ksm: make KSM page migration possible
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  */
91
92 /**
93  * struct mm_slot - ksm information per mm that is being scanned
94  * @link: link to the mm_slots hash list
95  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
96  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
97  * @mm: the mm that this information is valid for
98  */
99 struct mm_slot {
100         struct hlist_node link;
101         struct list_head mm_list;
102         struct rmap_item *rmap_list;
103         struct mm_struct *mm;
104 };
105
106 /**
107  * struct ksm_scan - cursor for scanning
108  * @mm_slot: the current mm_slot we are scanning
109  * @address: the next address inside that to be scanned
110  * @rmap_list: link to the next rmap to be scanned in the rmap_list
111  * @seqnr: count of completed full scans (needed when removing unstable node)
112  *
113  * There is only the one ksm_scan instance of this cursor structure.
114  */
115 struct ksm_scan {
116         struct mm_slot *mm_slot;
117         unsigned long address;
118         struct rmap_item **rmap_list;
119         unsigned long seqnr;
120 };
121
122 /**
123  * struct stable_node - node of the stable rbtree
124  * @node: rb node of this ksm page in the stable tree
125  * @hlist: hlist head of rmap_items using this ksm page
126  * @kpfn: page frame number of this ksm page
127  */
128 struct stable_node {
129         struct rb_node node;
130         struct hlist_head hlist;
131         unsigned long kpfn;
132 };
133
134 /**
135  * struct rmap_item - reverse mapping item for virtual addresses
136  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
137  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
138  * @mm: the memory structure this rmap_item is pointing into
139  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
140  * @oldchecksum: previous checksum of the page at that virtual address
141  * @nid: NUMA node id of unstable tree in which linked (may not match page)
142  * @node: rb node of this rmap_item in the unstable tree
143  * @head: pointer to stable_node heading this list in the stable tree
144  * @hlist: link into hlist of rmap_items hanging off that stable_node
145  */
146 struct rmap_item {
147         struct rmap_item *rmap_list;
148         struct anon_vma *anon_vma;      /* when stable */
149         struct mm_struct *mm;
150         unsigned long address;          /* + low bits used for flags below */
151         unsigned int oldchecksum;       /* when unstable */
152 #ifdef CONFIG_NUMA
153         int nid;
154 #endif
155         union {
156                 struct rb_node node;    /* when node of unstable tree */
157                 struct {                /* when listed from stable tree */
158                         struct stable_node *head;
159                         struct hlist_node hlist;
160                 };
161         };
162 };
163
164 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
165 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
166 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
167
168 /* The stable and unstable tree heads */
169 static struct rb_root root_unstable_tree[MAX_NUMNODES];
170 static struct rb_root root_stable_tree[MAX_NUMNODES];
171
172 #define MM_SLOTS_HASH_BITS 10
173 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
174
175 static struct mm_slot ksm_mm_head = {
176         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
177 };
178 static struct ksm_scan ksm_scan = {
179         .mm_slot = &ksm_mm_head,
180 };
181
182 static struct kmem_cache *rmap_item_cache;
183 static struct kmem_cache *stable_node_cache;
184 static struct kmem_cache *mm_slot_cache;
185
186 /* The number of nodes in the stable tree */
187 static unsigned long ksm_pages_shared;
188
189 /* The number of page slots additionally sharing those nodes */
190 static unsigned long ksm_pages_sharing;
191
192 /* The number of nodes in the unstable tree */
193 static unsigned long ksm_pages_unshared;
194
195 /* The number of rmap_items in use: to calculate pages_volatile */
196 static unsigned long ksm_rmap_items;
197
198 /* Number of pages ksmd should scan in one batch */
199 static unsigned int ksm_thread_pages_to_scan = 100;
200
201 /* Milliseconds ksmd should sleep between batches */
202 static unsigned int ksm_thread_sleep_millisecs = 20;
203
204 #ifdef CONFIG_NUMA
205 /* Zeroed when merging across nodes is not allowed */
206 static unsigned int ksm_merge_across_nodes = 1;
207 #else
208 #define ksm_merge_across_nodes  1U
209 #endif
210
211 #define KSM_RUN_STOP    0
212 #define KSM_RUN_MERGE   1
213 #define KSM_RUN_UNMERGE 2
214 static unsigned int ksm_run = KSM_RUN_STOP;
215
216 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
217 static DEFINE_MUTEX(ksm_thread_mutex);
218 static DEFINE_SPINLOCK(ksm_mmlist_lock);
219
220 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
221                 sizeof(struct __struct), __alignof__(struct __struct),\
222                 (__flags), NULL)
223
224 static int __init ksm_slab_init(void)
225 {
226         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
227         if (!rmap_item_cache)
228                 goto out;
229
230         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
231         if (!stable_node_cache)
232                 goto out_free1;
233
234         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
235         if (!mm_slot_cache)
236                 goto out_free2;
237
238         return 0;
239
240 out_free2:
241         kmem_cache_destroy(stable_node_cache);
242 out_free1:
243         kmem_cache_destroy(rmap_item_cache);
244 out:
245         return -ENOMEM;
246 }
247
248 static void __init ksm_slab_free(void)
249 {
250         kmem_cache_destroy(mm_slot_cache);
251         kmem_cache_destroy(stable_node_cache);
252         kmem_cache_destroy(rmap_item_cache);
253         mm_slot_cache = NULL;
254 }
255
256 static inline struct rmap_item *alloc_rmap_item(void)
257 {
258         struct rmap_item *rmap_item;
259
260         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
261         if (rmap_item)
262                 ksm_rmap_items++;
263         return rmap_item;
264 }
265
266 static inline void free_rmap_item(struct rmap_item *rmap_item)
267 {
268         ksm_rmap_items--;
269         rmap_item->mm = NULL;   /* debug safety */
270         kmem_cache_free(rmap_item_cache, rmap_item);
271 }
272
273 static inline struct stable_node *alloc_stable_node(void)
274 {
275         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
276 }
277
278 static inline void free_stable_node(struct stable_node *stable_node)
279 {
280         kmem_cache_free(stable_node_cache, stable_node);
281 }
282
283 static inline struct mm_slot *alloc_mm_slot(void)
284 {
285         if (!mm_slot_cache)     /* initialization failed */
286                 return NULL;
287         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
288 }
289
290 static inline void free_mm_slot(struct mm_slot *mm_slot)
291 {
292         kmem_cache_free(mm_slot_cache, mm_slot);
293 }
294
295 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
296 {
297         struct hlist_node *node;
298         struct mm_slot *slot;
299
300         hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
301                 if (slot->mm == mm)
302                         return slot;
303
304         return NULL;
305 }
306
307 static void insert_to_mm_slots_hash(struct mm_struct *mm,
308                                     struct mm_slot *mm_slot)
309 {
310         mm_slot->mm = mm;
311         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
312 }
313
314 static inline int in_stable_tree(struct rmap_item *rmap_item)
315 {
316         return rmap_item->address & STABLE_FLAG;
317 }
318
319 /*
320  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
321  * page tables after it has passed through ksm_exit() - which, if necessary,
322  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
323  * a special flag: they can just back out as soon as mm_users goes to zero.
324  * ksm_test_exit() is used throughout to make this test for exit: in some
325  * places for correctness, in some places just to avoid unnecessary work.
326  */
327 static inline bool ksm_test_exit(struct mm_struct *mm)
328 {
329         return atomic_read(&mm->mm_users) == 0;
330 }
331
332 /*
333  * We use break_ksm to break COW on a ksm page: it's a stripped down
334  *
335  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
336  *              put_page(page);
337  *
338  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
339  * in case the application has unmapped and remapped mm,addr meanwhile.
340  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
341  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
342  */
343 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
344 {
345         struct page *page;
346         int ret = 0;
347
348         do {
349                 cond_resched();
350                 page = follow_page(vma, addr, FOLL_GET);
351                 if (IS_ERR_OR_NULL(page))
352                         break;
353                 if (PageKsm(page))
354                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
355                                                         FAULT_FLAG_WRITE);
356                 else
357                         ret = VM_FAULT_WRITE;
358                 put_page(page);
359         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
360         /*
361          * We must loop because handle_mm_fault() may back out if there's
362          * any difficulty e.g. if pte accessed bit gets updated concurrently.
363          *
364          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
365          * COW has been broken, even if the vma does not permit VM_WRITE;
366          * but note that a concurrent fault might break PageKsm for us.
367          *
368          * VM_FAULT_SIGBUS could occur if we race with truncation of the
369          * backing file, which also invalidates anonymous pages: that's
370          * okay, that truncation will have unmapped the PageKsm for us.
371          *
372          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
373          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
374          * current task has TIF_MEMDIE set, and will be OOM killed on return
375          * to user; and ksmd, having no mm, would never be chosen for that.
376          *
377          * But if the mm is in a limited mem_cgroup, then the fault may fail
378          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
379          * even ksmd can fail in this way - though it's usually breaking ksm
380          * just to undo a merge it made a moment before, so unlikely to oom.
381          *
382          * That's a pity: we might therefore have more kernel pages allocated
383          * than we're counting as nodes in the stable tree; but ksm_do_scan
384          * will retry to break_cow on each pass, so should recover the page
385          * in due course.  The important thing is to not let VM_MERGEABLE
386          * be cleared while any such pages might remain in the area.
387          */
388         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
389 }
390
391 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
392                 unsigned long addr)
393 {
394         struct vm_area_struct *vma;
395         if (ksm_test_exit(mm))
396                 return NULL;
397         vma = find_vma(mm, addr);
398         if (!vma || vma->vm_start > addr)
399                 return NULL;
400         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
401                 return NULL;
402         return vma;
403 }
404
405 static void break_cow(struct rmap_item *rmap_item)
406 {
407         struct mm_struct *mm = rmap_item->mm;
408         unsigned long addr = rmap_item->address;
409         struct vm_area_struct *vma;
410
411         /*
412          * It is not an accident that whenever we want to break COW
413          * to undo, we also need to drop a reference to the anon_vma.
414          */
415         put_anon_vma(rmap_item->anon_vma);
416
417         down_read(&mm->mmap_sem);
418         vma = find_mergeable_vma(mm, addr);
419         if (vma)
420                 break_ksm(vma, addr);
421         up_read(&mm->mmap_sem);
422 }
423
424 static struct page *page_trans_compound_anon(struct page *page)
425 {
426         if (PageTransCompound(page)) {
427                 struct page *head = compound_trans_head(page);
428                 /*
429                  * head may actually be splitted and freed from under
430                  * us but it's ok here.
431                  */
432                 if (PageAnon(head))
433                         return head;
434         }
435         return NULL;
436 }
437
438 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
439 {
440         struct mm_struct *mm = rmap_item->mm;
441         unsigned long addr = rmap_item->address;
442         struct vm_area_struct *vma;
443         struct page *page;
444
445         down_read(&mm->mmap_sem);
446         vma = find_mergeable_vma(mm, addr);
447         if (!vma)
448                 goto out;
449
450         page = follow_page(vma, addr, FOLL_GET);
451         if (IS_ERR_OR_NULL(page))
452                 goto out;
453         if (PageAnon(page) || page_trans_compound_anon(page)) {
454                 flush_anon_page(vma, page, addr);
455                 flush_dcache_page(page);
456         } else {
457                 put_page(page);
458 out:            page = NULL;
459         }
460         up_read(&mm->mmap_sem);
461         return page;
462 }
463
464 /*
465  * This helper is used for getting right index into array of tree roots.
466  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
467  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
468  * every node has its own stable and unstable tree.
469  */
470 static inline int get_kpfn_nid(unsigned long kpfn)
471 {
472         return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
473 }
474
475 static void remove_node_from_stable_tree(struct stable_node *stable_node)
476 {
477         struct rmap_item *rmap_item;
478         struct hlist_node *hlist;
479         int nid;
480
481         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
482                 if (rmap_item->hlist.next)
483                         ksm_pages_sharing--;
484                 else
485                         ksm_pages_shared--;
486                 put_anon_vma(rmap_item->anon_vma);
487                 rmap_item->address &= PAGE_MASK;
488                 cond_resched();
489         }
490
491         nid = get_kpfn_nid(stable_node->kpfn);
492         rb_erase(&stable_node->node, &root_stable_tree[nid]);
493         free_stable_node(stable_node);
494 }
495
496 /*
497  * get_ksm_page: checks if the page indicated by the stable node
498  * is still its ksm page, despite having held no reference to it.
499  * In which case we can trust the content of the page, and it
500  * returns the gotten page; but if the page has now been zapped,
501  * remove the stale node from the stable tree and return NULL.
502  * But beware, the stable node's page might be being migrated.
503  *
504  * You would expect the stable_node to hold a reference to the ksm page.
505  * But if it increments the page's count, swapping out has to wait for
506  * ksmd to come around again before it can free the page, which may take
507  * seconds or even minutes: much too unresponsive.  So instead we use a
508  * "keyhole reference": access to the ksm page from the stable node peeps
509  * out through its keyhole to see if that page still holds the right key,
510  * pointing back to this stable node.  This relies on freeing a PageAnon
511  * page to reset its page->mapping to NULL, and relies on no other use of
512  * a page to put something that might look like our key in page->mapping.
513  * is on its way to being freed; but it is an anomaly to bear in mind.
514  */
515 static struct page *get_ksm_page(struct stable_node *stable_node, bool locked)
516 {
517         struct page *page;
518         void *expected_mapping;
519         unsigned long kpfn;
520
521         expected_mapping = (void *)stable_node +
522                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
523 again:
524         kpfn = ACCESS_ONCE(stable_node->kpfn);
525         page = pfn_to_page(kpfn);
526
527         /*
528          * page is computed from kpfn, so on most architectures reading
529          * page->mapping is naturally ordered after reading node->kpfn,
530          * but on Alpha we need to be more careful.
531          */
532         smp_read_barrier_depends();
533         if (ACCESS_ONCE(page->mapping) != expected_mapping)
534                 goto stale;
535
536         /*
537          * We cannot do anything with the page while its refcount is 0.
538          * Usually 0 means free, or tail of a higher-order page: in which
539          * case this node is no longer referenced, and should be freed;
540          * however, it might mean that the page is under page_freeze_refs().
541          * The __remove_mapping() case is easy, again the node is now stale;
542          * but if page is swapcache in migrate_page_move_mapping(), it might
543          * still be our page, in which case it's essential to keep the node.
544          */
545         while (!get_page_unless_zero(page)) {
546                 /*
547                  * Another check for page->mapping != expected_mapping would
548                  * work here too.  We have chosen the !PageSwapCache test to
549                  * optimize the common case, when the page is or is about to
550                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
551                  * in the freeze_refs section of __remove_mapping(); but Anon
552                  * page->mapping reset to NULL later, in free_pages_prepare().
553                  */
554                 if (!PageSwapCache(page))
555                         goto stale;
556                 cpu_relax();
557         }
558
559         if (ACCESS_ONCE(page->mapping) != expected_mapping) {
560                 put_page(page);
561                 goto stale;
562         }
563
564         if (locked) {
565                 lock_page(page);
566                 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
567                         unlock_page(page);
568                         put_page(page);
569                         goto stale;
570                 }
571         }
572         return page;
573
574 stale:
575         /*
576          * We come here from above when page->mapping or !PageSwapCache
577          * suggests that the node is stale; but it might be under migration.
578          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
579          * before checking whether node->kpfn has been changed.
580          */
581         smp_rmb();
582         if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
583                 goto again;
584         remove_node_from_stable_tree(stable_node);
585         return NULL;
586 }
587
588 /*
589  * Removing rmap_item from stable or unstable tree.
590  * This function will clean the information from the stable/unstable tree.
591  */
592 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
593 {
594         if (rmap_item->address & STABLE_FLAG) {
595                 struct stable_node *stable_node;
596                 struct page *page;
597
598                 stable_node = rmap_item->head;
599                 page = get_ksm_page(stable_node, true);
600                 if (!page)
601                         goto out;
602
603                 hlist_del(&rmap_item->hlist);
604                 unlock_page(page);
605                 put_page(page);
606
607                 if (stable_node->hlist.first)
608                         ksm_pages_sharing--;
609                 else
610                         ksm_pages_shared--;
611
612                 put_anon_vma(rmap_item->anon_vma);
613                 rmap_item->address &= PAGE_MASK;
614
615         } else if (rmap_item->address & UNSTABLE_FLAG) {
616                 unsigned char age;
617                 /*
618                  * Usually ksmd can and must skip the rb_erase, because
619                  * root_unstable_tree was already reset to RB_ROOT.
620                  * But be careful when an mm is exiting: do the rb_erase
621                  * if this rmap_item was inserted by this scan, rather
622                  * than left over from before.
623                  */
624                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
625                 BUG_ON(age > 1);
626                 if (!age)
627                         rb_erase(&rmap_item->node,
628                                  &root_unstable_tree[NUMA(rmap_item->nid)]);
629                 ksm_pages_unshared--;
630                 rmap_item->address &= PAGE_MASK;
631         }
632 out:
633         cond_resched();         /* we're called from many long loops */
634 }
635
636 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
637                                        struct rmap_item **rmap_list)
638 {
639         while (*rmap_list) {
640                 struct rmap_item *rmap_item = *rmap_list;
641                 *rmap_list = rmap_item->rmap_list;
642                 remove_rmap_item_from_tree(rmap_item);
643                 free_rmap_item(rmap_item);
644         }
645 }
646
647 /*
648  * Though it's very tempting to unmerge rmap_items from stable tree rather
649  * than check every pte of a given vma, the locking doesn't quite work for
650  * that - an rmap_item is assigned to the stable tree after inserting ksm
651  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
652  * rmap_items from parent to child at fork time (so as not to waste time
653  * if exit comes before the next scan reaches it).
654  *
655  * Similarly, although we'd like to remove rmap_items (so updating counts
656  * and freeing memory) when unmerging an area, it's easier to leave that
657  * to the next pass of ksmd - consider, for example, how ksmd might be
658  * in cmp_and_merge_page on one of the rmap_items we would be removing.
659  */
660 static int unmerge_ksm_pages(struct vm_area_struct *vma,
661                              unsigned long start, unsigned long end)
662 {
663         unsigned long addr;
664         int err = 0;
665
666         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
667                 if (ksm_test_exit(vma->vm_mm))
668                         break;
669                 if (signal_pending(current))
670                         err = -ERESTARTSYS;
671                 else
672                         err = break_ksm(vma, addr);
673         }
674         return err;
675 }
676
677 #ifdef CONFIG_SYSFS
678 /*
679  * Only called through the sysfs control interface:
680  */
681 static int remove_stable_node(struct stable_node *stable_node)
682 {
683         struct page *page;
684         int err;
685
686         page = get_ksm_page(stable_node, true);
687         if (!page) {
688                 /*
689                  * get_ksm_page did remove_node_from_stable_tree itself.
690                  */
691                 return 0;
692         }
693
694         if (WARN_ON_ONCE(page_mapped(page)))
695                 err = -EBUSY;
696         else {
697                 /*
698                  * This page might be in a pagevec waiting to be freed,
699                  * or it might be PageSwapCache (perhaps under writeback),
700                  * or it might have been removed from swapcache a moment ago.
701                  */
702                 set_page_stable_node(page, NULL);
703                 remove_node_from_stable_tree(stable_node);
704                 err = 0;
705         }
706
707         unlock_page(page);
708         put_page(page);
709         return err;
710 }
711
712 static int remove_all_stable_nodes(void)
713 {
714         struct stable_node *stable_node;
715         int nid;
716         int err = 0;
717
718         for (nid = 0; nid < nr_node_ids; nid++) {
719                 while (root_stable_tree[nid].rb_node) {
720                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
721                                                 struct stable_node, node);
722                         if (remove_stable_node(stable_node)) {
723                                 err = -EBUSY;
724                                 break;  /* proceed to next nid */
725                         }
726                         cond_resched();
727                 }
728         }
729         return err;
730 }
731
732 static int unmerge_and_remove_all_rmap_items(void)
733 {
734         struct mm_slot *mm_slot;
735         struct mm_struct *mm;
736         struct vm_area_struct *vma;
737         int err = 0;
738
739         spin_lock(&ksm_mmlist_lock);
740         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
741                                                 struct mm_slot, mm_list);
742         spin_unlock(&ksm_mmlist_lock);
743
744         for (mm_slot = ksm_scan.mm_slot;
745                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
746                 mm = mm_slot->mm;
747                 down_read(&mm->mmap_sem);
748                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
749                         if (ksm_test_exit(mm))
750                                 break;
751                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
752                                 continue;
753                         err = unmerge_ksm_pages(vma,
754                                                 vma->vm_start, vma->vm_end);
755                         if (err)
756                                 goto error;
757                 }
758
759                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
760
761                 spin_lock(&ksm_mmlist_lock);
762                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
763                                                 struct mm_slot, mm_list);
764                 if (ksm_test_exit(mm)) {
765                         hash_del(&mm_slot->link);
766                         list_del(&mm_slot->mm_list);
767                         spin_unlock(&ksm_mmlist_lock);
768
769                         free_mm_slot(mm_slot);
770                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
771                         up_read(&mm->mmap_sem);
772                         mmdrop(mm);
773                 } else {
774                         spin_unlock(&ksm_mmlist_lock);
775                         up_read(&mm->mmap_sem);
776                 }
777         }
778
779         /* Clean up stable nodes, but don't worry if some are still busy */
780         remove_all_stable_nodes();
781         ksm_scan.seqnr = 0;
782         return 0;
783
784 error:
785         up_read(&mm->mmap_sem);
786         spin_lock(&ksm_mmlist_lock);
787         ksm_scan.mm_slot = &ksm_mm_head;
788         spin_unlock(&ksm_mmlist_lock);
789         return err;
790 }
791 #endif /* CONFIG_SYSFS */
792
793 static u32 calc_checksum(struct page *page)
794 {
795         u32 checksum;
796         void *addr = kmap_atomic(page);
797         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
798         kunmap_atomic(addr);
799         return checksum;
800 }
801
802 static int memcmp_pages(struct page *page1, struct page *page2)
803 {
804         char *addr1, *addr2;
805         int ret;
806
807         addr1 = kmap_atomic(page1);
808         addr2 = kmap_atomic(page2);
809         ret = memcmp(addr1, addr2, PAGE_SIZE);
810         kunmap_atomic(addr2);
811         kunmap_atomic(addr1);
812         return ret;
813 }
814
815 static inline int pages_identical(struct page *page1, struct page *page2)
816 {
817         return !memcmp_pages(page1, page2);
818 }
819
820 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
821                               pte_t *orig_pte)
822 {
823         struct mm_struct *mm = vma->vm_mm;
824         unsigned long addr;
825         pte_t *ptep;
826         spinlock_t *ptl;
827         int swapped;
828         int err = -EFAULT;
829         unsigned long mmun_start;       /* For mmu_notifiers */
830         unsigned long mmun_end;         /* For mmu_notifiers */
831
832         addr = page_address_in_vma(page, vma);
833         if (addr == -EFAULT)
834                 goto out;
835
836         BUG_ON(PageTransCompound(page));
837
838         mmun_start = addr;
839         mmun_end   = addr + PAGE_SIZE;
840         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
841
842         ptep = page_check_address(page, mm, addr, &ptl, 0);
843         if (!ptep)
844                 goto out_mn;
845
846         if (pte_write(*ptep) || pte_dirty(*ptep)) {
847                 pte_t entry;
848
849                 swapped = PageSwapCache(page);
850                 flush_cache_page(vma, addr, page_to_pfn(page));
851                 /*
852                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
853                  * take any lock, therefore the check that we are going to make
854                  * with the pagecount against the mapcount is racey and
855                  * O_DIRECT can happen right after the check.
856                  * So we clear the pte and flush the tlb before the check
857                  * this assure us that no O_DIRECT can happen after the check
858                  * or in the middle of the check.
859                  */
860                 entry = ptep_clear_flush(vma, addr, ptep);
861                 /*
862                  * Check that no O_DIRECT or similar I/O is in progress on the
863                  * page
864                  */
865                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
866                         set_pte_at(mm, addr, ptep, entry);
867                         goto out_unlock;
868                 }
869                 if (pte_dirty(entry))
870                         set_page_dirty(page);
871                 entry = pte_mkclean(pte_wrprotect(entry));
872                 set_pte_at_notify(mm, addr, ptep, entry);
873         }
874         *orig_pte = *ptep;
875         err = 0;
876
877 out_unlock:
878         pte_unmap_unlock(ptep, ptl);
879 out_mn:
880         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
881 out:
882         return err;
883 }
884
885 /**
886  * replace_page - replace page in vma by new ksm page
887  * @vma:      vma that holds the pte pointing to page
888  * @page:     the page we are replacing by kpage
889  * @kpage:    the ksm page we replace page by
890  * @orig_pte: the original value of the pte
891  *
892  * Returns 0 on success, -EFAULT on failure.
893  */
894 static int replace_page(struct vm_area_struct *vma, struct page *page,
895                         struct page *kpage, pte_t orig_pte)
896 {
897         struct mm_struct *mm = vma->vm_mm;
898         pmd_t *pmd;
899         pte_t *ptep;
900         spinlock_t *ptl;
901         unsigned long addr;
902         int err = -EFAULT;
903         unsigned long mmun_start;       /* For mmu_notifiers */
904         unsigned long mmun_end;         /* For mmu_notifiers */
905
906         addr = page_address_in_vma(page, vma);
907         if (addr == -EFAULT)
908                 goto out;
909
910         pmd = mm_find_pmd(mm, addr);
911         if (!pmd)
912                 goto out;
913         BUG_ON(pmd_trans_huge(*pmd));
914
915         mmun_start = addr;
916         mmun_end   = addr + PAGE_SIZE;
917         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
918
919         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
920         if (!pte_same(*ptep, orig_pte)) {
921                 pte_unmap_unlock(ptep, ptl);
922                 goto out_mn;
923         }
924
925         get_page(kpage);
926         page_add_anon_rmap(kpage, vma, addr);
927
928         flush_cache_page(vma, addr, pte_pfn(*ptep));
929         ptep_clear_flush(vma, addr, ptep);
930         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
931
932         page_remove_rmap(page);
933         if (!page_mapped(page))
934                 try_to_free_swap(page);
935         put_page(page);
936
937         pte_unmap_unlock(ptep, ptl);
938         err = 0;
939 out_mn:
940         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
941 out:
942         return err;
943 }
944
945 static int page_trans_compound_anon_split(struct page *page)
946 {
947         int ret = 0;
948         struct page *transhuge_head = page_trans_compound_anon(page);
949         if (transhuge_head) {
950                 /* Get the reference on the head to split it. */
951                 if (get_page_unless_zero(transhuge_head)) {
952                         /*
953                          * Recheck we got the reference while the head
954                          * was still anonymous.
955                          */
956                         if (PageAnon(transhuge_head))
957                                 ret = split_huge_page(transhuge_head);
958                         else
959                                 /*
960                                  * Retry later if split_huge_page run
961                                  * from under us.
962                                  */
963                                 ret = 1;
964                         put_page(transhuge_head);
965                 } else
966                         /* Retry later if split_huge_page run from under us. */
967                         ret = 1;
968         }
969         return ret;
970 }
971
972 /*
973  * try_to_merge_one_page - take two pages and merge them into one
974  * @vma: the vma that holds the pte pointing to page
975  * @page: the PageAnon page that we want to replace with kpage
976  * @kpage: the PageKsm page that we want to map instead of page,
977  *         or NULL the first time when we want to use page as kpage.
978  *
979  * This function returns 0 if the pages were merged, -EFAULT otherwise.
980  */
981 static int try_to_merge_one_page(struct vm_area_struct *vma,
982                                  struct page *page, struct page *kpage)
983 {
984         pte_t orig_pte = __pte(0);
985         int err = -EFAULT;
986
987         if (page == kpage)                      /* ksm page forked */
988                 return 0;
989
990         if (!(vma->vm_flags & VM_MERGEABLE))
991                 goto out;
992         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
993                 goto out;
994         BUG_ON(PageTransCompound(page));
995         if (!PageAnon(page))
996                 goto out;
997
998         /*
999          * We need the page lock to read a stable PageSwapCache in
1000          * write_protect_page().  We use trylock_page() instead of
1001          * lock_page() because we don't want to wait here - we
1002          * prefer to continue scanning and merging different pages,
1003          * then come back to this page when it is unlocked.
1004          */
1005         if (!trylock_page(page))
1006                 goto out;
1007         /*
1008          * If this anonymous page is mapped only here, its pte may need
1009          * to be write-protected.  If it's mapped elsewhere, all of its
1010          * ptes are necessarily already write-protected.  But in either
1011          * case, we need to lock and check page_count is not raised.
1012          */
1013         if (write_protect_page(vma, page, &orig_pte) == 0) {
1014                 if (!kpage) {
1015                         /*
1016                          * While we hold page lock, upgrade page from
1017                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1018                          * stable_tree_insert() will update stable_node.
1019                          */
1020                         set_page_stable_node(page, NULL);
1021                         mark_page_accessed(page);
1022                         err = 0;
1023                 } else if (pages_identical(page, kpage))
1024                         err = replace_page(vma, page, kpage, orig_pte);
1025         }
1026
1027         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1028                 munlock_vma_page(page);
1029                 if (!PageMlocked(kpage)) {
1030                         unlock_page(page);
1031                         lock_page(kpage);
1032                         mlock_vma_page(kpage);
1033                         page = kpage;           /* for final unlock */
1034                 }
1035         }
1036
1037         unlock_page(page);
1038 out:
1039         return err;
1040 }
1041
1042 /*
1043  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1044  * but no new kernel page is allocated: kpage must already be a ksm page.
1045  *
1046  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1047  */
1048 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1049                                       struct page *page, struct page *kpage)
1050 {
1051         struct mm_struct *mm = rmap_item->mm;
1052         struct vm_area_struct *vma;
1053         int err = -EFAULT;
1054
1055         down_read(&mm->mmap_sem);
1056         if (ksm_test_exit(mm))
1057                 goto out;
1058         vma = find_vma(mm, rmap_item->address);
1059         if (!vma || vma->vm_start > rmap_item->address)
1060                 goto out;
1061
1062         err = try_to_merge_one_page(vma, page, kpage);
1063         if (err)
1064                 goto out;
1065
1066         /* Must get reference to anon_vma while still holding mmap_sem */
1067         rmap_item->anon_vma = vma->anon_vma;
1068         get_anon_vma(vma->anon_vma);
1069 out:
1070         up_read(&mm->mmap_sem);
1071         return err;
1072 }
1073
1074 /*
1075  * try_to_merge_two_pages - take two identical pages and prepare them
1076  * to be merged into one page.
1077  *
1078  * This function returns the kpage if we successfully merged two identical
1079  * pages into one ksm page, NULL otherwise.
1080  *
1081  * Note that this function upgrades page to ksm page: if one of the pages
1082  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1083  */
1084 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1085                                            struct page *page,
1086                                            struct rmap_item *tree_rmap_item,
1087                                            struct page *tree_page)
1088 {
1089         int err;
1090
1091         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1092         if (!err) {
1093                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1094                                                         tree_page, page);
1095                 /*
1096                  * If that fails, we have a ksm page with only one pte
1097                  * pointing to it: so break it.
1098                  */
1099                 if (err)
1100                         break_cow(rmap_item);
1101         }
1102         return err ? NULL : page;
1103 }
1104
1105 /*
1106  * stable_tree_search - search for page inside the stable tree
1107  *
1108  * This function checks if there is a page inside the stable tree
1109  * with identical content to the page that we are scanning right now.
1110  *
1111  * This function returns the stable tree node of identical content if found,
1112  * NULL otherwise.
1113  */
1114 static struct page *stable_tree_search(struct page *page)
1115 {
1116         struct rb_node *node;
1117         struct stable_node *stable_node;
1118         int nid;
1119
1120         stable_node = page_stable_node(page);
1121         if (stable_node) {                      /* ksm page forked */
1122                 get_page(page);
1123                 return page;
1124         }
1125
1126         nid = get_kpfn_nid(page_to_pfn(page));
1127         node = root_stable_tree[nid].rb_node;
1128
1129         while (node) {
1130                 struct page *tree_page;
1131                 int ret;
1132
1133                 cond_resched();
1134                 stable_node = rb_entry(node, struct stable_node, node);
1135                 tree_page = get_ksm_page(stable_node, false);
1136                 if (!tree_page)
1137                         return NULL;
1138
1139                 ret = memcmp_pages(page, tree_page);
1140                 put_page(tree_page);
1141
1142                 if (ret < 0)
1143                         node = node->rb_left;
1144                 else if (ret > 0)
1145                         node = node->rb_right;
1146                 else {
1147                         /*
1148                          * Lock and unlock the stable_node's page (which
1149                          * might already have been migrated) so that page
1150                          * migration is sure to notice its raised count.
1151                          * It would be more elegant to return stable_node
1152                          * than kpage, but that involves more changes.
1153                          */
1154                         tree_page = get_ksm_page(stable_node, true);
1155                         if (tree_page)
1156                                 unlock_page(tree_page);
1157                         return tree_page;
1158                 }
1159         }
1160
1161         return NULL;
1162 }
1163
1164 /*
1165  * stable_tree_insert - insert stable tree node pointing to new ksm page
1166  * into the stable tree.
1167  *
1168  * This function returns the stable tree node just allocated on success,
1169  * NULL otherwise.
1170  */
1171 static struct stable_node *stable_tree_insert(struct page *kpage)
1172 {
1173         int nid;
1174         unsigned long kpfn;
1175         struct rb_node **new;
1176         struct rb_node *parent = NULL;
1177         struct stable_node *stable_node;
1178
1179         kpfn = page_to_pfn(kpage);
1180         nid = get_kpfn_nid(kpfn);
1181         new = &root_stable_tree[nid].rb_node;
1182
1183         while (*new) {
1184                 struct page *tree_page;
1185                 int ret;
1186
1187                 cond_resched();
1188                 stable_node = rb_entry(*new, struct stable_node, node);
1189                 tree_page = get_ksm_page(stable_node, false);
1190                 if (!tree_page)
1191                         return NULL;
1192
1193                 ret = memcmp_pages(kpage, tree_page);
1194                 put_page(tree_page);
1195
1196                 parent = *new;
1197                 if (ret < 0)
1198                         new = &parent->rb_left;
1199                 else if (ret > 0)
1200                         new = &parent->rb_right;
1201                 else {
1202                         /*
1203                          * It is not a bug that stable_tree_search() didn't
1204                          * find this node: because at that time our page was
1205                          * not yet write-protected, so may have changed since.
1206                          */
1207                         return NULL;
1208                 }
1209         }
1210
1211         stable_node = alloc_stable_node();
1212         if (!stable_node)
1213                 return NULL;
1214
1215         INIT_HLIST_HEAD(&stable_node->hlist);
1216         stable_node->kpfn = kpfn;
1217         set_page_stable_node(kpage, stable_node);
1218         rb_link_node(&stable_node->node, parent, new);
1219         rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
1220
1221         return stable_node;
1222 }
1223
1224 /*
1225  * unstable_tree_search_insert - search for identical page,
1226  * else insert rmap_item into the unstable tree.
1227  *
1228  * This function searches for a page in the unstable tree identical to the
1229  * page currently being scanned; and if no identical page is found in the
1230  * tree, we insert rmap_item as a new object into the unstable tree.
1231  *
1232  * This function returns pointer to rmap_item found to be identical
1233  * to the currently scanned page, NULL otherwise.
1234  *
1235  * This function does both searching and inserting, because they share
1236  * the same walking algorithm in an rbtree.
1237  */
1238 static
1239 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1240                                               struct page *page,
1241                                               struct page **tree_pagep)
1242 {
1243         struct rb_node **new;
1244         struct rb_root *root;
1245         struct rb_node *parent = NULL;
1246         int nid;
1247
1248         nid = get_kpfn_nid(page_to_pfn(page));
1249         root = &root_unstable_tree[nid];
1250         new = &root->rb_node;
1251
1252         while (*new) {
1253                 struct rmap_item *tree_rmap_item;
1254                 struct page *tree_page;
1255                 int ret;
1256
1257                 cond_resched();
1258                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1259                 tree_page = get_mergeable_page(tree_rmap_item);
1260                 if (IS_ERR_OR_NULL(tree_page))
1261                         return NULL;
1262
1263                 /*
1264                  * Don't substitute a ksm page for a forked page.
1265                  */
1266                 if (page == tree_page) {
1267                         put_page(tree_page);
1268                         return NULL;
1269                 }
1270
1271                 /*
1272                  * If tree_page has been migrated to another NUMA node, it
1273                  * will be flushed out and put into the right unstable tree
1274                  * next time: only merge with it if merge_across_nodes.
1275                  */
1276                 if (!ksm_merge_across_nodes && page_to_nid(tree_page) != nid) {
1277                         put_page(tree_page);
1278                         return NULL;
1279                 }
1280
1281                 ret = memcmp_pages(page, tree_page);
1282
1283                 parent = *new;
1284                 if (ret < 0) {
1285                         put_page(tree_page);
1286                         new = &parent->rb_left;
1287                 } else if (ret > 0) {
1288                         put_page(tree_page);
1289                         new = &parent->rb_right;
1290                 } else {
1291                         *tree_pagep = tree_page;
1292                         return tree_rmap_item;
1293                 }
1294         }
1295
1296         rmap_item->address |= UNSTABLE_FLAG;
1297         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1298         DO_NUMA(rmap_item->nid = nid);
1299         rb_link_node(&rmap_item->node, parent, new);
1300         rb_insert_color(&rmap_item->node, root);
1301
1302         ksm_pages_unshared++;
1303         return NULL;
1304 }
1305
1306 /*
1307  * stable_tree_append - add another rmap_item to the linked list of
1308  * rmap_items hanging off a given node of the stable tree, all sharing
1309  * the same ksm page.
1310  */
1311 static void stable_tree_append(struct rmap_item *rmap_item,
1312                                struct stable_node *stable_node)
1313 {
1314         /*
1315          * Usually rmap_item->nid is already set correctly,
1316          * but it may be wrong after switching merge_across_nodes.
1317          */
1318         DO_NUMA(rmap_item->nid = get_kpfn_nid(stable_node->kpfn));
1319         rmap_item->head = stable_node;
1320         rmap_item->address |= STABLE_FLAG;
1321         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1322
1323         if (rmap_item->hlist.next)
1324                 ksm_pages_sharing++;
1325         else
1326                 ksm_pages_shared++;
1327 }
1328
1329 /*
1330  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1331  * if not, compare checksum to previous and if it's the same, see if page can
1332  * be inserted into the unstable tree, or merged with a page already there and
1333  * both transferred to the stable tree.
1334  *
1335  * @page: the page that we are searching identical page to.
1336  * @rmap_item: the reverse mapping into the virtual address of this page
1337  */
1338 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1339 {
1340         struct rmap_item *tree_rmap_item;
1341         struct page *tree_page = NULL;
1342         struct stable_node *stable_node;
1343         struct page *kpage;
1344         unsigned int checksum;
1345         int err;
1346
1347         remove_rmap_item_from_tree(rmap_item);
1348
1349         /* We first start with searching the page inside the stable tree */
1350         kpage = stable_tree_search(page);
1351         if (kpage) {
1352                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1353                 if (!err) {
1354                         /*
1355                          * The page was successfully merged:
1356                          * add its rmap_item to the stable tree.
1357                          */
1358                         lock_page(kpage);
1359                         stable_tree_append(rmap_item, page_stable_node(kpage));
1360                         unlock_page(kpage);
1361                 }
1362                 put_page(kpage);
1363                 return;
1364         }
1365
1366         /*
1367          * If the hash value of the page has changed from the last time
1368          * we calculated it, this page is changing frequently: therefore we
1369          * don't want to insert it in the unstable tree, and we don't want
1370          * to waste our time searching for something identical to it there.
1371          */
1372         checksum = calc_checksum(page);
1373         if (rmap_item->oldchecksum != checksum) {
1374                 rmap_item->oldchecksum = checksum;
1375                 return;
1376         }
1377
1378         tree_rmap_item =
1379                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1380         if (tree_rmap_item) {
1381                 kpage = try_to_merge_two_pages(rmap_item, page,
1382                                                 tree_rmap_item, tree_page);
1383                 put_page(tree_page);
1384                 /*
1385                  * As soon as we merge this page, we want to remove the
1386                  * rmap_item of the page we have merged with from the unstable
1387                  * tree, and insert it instead as new node in the stable tree.
1388                  */
1389                 if (kpage) {
1390                         remove_rmap_item_from_tree(tree_rmap_item);
1391
1392                         lock_page(kpage);
1393                         stable_node = stable_tree_insert(kpage);
1394                         if (stable_node) {
1395                                 stable_tree_append(tree_rmap_item, stable_node);
1396                                 stable_tree_append(rmap_item, stable_node);
1397                         }
1398                         unlock_page(kpage);
1399
1400                         /*
1401                          * If we fail to insert the page into the stable tree,
1402                          * we will have 2 virtual addresses that are pointing
1403                          * to a ksm page left outside the stable tree,
1404                          * in which case we need to break_cow on both.
1405                          */
1406                         if (!stable_node) {
1407                                 break_cow(tree_rmap_item);
1408                                 break_cow(rmap_item);
1409                         }
1410                 }
1411         }
1412 }
1413
1414 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1415                                             struct rmap_item **rmap_list,
1416                                             unsigned long addr)
1417 {
1418         struct rmap_item *rmap_item;
1419
1420         while (*rmap_list) {
1421                 rmap_item = *rmap_list;
1422                 if ((rmap_item->address & PAGE_MASK) == addr)
1423                         return rmap_item;
1424                 if (rmap_item->address > addr)
1425                         break;
1426                 *rmap_list = rmap_item->rmap_list;
1427                 remove_rmap_item_from_tree(rmap_item);
1428                 free_rmap_item(rmap_item);
1429         }
1430
1431         rmap_item = alloc_rmap_item();
1432         if (rmap_item) {
1433                 /* It has already been zeroed */
1434                 rmap_item->mm = mm_slot->mm;
1435                 rmap_item->address = addr;
1436                 rmap_item->rmap_list = *rmap_list;
1437                 *rmap_list = rmap_item;
1438         }
1439         return rmap_item;
1440 }
1441
1442 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1443 {
1444         struct mm_struct *mm;
1445         struct mm_slot *slot;
1446         struct vm_area_struct *vma;
1447         struct rmap_item *rmap_item;
1448         int nid;
1449
1450         if (list_empty(&ksm_mm_head.mm_list))
1451                 return NULL;
1452
1453         slot = ksm_scan.mm_slot;
1454         if (slot == &ksm_mm_head) {
1455                 /*
1456                  * A number of pages can hang around indefinitely on per-cpu
1457                  * pagevecs, raised page count preventing write_protect_page
1458                  * from merging them.  Though it doesn't really matter much,
1459                  * it is puzzling to see some stuck in pages_volatile until
1460                  * other activity jostles them out, and they also prevented
1461                  * LTP's KSM test from succeeding deterministically; so drain
1462                  * them here (here rather than on entry to ksm_do_scan(),
1463                  * so we don't IPI too often when pages_to_scan is set low).
1464                  */
1465                 lru_add_drain_all();
1466
1467                 for (nid = 0; nid < nr_node_ids; nid++)
1468                         root_unstable_tree[nid] = RB_ROOT;
1469
1470                 spin_lock(&ksm_mmlist_lock);
1471                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1472                 ksm_scan.mm_slot = slot;
1473                 spin_unlock(&ksm_mmlist_lock);
1474                 /*
1475                  * Although we tested list_empty() above, a racing __ksm_exit
1476                  * of the last mm on the list may have removed it since then.
1477                  */
1478                 if (slot == &ksm_mm_head)
1479                         return NULL;
1480 next_mm:
1481                 ksm_scan.address = 0;
1482                 ksm_scan.rmap_list = &slot->rmap_list;
1483         }
1484
1485         mm = slot->mm;
1486         down_read(&mm->mmap_sem);
1487         if (ksm_test_exit(mm))
1488                 vma = NULL;
1489         else
1490                 vma = find_vma(mm, ksm_scan.address);
1491
1492         for (; vma; vma = vma->vm_next) {
1493                 if (!(vma->vm_flags & VM_MERGEABLE))
1494                         continue;
1495                 if (ksm_scan.address < vma->vm_start)
1496                         ksm_scan.address = vma->vm_start;
1497                 if (!vma->anon_vma)
1498                         ksm_scan.address = vma->vm_end;
1499
1500                 while (ksm_scan.address < vma->vm_end) {
1501                         if (ksm_test_exit(mm))
1502                                 break;
1503                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1504                         if (IS_ERR_OR_NULL(*page)) {
1505                                 ksm_scan.address += PAGE_SIZE;
1506                                 cond_resched();
1507                                 continue;
1508                         }
1509                         if (PageAnon(*page) ||
1510                             page_trans_compound_anon(*page)) {
1511                                 flush_anon_page(vma, *page, ksm_scan.address);
1512                                 flush_dcache_page(*page);
1513                                 rmap_item = get_next_rmap_item(slot,
1514                                         ksm_scan.rmap_list, ksm_scan.address);
1515                                 if (rmap_item) {
1516                                         ksm_scan.rmap_list =
1517                                                         &rmap_item->rmap_list;
1518                                         ksm_scan.address += PAGE_SIZE;
1519                                 } else
1520                                         put_page(*page);
1521                                 up_read(&mm->mmap_sem);
1522                                 return rmap_item;
1523                         }
1524                         put_page(*page);
1525                         ksm_scan.address += PAGE_SIZE;
1526                         cond_resched();
1527                 }
1528         }
1529
1530         if (ksm_test_exit(mm)) {
1531                 ksm_scan.address = 0;
1532                 ksm_scan.rmap_list = &slot->rmap_list;
1533         }
1534         /*
1535          * Nuke all the rmap_items that are above this current rmap:
1536          * because there were no VM_MERGEABLE vmas with such addresses.
1537          */
1538         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1539
1540         spin_lock(&ksm_mmlist_lock);
1541         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1542                                                 struct mm_slot, mm_list);
1543         if (ksm_scan.address == 0) {
1544                 /*
1545                  * We've completed a full scan of all vmas, holding mmap_sem
1546                  * throughout, and found no VM_MERGEABLE: so do the same as
1547                  * __ksm_exit does to remove this mm from all our lists now.
1548                  * This applies either when cleaning up after __ksm_exit
1549                  * (but beware: we can reach here even before __ksm_exit),
1550                  * or when all VM_MERGEABLE areas have been unmapped (and
1551                  * mmap_sem then protects against race with MADV_MERGEABLE).
1552                  */
1553                 hash_del(&slot->link);
1554                 list_del(&slot->mm_list);
1555                 spin_unlock(&ksm_mmlist_lock);
1556
1557                 free_mm_slot(slot);
1558                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1559                 up_read(&mm->mmap_sem);
1560                 mmdrop(mm);
1561         } else {
1562                 spin_unlock(&ksm_mmlist_lock);
1563                 up_read(&mm->mmap_sem);
1564         }
1565
1566         /* Repeat until we've completed scanning the whole list */
1567         slot = ksm_scan.mm_slot;
1568         if (slot != &ksm_mm_head)
1569                 goto next_mm;
1570
1571         ksm_scan.seqnr++;
1572         return NULL;
1573 }
1574
1575 /**
1576  * ksm_do_scan  - the ksm scanner main worker function.
1577  * @scan_npages - number of pages we want to scan before we return.
1578  */
1579 static void ksm_do_scan(unsigned int scan_npages)
1580 {
1581         struct rmap_item *rmap_item;
1582         struct page *uninitialized_var(page);
1583
1584         while (scan_npages-- && likely(!freezing(current))) {
1585                 cond_resched();
1586                 rmap_item = scan_get_next_rmap_item(&page);
1587                 if (!rmap_item)
1588                         return;
1589                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1590                         cmp_and_merge_page(page, rmap_item);
1591                 put_page(page);
1592         }
1593 }
1594
1595 static int ksmd_should_run(void)
1596 {
1597         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1598 }
1599
1600 static int ksm_scan_thread(void *nothing)
1601 {
1602         set_freezable();
1603         set_user_nice(current, 5);
1604
1605         while (!kthread_should_stop()) {
1606                 mutex_lock(&ksm_thread_mutex);
1607                 if (ksmd_should_run())
1608                         ksm_do_scan(ksm_thread_pages_to_scan);
1609                 mutex_unlock(&ksm_thread_mutex);
1610
1611                 try_to_freeze();
1612
1613                 if (ksmd_should_run()) {
1614                         schedule_timeout_interruptible(
1615                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1616                 } else {
1617                         wait_event_freezable(ksm_thread_wait,
1618                                 ksmd_should_run() || kthread_should_stop());
1619                 }
1620         }
1621         return 0;
1622 }
1623
1624 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1625                 unsigned long end, int advice, unsigned long *vm_flags)
1626 {
1627         struct mm_struct *mm = vma->vm_mm;
1628         int err;
1629
1630         switch (advice) {
1631         case MADV_MERGEABLE:
1632                 /*
1633                  * Be somewhat over-protective for now!
1634                  */
1635                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1636                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1637                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1638                         return 0;               /* just ignore the advice */
1639
1640 #ifdef VM_SAO
1641                 if (*vm_flags & VM_SAO)
1642                         return 0;
1643 #endif
1644
1645                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1646                         err = __ksm_enter(mm);
1647                         if (err)
1648                                 return err;
1649                 }
1650
1651                 *vm_flags |= VM_MERGEABLE;
1652                 break;
1653
1654         case MADV_UNMERGEABLE:
1655                 if (!(*vm_flags & VM_MERGEABLE))
1656                         return 0;               /* just ignore the advice */
1657
1658                 if (vma->anon_vma) {
1659                         err = unmerge_ksm_pages(vma, start, end);
1660                         if (err)
1661                                 return err;
1662                 }
1663
1664                 *vm_flags &= ~VM_MERGEABLE;
1665                 break;
1666         }
1667
1668         return 0;
1669 }
1670
1671 int __ksm_enter(struct mm_struct *mm)
1672 {
1673         struct mm_slot *mm_slot;
1674         int needs_wakeup;
1675
1676         mm_slot = alloc_mm_slot();
1677         if (!mm_slot)
1678                 return -ENOMEM;
1679
1680         /* Check ksm_run too?  Would need tighter locking */
1681         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1682
1683         spin_lock(&ksm_mmlist_lock);
1684         insert_to_mm_slots_hash(mm, mm_slot);
1685         /*
1686          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1687          * insert just behind the scanning cursor, to let the area settle
1688          * down a little; when fork is followed by immediate exec, we don't
1689          * want ksmd to waste time setting up and tearing down an rmap_list.
1690          *
1691          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1692          * scanning cursor, otherwise KSM pages in newly forked mms will be
1693          * missed: then we might as well insert at the end of the list.
1694          */
1695         if (ksm_run & KSM_RUN_UNMERGE)
1696                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1697         else
1698                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1699         spin_unlock(&ksm_mmlist_lock);
1700
1701         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1702         atomic_inc(&mm->mm_count);
1703
1704         if (needs_wakeup)
1705                 wake_up_interruptible(&ksm_thread_wait);
1706
1707         return 0;
1708 }
1709
1710 void __ksm_exit(struct mm_struct *mm)
1711 {
1712         struct mm_slot *mm_slot;
1713         int easy_to_free = 0;
1714
1715         /*
1716          * This process is exiting: if it's straightforward (as is the
1717          * case when ksmd was never running), free mm_slot immediately.
1718          * But if it's at the cursor or has rmap_items linked to it, use
1719          * mmap_sem to synchronize with any break_cows before pagetables
1720          * are freed, and leave the mm_slot on the list for ksmd to free.
1721          * Beware: ksm may already have noticed it exiting and freed the slot.
1722          */
1723
1724         spin_lock(&ksm_mmlist_lock);
1725         mm_slot = get_mm_slot(mm);
1726         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1727                 if (!mm_slot->rmap_list) {
1728                         hash_del(&mm_slot->link);
1729                         list_del(&mm_slot->mm_list);
1730                         easy_to_free = 1;
1731                 } else {
1732                         list_move(&mm_slot->mm_list,
1733                                   &ksm_scan.mm_slot->mm_list);
1734                 }
1735         }
1736         spin_unlock(&ksm_mmlist_lock);
1737
1738         if (easy_to_free) {
1739                 free_mm_slot(mm_slot);
1740                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1741                 mmdrop(mm);
1742         } else if (mm_slot) {
1743                 down_write(&mm->mmap_sem);
1744                 up_write(&mm->mmap_sem);
1745         }
1746 }
1747
1748 struct page *ksm_might_need_to_copy(struct page *page,
1749                         struct vm_area_struct *vma, unsigned long address)
1750 {
1751         struct anon_vma *anon_vma = page_anon_vma(page);
1752         struct page *new_page;
1753
1754         if (PageKsm(page)) {
1755                 if (page_stable_node(page) &&
1756                     !(ksm_run & KSM_RUN_UNMERGE))
1757                         return page;    /* no need to copy it */
1758         } else if (!anon_vma) {
1759                 return page;            /* no need to copy it */
1760         } else if (anon_vma->root == vma->anon_vma->root &&
1761                  page->index == linear_page_index(vma, address)) {
1762                 return page;            /* still no need to copy it */
1763         }
1764         if (!PageUptodate(page))
1765                 return page;            /* let do_swap_page report the error */
1766
1767         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1768         if (new_page) {
1769                 copy_user_highpage(new_page, page, address, vma);
1770
1771                 SetPageDirty(new_page);
1772                 __SetPageUptodate(new_page);
1773                 __set_page_locked(new_page);
1774         }
1775
1776         return new_page;
1777 }
1778
1779 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1780                         unsigned long *vm_flags)
1781 {
1782         struct stable_node *stable_node;
1783         struct rmap_item *rmap_item;
1784         struct hlist_node *hlist;
1785         unsigned int mapcount = page_mapcount(page);
1786         int referenced = 0;
1787         int search_new_forks = 0;
1788
1789         VM_BUG_ON(!PageKsm(page));
1790         VM_BUG_ON(!PageLocked(page));
1791
1792         stable_node = page_stable_node(page);
1793         if (!stable_node)
1794                 return 0;
1795 again:
1796         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1797                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1798                 struct anon_vma_chain *vmac;
1799                 struct vm_area_struct *vma;
1800
1801                 anon_vma_lock_read(anon_vma);
1802                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1803                                                0, ULONG_MAX) {
1804                         vma = vmac->vma;
1805                         if (rmap_item->address < vma->vm_start ||
1806                             rmap_item->address >= vma->vm_end)
1807                                 continue;
1808                         /*
1809                          * Initially we examine only the vma which covers this
1810                          * rmap_item; but later, if there is still work to do,
1811                          * we examine covering vmas in other mms: in case they
1812                          * were forked from the original since ksmd passed.
1813                          */
1814                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1815                                 continue;
1816
1817                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1818                                 continue;
1819
1820                         referenced += page_referenced_one(page, vma,
1821                                 rmap_item->address, &mapcount, vm_flags);
1822                         if (!search_new_forks || !mapcount)
1823                                 break;
1824                 }
1825                 anon_vma_unlock_read(anon_vma);
1826                 if (!mapcount)
1827                         goto out;
1828         }
1829         if (!search_new_forks++)
1830                 goto again;
1831 out:
1832         return referenced;
1833 }
1834
1835 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1836 {
1837         struct stable_node *stable_node;
1838         struct hlist_node *hlist;
1839         struct rmap_item *rmap_item;
1840         int ret = SWAP_AGAIN;
1841         int search_new_forks = 0;
1842
1843         VM_BUG_ON(!PageKsm(page));
1844         VM_BUG_ON(!PageLocked(page));
1845
1846         stable_node = page_stable_node(page);
1847         if (!stable_node)
1848                 return SWAP_FAIL;
1849 again:
1850         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1851                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1852                 struct anon_vma_chain *vmac;
1853                 struct vm_area_struct *vma;
1854
1855                 anon_vma_lock_read(anon_vma);
1856                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1857                                                0, ULONG_MAX) {
1858                         vma = vmac->vma;
1859                         if (rmap_item->address < vma->vm_start ||
1860                             rmap_item->address >= vma->vm_end)
1861                                 continue;
1862                         /*
1863                          * Initially we examine only the vma which covers this
1864                          * rmap_item; but later, if there is still work to do,
1865                          * we examine covering vmas in other mms: in case they
1866                          * were forked from the original since ksmd passed.
1867                          */
1868                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1869                                 continue;
1870
1871                         ret = try_to_unmap_one(page, vma,
1872                                         rmap_item->address, flags);
1873                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1874                                 anon_vma_unlock_read(anon_vma);
1875                                 goto out;
1876                         }
1877                 }
1878                 anon_vma_unlock_read(anon_vma);
1879         }
1880         if (!search_new_forks++)
1881                 goto again;
1882 out:
1883         return ret;
1884 }
1885
1886 #ifdef CONFIG_MIGRATION
1887 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1888                   struct vm_area_struct *, unsigned long, void *), void *arg)
1889 {
1890         struct stable_node *stable_node;
1891         struct hlist_node *hlist;
1892         struct rmap_item *rmap_item;
1893         int ret = SWAP_AGAIN;
1894         int search_new_forks = 0;
1895
1896         VM_BUG_ON(!PageKsm(page));
1897         VM_BUG_ON(!PageLocked(page));
1898
1899         stable_node = page_stable_node(page);
1900         if (!stable_node)
1901                 return ret;
1902 again:
1903         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1904                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1905                 struct anon_vma_chain *vmac;
1906                 struct vm_area_struct *vma;
1907
1908                 anon_vma_lock_read(anon_vma);
1909                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1910                                                0, ULONG_MAX) {
1911                         vma = vmac->vma;
1912                         if (rmap_item->address < vma->vm_start ||
1913                             rmap_item->address >= vma->vm_end)
1914                                 continue;
1915                         /*
1916                          * Initially we examine only the vma which covers this
1917                          * rmap_item; but later, if there is still work to do,
1918                          * we examine covering vmas in other mms: in case they
1919                          * were forked from the original since ksmd passed.
1920                          */
1921                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1922                                 continue;
1923
1924                         ret = rmap_one(page, vma, rmap_item->address, arg);
1925                         if (ret != SWAP_AGAIN) {
1926                                 anon_vma_unlock_read(anon_vma);
1927                                 goto out;
1928                         }
1929                 }
1930                 anon_vma_unlock_read(anon_vma);
1931         }
1932         if (!search_new_forks++)
1933                 goto again;
1934 out:
1935         return ret;
1936 }
1937
1938 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1939 {
1940         struct stable_node *stable_node;
1941
1942         VM_BUG_ON(!PageLocked(oldpage));
1943         VM_BUG_ON(!PageLocked(newpage));
1944         VM_BUG_ON(newpage->mapping != oldpage->mapping);
1945
1946         stable_node = page_stable_node(newpage);
1947         if (stable_node) {
1948                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1949                 stable_node->kpfn = page_to_pfn(newpage);
1950                 /*
1951                  * newpage->mapping was set in advance; now we need smp_wmb()
1952                  * to make sure that the new stable_node->kpfn is visible
1953                  * to get_ksm_page() before it can see that oldpage->mapping
1954                  * has gone stale (or that PageSwapCache has been cleared).
1955                  */
1956                 smp_wmb();
1957                 set_page_stable_node(oldpage, NULL);
1958         }
1959 }
1960 #endif /* CONFIG_MIGRATION */
1961
1962 #ifdef CONFIG_MEMORY_HOTREMOVE
1963 static void ksm_check_stable_tree(unsigned long start_pfn,
1964                                   unsigned long end_pfn)
1965 {
1966         struct stable_node *stable_node;
1967         struct rb_node *node;
1968         int nid;
1969
1970         for (nid = 0; nid < nr_node_ids; nid++) {
1971                 node = rb_first(&root_stable_tree[nid]);
1972                 while (node) {
1973                         stable_node = rb_entry(node, struct stable_node, node);
1974                         if (stable_node->kpfn >= start_pfn &&
1975                             stable_node->kpfn < end_pfn) {
1976                                 /*
1977                                  * Don't get_ksm_page, page has already gone:
1978                                  * which is why we keep kpfn instead of page*
1979                                  */
1980                                 remove_node_from_stable_tree(stable_node);
1981                                 node = rb_first(&root_stable_tree[nid]);
1982                         } else
1983                                 node = rb_next(node);
1984                         cond_resched();
1985                 }
1986         }
1987 }
1988
1989 static int ksm_memory_callback(struct notifier_block *self,
1990                                unsigned long action, void *arg)
1991 {
1992         struct memory_notify *mn = arg;
1993
1994         switch (action) {
1995         case MEM_GOING_OFFLINE:
1996                 /*
1997                  * Keep it very simple for now: just lock out ksmd and
1998                  * MADV_UNMERGEABLE while any memory is going offline.
1999                  * mutex_lock_nested() is necessary because lockdep was alarmed
2000                  * that here we take ksm_thread_mutex inside notifier chain
2001                  * mutex, and later take notifier chain mutex inside
2002                  * ksm_thread_mutex to unlock it.   But that's safe because both
2003                  * are inside mem_hotplug_mutex.
2004                  */
2005                 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
2006                 break;
2007
2008         case MEM_OFFLINE:
2009                 /*
2010                  * Most of the work is done by page migration; but there might
2011                  * be a few stable_nodes left over, still pointing to struct
2012                  * pages which have been offlined: prune those from the tree,
2013                  * otherwise get_ksm_page() might later try to access a
2014                  * non-existent struct page.
2015                  */
2016                 ksm_check_stable_tree(mn->start_pfn,
2017                                       mn->start_pfn + mn->nr_pages);
2018                 /* fallthrough */
2019
2020         case MEM_CANCEL_OFFLINE:
2021                 mutex_unlock(&ksm_thread_mutex);
2022                 break;
2023         }
2024         return NOTIFY_OK;
2025 }
2026 #endif /* CONFIG_MEMORY_HOTREMOVE */
2027
2028 #ifdef CONFIG_SYSFS
2029 /*
2030  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2031  */
2032
2033 #define KSM_ATTR_RO(_name) \
2034         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2035 #define KSM_ATTR(_name) \
2036         static struct kobj_attribute _name##_attr = \
2037                 __ATTR(_name, 0644, _name##_show, _name##_store)
2038
2039 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2040                                     struct kobj_attribute *attr, char *buf)
2041 {
2042         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2043 }
2044
2045 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2046                                      struct kobj_attribute *attr,
2047                                      const char *buf, size_t count)
2048 {
2049         unsigned long msecs;
2050         int err;
2051
2052         err = strict_strtoul(buf, 10, &msecs);
2053         if (err || msecs > UINT_MAX)
2054                 return -EINVAL;
2055
2056         ksm_thread_sleep_millisecs = msecs;
2057
2058         return count;
2059 }
2060 KSM_ATTR(sleep_millisecs);
2061
2062 static ssize_t pages_to_scan_show(struct kobject *kobj,
2063                                   struct kobj_attribute *attr, char *buf)
2064 {
2065         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2066 }
2067
2068 static ssize_t pages_to_scan_store(struct kobject *kobj,
2069                                    struct kobj_attribute *attr,
2070                                    const char *buf, size_t count)
2071 {
2072         int err;
2073         unsigned long nr_pages;
2074
2075         err = strict_strtoul(buf, 10, &nr_pages);
2076         if (err || nr_pages > UINT_MAX)
2077                 return -EINVAL;
2078
2079         ksm_thread_pages_to_scan = nr_pages;
2080
2081         return count;
2082 }
2083 KSM_ATTR(pages_to_scan);
2084
2085 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2086                         char *buf)
2087 {
2088         return sprintf(buf, "%u\n", ksm_run);
2089 }
2090
2091 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2092                          const char *buf, size_t count)
2093 {
2094         int err;
2095         unsigned long flags;
2096
2097         err = strict_strtoul(buf, 10, &flags);
2098         if (err || flags > UINT_MAX)
2099                 return -EINVAL;
2100         if (flags > KSM_RUN_UNMERGE)
2101                 return -EINVAL;
2102
2103         /*
2104          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2105          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2106          * breaking COW to free the pages_shared (but leaves mm_slots
2107          * on the list for when ksmd may be set running again).
2108          */
2109
2110         mutex_lock(&ksm_thread_mutex);
2111         if (ksm_run != flags) {
2112                 ksm_run = flags;
2113                 if (flags & KSM_RUN_UNMERGE) {
2114                         set_current_oom_origin();
2115                         err = unmerge_and_remove_all_rmap_items();
2116                         clear_current_oom_origin();
2117                         if (err) {
2118                                 ksm_run = KSM_RUN_STOP;
2119                                 count = err;
2120                         }
2121                 }
2122         }
2123         mutex_unlock(&ksm_thread_mutex);
2124
2125         if (flags & KSM_RUN_MERGE)
2126                 wake_up_interruptible(&ksm_thread_wait);
2127
2128         return count;
2129 }
2130 KSM_ATTR(run);
2131
2132 #ifdef CONFIG_NUMA
2133 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2134                                 struct kobj_attribute *attr, char *buf)
2135 {
2136         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2137 }
2138
2139 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2140                                    struct kobj_attribute *attr,
2141                                    const char *buf, size_t count)
2142 {
2143         int err;
2144         unsigned long knob;
2145
2146         err = kstrtoul(buf, 10, &knob);
2147         if (err)
2148                 return err;
2149         if (knob > 1)
2150                 return -EINVAL;
2151
2152         mutex_lock(&ksm_thread_mutex);
2153         if (ksm_merge_across_nodes != knob) {
2154                 if (ksm_pages_shared || remove_all_stable_nodes())
2155                         err = -EBUSY;
2156                 else
2157                         ksm_merge_across_nodes = knob;
2158         }
2159         mutex_unlock(&ksm_thread_mutex);
2160
2161         return err ? err : count;
2162 }
2163 KSM_ATTR(merge_across_nodes);
2164 #endif
2165
2166 static ssize_t pages_shared_show(struct kobject *kobj,
2167                                  struct kobj_attribute *attr, char *buf)
2168 {
2169         return sprintf(buf, "%lu\n", ksm_pages_shared);
2170 }
2171 KSM_ATTR_RO(pages_shared);
2172
2173 static ssize_t pages_sharing_show(struct kobject *kobj,
2174                                   struct kobj_attribute *attr, char *buf)
2175 {
2176         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2177 }
2178 KSM_ATTR_RO(pages_sharing);
2179
2180 static ssize_t pages_unshared_show(struct kobject *kobj,
2181                                    struct kobj_attribute *attr, char *buf)
2182 {
2183         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2184 }
2185 KSM_ATTR_RO(pages_unshared);
2186
2187 static ssize_t pages_volatile_show(struct kobject *kobj,
2188                                    struct kobj_attribute *attr, char *buf)
2189 {
2190         long ksm_pages_volatile;
2191
2192         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2193                                 - ksm_pages_sharing - ksm_pages_unshared;
2194         /*
2195          * It was not worth any locking to calculate that statistic,
2196          * but it might therefore sometimes be negative: conceal that.
2197          */
2198         if (ksm_pages_volatile < 0)
2199                 ksm_pages_volatile = 0;
2200         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2201 }
2202 KSM_ATTR_RO(pages_volatile);
2203
2204 static ssize_t full_scans_show(struct kobject *kobj,
2205                                struct kobj_attribute *attr, char *buf)
2206 {
2207         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2208 }
2209 KSM_ATTR_RO(full_scans);
2210
2211 static struct attribute *ksm_attrs[] = {
2212         &sleep_millisecs_attr.attr,
2213         &pages_to_scan_attr.attr,
2214         &run_attr.attr,
2215         &pages_shared_attr.attr,
2216         &pages_sharing_attr.attr,
2217         &pages_unshared_attr.attr,
2218         &pages_volatile_attr.attr,
2219         &full_scans_attr.attr,
2220 #ifdef CONFIG_NUMA
2221         &merge_across_nodes_attr.attr,
2222 #endif
2223         NULL,
2224 };
2225
2226 static struct attribute_group ksm_attr_group = {
2227         .attrs = ksm_attrs,
2228         .name = "ksm",
2229 };
2230 #endif /* CONFIG_SYSFS */
2231
2232 static int __init ksm_init(void)
2233 {
2234         struct task_struct *ksm_thread;
2235         int err;
2236         int nid;
2237
2238         err = ksm_slab_init();
2239         if (err)
2240                 goto out;
2241
2242         for (nid = 0; nid < nr_node_ids; nid++)
2243                 root_stable_tree[nid] = RB_ROOT;
2244
2245         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2246         if (IS_ERR(ksm_thread)) {
2247                 printk(KERN_ERR "ksm: creating kthread failed\n");
2248                 err = PTR_ERR(ksm_thread);
2249                 goto out_free;
2250         }
2251
2252 #ifdef CONFIG_SYSFS
2253         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2254         if (err) {
2255                 printk(KERN_ERR "ksm: register sysfs failed\n");
2256                 kthread_stop(ksm_thread);
2257                 goto out_free;
2258         }
2259 #else
2260         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2261
2262 #endif /* CONFIG_SYSFS */
2263
2264 #ifdef CONFIG_MEMORY_HOTREMOVE
2265         /*
2266          * Choose a high priority since the callback takes ksm_thread_mutex:
2267          * later callbacks could only be taking locks which nest within that.
2268          */
2269         hotplug_memory_notifier(ksm_memory_callback, 100);
2270 #endif
2271         return 0;
2272
2273 out_free:
2274         ksm_slab_free();
2275 out:
2276         return err;
2277 }
2278 module_init(ksm_init)