1 // SPDX-License-Identifier: GPL-2.0-only
3 * Memory merging support.
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
8 * Copyright (C) 2008-2009 Red Hat, Inc.
16 #include <linux/errno.h>
18 #include <linux/mm_inline.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
44 #include <asm/tlbflush.h>
50 #define DO_NUMA(x) do { (x); } while (0)
53 #define DO_NUMA(x) do { } while (0)
59 * A few notes about the KSM scanning process,
60 * to make it easier to understand the data structures below:
62 * In order to reduce excessive scanning, KSM sorts the memory pages by their
63 * contents into a data structure that holds pointers to the pages' locations.
65 * Since the contents of the pages may change at any moment, KSM cannot just
66 * insert the pages into a normal sorted tree and expect it to find anything.
67 * Therefore KSM uses two data structures - the stable and the unstable tree.
69 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
70 * by their contents. Because each such page is write-protected, searching on
71 * this tree is fully assured to be working (except when pages are unmapped),
72 * and therefore this tree is called the stable tree.
74 * The stable tree node includes information required for reverse
75 * mapping from a KSM page to virtual addresses that map this page.
77 * In order to avoid large latencies of the rmap walks on KSM pages,
78 * KSM maintains two types of nodes in the stable tree:
80 * * the regular nodes that keep the reverse mapping structures in a
82 * * the "chains" that link nodes ("dups") that represent the same
83 * write protected memory content, but each "dup" corresponds to a
84 * different KSM page copy of that content
86 * Internally, the regular nodes, "dups" and "chains" are represented
87 * using the same struct ksm_stable_node structure.
89 * In addition to the stable tree, KSM uses a second data structure called the
90 * unstable tree: this tree holds pointers to pages which have been found to
91 * be "unchanged for a period of time". The unstable tree sorts these pages
92 * by their contents, but since they are not write-protected, KSM cannot rely
93 * upon the unstable tree to work correctly - the unstable tree is liable to
94 * be corrupted as its contents are modified, and so it is called unstable.
96 * KSM solves this problem by several techniques:
98 * 1) The unstable tree is flushed every time KSM completes scanning all
99 * memory areas, and then the tree is rebuilt again from the beginning.
100 * 2) KSM will only insert into the unstable tree, pages whose hash value
101 * has not changed since the previous scan of all memory areas.
102 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
103 * colors of the nodes and not on their contents, assuring that even when
104 * the tree gets "corrupted" it won't get out of balance, so scanning time
105 * remains the same (also, searching and inserting nodes in an rbtree uses
106 * the same algorithm, so we have no overhead when we flush and rebuild).
107 * 4) KSM never flushes the stable tree, which means that even if it were to
108 * take 10 attempts to find a page in the unstable tree, once it is found,
109 * it is secured in the stable tree. (When we scan a new page, we first
110 * compare it against the stable tree, and then against the unstable tree.)
112 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
113 * stable trees and multiple unstable trees: one of each for each NUMA node.
117 * struct ksm_mm_slot - ksm information per mm that is being scanned
118 * @slot: hash lookup from mm to mm_slot
119 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123 struct ksm_rmap_item *rmap_list;
127 * struct ksm_scan - cursor for scanning
128 * @mm_slot: the current mm_slot we are scanning
129 * @address: the next address inside that to be scanned
130 * @rmap_list: link to the next rmap to be scanned in the rmap_list
131 * @seqnr: count of completed full scans (needed when removing unstable node)
133 * There is only the one ksm_scan instance of this cursor structure.
136 struct ksm_mm_slot *mm_slot;
137 unsigned long address;
138 struct ksm_rmap_item **rmap_list;
143 * struct ksm_stable_node - node of the stable rbtree
144 * @node: rb node of this ksm page in the stable tree
145 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
146 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
147 * @list: linked into migrate_nodes, pending placement in the proper node tree
148 * @hlist: hlist head of rmap_items using this ksm page
149 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
150 * @chain_prune_time: time of the last full garbage collection
151 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
152 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154 struct ksm_stable_node {
156 struct rb_node node; /* when node of stable tree */
157 struct { /* when listed for migration */
158 struct list_head *head;
160 struct hlist_node hlist_dup;
161 struct list_head list;
165 struct hlist_head hlist;
168 unsigned long chain_prune_time;
171 * STABLE_NODE_CHAIN can be any negative number in
172 * rmap_hlist_len negative range, but better not -1 to be able
173 * to reliably detect underflows.
175 #define STABLE_NODE_CHAIN -1024
183 * struct ksm_rmap_item - reverse mapping item for virtual addresses
184 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
185 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
186 * @nid: NUMA node id of unstable tree in which linked (may not match page)
187 * @mm: the memory structure this rmap_item is pointing into
188 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
189 * @oldchecksum: previous checksum of the page at that virtual address
190 * @node: rb node of this rmap_item in the unstable tree
191 * @head: pointer to stable_node heading this list in the stable tree
192 * @hlist: link into hlist of rmap_items hanging off that stable_node
194 struct ksm_rmap_item {
195 struct ksm_rmap_item *rmap_list;
197 struct anon_vma *anon_vma; /* when stable */
199 int nid; /* when node of unstable tree */
202 struct mm_struct *mm;
203 unsigned long address; /* + low bits used for flags below */
204 unsigned int oldchecksum; /* when unstable */
206 struct rb_node node; /* when node of unstable tree */
207 struct { /* when listed from stable tree */
208 struct ksm_stable_node *head;
209 struct hlist_node hlist;
214 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
215 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
216 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
218 /* The stable and unstable tree heads */
219 static struct rb_root one_stable_tree[1] = { RB_ROOT };
220 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
221 static struct rb_root *root_stable_tree = one_stable_tree;
222 static struct rb_root *root_unstable_tree = one_unstable_tree;
224 /* Recently migrated nodes of stable tree, pending proper placement */
225 static LIST_HEAD(migrate_nodes);
226 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228 #define MM_SLOTS_HASH_BITS 10
229 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231 static struct ksm_mm_slot ksm_mm_head = {
232 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
234 static struct ksm_scan ksm_scan = {
235 .mm_slot = &ksm_mm_head,
238 static struct kmem_cache *rmap_item_cache;
239 static struct kmem_cache *stable_node_cache;
240 static struct kmem_cache *mm_slot_cache;
242 /* The number of nodes in the stable tree */
243 static unsigned long ksm_pages_shared;
245 /* The number of page slots additionally sharing those nodes */
246 static unsigned long ksm_pages_sharing;
248 /* The number of nodes in the unstable tree */
249 static unsigned long ksm_pages_unshared;
251 /* The number of rmap_items in use: to calculate pages_volatile */
252 static unsigned long ksm_rmap_items;
254 /* The number of stable_node chains */
255 static unsigned long ksm_stable_node_chains;
257 /* The number of stable_node dups linked to the stable_node chains */
258 static unsigned long ksm_stable_node_dups;
260 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
261 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
263 /* Maximum number of page slots sharing a stable node */
264 static int ksm_max_page_sharing = 256;
266 /* Number of pages ksmd should scan in one batch */
267 static unsigned int ksm_thread_pages_to_scan = 100;
269 /* Milliseconds ksmd should sleep between batches */
270 static unsigned int ksm_thread_sleep_millisecs = 20;
272 /* Checksum of an empty (zeroed) page */
273 static unsigned int zero_checksum __read_mostly;
275 /* Whether to merge empty (zeroed) pages with actual zero pages */
276 static bool ksm_use_zero_pages __read_mostly;
279 /* Zeroed when merging across nodes is not allowed */
280 static unsigned int ksm_merge_across_nodes = 1;
281 static int ksm_nr_node_ids = 1;
283 #define ksm_merge_across_nodes 1U
284 #define ksm_nr_node_ids 1
287 #define KSM_RUN_STOP 0
288 #define KSM_RUN_MERGE 1
289 #define KSM_RUN_UNMERGE 2
290 #define KSM_RUN_OFFLINE 4
291 static unsigned long ksm_run = KSM_RUN_STOP;
292 static void wait_while_offlining(void);
294 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
296 static DEFINE_MUTEX(ksm_thread_mutex);
297 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
300 sizeof(struct __struct), __alignof__(struct __struct),\
303 static int __init ksm_slab_init(void)
305 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
306 if (!rmap_item_cache)
309 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
310 if (!stable_node_cache)
313 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
320 kmem_cache_destroy(stable_node_cache);
322 kmem_cache_destroy(rmap_item_cache);
327 static void __init ksm_slab_free(void)
329 kmem_cache_destroy(mm_slot_cache);
330 kmem_cache_destroy(stable_node_cache);
331 kmem_cache_destroy(rmap_item_cache);
332 mm_slot_cache = NULL;
335 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
337 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
342 return dup->head == STABLE_NODE_DUP_HEAD;
345 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
346 struct ksm_stable_node *chain)
348 VM_BUG_ON(is_stable_node_dup(dup));
349 dup->head = STABLE_NODE_DUP_HEAD;
350 VM_BUG_ON(!is_stable_node_chain(chain));
351 hlist_add_head(&dup->hlist_dup, &chain->hlist);
352 ksm_stable_node_dups++;
355 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
357 VM_BUG_ON(!is_stable_node_dup(dup));
358 hlist_del(&dup->hlist_dup);
359 ksm_stable_node_dups--;
362 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
364 VM_BUG_ON(is_stable_node_chain(dup));
365 if (is_stable_node_dup(dup))
366 __stable_node_dup_del(dup);
368 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
369 #ifdef CONFIG_DEBUG_VM
374 static inline struct ksm_rmap_item *alloc_rmap_item(void)
376 struct ksm_rmap_item *rmap_item;
378 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
379 __GFP_NORETRY | __GFP_NOWARN);
385 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
388 rmap_item->mm->ksm_rmap_items--;
389 rmap_item->mm = NULL; /* debug safety */
390 kmem_cache_free(rmap_item_cache, rmap_item);
393 static inline struct ksm_stable_node *alloc_stable_node(void)
396 * The allocation can take too long with GFP_KERNEL when memory is under
397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
398 * grants access to memory reserves, helping to avoid this problem.
400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403 static inline void free_stable_node(struct ksm_stable_node *stable_node)
405 VM_BUG_ON(stable_node->rmap_hlist_len &&
406 !is_stable_node_chain(stable_node));
407 kmem_cache_free(stable_node_cache, stable_node);
411 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
412 * page tables after it has passed through ksm_exit() - which, if necessary,
413 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
414 * a special flag: they can just back out as soon as mm_users goes to zero.
415 * ksm_test_exit() is used throughout to make this test for exit: in some
416 * places for correctness, in some places just to avoid unnecessary work.
418 static inline bool ksm_test_exit(struct mm_struct *mm)
420 return atomic_read(&mm->mm_users) == 0;
423 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
424 struct mm_walk *walk)
426 struct page *page = NULL;
431 if (pmd_leaf(*pmd) || !pmd_present(*pmd))
434 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
435 if (pte_present(*pte)) {
436 page = vm_normal_page(walk->vma, addr, *pte);
437 } else if (!pte_none(*pte)) {
438 swp_entry_t entry = pte_to_swp_entry(*pte);
441 * As KSM pages remain KSM pages until freed, no need to wait
442 * here for migration to end.
444 if (is_migration_entry(entry))
445 page = pfn_swap_entry_to_page(entry);
447 ret = page && PageKsm(page);
448 pte_unmap_unlock(pte, ptl);
452 static const struct mm_walk_ops break_ksm_ops = {
453 .pmd_entry = break_ksm_pmd_entry,
457 * We use break_ksm to break COW on a ksm page by triggering unsharing,
458 * such that the ksm page will get replaced by an exclusive anonymous page.
460 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
463 * mmap of /dev/mem, where we would not want to touch it.
465 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
477 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
478 &break_ksm_ops, NULL);
479 if (WARN_ON_ONCE(ksm_page < 0))
483 ret = handle_mm_fault(vma, addr,
484 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
486 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488 * We must loop until we no longer find a KSM page because
489 * handle_mm_fault() may back out if there's any difficulty e.g. if
490 * pte accessed bit gets updated concurrently.
492 * VM_FAULT_SIGBUS could occur if we race with truncation of the
493 * backing file, which also invalidates anonymous pages: that's
494 * okay, that truncation will have unmapped the PageKsm for us.
496 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
497 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
498 * current task has TIF_MEMDIE set, and will be OOM killed on return
499 * to user; and ksmd, having no mm, would never be chosen for that.
501 * But if the mm is in a limited mem_cgroup, then the fault may fail
502 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
503 * even ksmd can fail in this way - though it's usually breaking ksm
504 * just to undo a merge it made a moment before, so unlikely to oom.
506 * That's a pity: we might therefore have more kernel pages allocated
507 * than we're counting as nodes in the stable tree; but ksm_do_scan
508 * will retry to break_cow on each pass, so should recover the page
509 * in due course. The important thing is to not let VM_MERGEABLE
510 * be cleared while any such pages might remain in the area.
512 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
515 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
518 struct vm_area_struct *vma;
519 if (ksm_test_exit(mm))
521 vma = vma_lookup(mm, addr);
522 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527 static void break_cow(struct ksm_rmap_item *rmap_item)
529 struct mm_struct *mm = rmap_item->mm;
530 unsigned long addr = rmap_item->address;
531 struct vm_area_struct *vma;
534 * It is not an accident that whenever we want to break COW
535 * to undo, we also need to drop a reference to the anon_vma.
537 put_anon_vma(rmap_item->anon_vma);
540 vma = find_mergeable_vma(mm, addr);
542 break_ksm(vma, addr);
543 mmap_read_unlock(mm);
546 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
548 struct mm_struct *mm = rmap_item->mm;
549 unsigned long addr = rmap_item->address;
550 struct vm_area_struct *vma;
554 vma = find_mergeable_vma(mm, addr);
558 page = follow_page(vma, addr, FOLL_GET);
559 if (IS_ERR_OR_NULL(page))
561 if (is_zone_device_page(page))
563 if (PageAnon(page)) {
564 flush_anon_page(vma, page, addr);
565 flush_dcache_page(page);
572 mmap_read_unlock(mm);
577 * This helper is used for getting right index into array of tree roots.
578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580 * every node has its own stable and unstable tree.
582 static inline int get_kpfn_nid(unsigned long kpfn)
584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
587 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
588 struct rb_root *root)
590 struct ksm_stable_node *chain = alloc_stable_node();
591 VM_BUG_ON(is_stable_node_chain(dup));
593 INIT_HLIST_HEAD(&chain->hlist);
594 chain->chain_prune_time = jiffies;
595 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
597 chain->nid = NUMA_NO_NODE; /* debug */
599 ksm_stable_node_chains++;
602 * Put the stable node chain in the first dimension of
603 * the stable tree and at the same time remove the old
606 rb_replace_node(&dup->node, &chain->node, root);
609 * Move the old stable node to the second dimension
610 * queued in the hlist_dup. The invariant is that all
611 * dup stable_nodes in the chain->hlist point to pages
612 * that are write protected and have the exact same
615 stable_node_chain_add_dup(dup, chain);
620 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
621 struct rb_root *root)
623 rb_erase(&chain->node, root);
624 free_stable_node(chain);
625 ksm_stable_node_chains--;
628 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
630 struct ksm_rmap_item *rmap_item;
632 /* check it's not STABLE_NODE_CHAIN or negative */
633 BUG_ON(stable_node->rmap_hlist_len < 0);
635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
636 if (rmap_item->hlist.next)
641 rmap_item->mm->ksm_merging_pages--;
643 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644 stable_node->rmap_hlist_len--;
645 put_anon_vma(rmap_item->anon_vma);
646 rmap_item->address &= PAGE_MASK;
651 * We need the second aligned pointer of the migrate_nodes
652 * list_head to stay clear from the rb_parent_color union
653 * (aligned and different than any node) and also different
654 * from &migrate_nodes. This will verify that future list.h changes
655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660 if (stable_node->head == &migrate_nodes)
661 list_del(&stable_node->list);
663 stable_node_dup_del(stable_node);
664 free_stable_node(stable_node);
667 enum get_ksm_page_flags {
674 * get_ksm_page: checks if the page indicated by the stable node
675 * is still its ksm page, despite having held no reference to it.
676 * In which case we can trust the content of the page, and it
677 * returns the gotten page; but if the page has now been zapped,
678 * remove the stale node from the stable tree and return NULL.
679 * But beware, the stable node's page might be being migrated.
681 * You would expect the stable_node to hold a reference to the ksm page.
682 * But if it increments the page's count, swapping out has to wait for
683 * ksmd to come around again before it can free the page, which may take
684 * seconds or even minutes: much too unresponsive. So instead we use a
685 * "keyhole reference": access to the ksm page from the stable node peeps
686 * out through its keyhole to see if that page still holds the right key,
687 * pointing back to this stable node. This relies on freeing a PageAnon
688 * page to reset its page->mapping to NULL, and relies on no other use of
689 * a page to put something that might look like our key in page->mapping.
690 * is on its way to being freed; but it is an anomaly to bear in mind.
692 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
693 enum get_ksm_page_flags flags)
696 void *expected_mapping;
699 expected_mapping = (void *)((unsigned long)stable_node |
702 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
703 page = pfn_to_page(kpfn);
704 if (READ_ONCE(page->mapping) != expected_mapping)
708 * We cannot do anything with the page while its refcount is 0.
709 * Usually 0 means free, or tail of a higher-order page: in which
710 * case this node is no longer referenced, and should be freed;
711 * however, it might mean that the page is under page_ref_freeze().
712 * The __remove_mapping() case is easy, again the node is now stale;
713 * the same is in reuse_ksm_page() case; but if page is swapcache
714 * in folio_migrate_mapping(), it might still be our page,
715 * in which case it's essential to keep the node.
717 while (!get_page_unless_zero(page)) {
719 * Another check for page->mapping != expected_mapping would
720 * work here too. We have chosen the !PageSwapCache test to
721 * optimize the common case, when the page is or is about to
722 * be freed: PageSwapCache is cleared (under spin_lock_irq)
723 * in the ref_freeze section of __remove_mapping(); but Anon
724 * page->mapping reset to NULL later, in free_pages_prepare().
726 if (!PageSwapCache(page))
731 if (READ_ONCE(page->mapping) != expected_mapping) {
736 if (flags == GET_KSM_PAGE_TRYLOCK) {
737 if (!trylock_page(page)) {
739 return ERR_PTR(-EBUSY);
741 } else if (flags == GET_KSM_PAGE_LOCK)
744 if (flags != GET_KSM_PAGE_NOLOCK) {
745 if (READ_ONCE(page->mapping) != expected_mapping) {
755 * We come here from above when page->mapping or !PageSwapCache
756 * suggests that the node is stale; but it might be under migration.
757 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
758 * before checking whether node->kpfn has been changed.
761 if (READ_ONCE(stable_node->kpfn) != kpfn)
763 remove_node_from_stable_tree(stable_node);
768 * Removing rmap_item from stable or unstable tree.
769 * This function will clean the information from the stable/unstable tree.
771 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
773 if (rmap_item->address & STABLE_FLAG) {
774 struct ksm_stable_node *stable_node;
777 stable_node = rmap_item->head;
778 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
782 hlist_del(&rmap_item->hlist);
786 if (!hlist_empty(&stable_node->hlist))
791 rmap_item->mm->ksm_merging_pages--;
793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794 stable_node->rmap_hlist_len--;
796 put_anon_vma(rmap_item->anon_vma);
797 rmap_item->head = NULL;
798 rmap_item->address &= PAGE_MASK;
800 } else if (rmap_item->address & UNSTABLE_FLAG) {
803 * Usually ksmd can and must skip the rb_erase, because
804 * root_unstable_tree was already reset to RB_ROOT.
805 * But be careful when an mm is exiting: do the rb_erase
806 * if this rmap_item was inserted by this scan, rather
807 * than left over from before.
809 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
812 rb_erase(&rmap_item->node,
813 root_unstable_tree + NUMA(rmap_item->nid));
814 ksm_pages_unshared--;
815 rmap_item->address &= PAGE_MASK;
818 cond_resched(); /* we're called from many long loops */
821 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
824 struct ksm_rmap_item *rmap_item = *rmap_list;
825 *rmap_list = rmap_item->rmap_list;
826 remove_rmap_item_from_tree(rmap_item);
827 free_rmap_item(rmap_item);
832 * Though it's very tempting to unmerge rmap_items from stable tree rather
833 * than check every pte of a given vma, the locking doesn't quite work for
834 * that - an rmap_item is assigned to the stable tree after inserting ksm
835 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
836 * rmap_items from parent to child at fork time (so as not to waste time
837 * if exit comes before the next scan reaches it).
839 * Similarly, although we'd like to remove rmap_items (so updating counts
840 * and freeing memory) when unmerging an area, it's easier to leave that
841 * to the next pass of ksmd - consider, for example, how ksmd might be
842 * in cmp_and_merge_page on one of the rmap_items we would be removing.
844 static int unmerge_ksm_pages(struct vm_area_struct *vma,
845 unsigned long start, unsigned long end)
850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
851 if (ksm_test_exit(vma->vm_mm))
853 if (signal_pending(current))
856 err = break_ksm(vma, addr);
861 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
863 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
866 static inline struct ksm_stable_node *page_stable_node(struct page *page)
868 return folio_stable_node(page_folio(page));
871 static inline void set_page_stable_node(struct page *page,
872 struct ksm_stable_node *stable_node)
874 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
875 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
880 * Only called through the sysfs control interface:
882 static int remove_stable_node(struct ksm_stable_node *stable_node)
887 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
890 * get_ksm_page did remove_node_from_stable_tree itself.
896 * Page could be still mapped if this races with __mmput() running in
897 * between ksm_exit() and exit_mmap(). Just refuse to let
898 * merge_across_nodes/max_page_sharing be switched.
901 if (!page_mapped(page)) {
903 * The stable node did not yet appear stale to get_ksm_page(),
904 * since that allows for an unmapped ksm page to be recognized
905 * right up until it is freed; but the node is safe to remove.
906 * This page might be in a pagevec waiting to be freed,
907 * or it might be PageSwapCache (perhaps under writeback),
908 * or it might have been removed from swapcache a moment ago.
910 set_page_stable_node(page, NULL);
911 remove_node_from_stable_tree(stable_node);
920 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
921 struct rb_root *root)
923 struct ksm_stable_node *dup;
924 struct hlist_node *hlist_safe;
926 if (!is_stable_node_chain(stable_node)) {
927 VM_BUG_ON(is_stable_node_dup(stable_node));
928 if (remove_stable_node(stable_node))
934 hlist_for_each_entry_safe(dup, hlist_safe,
935 &stable_node->hlist, hlist_dup) {
936 VM_BUG_ON(!is_stable_node_dup(dup));
937 if (remove_stable_node(dup))
940 BUG_ON(!hlist_empty(&stable_node->hlist));
941 free_stable_node_chain(stable_node, root);
945 static int remove_all_stable_nodes(void)
947 struct ksm_stable_node *stable_node, *next;
951 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
952 while (root_stable_tree[nid].rb_node) {
953 stable_node = rb_entry(root_stable_tree[nid].rb_node,
954 struct ksm_stable_node, node);
955 if (remove_stable_node_chain(stable_node,
956 root_stable_tree + nid)) {
958 break; /* proceed to next nid */
963 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
964 if (remove_stable_node(stable_node))
971 static int unmerge_and_remove_all_rmap_items(void)
973 struct ksm_mm_slot *mm_slot;
974 struct mm_slot *slot;
975 struct mm_struct *mm;
976 struct vm_area_struct *vma;
979 spin_lock(&ksm_mmlist_lock);
980 slot = list_entry(ksm_mm_head.slot.mm_node.next,
981 struct mm_slot, mm_node);
982 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
983 spin_unlock(&ksm_mmlist_lock);
985 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
986 mm_slot = ksm_scan.mm_slot) {
987 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
989 mm = mm_slot->slot.mm;
991 for_each_vma(vmi, vma) {
992 if (ksm_test_exit(mm))
994 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
996 err = unmerge_ksm_pages(vma,
997 vma->vm_start, vma->vm_end);
1002 remove_trailing_rmap_items(&mm_slot->rmap_list);
1003 mmap_read_unlock(mm);
1005 spin_lock(&ksm_mmlist_lock);
1006 slot = list_entry(mm_slot->slot.mm_node.next,
1007 struct mm_slot, mm_node);
1008 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1009 if (ksm_test_exit(mm)) {
1010 hash_del(&mm_slot->slot.hash);
1011 list_del(&mm_slot->slot.mm_node);
1012 spin_unlock(&ksm_mmlist_lock);
1014 mm_slot_free(mm_slot_cache, mm_slot);
1015 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1018 spin_unlock(&ksm_mmlist_lock);
1021 /* Clean up stable nodes, but don't worry if some are still busy */
1022 remove_all_stable_nodes();
1027 mmap_read_unlock(mm);
1028 spin_lock(&ksm_mmlist_lock);
1029 ksm_scan.mm_slot = &ksm_mm_head;
1030 spin_unlock(&ksm_mmlist_lock);
1033 #endif /* CONFIG_SYSFS */
1035 static u32 calc_checksum(struct page *page)
1038 void *addr = kmap_atomic(page);
1039 checksum = xxhash(addr, PAGE_SIZE, 0);
1040 kunmap_atomic(addr);
1044 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1047 struct mm_struct *mm = vma->vm_mm;
1048 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1051 struct mmu_notifier_range range;
1052 bool anon_exclusive;
1054 pvmw.address = page_address_in_vma(page, vma);
1055 if (pvmw.address == -EFAULT)
1058 BUG_ON(PageTransCompound(page));
1060 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1062 pvmw.address + PAGE_SIZE);
1063 mmu_notifier_invalidate_range_start(&range);
1065 if (!page_vma_mapped_walk(&pvmw))
1067 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1070 anon_exclusive = PageAnonExclusive(page);
1071 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1072 anon_exclusive || mm_tlb_flush_pending(mm)) {
1075 swapped = PageSwapCache(page);
1076 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1078 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1079 * take any lock, therefore the check that we are going to make
1080 * with the pagecount against the mapcount is racy and
1081 * O_DIRECT can happen right after the check.
1082 * So we clear the pte and flush the tlb before the check
1083 * this assure us that no O_DIRECT can happen after the check
1084 * or in the middle of the check.
1086 * No need to notify as we are downgrading page table to read
1087 * only not changing it to point to a new page.
1089 * See Documentation/mm/mmu_notifier.rst
1091 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1093 * Check that no O_DIRECT or similar I/O is in progress on the
1096 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1097 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1101 /* See page_try_share_anon_rmap(): clear PTE first. */
1102 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1103 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1107 if (pte_dirty(entry))
1108 set_page_dirty(page);
1109 entry = pte_mkclean(entry);
1111 if (pte_write(entry))
1112 entry = pte_wrprotect(entry);
1114 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1116 *orig_pte = *pvmw.pte;
1120 page_vma_mapped_walk_done(&pvmw);
1122 mmu_notifier_invalidate_range_end(&range);
1128 * replace_page - replace page in vma by new ksm page
1129 * @vma: vma that holds the pte pointing to page
1130 * @page: the page we are replacing by kpage
1131 * @kpage: the ksm page we replace page by
1132 * @orig_pte: the original value of the pte
1134 * Returns 0 on success, -EFAULT on failure.
1136 static int replace_page(struct vm_area_struct *vma, struct page *page,
1137 struct page *kpage, pte_t orig_pte)
1139 struct mm_struct *mm = vma->vm_mm;
1140 struct folio *folio;
1148 struct mmu_notifier_range range;
1150 addr = page_address_in_vma(page, vma);
1151 if (addr == -EFAULT)
1154 pmd = mm_find_pmd(mm, addr);
1158 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1159 * without holding anon_vma lock for write. So when looking for a
1160 * genuine pmde (in which to find pte), test present and !THP together.
1164 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1167 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1169 mmu_notifier_invalidate_range_start(&range);
1171 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1172 if (!pte_same(*ptep, orig_pte)) {
1173 pte_unmap_unlock(ptep, ptl);
1176 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1177 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1180 * No need to check ksm_use_zero_pages here: we can only have a
1181 * zero_page here if ksm_use_zero_pages was enabled already.
1183 if (!is_zero_pfn(page_to_pfn(kpage))) {
1185 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1186 newpte = mk_pte(kpage, vma->vm_page_prot);
1188 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1189 vma->vm_page_prot));
1191 * We're replacing an anonymous page with a zero page, which is
1192 * not anonymous. We need to do proper accounting otherwise we
1193 * will get wrong values in /proc, and a BUG message in dmesg
1194 * when tearing down the mm.
1196 dec_mm_counter(mm, MM_ANONPAGES);
1199 flush_cache_page(vma, addr, pte_pfn(*ptep));
1201 * No need to notify as we are replacing a read only page with another
1202 * read only page with the same content.
1204 * See Documentation/mm/mmu_notifier.rst
1206 ptep_clear_flush(vma, addr, ptep);
1207 set_pte_at_notify(mm, addr, ptep, newpte);
1209 folio = page_folio(page);
1210 page_remove_rmap(page, vma, false);
1211 if (!folio_mapped(folio))
1212 folio_free_swap(folio);
1215 pte_unmap_unlock(ptep, ptl);
1218 mmu_notifier_invalidate_range_end(&range);
1224 * try_to_merge_one_page - take two pages and merge them into one
1225 * @vma: the vma that holds the pte pointing to page
1226 * @page: the PageAnon page that we want to replace with kpage
1227 * @kpage: the PageKsm page that we want to map instead of page,
1228 * or NULL the first time when we want to use page as kpage.
1230 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1232 static int try_to_merge_one_page(struct vm_area_struct *vma,
1233 struct page *page, struct page *kpage)
1235 pte_t orig_pte = __pte(0);
1238 if (page == kpage) /* ksm page forked */
1241 if (!PageAnon(page))
1245 * We need the page lock to read a stable PageSwapCache in
1246 * write_protect_page(). We use trylock_page() instead of
1247 * lock_page() because we don't want to wait here - we
1248 * prefer to continue scanning and merging different pages,
1249 * then come back to this page when it is unlocked.
1251 if (!trylock_page(page))
1254 if (PageTransCompound(page)) {
1255 if (split_huge_page(page))
1260 * If this anonymous page is mapped only here, its pte may need
1261 * to be write-protected. If it's mapped elsewhere, all of its
1262 * ptes are necessarily already write-protected. But in either
1263 * case, we need to lock and check page_count is not raised.
1265 if (write_protect_page(vma, page, &orig_pte) == 0) {
1268 * While we hold page lock, upgrade page from
1269 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1270 * stable_tree_insert() will update stable_node.
1272 set_page_stable_node(page, NULL);
1273 mark_page_accessed(page);
1275 * Page reclaim just frees a clean page with no dirty
1276 * ptes: make sure that the ksm page would be swapped.
1278 if (!PageDirty(page))
1281 } else if (pages_identical(page, kpage))
1282 err = replace_page(vma, page, kpage, orig_pte);
1292 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1293 * but no new kernel page is allocated: kpage must already be a ksm page.
1295 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1297 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1298 struct page *page, struct page *kpage)
1300 struct mm_struct *mm = rmap_item->mm;
1301 struct vm_area_struct *vma;
1305 vma = find_mergeable_vma(mm, rmap_item->address);
1309 err = try_to_merge_one_page(vma, page, kpage);
1313 /* Unstable nid is in union with stable anon_vma: remove first */
1314 remove_rmap_item_from_tree(rmap_item);
1316 /* Must get reference to anon_vma while still holding mmap_lock */
1317 rmap_item->anon_vma = vma->anon_vma;
1318 get_anon_vma(vma->anon_vma);
1320 mmap_read_unlock(mm);
1325 * try_to_merge_two_pages - take two identical pages and prepare them
1326 * to be merged into one page.
1328 * This function returns the kpage if we successfully merged two identical
1329 * pages into one ksm page, NULL otherwise.
1331 * Note that this function upgrades page to ksm page: if one of the pages
1332 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1334 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1336 struct ksm_rmap_item *tree_rmap_item,
1337 struct page *tree_page)
1341 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1343 err = try_to_merge_with_ksm_page(tree_rmap_item,
1346 * If that fails, we have a ksm page with only one pte
1347 * pointing to it: so break it.
1350 break_cow(rmap_item);
1352 return err ? NULL : page;
1355 static __always_inline
1356 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1358 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1360 * Check that at least one mapping still exists, otherwise
1361 * there's no much point to merge and share with this
1362 * stable_node, as the underlying tree_page of the other
1363 * sharer is going to be freed soon.
1365 return stable_node->rmap_hlist_len &&
1366 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1369 static __always_inline
1370 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1372 return __is_page_sharing_candidate(stable_node, 0);
1375 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1376 struct ksm_stable_node **_stable_node,
1377 struct rb_root *root,
1378 bool prune_stale_stable_nodes)
1380 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1381 struct hlist_node *hlist_safe;
1382 struct page *_tree_page, *tree_page = NULL;
1384 int found_rmap_hlist_len;
1386 if (!prune_stale_stable_nodes ||
1387 time_before(jiffies, stable_node->chain_prune_time +
1389 ksm_stable_node_chains_prune_millisecs)))
1390 prune_stale_stable_nodes = false;
1392 stable_node->chain_prune_time = jiffies;
1394 hlist_for_each_entry_safe(dup, hlist_safe,
1395 &stable_node->hlist, hlist_dup) {
1398 * We must walk all stable_node_dup to prune the stale
1399 * stable nodes during lookup.
1401 * get_ksm_page can drop the nodes from the
1402 * stable_node->hlist if they point to freed pages
1403 * (that's why we do a _safe walk). The "dup"
1404 * stable_node parameter itself will be freed from
1405 * under us if it returns NULL.
1407 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1411 if (is_page_sharing_candidate(dup)) {
1413 dup->rmap_hlist_len > found_rmap_hlist_len) {
1415 put_page(tree_page);
1417 found_rmap_hlist_len = found->rmap_hlist_len;
1418 tree_page = _tree_page;
1420 /* skip put_page for found dup */
1421 if (!prune_stale_stable_nodes)
1426 put_page(_tree_page);
1431 * nr is counting all dups in the chain only if
1432 * prune_stale_stable_nodes is true, otherwise we may
1433 * break the loop at nr == 1 even if there are
1436 if (prune_stale_stable_nodes && nr == 1) {
1438 * If there's not just one entry it would
1439 * corrupt memory, better BUG_ON. In KSM
1440 * context with no lock held it's not even
1443 BUG_ON(stable_node->hlist.first->next);
1446 * There's just one entry and it is below the
1447 * deduplication limit so drop the chain.
1449 rb_replace_node(&stable_node->node, &found->node,
1451 free_stable_node(stable_node);
1452 ksm_stable_node_chains--;
1453 ksm_stable_node_dups--;
1455 * NOTE: the caller depends on the stable_node
1456 * to be equal to stable_node_dup if the chain
1459 *_stable_node = found;
1461 * Just for robustness, as stable_node is
1462 * otherwise left as a stable pointer, the
1463 * compiler shall optimize it away at build
1467 } else if (stable_node->hlist.first != &found->hlist_dup &&
1468 __is_page_sharing_candidate(found, 1)) {
1470 * If the found stable_node dup can accept one
1471 * more future merge (in addition to the one
1472 * that is underway) and is not at the head of
1473 * the chain, put it there so next search will
1474 * be quicker in the !prune_stale_stable_nodes
1477 * NOTE: it would be inaccurate to use nr > 1
1478 * instead of checking the hlist.first pointer
1479 * directly, because in the
1480 * prune_stale_stable_nodes case "nr" isn't
1481 * the position of the found dup in the chain,
1482 * but the total number of dups in the chain.
1484 hlist_del(&found->hlist_dup);
1485 hlist_add_head(&found->hlist_dup,
1486 &stable_node->hlist);
1490 *_stable_node_dup = found;
1494 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1495 struct rb_root *root)
1497 if (!is_stable_node_chain(stable_node))
1499 if (hlist_empty(&stable_node->hlist)) {
1500 free_stable_node_chain(stable_node, root);
1503 return hlist_entry(stable_node->hlist.first,
1504 typeof(*stable_node), hlist_dup);
1508 * Like for get_ksm_page, this function can free the *_stable_node and
1509 * *_stable_node_dup if the returned tree_page is NULL.
1511 * It can also free and overwrite *_stable_node with the found
1512 * stable_node_dup if the chain is collapsed (in which case
1513 * *_stable_node will be equal to *_stable_node_dup like if the chain
1514 * never existed). It's up to the caller to verify tree_page is not
1515 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1517 * *_stable_node_dup is really a second output parameter of this
1518 * function and will be overwritten in all cases, the caller doesn't
1519 * need to initialize it.
1521 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1522 struct ksm_stable_node **_stable_node,
1523 struct rb_root *root,
1524 bool prune_stale_stable_nodes)
1526 struct ksm_stable_node *stable_node = *_stable_node;
1527 if (!is_stable_node_chain(stable_node)) {
1528 if (is_page_sharing_candidate(stable_node)) {
1529 *_stable_node_dup = stable_node;
1530 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1533 * _stable_node_dup set to NULL means the stable_node
1534 * reached the ksm_max_page_sharing limit.
1536 *_stable_node_dup = NULL;
1539 return stable_node_dup(_stable_node_dup, _stable_node, root,
1540 prune_stale_stable_nodes);
1543 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1544 struct ksm_stable_node **s_n,
1545 struct rb_root *root)
1547 return __stable_node_chain(s_n_d, s_n, root, true);
1550 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1551 struct ksm_stable_node *s_n,
1552 struct rb_root *root)
1554 struct ksm_stable_node *old_stable_node = s_n;
1555 struct page *tree_page;
1557 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1558 /* not pruning dups so s_n cannot have changed */
1559 VM_BUG_ON(s_n != old_stable_node);
1564 * stable_tree_search - search for page inside the stable tree
1566 * This function checks if there is a page inside the stable tree
1567 * with identical content to the page that we are scanning right now.
1569 * This function returns the stable tree node of identical content if found,
1572 static struct page *stable_tree_search(struct page *page)
1575 struct rb_root *root;
1576 struct rb_node **new;
1577 struct rb_node *parent;
1578 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1579 struct ksm_stable_node *page_node;
1581 page_node = page_stable_node(page);
1582 if (page_node && page_node->head != &migrate_nodes) {
1583 /* ksm page forked */
1588 nid = get_kpfn_nid(page_to_pfn(page));
1589 root = root_stable_tree + nid;
1591 new = &root->rb_node;
1595 struct page *tree_page;
1599 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1600 stable_node_any = NULL;
1601 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1603 * NOTE: stable_node may have been freed by
1604 * chain_prune() if the returned stable_node_dup is
1605 * not NULL. stable_node_dup may have been inserted in
1606 * the rbtree instead as a regular stable_node (in
1607 * order to collapse the stable_node chain if a single
1608 * stable_node dup was found in it). In such case the
1609 * stable_node is overwritten by the callee to point
1610 * to the stable_node_dup that was collapsed in the
1611 * stable rbtree and stable_node will be equal to
1612 * stable_node_dup like if the chain never existed.
1614 if (!stable_node_dup) {
1616 * Either all stable_node dups were full in
1617 * this stable_node chain, or this chain was
1618 * empty and should be rb_erased.
1620 stable_node_any = stable_node_dup_any(stable_node,
1622 if (!stable_node_any) {
1623 /* rb_erase just run */
1627 * Take any of the stable_node dups page of
1628 * this stable_node chain to let the tree walk
1629 * continue. All KSM pages belonging to the
1630 * stable_node dups in a stable_node chain
1631 * have the same content and they're
1632 * write protected at all times. Any will work
1633 * fine to continue the walk.
1635 tree_page = get_ksm_page(stable_node_any,
1636 GET_KSM_PAGE_NOLOCK);
1638 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1641 * If we walked over a stale stable_node,
1642 * get_ksm_page() will call rb_erase() and it
1643 * may rebalance the tree from under us. So
1644 * restart the search from scratch. Returning
1645 * NULL would be safe too, but we'd generate
1646 * false negative insertions just because some
1647 * stable_node was stale.
1652 ret = memcmp_pages(page, tree_page);
1653 put_page(tree_page);
1657 new = &parent->rb_left;
1659 new = &parent->rb_right;
1662 VM_BUG_ON(page_node->head != &migrate_nodes);
1664 * Test if the migrated page should be merged
1665 * into a stable node dup. If the mapcount is
1666 * 1 we can migrate it with another KSM page
1667 * without adding it to the chain.
1669 if (page_mapcount(page) > 1)
1673 if (!stable_node_dup) {
1675 * If the stable_node is a chain and
1676 * we got a payload match in memcmp
1677 * but we cannot merge the scanned
1678 * page in any of the existing
1679 * stable_node dups because they're
1680 * all full, we need to wait the
1681 * scanned page to find itself a match
1682 * in the unstable tree to create a
1683 * brand new KSM page to add later to
1684 * the dups of this stable_node.
1690 * Lock and unlock the stable_node's page (which
1691 * might already have been migrated) so that page
1692 * migration is sure to notice its raised count.
1693 * It would be more elegant to return stable_node
1694 * than kpage, but that involves more changes.
1696 tree_page = get_ksm_page(stable_node_dup,
1697 GET_KSM_PAGE_TRYLOCK);
1699 if (PTR_ERR(tree_page) == -EBUSY)
1700 return ERR_PTR(-EBUSY);
1702 if (unlikely(!tree_page))
1704 * The tree may have been rebalanced,
1705 * so re-evaluate parent and new.
1708 unlock_page(tree_page);
1710 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1711 NUMA(stable_node_dup->nid)) {
1712 put_page(tree_page);
1722 list_del(&page_node->list);
1723 DO_NUMA(page_node->nid = nid);
1724 rb_link_node(&page_node->node, parent, new);
1725 rb_insert_color(&page_node->node, root);
1727 if (is_page_sharing_candidate(page_node)) {
1735 * If stable_node was a chain and chain_prune collapsed it,
1736 * stable_node has been updated to be the new regular
1737 * stable_node. A collapse of the chain is indistinguishable
1738 * from the case there was no chain in the stable
1739 * rbtree. Otherwise stable_node is the chain and
1740 * stable_node_dup is the dup to replace.
1742 if (stable_node_dup == stable_node) {
1743 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1744 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1745 /* there is no chain */
1747 VM_BUG_ON(page_node->head != &migrate_nodes);
1748 list_del(&page_node->list);
1749 DO_NUMA(page_node->nid = nid);
1750 rb_replace_node(&stable_node_dup->node,
1753 if (is_page_sharing_candidate(page_node))
1758 rb_erase(&stable_node_dup->node, root);
1762 VM_BUG_ON(!is_stable_node_chain(stable_node));
1763 __stable_node_dup_del(stable_node_dup);
1765 VM_BUG_ON(page_node->head != &migrate_nodes);
1766 list_del(&page_node->list);
1767 DO_NUMA(page_node->nid = nid);
1768 stable_node_chain_add_dup(page_node, stable_node);
1769 if (is_page_sharing_candidate(page_node))
1777 stable_node_dup->head = &migrate_nodes;
1778 list_add(&stable_node_dup->list, stable_node_dup->head);
1782 /* stable_node_dup could be null if it reached the limit */
1783 if (!stable_node_dup)
1784 stable_node_dup = stable_node_any;
1786 * If stable_node was a chain and chain_prune collapsed it,
1787 * stable_node has been updated to be the new regular
1788 * stable_node. A collapse of the chain is indistinguishable
1789 * from the case there was no chain in the stable
1790 * rbtree. Otherwise stable_node is the chain and
1791 * stable_node_dup is the dup to replace.
1793 if (stable_node_dup == stable_node) {
1794 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1795 /* chain is missing so create it */
1796 stable_node = alloc_stable_node_chain(stable_node_dup,
1802 * Add this stable_node dup that was
1803 * migrated to the stable_node chain
1804 * of the current nid for this page
1807 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1808 VM_BUG_ON(page_node->head != &migrate_nodes);
1809 list_del(&page_node->list);
1810 DO_NUMA(page_node->nid = nid);
1811 stable_node_chain_add_dup(page_node, stable_node);
1816 * stable_tree_insert - insert stable tree node pointing to new ksm page
1817 * into the stable tree.
1819 * This function returns the stable tree node just allocated on success,
1822 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1826 struct rb_root *root;
1827 struct rb_node **new;
1828 struct rb_node *parent;
1829 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1830 bool need_chain = false;
1832 kpfn = page_to_pfn(kpage);
1833 nid = get_kpfn_nid(kpfn);
1834 root = root_stable_tree + nid;
1837 new = &root->rb_node;
1840 struct page *tree_page;
1844 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1845 stable_node_any = NULL;
1846 tree_page = chain(&stable_node_dup, stable_node, root);
1847 if (!stable_node_dup) {
1849 * Either all stable_node dups were full in
1850 * this stable_node chain, or this chain was
1851 * empty and should be rb_erased.
1853 stable_node_any = stable_node_dup_any(stable_node,
1855 if (!stable_node_any) {
1856 /* rb_erase just run */
1860 * Take any of the stable_node dups page of
1861 * this stable_node chain to let the tree walk
1862 * continue. All KSM pages belonging to the
1863 * stable_node dups in a stable_node chain
1864 * have the same content and they're
1865 * write protected at all times. Any will work
1866 * fine to continue the walk.
1868 tree_page = get_ksm_page(stable_node_any,
1869 GET_KSM_PAGE_NOLOCK);
1871 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1874 * If we walked over a stale stable_node,
1875 * get_ksm_page() will call rb_erase() and it
1876 * may rebalance the tree from under us. So
1877 * restart the search from scratch. Returning
1878 * NULL would be safe too, but we'd generate
1879 * false negative insertions just because some
1880 * stable_node was stale.
1885 ret = memcmp_pages(kpage, tree_page);
1886 put_page(tree_page);
1890 new = &parent->rb_left;
1892 new = &parent->rb_right;
1899 stable_node_dup = alloc_stable_node();
1900 if (!stable_node_dup)
1903 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1904 stable_node_dup->kpfn = kpfn;
1905 set_page_stable_node(kpage, stable_node_dup);
1906 stable_node_dup->rmap_hlist_len = 0;
1907 DO_NUMA(stable_node_dup->nid = nid);
1909 rb_link_node(&stable_node_dup->node, parent, new);
1910 rb_insert_color(&stable_node_dup->node, root);
1912 if (!is_stable_node_chain(stable_node)) {
1913 struct ksm_stable_node *orig = stable_node;
1914 /* chain is missing so create it */
1915 stable_node = alloc_stable_node_chain(orig, root);
1917 free_stable_node(stable_node_dup);
1921 stable_node_chain_add_dup(stable_node_dup, stable_node);
1924 return stable_node_dup;
1928 * unstable_tree_search_insert - search for identical page,
1929 * else insert rmap_item into the unstable tree.
1931 * This function searches for a page in the unstable tree identical to the
1932 * page currently being scanned; and if no identical page is found in the
1933 * tree, we insert rmap_item as a new object into the unstable tree.
1935 * This function returns pointer to rmap_item found to be identical
1936 * to the currently scanned page, NULL otherwise.
1938 * This function does both searching and inserting, because they share
1939 * the same walking algorithm in an rbtree.
1942 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1944 struct page **tree_pagep)
1946 struct rb_node **new;
1947 struct rb_root *root;
1948 struct rb_node *parent = NULL;
1951 nid = get_kpfn_nid(page_to_pfn(page));
1952 root = root_unstable_tree + nid;
1953 new = &root->rb_node;
1956 struct ksm_rmap_item *tree_rmap_item;
1957 struct page *tree_page;
1961 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1962 tree_page = get_mergeable_page(tree_rmap_item);
1967 * Don't substitute a ksm page for a forked page.
1969 if (page == tree_page) {
1970 put_page(tree_page);
1974 ret = memcmp_pages(page, tree_page);
1978 put_page(tree_page);
1979 new = &parent->rb_left;
1980 } else if (ret > 0) {
1981 put_page(tree_page);
1982 new = &parent->rb_right;
1983 } else if (!ksm_merge_across_nodes &&
1984 page_to_nid(tree_page) != nid) {
1986 * If tree_page has been migrated to another NUMA node,
1987 * it will be flushed out and put in the right unstable
1988 * tree next time: only merge with it when across_nodes.
1990 put_page(tree_page);
1993 *tree_pagep = tree_page;
1994 return tree_rmap_item;
1998 rmap_item->address |= UNSTABLE_FLAG;
1999 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2000 DO_NUMA(rmap_item->nid = nid);
2001 rb_link_node(&rmap_item->node, parent, new);
2002 rb_insert_color(&rmap_item->node, root);
2004 ksm_pages_unshared++;
2009 * stable_tree_append - add another rmap_item to the linked list of
2010 * rmap_items hanging off a given node of the stable tree, all sharing
2011 * the same ksm page.
2013 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2014 struct ksm_stable_node *stable_node,
2015 bool max_page_sharing_bypass)
2018 * rmap won't find this mapping if we don't insert the
2019 * rmap_item in the right stable_node
2020 * duplicate. page_migration could break later if rmap breaks,
2021 * so we can as well crash here. We really need to check for
2022 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2023 * for other negative values as an underflow if detected here
2024 * for the first time (and not when decreasing rmap_hlist_len)
2025 * would be sign of memory corruption in the stable_node.
2027 BUG_ON(stable_node->rmap_hlist_len < 0);
2029 stable_node->rmap_hlist_len++;
2030 if (!max_page_sharing_bypass)
2031 /* possibly non fatal but unexpected overflow, only warn */
2032 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2033 ksm_max_page_sharing);
2035 rmap_item->head = stable_node;
2036 rmap_item->address |= STABLE_FLAG;
2037 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2039 if (rmap_item->hlist.next)
2040 ksm_pages_sharing++;
2044 rmap_item->mm->ksm_merging_pages++;
2048 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2049 * if not, compare checksum to previous and if it's the same, see if page can
2050 * be inserted into the unstable tree, or merged with a page already there and
2051 * both transferred to the stable tree.
2053 * @page: the page that we are searching identical page to.
2054 * @rmap_item: the reverse mapping into the virtual address of this page
2056 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2058 struct mm_struct *mm = rmap_item->mm;
2059 struct ksm_rmap_item *tree_rmap_item;
2060 struct page *tree_page = NULL;
2061 struct ksm_stable_node *stable_node;
2063 unsigned int checksum;
2065 bool max_page_sharing_bypass = false;
2067 stable_node = page_stable_node(page);
2069 if (stable_node->head != &migrate_nodes &&
2070 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2071 NUMA(stable_node->nid)) {
2072 stable_node_dup_del(stable_node);
2073 stable_node->head = &migrate_nodes;
2074 list_add(&stable_node->list, stable_node->head);
2076 if (stable_node->head != &migrate_nodes &&
2077 rmap_item->head == stable_node)
2080 * If it's a KSM fork, allow it to go over the sharing limit
2083 if (!is_page_sharing_candidate(stable_node))
2084 max_page_sharing_bypass = true;
2087 /* We first start with searching the page inside the stable tree */
2088 kpage = stable_tree_search(page);
2089 if (kpage == page && rmap_item->head == stable_node) {
2094 remove_rmap_item_from_tree(rmap_item);
2097 if (PTR_ERR(kpage) == -EBUSY)
2100 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2103 * The page was successfully merged:
2104 * add its rmap_item to the stable tree.
2107 stable_tree_append(rmap_item, page_stable_node(kpage),
2108 max_page_sharing_bypass);
2116 * If the hash value of the page has changed from the last time
2117 * we calculated it, this page is changing frequently: therefore we
2118 * don't want to insert it in the unstable tree, and we don't want
2119 * to waste our time searching for something identical to it there.
2121 checksum = calc_checksum(page);
2122 if (rmap_item->oldchecksum != checksum) {
2123 rmap_item->oldchecksum = checksum;
2128 * Same checksum as an empty page. We attempt to merge it with the
2129 * appropriate zero page if the user enabled this via sysfs.
2131 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2132 struct vm_area_struct *vma;
2135 vma = find_mergeable_vma(mm, rmap_item->address);
2137 err = try_to_merge_one_page(vma, page,
2138 ZERO_PAGE(rmap_item->address));
2141 * If the vma is out of date, we do not need to
2146 mmap_read_unlock(mm);
2148 * In case of failure, the page was not really empty, so we
2149 * need to continue. Otherwise we're done.
2155 unstable_tree_search_insert(rmap_item, page, &tree_page);
2156 if (tree_rmap_item) {
2159 kpage = try_to_merge_two_pages(rmap_item, page,
2160 tree_rmap_item, tree_page);
2162 * If both pages we tried to merge belong to the same compound
2163 * page, then we actually ended up increasing the reference
2164 * count of the same compound page twice, and split_huge_page
2166 * Here we set a flag if that happened, and we use it later to
2167 * try split_huge_page again. Since we call put_page right
2168 * afterwards, the reference count will be correct and
2169 * split_huge_page should succeed.
2171 split = PageTransCompound(page)
2172 && compound_head(page) == compound_head(tree_page);
2173 put_page(tree_page);
2176 * The pages were successfully merged: insert new
2177 * node in the stable tree and add both rmap_items.
2180 stable_node = stable_tree_insert(kpage);
2182 stable_tree_append(tree_rmap_item, stable_node,
2184 stable_tree_append(rmap_item, stable_node,
2190 * If we fail to insert the page into the stable tree,
2191 * we will have 2 virtual addresses that are pointing
2192 * to a ksm page left outside the stable tree,
2193 * in which case we need to break_cow on both.
2196 break_cow(tree_rmap_item);
2197 break_cow(rmap_item);
2201 * We are here if we tried to merge two pages and
2202 * failed because they both belonged to the same
2203 * compound page. We will split the page now, but no
2204 * merging will take place.
2205 * We do not want to add the cost of a full lock; if
2206 * the page is locked, it is better to skip it and
2207 * perhaps try again later.
2209 if (!trylock_page(page))
2211 split_huge_page(page);
2217 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2218 struct ksm_rmap_item **rmap_list,
2221 struct ksm_rmap_item *rmap_item;
2223 while (*rmap_list) {
2224 rmap_item = *rmap_list;
2225 if ((rmap_item->address & PAGE_MASK) == addr)
2227 if (rmap_item->address > addr)
2229 *rmap_list = rmap_item->rmap_list;
2230 remove_rmap_item_from_tree(rmap_item);
2231 free_rmap_item(rmap_item);
2234 rmap_item = alloc_rmap_item();
2236 /* It has already been zeroed */
2237 rmap_item->mm = mm_slot->slot.mm;
2238 rmap_item->mm->ksm_rmap_items++;
2239 rmap_item->address = addr;
2240 rmap_item->rmap_list = *rmap_list;
2241 *rmap_list = rmap_item;
2246 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2248 struct mm_struct *mm;
2249 struct ksm_mm_slot *mm_slot;
2250 struct mm_slot *slot;
2251 struct vm_area_struct *vma;
2252 struct ksm_rmap_item *rmap_item;
2253 struct vma_iterator vmi;
2256 if (list_empty(&ksm_mm_head.slot.mm_node))
2259 mm_slot = ksm_scan.mm_slot;
2260 if (mm_slot == &ksm_mm_head) {
2262 * A number of pages can hang around indefinitely on per-cpu
2263 * pagevecs, raised page count preventing write_protect_page
2264 * from merging them. Though it doesn't really matter much,
2265 * it is puzzling to see some stuck in pages_volatile until
2266 * other activity jostles them out, and they also prevented
2267 * LTP's KSM test from succeeding deterministically; so drain
2268 * them here (here rather than on entry to ksm_do_scan(),
2269 * so we don't IPI too often when pages_to_scan is set low).
2271 lru_add_drain_all();
2274 * Whereas stale stable_nodes on the stable_tree itself
2275 * get pruned in the regular course of stable_tree_search(),
2276 * those moved out to the migrate_nodes list can accumulate:
2277 * so prune them once before each full scan.
2279 if (!ksm_merge_across_nodes) {
2280 struct ksm_stable_node *stable_node, *next;
2283 list_for_each_entry_safe(stable_node, next,
2284 &migrate_nodes, list) {
2285 page = get_ksm_page(stable_node,
2286 GET_KSM_PAGE_NOLOCK);
2293 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2294 root_unstable_tree[nid] = RB_ROOT;
2296 spin_lock(&ksm_mmlist_lock);
2297 slot = list_entry(mm_slot->slot.mm_node.next,
2298 struct mm_slot, mm_node);
2299 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2300 ksm_scan.mm_slot = mm_slot;
2301 spin_unlock(&ksm_mmlist_lock);
2303 * Although we tested list_empty() above, a racing __ksm_exit
2304 * of the last mm on the list may have removed it since then.
2306 if (mm_slot == &ksm_mm_head)
2309 ksm_scan.address = 0;
2310 ksm_scan.rmap_list = &mm_slot->rmap_list;
2313 slot = &mm_slot->slot;
2315 vma_iter_init(&vmi, mm, ksm_scan.address);
2318 if (ksm_test_exit(mm))
2321 for_each_vma(vmi, vma) {
2322 if (!(vma->vm_flags & VM_MERGEABLE))
2324 if (ksm_scan.address < vma->vm_start)
2325 ksm_scan.address = vma->vm_start;
2327 ksm_scan.address = vma->vm_end;
2329 while (ksm_scan.address < vma->vm_end) {
2330 if (ksm_test_exit(mm))
2332 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2333 if (IS_ERR_OR_NULL(*page)) {
2334 ksm_scan.address += PAGE_SIZE;
2338 if (is_zone_device_page(*page))
2340 if (PageAnon(*page)) {
2341 flush_anon_page(vma, *page, ksm_scan.address);
2342 flush_dcache_page(*page);
2343 rmap_item = get_next_rmap_item(mm_slot,
2344 ksm_scan.rmap_list, ksm_scan.address);
2346 ksm_scan.rmap_list =
2347 &rmap_item->rmap_list;
2348 ksm_scan.address += PAGE_SIZE;
2351 mmap_read_unlock(mm);
2356 ksm_scan.address += PAGE_SIZE;
2361 if (ksm_test_exit(mm)) {
2363 ksm_scan.address = 0;
2364 ksm_scan.rmap_list = &mm_slot->rmap_list;
2367 * Nuke all the rmap_items that are above this current rmap:
2368 * because there were no VM_MERGEABLE vmas with such addresses.
2370 remove_trailing_rmap_items(ksm_scan.rmap_list);
2372 spin_lock(&ksm_mmlist_lock);
2373 slot = list_entry(mm_slot->slot.mm_node.next,
2374 struct mm_slot, mm_node);
2375 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2376 if (ksm_scan.address == 0) {
2378 * We've completed a full scan of all vmas, holding mmap_lock
2379 * throughout, and found no VM_MERGEABLE: so do the same as
2380 * __ksm_exit does to remove this mm from all our lists now.
2381 * This applies either when cleaning up after __ksm_exit
2382 * (but beware: we can reach here even before __ksm_exit),
2383 * or when all VM_MERGEABLE areas have been unmapped (and
2384 * mmap_lock then protects against race with MADV_MERGEABLE).
2386 hash_del(&mm_slot->slot.hash);
2387 list_del(&mm_slot->slot.mm_node);
2388 spin_unlock(&ksm_mmlist_lock);
2390 mm_slot_free(mm_slot_cache, mm_slot);
2391 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2392 mmap_read_unlock(mm);
2395 mmap_read_unlock(mm);
2397 * mmap_read_unlock(mm) first because after
2398 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2399 * already have been freed under us by __ksm_exit()
2400 * because the "mm_slot" is still hashed and
2401 * ksm_scan.mm_slot doesn't point to it anymore.
2403 spin_unlock(&ksm_mmlist_lock);
2406 /* Repeat until we've completed scanning the whole list */
2407 mm_slot = ksm_scan.mm_slot;
2408 if (mm_slot != &ksm_mm_head)
2416 * ksm_do_scan - the ksm scanner main worker function.
2417 * @scan_npages: number of pages we want to scan before we return.
2419 static void ksm_do_scan(unsigned int scan_npages)
2421 struct ksm_rmap_item *rmap_item;
2424 while (scan_npages-- && likely(!freezing(current))) {
2426 rmap_item = scan_get_next_rmap_item(&page);
2429 cmp_and_merge_page(page, rmap_item);
2434 static int ksmd_should_run(void)
2436 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2439 static int ksm_scan_thread(void *nothing)
2441 unsigned int sleep_ms;
2444 set_user_nice(current, 5);
2446 while (!kthread_should_stop()) {
2447 mutex_lock(&ksm_thread_mutex);
2448 wait_while_offlining();
2449 if (ksmd_should_run())
2450 ksm_do_scan(ksm_thread_pages_to_scan);
2451 mutex_unlock(&ksm_thread_mutex);
2455 if (ksmd_should_run()) {
2456 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2457 wait_event_interruptible_timeout(ksm_iter_wait,
2458 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2459 msecs_to_jiffies(sleep_ms));
2461 wait_event_freezable(ksm_thread_wait,
2462 ksmd_should_run() || kthread_should_stop());
2468 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2469 unsigned long end, int advice, unsigned long *vm_flags)
2471 struct mm_struct *mm = vma->vm_mm;
2475 case MADV_MERGEABLE:
2477 * Be somewhat over-protective for now!
2479 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2480 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2481 VM_HUGETLB | VM_MIXEDMAP))
2482 return 0; /* just ignore the advice */
2484 if (vma_is_dax(vma))
2488 if (*vm_flags & VM_SAO)
2492 if (*vm_flags & VM_SPARC_ADI)
2496 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2497 err = __ksm_enter(mm);
2502 *vm_flags |= VM_MERGEABLE;
2505 case MADV_UNMERGEABLE:
2506 if (!(*vm_flags & VM_MERGEABLE))
2507 return 0; /* just ignore the advice */
2509 if (vma->anon_vma) {
2510 err = unmerge_ksm_pages(vma, start, end);
2515 *vm_flags &= ~VM_MERGEABLE;
2521 EXPORT_SYMBOL_GPL(ksm_madvise);
2523 int __ksm_enter(struct mm_struct *mm)
2525 struct ksm_mm_slot *mm_slot;
2526 struct mm_slot *slot;
2529 mm_slot = mm_slot_alloc(mm_slot_cache);
2533 slot = &mm_slot->slot;
2535 /* Check ksm_run too? Would need tighter locking */
2536 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2538 spin_lock(&ksm_mmlist_lock);
2539 mm_slot_insert(mm_slots_hash, mm, slot);
2541 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2542 * insert just behind the scanning cursor, to let the area settle
2543 * down a little; when fork is followed by immediate exec, we don't
2544 * want ksmd to waste time setting up and tearing down an rmap_list.
2546 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2547 * scanning cursor, otherwise KSM pages in newly forked mms will be
2548 * missed: then we might as well insert at the end of the list.
2550 if (ksm_run & KSM_RUN_UNMERGE)
2551 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2553 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2554 spin_unlock(&ksm_mmlist_lock);
2556 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2560 wake_up_interruptible(&ksm_thread_wait);
2565 void __ksm_exit(struct mm_struct *mm)
2567 struct ksm_mm_slot *mm_slot;
2568 struct mm_slot *slot;
2569 int easy_to_free = 0;
2572 * This process is exiting: if it's straightforward (as is the
2573 * case when ksmd was never running), free mm_slot immediately.
2574 * But if it's at the cursor or has rmap_items linked to it, use
2575 * mmap_lock to synchronize with any break_cows before pagetables
2576 * are freed, and leave the mm_slot on the list for ksmd to free.
2577 * Beware: ksm may already have noticed it exiting and freed the slot.
2580 spin_lock(&ksm_mmlist_lock);
2581 slot = mm_slot_lookup(mm_slots_hash, mm);
2582 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2583 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2584 if (!mm_slot->rmap_list) {
2585 hash_del(&slot->hash);
2586 list_del(&slot->mm_node);
2589 list_move(&slot->mm_node,
2590 &ksm_scan.mm_slot->slot.mm_node);
2593 spin_unlock(&ksm_mmlist_lock);
2596 mm_slot_free(mm_slot_cache, mm_slot);
2597 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2599 } else if (mm_slot) {
2600 mmap_write_lock(mm);
2601 mmap_write_unlock(mm);
2605 struct page *ksm_might_need_to_copy(struct page *page,
2606 struct vm_area_struct *vma, unsigned long address)
2608 struct folio *folio = page_folio(page);
2609 struct anon_vma *anon_vma = folio_anon_vma(folio);
2610 struct page *new_page;
2612 if (PageKsm(page)) {
2613 if (page_stable_node(page) &&
2614 !(ksm_run & KSM_RUN_UNMERGE))
2615 return page; /* no need to copy it */
2616 } else if (!anon_vma) {
2617 return page; /* no need to copy it */
2618 } else if (page->index == linear_page_index(vma, address) &&
2619 anon_vma->root == vma->anon_vma->root) {
2620 return page; /* still no need to copy it */
2622 if (!PageUptodate(page))
2623 return page; /* let do_swap_page report the error */
2625 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2627 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2632 copy_user_highpage(new_page, page, address, vma);
2634 SetPageDirty(new_page);
2635 __SetPageUptodate(new_page);
2636 __SetPageLocked(new_page);
2638 count_vm_event(KSM_SWPIN_COPY);
2645 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2647 struct ksm_stable_node *stable_node;
2648 struct ksm_rmap_item *rmap_item;
2649 int search_new_forks = 0;
2651 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2654 * Rely on the page lock to protect against concurrent modifications
2655 * to that page's node of the stable tree.
2657 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2659 stable_node = folio_stable_node(folio);
2663 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2664 struct anon_vma *anon_vma = rmap_item->anon_vma;
2665 struct anon_vma_chain *vmac;
2666 struct vm_area_struct *vma;
2669 if (!anon_vma_trylock_read(anon_vma)) {
2670 if (rwc->try_lock) {
2671 rwc->contended = true;
2674 anon_vma_lock_read(anon_vma);
2676 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2683 /* Ignore the stable/unstable/sqnr flags */
2684 addr = rmap_item->address & PAGE_MASK;
2686 if (addr < vma->vm_start || addr >= vma->vm_end)
2689 * Initially we examine only the vma which covers this
2690 * rmap_item; but later, if there is still work to do,
2691 * we examine covering vmas in other mms: in case they
2692 * were forked from the original since ksmd passed.
2694 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2697 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2700 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2701 anon_vma_unlock_read(anon_vma);
2704 if (rwc->done && rwc->done(folio)) {
2705 anon_vma_unlock_read(anon_vma);
2709 anon_vma_unlock_read(anon_vma);
2711 if (!search_new_forks++)
2715 #ifdef CONFIG_MIGRATION
2716 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2718 struct ksm_stable_node *stable_node;
2720 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2721 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2722 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2724 stable_node = folio_stable_node(folio);
2726 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2727 stable_node->kpfn = folio_pfn(newfolio);
2729 * newfolio->mapping was set in advance; now we need smp_wmb()
2730 * to make sure that the new stable_node->kpfn is visible
2731 * to get_ksm_page() before it can see that folio->mapping
2732 * has gone stale (or that folio_test_swapcache has been cleared).
2735 set_page_stable_node(&folio->page, NULL);
2738 #endif /* CONFIG_MIGRATION */
2740 #ifdef CONFIG_MEMORY_HOTREMOVE
2741 static void wait_while_offlining(void)
2743 while (ksm_run & KSM_RUN_OFFLINE) {
2744 mutex_unlock(&ksm_thread_mutex);
2745 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2746 TASK_UNINTERRUPTIBLE);
2747 mutex_lock(&ksm_thread_mutex);
2751 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2752 unsigned long start_pfn,
2753 unsigned long end_pfn)
2755 if (stable_node->kpfn >= start_pfn &&
2756 stable_node->kpfn < end_pfn) {
2758 * Don't get_ksm_page, page has already gone:
2759 * which is why we keep kpfn instead of page*
2761 remove_node_from_stable_tree(stable_node);
2767 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2768 unsigned long start_pfn,
2769 unsigned long end_pfn,
2770 struct rb_root *root)
2772 struct ksm_stable_node *dup;
2773 struct hlist_node *hlist_safe;
2775 if (!is_stable_node_chain(stable_node)) {
2776 VM_BUG_ON(is_stable_node_dup(stable_node));
2777 return stable_node_dup_remove_range(stable_node, start_pfn,
2781 hlist_for_each_entry_safe(dup, hlist_safe,
2782 &stable_node->hlist, hlist_dup) {
2783 VM_BUG_ON(!is_stable_node_dup(dup));
2784 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2786 if (hlist_empty(&stable_node->hlist)) {
2787 free_stable_node_chain(stable_node, root);
2788 return true; /* notify caller that tree was rebalanced */
2793 static void ksm_check_stable_tree(unsigned long start_pfn,
2794 unsigned long end_pfn)
2796 struct ksm_stable_node *stable_node, *next;
2797 struct rb_node *node;
2800 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2801 node = rb_first(root_stable_tree + nid);
2803 stable_node = rb_entry(node, struct ksm_stable_node, node);
2804 if (stable_node_chain_remove_range(stable_node,
2808 node = rb_first(root_stable_tree + nid);
2810 node = rb_next(node);
2814 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2815 if (stable_node->kpfn >= start_pfn &&
2816 stable_node->kpfn < end_pfn)
2817 remove_node_from_stable_tree(stable_node);
2822 static int ksm_memory_callback(struct notifier_block *self,
2823 unsigned long action, void *arg)
2825 struct memory_notify *mn = arg;
2828 case MEM_GOING_OFFLINE:
2830 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2831 * and remove_all_stable_nodes() while memory is going offline:
2832 * it is unsafe for them to touch the stable tree at this time.
2833 * But unmerge_ksm_pages(), rmap lookups and other entry points
2834 * which do not need the ksm_thread_mutex are all safe.
2836 mutex_lock(&ksm_thread_mutex);
2837 ksm_run |= KSM_RUN_OFFLINE;
2838 mutex_unlock(&ksm_thread_mutex);
2843 * Most of the work is done by page migration; but there might
2844 * be a few stable_nodes left over, still pointing to struct
2845 * pages which have been offlined: prune those from the tree,
2846 * otherwise get_ksm_page() might later try to access a
2847 * non-existent struct page.
2849 ksm_check_stable_tree(mn->start_pfn,
2850 mn->start_pfn + mn->nr_pages);
2852 case MEM_CANCEL_OFFLINE:
2853 mutex_lock(&ksm_thread_mutex);
2854 ksm_run &= ~KSM_RUN_OFFLINE;
2855 mutex_unlock(&ksm_thread_mutex);
2857 smp_mb(); /* wake_up_bit advises this */
2858 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2864 static void wait_while_offlining(void)
2867 #endif /* CONFIG_MEMORY_HOTREMOVE */
2871 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2874 #define KSM_ATTR_RO(_name) \
2875 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2876 #define KSM_ATTR(_name) \
2877 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2879 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2880 struct kobj_attribute *attr, char *buf)
2882 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2885 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2886 struct kobj_attribute *attr,
2887 const char *buf, size_t count)
2892 err = kstrtouint(buf, 10, &msecs);
2896 ksm_thread_sleep_millisecs = msecs;
2897 wake_up_interruptible(&ksm_iter_wait);
2901 KSM_ATTR(sleep_millisecs);
2903 static ssize_t pages_to_scan_show(struct kobject *kobj,
2904 struct kobj_attribute *attr, char *buf)
2906 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2909 static ssize_t pages_to_scan_store(struct kobject *kobj,
2910 struct kobj_attribute *attr,
2911 const char *buf, size_t count)
2913 unsigned int nr_pages;
2916 err = kstrtouint(buf, 10, &nr_pages);
2920 ksm_thread_pages_to_scan = nr_pages;
2924 KSM_ATTR(pages_to_scan);
2926 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2929 return sysfs_emit(buf, "%lu\n", ksm_run);
2932 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2933 const char *buf, size_t count)
2938 err = kstrtouint(buf, 10, &flags);
2941 if (flags > KSM_RUN_UNMERGE)
2945 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2946 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2947 * breaking COW to free the pages_shared (but leaves mm_slots
2948 * on the list for when ksmd may be set running again).
2951 mutex_lock(&ksm_thread_mutex);
2952 wait_while_offlining();
2953 if (ksm_run != flags) {
2955 if (flags & KSM_RUN_UNMERGE) {
2956 set_current_oom_origin();
2957 err = unmerge_and_remove_all_rmap_items();
2958 clear_current_oom_origin();
2960 ksm_run = KSM_RUN_STOP;
2965 mutex_unlock(&ksm_thread_mutex);
2967 if (flags & KSM_RUN_MERGE)
2968 wake_up_interruptible(&ksm_thread_wait);
2975 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2976 struct kobj_attribute *attr, char *buf)
2978 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2981 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2982 struct kobj_attribute *attr,
2983 const char *buf, size_t count)
2988 err = kstrtoul(buf, 10, &knob);
2994 mutex_lock(&ksm_thread_mutex);
2995 wait_while_offlining();
2996 if (ksm_merge_across_nodes != knob) {
2997 if (ksm_pages_shared || remove_all_stable_nodes())
2999 else if (root_stable_tree == one_stable_tree) {
3000 struct rb_root *buf;
3002 * This is the first time that we switch away from the
3003 * default of merging across nodes: must now allocate
3004 * a buffer to hold as many roots as may be needed.
3005 * Allocate stable and unstable together:
3006 * MAXSMP NODES_SHIFT 10 will use 16kB.
3008 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3010 /* Let us assume that RB_ROOT is NULL is zero */
3014 root_stable_tree = buf;
3015 root_unstable_tree = buf + nr_node_ids;
3016 /* Stable tree is empty but not the unstable */
3017 root_unstable_tree[0] = one_unstable_tree[0];
3021 ksm_merge_across_nodes = knob;
3022 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3025 mutex_unlock(&ksm_thread_mutex);
3027 return err ? err : count;
3029 KSM_ATTR(merge_across_nodes);
3032 static ssize_t use_zero_pages_show(struct kobject *kobj,
3033 struct kobj_attribute *attr, char *buf)
3035 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3037 static ssize_t use_zero_pages_store(struct kobject *kobj,
3038 struct kobj_attribute *attr,
3039 const char *buf, size_t count)
3044 err = kstrtobool(buf, &value);
3048 ksm_use_zero_pages = value;
3052 KSM_ATTR(use_zero_pages);
3054 static ssize_t max_page_sharing_show(struct kobject *kobj,
3055 struct kobj_attribute *attr, char *buf)
3057 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3060 static ssize_t max_page_sharing_store(struct kobject *kobj,
3061 struct kobj_attribute *attr,
3062 const char *buf, size_t count)
3067 err = kstrtoint(buf, 10, &knob);
3071 * When a KSM page is created it is shared by 2 mappings. This
3072 * being a signed comparison, it implicitly verifies it's not
3078 if (READ_ONCE(ksm_max_page_sharing) == knob)
3081 mutex_lock(&ksm_thread_mutex);
3082 wait_while_offlining();
3083 if (ksm_max_page_sharing != knob) {
3084 if (ksm_pages_shared || remove_all_stable_nodes())
3087 ksm_max_page_sharing = knob;
3089 mutex_unlock(&ksm_thread_mutex);
3091 return err ? err : count;
3093 KSM_ATTR(max_page_sharing);
3095 static ssize_t pages_shared_show(struct kobject *kobj,
3096 struct kobj_attribute *attr, char *buf)
3098 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3100 KSM_ATTR_RO(pages_shared);
3102 static ssize_t pages_sharing_show(struct kobject *kobj,
3103 struct kobj_attribute *attr, char *buf)
3105 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3107 KSM_ATTR_RO(pages_sharing);
3109 static ssize_t pages_unshared_show(struct kobject *kobj,
3110 struct kobj_attribute *attr, char *buf)
3112 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3114 KSM_ATTR_RO(pages_unshared);
3116 static ssize_t pages_volatile_show(struct kobject *kobj,
3117 struct kobj_attribute *attr, char *buf)
3119 long ksm_pages_volatile;
3121 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3122 - ksm_pages_sharing - ksm_pages_unshared;
3124 * It was not worth any locking to calculate that statistic,
3125 * but it might therefore sometimes be negative: conceal that.
3127 if (ksm_pages_volatile < 0)
3128 ksm_pages_volatile = 0;
3129 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3131 KSM_ATTR_RO(pages_volatile);
3133 static ssize_t stable_node_dups_show(struct kobject *kobj,
3134 struct kobj_attribute *attr, char *buf)
3136 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3138 KSM_ATTR_RO(stable_node_dups);
3140 static ssize_t stable_node_chains_show(struct kobject *kobj,
3141 struct kobj_attribute *attr, char *buf)
3143 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3145 KSM_ATTR_RO(stable_node_chains);
3148 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3149 struct kobj_attribute *attr,
3152 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3156 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3157 struct kobj_attribute *attr,
3158 const char *buf, size_t count)
3163 err = kstrtouint(buf, 10, &msecs);
3167 ksm_stable_node_chains_prune_millisecs = msecs;
3171 KSM_ATTR(stable_node_chains_prune_millisecs);
3173 static ssize_t full_scans_show(struct kobject *kobj,
3174 struct kobj_attribute *attr, char *buf)
3176 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3178 KSM_ATTR_RO(full_scans);
3180 static struct attribute *ksm_attrs[] = {
3181 &sleep_millisecs_attr.attr,
3182 &pages_to_scan_attr.attr,
3184 &pages_shared_attr.attr,
3185 &pages_sharing_attr.attr,
3186 &pages_unshared_attr.attr,
3187 &pages_volatile_attr.attr,
3188 &full_scans_attr.attr,
3190 &merge_across_nodes_attr.attr,
3192 &max_page_sharing_attr.attr,
3193 &stable_node_chains_attr.attr,
3194 &stable_node_dups_attr.attr,
3195 &stable_node_chains_prune_millisecs_attr.attr,
3196 &use_zero_pages_attr.attr,
3200 static const struct attribute_group ksm_attr_group = {
3204 #endif /* CONFIG_SYSFS */
3206 static int __init ksm_init(void)
3208 struct task_struct *ksm_thread;
3211 /* The correct value depends on page size and endianness */
3212 zero_checksum = calc_checksum(ZERO_PAGE(0));
3213 /* Default to false for backwards compatibility */
3214 ksm_use_zero_pages = false;
3216 err = ksm_slab_init();
3220 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3221 if (IS_ERR(ksm_thread)) {
3222 pr_err("ksm: creating kthread failed\n");
3223 err = PTR_ERR(ksm_thread);
3228 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3230 pr_err("ksm: register sysfs failed\n");
3231 kthread_stop(ksm_thread);
3235 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3237 #endif /* CONFIG_SYSFS */
3239 #ifdef CONFIG_MEMORY_HOTREMOVE
3240 /* There is no significance to this priority 100 */
3241 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3250 subsys_initcall(ksm_init);