struct stable_node **_stable_node,
1474                                         struct rb_root *root,
1475                                         bool prune_stale_stable_nodes)
1476 {
1477         struct stable_node *stable_node = *_stable_node;
1478         if (!is_stable_node_chain(stable_node)) {
1479                 if (is_page_sharing_candidate(stable_node)) {
1480                         *_stable_node_dup = stable_node;
1481                         return get_ksm_page(stable_node, false);
1482                 }
1483                 /*
1484                  * _stable_node_dup set to NULL means the stable_node
1485                  * reached the ksm_max_page_sharing limit.
1486                  */
1487                 *_stable_node_dup = NULL;
1488                 return NULL;
1489         }
1490         return stable_node_dup(_stable_node_dup, _stable_node, root,
1491                                prune_stale_stable_nodes);
1492 }
1493
1494 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1495                                                 struct stable_node **s_n,
1496                                                 struct rb_root *root)
1497 {
1498         return __stable_node_chain(s_n_d, s_n, root, true);
1499 }
1500
1501 static __always_inline struct page *chain(struct stable_node **s_n_d,
1502                                           struct stable_node *s_n,
1503                                           struct rb_root *root)
1504 {
1505         struct stable_node *old_stable_node = s_n;
1506         struct page *tree_page;
1507
1508         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1509         /* not pruning dups so s_n cannot have changed */
1510         VM_BUG_ON(s_n != old_stable_node);
1511         return tree_page;
1512 }
1513
1514 /*
1515  * stable_tree_search - search for page inside the stable tree
1516  *
1517  * This function checks if there is a page inside the stable tree
1518  * with identical content to the page that we are scanning right now.
1519  *
1520  * This function returns the stable tree node of identical content if found,
1521  * NULL otherwise.
1522  */
1523 static struct page *stable_tree_search(struct page *page)
1524 {
1525         int nid;
1526         struct rb_root *root;
1527         struct rb_node **new;
1528         struct rb_node *parent;
1529         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1530         struct stable_node *page_node;
1531
1532         page_node = page_stable_node(page);
1533         if (page_node && page_node->head != &migrate_nodes) {
1534                 /* ksm page forked */
1535                 get_page(page);
1536                 return page;
1537         }
1538
1539         nid = get_kpfn_nid(page_to_pfn(page));
1540         root = root_stable_tree + nid;
1541 again:
1542         new = &root->rb_node;
1543         parent = NULL;
1544
1545         while (*new) {
1546                 struct page *tree_page;
1547                 int ret;
1548
1549                 cond_resched();
1550                 stable_node = rb_entry(*new, struct stable_node, node);
1551                 stable_node_any = NULL;
1552                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1553                 /*
1554                  * NOTE: stable_node may have been freed by
1555                  * chain_prune() if the returned stable_node_dup is
1556                  * not NULL. stable_node_dup may have been inserted in
1557                  * the rbtree instead as a regular stable_node (in
1558                  * order to collapse the stable_node chain if a single
1559                  * stable_node dup was found in it). In such case the
1560                  * stable_node is overwritten by the calleee to point
1561                  * to the stable_node_dup that was collapsed in the
1562                  * stable rbtree and stable_node will be equal to
1563                  * stable_node_dup like if the chain never existed.
1564                  */
1565                 if (!stable_node_dup) {
1566                         /*
1567                          * Either all stable_node dups were full in
1568                          * this stable_node chain, or this chain was
1569                          * empty and should be rb_erased.
1570                          */
1571                         stable_node_any = stable_node_dup_any(stable_node,
1572                                                               root);
1573                         if (!stable_node_any) {
1574                                 /* rb_erase just run */
1575                                 goto again;
1576                         }
1577                         /*
1578                          * Take any of the stable_node dups page of
1579                          * this stable_node chain to let the tree walk
1580                          * continue. All KSM pages belonging to the
1581                          * stable_node dups in a stable_node chain
1582                          * have the same content and they're
1583                          * wrprotected at all times. Any will work
1584                          * fine to continue the walk.
1585                          */
1586                         tree_page = get_ksm_page(stable_node_any, false);
1587                 }
1588                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1589                 if (!tree_page) {
1590                         /*
1591                          * If we walked over a stale stable_node,
1592                          * get_ksm_page() will call rb_erase() and it
1593                          * may rebalance the tree from under us. So
1594                          * restart the search from scratch. Returning
1595                          * NULL would be safe too, but we'd generate
1596                          * false negative insertions just because some
1597                          * stable_node was stale.
1598                          */
1599                         goto again;
1600                 }
1601
1602                 ret = memcmp_pages(page, tree_page);
1603                 put_page(tree_page);
1604
1605                 parent = *new;
1606                 if (ret < 0)
1607                         new = &parent->rb_left;
1608                 else if (ret > 0)
1609                         new = &parent->rb_right;
1610                 else {
1611                         if (page_node) {
1612                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1613                                 /*
1614                                  * Test if the migrated page should be merged
1615                                  * into a stable node dup. If the mapcount is
1616                                  * 1 we can migrate it with another KSM page
1617                                  * without adding it to the chain.
1618                                  */
1619                                 if (page_mapcount(page) > 1)
1620                                         goto chain_append;
1621                         }
1622
1623                         if (!stable_node_dup) {
1624                                 /*
1625                                  * If the stable_node is a chain and
1626                                  * we got a payload match in memcmp
1627                                  * but we cannot merge the scanned
1628                                  * page in any of the existing
1629                                  * stable_node dups because they're
1630                                  * all full, we need to wait the
1631                                  * scanned page to find itself a match
1632                                  * in the unstable tree to create a
1633                                  * brand new KSM page to add later to
1634                                  * the dups of this stable_node.
1635                                  */
1636                                 return NULL;
1637                         }
1638
1639                         /*
1640                          * Lock and unlock the stable_node's page (which
1641                          * might already have been migrated) so that page
1642                          * migration is sure to notice its raised count.
1643                          * It would be more elegant to return stable_node
1644                          * than kpage, but that involves more changes.
1645                          */
1646                         tree_page = get_ksm_page(stable_node_dup, true);
1647                         if (unlikely(!tree_page))
1648                                 /*
1649                                  * The tree may have been rebalanced,
1650                                  * so re-evaluate parent and new.
1651                                  */
1652                                 goto again;
1653                         unlock_page(tree_page);
1654
1655                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1656                             NUMA(stable_node_dup->nid)) {
1657                                 put_page(tree_page);
1658                                 goto replace;
1659                         }
1660                         return tree_page;
1661                 }
1662         }
1663
1664         if (!page_node)
1665                 return NULL;
1666
1667         list_del(&page_node->list);
1668         DO_NUMA(page_node->nid = nid);
1669         rb_link_node(&page_node->node, parent, new);
1670         rb_insert_color(&page_node->node, root);
1671 out:
1672         if (is_page_sharing_candidate(page_node)) {
1673                 get_page(page);
1674                 return page;
1675         } else
1676                 return NULL;
1677
1678 replace:
1679         /*
1680          * If stable_node was a chain and chain_prune collapsed it,
1681          * stable_node has been updated to be the new regular
1682          * stable_node. A collapse of the chain is indistinguishable
1683          * from the case there was no chain in the stable
1684          * rbtree. Otherwise stable_node is the chain and
1685          * stable_node_dup is the dup to replace.
1686          */
1687         if (stable_node_dup == stable_node) {
1688                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1689                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1690                 /* there is no chain */
1691                 if (page_node) {
1692                         VM_BUG_ON(page_node->head != &migrate_nodes);
1693                         list_del(&page_node->list);
1694                         DO_NUMA(page_node->nid = nid);
1695                         rb_replace_node(&stable_node_dup->node,
1696                                         &page_node->node,
1697                                         root);
1698                         if (is_page_sharing_candidate(page_node))
1699                                 get_page(page);
1700                         else
1701                                 page = NULL;
1702                 } else {
1703                         rb_erase(&stable_node_dup->node, root);
1704                         page = NULL;
1705                 }
1706         } else {
1707                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1708                 __stable_node_dup_del(stable_node_dup);
1709                 if (page_node) {
1710                         VM_BUG_ON(page_node->head != &migrate_nodes);
1711                         list_del(&page_node->list);
1712                         DO_NUMA(page_node->nid = nid);
1713                         stable_node_chain_add_dup(page_node, stable_node);
1714                         if (is_page_sharing_candidate(page_node))
1715                                 get_page(page);
1716                         else
1717                                 page = NULL;
1718                 } else {
1719                         page = NULL;
1720                 }
1721         }
1722         stable_node_dup->head = &migrate_nodes;
1723         list_add(&stable_node_dup->list, stable_node_dup->head);
1724         return page;
1725
1726 chain_append:
1727         /* stable_node_dup could be null if it reached the limit */
1728         if (!stable_node_dup)
1729                 stable_node_dup = stable_node_any;
1730         /*
1731          * If stable_node was a chain and chain_prune collapsed it,
1732          * stable_node has been updated to be the new regular
1733          * stable_node. A collapse of the chain is indistinguishable
1734          * from the case there was no chain in the stable
1735          * rbtree. Otherwise stable_node is the chain and
1736          * stable_node_dup is the dup to replace.
1737          */
1738         if (stable_node_dup == stable_node) {
1739                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1740                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1741                 /* chain is missing so create it */
1742                 stable_node = alloc_stable_node_chain(stable_node_dup,
1743                                                       root);
1744                 if (!stable_node)
1745                         return NULL;
1746         }
1747         /*
1748          * Add this stable_node dup that was
1749          * migrated to the stable_node chain
1750          * of the current nid for this page
1751          * content.
1752          */
1753         VM_BUG_ON(!is_stable_node_chain(stable_node));
1754         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1755         VM_BUG_ON(page_node->head != &migrate_nodes);
1756         list_del(&page_node->list);
1757         DO_NUMA(page_node->nid = nid);
1758         stable_node_chain_add_dup(page_node, stable_node);
1759         goto out;
1760 }
1761
1762 /*
1763  * stable_tree_insert - insert stable tree node pointing to new ksm page
1764  * into the stable tree.
1765  *
1766  * This function returns the stable tree node just allocated on success,
1767  * NULL otherwise.
1768  */
1769 static struct stable_node *stable_tree_insert(struct page *kpage)
1770 {
1771         int nid;
1772         unsigned long kpfn;
1773         struct rb_root *root;
1774         struct rb_node **new;
1775         struct rb_node *parent;
1776         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1777         bool need_chain = false;
1778
1779         kpfn = page_to_pfn(kpage);
1780         nid = get_kpfn_nid(kpfn);
1781         root = root_stable_tree + nid;
1782 again:
1783         parent = NULL;
1784         new = &root->rb_node;
1785
1786         while (*new) {
1787                 struct page *tree_page;
1788                 int ret;
1789
1790                 cond_resched();
1791                 stable_node = rb_entry(*new, struct stable_node, node);
1792                 stable_node_any = NULL;
1793                 tree_page = chain(&stable_node_dup, stable_node, root);
1794                 if (!stable_node_dup) {
1795                         /*
1796                          * Either all stable_node dups were full in
1797                          * this stable_node chain, or this chain was
1798                          * empty and should be rb_erased.
1799                          */
1800                         stable_node_any = stable_node_dup_any(stable_node,
1801                                                               root);
1802                         if (!stable_node_any) {
1803                                 /* rb_erase just run */
1804                                 goto again;
1805                         }
1806                         /*
1807                          * Take any of the stable_node dups page of
1808                          * this stable_node chain to let the tree walk
1809                          * continue. All KSM pages belonging to the
1810                          * stable_node dups in a stable_node chain
1811                          * have the same content and they're
1812                          * wrprotected at all times. Any will work
1813                          * fine to continue the walk.
1814                          */
1815                         tree_page = get_ksm_page(stable_node_any, false);
1816                 }
1817                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1818                 if (!tree_page) {
1819                         /*
1820                          * If we walked over a stale stable_node,
1821                          * get_ksm_page() will call rb_erase() and it
1822                          * may rebalance the tree from under us. So
1823                          * restart the search from scratch. Returning
1824                          * NULL would be safe too, but we'd generate
1825                          * false negative insertions just because some
1826                          * stable_node was stale.
1827                          */
1828                         goto again;
1829                 }
1830
1831                 ret = memcmp_pages(kpage, tree_page);
1832                 put_page(tree_page);
1833
1834                 parent = *new;
1835                 if (ret < 0)
1836                         new = &parent->rb_left;
1837                 else if (ret > 0)
1838                         new = &parent->rb_right;
1839                 else {
1840                         need_chain = true;
1841                         break;
1842                 }
1843         }
1844
1845         stable_node_dup = alloc_stable_node();
1846         if (!stable_node_dup)
1847                 return NULL;
1848
1849         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1850         stable_node_dup->kpfn = kpfn;
1851         set_page_stable_node(kpage, stable_node_dup);
1852         stable_node_dup->rmap_hlist_len = 0;
1853         DO_NUMA(stable_node_dup->nid = nid);
1854         if (!need_chain) {
1855                 rb_link_node(&stable_node_dup->node, parent, new);
1856                 rb_insert_color(&stable_node_dup->node, root);
1857         } else {
1858                 if (!is_stable_node_chain(stable_node)) {
1859                         struct stable_node *orig = stable_node;
1860                         /* chain is missing so create it */
1861                         stable_node = alloc_stable_node_chain(orig, root);
1862                         if (!stable_node) {
1863                                 free_stable_node(stable_node_dup);
1864                                 return NULL;
1865                         }
1866                 }
1867                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1868         }
1869
1870         return stable_node_dup;
1871 }
1872
1873 /*
1874  * unstable_tree_search_insert - search for identical page,
1875  * else insert rmap_item into the unstable tree.
1876  *
1877  * This function searches for a page in the unstable tree identical to the
1878  * page currently being scanned; and if no identical page is found in the
1879  * tree, we insert rmap_item as a new object into the unstable tree.
1880  *
1881  * This function returns pointer to rmap_item found to be identical
1882  * to the currently scanned page, NULL otherwise.
1883  *
1884  * This function does both searching and inserting, because they share
1885  * the same walking algorithm in an rbtree.
1886  */
1887 static
1888 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1889                                               struct page *page,
1890                                               struct page **tree_pagep)
1891 {
1892         struct rb_node **new;
1893         struct rb_root *root;
1894         struct rb_node *parent = NULL;
1895         int nid;
1896
1897         nid = get_kpfn_nid(page_to_pfn(page));
1898         root = root_unstable_tree + nid;
1899         new = &root->rb_node;
1900
1901         while (*new) {
1902                 struct rmap_item *tree_rmap_item;
1903                 struct page *tree_page;
1904                 int ret;
1905
1906                 cond_resched();
1907                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1908                 tree_page = get_mergeable_page(tree_rmap_item);
1909                 if (!tree_page)
1910                         return NULL;
1911
1912                 /*
1913                  * Don't substitute a ksm page for a forked page.
1914                  */
1915                 if (page == tree_page) {
1916                         put_page(tree_page);
1917                         return NULL;
1918                 }
1919
1920                 ret = memcmp_pages(page, tree_page);
1921
1922                 parent = *new;
1923                 if (ret < 0) {
1924                         put_page(tree_page);
1925                         new = &parent->rb_left;
1926                 } else if (ret > 0) {
1927                         put_page(tree_page);
1928                         new = &parent->rb_right;
1929                 } else if (!ksm_merge_across_nodes &&
1930                            page_to_nid(tree_page) != nid) {
1931                         /*
1932                          * If tree_page has been migrated to another NUMA node,
1933                          * it will be flushed out and put in the right unstable
1934                          * tree next time: only merge with it when across_nodes.
1935                          */
1936                         put_page(tree_page);
1937                         return NULL;
1938                 } else {
1939                         *tree_pagep = tree_page;
1940                         return tree_rmap_item;
1941                 }
1942         }
1943
1944         rmap_item->address |= UNSTABLE_FLAG;
1945         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1946         DO_NUMA(rmap_item->nid = nid);
1947         rb_link_node(&rmap_item->node, parent, new);
1948         rb_insert_color(&rmap_item->node, root);
1949
1950         ksm_pages_unshared++;
1951         return NULL;
1952 }
1953
1954 /*
1955  * stable_tree_append - add another rmap_item to the linked list of
1956  * rmap_items hanging off a given node of the stable tree, all sharing
1957  * the same ksm page.
1958  */
1959 static void stable_tree_append(struct rmap_item *rmap_item,
1960                                struct stable_node *stable_node,
1961                                bool max_page_sharing_bypass)
1962 {
1963         /*
1964          * rmap won't find this mapping if we don't insert the
1965          * rmap_item in the right stable_node
1966          * duplicate. page_migration could break later if rmap breaks,
1967          * so we can as well crash here. We really need to check for
1968          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1969          * for other negative values as an undeflow if detected here
1970          * for the first time (and not when decreasing rmap_hlist_len)
1971          * would be sign of memory corruption in the stable_node.
1972          */
1973         BUG_ON(stable_node->rmap_hlist_len < 0);
1974
1975         stable_node->rmap_hlist_len++;
1976         if (!max_page_sharing_bypass)
1977                 /* possibly non fatal but unexpected overflow, only warn */
1978                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1979                              ksm_max_page_sharing);
1980
1981         rmap_item->head = stable_node;
1982         rmap_item->address |= STABLE_FLAG;
1983         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1984
1985         if (rmap_item->hlist.next)
1986                 ksm_pages_sharing++;
1987         else
1988                 ksm_pages_shared++;
1989 }
1990
1991 /*
1992  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1993  * if not, compare checksum to previous and if it's the same, see if page can
1994  * be inserted into the unstable tree, or merged with a page already there and
1995  * both transferred to the stable tree.
1996  *
1997  * @page: the page that we are searching identical page to.
1998  * @rmap_item: the reverse mapping into the virtual address of this page
1999  */
2000 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2001 {
2002         struct mm_struct *mm = rmap_item->mm;
2003         struct rmap_item *tree_rmap_item;
2004         struct page *tree_page = NULL;
2005         struct stable_node *stable_node;
2006         struct page *kpage;
2007         unsigned int checksum;
2008         int err;
2009         bool max_page_sharing_bypass = false;
2010
2011         stable_node = page_stable_node(page);
2012         if (stable_node) {
2013                 if (stable_node->head != &migrate_nodes &&
2014                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2015                     NUMA(stable_node->nid)) {
2016                         stable_node_dup_del(stable_node);
2017                         stable_node->head = &migrate_nodes;
2018                         list_add(&stable_node->list, stable_node->head);
2019                 }
2020                 if (stable_node->head != &migrate_nodes &&
2021                     rmap_item->head == stable_node)
2022                         return;
2023                 /*
2024                  * If it's a KSM fork, allow it to go over the sharing limit
2025                  * without warnings.
2026                  */
2027                 if (!is_page_sharing_candidate(stable_node))
2028                         max_page_sharing_bypass = true;
2029         }
2030
2031         /* We first start with searching the page inside the stable tree */
2032         kpage = stable_tree_search(page);
2033         if (kpage == page && rmap_item->head == stable_node) {
2034                 put_page(kpage);
2035                 return;
2036         }
2037
2038         remove_rmap_item_from_tree(rmap_item);
2039
2040         if (kpage) {
2041                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2042                 if (!err) {
2043                         /*
2044                          * The page was successfully merged:
2045                          * add its rmap_item to the stable tree.
2046                          */
2047                         lock_page(kpage);
2048                         stable_tree_append(rmap_item, page_stable_node(kpage),
2049                                            max_page_sharing_bypass);
2050                         unlock_page(kpage);
2051                 }
2052                 put_page(kpage);
2053                 return;
2054         }
2055
2056         /*
2057          * If the hash value of the page has changed from the last time
2058          * we calculated it, this page is changing frequently: therefore we
2059          * don't want to insert it in the unstable tree, and we don't want
2060          * to waste our time searching for something identical to it there.
2061          */
2062         checksum = calc_checksum(page);
2063         if (rmap_item->oldchecksum != checksum) {
2064                 rmap_item->oldchecksum = checksum;
2065                 return;
2066         }
2067
2068         /*
2069          * Same checksum as an empty page. We attempt to merge it with the
2070          * appropriate zero page if the user enabled this via sysfs.
2071          */
2072         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2073                 struct vm_area_struct *vma;
2074
2075                 down_read(&mm->mmap_sem);
2076                 vma = find_mergeable_vma(mm, rmap_item->address);
2077                 err = try_to_merge_one_page(vma, page,
2078                                             ZERO_PAGE(rmap_item->address));
2079                 up_read(&mm->mmap_sem);
2080                 /*
2081                  * In case of failure, the page was not really empty, so we
2082                  * need to continue. Otherwise we're done.
2083                  */
2084                 if (!err)
2085                         return;
2086         }
2087         tree_rmap_item =
2088                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2089         if (tree_rmap_item) {
2090                 bool split;
2091
2092                 kpage = try_to_merge_two_pages(rmap_item, page,
2093                                                 tree_rmap_item, tree_page);
2094                 /*
2095                  * If both pages we tried to merge belong to the same compound
2096                  * page, then we actually ended up increasing the reference
2097                  * count of the same compound page twice, and split_huge_page
2098                  * failed.
2099                  * Here we set a flag if that happened, and we use it later to
2100                  * try split_huge_page again. Since we call put_page right
2101                  * afterwards, the reference count will be correct and
2102                  * split_huge_page should succeed.
2103                  */
2104                 split = PageTransCompound(page)
2105                         && compound_head(page) == compound_head(tree_page);
2106                 put_page(tree_page);
2107                 if (kpage) {
2108                         /*
2109                          * The pages were successfully merged: insert new
2110                          * node in the stable tree and add both rmap_items.
2111                          */
2112                         lock_page(kpage);
2113                         stable_node = stable_tree_insert(kpage);
2114                         if (stable_node) {
2115                                 stable_tree_append(tree_rmap_item, stable_node,
2116                                                    false);
2117                                 stable_tree_append(rmap_item, stable_node,
2118                                                    false);
2119                         }
2120                         unlock_page(kpage);
2121
2122                         /*
2123                          * If we fail to insert the page into the stable tree,
2124                          * we will have 2 virtual addresses that are pointing
2125                          * to a ksm page left outside the stable tree,
2126                          * in which case we need to break_cow on both.
2127                          */
2128                         if (!stable_node) {
2129                                 break_cow(tree_rmap_item);
2130                                 break_cow(rmap_item);
2131                         }
2132                 } else if (split) {
2133                         /*
2134                          * We are here if we tried to merge two pages and
2135                          * failed because they both belonged to the same
2136                          * compound page. We will split the page now, but no
2137                          * merging will take place.
2138                          * We do not want to add the cost of a full lock; if
2139                          * the page is locked, it is better to skip it and
2140                          * perhaps try again later.
2141                          */
2142                         if (!trylock_page(page))
2143                                 return;
2144                         split_huge_page(page);
2145                         unlock_page(page);
2146                 }
2147         }
2148 }
2149
2150 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2151                                             struct rmap_item **rmap_list,
2152                                             unsigned long addr)
2153 {
2154         struct rmap_item *rmap_item;
2155
2156         while (*rmap_list) {
2157                 rmap_item = *rmap_list;
2158                 if ((rmap_item->address & PAGE_MASK) == addr)
2159                         return rmap_item;
2160                 if (rmap_item->address > addr)
2161                         break;
2162                 *rmap_list = rmap_item->rmap_list;
2163                 remove_rmap_item_from_tree(rmap_item);
2164                 free_rmap_item(rmap_item);
2165         }
2166
2167         rmap_item = alloc_rmap_item();
2168         if (rmap_item) {
2169                 /* It has already been zeroed */
2170                 rmap_item->mm = mm_slot->mm;
2171                 rmap_item->address = addr;
2172                 rmap_item->rmap_list = *rmap_list;
2173                 *rmap_list = rmap_item;
2174         }
2175         return rmap_item;
2176 }
2177
2178 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2179 {
2180         struct mm_struct *mm;
2181         struct mm_slot *slot;
2182         struct vm_area_struct *vma;
2183         struct rmap_item *rmap_item;
2184         int nid;
2185
2186         if (list_empty(&ksm_mm_head.mm_list))
2187                 return NULL;
2188
2189         slot = ksm_scan.mm_slot;
2190         if (slot == &ksm_mm_head) {
2191                 /*
2192                  * A number of pages can hang around indefinitely on per-cpu
2193                  * pagevecs, raised page count preventing write_protect_page
2194                  * from merging them.  Though it doesn't really matter much,
2195                  * it is puzzling to see some stuck in pages_volatile until
2196                  * other activity jostles them out, and they also prevented
2197                  * LTP's KSM test from succeeding deterministically; so drain
2198                  * them here (here rather than on entry to ksm_do_scan(),
2199                  * so we don't IPI too often when pages_to_scan is set low).
2200                  */
2201                 lru_add_drain_all();
2202
2203                 /*
2204                  * Whereas stale stable_nodes on the stable_tree itself
2205                  * get pruned in the regular course of stable_tree_search(),
2206                  * those moved out to the migrate_nodes list can accumulate:
2207                  * so prune them once before each full scan.
2208                  */
2209                 if (!ksm_merge_across_nodes) {
2210                         struct stable_node *stable_node, *next;
2211                         struct page *page;
2212
2213                         list_for_each_entry_safe(stable_node, next,
2214                                                  &migrate_nodes, list) {
2215                                 page = get_ksm_page(stable_node, false);
2216                                 if (page)
2217                                         put_page(page);
2218                                 cond_resched();
2219                         }
2220                 }
2221
2222                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2223                         root_unstable_tree[nid] = RB_ROOT;
2224
2225                 spin_lock(&ksm_mmlist_lock);
2226                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2227                 ksm_scan.mm_slot = slot;
2228                 spin_unlock(&ksm_mmlist_lock);
2229                 /*
2230                  * Although we tested list_empty() above, a racing __ksm_exit
2231                  * of the last mm on the list may have removed it since then.
2232                  */
2233                 if (slot == &ksm_mm_head)
2234                         return NULL;
2235 next_mm:
2236                 ksm_scan.address = 0;
2237                 ksm_scan.rmap_list = &slot->rmap_list;
2238         }
2239
2240         mm = slot->mm;
2241         down_read(&mm->mmap_sem);
2242         if (ksm_test_exit(mm))
2243                 vma = NULL;
2244         else
2245                 vma = find_vma(mm, ksm_scan.address);
2246
2247         for (; vma; vma = vma->vm_next) {
2248                 if (!(vma->vm_flags & VM_MERGEABLE))
2249                         continue;
2250                 if (ksm_scan.address < vma->vm_start)
2251                         ksm_scan.address = vma->vm_start;
2252                 if (!vma->anon_vma)
2253                         ksm_scan.address = vma->vm_end;
2254
2255                 while (ksm_scan.address < vma->vm_end) {
2256                         if (ksm_test_exit(mm))
2257                                 break;
2258                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2259                         if (IS_ERR_OR_NULL(*page)) {
2260                                 ksm_scan.address += PAGE_SIZE;
2261                                 cond_resched();
2262                                 continue;
2263                         }
2264                         if (PageAnon(*page)) {
2265                                 flush_anon_page(vma, *page, ksm_scan.address);
2266                                 flush_dcache_page(*page);
2267                                 rmap_item = get_next_rmap_item(slot,
2268                                         ksm_scan.rmap_list, ksm_scan.address);
2269                                 if (rmap_item) {
2270                                         ksm_scan.rmap_list =
2271                                                         &rmap_item->rmap_list;
2272                                         ksm_scan.address += PAGE_SIZE;
2273                                 } else
2274                                         put_page(*page);
2275                                 up_read(&mm->mmap_sem);
2276                                 return rmap_item;
2277                         }
2278                         put_page(*page);
2279                         ksm_scan.address += PAGE_SIZE;
2280                         cond_resched();
2281                 }
2282         }
2283
2284         if (ksm_test_exit(mm)) {
2285                 ksm_scan.address = 0;
2286                 ksm_scan.rmap_list = &slot->rmap_list;
2287         }
2288         /*
2289          * Nuke all the rmap_items that are above this current rmap:
2290          * because there were no VM_MERGEABLE vmas with such addresses.
2291          */
2292         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2293
2294         spin_lock(&ksm_mmlist_lock);
2295         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2296                                                 struct mm_slot, mm_list);
2297         if (ksm_scan.address == 0) {
2298                 /*
2299                  * We've completed a full scan of all vmas, holding mmap_sem
2300                  * throughout, and found no VM_MERGEABLE: so do the same as
2301                  * __ksm_exit does to remove this mm from all our lists now.
2302                  * This applies either when cleaning up after __ksm_exit
2303                  * (but beware: we can reach here even before __ksm_exit),
2304                  * or when all VM_MERGEABLE areas have been unmapped (and
2305                  * mmap_sem then protects against race with MADV_MERGEABLE).
2306                  */
2307                 hash_del(&slot->link);
2308                 list_del(&slot->mm_list);
2309                 spin_unlock(&ksm_mmlist_lock);
2310
2311                 free_mm_slot(slot);
2312                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2313                 up_read(&mm->mmap_sem);
2314                 mmdrop(mm);
2315         } else {
2316                 up_read(&mm->mmap_sem);
2317                 /*
2318                  * up_read(&mm->mmap_sem) first because after
2319                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2320                  * already have been freed under us by __ksm_exit()
2321                  * because the "mm_slot" is still hashed and
2322                  * ksm_scan.mm_slot doesn't point to it anymore.
2323                  */
2324                 spin_unlock(&ksm_mmlist_lock);
2325         }
2326
2327         /* Repeat until we've completed scanning the whole list */
2328         slot = ksm_scan.mm_slot;
2329         if (slot != &ksm_mm_head)
2330                 goto next_mm;
2331
2332         ksm_scan.seqnr++;
2333         return NULL;
2334 }
2335
2336 /**
2337  * ksm_do_scan  - the ksm scanner main worker function.
2338  * @scan_npages - number of pages we want to scan before we return.
2339  */
2340 static void ksm_do_scan(unsigned int scan_npages)
2341 {
2342         struct rmap_item *rmap_item;
2343         struct page *uninitialized_var(page);
2344
2345         while (scan_npages-- && likely(!freezing(current))) {
2346                 cond_resched();
2347                 rmap_item = scan_get_next_rmap_item(&page);
2348                 if (!rmap_item)
2349                         return;
2350                 cmp_and_merge_page(page, rmap_item);
2351                 put_page(page);
2352         }
2353 }
2354
2355 static int ksmd_should_run(void)
2356 {
2357         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2358 }
2359
2360 static int ksm_scan_thread(void *nothing)
2361 {
2362         set_freezable();
2363         set_user_nice(current, 5);
2364
2365         while (!kthread_should_stop()) {
2366                 mutex_lock(&ksm_thread_mutex);
2367                 wait_while_offlining();
2368                 if (ksmd_should_run())
2369                         ksm_do_scan(ksm_thread_pages_to_scan);
2370                 mutex_unlock(&ksm_thread_mutex);
2371
2372                 try_to_freeze();
2373
2374                 if (ksmd_should_run()) {
2375                         schedule_timeout_interruptible(
2376                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2377                 } else {
2378                         wait_event_freezable(ksm_thread_wait,
2379                                 ksmd_should_run() || kthread_should_stop());
2380                 }
2381         }
2382         return 0;
2383 }
2384
2385 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2386                 unsigned long end, int advice, unsigned long *vm_flags)
2387 {
2388         struct mm_struct *mm = vma->vm_mm;
2389         int err;
2390
2391         switch (advice) {
2392         case MADV_MERGEABLE:
2393                 /*
2394                  * Be somewhat over-protective for now!
2395                  */
2396                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2397                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2398                                  VM_HUGETLB | VM_MIXEDMAP))
2399                         return 0;               /* just ignore the advice */
2400
2401 #ifdef VM_SAO
2402                 if (*vm_flags & VM_SAO)
2403                         return 0;
2404 #endif
2405
2406                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2407                         err = __ksm_enter(mm);
2408                         if (err)
2409                                 return err;
2410                 }
2411
2412                 *vm_flags |= VM_MERGEABLE;
2413                 break;
2414
2415         case MADV_UNMERGEABLE:
2416                 if (!(*vm_flags & VM_MERGEABLE))
2417                         return 0;               /* just ignore the advice */
2418
2419                 if (vma->anon_vma) {
2420                         err = unmerge_ksm_pages(vma, start, end);
2421                         if (err)
2422                                 return err;
2423                 }
2424
2425                 *vm_flags &= ~VM_MERGEABLE;
2426                 break;
2427         }
2428
2429         return 0;
2430 }
2431
2432 int __ksm_enter(struct mm_struct *mm)
2433 {
2434         struct mm_slot *mm_slot;
2435         int needs_wakeup;
2436
2437         mm_slot = alloc_mm_slot();
2438         if (!mm_slot)
2439                 return -ENOMEM;
2440
2441         /* Check ksm_run too?  Would need tighter locking */
2442         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2443
2444         spin_lock(&ksm_mmlist_lock);
2445         insert_to_mm_slots_hash(mm, mm_slot);
2446         /*
2447          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2448          * insert just behind the scanning cursor, to let the area settle
2449          * down a little; when fork is followed by immediate exec, we don't
2450          * want ksmd to waste time setting up and tearing down an rmap_list.
2451          *
2452          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2453          * scanning cursor, otherwise KSM pages in newly forked mms will be
2454          * missed: then we might as well insert at the end of the list.
2455          */
2456         if (ksm_run & KSM_RUN_UNMERGE)
2457                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2458         else
2459                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2460         spin_unlock(&ksm_mmlist_lock);
2461
2462         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2463         mmgrab(mm);
2464
2465         if (needs_wakeup)
2466                 wake_up_interruptible(&ksm_thread_wait);
2467
2468         return 0;
2469 }
2470
2471 void __ksm_exit(struct mm_struct *mm)
2472 {
2473         struct mm_slot *mm_slot;
2474         int easy_to_free = 0;
2475
2476         /*
2477          * This process is exiting: if it's straightforward (as is the
2478          * case when ksmd was never running), free mm_slot immediately.
2479          * But if it's at the cursor or has rmap_items linked to it, use
2480          * mmap_sem to synchronize with any break_cows before pagetables
2481          * are freed, and leave the mm_slot on the list for ksmd to free.
2482          * Beware: ksm may already have noticed it exiting and freed the slot.
2483          */
2484
2485         spin_lock(&ksm_mmlist_lock);
2486         mm_slot = get_mm_slot(mm);
2487         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2488                 if (!mm_slot->rmap_list) {
2489                         hash_del(&mm_slot->link);
2490                         list_del(&mm_slot->mm_list);
2491                         easy_to_free = 1;
2492                 } else {
2493                         list_move(&mm_slot->mm_list,
2494                                   &ksm_scan.mm_slot->mm_list);
2495                 }
2496         }
2497         spin_unlock(&ksm_mmlist_lock);
2498
2499         if (easy_to_free) {
2500                 free_mm_slot(mm_slot);
2501                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2502                 mmdrop(mm);
2503         } else if (mm_slot) {
2504                 down_write(&mm->mmap_sem);
2505                 up_write(&mm->mmap_sem);
2506         }
2507 }
2508
2509 struct page *ksm_might_need_to_copy(struct page *page,
2510                         struct vm_area_struct *vma, unsigned long address)
2511 {
2512         struct anon_vma *anon_vma = page_anon_vma(page);
2513         struct page *new_page;
2514
2515         if (PageKsm(page)) {
2516                 if (page_stable_node(page) &&
2517                     !(ksm_run & KSM_RUN_UNMERGE))
2518                         return page;    /* no need to copy it */
2519         } else if (!anon_vma) {
2520                 return page;            /* no need to copy it */
2521         } else if (anon_vma->root == vma->anon_vma->root &&
2522                  page->index == linear_page_index(vma, address)) {
2523                 return page;            /* still no need to copy it */
2524         }
2525         if (!PageUptodate(page))
2526                 return page;            /* let do_swap_page report the error */
2527
2528         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2529         if (new_page) {
2530                 copy_user_highpage(new_page, page, address, vma);
2531
2532                 SetPageDirty(new_page);
2533                 __SetPageUptodate(new_page);
2534                 __SetPageLocked(new_page);
2535         }
2536
2537         return new_page;
2538 }
2539
2540 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2541 {
2542         struct stable_node *stable_node;
2543         struct rmap_item *rmap_item;
2544         int search_new_forks = 0;
2545
2546         VM_BUG_ON_PAGE(!PageKsm(page), page);
2547
2548         /*
2549          * Rely on the page lock to protect against concurrent modifications
2550          * to that page's node of the stable tree.
2551          */
2552         VM_BUG_ON_PAGE(!PageLocked(page), page);
2553
2554         stable_node = page_stable_node(page);
2555         if (!stable_node)
2556                 return;
2557 again:
2558         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2559                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2560                 struct anon_vma_chain *vmac;
2561                 struct vm_area_struct *vma;
2562
2563                 cond_resched();
2564                 anon_vma_lock_read(anon_vma);
2565                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2566                                                0, ULONG_MAX) {
2567                         unsigned long addr;
2568
2569                         cond_resched();
2570                         vma = vmac->vma;
2571
2572                         /* Ignore the stable/unstable/sqnr flags */
2573                         addr = rmap_item->address & ~KSM_FLAG_MASK;
2574
2575                         if (addr < vma->vm_start || addr >= vma->vm_end)
2576                                 continue;
2577                         /*
2578                          * Initially we examine only the vma which covers this
2579                          * rmap_item; but later, if there is still work to do,
2580                          * we examine covering vmas in other mms: in case they
2581                          * were forked from the original since ksmd passed.
2582                          */
2583                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2584                                 continue;
2585
2586                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2587                                 continue;
2588
2589                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2590                                 anon_vma_unlock_read(anon_vma);
2591                                 return;
2592                         }
2593                         if (rwc->done && rwc->done(page)) {
2594                                 anon_vma_unlock_read(anon_vma);
2595                                 return;
2596                         }
2597                 }
2598                 anon_vma_unlock_read(anon_vma);
2599         }
2600         if (!search_new_forks++)
2601                 goto again;
2602 }
2603
2604 #ifdef CONFIG_MIGRATION
2605 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2606 {
2607         struct stable_node *stable_node;
2608
2609         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2610         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2611         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2612
2613         stable_node = page_stable_node(newpage);
2614         if (stable_node) {
2615                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2616                 stable_node->kpfn = page_to_pfn(newpage);
2617                 /*
2618                  * newpage->mapping was set in advance; now we need smp_wmb()
2619                  * to make sure that the new stable_node->kpfn is visible
2620                  * to get_ksm_page() before it can see that oldpage->mapping
2621                  * has gone stale (or that PageSwapCache has been cleared).
2622                  */
2623                 smp_wmb();
2624                 set_page_stable_node(oldpage, NULL);
2625         }
2626 }
2627 #endif /* CONFIG_MIGRATION */
2628
2629 #ifdef CONFIG_MEMORY_HOTREMOVE
2630 static void wait_while_offlining(void)
2631 {
2632         while (ksm_run & KSM_RUN_OFFLINE) {
2633                 mutex_unlock(&ksm_thread_mutex);
2634                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2635                             TASK_UNINTERRUPTIBLE);
2636                 mutex_lock(&ksm_thread_mutex);
2637         }
2638 }
2639
2640 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2641                                          unsigned long start_pfn,
2642                                          unsigned long end_pfn)
2643 {
2644         if (stable_node->kpfn >= start_pfn &&
2645             stable_node->kpfn < end_pfn) {
2646                 /*
2647                  * Don't get_ksm_page, page has already gone:
2648                  * which is why we keep kpfn instead of page*
2649                  */
2650                 remove_node_from_stable_tree(stable_node);
2651                 return true;
2652         }
2653         return false;
2654 }
2655
2656 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2657                                            unsigned long start_pfn,
2658                                            unsigned long end_pfn,
2659                                            struct rb_root *root)
2660 {
2661         struct stable_node *dup;
2662         struct hlist_node *hlist_safe;
2663
2664         if (!is_stable_node_chain(stable_node)) {
2665                 VM_BUG_ON(is_stable_node_dup(stable_node));
2666                 return stable_node_dup_remove_range(stable_node, start_pfn,
2667                                                     end_pfn);
2668         }
2669
2670         hlist_for_each_entry_safe(dup, hlist_safe,
2671                                   &stable_node->hlist, hlist_dup) {
2672                 VM_BUG_ON(!is_stable_node_dup(dup));
2673                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2674         }
2675         if (hlist_empty(&stable_node->hlist)) {
2676                 free_stable_node_chain(stable_node, root);
2677                 return true; /* notify caller that tree was rebalanced */
2678         } else
2679                 return false;
2680 }
2681
2682 static void ksm_check_stable_tree(unsigned long start_pfn,
2683                                   unsigned long end_pfn)
2684 {
2685         struct stable_node *stable_node, *next;
2686         struct rb_node *node;
2687         int nid;
2688
2689         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2690                 node = rb_first(root_stable_tree + nid);
2691                 while (node) {
2692                         stable_node = rb_entry(node, struct stable_node, node);
2693                         if (stable_node_chain_remove_range(stable_node,
2694                                                            start_pfn, end_pfn,
2695                                                            root_stable_tree +
2696                                                            nid))
2697                                 node = rb_first(root_stable_tree + nid);
2698                         else
2699                                 node = rb_next(node);
2700                         cond_resched();
2701                 }
2702         }
2703         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2704                 if (stable_node->kpfn >= start_pfn &&
2705                     stable_node->kpfn < end_pfn)
2706                         remove_node_from_stable_tree(stable_node);
2707                 cond_resched();
2708         }
2709 }
2710
2711 static int ksm_memory_callback(struct notifier_block *self,
2712                                unsigned long action, void *arg)
2713 {
2714         struct memory_notify *mn = arg;
2715
2716         switch (action) {
2717         case MEM_GOING_OFFLINE:
2718                 /*
2719                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2720                  * and remove_all_stable_nodes() while memory is going offline:
2721                  * it is unsafe for them to touch the stable tree at this time.
2722                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2723                  * which do not need the ksm_thread_mutex are all safe.
2724                  */
2725                 mutex_lock(&ksm_thread_mutex);
2726                 ksm_run |= KSM_RUN_OFFLINE;
2727                 mutex_unlock(&ksm_thread_mutex);
2728                 break;
2729
2730         case MEM_OFFLINE:
2731                 /*
2732                  * Most of the work is done by page migration; but there might
2733                  * be a few stable_nodes left over, still pointing to struct
2734                  * pages which have been offlined: prune those from the tree,
2735                  * otherwise get_ksm_page() might later try to access a
2736                  * non-existent struct page.
2737                  */
2738                 ksm_check_stable_tree(mn->start_pfn,
2739                                       mn->start_pfn + mn->nr_pages);
2740                 /* fallthrough */
2741
2742         case MEM_CANCEL_OFFLINE:
2743                 mutex_lock(&ksm_thread_mutex);
2744                 ksm_run &= ~KSM_RUN_OFFLINE;
2745                 mutex_unlock(&ksm_thread_mutex);
2746
2747                 smp_mb();       /* wake_up_bit advises this */
2748                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2749                 break;
2750         }
2751         return NOTIFY_OK;
2752 }
2753 #else
2754 static void wait_while_offlining(void)
2755 {
2756 }
2757 #endif /* CONFIG_MEMORY_HOTREMOVE */
2758
2759 #ifdef CONFIG_SYSFS
2760 /*
2761  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2762  */
2763
2764 #define KSM_ATTR_RO(_name) \
2765         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2766 #define KSM_ATTR(_name) \
2767         static struct kobj_attribute _name##_attr = \
2768                 __ATTR(_name, 0644, _name##_show, _name##_store)
2769
2770 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2771                                     struct kobj_attribute *attr, char *buf)
2772 {
2773         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2774 }
2775
2776 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2777                                      struct kobj_attribute *attr,
2778                                      const char *buf, size_t count)
2779 {
2780         unsigned long msecs;
2781         int err;
2782
2783         err = kstrtoul(buf, 10, &msecs);
2784         if (err || msecs > UINT_MAX)
2785                 return -EINVAL;
2786
2787         ksm_thread_sleep_millisecs = msecs;
2788
2789         return count;
2790 }
2791 KSM_ATTR(sleep_millisecs);
2792
2793 static ssize_t pages_to_scan_show(struct kobject *kobj,
2794                                   struct kobj_attribute *attr, char *buf)
2795 {
2796         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2797 }
2798
2799 static ssize_t pages_to_scan_store(struct kobject *kobj,
2800                                    struct kobj_attribute *attr,
2801                                    const char *buf, size_t count)
2802 {
2803         int err;
2804         unsigned long nr_pages;
2805
2806         err = kstrtoul(buf, 10, &nr_pages);
2807         if (err || nr_pages > UINT_MAX)
2808                 return -EINVAL;
2809
2810         ksm_thread_pages_to_scan = nr_pages;
2811
2812         return count;
2813 }
2814 KSM_ATTR(pages_to_scan);
2815
2816 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2817                         char *buf)
2818 {
2819         return sprintf(buf, "%lu\n", ksm_run);
2820 }
2821
2822 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2823                          const char *buf, size_t count)
2824 {
2825         int err;
2826         unsigned long flags;
2827
2828         err = kstrtoul(buf, 10, &flags);
2829         if (err || flags > UINT_MAX)
2830                 return -EINVAL;
2831         if (flags > KSM_RUN_UNMERGE)
2832                 return -EINVAL;
2833
2834         /*
2835          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2836          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2837          * breaking COW to free the pages_shared (but leaves mm_slots
2838          * on the list for when ksmd may be set running again).
2839          */
2840
2841         mutex_lock(&ksm_thread_mutex);
2842         wait_while_offlining();
2843         if (ksm_run != flags) {
2844                 ksm_run = flags;
2845                 if (flags & KSM_RUN_UNMERGE) {
2846                         set_current_oom_origin();
2847                         err = unmerge_and_remove_all_rmap_items();
2848                         clear_current_oom_origin();
2849                         if (err) {
2850                                 ksm_run = KSM_RUN_STOP;
2851                                 count = err;
2852                         }
2853                 }
2854         }
2855         mutex_unlock(&ksm_thread_mutex);
2856
2857         if (flags & KSM_RUN_MERGE)
2858                 wake_up_interruptible(&ksm_thread_wait);
2859
2860         return count;
2861 }
2862 KSM_ATTR(run);
2863
2864 #ifdef CONFIG_NUMA
2865 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2866                                 struct kobj_attribute *attr, char *buf)
2867 {
2868         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2869 }
2870
2871 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2872                                    struct kobj_attribute *attr,
2873                                    const char *buf, size_t count)
2874 {
2875         int err;
2876         unsigned long knob;
2877
2878         err = kstrtoul(buf, 10, &knob);
2879         if (err)
2880                 return err;
2881         if (knob > 1)
2882                 return -EINVAL;
2883
2884         mutex_lock(&ksm_thread_mutex);
2885         wait_while_offlining();
2886         if (ksm_merge_across_nodes != knob) {
2887                 if (ksm_pages_shared || remove_all_stable_nodes())
2888                         err = -EBUSY;
2889                 else if (root_stable_tree == one_stable_tree) {
2890                         struct rb_root *buf;
2891                         /*
2892                          * This is the first time that we switch away from the
2893                          * default of merging across nodes: must now allocate
2894                          * a buffer to hold as many roots as may be needed.
2895                          * Allocate stable and unstable together:
2896                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2897                          */
2898                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2899                                       GFP_KERNEL);
2900                         /* Let us assume that RB_ROOT is NULL is zero */
2901                         if (!buf)
2902                                 err = -ENOMEM;
2903                         else {
2904                                 root_stable_tree = buf;
2905                                 root_unstable_tree = buf + nr_node_ids;
2906                                 /* Stable tree is empty but not the unstable */
2907                                 root_unstable_tree[0] = one_unstable_tree[0];
2908                         }
2909                 }
2910                 if (!err) {
2911                         ksm_merge_across_nodes = knob;
2912                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2913                 }
2914         }
2915         mutex_unlock(&ksm_thread_mutex);
2916
2917         return err ? err : count;
2918 }
2919 KSM_ATTR(merge_across_nodes);
2920 #endif
2921
2922 static ssize_t use_zero_pages_show(struct kobject *kobj,
2923                                 struct kobj_attribute *attr, char *buf)
2924 {
2925         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2926 }
2927 static ssize_t use_zero_pages_store(struct kobject *kobj,
2928                                    struct kobj_attribute *attr,
2929                                    const char *buf, size_t count)
2930 {
2931         int err;
2932         bool value;
2933
2934         err = kstrtobool(buf, &value);
2935         if (err)
2936                 return -EINVAL;
2937
2938         ksm_use_zero_pages = value;
2939
2940         return count;
2941 }
2942 KSM_ATTR(use_zero_pages);
2943
2944 static ssize_t max_page_sharing_show(struct kobject *kobj,
2945                                      struct kobj_attribute *attr, char *buf)
2946 {
2947         return sprintf(buf, "%u\n", ksm_max_page_sharing);
2948 }
2949
2950 static ssize_t max_page_sharing_store(struct kobject *kobj,
2951                                       struct kobj_attribute *attr,
2952                                       const char *buf, size_t count)
2953 {
2954         int err;
2955         int knob;
2956
2957         err = kstrtoint(buf, 10, &knob);
2958         if (err)
2959                 return err;
2960         /*
2961          * When a KSM page is created it is shared by 2 mappings. This
2962          * being a signed comparison, it implicitly verifies it's not
2963          * negative.
2964          */
2965         if (knob < 2)
2966                 return -EINVAL;
2967
2968         if (READ_ONCE(ksm_max_page_sharing) == knob)
2969                 return count;
2970
2971         mutex_lock(&ksm_thread_mutex);
2972         wait_while_offlining();
2973         if (ksm_max_page_sharing != knob) {
2974                 if (ksm_pages_shared || remove_all_stable_nodes())
2975                         err = -EBUSY;
2976                 else
2977                         ksm_max_page_sharing = knob;
2978         }
2979         mutex_unlock(&ksm_thread_mutex);
2980
2981         return err ? err : count;
2982 }
2983 KSM_ATTR(max_page_sharing);
2984
2985 static ssize_t pages_shared_show(struct kobject *kobj,
2986                                  struct kobj_attribute *attr, char *buf)
2987 {
2988         return sprintf(buf, "%lu\n", ksm_pages_shared);
2989 }
2990 KSM_ATTR_RO(pages_shared);
2991
2992 static ssize_t pages_sharing_show(struct kobject *kobj,
2993                                   struct kobj_attribute *attr, char *buf)
2994 {
2995         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2996 }
2997 KSM_ATTR_RO(pages_sharing);
2998
2999 static ssize_t pages_unshared_show(struct kobject *kobj,
3000                                    struct kobj_attribute *attr, char *buf)
3001 {
3002         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3003 }
3004 KSM_ATTR_RO(pages_unshared);
3005
3006 static ssize_t pages_volatile_show(struct kobject *kobj,
3007                                    struct kobj_attribute *attr, char *buf)
3008 {
3009         long ksm_pages_volatile;
3010
3011         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3012                                 - ksm_pages_sharing - ksm_pages_unshared;
3013         /*
3014          * It was not worth any locking to calculate that statistic,
3015          * but it might therefore sometimes be negative: conceal that.
3016          */
3017         if (ksm_pages_volatile < 0)
3018                 ksm_pages_volatile = 0;
3019         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3020 }
3021 KSM_ATTR_RO(pages_volatile);
3022
3023 static ssize_t stable_node_dups_show(struct kobject *kobj,
3024                                      struct kobj_attribute *attr, char *buf)
3025 {
3026         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3027 }
3028 KSM_ATTR_RO(stable_node_dups);
3029
3030 static ssize_t stable_node_chains_show(struct kobject *kobj,
3031                                        struct kobj_attribute *attr, char *buf)
3032 {
3033         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3034 }
3035 KSM_ATTR_RO(stable_node_chains);
3036
3037 static ssize_t
3038 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3039                                         struct kobj_attribute *attr,
3040                                         char *buf)
3041 {
3042         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3043 }
3044
3045 static ssize_t
3046 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3047                                          struct kobj_attribute *attr,
3048                                          const char *buf, size_t count)
3049 {
3050         unsigned long msecs;
3051         int err;
3052
3053         err = kstrtoul(buf, 10, &msecs);
3054         if (err || msecs > UINT_MAX)
3055                 return -EINVAL;
3056
3057         ksm_stable_node_chains_prune_millisecs = msecs;
3058
3059         return count;
3060 }
3061 KSM_ATTR(stable_node_chains_prune_millisecs);
3062
3063 static ssize_t full_scans_show(struct kobject *kobj,
3064                                struct kobj_attribute *attr, char *buf)
3065 {
3066         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3067 }
3068 KSM_ATTR_RO(full_scans);
3069
3070 static struct attribute *ksm_attrs[] = {
3071         &sleep_millisecs_attr.attr,
3072         &pages_to_scan_attr.attr,
3073         &run_attr.attr,
3074         &pages_shared_attr.attr,
3075         &pages_sharing_attr.attr,
3076         &pages_unshared_attr.attr,
3077         &pages_volatile_attr.attr,
3078         &full_scans_attr.attr,
3079 #ifdef CONFIG_NUMA
3080         &merge_across_nodes_attr.attr,
3081 #endif
3082         &max_page_sharing_attr.attr,
3083         &stable_node_chains_attr.attr,
3084         &stable_node_dups_attr.attr,
3085         &stable_node_chains_prune_millisecs_attr.attr,
3086         &use_zero_pages_attr.attr,
3087         NULL,
3088 };
3089
3090 static const struct attribute_group ksm_attr_group = {
3091         .attrs = ksm_attrs,
3092         .name = "ksm",
3093 };
3094 #endif /* CONFIG_SYSFS */
3095
3096 static int __init ksm_init(void)
3097 {
3098         struct task_struct *ksm_thread;
3099         int err;
3100
3101         /* The correct value depends on page size and endianness */
3102         zero_checksum = calc_checksum(ZERO_PAGE(0));
3103         /* Default to false for backwards compatibility */
3104         ksm_use_zero_pages = false;
3105
3106         err = ksm_slab_init();
3107         if (err)
3108                 goto out;
3109
3110         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3111         if (IS_ERR(ksm_thread)) {
3112                 pr_err("ksm: creating kthread failed\n");
3113                 err = PTR_ERR(ksm_thread);
3114                 goto out_free;
3115         }
3116
3117 #ifdef CONFIG_SYSFS
3118         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3119         if (err) {
3120                 pr_err("ksm: register sysfs failed\n");
3121                 kthread_stop(ksm_thread);
3122                 goto out_free;
3123         }
3124 #else
3125         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3126
3127 #endif /* CONFIG_SYSFS */
3128
3129 #ifdef CONFIG_MEMORY_HOTREMOVE
3130         /* There is no significance to this priority 100 */
3131         hotplug_memory_notifier(ksm_memory_callback, 100);
3132 #endif
3133         return 0;
3134
3135 out_free:
3136         ksm_slab_free();
3137 out:
3138         return err;
3139 }
3140 subsys_initcall(ksm_init);