Merge tag 'filelock-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton...
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)         (x)
53 #define DO_NUMA(x)      do { (x); } while (0)
54 #else
55 #define NUMA(x)         (0)
56 #define DO_NUMA(x)      do { } while (0)
57 #endif
58
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125         struct mm_slot slot;
126         struct ksm_rmap_item *rmap_list;
127 };
128
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139         struct ksm_mm_slot *mm_slot;
140         unsigned long address;
141         struct ksm_rmap_item **rmap_list;
142         unsigned long seqnr;
143 };
144
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158         union {
159                 struct rb_node node;    /* when node of stable tree */
160                 struct {                /* when listed for migration */
161                         struct list_head *head;
162                         struct {
163                                 struct hlist_node hlist_dup;
164                                 struct list_head list;
165                         };
166                 };
167         };
168         struct hlist_head hlist;
169         union {
170                 unsigned long kpfn;
171                 unsigned long chain_prune_time;
172         };
173         /*
174          * STABLE_NODE_CHAIN can be any negative number in
175          * rmap_hlist_len negative range, but better not -1 to be able
176          * to reliably detect underflows.
177          */
178 #define STABLE_NODE_CHAIN -1024
179         int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181         int nid;
182 #endif
183 };
184
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198         struct ksm_rmap_item *rmap_list;
199         union {
200                 struct anon_vma *anon_vma;      /* when stable */
201 #ifdef CONFIG_NUMA
202                 int nid;                /* when node of unstable tree */
203 #endif
204         };
205         struct mm_struct *mm;
206         unsigned long address;          /* + low bits used for flags below */
207         unsigned int oldchecksum;       /* when unstable */
208         union {
209                 struct rb_node node;    /* when node of unstable tree */
210                 struct {                /* when listed from stable tree */
211                         struct ksm_stable_node *head;
212                         struct hlist_node hlist;
213                 };
214         };
215 };
216
217 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
219 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
220
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233
234 static struct ksm_mm_slot ksm_mm_head = {
235         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238         .mm_slot = &ksm_mm_head,
239 };
240
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes  1U
287 #define ksm_nr_node_ids         1
288 #endif
289
290 #define KSM_RUN_STOP    0
291 #define KSM_RUN_MERGE   1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303                 sizeof(struct __struct), __alignof__(struct __struct),\
304                 (__flags), NULL)
305
306 static int __init ksm_slab_init(void)
307 {
308         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309         if (!rmap_item_cache)
310                 goto out;
311
312         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313         if (!stable_node_cache)
314                 goto out_free1;
315
316         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
317         if (!mm_slot_cache)
318                 goto out_free2;
319
320         return 0;
321
322 out_free2:
323         kmem_cache_destroy(stable_node_cache);
324 out_free1:
325         kmem_cache_destroy(rmap_item_cache);
326 out:
327         return -ENOMEM;
328 }
329
330 static void __init ksm_slab_free(void)
331 {
332         kmem_cache_destroy(mm_slot_cache);
333         kmem_cache_destroy(stable_node_cache);
334         kmem_cache_destroy(rmap_item_cache);
335         mm_slot_cache = NULL;
336 }
337
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
339 {
340         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
344 {
345         return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349                                              struct ksm_stable_node *chain)
350 {
351         VM_BUG_ON(is_stable_node_dup(dup));
352         dup->head = STABLE_NODE_DUP_HEAD;
353         VM_BUG_ON(!is_stable_node_chain(chain));
354         hlist_add_head(&dup->hlist_dup, &chain->hlist);
355         ksm_stable_node_dups++;
356 }
357
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
359 {
360         VM_BUG_ON(!is_stable_node_dup(dup));
361         hlist_del(&dup->hlist_dup);
362         ksm_stable_node_dups--;
363 }
364
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
366 {
367         VM_BUG_ON(is_stable_node_chain(dup));
368         if (is_stable_node_dup(dup))
369                 __stable_node_dup_del(dup);
370         else
371                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373         dup->head = NULL;
374 #endif
375 }
376
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
378 {
379         struct ksm_rmap_item *rmap_item;
380
381         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382                                                 __GFP_NORETRY | __GFP_NOWARN);
383         if (rmap_item)
384                 ksm_rmap_items++;
385         return rmap_item;
386 }
387
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
389 {
390         ksm_rmap_items--;
391         rmap_item->mm->ksm_rmap_items--;
392         rmap_item->mm = NULL;   /* debug safety */
393         kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
396 static inline struct ksm_stable_node *alloc_stable_node(void)
397 {
398         /*
399          * The allocation can take too long with GFP_KERNEL when memory is under
400          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401          * grants access to memory reserves, helping to avoid this problem.
402          */
403         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
407 {
408         VM_BUG_ON(stable_node->rmap_hlist_len &&
409                   !is_stable_node_chain(stable_node));
410         kmem_cache_free(stable_node_cache, stable_node);
411 }
412
413 /*
414  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415  * page tables after it has passed through ksm_exit() - which, if necessary,
416  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
417  * a special flag: they can just back out as soon as mm_users goes to zero.
418  * ksm_test_exit() is used throughout to make this test for exit: in some
419  * places for correctness, in some places just to avoid unnecessary work.
420  */
421 static inline bool ksm_test_exit(struct mm_struct *mm)
422 {
423         return atomic_read(&mm->mm_users) == 0;
424 }
425
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427                         struct mm_walk *walk)
428 {
429         struct page *page = NULL;
430         spinlock_t *ptl;
431         pte_t *pte;
432         pte_t ptent;
433         int ret;
434
435         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
436         if (!pte)
437                 return 0;
438         ptent = ptep_get(pte);
439         if (pte_present(ptent)) {
440                 page = vm_normal_page(walk->vma, addr, ptent);
441         } else if (!pte_none(ptent)) {
442                 swp_entry_t entry = pte_to_swp_entry(ptent);
443
444                 /*
445                  * As KSM pages remain KSM pages until freed, no need to wait
446                  * here for migration to end.
447                  */
448                 if (is_migration_entry(entry))
449                         page = pfn_swap_entry_to_page(entry);
450         }
451         ret = page && PageKsm(page);
452         pte_unmap_unlock(pte, ptl);
453         return ret;
454 }
455
456 static const struct mm_walk_ops break_ksm_ops = {
457         .pmd_entry = break_ksm_pmd_entry,
458         .walk_lock = PGWALK_RDLOCK,
459 };
460
461 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
462         .pmd_entry = break_ksm_pmd_entry,
463         .walk_lock = PGWALK_WRLOCK,
464 };
465
466 /*
467  * We use break_ksm to break COW on a ksm page by triggering unsharing,
468  * such that the ksm page will get replaced by an exclusive anonymous page.
469  *
470  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
471  * in case the application has unmapped and remapped mm,addr meanwhile.
472  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
473  * mmap of /dev/mem, where we would not want to touch it.
474  *
475  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
476  * of the process that owns 'vma'.  We also do not want to enforce
477  * protection keys here anyway.
478  */
479 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
480 {
481         vm_fault_t ret = 0;
482         const struct mm_walk_ops *ops = lock_vma ?
483                                 &break_ksm_lock_vma_ops : &break_ksm_ops;
484
485         do {
486                 int ksm_page;
487
488                 cond_resched();
489                 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
490                 if (WARN_ON_ONCE(ksm_page < 0))
491                         return ksm_page;
492                 if (!ksm_page)
493                         return 0;
494                 ret = handle_mm_fault(vma, addr,
495                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
496                                       NULL);
497         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
498         /*
499          * We must loop until we no longer find a KSM page because
500          * handle_mm_fault() may back out if there's any difficulty e.g. if
501          * pte accessed bit gets updated concurrently.
502          *
503          * VM_FAULT_SIGBUS could occur if we race with truncation of the
504          * backing file, which also invalidates anonymous pages: that's
505          * okay, that truncation will have unmapped the PageKsm for us.
506          *
507          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
508          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
509          * current task has TIF_MEMDIE set, and will be OOM killed on return
510          * to user; and ksmd, having no mm, would never be chosen for that.
511          *
512          * But if the mm is in a limited mem_cgroup, then the fault may fail
513          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
514          * even ksmd can fail in this way - though it's usually breaking ksm
515          * just to undo a merge it made a moment before, so unlikely to oom.
516          *
517          * That's a pity: we might therefore have more kernel pages allocated
518          * than we're counting as nodes in the stable tree; but ksm_do_scan
519          * will retry to break_cow on each pass, so should recover the page
520          * in due course.  The important thing is to not let VM_MERGEABLE
521          * be cleared while any such pages might remain in the area.
522          */
523         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
524 }
525
526 static bool vma_ksm_compatible(struct vm_area_struct *vma)
527 {
528         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
529                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
530                              VM_MIXEDMAP))
531                 return false;           /* just ignore the advice */
532
533         if (vma_is_dax(vma))
534                 return false;
535
536 #ifdef VM_SAO
537         if (vma->vm_flags & VM_SAO)
538                 return false;
539 #endif
540 #ifdef VM_SPARC_ADI
541         if (vma->vm_flags & VM_SPARC_ADI)
542                 return false;
543 #endif
544
545         return true;
546 }
547
548 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
549                 unsigned long addr)
550 {
551         struct vm_area_struct *vma;
552         if (ksm_test_exit(mm))
553                 return NULL;
554         vma = vma_lookup(mm, addr);
555         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
556                 return NULL;
557         return vma;
558 }
559
560 static void break_cow(struct ksm_rmap_item *rmap_item)
561 {
562         struct mm_struct *mm = rmap_item->mm;
563         unsigned long addr = rmap_item->address;
564         struct vm_area_struct *vma;
565
566         /*
567          * It is not an accident that whenever we want to break COW
568          * to undo, we also need to drop a reference to the anon_vma.
569          */
570         put_anon_vma(rmap_item->anon_vma);
571
572         mmap_read_lock(mm);
573         vma = find_mergeable_vma(mm, addr);
574         if (vma)
575                 break_ksm(vma, addr, false);
576         mmap_read_unlock(mm);
577 }
578
579 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
580 {
581         struct mm_struct *mm = rmap_item->mm;
582         unsigned long addr = rmap_item->address;
583         struct vm_area_struct *vma;
584         struct page *page;
585
586         mmap_read_lock(mm);
587         vma = find_mergeable_vma(mm, addr);
588         if (!vma)
589                 goto out;
590
591         page = follow_page(vma, addr, FOLL_GET);
592         if (IS_ERR_OR_NULL(page))
593                 goto out;
594         if (is_zone_device_page(page))
595                 goto out_putpage;
596         if (PageAnon(page)) {
597                 flush_anon_page(vma, page, addr);
598                 flush_dcache_page(page);
599         } else {
600 out_putpage:
601                 put_page(page);
602 out:
603                 page = NULL;
604         }
605         mmap_read_unlock(mm);
606         return page;
607 }
608
609 /*
610  * This helper is used for getting right index into array of tree roots.
611  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
612  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
613  * every node has its own stable and unstable tree.
614  */
615 static inline int get_kpfn_nid(unsigned long kpfn)
616 {
617         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
618 }
619
620 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
621                                                    struct rb_root *root)
622 {
623         struct ksm_stable_node *chain = alloc_stable_node();
624         VM_BUG_ON(is_stable_node_chain(dup));
625         if (likely(chain)) {
626                 INIT_HLIST_HEAD(&chain->hlist);
627                 chain->chain_prune_time = jiffies;
628                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
629 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
630                 chain->nid = NUMA_NO_NODE; /* debug */
631 #endif
632                 ksm_stable_node_chains++;
633
634                 /*
635                  * Put the stable node chain in the first dimension of
636                  * the stable tree and at the same time remove the old
637                  * stable node.
638                  */
639                 rb_replace_node(&dup->node, &chain->node, root);
640
641                 /*
642                  * Move the old stable node to the second dimension
643                  * queued in the hlist_dup. The invariant is that all
644                  * dup stable_nodes in the chain->hlist point to pages
645                  * that are write protected and have the exact same
646                  * content.
647                  */
648                 stable_node_chain_add_dup(dup, chain);
649         }
650         return chain;
651 }
652
653 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
654                                           struct rb_root *root)
655 {
656         rb_erase(&chain->node, root);
657         free_stable_node(chain);
658         ksm_stable_node_chains--;
659 }
660
661 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
662 {
663         struct ksm_rmap_item *rmap_item;
664
665         /* check it's not STABLE_NODE_CHAIN or negative */
666         BUG_ON(stable_node->rmap_hlist_len < 0);
667
668         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
669                 if (rmap_item->hlist.next) {
670                         ksm_pages_sharing--;
671                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
672                 } else {
673                         ksm_pages_shared--;
674                 }
675
676                 rmap_item->mm->ksm_merging_pages--;
677
678                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
679                 stable_node->rmap_hlist_len--;
680                 put_anon_vma(rmap_item->anon_vma);
681                 rmap_item->address &= PAGE_MASK;
682                 cond_resched();
683         }
684
685         /*
686          * We need the second aligned pointer of the migrate_nodes
687          * list_head to stay clear from the rb_parent_color union
688          * (aligned and different than any node) and also different
689          * from &migrate_nodes. This will verify that future list.h changes
690          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
691          */
692         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
693         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
694
695         trace_ksm_remove_ksm_page(stable_node->kpfn);
696         if (stable_node->head == &migrate_nodes)
697                 list_del(&stable_node->list);
698         else
699                 stable_node_dup_del(stable_node);
700         free_stable_node(stable_node);
701 }
702
703 enum get_ksm_page_flags {
704         GET_KSM_PAGE_NOLOCK,
705         GET_KSM_PAGE_LOCK,
706         GET_KSM_PAGE_TRYLOCK
707 };
708
709 /*
710  * get_ksm_page: checks if the page indicated by the stable node
711  * is still its ksm page, despite having held no reference to it.
712  * In which case we can trust the content of the page, and it
713  * returns the gotten page; but if the page has now been zapped,
714  * remove the stale node from the stable tree and return NULL.
715  * But beware, the stable node's page might be being migrated.
716  *
717  * You would expect the stable_node to hold a reference to the ksm page.
718  * But if it increments the page's count, swapping out has to wait for
719  * ksmd to come around again before it can free the page, which may take
720  * seconds or even minutes: much too unresponsive.  So instead we use a
721  * "keyhole reference": access to the ksm page from the stable node peeps
722  * out through its keyhole to see if that page still holds the right key,
723  * pointing back to this stable node.  This relies on freeing a PageAnon
724  * page to reset its page->mapping to NULL, and relies on no other use of
725  * a page to put something that might look like our key in page->mapping.
726  * is on its way to being freed; but it is an anomaly to bear in mind.
727  */
728 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
729                                  enum get_ksm_page_flags flags)
730 {
731         struct page *page;
732         void *expected_mapping;
733         unsigned long kpfn;
734
735         expected_mapping = (void *)((unsigned long)stable_node |
736                                         PAGE_MAPPING_KSM);
737 again:
738         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
739         page = pfn_to_page(kpfn);
740         if (READ_ONCE(page->mapping) != expected_mapping)
741                 goto stale;
742
743         /*
744          * We cannot do anything with the page while its refcount is 0.
745          * Usually 0 means free, or tail of a higher-order page: in which
746          * case this node is no longer referenced, and should be freed;
747          * however, it might mean that the page is under page_ref_freeze().
748          * The __remove_mapping() case is easy, again the node is now stale;
749          * the same is in reuse_ksm_page() case; but if page is swapcache
750          * in folio_migrate_mapping(), it might still be our page,
751          * in which case it's essential to keep the node.
752          */
753         while (!get_page_unless_zero(page)) {
754                 /*
755                  * Another check for page->mapping != expected_mapping would
756                  * work here too.  We have chosen the !PageSwapCache test to
757                  * optimize the common case, when the page is or is about to
758                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
759                  * in the ref_freeze section of __remove_mapping(); but Anon
760                  * page->mapping reset to NULL later, in free_pages_prepare().
761                  */
762                 if (!PageSwapCache(page))
763                         goto stale;
764                 cpu_relax();
765         }
766
767         if (READ_ONCE(page->mapping) != expected_mapping) {
768                 put_page(page);
769                 goto stale;
770         }
771
772         if (flags == GET_KSM_PAGE_TRYLOCK) {
773                 if (!trylock_page(page)) {
774                         put_page(page);
775                         return ERR_PTR(-EBUSY);
776                 }
777         } else if (flags == GET_KSM_PAGE_LOCK)
778                 lock_page(page);
779
780         if (flags != GET_KSM_PAGE_NOLOCK) {
781                 if (READ_ONCE(page->mapping) != expected_mapping) {
782                         unlock_page(page);
783                         put_page(page);
784                         goto stale;
785                 }
786         }
787         return page;
788
789 stale:
790         /*
791          * We come here from above when page->mapping or !PageSwapCache
792          * suggests that the node is stale; but it might be under migration.
793          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
794          * before checking whether node->kpfn has been changed.
795          */
796         smp_rmb();
797         if (READ_ONCE(stable_node->kpfn) != kpfn)
798                 goto again;
799         remove_node_from_stable_tree(stable_node);
800         return NULL;
801 }
802
803 /*
804  * Removing rmap_item from stable or unstable tree.
805  * This function will clean the information from the stable/unstable tree.
806  */
807 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
808 {
809         if (rmap_item->address & STABLE_FLAG) {
810                 struct ksm_stable_node *stable_node;
811                 struct page *page;
812
813                 stable_node = rmap_item->head;
814                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
815                 if (!page)
816                         goto out;
817
818                 hlist_del(&rmap_item->hlist);
819                 unlock_page(page);
820                 put_page(page);
821
822                 if (!hlist_empty(&stable_node->hlist))
823                         ksm_pages_sharing--;
824                 else
825                         ksm_pages_shared--;
826
827                 rmap_item->mm->ksm_merging_pages--;
828
829                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
830                 stable_node->rmap_hlist_len--;
831
832                 put_anon_vma(rmap_item->anon_vma);
833                 rmap_item->head = NULL;
834                 rmap_item->address &= PAGE_MASK;
835
836         } else if (rmap_item->address & UNSTABLE_FLAG) {
837                 unsigned char age;
838                 /*
839                  * Usually ksmd can and must skip the rb_erase, because
840                  * root_unstable_tree was already reset to RB_ROOT.
841                  * But be careful when an mm is exiting: do the rb_erase
842                  * if this rmap_item was inserted by this scan, rather
843                  * than left over from before.
844                  */
845                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
846                 BUG_ON(age > 1);
847                 if (!age)
848                         rb_erase(&rmap_item->node,
849                                  root_unstable_tree + NUMA(rmap_item->nid));
850                 ksm_pages_unshared--;
851                 rmap_item->address &= PAGE_MASK;
852         }
853 out:
854         cond_resched();         /* we're called from many long loops */
855 }
856
857 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
858 {
859         while (*rmap_list) {
860                 struct ksm_rmap_item *rmap_item = *rmap_list;
861                 *rmap_list = rmap_item->rmap_list;
862                 remove_rmap_item_from_tree(rmap_item);
863                 free_rmap_item(rmap_item);
864         }
865 }
866
867 /*
868  * Though it's very tempting to unmerge rmap_items from stable tree rather
869  * than check every pte of a given vma, the locking doesn't quite work for
870  * that - an rmap_item is assigned to the stable tree after inserting ksm
871  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
872  * rmap_items from parent to child at fork time (so as not to waste time
873  * if exit comes before the next scan reaches it).
874  *
875  * Similarly, although we'd like to remove rmap_items (so updating counts
876  * and freeing memory) when unmerging an area, it's easier to leave that
877  * to the next pass of ksmd - consider, for example, how ksmd might be
878  * in cmp_and_merge_page on one of the rmap_items we would be removing.
879  */
880 static int unmerge_ksm_pages(struct vm_area_struct *vma,
881                              unsigned long start, unsigned long end, bool lock_vma)
882 {
883         unsigned long addr;
884         int err = 0;
885
886         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
887                 if (ksm_test_exit(vma->vm_mm))
888                         break;
889                 if (signal_pending(current))
890                         err = -ERESTARTSYS;
891                 else
892                         err = break_ksm(vma, addr, lock_vma);
893         }
894         return err;
895 }
896
897 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
898 {
899         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
900 }
901
902 static inline struct ksm_stable_node *page_stable_node(struct page *page)
903 {
904         return folio_stable_node(page_folio(page));
905 }
906
907 static inline void set_page_stable_node(struct page *page,
908                                         struct ksm_stable_node *stable_node)
909 {
910         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
911         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
912 }
913
914 #ifdef CONFIG_SYSFS
915 /*
916  * Only called through the sysfs control interface:
917  */
918 static int remove_stable_node(struct ksm_stable_node *stable_node)
919 {
920         struct page *page;
921         int err;
922
923         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
924         if (!page) {
925                 /*
926                  * get_ksm_page did remove_node_from_stable_tree itself.
927                  */
928                 return 0;
929         }
930
931         /*
932          * Page could be still mapped if this races with __mmput() running in
933          * between ksm_exit() and exit_mmap(). Just refuse to let
934          * merge_across_nodes/max_page_sharing be switched.
935          */
936         err = -EBUSY;
937         if (!page_mapped(page)) {
938                 /*
939                  * The stable node did not yet appear stale to get_ksm_page(),
940                  * since that allows for an unmapped ksm page to be recognized
941                  * right up until it is freed; but the node is safe to remove.
942                  * This page might be in an LRU cache waiting to be freed,
943                  * or it might be PageSwapCache (perhaps under writeback),
944                  * or it might have been removed from swapcache a moment ago.
945                  */
946                 set_page_stable_node(page, NULL);
947                 remove_node_from_stable_tree(stable_node);
948                 err = 0;
949         }
950
951         unlock_page(page);
952         put_page(page);
953         return err;
954 }
955
956 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
957                                     struct rb_root *root)
958 {
959         struct ksm_stable_node *dup;
960         struct hlist_node *hlist_safe;
961
962         if (!is_stable_node_chain(stable_node)) {
963                 VM_BUG_ON(is_stable_node_dup(stable_node));
964                 if (remove_stable_node(stable_node))
965                         return true;
966                 else
967                         return false;
968         }
969
970         hlist_for_each_entry_safe(dup, hlist_safe,
971                                   &stable_node->hlist, hlist_dup) {
972                 VM_BUG_ON(!is_stable_node_dup(dup));
973                 if (remove_stable_node(dup))
974                         return true;
975         }
976         BUG_ON(!hlist_empty(&stable_node->hlist));
977         free_stable_node_chain(stable_node, root);
978         return false;
979 }
980
981 static int remove_all_stable_nodes(void)
982 {
983         struct ksm_stable_node *stable_node, *next;
984         int nid;
985         int err = 0;
986
987         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
988                 while (root_stable_tree[nid].rb_node) {
989                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
990                                                 struct ksm_stable_node, node);
991                         if (remove_stable_node_chain(stable_node,
992                                                      root_stable_tree + nid)) {
993                                 err = -EBUSY;
994                                 break;  /* proceed to next nid */
995                         }
996                         cond_resched();
997                 }
998         }
999         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1000                 if (remove_stable_node(stable_node))
1001                         err = -EBUSY;
1002                 cond_resched();
1003         }
1004         return err;
1005 }
1006
1007 static int unmerge_and_remove_all_rmap_items(void)
1008 {
1009         struct ksm_mm_slot *mm_slot;
1010         struct mm_slot *slot;
1011         struct mm_struct *mm;
1012         struct vm_area_struct *vma;
1013         int err = 0;
1014
1015         spin_lock(&ksm_mmlist_lock);
1016         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1017                           struct mm_slot, mm_node);
1018         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1019         spin_unlock(&ksm_mmlist_lock);
1020
1021         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1022              mm_slot = ksm_scan.mm_slot) {
1023                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1024
1025                 mm = mm_slot->slot.mm;
1026                 mmap_read_lock(mm);
1027
1028                 /*
1029                  * Exit right away if mm is exiting to avoid lockdep issue in
1030                  * the maple tree
1031                  */
1032                 if (ksm_test_exit(mm))
1033                         goto mm_exiting;
1034
1035                 for_each_vma(vmi, vma) {
1036                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1037                                 continue;
1038                         err = unmerge_ksm_pages(vma,
1039                                                 vma->vm_start, vma->vm_end, false);
1040                         if (err)
1041                                 goto error;
1042                 }
1043
1044 mm_exiting:
1045                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1046                 mmap_read_unlock(mm);
1047
1048                 spin_lock(&ksm_mmlist_lock);
1049                 slot = list_entry(mm_slot->slot.mm_node.next,
1050                                   struct mm_slot, mm_node);
1051                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1052                 if (ksm_test_exit(mm)) {
1053                         hash_del(&mm_slot->slot.hash);
1054                         list_del(&mm_slot->slot.mm_node);
1055                         spin_unlock(&ksm_mmlist_lock);
1056
1057                         mm_slot_free(mm_slot_cache, mm_slot);
1058                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1059                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1060                         mmdrop(mm);
1061                 } else
1062                         spin_unlock(&ksm_mmlist_lock);
1063         }
1064
1065         /* Clean up stable nodes, but don't worry if some are still busy */
1066         remove_all_stable_nodes();
1067         ksm_scan.seqnr = 0;
1068         return 0;
1069
1070 error:
1071         mmap_read_unlock(mm);
1072         spin_lock(&ksm_mmlist_lock);
1073         ksm_scan.mm_slot = &ksm_mm_head;
1074         spin_unlock(&ksm_mmlist_lock);
1075         return err;
1076 }
1077 #endif /* CONFIG_SYSFS */
1078
1079 static u32 calc_checksum(struct page *page)
1080 {
1081         u32 checksum;
1082         void *addr = kmap_atomic(page);
1083         checksum = xxhash(addr, PAGE_SIZE, 0);
1084         kunmap_atomic(addr);
1085         return checksum;
1086 }
1087
1088 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1089                               pte_t *orig_pte)
1090 {
1091         struct mm_struct *mm = vma->vm_mm;
1092         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1093         int swapped;
1094         int err = -EFAULT;
1095         struct mmu_notifier_range range;
1096         bool anon_exclusive;
1097         pte_t entry;
1098
1099         pvmw.address = page_address_in_vma(page, vma);
1100         if (pvmw.address == -EFAULT)
1101                 goto out;
1102
1103         BUG_ON(PageTransCompound(page));
1104
1105         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1106                                 pvmw.address + PAGE_SIZE);
1107         mmu_notifier_invalidate_range_start(&range);
1108
1109         if (!page_vma_mapped_walk(&pvmw))
1110                 goto out_mn;
1111         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1112                 goto out_unlock;
1113
1114         anon_exclusive = PageAnonExclusive(page);
1115         entry = ptep_get(pvmw.pte);
1116         if (pte_write(entry) || pte_dirty(entry) ||
1117             anon_exclusive || mm_tlb_flush_pending(mm)) {
1118                 swapped = PageSwapCache(page);
1119                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1120                 /*
1121                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1122                  * take any lock, therefore the check that we are going to make
1123                  * with the pagecount against the mapcount is racy and
1124                  * O_DIRECT can happen right after the check.
1125                  * So we clear the pte and flush the tlb before the check
1126                  * this assure us that no O_DIRECT can happen after the check
1127                  * or in the middle of the check.
1128                  *
1129                  * No need to notify as we are downgrading page table to read
1130                  * only not changing it to point to a new page.
1131                  *
1132                  * See Documentation/mm/mmu_notifier.rst
1133                  */
1134                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1135                 /*
1136                  * Check that no O_DIRECT or similar I/O is in progress on the
1137                  * page
1138                  */
1139                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1140                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1141                         goto out_unlock;
1142                 }
1143
1144                 /* See page_try_share_anon_rmap(): clear PTE first. */
1145                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1146                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1147                         goto out_unlock;
1148                 }
1149
1150                 if (pte_dirty(entry))
1151                         set_page_dirty(page);
1152                 entry = pte_mkclean(entry);
1153
1154                 if (pte_write(entry))
1155                         entry = pte_wrprotect(entry);
1156
1157                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1158         }
1159         *orig_pte = entry;
1160         err = 0;
1161
1162 out_unlock:
1163         page_vma_mapped_walk_done(&pvmw);
1164 out_mn:
1165         mmu_notifier_invalidate_range_end(&range);
1166 out:
1167         return err;
1168 }
1169
1170 /**
1171  * replace_page - replace page in vma by new ksm page
1172  * @vma:      vma that holds the pte pointing to page
1173  * @page:     the page we are replacing by kpage
1174  * @kpage:    the ksm page we replace page by
1175  * @orig_pte: the original value of the pte
1176  *
1177  * Returns 0 on success, -EFAULT on failure.
1178  */
1179 static int replace_page(struct vm_area_struct *vma, struct page *page,
1180                         struct page *kpage, pte_t orig_pte)
1181 {
1182         struct mm_struct *mm = vma->vm_mm;
1183         struct folio *folio;
1184         pmd_t *pmd;
1185         pmd_t pmde;
1186         pte_t *ptep;
1187         pte_t newpte;
1188         spinlock_t *ptl;
1189         unsigned long addr;
1190         int err = -EFAULT;
1191         struct mmu_notifier_range range;
1192
1193         addr = page_address_in_vma(page, vma);
1194         if (addr == -EFAULT)
1195                 goto out;
1196
1197         pmd = mm_find_pmd(mm, addr);
1198         if (!pmd)
1199                 goto out;
1200         /*
1201          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1202          * without holding anon_vma lock for write.  So when looking for a
1203          * genuine pmde (in which to find pte), test present and !THP together.
1204          */
1205         pmde = pmdp_get_lockless(pmd);
1206         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1207                 goto out;
1208
1209         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1210                                 addr + PAGE_SIZE);
1211         mmu_notifier_invalidate_range_start(&range);
1212
1213         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1214         if (!ptep)
1215                 goto out_mn;
1216         if (!pte_same(ptep_get(ptep), orig_pte)) {
1217                 pte_unmap_unlock(ptep, ptl);
1218                 goto out_mn;
1219         }
1220         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1221         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1222
1223         /*
1224          * No need to check ksm_use_zero_pages here: we can only have a
1225          * zero_page here if ksm_use_zero_pages was enabled already.
1226          */
1227         if (!is_zero_pfn(page_to_pfn(kpage))) {
1228                 get_page(kpage);
1229                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1230                 newpte = mk_pte(kpage, vma->vm_page_prot);
1231         } else {
1232                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1233                                                vma->vm_page_prot));
1234                 /*
1235                  * We're replacing an anonymous page with a zero page, which is
1236                  * not anonymous. We need to do proper accounting otherwise we
1237                  * will get wrong values in /proc, and a BUG message in dmesg
1238                  * when tearing down the mm.
1239                  */
1240                 dec_mm_counter(mm, MM_ANONPAGES);
1241         }
1242
1243         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1244         /*
1245          * No need to notify as we are replacing a read only page with another
1246          * read only page with the same content.
1247          *
1248          * See Documentation/mm/mmu_notifier.rst
1249          */
1250         ptep_clear_flush(vma, addr, ptep);
1251         set_pte_at_notify(mm, addr, ptep, newpte);
1252
1253         folio = page_folio(page);
1254         page_remove_rmap(page, vma, false);
1255         if (!folio_mapped(folio))
1256                 folio_free_swap(folio);
1257         folio_put(folio);
1258
1259         pte_unmap_unlock(ptep, ptl);
1260         err = 0;
1261 out_mn:
1262         mmu_notifier_invalidate_range_end(&range);
1263 out:
1264         return err;
1265 }
1266
1267 /*
1268  * try_to_merge_one_page - take two pages and merge them into one
1269  * @vma: the vma that holds the pte pointing to page
1270  * @page: the PageAnon page that we want to replace with kpage
1271  * @kpage: the PageKsm page that we want to map instead of page,
1272  *         or NULL the first time when we want to use page as kpage.
1273  *
1274  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1275  */
1276 static int try_to_merge_one_page(struct vm_area_struct *vma,
1277                                  struct page *page, struct page *kpage)
1278 {
1279         pte_t orig_pte = __pte(0);
1280         int err = -EFAULT;
1281
1282         if (page == kpage)                      /* ksm page forked */
1283                 return 0;
1284
1285         if (!PageAnon(page))
1286                 goto out;
1287
1288         /*
1289          * We need the page lock to read a stable PageSwapCache in
1290          * write_protect_page().  We use trylock_page() instead of
1291          * lock_page() because we don't want to wait here - we
1292          * prefer to continue scanning and merging different pages,
1293          * then come back to this page when it is unlocked.
1294          */
1295         if (!trylock_page(page))
1296                 goto out;
1297
1298         if (PageTransCompound(page)) {
1299                 if (split_huge_page(page))
1300                         goto out_unlock;
1301         }
1302
1303         /*
1304          * If this anonymous page is mapped only here, its pte may need
1305          * to be write-protected.  If it's mapped elsewhere, all of its
1306          * ptes are necessarily already write-protected.  But in either
1307          * case, we need to lock and check page_count is not raised.
1308          */
1309         if (write_protect_page(vma, page, &orig_pte) == 0) {
1310                 if (!kpage) {
1311                         /*
1312                          * While we hold page lock, upgrade page from
1313                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1314                          * stable_tree_insert() will update stable_node.
1315                          */
1316                         set_page_stable_node(page, NULL);
1317                         mark_page_accessed(page);
1318                         /*
1319                          * Page reclaim just frees a clean page with no dirty
1320                          * ptes: make sure that the ksm page would be swapped.
1321                          */
1322                         if (!PageDirty(page))
1323                                 SetPageDirty(page);
1324                         err = 0;
1325                 } else if (pages_identical(page, kpage))
1326                         err = replace_page(vma, page, kpage, orig_pte);
1327         }
1328
1329 out_unlock:
1330         unlock_page(page);
1331 out:
1332         return err;
1333 }
1334
1335 /*
1336  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1337  * but no new kernel page is allocated: kpage must already be a ksm page.
1338  *
1339  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1340  */
1341 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1342                                       struct page *page, struct page *kpage)
1343 {
1344         struct mm_struct *mm = rmap_item->mm;
1345         struct vm_area_struct *vma;
1346         int err = -EFAULT;
1347
1348         mmap_read_lock(mm);
1349         vma = find_mergeable_vma(mm, rmap_item->address);
1350         if (!vma)
1351                 goto out;
1352
1353         err = try_to_merge_one_page(vma, page, kpage);
1354         if (err)
1355                 goto out;
1356
1357         /* Unstable nid is in union with stable anon_vma: remove first */
1358         remove_rmap_item_from_tree(rmap_item);
1359
1360         /* Must get reference to anon_vma while still holding mmap_lock */
1361         rmap_item->anon_vma = vma->anon_vma;
1362         get_anon_vma(vma->anon_vma);
1363 out:
1364         mmap_read_unlock(mm);
1365         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1366                                 rmap_item, mm, err);
1367         return err;
1368 }
1369
1370 /*
1371  * try_to_merge_two_pages - take two identical pages and prepare them
1372  * to be merged into one page.
1373  *
1374  * This function returns the kpage if we successfully merged two identical
1375  * pages into one ksm page, NULL otherwise.
1376  *
1377  * Note that this function upgrades page to ksm page: if one of the pages
1378  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1379  */
1380 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1381                                            struct page *page,
1382                                            struct ksm_rmap_item *tree_rmap_item,
1383                                            struct page *tree_page)
1384 {
1385         int err;
1386
1387         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1388         if (!err) {
1389                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1390                                                         tree_page, page);
1391                 /*
1392                  * If that fails, we have a ksm page with only one pte
1393                  * pointing to it: so break it.
1394                  */
1395                 if (err)
1396                         break_cow(rmap_item);
1397         }
1398         return err ? NULL : page;
1399 }
1400
1401 static __always_inline
1402 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1403 {
1404         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1405         /*
1406          * Check that at least one mapping still exists, otherwise
1407          * there's no much point to merge and share with this
1408          * stable_node, as the underlying tree_page of the other
1409          * sharer is going to be freed soon.
1410          */
1411         return stable_node->rmap_hlist_len &&
1412                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1413 }
1414
1415 static __always_inline
1416 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1417 {
1418         return __is_page_sharing_candidate(stable_node, 0);
1419 }
1420
1421 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1422                                     struct ksm_stable_node **_stable_node,
1423                                     struct rb_root *root,
1424                                     bool prune_stale_stable_nodes)
1425 {
1426         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1427         struct hlist_node *hlist_safe;
1428         struct page *_tree_page, *tree_page = NULL;
1429         int nr = 0;
1430         int found_rmap_hlist_len;
1431
1432         if (!prune_stale_stable_nodes ||
1433             time_before(jiffies, stable_node->chain_prune_time +
1434                         msecs_to_jiffies(
1435                                 ksm_stable_node_chains_prune_millisecs)))
1436                 prune_stale_stable_nodes = false;
1437         else
1438                 stable_node->chain_prune_time = jiffies;
1439
1440         hlist_for_each_entry_safe(dup, hlist_safe,
1441                                   &stable_node->hlist, hlist_dup) {
1442                 cond_resched();
1443                 /*
1444                  * We must walk all stable_node_dup to prune the stale
1445                  * stable nodes during lookup.
1446                  *
1447                  * get_ksm_page can drop the nodes from the
1448                  * stable_node->hlist if they point to freed pages
1449                  * (that's why we do a _safe walk). The "dup"
1450                  * stable_node parameter itself will be freed from
1451                  * under us if it returns NULL.
1452                  */
1453                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1454                 if (!_tree_page)
1455                         continue;
1456                 nr += 1;
1457                 if (is_page_sharing_candidate(dup)) {
1458                         if (!found ||
1459                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1460                                 if (found)
1461                                         put_page(tree_page);
1462                                 found = dup;
1463                                 found_rmap_hlist_len = found->rmap_hlist_len;
1464                                 tree_page = _tree_page;
1465
1466                                 /* skip put_page for found dup */
1467                                 if (!prune_stale_stable_nodes)
1468                                         break;
1469                                 continue;
1470                         }
1471                 }
1472                 put_page(_tree_page);
1473         }
1474
1475         if (found) {
1476                 /*
1477                  * nr is counting all dups in the chain only if
1478                  * prune_stale_stable_nodes is true, otherwise we may
1479                  * break the loop at nr == 1 even if there are
1480                  * multiple entries.
1481                  */
1482                 if (prune_stale_stable_nodes && nr == 1) {
1483                         /*
1484                          * If there's not just one entry it would
1485                          * corrupt memory, better BUG_ON. In KSM
1486                          * context with no lock held it's not even
1487                          * fatal.
1488                          */
1489                         BUG_ON(stable_node->hlist.first->next);
1490
1491                         /*
1492                          * There's just one entry and it is below the
1493                          * deduplication limit so drop the chain.
1494                          */
1495                         rb_replace_node(&stable_node->node, &found->node,
1496                                         root);
1497                         free_stable_node(stable_node);
1498                         ksm_stable_node_chains--;
1499                         ksm_stable_node_dups--;
1500                         /*
1501                          * NOTE: the caller depends on the stable_node
1502                          * to be equal to stable_node_dup if the chain
1503                          * was collapsed.
1504                          */
1505                         *_stable_node = found;
1506                         /*
1507                          * Just for robustness, as stable_node is
1508                          * otherwise left as a stable pointer, the
1509                          * compiler shall optimize it away at build
1510                          * time.
1511                          */
1512                         stable_node = NULL;
1513                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1514                            __is_page_sharing_candidate(found, 1)) {
1515                         /*
1516                          * If the found stable_node dup can accept one
1517                          * more future merge (in addition to the one
1518                          * that is underway) and is not at the head of
1519                          * the chain, put it there so next search will
1520                          * be quicker in the !prune_stale_stable_nodes
1521                          * case.
1522                          *
1523                          * NOTE: it would be inaccurate to use nr > 1
1524                          * instead of checking the hlist.first pointer
1525                          * directly, because in the
1526                          * prune_stale_stable_nodes case "nr" isn't
1527                          * the position of the found dup in the chain,
1528                          * but the total number of dups in the chain.
1529                          */
1530                         hlist_del(&found->hlist_dup);
1531                         hlist_add_head(&found->hlist_dup,
1532                                        &stable_node->hlist);
1533                 }
1534         }
1535
1536         *_stable_node_dup = found;
1537         return tree_page;
1538 }
1539
1540 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1541                                                struct rb_root *root)
1542 {
1543         if (!is_stable_node_chain(stable_node))
1544                 return stable_node;
1545         if (hlist_empty(&stable_node->hlist)) {
1546                 free_stable_node_chain(stable_node, root);
1547                 return NULL;
1548         }
1549         return hlist_entry(stable_node->hlist.first,
1550                            typeof(*stable_node), hlist_dup);
1551 }
1552
1553 /*
1554  * Like for get_ksm_page, this function can free the *_stable_node and
1555  * *_stable_node_dup if the returned tree_page is NULL.
1556  *
1557  * It can also free and overwrite *_stable_node with the found
1558  * stable_node_dup if the chain is collapsed (in which case
1559  * *_stable_node will be equal to *_stable_node_dup like if the chain
1560  * never existed). It's up to the caller to verify tree_page is not
1561  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1562  *
1563  * *_stable_node_dup is really a second output parameter of this
1564  * function and will be overwritten in all cases, the caller doesn't
1565  * need to initialize it.
1566  */
1567 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1568                                         struct ksm_stable_node **_stable_node,
1569                                         struct rb_root *root,
1570                                         bool prune_stale_stable_nodes)
1571 {
1572         struct ksm_stable_node *stable_node = *_stable_node;
1573         if (!is_stable_node_chain(stable_node)) {
1574                 if (is_page_sharing_candidate(stable_node)) {
1575                         *_stable_node_dup = stable_node;
1576                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1577                 }
1578                 /*
1579                  * _stable_node_dup set to NULL means the stable_node
1580                  * reached the ksm_max_page_sharing limit.
1581                  */
1582                 *_stable_node_dup = NULL;
1583                 return NULL;
1584         }
1585         return stable_node_dup(_stable_node_dup, _stable_node, root,
1586                                prune_stale_stable_nodes);
1587 }
1588
1589 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1590                                                 struct ksm_stable_node **s_n,
1591                                                 struct rb_root *root)
1592 {
1593         return __stable_node_chain(s_n_d, s_n, root, true);
1594 }
1595
1596 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1597                                           struct ksm_stable_node *s_n,
1598                                           struct rb_root *root)
1599 {
1600         struct ksm_stable_node *old_stable_node = s_n;
1601         struct page *tree_page;
1602
1603         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1604         /* not pruning dups so s_n cannot have changed */
1605         VM_BUG_ON(s_n != old_stable_node);
1606         return tree_page;
1607 }
1608
1609 /*
1610  * stable_tree_search - search for page inside the stable tree
1611  *
1612  * This function checks if there is a page inside the stable tree
1613  * with identical content to the page that we are scanning right now.
1614  *
1615  * This function returns the stable tree node of identical content if found,
1616  * NULL otherwise.
1617  */
1618 static struct page *stable_tree_search(struct page *page)
1619 {
1620         int nid;
1621         struct rb_root *root;
1622         struct rb_node **new;
1623         struct rb_node *parent;
1624         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1625         struct ksm_stable_node *page_node;
1626
1627         page_node = page_stable_node(page);
1628         if (page_node && page_node->head != &migrate_nodes) {
1629                 /* ksm page forked */
1630                 get_page(page);
1631                 return page;
1632         }
1633
1634         nid = get_kpfn_nid(page_to_pfn(page));
1635         root = root_stable_tree + nid;
1636 again:
1637         new = &root->rb_node;
1638         parent = NULL;
1639
1640         while (*new) {
1641                 struct page *tree_page;
1642                 int ret;
1643
1644                 cond_resched();
1645                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1646                 stable_node_any = NULL;
1647                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1648                 /*
1649                  * NOTE: stable_node may have been freed by
1650                  * chain_prune() if the returned stable_node_dup is
1651                  * not NULL. stable_node_dup may have been inserted in
1652                  * the rbtree instead as a regular stable_node (in
1653                  * order to collapse the stable_node chain if a single
1654                  * stable_node dup was found in it). In such case the
1655                  * stable_node is overwritten by the callee to point
1656                  * to the stable_node_dup that was collapsed in the
1657                  * stable rbtree and stable_node will be equal to
1658                  * stable_node_dup like if the chain never existed.
1659                  */
1660                 if (!stable_node_dup) {
1661                         /*
1662                          * Either all stable_node dups were full in
1663                          * this stable_node chain, or this chain was
1664                          * empty and should be rb_erased.
1665                          */
1666                         stable_node_any = stable_node_dup_any(stable_node,
1667                                                               root);
1668                         if (!stable_node_any) {
1669                                 /* rb_erase just run */
1670                                 goto again;
1671                         }
1672                         /*
1673                          * Take any of the stable_node dups page of
1674                          * this stable_node chain to let the tree walk
1675                          * continue. All KSM pages belonging to the
1676                          * stable_node dups in a stable_node chain
1677                          * have the same content and they're
1678                          * write protected at all times. Any will work
1679                          * fine to continue the walk.
1680                          */
1681                         tree_page = get_ksm_page(stable_node_any,
1682                                                  GET_KSM_PAGE_NOLOCK);
1683                 }
1684                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1685                 if (!tree_page) {
1686                         /*
1687                          * If we walked over a stale stable_node,
1688                          * get_ksm_page() will call rb_erase() and it
1689                          * may rebalance the tree from under us. So
1690                          * restart the search from scratch. Returning
1691                          * NULL would be safe too, but we'd generate
1692                          * false negative insertions just because some
1693                          * stable_node was stale.
1694                          */
1695                         goto again;
1696                 }
1697
1698                 ret = memcmp_pages(page, tree_page);
1699                 put_page(tree_page);
1700
1701                 parent = *new;
1702                 if (ret < 0)
1703                         new = &parent->rb_left;
1704                 else if (ret > 0)
1705                         new = &parent->rb_right;
1706                 else {
1707                         if (page_node) {
1708                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1709                                 /*
1710                                  * Test if the migrated page should be merged
1711                                  * into a stable node dup. If the mapcount is
1712                                  * 1 we can migrate it with another KSM page
1713                                  * without adding it to the chain.
1714                                  */
1715                                 if (page_mapcount(page) > 1)
1716                                         goto chain_append;
1717                         }
1718
1719                         if (!stable_node_dup) {
1720                                 /*
1721                                  * If the stable_node is a chain and
1722                                  * we got a payload match in memcmp
1723                                  * but we cannot merge the scanned
1724                                  * page in any of the existing
1725                                  * stable_node dups because they're
1726                                  * all full, we need to wait the
1727                                  * scanned page to find itself a match
1728                                  * in the unstable tree to create a
1729                                  * brand new KSM page to add later to
1730                                  * the dups of this stable_node.
1731                                  */
1732                                 return NULL;
1733                         }
1734
1735                         /*
1736                          * Lock and unlock the stable_node's page (which
1737                          * might already have been migrated) so that page
1738                          * migration is sure to notice its raised count.
1739                          * It would be more elegant to return stable_node
1740                          * than kpage, but that involves more changes.
1741                          */
1742                         tree_page = get_ksm_page(stable_node_dup,
1743                                                  GET_KSM_PAGE_TRYLOCK);
1744
1745                         if (PTR_ERR(tree_page) == -EBUSY)
1746                                 return ERR_PTR(-EBUSY);
1747
1748                         if (unlikely(!tree_page))
1749                                 /*
1750                                  * The tree may have been rebalanced,
1751                                  * so re-evaluate parent and new.
1752                                  */
1753                                 goto again;
1754                         unlock_page(tree_page);
1755
1756                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1757                             NUMA(stable_node_dup->nid)) {
1758                                 put_page(tree_page);
1759                                 goto replace;
1760                         }
1761                         return tree_page;
1762                 }
1763         }
1764
1765         if (!page_node)
1766                 return NULL;
1767
1768         list_del(&page_node->list);
1769         DO_NUMA(page_node->nid = nid);
1770         rb_link_node(&page_node->node, parent, new);
1771         rb_insert_color(&page_node->node, root);
1772 out:
1773         if (is_page_sharing_candidate(page_node)) {
1774                 get_page(page);
1775                 return page;
1776         } else
1777                 return NULL;
1778
1779 replace:
1780         /*
1781          * If stable_node was a chain and chain_prune collapsed it,
1782          * stable_node has been updated to be the new regular
1783          * stable_node. A collapse of the chain is indistinguishable
1784          * from the case there was no chain in the stable
1785          * rbtree. Otherwise stable_node is the chain and
1786          * stable_node_dup is the dup to replace.
1787          */
1788         if (stable_node_dup == stable_node) {
1789                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1790                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1791                 /* there is no chain */
1792                 if (page_node) {
1793                         VM_BUG_ON(page_node->head != &migrate_nodes);
1794                         list_del(&page_node->list);
1795                         DO_NUMA(page_node->nid = nid);
1796                         rb_replace_node(&stable_node_dup->node,
1797                                         &page_node->node,
1798                                         root);
1799                         if (is_page_sharing_candidate(page_node))
1800                                 get_page(page);
1801                         else
1802                                 page = NULL;
1803                 } else {
1804                         rb_erase(&stable_node_dup->node, root);
1805                         page = NULL;
1806                 }
1807         } else {
1808                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1809                 __stable_node_dup_del(stable_node_dup);
1810                 if (page_node) {
1811                         VM_BUG_ON(page_node->head != &migrate_nodes);
1812                         list_del(&page_node->list);
1813                         DO_NUMA(page_node->nid = nid);
1814                         stable_node_chain_add_dup(page_node, stable_node);
1815                         if (is_page_sharing_candidate(page_node))
1816                                 get_page(page);
1817                         else
1818                                 page = NULL;
1819                 } else {
1820                         page = NULL;
1821                 }
1822         }
1823         stable_node_dup->head = &migrate_nodes;
1824         list_add(&stable_node_dup->list, stable_node_dup->head);
1825         return page;
1826
1827 chain_append:
1828         /* stable_node_dup could be null if it reached the limit */
1829         if (!stable_node_dup)
1830                 stable_node_dup = stable_node_any;
1831         /*
1832          * If stable_node was a chain and chain_prune collapsed it,
1833          * stable_node has been updated to be the new regular
1834          * stable_node. A collapse of the chain is indistinguishable
1835          * from the case there was no chain in the stable
1836          * rbtree. Otherwise stable_node is the chain and
1837          * stable_node_dup is the dup to replace.
1838          */
1839         if (stable_node_dup == stable_node) {
1840                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1841                 /* chain is missing so create it */
1842                 stable_node = alloc_stable_node_chain(stable_node_dup,
1843                                                       root);
1844                 if (!stable_node)
1845                         return NULL;
1846         }
1847         /*
1848          * Add this stable_node dup that was
1849          * migrated to the stable_node chain
1850          * of the current nid for this page
1851          * content.
1852          */
1853         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1854         VM_BUG_ON(page_node->head != &migrate_nodes);
1855         list_del(&page_node->list);
1856         DO_NUMA(page_node->nid = nid);
1857         stable_node_chain_add_dup(page_node, stable_node);
1858         goto out;
1859 }
1860
1861 /*
1862  * stable_tree_insert - insert stable tree node pointing to new ksm page
1863  * into the stable tree.
1864  *
1865  * This function returns the stable tree node just allocated on success,
1866  * NULL otherwise.
1867  */
1868 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1869 {
1870         int nid;
1871         unsigned long kpfn;
1872         struct rb_root *root;
1873         struct rb_node **new;
1874         struct rb_node *parent;
1875         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1876         bool need_chain = false;
1877
1878         kpfn = page_to_pfn(kpage);
1879         nid = get_kpfn_nid(kpfn);
1880         root = root_stable_tree + nid;
1881 again:
1882         parent = NULL;
1883         new = &root->rb_node;
1884
1885         while (*new) {
1886                 struct page *tree_page;
1887                 int ret;
1888
1889                 cond_resched();
1890                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1891                 stable_node_any = NULL;
1892                 tree_page = chain(&stable_node_dup, stable_node, root);
1893                 if (!stable_node_dup) {
1894                         /*
1895                          * Either all stable_node dups were full in
1896                          * this stable_node chain, or this chain was
1897                          * empty and should be rb_erased.
1898                          */
1899                         stable_node_any = stable_node_dup_any(stable_node,
1900                                                               root);
1901                         if (!stable_node_any) {
1902                                 /* rb_erase just run */
1903                                 goto again;
1904                         }
1905                         /*
1906                          * Take any of the stable_node dups page of
1907                          * this stable_node chain to let the tree walk
1908                          * continue. All KSM pages belonging to the
1909                          * stable_node dups in a stable_node chain
1910                          * have the same content and they're
1911                          * write protected at all times. Any will work
1912                          * fine to continue the walk.
1913                          */
1914                         tree_page = get_ksm_page(stable_node_any,
1915                                                  GET_KSM_PAGE_NOLOCK);
1916                 }
1917                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1918                 if (!tree_page) {
1919                         /*
1920                          * If we walked over a stale stable_node,
1921                          * get_ksm_page() will call rb_erase() and it
1922                          * may rebalance the tree from under us. So
1923                          * restart the search from scratch. Returning
1924                          * NULL would be safe too, but we'd generate
1925                          * false negative insertions just because some
1926                          * stable_node was stale.
1927                          */
1928                         goto again;
1929                 }
1930
1931                 ret = memcmp_pages(kpage, tree_page);
1932                 put_page(tree_page);
1933
1934                 parent = *new;
1935                 if (ret < 0)
1936                         new = &parent->rb_left;
1937                 else if (ret > 0)
1938                         new = &parent->rb_right;
1939                 else {
1940                         need_chain = true;
1941                         break;
1942                 }
1943         }
1944
1945         stable_node_dup = alloc_stable_node();
1946         if (!stable_node_dup)
1947                 return NULL;
1948
1949         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1950         stable_node_dup->kpfn = kpfn;
1951         set_page_stable_node(kpage, stable_node_dup);
1952         stable_node_dup->rmap_hlist_len = 0;
1953         DO_NUMA(stable_node_dup->nid = nid);
1954         if (!need_chain) {
1955                 rb_link_node(&stable_node_dup->node, parent, new);
1956                 rb_insert_color(&stable_node_dup->node, root);
1957         } else {
1958                 if (!is_stable_node_chain(stable_node)) {
1959                         struct ksm_stable_node *orig = stable_node;
1960                         /* chain is missing so create it */
1961                         stable_node = alloc_stable_node_chain(orig, root);
1962                         if (!stable_node) {
1963                                 free_stable_node(stable_node_dup);
1964                                 return NULL;
1965                         }
1966                 }
1967                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1968         }
1969
1970         return stable_node_dup;
1971 }
1972
1973 /*
1974  * unstable_tree_search_insert - search for identical page,
1975  * else insert rmap_item into the unstable tree.
1976  *
1977  * This function searches for a page in the unstable tree identical to the
1978  * page currently being scanned; and if no identical page is found in the
1979  * tree, we insert rmap_item as a new object into the unstable tree.
1980  *
1981  * This function returns pointer to rmap_item found to be identical
1982  * to the currently scanned page, NULL otherwise.
1983  *
1984  * This function does both searching and inserting, because they share
1985  * the same walking algorithm in an rbtree.
1986  */
1987 static
1988 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1989                                               struct page *page,
1990                                               struct page **tree_pagep)
1991 {
1992         struct rb_node **new;
1993         struct rb_root *root;
1994         struct rb_node *parent = NULL;
1995         int nid;
1996
1997         nid = get_kpfn_nid(page_to_pfn(page));
1998         root = root_unstable_tree + nid;
1999         new = &root->rb_node;
2000
2001         while (*new) {
2002                 struct ksm_rmap_item *tree_rmap_item;
2003                 struct page *tree_page;
2004                 int ret;
2005
2006                 cond_resched();
2007                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2008                 tree_page = get_mergeable_page(tree_rmap_item);
2009                 if (!tree_page)
2010                         return NULL;
2011
2012                 /*
2013                  * Don't substitute a ksm page for a forked page.
2014                  */
2015                 if (page == tree_page) {
2016                         put_page(tree_page);
2017                         return NULL;
2018                 }
2019
2020                 ret = memcmp_pages(page, tree_page);
2021
2022                 parent = *new;
2023                 if (ret < 0) {
2024                         put_page(tree_page);
2025                         new = &parent->rb_left;
2026                 } else if (ret > 0) {
2027                         put_page(tree_page);
2028                         new = &parent->rb_right;
2029                 } else if (!ksm_merge_across_nodes &&
2030                            page_to_nid(tree_page) != nid) {
2031                         /*
2032                          * If tree_page has been migrated to another NUMA node,
2033                          * it will be flushed out and put in the right unstable
2034                          * tree next time: only merge with it when across_nodes.
2035                          */
2036                         put_page(tree_page);
2037                         return NULL;
2038                 } else {
2039                         *tree_pagep = tree_page;
2040                         return tree_rmap_item;
2041                 }
2042         }
2043
2044         rmap_item->address |= UNSTABLE_FLAG;
2045         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2046         DO_NUMA(rmap_item->nid = nid);
2047         rb_link_node(&rmap_item->node, parent, new);
2048         rb_insert_color(&rmap_item->node, root);
2049
2050         ksm_pages_unshared++;
2051         return NULL;
2052 }
2053
2054 /*
2055  * stable_tree_append - add another rmap_item to the linked list of
2056  * rmap_items hanging off a given node of the stable tree, all sharing
2057  * the same ksm page.
2058  */
2059 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2060                                struct ksm_stable_node *stable_node,
2061                                bool max_page_sharing_bypass)
2062 {
2063         /*
2064          * rmap won't find this mapping if we don't insert the
2065          * rmap_item in the right stable_node
2066          * duplicate. page_migration could break later if rmap breaks,
2067          * so we can as well crash here. We really need to check for
2068          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2069          * for other negative values as an underflow if detected here
2070          * for the first time (and not when decreasing rmap_hlist_len)
2071          * would be sign of memory corruption in the stable_node.
2072          */
2073         BUG_ON(stable_node->rmap_hlist_len < 0);
2074
2075         stable_node->rmap_hlist_len++;
2076         if (!max_page_sharing_bypass)
2077                 /* possibly non fatal but unexpected overflow, only warn */
2078                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2079                              ksm_max_page_sharing);
2080
2081         rmap_item->head = stable_node;
2082         rmap_item->address |= STABLE_FLAG;
2083         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2084
2085         if (rmap_item->hlist.next)
2086                 ksm_pages_sharing++;
2087         else
2088                 ksm_pages_shared++;
2089
2090         rmap_item->mm->ksm_merging_pages++;
2091 }
2092
2093 /*
2094  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2095  * if not, compare checksum to previous and if it's the same, see if page can
2096  * be inserted into the unstable tree, or merged with a page already there and
2097  * both transferred to the stable tree.
2098  *
2099  * @page: the page that we are searching identical page to.
2100  * @rmap_item: the reverse mapping into the virtual address of this page
2101  */
2102 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2103 {
2104         struct mm_struct *mm = rmap_item->mm;
2105         struct ksm_rmap_item *tree_rmap_item;
2106         struct page *tree_page = NULL;
2107         struct ksm_stable_node *stable_node;
2108         struct page *kpage;
2109         unsigned int checksum;
2110         int err;
2111         bool max_page_sharing_bypass = false;
2112
2113         stable_node = page_stable_node(page);
2114         if (stable_node) {
2115                 if (stable_node->head != &migrate_nodes &&
2116                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2117                     NUMA(stable_node->nid)) {
2118                         stable_node_dup_del(stable_node);
2119                         stable_node->head = &migrate_nodes;
2120                         list_add(&stable_node->list, stable_node->head);
2121                 }
2122                 if (stable_node->head != &migrate_nodes &&
2123                     rmap_item->head == stable_node)
2124                         return;
2125                 /*
2126                  * If it's a KSM fork, allow it to go over the sharing limit
2127                  * without warnings.
2128                  */
2129                 if (!is_page_sharing_candidate(stable_node))
2130                         max_page_sharing_bypass = true;
2131         }
2132
2133         /* We first start with searching the page inside the stable tree */
2134         kpage = stable_tree_search(page);
2135         if (kpage == page && rmap_item->head == stable_node) {
2136                 put_page(kpage);
2137                 return;
2138         }
2139
2140         remove_rmap_item_from_tree(rmap_item);
2141
2142         if (kpage) {
2143                 if (PTR_ERR(kpage) == -EBUSY)
2144                         return;
2145
2146                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2147                 if (!err) {
2148                         /*
2149                          * The page was successfully merged:
2150                          * add its rmap_item to the stable tree.
2151                          */
2152                         lock_page(kpage);
2153                         stable_tree_append(rmap_item, page_stable_node(kpage),
2154                                            max_page_sharing_bypass);
2155                         unlock_page(kpage);
2156                 }
2157                 put_page(kpage);
2158                 return;
2159         }
2160
2161         /*
2162          * If the hash value of the page has changed from the last time
2163          * we calculated it, this page is changing frequently: therefore we
2164          * don't want to insert it in the unstable tree, and we don't want
2165          * to waste our time searching for something identical to it there.
2166          */
2167         checksum = calc_checksum(page);
2168         if (rmap_item->oldchecksum != checksum) {
2169                 rmap_item->oldchecksum = checksum;
2170                 return;
2171         }
2172
2173         /*
2174          * Same checksum as an empty page. We attempt to merge it with the
2175          * appropriate zero page if the user enabled this via sysfs.
2176          */
2177         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2178                 struct vm_area_struct *vma;
2179
2180                 mmap_read_lock(mm);
2181                 vma = find_mergeable_vma(mm, rmap_item->address);
2182                 if (vma) {
2183                         err = try_to_merge_one_page(vma, page,
2184                                         ZERO_PAGE(rmap_item->address));
2185                         trace_ksm_merge_one_page(
2186                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2187                                 rmap_item, mm, err);
2188                 } else {
2189                         /*
2190                          * If the vma is out of date, we do not need to
2191                          * continue.
2192                          */
2193                         err = 0;
2194                 }
2195                 mmap_read_unlock(mm);
2196                 /*
2197                  * In case of failure, the page was not really empty, so we
2198                  * need to continue. Otherwise we're done.
2199                  */
2200                 if (!err)
2201                         return;
2202         }
2203         tree_rmap_item =
2204                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2205         if (tree_rmap_item) {
2206                 bool split;
2207
2208                 kpage = try_to_merge_two_pages(rmap_item, page,
2209                                                 tree_rmap_item, tree_page);
2210                 /*
2211                  * If both pages we tried to merge belong to the same compound
2212                  * page, then we actually ended up increasing the reference
2213                  * count of the same compound page twice, and split_huge_page
2214                  * failed.
2215                  * Here we set a flag if that happened, and we use it later to
2216                  * try split_huge_page again. Since we call put_page right
2217                  * afterwards, the reference count will be correct and
2218                  * split_huge_page should succeed.
2219                  */
2220                 split = PageTransCompound(page)
2221                         && compound_head(page) == compound_head(tree_page);
2222                 put_page(tree_page);
2223                 if (kpage) {
2224                         /*
2225                          * The pages were successfully merged: insert new
2226                          * node in the stable tree and add both rmap_items.
2227                          */
2228                         lock_page(kpage);
2229                         stable_node = stable_tree_insert(kpage);
2230                         if (stable_node) {
2231                                 stable_tree_append(tree_rmap_item, stable_node,
2232                                                    false);
2233                                 stable_tree_append(rmap_item, stable_node,
2234                                                    false);
2235                         }
2236                         unlock_page(kpage);
2237
2238                         /*
2239                          * If we fail to insert the page into the stable tree,
2240                          * we will have 2 virtual addresses that are pointing
2241                          * to a ksm page left outside the stable tree,
2242                          * in which case we need to break_cow on both.
2243                          */
2244                         if (!stable_node) {
2245                                 break_cow(tree_rmap_item);
2246                                 break_cow(rmap_item);
2247                         }
2248                 } else if (split) {
2249                         /*
2250                          * We are here if we tried to merge two pages and
2251                          * failed because they both belonged to the same
2252                          * compound page. We will split the page now, but no
2253                          * merging will take place.
2254                          * We do not want to add the cost of a full lock; if
2255                          * the page is locked, it is better to skip it and
2256                          * perhaps try again later.
2257                          */
2258                         if (!trylock_page(page))
2259                                 return;
2260                         split_huge_page(page);
2261                         unlock_page(page);
2262                 }
2263         }
2264 }
2265
2266 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2267                                             struct ksm_rmap_item **rmap_list,
2268                                             unsigned long addr)
2269 {
2270         struct ksm_rmap_item *rmap_item;
2271
2272         while (*rmap_list) {
2273                 rmap_item = *rmap_list;
2274                 if ((rmap_item->address & PAGE_MASK) == addr)
2275                         return rmap_item;
2276                 if (rmap_item->address > addr)
2277                         break;
2278                 *rmap_list = rmap_item->rmap_list;
2279                 remove_rmap_item_from_tree(rmap_item);
2280                 free_rmap_item(rmap_item);
2281         }
2282
2283         rmap_item = alloc_rmap_item();
2284         if (rmap_item) {
2285                 /* It has already been zeroed */
2286                 rmap_item->mm = mm_slot->slot.mm;
2287                 rmap_item->mm->ksm_rmap_items++;
2288                 rmap_item->address = addr;
2289                 rmap_item->rmap_list = *rmap_list;
2290                 *rmap_list = rmap_item;
2291         }
2292         return rmap_item;
2293 }
2294
2295 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2296 {
2297         struct mm_struct *mm;
2298         struct ksm_mm_slot *mm_slot;
2299         struct mm_slot *slot;
2300         struct vm_area_struct *vma;
2301         struct ksm_rmap_item *rmap_item;
2302         struct vma_iterator vmi;
2303         int nid;
2304
2305         if (list_empty(&ksm_mm_head.slot.mm_node))
2306                 return NULL;
2307
2308         mm_slot = ksm_scan.mm_slot;
2309         if (mm_slot == &ksm_mm_head) {
2310                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2311
2312                 /*
2313                  * A number of pages can hang around indefinitely in per-cpu
2314                  * LRU cache, raised page count preventing write_protect_page
2315                  * from merging them.  Though it doesn't really matter much,
2316                  * it is puzzling to see some stuck in pages_volatile until
2317                  * other activity jostles them out, and they also prevented
2318                  * LTP's KSM test from succeeding deterministically; so drain
2319                  * them here (here rather than on entry to ksm_do_scan(),
2320                  * so we don't IPI too often when pages_to_scan is set low).
2321                  */
2322                 lru_add_drain_all();
2323
2324                 /*
2325                  * Whereas stale stable_nodes on the stable_tree itself
2326                  * get pruned in the regular course of stable_tree_search(),
2327                  * those moved out to the migrate_nodes list can accumulate:
2328                  * so prune them once before each full scan.
2329                  */
2330                 if (!ksm_merge_across_nodes) {
2331                         struct ksm_stable_node *stable_node, *next;
2332                         struct page *page;
2333
2334                         list_for_each_entry_safe(stable_node, next,
2335                                                  &migrate_nodes, list) {
2336                                 page = get_ksm_page(stable_node,
2337                                                     GET_KSM_PAGE_NOLOCK);
2338                                 if (page)
2339                                         put_page(page);
2340                                 cond_resched();
2341                         }
2342                 }
2343
2344                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2345                         root_unstable_tree[nid] = RB_ROOT;
2346
2347                 spin_lock(&ksm_mmlist_lock);
2348                 slot = list_entry(mm_slot->slot.mm_node.next,
2349                                   struct mm_slot, mm_node);
2350                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2351                 ksm_scan.mm_slot = mm_slot;
2352                 spin_unlock(&ksm_mmlist_lock);
2353                 /*
2354                  * Although we tested list_empty() above, a racing __ksm_exit
2355                  * of the last mm on the list may have removed it since then.
2356                  */
2357                 if (mm_slot == &ksm_mm_head)
2358                         return NULL;
2359 next_mm:
2360                 ksm_scan.address = 0;
2361                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2362         }
2363
2364         slot = &mm_slot->slot;
2365         mm = slot->mm;
2366         vma_iter_init(&vmi, mm, ksm_scan.address);
2367
2368         mmap_read_lock(mm);
2369         if (ksm_test_exit(mm))
2370                 goto no_vmas;
2371
2372         for_each_vma(vmi, vma) {
2373                 if (!(vma->vm_flags & VM_MERGEABLE))
2374                         continue;
2375                 if (ksm_scan.address < vma->vm_start)
2376                         ksm_scan.address = vma->vm_start;
2377                 if (!vma->anon_vma)
2378                         ksm_scan.address = vma->vm_end;
2379
2380                 while (ksm_scan.address < vma->vm_end) {
2381                         if (ksm_test_exit(mm))
2382                                 break;
2383                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2384                         if (IS_ERR_OR_NULL(*page)) {
2385                                 ksm_scan.address += PAGE_SIZE;
2386                                 cond_resched();
2387                                 continue;
2388                         }
2389                         if (is_zone_device_page(*page))
2390                                 goto next_page;
2391                         if (PageAnon(*page)) {
2392                                 flush_anon_page(vma, *page, ksm_scan.address);
2393                                 flush_dcache_page(*page);
2394                                 rmap_item = get_next_rmap_item(mm_slot,
2395                                         ksm_scan.rmap_list, ksm_scan.address);
2396                                 if (rmap_item) {
2397                                         ksm_scan.rmap_list =
2398                                                         &rmap_item->rmap_list;
2399                                         ksm_scan.address += PAGE_SIZE;
2400                                 } else
2401                                         put_page(*page);
2402                                 mmap_read_unlock(mm);
2403                                 return rmap_item;
2404                         }
2405 next_page:
2406                         put_page(*page);
2407                         ksm_scan.address += PAGE_SIZE;
2408                         cond_resched();
2409                 }
2410         }
2411
2412         if (ksm_test_exit(mm)) {
2413 no_vmas:
2414                 ksm_scan.address = 0;
2415                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2416         }
2417         /*
2418          * Nuke all the rmap_items that are above this current rmap:
2419          * because there were no VM_MERGEABLE vmas with such addresses.
2420          */
2421         remove_trailing_rmap_items(ksm_scan.rmap_list);
2422
2423         spin_lock(&ksm_mmlist_lock);
2424         slot = list_entry(mm_slot->slot.mm_node.next,
2425                           struct mm_slot, mm_node);
2426         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2427         if (ksm_scan.address == 0) {
2428                 /*
2429                  * We've completed a full scan of all vmas, holding mmap_lock
2430                  * throughout, and found no VM_MERGEABLE: so do the same as
2431                  * __ksm_exit does to remove this mm from all our lists now.
2432                  * This applies either when cleaning up after __ksm_exit
2433                  * (but beware: we can reach here even before __ksm_exit),
2434                  * or when all VM_MERGEABLE areas have been unmapped (and
2435                  * mmap_lock then protects against race with MADV_MERGEABLE).
2436                  */
2437                 hash_del(&mm_slot->slot.hash);
2438                 list_del(&mm_slot->slot.mm_node);
2439                 spin_unlock(&ksm_mmlist_lock);
2440
2441                 mm_slot_free(mm_slot_cache, mm_slot);
2442                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2443                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2444                 mmap_read_unlock(mm);
2445                 mmdrop(mm);
2446         } else {
2447                 mmap_read_unlock(mm);
2448                 /*
2449                  * mmap_read_unlock(mm) first because after
2450                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2451                  * already have been freed under us by __ksm_exit()
2452                  * because the "mm_slot" is still hashed and
2453                  * ksm_scan.mm_slot doesn't point to it anymore.
2454                  */
2455                 spin_unlock(&ksm_mmlist_lock);
2456         }
2457
2458         /* Repeat until we've completed scanning the whole list */
2459         mm_slot = ksm_scan.mm_slot;
2460         if (mm_slot != &ksm_mm_head)
2461                 goto next_mm;
2462
2463         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2464         ksm_scan.seqnr++;
2465         return NULL;
2466 }
2467
2468 /**
2469  * ksm_do_scan  - the ksm scanner main worker function.
2470  * @scan_npages:  number of pages we want to scan before we return.
2471  */
2472 static void ksm_do_scan(unsigned int scan_npages)
2473 {
2474         struct ksm_rmap_item *rmap_item;
2475         struct page *page;
2476
2477         while (scan_npages-- && likely(!freezing(current))) {
2478                 cond_resched();
2479                 rmap_item = scan_get_next_rmap_item(&page);
2480                 if (!rmap_item)
2481                         return;
2482                 cmp_and_merge_page(page, rmap_item);
2483                 put_page(page);
2484         }
2485 }
2486
2487 static int ksmd_should_run(void)
2488 {
2489         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2490 }
2491
2492 static int ksm_scan_thread(void *nothing)
2493 {
2494         unsigned int sleep_ms;
2495
2496         set_freezable();
2497         set_user_nice(current, 5);
2498
2499         while (!kthread_should_stop()) {
2500                 mutex_lock(&ksm_thread_mutex);
2501                 wait_while_offlining();
2502                 if (ksmd_should_run())
2503                         ksm_do_scan(ksm_thread_pages_to_scan);
2504                 mutex_unlock(&ksm_thread_mutex);
2505
2506                 try_to_freeze();
2507
2508                 if (ksmd_should_run()) {
2509                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2510                         wait_event_interruptible_timeout(ksm_iter_wait,
2511                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2512                                 msecs_to_jiffies(sleep_ms));
2513                 } else {
2514                         wait_event_freezable(ksm_thread_wait,
2515                                 ksmd_should_run() || kthread_should_stop());
2516                 }
2517         }
2518         return 0;
2519 }
2520
2521 static void __ksm_add_vma(struct vm_area_struct *vma)
2522 {
2523         unsigned long vm_flags = vma->vm_flags;
2524
2525         if (vm_flags & VM_MERGEABLE)
2526                 return;
2527
2528         if (vma_ksm_compatible(vma))
2529                 vm_flags_set(vma, VM_MERGEABLE);
2530 }
2531
2532 static int __ksm_del_vma(struct vm_area_struct *vma)
2533 {
2534         int err;
2535
2536         if (!(vma->vm_flags & VM_MERGEABLE))
2537                 return 0;
2538
2539         if (vma->anon_vma) {
2540                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2541                 if (err)
2542                         return err;
2543         }
2544
2545         vm_flags_clear(vma, VM_MERGEABLE);
2546         return 0;
2547 }
2548 /**
2549  * ksm_add_vma - Mark vma as mergeable if compatible
2550  *
2551  * @vma:  Pointer to vma
2552  */
2553 void ksm_add_vma(struct vm_area_struct *vma)
2554 {
2555         struct mm_struct *mm = vma->vm_mm;
2556
2557         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2558                 __ksm_add_vma(vma);
2559 }
2560
2561 static void ksm_add_vmas(struct mm_struct *mm)
2562 {
2563         struct vm_area_struct *vma;
2564
2565         VMA_ITERATOR(vmi, mm, 0);
2566         for_each_vma(vmi, vma)
2567                 __ksm_add_vma(vma);
2568 }
2569
2570 static int ksm_del_vmas(struct mm_struct *mm)
2571 {
2572         struct vm_area_struct *vma;
2573         int err;
2574
2575         VMA_ITERATOR(vmi, mm, 0);
2576         for_each_vma(vmi, vma) {
2577                 err = __ksm_del_vma(vma);
2578                 if (err)
2579                         return err;
2580         }
2581         return 0;
2582 }
2583
2584 /**
2585  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2586  *                        compatible VMA's
2587  *
2588  * @mm:  Pointer to mm
2589  *
2590  * Returns 0 on success, otherwise error code
2591  */
2592 int ksm_enable_merge_any(struct mm_struct *mm)
2593 {
2594         int err;
2595
2596         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2597                 return 0;
2598
2599         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2600                 err = __ksm_enter(mm);
2601                 if (err)
2602                         return err;
2603         }
2604
2605         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2606         ksm_add_vmas(mm);
2607
2608         return 0;
2609 }
2610
2611 /**
2612  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2613  *                         previously enabled via ksm_enable_merge_any().
2614  *
2615  * Disabling merging implies unmerging any merged pages, like setting
2616  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2617  * merging on all compatible VMA's remains enabled.
2618  *
2619  * @mm: Pointer to mm
2620  *
2621  * Returns 0 on success, otherwise error code
2622  */
2623 int ksm_disable_merge_any(struct mm_struct *mm)
2624 {
2625         int err;
2626
2627         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2628                 return 0;
2629
2630         err = ksm_del_vmas(mm);
2631         if (err) {
2632                 ksm_add_vmas(mm);
2633                 return err;
2634         }
2635
2636         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2637         return 0;
2638 }
2639
2640 int ksm_disable(struct mm_struct *mm)
2641 {
2642         mmap_assert_write_locked(mm);
2643
2644         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2645                 return 0;
2646         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2647                 return ksm_disable_merge_any(mm);
2648         return ksm_del_vmas(mm);
2649 }
2650
2651 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2652                 unsigned long end, int advice, unsigned long *vm_flags)
2653 {
2654         struct mm_struct *mm = vma->vm_mm;
2655         int err;
2656
2657         switch (advice) {
2658         case MADV_MERGEABLE:
2659                 if (vma->vm_flags & VM_MERGEABLE)
2660                         return 0;
2661                 if (!vma_ksm_compatible(vma))
2662                         return 0;
2663
2664                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2665                         err = __ksm_enter(mm);
2666                         if (err)
2667                                 return err;
2668                 }
2669
2670                 *vm_flags |= VM_MERGEABLE;
2671                 break;
2672
2673         case MADV_UNMERGEABLE:
2674                 if (!(*vm_flags & VM_MERGEABLE))
2675                         return 0;               /* just ignore the advice */
2676
2677                 if (vma->anon_vma) {
2678                         err = unmerge_ksm_pages(vma, start, end, true);
2679                         if (err)
2680                                 return err;
2681                 }
2682
2683                 *vm_flags &= ~VM_MERGEABLE;
2684                 break;
2685         }
2686
2687         return 0;
2688 }
2689 EXPORT_SYMBOL_GPL(ksm_madvise);
2690
2691 int __ksm_enter(struct mm_struct *mm)
2692 {
2693         struct ksm_mm_slot *mm_slot;
2694         struct mm_slot *slot;
2695         int needs_wakeup;
2696
2697         mm_slot = mm_slot_alloc(mm_slot_cache);
2698         if (!mm_slot)
2699                 return -ENOMEM;
2700
2701         slot = &mm_slot->slot;
2702
2703         /* Check ksm_run too?  Would need tighter locking */
2704         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2705
2706         spin_lock(&ksm_mmlist_lock);
2707         mm_slot_insert(mm_slots_hash, mm, slot);
2708         /*
2709          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2710          * insert just behind the scanning cursor, to let the area settle
2711          * down a little; when fork is followed by immediate exec, we don't
2712          * want ksmd to waste time setting up and tearing down an rmap_list.
2713          *
2714          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2715          * scanning cursor, otherwise KSM pages in newly forked mms will be
2716          * missed: then we might as well insert at the end of the list.
2717          */
2718         if (ksm_run & KSM_RUN_UNMERGE)
2719                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2720         else
2721                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2722         spin_unlock(&ksm_mmlist_lock);
2723
2724         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2725         mmgrab(mm);
2726
2727         if (needs_wakeup)
2728                 wake_up_interruptible(&ksm_thread_wait);
2729
2730         trace_ksm_enter(mm);
2731         return 0;
2732 }
2733
2734 void __ksm_exit(struct mm_struct *mm)
2735 {
2736         struct ksm_mm_slot *mm_slot;
2737         struct mm_slot *slot;
2738         int easy_to_free = 0;
2739
2740         /*
2741          * This process is exiting: if it's straightforward (as is the
2742          * case when ksmd was never running), free mm_slot immediately.
2743          * But if it's at the cursor or has rmap_items linked to it, use
2744          * mmap_lock to synchronize with any break_cows before pagetables
2745          * are freed, and leave the mm_slot on the list for ksmd to free.
2746          * Beware: ksm may already have noticed it exiting and freed the slot.
2747          */
2748
2749         spin_lock(&ksm_mmlist_lock);
2750         slot = mm_slot_lookup(mm_slots_hash, mm);
2751         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2752         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2753                 if (!mm_slot->rmap_list) {
2754                         hash_del(&slot->hash);
2755                         list_del(&slot->mm_node);
2756                         easy_to_free = 1;
2757                 } else {
2758                         list_move(&slot->mm_node,
2759                                   &ksm_scan.mm_slot->slot.mm_node);
2760                 }
2761         }
2762         spin_unlock(&ksm_mmlist_lock);
2763
2764         if (easy_to_free) {
2765                 mm_slot_free(mm_slot_cache, mm_slot);
2766                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2767                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2768                 mmdrop(mm);
2769         } else if (mm_slot) {
2770                 mmap_write_lock(mm);
2771                 mmap_write_unlock(mm);
2772         }
2773
2774         trace_ksm_exit(mm);
2775 }
2776
2777 struct page *ksm_might_need_to_copy(struct page *page,
2778                         struct vm_area_struct *vma, unsigned long address)
2779 {
2780         struct folio *folio = page_folio(page);
2781         struct anon_vma *anon_vma = folio_anon_vma(folio);
2782         struct page *new_page;
2783
2784         if (PageKsm(page)) {
2785                 if (page_stable_node(page) &&
2786                     !(ksm_run & KSM_RUN_UNMERGE))
2787                         return page;    /* no need to copy it */
2788         } else if (!anon_vma) {
2789                 return page;            /* no need to copy it */
2790         } else if (page->index == linear_page_index(vma, address) &&
2791                         anon_vma->root == vma->anon_vma->root) {
2792                 return page;            /* still no need to copy it */
2793         }
2794         if (PageHWPoison(page))
2795                 return ERR_PTR(-EHWPOISON);
2796         if (!PageUptodate(page))
2797                 return page;            /* let do_swap_page report the error */
2798
2799         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2800         if (new_page &&
2801             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2802                 put_page(new_page);
2803                 new_page = NULL;
2804         }
2805         if (new_page) {
2806                 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2807                         put_page(new_page);
2808                         memory_failure_queue(page_to_pfn(page), 0);
2809                         return ERR_PTR(-EHWPOISON);
2810                 }
2811                 SetPageDirty(new_page);
2812                 __SetPageUptodate(new_page);
2813                 __SetPageLocked(new_page);
2814 #ifdef CONFIG_SWAP
2815                 count_vm_event(KSM_SWPIN_COPY);
2816 #endif
2817         }
2818
2819         return new_page;
2820 }
2821
2822 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2823 {
2824         struct ksm_stable_node *stable_node;
2825         struct ksm_rmap_item *rmap_item;
2826         int search_new_forks = 0;
2827
2828         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2829
2830         /*
2831          * Rely on the page lock to protect against concurrent modifications
2832          * to that page's node of the stable tree.
2833          */
2834         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2835
2836         stable_node = folio_stable_node(folio);
2837         if (!stable_node)
2838                 return;
2839 again:
2840         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2841                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2842                 struct anon_vma_chain *vmac;
2843                 struct vm_area_struct *vma;
2844
2845                 cond_resched();
2846                 if (!anon_vma_trylock_read(anon_vma)) {
2847                         if (rwc->try_lock) {
2848                                 rwc->contended = true;
2849                                 return;
2850                         }
2851                         anon_vma_lock_read(anon_vma);
2852                 }
2853                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2854                                                0, ULONG_MAX) {
2855                         unsigned long addr;
2856
2857                         cond_resched();
2858                         vma = vmac->vma;
2859
2860                         /* Ignore the stable/unstable/sqnr flags */
2861                         addr = rmap_item->address & PAGE_MASK;
2862
2863                         if (addr < vma->vm_start || addr >= vma->vm_end)
2864                                 continue;
2865                         /*
2866                          * Initially we examine only the vma which covers this
2867                          * rmap_item; but later, if there is still work to do,
2868                          * we examine covering vmas in other mms: in case they
2869                          * were forked from the original since ksmd passed.
2870                          */
2871                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2872                                 continue;
2873
2874                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2875                                 continue;
2876
2877                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2878                                 anon_vma_unlock_read(anon_vma);
2879                                 return;
2880                         }
2881                         if (rwc->done && rwc->done(folio)) {
2882                                 anon_vma_unlock_read(anon_vma);
2883                                 return;
2884                         }
2885                 }
2886                 anon_vma_unlock_read(anon_vma);
2887         }
2888         if (!search_new_forks++)
2889                 goto again;
2890 }
2891
2892 #ifdef CONFIG_MEMORY_FAILURE
2893 /*
2894  * Collect processes when the error hit an ksm page.
2895  */
2896 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2897                        int force_early)
2898 {
2899         struct ksm_stable_node *stable_node;
2900         struct ksm_rmap_item *rmap_item;
2901         struct folio *folio = page_folio(page);
2902         struct vm_area_struct *vma;
2903         struct task_struct *tsk;
2904
2905         stable_node = folio_stable_node(folio);
2906         if (!stable_node)
2907                 return;
2908         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2909                 struct anon_vma *av = rmap_item->anon_vma;
2910
2911                 anon_vma_lock_read(av);
2912                 read_lock(&tasklist_lock);
2913                 for_each_process(tsk) {
2914                         struct anon_vma_chain *vmac;
2915                         unsigned long addr;
2916                         struct task_struct *t =
2917                                 task_early_kill(tsk, force_early);
2918                         if (!t)
2919                                 continue;
2920                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2921                                                        ULONG_MAX)
2922                         {
2923                                 vma = vmac->vma;
2924                                 if (vma->vm_mm == t->mm) {
2925                                         addr = rmap_item->address & PAGE_MASK;
2926                                         add_to_kill_ksm(t, page, vma, to_kill,
2927                                                         addr);
2928                                 }
2929                         }
2930                 }
2931                 read_unlock(&tasklist_lock);
2932                 anon_vma_unlock_read(av);
2933         }
2934 }
2935 #endif
2936
2937 #ifdef CONFIG_MIGRATION
2938 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2939 {
2940         struct ksm_stable_node *stable_node;
2941
2942         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2943         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2944         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2945
2946         stable_node = folio_stable_node(folio);
2947         if (stable_node) {
2948                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2949                 stable_node->kpfn = folio_pfn(newfolio);
2950                 /*
2951                  * newfolio->mapping was set in advance; now we need smp_wmb()
2952                  * to make sure that the new stable_node->kpfn is visible
2953                  * to get_ksm_page() before it can see that folio->mapping
2954                  * has gone stale (or that folio_test_swapcache has been cleared).
2955                  */
2956                 smp_wmb();
2957                 set_page_stable_node(&folio->page, NULL);
2958         }
2959 }
2960 #endif /* CONFIG_MIGRATION */
2961
2962 #ifdef CONFIG_MEMORY_HOTREMOVE
2963 static void wait_while_offlining(void)
2964 {
2965         while (ksm_run & KSM_RUN_OFFLINE) {
2966                 mutex_unlock(&ksm_thread_mutex);
2967                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2968                             TASK_UNINTERRUPTIBLE);
2969                 mutex_lock(&ksm_thread_mutex);
2970         }
2971 }
2972
2973 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2974                                          unsigned long start_pfn,
2975                                          unsigned long end_pfn)
2976 {
2977         if (stable_node->kpfn >= start_pfn &&
2978             stable_node->kpfn < end_pfn) {
2979                 /*
2980                  * Don't get_ksm_page, page has already gone:
2981                  * which is why we keep kpfn instead of page*
2982                  */
2983                 remove_node_from_stable_tree(stable_node);
2984                 return true;
2985         }
2986         return false;
2987 }
2988
2989 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2990                                            unsigned long start_pfn,
2991                                            unsigned long end_pfn,
2992                                            struct rb_root *root)
2993 {
2994         struct ksm_stable_node *dup;
2995         struct hlist_node *hlist_safe;
2996
2997         if (!is_stable_node_chain(stable_node)) {
2998                 VM_BUG_ON(is_stable_node_dup(stable_node));
2999                 return stable_node_dup_remove_range(stable_node, start_pfn,
3000                                                     end_pfn);
3001         }
3002
3003         hlist_for_each_entry_safe(dup, hlist_safe,
3004                                   &stable_node->hlist, hlist_dup) {
3005                 VM_BUG_ON(!is_stable_node_dup(dup));
3006                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3007         }
3008         if (hlist_empty(&stable_node->hlist)) {
3009                 free_stable_node_chain(stable_node, root);
3010                 return true; /* notify caller that tree was rebalanced */
3011         } else
3012                 return false;
3013 }
3014
3015 static void ksm_check_stable_tree(unsigned long start_pfn,
3016                                   unsigned long end_pfn)
3017 {
3018         struct ksm_stable_node *stable_node, *next;
3019         struct rb_node *node;
3020         int nid;
3021
3022         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3023                 node = rb_first(root_stable_tree + nid);
3024                 while (node) {
3025                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3026                         if (stable_node_chain_remove_range(stable_node,
3027                                                            start_pfn, end_pfn,
3028                                                            root_stable_tree +
3029                                                            nid))
3030                                 node = rb_first(root_stable_tree + nid);
3031                         else
3032                                 node = rb_next(node);
3033                         cond_resched();
3034                 }
3035         }
3036         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3037                 if (stable_node->kpfn >= start_pfn &&
3038                     stable_node->kpfn < end_pfn)
3039                         remove_node_from_stable_tree(stable_node);
3040                 cond_resched();
3041         }
3042 }
3043
3044 static int ksm_memory_callback(struct notifier_block *self,
3045                                unsigned long action, void *arg)
3046 {
3047         struct memory_notify *mn = arg;
3048
3049         switch (action) {
3050         case MEM_GOING_OFFLINE:
3051                 /*
3052                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3053                  * and remove_all_stable_nodes() while memory is going offline:
3054                  * it is unsafe for them to touch the stable tree at this time.
3055                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3056                  * which do not need the ksm_thread_mutex are all safe.
3057                  */
3058                 mutex_lock(&ksm_thread_mutex);
3059                 ksm_run |= KSM_RUN_OFFLINE;
3060                 mutex_unlock(&ksm_thread_mutex);
3061                 break;
3062
3063         case MEM_OFFLINE:
3064                 /*
3065                  * Most of the work is done by page migration; but there might
3066                  * be a few stable_nodes left over, still pointing to struct
3067                  * pages which have been offlined: prune those from the tree,
3068                  * otherwise get_ksm_page() might later try to access a
3069                  * non-existent struct page.
3070                  */
3071                 ksm_check_stable_tree(mn->start_pfn,
3072                                       mn->start_pfn + mn->nr_pages);
3073                 fallthrough;
3074         case MEM_CANCEL_OFFLINE:
3075                 mutex_lock(&ksm_thread_mutex);
3076                 ksm_run &= ~KSM_RUN_OFFLINE;
3077                 mutex_unlock(&ksm_thread_mutex);
3078
3079                 smp_mb();       /* wake_up_bit advises this */
3080                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3081                 break;
3082         }
3083         return NOTIFY_OK;
3084 }
3085 #else
3086 static void wait_while_offlining(void)
3087 {
3088 }
3089 #endif /* CONFIG_MEMORY_HOTREMOVE */
3090
3091 #ifdef CONFIG_PROC_FS
3092 long ksm_process_profit(struct mm_struct *mm)
3093 {
3094         return mm->ksm_merging_pages * PAGE_SIZE -
3095                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3096 }
3097 #endif /* CONFIG_PROC_FS */
3098
3099 #ifdef CONFIG_SYSFS
3100 /*
3101  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3102  */
3103
3104 #define KSM_ATTR_RO(_name) \
3105         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3106 #define KSM_ATTR(_name) \
3107         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3108
3109 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3110                                     struct kobj_attribute *attr, char *buf)
3111 {
3112         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3113 }
3114
3115 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3116                                      struct kobj_attribute *attr,
3117                                      const char *buf, size_t count)
3118 {
3119         unsigned int msecs;
3120         int err;
3121
3122         err = kstrtouint(buf, 10, &msecs);
3123         if (err)
3124                 return -EINVAL;
3125
3126         ksm_thread_sleep_millisecs = msecs;
3127         wake_up_interruptible(&ksm_iter_wait);
3128
3129         return count;
3130 }
3131 KSM_ATTR(sleep_millisecs);
3132
3133 static ssize_t pages_to_scan_show(struct kobject *kobj,
3134                                   struct kobj_attribute *attr, char *buf)
3135 {
3136         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3137 }
3138
3139 static ssize_t pages_to_scan_store(struct kobject *kobj,
3140                                    struct kobj_attribute *attr,
3141                                    const char *buf, size_t count)
3142 {
3143         unsigned int nr_pages;
3144         int err;
3145
3146         err = kstrtouint(buf, 10, &nr_pages);
3147         if (err)
3148                 return -EINVAL;
3149
3150         ksm_thread_pages_to_scan = nr_pages;
3151
3152         return count;
3153 }
3154 KSM_ATTR(pages_to_scan);
3155
3156 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3157                         char *buf)
3158 {
3159         return sysfs_emit(buf, "%lu\n", ksm_run);
3160 }
3161
3162 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3163                          const char *buf, size_t count)
3164 {
3165         unsigned int flags;
3166         int err;
3167
3168         err = kstrtouint(buf, 10, &flags);
3169         if (err)
3170                 return -EINVAL;
3171         if (flags > KSM_RUN_UNMERGE)
3172                 return -EINVAL;
3173
3174         /*
3175          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3176          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3177          * breaking COW to free the pages_shared (but leaves mm_slots
3178          * on the list for when ksmd may be set running again).
3179          */
3180
3181         mutex_lock(&ksm_thread_mutex);
3182         wait_while_offlining();
3183         if (ksm_run != flags) {
3184                 ksm_run = flags;
3185                 if (flags & KSM_RUN_UNMERGE) {
3186                         set_current_oom_origin();
3187                         err = unmerge_and_remove_all_rmap_items();
3188                         clear_current_oom_origin();
3189                         if (err) {
3190                                 ksm_run = KSM_RUN_STOP;
3191                                 count = err;
3192                         }
3193                 }
3194         }
3195         mutex_unlock(&ksm_thread_mutex);
3196
3197         if (flags & KSM_RUN_MERGE)
3198                 wake_up_interruptible(&ksm_thread_wait);
3199
3200         return count;
3201 }
3202 KSM_ATTR(run);
3203
3204 #ifdef CONFIG_NUMA
3205 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3206                                        struct kobj_attribute *attr, char *buf)
3207 {
3208         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3209 }
3210
3211 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3212                                    struct kobj_attribute *attr,
3213                                    const char *buf, size_t count)
3214 {
3215         int err;
3216         unsigned long knob;
3217
3218         err = kstrtoul(buf, 10, &knob);
3219         if (err)
3220                 return err;
3221         if (knob > 1)
3222                 return -EINVAL;
3223
3224         mutex_lock(&ksm_thread_mutex);
3225         wait_while_offlining();
3226         if (ksm_merge_across_nodes != knob) {
3227                 if (ksm_pages_shared || remove_all_stable_nodes())
3228                         err = -EBUSY;
3229                 else if (root_stable_tree == one_stable_tree) {
3230                         struct rb_root *buf;
3231                         /*
3232                          * This is the first time that we switch away from the
3233                          * default of merging across nodes: must now allocate
3234                          * a buffer to hold as many roots as may be needed.
3235                          * Allocate stable and unstable together:
3236                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3237                          */
3238                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3239                                       GFP_KERNEL);
3240                         /* Let us assume that RB_ROOT is NULL is zero */
3241                         if (!buf)
3242                                 err = -ENOMEM;
3243                         else {
3244                                 root_stable_tree = buf;
3245                                 root_unstable_tree = buf + nr_node_ids;
3246                                 /* Stable tree is empty but not the unstable */
3247                                 root_unstable_tree[0] = one_unstable_tree[0];
3248                         }
3249                 }
3250                 if (!err) {
3251                         ksm_merge_across_nodes = knob;
3252                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3253                 }
3254         }
3255         mutex_unlock(&ksm_thread_mutex);
3256
3257         return err ? err : count;
3258 }
3259 KSM_ATTR(merge_across_nodes);
3260 #endif
3261
3262 static ssize_t use_zero_pages_show(struct kobject *kobj,
3263                                    struct kobj_attribute *attr, char *buf)
3264 {
3265         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3266 }
3267 static ssize_t use_zero_pages_store(struct kobject *kobj,
3268                                    struct kobj_attribute *attr,
3269                                    const char *buf, size_t count)
3270 {
3271         int err;
3272         bool value;
3273
3274         err = kstrtobool(buf, &value);
3275         if (err)
3276                 return -EINVAL;
3277
3278         ksm_use_zero_pages = value;
3279
3280         return count;
3281 }
3282 KSM_ATTR(use_zero_pages);
3283
3284 static ssize_t max_page_sharing_show(struct kobject *kobj,
3285                                      struct kobj_attribute *attr, char *buf)
3286 {
3287         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3288 }
3289
3290 static ssize_t max_page_sharing_store(struct kobject *kobj,
3291                                       struct kobj_attribute *attr,
3292                                       const char *buf, size_t count)
3293 {
3294         int err;
3295         int knob;
3296
3297         err = kstrtoint(buf, 10, &knob);
3298         if (err)
3299                 return err;
3300         /*
3301          * When a KSM page is created it is shared by 2 mappings. This
3302          * being a signed comparison, it implicitly verifies it's not
3303          * negative.
3304          */
3305         if (knob < 2)
3306                 return -EINVAL;
3307
3308         if (READ_ONCE(ksm_max_page_sharing) == knob)
3309                 return count;
3310
3311         mutex_lock(&ksm_thread_mutex);
3312         wait_while_offlining();
3313         if (ksm_max_page_sharing != knob) {
3314                 if (ksm_pages_shared || remove_all_stable_nodes())
3315                         err = -EBUSY;
3316                 else
3317                         ksm_max_page_sharing = knob;
3318         }
3319         mutex_unlock(&ksm_thread_mutex);
3320
3321         return err ? err : count;
3322 }
3323 KSM_ATTR(max_page_sharing);
3324
3325 static ssize_t pages_shared_show(struct kobject *kobj,
3326                                  struct kobj_attribute *attr, char *buf)
3327 {
3328         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3329 }
3330 KSM_ATTR_RO(pages_shared);
3331
3332 static ssize_t pages_sharing_show(struct kobject *kobj,
3333                                   struct kobj_attribute *attr, char *buf)
3334 {
3335         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3336 }
3337 KSM_ATTR_RO(pages_sharing);
3338
3339 static ssize_t pages_unshared_show(struct kobject *kobj,
3340                                    struct kobj_attribute *attr, char *buf)
3341 {
3342         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3343 }
3344 KSM_ATTR_RO(pages_unshared);
3345
3346 static ssize_t pages_volatile_show(struct kobject *kobj,
3347                                    struct kobj_attribute *attr, char *buf)
3348 {
3349         long ksm_pages_volatile;
3350
3351         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3352                                 - ksm_pages_sharing - ksm_pages_unshared;
3353         /*
3354          * It was not worth any locking to calculate that statistic,
3355          * but it might therefore sometimes be negative: conceal that.
3356          */
3357         if (ksm_pages_volatile < 0)
3358                 ksm_pages_volatile = 0;
3359         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3360 }
3361 KSM_ATTR_RO(pages_volatile);
3362
3363 static ssize_t general_profit_show(struct kobject *kobj,
3364                                    struct kobj_attribute *attr, char *buf)
3365 {
3366         long general_profit;
3367
3368         general_profit = ksm_pages_sharing * PAGE_SIZE -
3369                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3370
3371         return sysfs_emit(buf, "%ld\n", general_profit);
3372 }
3373 KSM_ATTR_RO(general_profit);
3374
3375 static ssize_t stable_node_dups_show(struct kobject *kobj,
3376                                      struct kobj_attribute *attr, char *buf)
3377 {
3378         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3379 }
3380 KSM_ATTR_RO(stable_node_dups);
3381
3382 static ssize_t stable_node_chains_show(struct kobject *kobj,
3383                                        struct kobj_attribute *attr, char *buf)
3384 {
3385         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3386 }
3387 KSM_ATTR_RO(stable_node_chains);
3388
3389 static ssize_t
3390 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3391                                         struct kobj_attribute *attr,
3392                                         char *buf)
3393 {
3394         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3395 }
3396
3397 static ssize_t
3398 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3399                                          struct kobj_attribute *attr,
3400                                          const char *buf, size_t count)
3401 {
3402         unsigned int msecs;
3403         int err;
3404
3405         err = kstrtouint(buf, 10, &msecs);
3406         if (err)
3407                 return -EINVAL;
3408
3409         ksm_stable_node_chains_prune_millisecs = msecs;
3410
3411         return count;
3412 }
3413 KSM_ATTR(stable_node_chains_prune_millisecs);
3414
3415 static ssize_t full_scans_show(struct kobject *kobj,
3416                                struct kobj_attribute *attr, char *buf)
3417 {
3418         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3419 }
3420 KSM_ATTR_RO(full_scans);
3421
3422 static struct attribute *ksm_attrs[] = {
3423         &sleep_millisecs_attr.attr,
3424         &pages_to_scan_attr.attr,
3425         &run_attr.attr,
3426         &pages_shared_attr.attr,
3427         &pages_sharing_attr.attr,
3428         &pages_unshared_attr.attr,
3429         &pages_volatile_attr.attr,
3430         &full_scans_attr.attr,
3431 #ifdef CONFIG_NUMA
3432         &merge_across_nodes_attr.attr,
3433 #endif
3434         &max_page_sharing_attr.attr,
3435         &stable_node_chains_attr.attr,
3436         &stable_node_dups_attr.attr,
3437         &stable_node_chains_prune_millisecs_attr.attr,
3438         &use_zero_pages_attr.attr,
3439         &general_profit_attr.attr,
3440         NULL,
3441 };
3442
3443 static const struct attribute_group ksm_attr_group = {
3444         .attrs = ksm_attrs,
3445         .name = "ksm",
3446 };
3447 #endif /* CONFIG_SYSFS */
3448
3449 static int __init ksm_init(void)
3450 {
3451         struct task_struct *ksm_thread;
3452         int err;
3453
3454         /* The correct value depends on page size and endianness */
3455         zero_checksum = calc_checksum(ZERO_PAGE(0));
3456         /* Default to false for backwards compatibility */
3457         ksm_use_zero_pages = false;
3458
3459         err = ksm_slab_init();
3460         if (err)
3461                 goto out;
3462
3463         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3464         if (IS_ERR(ksm_thread)) {
3465                 pr_err("ksm: creating kthread failed\n");
3466                 err = PTR_ERR(ksm_thread);
3467                 goto out_free;
3468         }
3469
3470 #ifdef CONFIG_SYSFS
3471         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3472         if (err) {
3473                 pr_err("ksm: register sysfs failed\n");
3474                 kthread_stop(ksm_thread);
3475                 goto out_free;
3476         }
3477 #else
3478         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3479
3480 #endif /* CONFIG_SYSFS */
3481
3482 #ifdef CONFIG_MEMORY_HOTREMOVE
3483         /* There is no significance to this priority 100 */
3484         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3485 #endif
3486         return 0;
3487
3488 out_free:
3489         ksm_slab_free();
3490 out:
3491         return err;
3492 }
3493 subsys_initcall(ksm_init);