e02430fb26f6b9e2ae1e372bcc97fa15bcf43ee4
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  */
91
92 /**
93  * struct mm_slot - ksm information per mm that is being scanned
94  * @link: link to the mm_slots hash list
95  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
96  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
97  * @mm: the mm that this information is valid for
98  */
99 struct mm_slot {
100         struct hlist_node link;
101         struct list_head mm_list;
102         struct rmap_item *rmap_list;
103         struct mm_struct *mm;
104 };
105
106 /**
107  * struct ksm_scan - cursor for scanning
108  * @mm_slot: the current mm_slot we are scanning
109  * @address: the next address inside that to be scanned
110  * @rmap_list: link to the next rmap to be scanned in the rmap_list
111  * @seqnr: count of completed full scans (needed when removing unstable node)
112  *
113  * There is only the one ksm_scan instance of this cursor structure.
114  */
115 struct ksm_scan {
116         struct mm_slot *mm_slot;
117         unsigned long address;
118         struct rmap_item **rmap_list;
119         unsigned long seqnr;
120 };
121
122 /**
123  * struct stable_node - node of the stable rbtree
124  * @node: rb node of this ksm page in the stable tree
125  * @hlist: hlist head of rmap_items using this ksm page
126  * @kpfn: page frame number of this ksm page
127  */
128 struct stable_node {
129         struct rb_node node;
130         struct hlist_head hlist;
131         unsigned long kpfn;
132 };
133
134 /**
135  * struct rmap_item - reverse mapping item for virtual addresses
136  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
137  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
138  * @mm: the memory structure this rmap_item is pointing into
139  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
140  * @oldchecksum: previous checksum of the page at that virtual address
141  * @nid: NUMA node id of unstable tree in which linked (may not match page)
142  * @node: rb node of this rmap_item in the unstable tree
143  * @head: pointer to stable_node heading this list in the stable tree
144  * @hlist: link into hlist of rmap_items hanging off that stable_node
145  */
146 struct rmap_item {
147         struct rmap_item *rmap_list;
148         struct anon_vma *anon_vma;      /* when stable */
149         struct mm_struct *mm;
150         unsigned long address;          /* + low bits used for flags below */
151         unsigned int oldchecksum;       /* when unstable */
152 #ifdef CONFIG_NUMA
153         int nid;
154 #endif
155         union {
156                 struct rb_node node;    /* when node of unstable tree */
157                 struct {                /* when listed from stable tree */
158                         struct stable_node *head;
159                         struct hlist_node hlist;
160                 };
161         };
162 };
163
164 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
165 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
166 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
167
168 /* The stable and unstable tree heads */
169 static struct rb_root root_unstable_tree[MAX_NUMNODES];
170 static struct rb_root root_stable_tree[MAX_NUMNODES];
171
172 #define MM_SLOTS_HASH_BITS 10
173 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
174
175 static struct mm_slot ksm_mm_head = {
176         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
177 };
178 static struct ksm_scan ksm_scan = {
179         .mm_slot = &ksm_mm_head,
180 };
181
182 static struct kmem_cache *rmap_item_cache;
183 static struct kmem_cache *stable_node_cache;
184 static struct kmem_cache *mm_slot_cache;
185
186 /* The number of nodes in the stable tree */
187 static unsigned long ksm_pages_shared;
188
189 /* The number of page slots additionally sharing those nodes */
190 static unsigned long ksm_pages_sharing;
191
192 /* The number of nodes in the unstable tree */
193 static unsigned long ksm_pages_unshared;
194
195 /* The number of rmap_items in use: to calculate pages_volatile */
196 static unsigned long ksm_rmap_items;
197
198 /* Number of pages ksmd should scan in one batch */
199 static unsigned int ksm_thread_pages_to_scan = 100;
200
201 /* Milliseconds ksmd should sleep between batches */
202 static unsigned int ksm_thread_sleep_millisecs = 20;
203
204 #ifdef CONFIG_NUMA
205 /* Zeroed when merging across nodes is not allowed */
206 static unsigned int ksm_merge_across_nodes = 1;
207 #else
208 #define ksm_merge_across_nodes  1U
209 #endif
210
211 #define KSM_RUN_STOP    0
212 #define KSM_RUN_MERGE   1
213 #define KSM_RUN_UNMERGE 2
214 static unsigned int ksm_run = KSM_RUN_STOP;
215
216 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
217 static DEFINE_MUTEX(ksm_thread_mutex);
218 static DEFINE_SPINLOCK(ksm_mmlist_lock);
219
220 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
221                 sizeof(struct __struct), __alignof__(struct __struct),\
222                 (__flags), NULL)
223
224 static int __init ksm_slab_init(void)
225 {
226         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
227         if (!rmap_item_cache)
228                 goto out;
229
230         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
231         if (!stable_node_cache)
232                 goto out_free1;
233
234         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
235         if (!mm_slot_cache)
236                 goto out_free2;
237
238         return 0;
239
240 out_free2:
241         kmem_cache_destroy(stable_node_cache);
242 out_free1:
243         kmem_cache_destroy(rmap_item_cache);
244 out:
245         return -ENOMEM;
246 }
247
248 static void __init ksm_slab_free(void)
249 {
250         kmem_cache_destroy(mm_slot_cache);
251         kmem_cache_destroy(stable_node_cache);
252         kmem_cache_destroy(rmap_item_cache);
253         mm_slot_cache = NULL;
254 }
255
256 static inline struct rmap_item *alloc_rmap_item(void)
257 {
258         struct rmap_item *rmap_item;
259
260         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
261         if (rmap_item)
262                 ksm_rmap_items++;
263         return rmap_item;
264 }
265
266 static inline void free_rmap_item(struct rmap_item *rmap_item)
267 {
268         ksm_rmap_items--;
269         rmap_item->mm = NULL;   /* debug safety */
270         kmem_cache_free(rmap_item_cache, rmap_item);
271 }
272
273 static inline struct stable_node *alloc_stable_node(void)
274 {
275         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
276 }
277
278 static inline void free_stable_node(struct stable_node *stable_node)
279 {
280         kmem_cache_free(stable_node_cache, stable_node);
281 }
282
283 static inline struct mm_slot *alloc_mm_slot(void)
284 {
285         if (!mm_slot_cache)     /* initialization failed */
286                 return NULL;
287         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
288 }
289
290 static inline void free_mm_slot(struct mm_slot *mm_slot)
291 {
292         kmem_cache_free(mm_slot_cache, mm_slot);
293 }
294
295 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
296 {
297         struct hlist_node *node;
298         struct mm_slot *slot;
299
300         hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
301                 if (slot->mm == mm)
302                         return slot;
303
304         return NULL;
305 }
306
307 static void insert_to_mm_slots_hash(struct mm_struct *mm,
308                                     struct mm_slot *mm_slot)
309 {
310         mm_slot->mm = mm;
311         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
312 }
313
314 static inline int in_stable_tree(struct rmap_item *rmap_item)
315 {
316         return rmap_item->address & STABLE_FLAG;
317 }
318
319 /*
320  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
321  * page tables after it has passed through ksm_exit() - which, if necessary,
322  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
323  * a special flag: they can just back out as soon as mm_users goes to zero.
324  * ksm_test_exit() is used throughout to make this test for exit: in some
325  * places for correctness, in some places just to avoid unnecessary work.
326  */
327 static inline bool ksm_test_exit(struct mm_struct *mm)
328 {
329         return atomic_read(&mm->mm_users) == 0;
330 }
331
332 /*
333  * We use break_ksm to break COW on a ksm page: it's a stripped down
334  *
335  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
336  *              put_page(page);
337  *
338  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
339  * in case the application has unmapped and remapped mm,addr meanwhile.
340  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
341  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
342  */
343 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
344 {
345         struct page *page;
346         int ret = 0;
347
348         do {
349                 cond_resched();
350                 page = follow_page(vma, addr, FOLL_GET);
351                 if (IS_ERR_OR_NULL(page))
352                         break;
353                 if (PageKsm(page))
354                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
355                                                         FAULT_FLAG_WRITE);
356                 else
357                         ret = VM_FAULT_WRITE;
358                 put_page(page);
359         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
360         /*
361          * We must loop because handle_mm_fault() may back out if there's
362          * any difficulty e.g. if pte accessed bit gets updated concurrently.
363          *
364          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
365          * COW has been broken, even if the vma does not permit VM_WRITE;
366          * but note that a concurrent fault might break PageKsm for us.
367          *
368          * VM_FAULT_SIGBUS could occur if we race with truncation of the
369          * backing file, which also invalidates anonymous pages: that's
370          * okay, that truncation will have unmapped the PageKsm for us.
371          *
372          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
373          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
374          * current task has TIF_MEMDIE set, and will be OOM killed on return
375          * to user; and ksmd, having no mm, would never be chosen for that.
376          *
377          * But if the mm is in a limited mem_cgroup, then the fault may fail
378          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
379          * even ksmd can fail in this way - though it's usually breaking ksm
380          * just to undo a merge it made a moment before, so unlikely to oom.
381          *
382          * That's a pity: we might therefore have more kernel pages allocated
383          * than we're counting as nodes in the stable tree; but ksm_do_scan
384          * will retry to break_cow on each pass, so should recover the page
385          * in due course.  The important thing is to not let VM_MERGEABLE
386          * be cleared while any such pages might remain in the area.
387          */
388         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
389 }
390
391 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
392                 unsigned long addr)
393 {
394         struct vm_area_struct *vma;
395         if (ksm_test_exit(mm))
396                 return NULL;
397         vma = find_vma(mm, addr);
398         if (!vma || vma->vm_start > addr)
399                 return NULL;
400         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
401                 return NULL;
402         return vma;
403 }
404
405 static void break_cow(struct rmap_item *rmap_item)
406 {
407         struct mm_struct *mm = rmap_item->mm;
408         unsigned long addr = rmap_item->address;
409         struct vm_area_struct *vma;
410
411         /*
412          * It is not an accident that whenever we want to break COW
413          * to undo, we also need to drop a reference to the anon_vma.
414          */
415         put_anon_vma(rmap_item->anon_vma);
416
417         down_read(&mm->mmap_sem);
418         vma = find_mergeable_vma(mm, addr);
419         if (vma)
420                 break_ksm(vma, addr);
421         up_read(&mm->mmap_sem);
422 }
423
424 static struct page *page_trans_compound_anon(struct page *page)
425 {
426         if (PageTransCompound(page)) {
427                 struct page *head = compound_trans_head(page);
428                 /*
429                  * head may actually be splitted and freed from under
430                  * us but it's ok here.
431                  */
432                 if (PageAnon(head))
433                         return head;
434         }
435         return NULL;
436 }
437
438 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
439 {
440         struct mm_struct *mm = rmap_item->mm;
441         unsigned long addr = rmap_item->address;
442         struct vm_area_struct *vma;
443         struct page *page;
444
445         down_read(&mm->mmap_sem);
446         vma = find_mergeable_vma(mm, addr);
447         if (!vma)
448                 goto out;
449
450         page = follow_page(vma, addr, FOLL_GET);
451         if (IS_ERR_OR_NULL(page))
452                 goto out;
453         if (PageAnon(page) || page_trans_compound_anon(page)) {
454                 flush_anon_page(vma, page, addr);
455                 flush_dcache_page(page);
456         } else {
457                 put_page(page);
458 out:            page = NULL;
459         }
460         up_read(&mm->mmap_sem);
461         return page;
462 }
463
464 /*
465  * This helper is used for getting right index into array of tree roots.
466  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
467  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
468  * every node has its own stable and unstable tree.
469  */
470 static inline int get_kpfn_nid(unsigned long kpfn)
471 {
472         return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
473 }
474
475 static void remove_node_from_stable_tree(struct stable_node *stable_node)
476 {
477         struct rmap_item *rmap_item;
478         struct hlist_node *hlist;
479         int nid;
480
481         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
482                 if (rmap_item->hlist.next)
483                         ksm_pages_sharing--;
484                 else
485                         ksm_pages_shared--;
486                 put_anon_vma(rmap_item->anon_vma);
487                 rmap_item->address &= PAGE_MASK;
488                 cond_resched();
489         }
490
491         nid = get_kpfn_nid(stable_node->kpfn);
492         rb_erase(&stable_node->node, &root_stable_tree[nid]);
493         free_stable_node(stable_node);
494 }
495
496 /*
497  * get_ksm_page: checks if the page indicated by the stable node
498  * is still its ksm page, despite having held no reference to it.
499  * In which case we can trust the content of the page, and it
500  * returns the gotten page; but if the page has now been zapped,
501  * remove the stale node from the stable tree and return NULL.
502  *
503  * You would expect the stable_node to hold a reference to the ksm page.
504  * But if it increments the page's count, swapping out has to wait for
505  * ksmd to come around again before it can free the page, which may take
506  * seconds or even minutes: much too unresponsive.  So instead we use a
507  * "keyhole reference": access to the ksm page from the stable node peeps
508  * out through its keyhole to see if that page still holds the right key,
509  * pointing back to this stable node.  This relies on freeing a PageAnon
510  * page to reset its page->mapping to NULL, and relies on no other use of
511  * a page to put something that might look like our key in page->mapping.
512  *
513  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
514  * but this is different - made simpler by ksm_thread_mutex being held, but
515  * interesting for assuming that no other use of the struct page could ever
516  * put our expected_mapping into page->mapping (or a field of the union which
517  * coincides with page->mapping).
518  *
519  * Note: it is possible that get_ksm_page() will return NULL one moment,
520  * then page the next, if the page is in between page_freeze_refs() and
521  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
522  * is on its way to being freed; but it is an anomaly to bear in mind.
523  */
524 static struct page *get_ksm_page(struct stable_node *stable_node, bool locked)
525 {
526         struct page *page;
527         void *expected_mapping;
528
529         page = pfn_to_page(stable_node->kpfn);
530         expected_mapping = (void *)stable_node +
531                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
532         if (page->mapping != expected_mapping)
533                 goto stale;
534         if (!get_page_unless_zero(page))
535                 goto stale;
536         if (page->mapping != expected_mapping) {
537                 put_page(page);
538                 goto stale;
539         }
540         if (locked) {
541                 lock_page(page);
542                 if (page->mapping != expected_mapping) {
543                         unlock_page(page);
544                         put_page(page);
545                         goto stale;
546                 }
547         }
548         return page;
549 stale:
550         remove_node_from_stable_tree(stable_node);
551         return NULL;
552 }
553
554 /*
555  * Removing rmap_item from stable or unstable tree.
556  * This function will clean the information from the stable/unstable tree.
557  */
558 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
559 {
560         if (rmap_item->address & STABLE_FLAG) {
561                 struct stable_node *stable_node;
562                 struct page *page;
563
564                 stable_node = rmap_item->head;
565                 page = get_ksm_page(stable_node, true);
566                 if (!page)
567                         goto out;
568
569                 hlist_del(&rmap_item->hlist);
570                 unlock_page(page);
571                 put_page(page);
572
573                 if (stable_node->hlist.first)
574                         ksm_pages_sharing--;
575                 else
576                         ksm_pages_shared--;
577
578                 put_anon_vma(rmap_item->anon_vma);
579                 rmap_item->address &= PAGE_MASK;
580
581         } else if (rmap_item->address & UNSTABLE_FLAG) {
582                 unsigned char age;
583                 /*
584                  * Usually ksmd can and must skip the rb_erase, because
585                  * root_unstable_tree was already reset to RB_ROOT.
586                  * But be careful when an mm is exiting: do the rb_erase
587                  * if this rmap_item was inserted by this scan, rather
588                  * than left over from before.
589                  */
590                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
591                 BUG_ON(age > 1);
592                 if (!age)
593                         rb_erase(&rmap_item->node,
594                                  &root_unstable_tree[NUMA(rmap_item->nid)]);
595                 ksm_pages_unshared--;
596                 rmap_item->address &= PAGE_MASK;
597         }
598 out:
599         cond_resched();         /* we're called from many long loops */
600 }
601
602 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
603                                        struct rmap_item **rmap_list)
604 {
605         while (*rmap_list) {
606                 struct rmap_item *rmap_item = *rmap_list;
607                 *rmap_list = rmap_item->rmap_list;
608                 remove_rmap_item_from_tree(rmap_item);
609                 free_rmap_item(rmap_item);
610         }
611 }
612
613 /*
614  * Though it's very tempting to unmerge rmap_items from stable tree rather
615  * than check every pte of a given vma, the locking doesn't quite work for
616  * that - an rmap_item is assigned to the stable tree after inserting ksm
617  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
618  * rmap_items from parent to child at fork time (so as not to waste time
619  * if exit comes before the next scan reaches it).
620  *
621  * Similarly, although we'd like to remove rmap_items (so updating counts
622  * and freeing memory) when unmerging an area, it's easier to leave that
623  * to the next pass of ksmd - consider, for example, how ksmd might be
624  * in cmp_and_merge_page on one of the rmap_items we would be removing.
625  */
626 static int unmerge_ksm_pages(struct vm_area_struct *vma,
627                              unsigned long start, unsigned long end)
628 {
629         unsigned long addr;
630         int err = 0;
631
632         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
633                 if (ksm_test_exit(vma->vm_mm))
634                         break;
635                 if (signal_pending(current))
636                         err = -ERESTARTSYS;
637                 else
638                         err = break_ksm(vma, addr);
639         }
640         return err;
641 }
642
643 #ifdef CONFIG_SYSFS
644 /*
645  * Only called through the sysfs control interface:
646  */
647 static int unmerge_and_remove_all_rmap_items(void)
648 {
649         struct mm_slot *mm_slot;
650         struct mm_struct *mm;
651         struct vm_area_struct *vma;
652         int err = 0;
653
654         spin_lock(&ksm_mmlist_lock);
655         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
656                                                 struct mm_slot, mm_list);
657         spin_unlock(&ksm_mmlist_lock);
658
659         for (mm_slot = ksm_scan.mm_slot;
660                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
661                 mm = mm_slot->mm;
662                 down_read(&mm->mmap_sem);
663                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
664                         if (ksm_test_exit(mm))
665                                 break;
666                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
667                                 continue;
668                         err = unmerge_ksm_pages(vma,
669                                                 vma->vm_start, vma->vm_end);
670                         if (err)
671                                 goto error;
672                 }
673
674                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
675
676                 spin_lock(&ksm_mmlist_lock);
677                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
678                                                 struct mm_slot, mm_list);
679                 if (ksm_test_exit(mm)) {
680                         hash_del(&mm_slot->link);
681                         list_del(&mm_slot->mm_list);
682                         spin_unlock(&ksm_mmlist_lock);
683
684                         free_mm_slot(mm_slot);
685                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
686                         up_read(&mm->mmap_sem);
687                         mmdrop(mm);
688                 } else {
689                         spin_unlock(&ksm_mmlist_lock);
690                         up_read(&mm->mmap_sem);
691                 }
692         }
693
694         ksm_scan.seqnr = 0;
695         return 0;
696
697 error:
698         up_read(&mm->mmap_sem);
699         spin_lock(&ksm_mmlist_lock);
700         ksm_scan.mm_slot = &ksm_mm_head;
701         spin_unlock(&ksm_mmlist_lock);
702         return err;
703 }
704 #endif /* CONFIG_SYSFS */
705
706 static u32 calc_checksum(struct page *page)
707 {
708         u32 checksum;
709         void *addr = kmap_atomic(page);
710         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
711         kunmap_atomic(addr);
712         return checksum;
713 }
714
715 static int memcmp_pages(struct page *page1, struct page *page2)
716 {
717         char *addr1, *addr2;
718         int ret;
719
720         addr1 = kmap_atomic(page1);
721         addr2 = kmap_atomic(page2);
722         ret = memcmp(addr1, addr2, PAGE_SIZE);
723         kunmap_atomic(addr2);
724         kunmap_atomic(addr1);
725         return ret;
726 }
727
728 static inline int pages_identical(struct page *page1, struct page *page2)
729 {
730         return !memcmp_pages(page1, page2);
731 }
732
733 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
734                               pte_t *orig_pte)
735 {
736         struct mm_struct *mm = vma->vm_mm;
737         unsigned long addr;
738         pte_t *ptep;
739         spinlock_t *ptl;
740         int swapped;
741         int err = -EFAULT;
742         unsigned long mmun_start;       /* For mmu_notifiers */
743         unsigned long mmun_end;         /* For mmu_notifiers */
744
745         addr = page_address_in_vma(page, vma);
746         if (addr == -EFAULT)
747                 goto out;
748
749         BUG_ON(PageTransCompound(page));
750
751         mmun_start = addr;
752         mmun_end   = addr + PAGE_SIZE;
753         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
754
755         ptep = page_check_address(page, mm, addr, &ptl, 0);
756         if (!ptep)
757                 goto out_mn;
758
759         if (pte_write(*ptep) || pte_dirty(*ptep)) {
760                 pte_t entry;
761
762                 swapped = PageSwapCache(page);
763                 flush_cache_page(vma, addr, page_to_pfn(page));
764                 /*
765                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
766                  * take any lock, therefore the check that we are going to make
767                  * with the pagecount against the mapcount is racey and
768                  * O_DIRECT can happen right after the check.
769                  * So we clear the pte and flush the tlb before the check
770                  * this assure us that no O_DIRECT can happen after the check
771                  * or in the middle of the check.
772                  */
773                 entry = ptep_clear_flush(vma, addr, ptep);
774                 /*
775                  * Check that no O_DIRECT or similar I/O is in progress on the
776                  * page
777                  */
778                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
779                         set_pte_at(mm, addr, ptep, entry);
780                         goto out_unlock;
781                 }
782                 if (pte_dirty(entry))
783                         set_page_dirty(page);
784                 entry = pte_mkclean(pte_wrprotect(entry));
785                 set_pte_at_notify(mm, addr, ptep, entry);
786         }
787         *orig_pte = *ptep;
788         err = 0;
789
790 out_unlock:
791         pte_unmap_unlock(ptep, ptl);
792 out_mn:
793         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
794 out:
795         return err;
796 }
797
798 /**
799  * replace_page - replace page in vma by new ksm page
800  * @vma:      vma that holds the pte pointing to page
801  * @page:     the page we are replacing by kpage
802  * @kpage:    the ksm page we replace page by
803  * @orig_pte: the original value of the pte
804  *
805  * Returns 0 on success, -EFAULT on failure.
806  */
807 static int replace_page(struct vm_area_struct *vma, struct page *page,
808                         struct page *kpage, pte_t orig_pte)
809 {
810         struct mm_struct *mm = vma->vm_mm;
811         pmd_t *pmd;
812         pte_t *ptep;
813         spinlock_t *ptl;
814         unsigned long addr;
815         int err = -EFAULT;
816         unsigned long mmun_start;       /* For mmu_notifiers */
817         unsigned long mmun_end;         /* For mmu_notifiers */
818
819         addr = page_address_in_vma(page, vma);
820         if (addr == -EFAULT)
821                 goto out;
822
823         pmd = mm_find_pmd(mm, addr);
824         if (!pmd)
825                 goto out;
826         BUG_ON(pmd_trans_huge(*pmd));
827
828         mmun_start = addr;
829         mmun_end   = addr + PAGE_SIZE;
830         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
831
832         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
833         if (!pte_same(*ptep, orig_pte)) {
834                 pte_unmap_unlock(ptep, ptl);
835                 goto out_mn;
836         }
837
838         get_page(kpage);
839         page_add_anon_rmap(kpage, vma, addr);
840
841         flush_cache_page(vma, addr, pte_pfn(*ptep));
842         ptep_clear_flush(vma, addr, ptep);
843         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
844
845         page_remove_rmap(page);
846         if (!page_mapped(page))
847                 try_to_free_swap(page);
848         put_page(page);
849
850         pte_unmap_unlock(ptep, ptl);
851         err = 0;
852 out_mn:
853         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
854 out:
855         return err;
856 }
857
858 static int page_trans_compound_anon_split(struct page *page)
859 {
860         int ret = 0;
861         struct page *transhuge_head = page_trans_compound_anon(page);
862         if (transhuge_head) {
863                 /* Get the reference on the head to split it. */
864                 if (get_page_unless_zero(transhuge_head)) {
865                         /*
866                          * Recheck we got the reference while the head
867                          * was still anonymous.
868                          */
869                         if (PageAnon(transhuge_head))
870                                 ret = split_huge_page(transhuge_head);
871                         else
872                                 /*
873                                  * Retry later if split_huge_page run
874                                  * from under us.
875                                  */
876                                 ret = 1;
877                         put_page(transhuge_head);
878                 } else
879                         /* Retry later if split_huge_page run from under us. */
880                         ret = 1;
881         }
882         return ret;
883 }
884
885 /*
886  * try_to_merge_one_page - take two pages and merge them into one
887  * @vma: the vma that holds the pte pointing to page
888  * @page: the PageAnon page that we want to replace with kpage
889  * @kpage: the PageKsm page that we want to map instead of page,
890  *         or NULL the first time when we want to use page as kpage.
891  *
892  * This function returns 0 if the pages were merged, -EFAULT otherwise.
893  */
894 static int try_to_merge_one_page(struct vm_area_struct *vma,
895                                  struct page *page, struct page *kpage)
896 {
897         pte_t orig_pte = __pte(0);
898         int err = -EFAULT;
899
900         if (page == kpage)                      /* ksm page forked */
901                 return 0;
902
903         if (!(vma->vm_flags & VM_MERGEABLE))
904                 goto out;
905         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
906                 goto out;
907         BUG_ON(PageTransCompound(page));
908         if (!PageAnon(page))
909                 goto out;
910
911         /*
912          * We need the page lock to read a stable PageSwapCache in
913          * write_protect_page().  We use trylock_page() instead of
914          * lock_page() because we don't want to wait here - we
915          * prefer to continue scanning and merging different pages,
916          * then come back to this page when it is unlocked.
917          */
918         if (!trylock_page(page))
919                 goto out;
920         /*
921          * If this anonymous page is mapped only here, its pte may need
922          * to be write-protected.  If it's mapped elsewhere, all of its
923          * ptes are necessarily already write-protected.  But in either
924          * case, we need to lock and check page_count is not raised.
925          */
926         if (write_protect_page(vma, page, &orig_pte) == 0) {
927                 if (!kpage) {
928                         /*
929                          * While we hold page lock, upgrade page from
930                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
931                          * stable_tree_insert() will update stable_node.
932                          */
933                         set_page_stable_node(page, NULL);
934                         mark_page_accessed(page);
935                         err = 0;
936                 } else if (pages_identical(page, kpage))
937                         err = replace_page(vma, page, kpage, orig_pte);
938         }
939
940         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
941                 munlock_vma_page(page);
942                 if (!PageMlocked(kpage)) {
943                         unlock_page(page);
944                         lock_page(kpage);
945                         mlock_vma_page(kpage);
946                         page = kpage;           /* for final unlock */
947                 }
948         }
949
950         unlock_page(page);
951 out:
952         return err;
953 }
954
955 /*
956  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
957  * but no new kernel page is allocated: kpage must already be a ksm page.
958  *
959  * This function returns 0 if the pages were merged, -EFAULT otherwise.
960  */
961 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
962                                       struct page *page, struct page *kpage)
963 {
964         struct mm_struct *mm = rmap_item->mm;
965         struct vm_area_struct *vma;
966         int err = -EFAULT;
967
968         down_read(&mm->mmap_sem);
969         if (ksm_test_exit(mm))
970                 goto out;
971         vma = find_vma(mm, rmap_item->address);
972         if (!vma || vma->vm_start > rmap_item->address)
973                 goto out;
974
975         err = try_to_merge_one_page(vma, page, kpage);
976         if (err)
977                 goto out;
978
979         /* Must get reference to anon_vma while still holding mmap_sem */
980         rmap_item->anon_vma = vma->anon_vma;
981         get_anon_vma(vma->anon_vma);
982 out:
983         up_read(&mm->mmap_sem);
984         return err;
985 }
986
987 /*
988  * try_to_merge_two_pages - take two identical pages and prepare them
989  * to be merged into one page.
990  *
991  * This function returns the kpage if we successfully merged two identical
992  * pages into one ksm page, NULL otherwise.
993  *
994  * Note that this function upgrades page to ksm page: if one of the pages
995  * is already a ksm page, try_to_merge_with_ksm_page should be used.
996  */
997 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
998                                            struct page *page,
999                                            struct rmap_item *tree_rmap_item,
1000                                            struct page *tree_page)
1001 {
1002         int err;
1003
1004         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1005         if (!err) {
1006                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1007                                                         tree_page, page);
1008                 /*
1009                  * If that fails, we have a ksm page with only one pte
1010                  * pointing to it: so break it.
1011                  */
1012                 if (err)
1013                         break_cow(rmap_item);
1014         }
1015         return err ? NULL : page;
1016 }
1017
1018 /*
1019  * stable_tree_search - search for page inside the stable tree
1020  *
1021  * This function checks if there is a page inside the stable tree
1022  * with identical content to the page that we are scanning right now.
1023  *
1024  * This function returns the stable tree node of identical content if found,
1025  * NULL otherwise.
1026  */
1027 static struct page *stable_tree_search(struct page *page)
1028 {
1029         struct rb_node *node;
1030         struct stable_node *stable_node;
1031         int nid;
1032
1033         stable_node = page_stable_node(page);
1034         if (stable_node) {                      /* ksm page forked */
1035                 get_page(page);
1036                 return page;
1037         }
1038
1039         nid = get_kpfn_nid(page_to_pfn(page));
1040         node = root_stable_tree[nid].rb_node;
1041
1042         while (node) {
1043                 struct page *tree_page;
1044                 int ret;
1045
1046                 cond_resched();
1047                 stable_node = rb_entry(node, struct stable_node, node);
1048                 tree_page = get_ksm_page(stable_node, false);
1049                 if (!tree_page)
1050                         return NULL;
1051
1052                 ret = memcmp_pages(page, tree_page);
1053
1054                 if (ret < 0) {
1055                         put_page(tree_page);
1056                         node = node->rb_left;
1057                 } else if (ret > 0) {
1058                         put_page(tree_page);
1059                         node = node->rb_right;
1060                 } else
1061                         return tree_page;
1062         }
1063
1064         return NULL;
1065 }
1066
1067 /*
1068  * stable_tree_insert - insert stable tree node pointing to new ksm page
1069  * into the stable tree.
1070  *
1071  * This function returns the stable tree node just allocated on success,
1072  * NULL otherwise.
1073  */
1074 static struct stable_node *stable_tree_insert(struct page *kpage)
1075 {
1076         int nid;
1077         unsigned long kpfn;
1078         struct rb_node **new;
1079         struct rb_node *parent = NULL;
1080         struct stable_node *stable_node;
1081
1082         kpfn = page_to_pfn(kpage);
1083         nid = get_kpfn_nid(kpfn);
1084         new = &root_stable_tree[nid].rb_node;
1085
1086         while (*new) {
1087                 struct page *tree_page;
1088                 int ret;
1089
1090                 cond_resched();
1091                 stable_node = rb_entry(*new, struct stable_node, node);
1092                 tree_page = get_ksm_page(stable_node, false);
1093                 if (!tree_page)
1094                         return NULL;
1095
1096                 ret = memcmp_pages(kpage, tree_page);
1097                 put_page(tree_page);
1098
1099                 parent = *new;
1100                 if (ret < 0)
1101                         new = &parent->rb_left;
1102                 else if (ret > 0)
1103                         new = &parent->rb_right;
1104                 else {
1105                         /*
1106                          * It is not a bug that stable_tree_search() didn't
1107                          * find this node: because at that time our page was
1108                          * not yet write-protected, so may have changed since.
1109                          */
1110                         return NULL;
1111                 }
1112         }
1113
1114         stable_node = alloc_stable_node();
1115         if (!stable_node)
1116                 return NULL;
1117
1118         INIT_HLIST_HEAD(&stable_node->hlist);
1119         stable_node->kpfn = kpfn;
1120         set_page_stable_node(kpage, stable_node);
1121         rb_link_node(&stable_node->node, parent, new);
1122         rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
1123
1124         return stable_node;
1125 }
1126
1127 /*
1128  * unstable_tree_search_insert - search for identical page,
1129  * else insert rmap_item into the unstable tree.
1130  *
1131  * This function searches for a page in the unstable tree identical to the
1132  * page currently being scanned; and if no identical page is found in the
1133  * tree, we insert rmap_item as a new object into the unstable tree.
1134  *
1135  * This function returns pointer to rmap_item found to be identical
1136  * to the currently scanned page, NULL otherwise.
1137  *
1138  * This function does both searching and inserting, because they share
1139  * the same walking algorithm in an rbtree.
1140  */
1141 static
1142 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1143                                               struct page *page,
1144                                               struct page **tree_pagep)
1145 {
1146         struct rb_node **new;
1147         struct rb_root *root;
1148         struct rb_node *parent = NULL;
1149         int nid;
1150
1151         nid = get_kpfn_nid(page_to_pfn(page));
1152         root = &root_unstable_tree[nid];
1153         new = &root->rb_node;
1154
1155         while (*new) {
1156                 struct rmap_item *tree_rmap_item;
1157                 struct page *tree_page;
1158                 int ret;
1159
1160                 cond_resched();
1161                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1162                 tree_page = get_mergeable_page(tree_rmap_item);
1163                 if (IS_ERR_OR_NULL(tree_page))
1164                         return NULL;
1165
1166                 /*
1167                  * Don't substitute a ksm page for a forked page.
1168                  */
1169                 if (page == tree_page) {
1170                         put_page(tree_page);
1171                         return NULL;
1172                 }
1173
1174                 /*
1175                  * If tree_page has been migrated to another NUMA node, it
1176                  * will be flushed out and put into the right unstable tree
1177                  * next time: only merge with it if merge_across_nodes.
1178                  */
1179                 if (!ksm_merge_across_nodes && page_to_nid(tree_page) != nid) {
1180                         put_page(tree_page);
1181                         return NULL;
1182                 }
1183
1184                 ret = memcmp_pages(page, tree_page);
1185
1186                 parent = *new;
1187                 if (ret < 0) {
1188                         put_page(tree_page);
1189                         new = &parent->rb_left;
1190                 } else if (ret > 0) {
1191                         put_page(tree_page);
1192                         new = &parent->rb_right;
1193                 } else {
1194                         *tree_pagep = tree_page;
1195                         return tree_rmap_item;
1196                 }
1197         }
1198
1199         rmap_item->address |= UNSTABLE_FLAG;
1200         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1201         DO_NUMA(rmap_item->nid = nid);
1202         rb_link_node(&rmap_item->node, parent, new);
1203         rb_insert_color(&rmap_item->node, root);
1204
1205         ksm_pages_unshared++;
1206         return NULL;
1207 }
1208
1209 /*
1210  * stable_tree_append - add another rmap_item to the linked list of
1211  * rmap_items hanging off a given node of the stable tree, all sharing
1212  * the same ksm page.
1213  */
1214 static void stable_tree_append(struct rmap_item *rmap_item,
1215                                struct stable_node *stable_node)
1216 {
1217         /*
1218          * Usually rmap_item->nid is already set correctly,
1219          * but it may be wrong after switching merge_across_nodes.
1220          */
1221         DO_NUMA(rmap_item->nid = get_kpfn_nid(stable_node->kpfn));
1222         rmap_item->head = stable_node;
1223         rmap_item->address |= STABLE_FLAG;
1224         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1225
1226         if (rmap_item->hlist.next)
1227                 ksm_pages_sharing++;
1228         else
1229                 ksm_pages_shared++;
1230 }
1231
1232 /*
1233  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1234  * if not, compare checksum to previous and if it's the same, see if page can
1235  * be inserted into the unstable tree, or merged with a page already there and
1236  * both transferred to the stable tree.
1237  *
1238  * @page: the page that we are searching identical page to.
1239  * @rmap_item: the reverse mapping into the virtual address of this page
1240  */
1241 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1242 {
1243         struct rmap_item *tree_rmap_item;
1244         struct page *tree_page = NULL;
1245         struct stable_node *stable_node;
1246         struct page *kpage;
1247         unsigned int checksum;
1248         int err;
1249
1250         remove_rmap_item_from_tree(rmap_item);
1251
1252         /* We first start with searching the page inside the stable tree */
1253         kpage = stable_tree_search(page);
1254         if (kpage) {
1255                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1256                 if (!err) {
1257                         /*
1258                          * The page was successfully merged:
1259                          * add its rmap_item to the stable tree.
1260                          */
1261                         lock_page(kpage);
1262                         stable_tree_append(rmap_item, page_stable_node(kpage));
1263                         unlock_page(kpage);
1264                 }
1265                 put_page(kpage);
1266                 return;
1267         }
1268
1269         /*
1270          * If the hash value of the page has changed from the last time
1271          * we calculated it, this page is changing frequently: therefore we
1272          * don't want to insert it in the unstable tree, and we don't want
1273          * to waste our time searching for something identical to it there.
1274          */
1275         checksum = calc_checksum(page);
1276         if (rmap_item->oldchecksum != checksum) {
1277                 rmap_item->oldchecksum = checksum;
1278                 return;
1279         }
1280
1281         tree_rmap_item =
1282                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1283         if (tree_rmap_item) {
1284                 kpage = try_to_merge_two_pages(rmap_item, page,
1285                                                 tree_rmap_item, tree_page);
1286                 put_page(tree_page);
1287                 /*
1288                  * As soon as we merge this page, we want to remove the
1289                  * rmap_item of the page we have merged with from the unstable
1290                  * tree, and insert it instead as new node in the stable tree.
1291                  */
1292                 if (kpage) {
1293                         remove_rmap_item_from_tree(tree_rmap_item);
1294
1295                         lock_page(kpage);
1296                         stable_node = stable_tree_insert(kpage);
1297                         if (stable_node) {
1298                                 stable_tree_append(tree_rmap_item, stable_node);
1299                                 stable_tree_append(rmap_item, stable_node);
1300                         }
1301                         unlock_page(kpage);
1302
1303                         /*
1304                          * If we fail to insert the page into the stable tree,
1305                          * we will have 2 virtual addresses that are pointing
1306                          * to a ksm page left outside the stable tree,
1307                          * in which case we need to break_cow on both.
1308                          */
1309                         if (!stable_node) {
1310                                 break_cow(tree_rmap_item);
1311                                 break_cow(rmap_item);
1312                         }
1313                 }
1314         }
1315 }
1316
1317 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1318                                             struct rmap_item **rmap_list,
1319                                             unsigned long addr)
1320 {
1321         struct rmap_item *rmap_item;
1322
1323         while (*rmap_list) {
1324                 rmap_item = *rmap_list;
1325                 if ((rmap_item->address & PAGE_MASK) == addr)
1326                         return rmap_item;
1327                 if (rmap_item->address > addr)
1328                         break;
1329                 *rmap_list = rmap_item->rmap_list;
1330                 remove_rmap_item_from_tree(rmap_item);
1331                 free_rmap_item(rmap_item);
1332         }
1333
1334         rmap_item = alloc_rmap_item();
1335         if (rmap_item) {
1336                 /* It has already been zeroed */
1337                 rmap_item->mm = mm_slot->mm;
1338                 rmap_item->address = addr;
1339                 rmap_item->rmap_list = *rmap_list;
1340                 *rmap_list = rmap_item;
1341         }
1342         return rmap_item;
1343 }
1344
1345 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1346 {
1347         struct mm_struct *mm;
1348         struct mm_slot *slot;
1349         struct vm_area_struct *vma;
1350         struct rmap_item *rmap_item;
1351         int nid;
1352
1353         if (list_empty(&ksm_mm_head.mm_list))
1354                 return NULL;
1355
1356         slot = ksm_scan.mm_slot;
1357         if (slot == &ksm_mm_head) {
1358                 /*
1359                  * A number of pages can hang around indefinitely on per-cpu
1360                  * pagevecs, raised page count preventing write_protect_page
1361                  * from merging them.  Though it doesn't really matter much,
1362                  * it is puzzling to see some stuck in pages_volatile until
1363                  * other activity jostles them out, and they also prevented
1364                  * LTP's KSM test from succeeding deterministically; so drain
1365                  * them here (here rather than on entry to ksm_do_scan(),
1366                  * so we don't IPI too often when pages_to_scan is set low).
1367                  */
1368                 lru_add_drain_all();
1369
1370                 for (nid = 0; nid < nr_node_ids; nid++)
1371                         root_unstable_tree[nid] = RB_ROOT;
1372
1373                 spin_lock(&ksm_mmlist_lock);
1374                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1375                 ksm_scan.mm_slot = slot;
1376                 spin_unlock(&ksm_mmlist_lock);
1377                 /*
1378                  * Although we tested list_empty() above, a racing __ksm_exit
1379                  * of the last mm on the list may have removed it since then.
1380                  */
1381                 if (slot == &ksm_mm_head)
1382                         return NULL;
1383 next_mm:
1384                 ksm_scan.address = 0;
1385                 ksm_scan.rmap_list = &slot->rmap_list;
1386         }
1387
1388         mm = slot->mm;
1389         down_read(&mm->mmap_sem);
1390         if (ksm_test_exit(mm))
1391                 vma = NULL;
1392         else
1393                 vma = find_vma(mm, ksm_scan.address);
1394
1395         for (; vma; vma = vma->vm_next) {
1396                 if (!(vma->vm_flags & VM_MERGEABLE))
1397                         continue;
1398                 if (ksm_scan.address < vma->vm_start)
1399                         ksm_scan.address = vma->vm_start;
1400                 if (!vma->anon_vma)
1401                         ksm_scan.address = vma->vm_end;
1402
1403                 while (ksm_scan.address < vma->vm_end) {
1404                         if (ksm_test_exit(mm))
1405                                 break;
1406                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1407                         if (IS_ERR_OR_NULL(*page)) {
1408                                 ksm_scan.address += PAGE_SIZE;
1409                                 cond_resched();
1410                                 continue;
1411                         }
1412                         if (PageAnon(*page) ||
1413                             page_trans_compound_anon(*page)) {
1414                                 flush_anon_page(vma, *page, ksm_scan.address);
1415                                 flush_dcache_page(*page);
1416                                 rmap_item = get_next_rmap_item(slot,
1417                                         ksm_scan.rmap_list, ksm_scan.address);
1418                                 if (rmap_item) {
1419                                         ksm_scan.rmap_list =
1420                                                         &rmap_item->rmap_list;
1421                                         ksm_scan.address += PAGE_SIZE;
1422                                 } else
1423                                         put_page(*page);
1424                                 up_read(&mm->mmap_sem);
1425                                 return rmap_item;
1426                         }
1427                         put_page(*page);
1428                         ksm_scan.address += PAGE_SIZE;
1429                         cond_resched();
1430                 }
1431         }
1432
1433         if (ksm_test_exit(mm)) {
1434                 ksm_scan.address = 0;
1435                 ksm_scan.rmap_list = &slot->rmap_list;
1436         }
1437         /*
1438          * Nuke all the rmap_items that are above this current rmap:
1439          * because there were no VM_MERGEABLE vmas with such addresses.
1440          */
1441         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1442
1443         spin_lock(&ksm_mmlist_lock);
1444         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1445                                                 struct mm_slot, mm_list);
1446         if (ksm_scan.address == 0) {
1447                 /*
1448                  * We've completed a full scan of all vmas, holding mmap_sem
1449                  * throughout, and found no VM_MERGEABLE: so do the same as
1450                  * __ksm_exit does to remove this mm from all our lists now.
1451                  * This applies either when cleaning up after __ksm_exit
1452                  * (but beware: we can reach here even before __ksm_exit),
1453                  * or when all VM_MERGEABLE areas have been unmapped (and
1454                  * mmap_sem then protects against race with MADV_MERGEABLE).
1455                  */
1456                 hash_del(&slot->link);
1457                 list_del(&slot->mm_list);
1458                 spin_unlock(&ksm_mmlist_lock);
1459
1460                 free_mm_slot(slot);
1461                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1462                 up_read(&mm->mmap_sem);
1463                 mmdrop(mm);
1464         } else {
1465                 spin_unlock(&ksm_mmlist_lock);
1466                 up_read(&mm->mmap_sem);
1467         }
1468
1469         /* Repeat until we've completed scanning the whole list */
1470         slot = ksm_scan.mm_slot;
1471         if (slot != &ksm_mm_head)
1472                 goto next_mm;
1473
1474         ksm_scan.seqnr++;
1475         return NULL;
1476 }
1477
1478 /**
1479  * ksm_do_scan  - the ksm scanner main worker function.
1480  * @scan_npages - number of pages we want to scan before we return.
1481  */
1482 static void ksm_do_scan(unsigned int scan_npages)
1483 {
1484         struct rmap_item *rmap_item;
1485         struct page *uninitialized_var(page);
1486
1487         while (scan_npages-- && likely(!freezing(current))) {
1488                 cond_resched();
1489                 rmap_item = scan_get_next_rmap_item(&page);
1490                 if (!rmap_item)
1491                         return;
1492                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1493                         cmp_and_merge_page(page, rmap_item);
1494                 put_page(page);
1495         }
1496 }
1497
1498 static int ksmd_should_run(void)
1499 {
1500         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1501 }
1502
1503 static int ksm_scan_thread(void *nothing)
1504 {
1505         set_freezable();
1506         set_user_nice(current, 5);
1507
1508         while (!kthread_should_stop()) {
1509                 mutex_lock(&ksm_thread_mutex);
1510                 if (ksmd_should_run())
1511                         ksm_do_scan(ksm_thread_pages_to_scan);
1512                 mutex_unlock(&ksm_thread_mutex);
1513
1514                 try_to_freeze();
1515
1516                 if (ksmd_should_run()) {
1517                         schedule_timeout_interruptible(
1518                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1519                 } else {
1520                         wait_event_freezable(ksm_thread_wait,
1521                                 ksmd_should_run() || kthread_should_stop());
1522                 }
1523         }
1524         return 0;
1525 }
1526
1527 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1528                 unsigned long end, int advice, unsigned long *vm_flags)
1529 {
1530         struct mm_struct *mm = vma->vm_mm;
1531         int err;
1532
1533         switch (advice) {
1534         case MADV_MERGEABLE:
1535                 /*
1536                  * Be somewhat over-protective for now!
1537                  */
1538                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1539                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1540                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1541                         return 0;               /* just ignore the advice */
1542
1543 #ifdef VM_SAO
1544                 if (*vm_flags & VM_SAO)
1545                         return 0;
1546 #endif
1547
1548                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1549                         err = __ksm_enter(mm);
1550                         if (err)
1551                                 return err;
1552                 }
1553
1554                 *vm_flags |= VM_MERGEABLE;
1555                 break;
1556
1557         case MADV_UNMERGEABLE:
1558                 if (!(*vm_flags & VM_MERGEABLE))
1559                         return 0;               /* just ignore the advice */
1560
1561                 if (vma->anon_vma) {
1562                         err = unmerge_ksm_pages(vma, start, end);
1563                         if (err)
1564                                 return err;
1565                 }
1566
1567                 *vm_flags &= ~VM_MERGEABLE;
1568                 break;
1569         }
1570
1571         return 0;
1572 }
1573
1574 int __ksm_enter(struct mm_struct *mm)
1575 {
1576         struct mm_slot *mm_slot;
1577         int needs_wakeup;
1578
1579         mm_slot = alloc_mm_slot();
1580         if (!mm_slot)
1581                 return -ENOMEM;
1582
1583         /* Check ksm_run too?  Would need tighter locking */
1584         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1585
1586         spin_lock(&ksm_mmlist_lock);
1587         insert_to_mm_slots_hash(mm, mm_slot);
1588         /*
1589          * Insert just behind the scanning cursor, to let the area settle
1590          * down a little; when fork is followed by immediate exec, we don't
1591          * want ksmd to waste time setting up and tearing down an rmap_list.
1592          */
1593         list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1594         spin_unlock(&ksm_mmlist_lock);
1595
1596         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1597         atomic_inc(&mm->mm_count);
1598
1599         if (needs_wakeup)
1600                 wake_up_interruptible(&ksm_thread_wait);
1601
1602         return 0;
1603 }
1604
1605 void __ksm_exit(struct mm_struct *mm)
1606 {
1607         struct mm_slot *mm_slot;
1608         int easy_to_free = 0;
1609
1610         /*
1611          * This process is exiting: if it's straightforward (as is the
1612          * case when ksmd was never running), free mm_slot immediately.
1613          * But if it's at the cursor or has rmap_items linked to it, use
1614          * mmap_sem to synchronize with any break_cows before pagetables
1615          * are freed, and leave the mm_slot on the list for ksmd to free.
1616          * Beware: ksm may already have noticed it exiting and freed the slot.
1617          */
1618
1619         spin_lock(&ksm_mmlist_lock);
1620         mm_slot = get_mm_slot(mm);
1621         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1622                 if (!mm_slot->rmap_list) {
1623                         hash_del(&mm_slot->link);
1624                         list_del(&mm_slot->mm_list);
1625                         easy_to_free = 1;
1626                 } else {
1627                         list_move(&mm_slot->mm_list,
1628                                   &ksm_scan.mm_slot->mm_list);
1629                 }
1630         }
1631         spin_unlock(&ksm_mmlist_lock);
1632
1633         if (easy_to_free) {
1634                 free_mm_slot(mm_slot);
1635                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1636                 mmdrop(mm);
1637         } else if (mm_slot) {
1638                 down_write(&mm->mmap_sem);
1639                 up_write(&mm->mmap_sem);
1640         }
1641 }
1642
1643 struct page *ksm_does_need_to_copy(struct page *page,
1644                         struct vm_area_struct *vma, unsigned long address)
1645 {
1646         struct page *new_page;
1647
1648         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1649         if (new_page) {
1650                 copy_user_highpage(new_page, page, address, vma);
1651
1652                 SetPageDirty(new_page);
1653                 __SetPageUptodate(new_page);
1654                 __set_page_locked(new_page);
1655         }
1656
1657         return new_page;
1658 }
1659
1660 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1661                         unsigned long *vm_flags)
1662 {
1663         struct stable_node *stable_node;
1664         struct rmap_item *rmap_item;
1665         struct hlist_node *hlist;
1666         unsigned int mapcount = page_mapcount(page);
1667         int referenced = 0;
1668         int search_new_forks = 0;
1669
1670         VM_BUG_ON(!PageKsm(page));
1671         VM_BUG_ON(!PageLocked(page));
1672
1673         stable_node = page_stable_node(page);
1674         if (!stable_node)
1675                 return 0;
1676 again:
1677         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1678                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1679                 struct anon_vma_chain *vmac;
1680                 struct vm_area_struct *vma;
1681
1682                 anon_vma_lock_read(anon_vma);
1683                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1684                                                0, ULONG_MAX) {
1685                         vma = vmac->vma;
1686                         if (rmap_item->address < vma->vm_start ||
1687                             rmap_item->address >= vma->vm_end)
1688                                 continue;
1689                         /*
1690                          * Initially we examine only the vma which covers this
1691                          * rmap_item; but later, if there is still work to do,
1692                          * we examine covering vmas in other mms: in case they
1693                          * were forked from the original since ksmd passed.
1694                          */
1695                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1696                                 continue;
1697
1698                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1699                                 continue;
1700
1701                         referenced += page_referenced_one(page, vma,
1702                                 rmap_item->address, &mapcount, vm_flags);
1703                         if (!search_new_forks || !mapcount)
1704                                 break;
1705                 }
1706                 anon_vma_unlock_read(anon_vma);
1707                 if (!mapcount)
1708                         goto out;
1709         }
1710         if (!search_new_forks++)
1711                 goto again;
1712 out:
1713         return referenced;
1714 }
1715
1716 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1717 {
1718         struct stable_node *stable_node;
1719         struct hlist_node *hlist;
1720         struct rmap_item *rmap_item;
1721         int ret = SWAP_AGAIN;
1722         int search_new_forks = 0;
1723
1724         VM_BUG_ON(!PageKsm(page));
1725         VM_BUG_ON(!PageLocked(page));
1726
1727         stable_node = page_stable_node(page);
1728         if (!stable_node)
1729                 return SWAP_FAIL;
1730 again:
1731         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1732                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1733                 struct anon_vma_chain *vmac;
1734                 struct vm_area_struct *vma;
1735
1736                 anon_vma_lock_read(anon_vma);
1737                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1738                                                0, ULONG_MAX) {
1739                         vma = vmac->vma;
1740                         if (rmap_item->address < vma->vm_start ||
1741                             rmap_item->address >= vma->vm_end)
1742                                 continue;
1743                         /*
1744                          * Initially we examine only the vma which covers this
1745                          * rmap_item; but later, if there is still work to do,
1746                          * we examine covering vmas in other mms: in case they
1747                          * were forked from the original since ksmd passed.
1748                          */
1749                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1750                                 continue;
1751
1752                         ret = try_to_unmap_one(page, vma,
1753                                         rmap_item->address, flags);
1754                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1755                                 anon_vma_unlock_read(anon_vma);
1756                                 goto out;
1757                         }
1758                 }
1759                 anon_vma_unlock_read(anon_vma);
1760         }
1761         if (!search_new_forks++)
1762                 goto again;
1763 out:
1764         return ret;
1765 }
1766
1767 #ifdef CONFIG_MIGRATION
1768 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1769                   struct vm_area_struct *, unsigned long, void *), void *arg)
1770 {
1771         struct stable_node *stable_node;
1772         struct hlist_node *hlist;
1773         struct rmap_item *rmap_item;
1774         int ret = SWAP_AGAIN;
1775         int search_new_forks = 0;
1776
1777         VM_BUG_ON(!PageKsm(page));
1778         VM_BUG_ON(!PageLocked(page));
1779
1780         stable_node = page_stable_node(page);
1781         if (!stable_node)
1782                 return ret;
1783 again:
1784         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1785                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1786                 struct anon_vma_chain *vmac;
1787                 struct vm_area_struct *vma;
1788
1789                 anon_vma_lock_read(anon_vma);
1790                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1791                                                0, ULONG_MAX) {
1792                         vma = vmac->vma;
1793                         if (rmap_item->address < vma->vm_start ||
1794                             rmap_item->address >= vma->vm_end)
1795                                 continue;
1796                         /*
1797                          * Initially we examine only the vma which covers this
1798                          * rmap_item; but later, if there is still work to do,
1799                          * we examine covering vmas in other mms: in case they
1800                          * were forked from the original since ksmd passed.
1801                          */
1802                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1803                                 continue;
1804
1805                         ret = rmap_one(page, vma, rmap_item->address, arg);
1806                         if (ret != SWAP_AGAIN) {
1807                                 anon_vma_unlock_read(anon_vma);
1808                                 goto out;
1809                         }
1810                 }
1811                 anon_vma_unlock_read(anon_vma);
1812         }
1813         if (!search_new_forks++)
1814                 goto again;
1815 out:
1816         return ret;
1817 }
1818
1819 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1820 {
1821         struct stable_node *stable_node;
1822
1823         VM_BUG_ON(!PageLocked(oldpage));
1824         VM_BUG_ON(!PageLocked(newpage));
1825         VM_BUG_ON(newpage->mapping != oldpage->mapping);
1826
1827         stable_node = page_stable_node(newpage);
1828         if (stable_node) {
1829                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1830                 stable_node->kpfn = page_to_pfn(newpage);
1831         }
1832 }
1833 #endif /* CONFIG_MIGRATION */
1834
1835 #ifdef CONFIG_MEMORY_HOTREMOVE
1836 static void ksm_check_stable_tree(unsigned long start_pfn,
1837                                   unsigned long end_pfn)
1838 {
1839         struct stable_node *stable_node;
1840         struct rb_node *node;
1841         int nid;
1842
1843         for (nid = 0; nid < nr_node_ids; nid++) {
1844                 node = rb_first(&root_stable_tree[nid]);
1845                 while (node) {
1846                         stable_node = rb_entry(node, struct stable_node, node);
1847                         if (stable_node->kpfn >= start_pfn &&
1848                             stable_node->kpfn < end_pfn) {
1849                                 /*
1850                                  * Don't get_ksm_page, page has already gone:
1851                                  * which is why we keep kpfn instead of page*
1852                                  */
1853                                 remove_node_from_stable_tree(stable_node);
1854                                 node = rb_first(&root_stable_tree[nid]);
1855                         } else
1856                                 node = rb_next(node);
1857                         cond_resched();
1858                 }
1859         }
1860 }
1861
1862 static int ksm_memory_callback(struct notifier_block *self,
1863                                unsigned long action, void *arg)
1864 {
1865         struct memory_notify *mn = arg;
1866
1867         switch (action) {
1868         case MEM_GOING_OFFLINE:
1869                 /*
1870                  * Keep it very simple for now: just lock out ksmd and
1871                  * MADV_UNMERGEABLE while any memory is going offline.
1872                  * mutex_lock_nested() is necessary because lockdep was alarmed
1873                  * that here we take ksm_thread_mutex inside notifier chain
1874                  * mutex, and later take notifier chain mutex inside
1875                  * ksm_thread_mutex to unlock it.   But that's safe because both
1876                  * are inside mem_hotplug_mutex.
1877                  */
1878                 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1879                 break;
1880
1881         case MEM_OFFLINE:
1882                 /*
1883                  * Most of the work is done by page migration; but there might
1884                  * be a few stable_nodes left over, still pointing to struct
1885                  * pages which have been offlined: prune those from the tree,
1886                  * otherwise get_ksm_page() might later try to access a
1887                  * non-existent struct page.
1888                  */
1889                 ksm_check_stable_tree(mn->start_pfn,
1890                                       mn->start_pfn + mn->nr_pages);
1891                 /* fallthrough */
1892
1893         case MEM_CANCEL_OFFLINE:
1894                 mutex_unlock(&ksm_thread_mutex);
1895                 break;
1896         }
1897         return NOTIFY_OK;
1898 }
1899 #endif /* CONFIG_MEMORY_HOTREMOVE */
1900
1901 #ifdef CONFIG_SYSFS
1902 /*
1903  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1904  */
1905
1906 #define KSM_ATTR_RO(_name) \
1907         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1908 #define KSM_ATTR(_name) \
1909         static struct kobj_attribute _name##_attr = \
1910                 __ATTR(_name, 0644, _name##_show, _name##_store)
1911
1912 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1913                                     struct kobj_attribute *attr, char *buf)
1914 {
1915         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1916 }
1917
1918 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1919                                      struct kobj_attribute *attr,
1920                                      const char *buf, size_t count)
1921 {
1922         unsigned long msecs;
1923         int err;
1924
1925         err = strict_strtoul(buf, 10, &msecs);
1926         if (err || msecs > UINT_MAX)
1927                 return -EINVAL;
1928
1929         ksm_thread_sleep_millisecs = msecs;
1930
1931         return count;
1932 }
1933 KSM_ATTR(sleep_millisecs);
1934
1935 static ssize_t pages_to_scan_show(struct kobject *kobj,
1936                                   struct kobj_attribute *attr, char *buf)
1937 {
1938         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1939 }
1940
1941 static ssize_t pages_to_scan_store(struct kobject *kobj,
1942                                    struct kobj_attribute *attr,
1943                                    const char *buf, size_t count)
1944 {
1945         int err;
1946         unsigned long nr_pages;
1947
1948         err = strict_strtoul(buf, 10, &nr_pages);
1949         if (err || nr_pages > UINT_MAX)
1950                 return -EINVAL;
1951
1952         ksm_thread_pages_to_scan = nr_pages;
1953
1954         return count;
1955 }
1956 KSM_ATTR(pages_to_scan);
1957
1958 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1959                         char *buf)
1960 {
1961         return sprintf(buf, "%u\n", ksm_run);
1962 }
1963
1964 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1965                          const char *buf, size_t count)
1966 {
1967         int err;
1968         unsigned long flags;
1969
1970         err = strict_strtoul(buf, 10, &flags);
1971         if (err || flags > UINT_MAX)
1972                 return -EINVAL;
1973         if (flags > KSM_RUN_UNMERGE)
1974                 return -EINVAL;
1975
1976         /*
1977          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1978          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1979          * breaking COW to free the pages_shared (but leaves mm_slots
1980          * on the list for when ksmd may be set running again).
1981          */
1982
1983         mutex_lock(&ksm_thread_mutex);
1984         if (ksm_run != flags) {
1985                 ksm_run = flags;
1986                 if (flags & KSM_RUN_UNMERGE) {
1987                         set_current_oom_origin();
1988                         err = unmerge_and_remove_all_rmap_items();
1989                         clear_current_oom_origin();
1990                         if (err) {
1991                                 ksm_run = KSM_RUN_STOP;
1992                                 count = err;
1993                         }
1994                 }
1995         }
1996         mutex_unlock(&ksm_thread_mutex);
1997
1998         if (flags & KSM_RUN_MERGE)
1999                 wake_up_interruptible(&ksm_thread_wait);
2000
2001         return count;
2002 }
2003 KSM_ATTR(run);
2004
2005 #ifdef CONFIG_NUMA
2006 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2007                                 struct kobj_attribute *attr, char *buf)
2008 {
2009         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2010 }
2011
2012 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2013                                    struct kobj_attribute *attr,
2014                                    const char *buf, size_t count)
2015 {
2016         int err;
2017         unsigned long knob;
2018
2019         err = kstrtoul(buf, 10, &knob);
2020         if (err)
2021                 return err;
2022         if (knob > 1)
2023                 return -EINVAL;
2024
2025         mutex_lock(&ksm_thread_mutex);
2026         if (ksm_merge_across_nodes != knob) {
2027                 if (ksm_pages_shared)
2028                         err = -EBUSY;
2029                 else
2030                         ksm_merge_across_nodes = knob;
2031         }
2032         mutex_unlock(&ksm_thread_mutex);
2033
2034         return err ? err : count;
2035 }
2036 KSM_ATTR(merge_across_nodes);
2037 #endif
2038
2039 static ssize_t pages_shared_show(struct kobject *kobj,
2040                                  struct kobj_attribute *attr, char *buf)
2041 {
2042         return sprintf(buf, "%lu\n", ksm_pages_shared);
2043 }
2044 KSM_ATTR_RO(pages_shared);
2045
2046 static ssize_t pages_sharing_show(struct kobject *kobj,
2047                                   struct kobj_attribute *attr, char *buf)
2048 {
2049         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2050 }
2051 KSM_ATTR_RO(pages_sharing);
2052
2053 static ssize_t pages_unshared_show(struct kobject *kobj,
2054                                    struct kobj_attribute *attr, char *buf)
2055 {
2056         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2057 }
2058 KSM_ATTR_RO(pages_unshared);
2059
2060 static ssize_t pages_volatile_show(struct kobject *kobj,
2061                                    struct kobj_attribute *attr, char *buf)
2062 {
2063         long ksm_pages_volatile;
2064
2065         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2066                                 - ksm_pages_sharing - ksm_pages_unshared;
2067         /*
2068          * It was not worth any locking to calculate that statistic,
2069          * but it might therefore sometimes be negative: conceal that.
2070          */
2071         if (ksm_pages_volatile < 0)
2072                 ksm_pages_volatile = 0;
2073         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2074 }
2075 KSM_ATTR_RO(pages_volatile);
2076
2077 static ssize_t full_scans_show(struct kobject *kobj,
2078                                struct kobj_attribute *attr, char *buf)
2079 {
2080         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2081 }
2082 KSM_ATTR_RO(full_scans);
2083
2084 static struct attribute *ksm_attrs[] = {
2085         &sleep_millisecs_attr.attr,
2086         &pages_to_scan_attr.attr,
2087         &run_attr.attr,
2088         &pages_shared_attr.attr,
2089         &pages_sharing_attr.attr,
2090         &pages_unshared_attr.attr,
2091         &pages_volatile_attr.attr,
2092         &full_scans_attr.attr,
2093 #ifdef CONFIG_NUMA
2094         &merge_across_nodes_attr.attr,
2095 #endif
2096         NULL,
2097 };
2098
2099 static struct attribute_group ksm_attr_group = {
2100         .attrs = ksm_attrs,
2101         .name = "ksm",
2102 };
2103 #endif /* CONFIG_SYSFS */
2104
2105 static int __init ksm_init(void)
2106 {
2107         struct task_struct *ksm_thread;
2108         int err;
2109         int nid;
2110
2111         err = ksm_slab_init();
2112         if (err)
2113                 goto out;
2114
2115         for (nid = 0; nid < nr_node_ids; nid++)
2116                 root_stable_tree[nid] = RB_ROOT;
2117
2118         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2119         if (IS_ERR(ksm_thread)) {
2120                 printk(KERN_ERR "ksm: creating kthread failed\n");
2121                 err = PTR_ERR(ksm_thread);
2122                 goto out_free;
2123         }
2124
2125 #ifdef CONFIG_SYSFS
2126         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2127         if (err) {
2128                 printk(KERN_ERR "ksm: register sysfs failed\n");
2129                 kthread_stop(ksm_thread);
2130                 goto out_free;
2131         }
2132 #else
2133         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2134
2135 #endif /* CONFIG_SYSFS */
2136
2137 #ifdef CONFIG_MEMORY_HOTREMOVE
2138         /*
2139          * Choose a high priority since the callback takes ksm_thread_mutex:
2140          * later callbacks could only be taking locks which nest within that.
2141          */
2142         hotplug_memory_notifier(ksm_memory_callback, 100);
2143 #endif
2144         return 0;
2145
2146 out_free:
2147         ksm_slab_free();
2148 out:
2149         return err;
2150 }
2151 module_init(ksm_init)