1 // SPDX-License-Identifier: GPL-2.0-only
3 * Memory merging support.
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
8 * Copyright (C) 2008-2009 Red Hat, Inc.
16 #include <linux/errno.h>
18 #include <linux/mm_inline.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
44 #include <asm/tlbflush.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
53 #define DO_NUMA(x) do { (x); } while (0)
56 #define DO_NUMA(x) do { } while (0)
62 * A few notes about the KSM scanning process,
63 * to make it easier to understand the data structures below:
65 * In order to reduce excessive scanning, KSM sorts the memory pages by their
66 * contents into a data structure that holds pointers to the pages' locations.
68 * Since the contents of the pages may change at any moment, KSM cannot just
69 * insert the pages into a normal sorted tree and expect it to find anything.
70 * Therefore KSM uses two data structures - the stable and the unstable tree.
72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73 * by their contents. Because each such page is write-protected, searching on
74 * this tree is fully assured to be working (except when pages are unmapped),
75 * and therefore this tree is called the stable tree.
77 * The stable tree node includes information required for reverse
78 * mapping from a KSM page to virtual addresses that map this page.
80 * In order to avoid large latencies of the rmap walks on KSM pages,
81 * KSM maintains two types of nodes in the stable tree:
83 * * the regular nodes that keep the reverse mapping structures in a
85 * * the "chains" that link nodes ("dups") that represent the same
86 * write protected memory content, but each "dup" corresponds to a
87 * different KSM page copy of that content
89 * Internally, the regular nodes, "dups" and "chains" are represented
90 * using the same struct ksm_stable_node structure.
92 * In addition to the stable tree, KSM uses a second data structure called the
93 * unstable tree: this tree holds pointers to pages which have been found to
94 * be "unchanged for a period of time". The unstable tree sorts these pages
95 * by their contents, but since they are not write-protected, KSM cannot rely
96 * upon the unstable tree to work correctly - the unstable tree is liable to
97 * be corrupted as its contents are modified, and so it is called unstable.
99 * KSM solves this problem by several techniques:
101 * 1) The unstable tree is flushed every time KSM completes scanning all
102 * memory areas, and then the tree is rebuilt again from the beginning.
103 * 2) KSM will only insert into the unstable tree, pages whose hash value
104 * has not changed since the previous scan of all memory areas.
105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106 * colors of the nodes and not on their contents, assuring that even when
107 * the tree gets "corrupted" it won't get out of balance, so scanning time
108 * remains the same (also, searching and inserting nodes in an rbtree uses
109 * the same algorithm, so we have no overhead when we flush and rebuild).
110 * 4) KSM never flushes the stable tree, which means that even if it were to
111 * take 10 attempts to find a page in the unstable tree, once it is found,
112 * it is secured in the stable tree. (When we scan a new page, we first
113 * compare it against the stable tree, and then against the unstable tree.)
115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116 * stable trees and multiple unstable trees: one of each for each NUMA node.
120 * struct ksm_mm_slot - ksm information per mm that is being scanned
121 * @slot: hash lookup from mm to mm_slot
122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126 struct ksm_rmap_item *rmap_list;
130 * struct ksm_scan - cursor for scanning
131 * @mm_slot: the current mm_slot we are scanning
132 * @address: the next address inside that to be scanned
133 * @rmap_list: link to the next rmap to be scanned in the rmap_list
134 * @seqnr: count of completed full scans (needed when removing unstable node)
136 * There is only the one ksm_scan instance of this cursor structure.
139 struct ksm_mm_slot *mm_slot;
140 unsigned long address;
141 struct ksm_rmap_item **rmap_list;
146 * struct ksm_stable_node - node of the stable rbtree
147 * @node: rb node of this ksm page in the stable tree
148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150 * @list: linked into migrate_nodes, pending placement in the proper node tree
151 * @hlist: hlist head of rmap_items using this ksm page
152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153 * @chain_prune_time: time of the last full garbage collection
154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
157 struct ksm_stable_node {
159 struct rb_node node; /* when node of stable tree */
160 struct { /* when listed for migration */
161 struct list_head *head;
163 struct hlist_node hlist_dup;
164 struct list_head list;
168 struct hlist_head hlist;
171 unsigned long chain_prune_time;
174 * STABLE_NODE_CHAIN can be any negative number in
175 * rmap_hlist_len negative range, but better not -1 to be able
176 * to reliably detect underflows.
178 #define STABLE_NODE_CHAIN -1024
186 * struct ksm_rmap_item - reverse mapping item for virtual addresses
187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189 * @nid: NUMA node id of unstable tree in which linked (may not match page)
190 * @mm: the memory structure this rmap_item is pointing into
191 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192 * @oldchecksum: previous checksum of the page at that virtual address
193 * @node: rb node of this rmap_item in the unstable tree
194 * @head: pointer to stable_node heading this list in the stable tree
195 * @hlist: link into hlist of rmap_items hanging off that stable_node
197 struct ksm_rmap_item {
198 struct ksm_rmap_item *rmap_list;
200 struct anon_vma *anon_vma; /* when stable */
202 int nid; /* when node of unstable tree */
205 struct mm_struct *mm;
206 unsigned long address; /* + low bits used for flags below */
207 unsigned int oldchecksum; /* when unstable */
209 struct rb_node node; /* when node of unstable tree */
210 struct { /* when listed from stable tree */
211 struct ksm_stable_node *head;
212 struct hlist_node hlist;
217 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
219 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234 static struct ksm_mm_slot ksm_mm_head = {
235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
237 static struct ksm_scan ksm_scan = {
238 .mm_slot = &ksm_mm_head,
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
286 #define ksm_merge_across_nodes 1U
287 #define ksm_nr_node_ids 1
290 #define KSM_RUN_STOP 0
291 #define KSM_RUN_MERGE 1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303 sizeof(struct __struct), __alignof__(struct __struct),\
306 static int __init ksm_slab_init(void)
308 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309 if (!rmap_item_cache)
312 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313 if (!stable_node_cache)
316 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
323 kmem_cache_destroy(stable_node_cache);
325 kmem_cache_destroy(rmap_item_cache);
330 static void __init ksm_slab_free(void)
332 kmem_cache_destroy(mm_slot_cache);
333 kmem_cache_destroy(stable_node_cache);
334 kmem_cache_destroy(rmap_item_cache);
335 mm_slot_cache = NULL;
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
345 return dup->head == STABLE_NODE_DUP_HEAD;
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349 struct ksm_stable_node *chain)
351 VM_BUG_ON(is_stable_node_dup(dup));
352 dup->head = STABLE_NODE_DUP_HEAD;
353 VM_BUG_ON(!is_stable_node_chain(chain));
354 hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 ksm_stable_node_dups++;
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
360 VM_BUG_ON(!is_stable_node_dup(dup));
361 hlist_del(&dup->hlist_dup);
362 ksm_stable_node_dups--;
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
367 VM_BUG_ON(is_stable_node_chain(dup));
368 if (is_stable_node_dup(dup))
369 __stable_node_dup_del(dup);
371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
379 struct ksm_rmap_item *rmap_item;
381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 __GFP_NORETRY | __GFP_NOWARN);
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
391 rmap_item->mm->ksm_rmap_items--;
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
396 static inline struct ksm_stable_node *alloc_stable_node(void)
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
410 kmem_cache_free(stable_node_cache, stable_node);
414 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415 * page tables after it has passed through ksm_exit() - which, if necessary,
416 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
417 * a special flag: they can just back out as soon as mm_users goes to zero.
418 * ksm_test_exit() is used throughout to make this test for exit: in some
419 * places for correctness, in some places just to avoid unnecessary work.
421 static inline bool ksm_test_exit(struct mm_struct *mm)
423 return atomic_read(&mm->mm_users) == 0;
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427 struct mm_walk *walk)
429 struct page *page = NULL;
435 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438 ptent = ptep_get(pte);
439 if (pte_present(ptent)) {
440 page = vm_normal_page(walk->vma, addr, ptent);
441 } else if (!pte_none(ptent)) {
442 swp_entry_t entry = pte_to_swp_entry(ptent);
445 * As KSM pages remain KSM pages until freed, no need to wait
446 * here for migration to end.
448 if (is_migration_entry(entry))
449 page = pfn_swap_entry_to_page(entry);
451 ret = page && PageKsm(page);
452 pte_unmap_unlock(pte, ptl);
456 static const struct mm_walk_ops break_ksm_ops = {
457 .pmd_entry = break_ksm_pmd_entry,
458 .walk_lock = PGWALK_RDLOCK,
461 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
462 .pmd_entry = break_ksm_pmd_entry,
463 .walk_lock = PGWALK_WRLOCK,
467 * We use break_ksm to break COW on a ksm page by triggering unsharing,
468 * such that the ksm page will get replaced by an exclusive anonymous page.
470 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
471 * in case the application has unmapped and remapped mm,addr meanwhile.
472 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
473 * mmap of /dev/mem, where we would not want to touch it.
475 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
476 * of the process that owns 'vma'. We also do not want to enforce
477 * protection keys here anyway.
479 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
482 const struct mm_walk_ops *ops = lock_vma ?
483 &break_ksm_lock_vma_ops : &break_ksm_ops;
489 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
490 if (WARN_ON_ONCE(ksm_page < 0))
494 ret = handle_mm_fault(vma, addr,
495 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
497 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
499 * We must loop until we no longer find a KSM page because
500 * handle_mm_fault() may back out if there's any difficulty e.g. if
501 * pte accessed bit gets updated concurrently.
503 * VM_FAULT_SIGBUS could occur if we race with truncation of the
504 * backing file, which also invalidates anonymous pages: that's
505 * okay, that truncation will have unmapped the PageKsm for us.
507 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
508 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
509 * current task has TIF_MEMDIE set, and will be OOM killed on return
510 * to user; and ksmd, having no mm, would never be chosen for that.
512 * But if the mm is in a limited mem_cgroup, then the fault may fail
513 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
514 * even ksmd can fail in this way - though it's usually breaking ksm
515 * just to undo a merge it made a moment before, so unlikely to oom.
517 * That's a pity: we might therefore have more kernel pages allocated
518 * than we're counting as nodes in the stable tree; but ksm_do_scan
519 * will retry to break_cow on each pass, so should recover the page
520 * in due course. The important thing is to not let VM_MERGEABLE
521 * be cleared while any such pages might remain in the area.
523 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
526 static bool vma_ksm_compatible(struct vm_area_struct *vma)
528 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
529 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
531 return false; /* just ignore the advice */
537 if (vma->vm_flags & VM_SAO)
541 if (vma->vm_flags & VM_SPARC_ADI)
548 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
551 struct vm_area_struct *vma;
552 if (ksm_test_exit(mm))
554 vma = vma_lookup(mm, addr);
555 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
560 static void break_cow(struct ksm_rmap_item *rmap_item)
562 struct mm_struct *mm = rmap_item->mm;
563 unsigned long addr = rmap_item->address;
564 struct vm_area_struct *vma;
567 * It is not an accident that whenever we want to break COW
568 * to undo, we also need to drop a reference to the anon_vma.
570 put_anon_vma(rmap_item->anon_vma);
573 vma = find_mergeable_vma(mm, addr);
575 break_ksm(vma, addr, false);
576 mmap_read_unlock(mm);
579 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
581 struct mm_struct *mm = rmap_item->mm;
582 unsigned long addr = rmap_item->address;
583 struct vm_area_struct *vma;
587 vma = find_mergeable_vma(mm, addr);
591 page = follow_page(vma, addr, FOLL_GET);
592 if (IS_ERR_OR_NULL(page))
594 if (is_zone_device_page(page))
596 if (PageAnon(page)) {
597 flush_anon_page(vma, page, addr);
598 flush_dcache_page(page);
605 mmap_read_unlock(mm);
610 * This helper is used for getting right index into array of tree roots.
611 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
612 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
613 * every node has its own stable and unstable tree.
615 static inline int get_kpfn_nid(unsigned long kpfn)
617 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
620 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
621 struct rb_root *root)
623 struct ksm_stable_node *chain = alloc_stable_node();
624 VM_BUG_ON(is_stable_node_chain(dup));
626 INIT_HLIST_HEAD(&chain->hlist);
627 chain->chain_prune_time = jiffies;
628 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
629 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
630 chain->nid = NUMA_NO_NODE; /* debug */
632 ksm_stable_node_chains++;
635 * Put the stable node chain in the first dimension of
636 * the stable tree and at the same time remove the old
639 rb_replace_node(&dup->node, &chain->node, root);
642 * Move the old stable node to the second dimension
643 * queued in the hlist_dup. The invariant is that all
644 * dup stable_nodes in the chain->hlist point to pages
645 * that are write protected and have the exact same
648 stable_node_chain_add_dup(dup, chain);
653 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
654 struct rb_root *root)
656 rb_erase(&chain->node, root);
657 free_stable_node(chain);
658 ksm_stable_node_chains--;
661 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
663 struct ksm_rmap_item *rmap_item;
665 /* check it's not STABLE_NODE_CHAIN or negative */
666 BUG_ON(stable_node->rmap_hlist_len < 0);
668 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
669 if (rmap_item->hlist.next) {
671 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
676 rmap_item->mm->ksm_merging_pages--;
678 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
679 stable_node->rmap_hlist_len--;
680 put_anon_vma(rmap_item->anon_vma);
681 rmap_item->address &= PAGE_MASK;
686 * We need the second aligned pointer of the migrate_nodes
687 * list_head to stay clear from the rb_parent_color union
688 * (aligned and different than any node) and also different
689 * from &migrate_nodes. This will verify that future list.h changes
690 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
692 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
693 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
695 trace_ksm_remove_ksm_page(stable_node->kpfn);
696 if (stable_node->head == &migrate_nodes)
697 list_del(&stable_node->list);
699 stable_node_dup_del(stable_node);
700 free_stable_node(stable_node);
703 enum get_ksm_page_flags {
710 * get_ksm_page: checks if the page indicated by the stable node
711 * is still its ksm page, despite having held no reference to it.
712 * In which case we can trust the content of the page, and it
713 * returns the gotten page; but if the page has now been zapped,
714 * remove the stale node from the stable tree and return NULL.
715 * But beware, the stable node's page might be being migrated.
717 * You would expect the stable_node to hold a reference to the ksm page.
718 * But if it increments the page's count, swapping out has to wait for
719 * ksmd to come around again before it can free the page, which may take
720 * seconds or even minutes: much too unresponsive. So instead we use a
721 * "keyhole reference": access to the ksm page from the stable node peeps
722 * out through its keyhole to see if that page still holds the right key,
723 * pointing back to this stable node. This relies on freeing a PageAnon
724 * page to reset its page->mapping to NULL, and relies on no other use of
725 * a page to put something that might look like our key in page->mapping.
726 * is on its way to being freed; but it is an anomaly to bear in mind.
728 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
729 enum get_ksm_page_flags flags)
732 void *expected_mapping;
735 expected_mapping = (void *)((unsigned long)stable_node |
738 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
739 page = pfn_to_page(kpfn);
740 if (READ_ONCE(page->mapping) != expected_mapping)
744 * We cannot do anything with the page while its refcount is 0.
745 * Usually 0 means free, or tail of a higher-order page: in which
746 * case this node is no longer referenced, and should be freed;
747 * however, it might mean that the page is under page_ref_freeze().
748 * The __remove_mapping() case is easy, again the node is now stale;
749 * the same is in reuse_ksm_page() case; but if page is swapcache
750 * in folio_migrate_mapping(), it might still be our page,
751 * in which case it's essential to keep the node.
753 while (!get_page_unless_zero(page)) {
755 * Another check for page->mapping != expected_mapping would
756 * work here too. We have chosen the !PageSwapCache test to
757 * optimize the common case, when the page is or is about to
758 * be freed: PageSwapCache is cleared (under spin_lock_irq)
759 * in the ref_freeze section of __remove_mapping(); but Anon
760 * page->mapping reset to NULL later, in free_pages_prepare().
762 if (!PageSwapCache(page))
767 if (READ_ONCE(page->mapping) != expected_mapping) {
772 if (flags == GET_KSM_PAGE_TRYLOCK) {
773 if (!trylock_page(page)) {
775 return ERR_PTR(-EBUSY);
777 } else if (flags == GET_KSM_PAGE_LOCK)
780 if (flags != GET_KSM_PAGE_NOLOCK) {
781 if (READ_ONCE(page->mapping) != expected_mapping) {
791 * We come here from above when page->mapping or !PageSwapCache
792 * suggests that the node is stale; but it might be under migration.
793 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
794 * before checking whether node->kpfn has been changed.
797 if (READ_ONCE(stable_node->kpfn) != kpfn)
799 remove_node_from_stable_tree(stable_node);
804 * Removing rmap_item from stable or unstable tree.
805 * This function will clean the information from the stable/unstable tree.
807 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
809 if (rmap_item->address & STABLE_FLAG) {
810 struct ksm_stable_node *stable_node;
813 stable_node = rmap_item->head;
814 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
818 hlist_del(&rmap_item->hlist);
822 if (!hlist_empty(&stable_node->hlist))
827 rmap_item->mm->ksm_merging_pages--;
829 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
830 stable_node->rmap_hlist_len--;
832 put_anon_vma(rmap_item->anon_vma);
833 rmap_item->head = NULL;
834 rmap_item->address &= PAGE_MASK;
836 } else if (rmap_item->address & UNSTABLE_FLAG) {
839 * Usually ksmd can and must skip the rb_erase, because
840 * root_unstable_tree was already reset to RB_ROOT.
841 * But be careful when an mm is exiting: do the rb_erase
842 * if this rmap_item was inserted by this scan, rather
843 * than left over from before.
845 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
848 rb_erase(&rmap_item->node,
849 root_unstable_tree + NUMA(rmap_item->nid));
850 ksm_pages_unshared--;
851 rmap_item->address &= PAGE_MASK;
854 cond_resched(); /* we're called from many long loops */
857 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
860 struct ksm_rmap_item *rmap_item = *rmap_list;
861 *rmap_list = rmap_item->rmap_list;
862 remove_rmap_item_from_tree(rmap_item);
863 free_rmap_item(rmap_item);
868 * Though it's very tempting to unmerge rmap_items from stable tree rather
869 * than check every pte of a given vma, the locking doesn't quite work for
870 * that - an rmap_item is assigned to the stable tree after inserting ksm
871 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
872 * rmap_items from parent to child at fork time (so as not to waste time
873 * if exit comes before the next scan reaches it).
875 * Similarly, although we'd like to remove rmap_items (so updating counts
876 * and freeing memory) when unmerging an area, it's easier to leave that
877 * to the next pass of ksmd - consider, for example, how ksmd might be
878 * in cmp_and_merge_page on one of the rmap_items we would be removing.
880 static int unmerge_ksm_pages(struct vm_area_struct *vma,
881 unsigned long start, unsigned long end, bool lock_vma)
886 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
887 if (ksm_test_exit(vma->vm_mm))
889 if (signal_pending(current))
892 err = break_ksm(vma, addr, lock_vma);
897 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
899 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
902 static inline struct ksm_stable_node *page_stable_node(struct page *page)
904 return folio_stable_node(page_folio(page));
907 static inline void set_page_stable_node(struct page *page,
908 struct ksm_stable_node *stable_node)
910 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
911 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
916 * Only called through the sysfs control interface:
918 static int remove_stable_node(struct ksm_stable_node *stable_node)
923 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
926 * get_ksm_page did remove_node_from_stable_tree itself.
932 * Page could be still mapped if this races with __mmput() running in
933 * between ksm_exit() and exit_mmap(). Just refuse to let
934 * merge_across_nodes/max_page_sharing be switched.
937 if (!page_mapped(page)) {
939 * The stable node did not yet appear stale to get_ksm_page(),
940 * since that allows for an unmapped ksm page to be recognized
941 * right up until it is freed; but the node is safe to remove.
942 * This page might be in an LRU cache waiting to be freed,
943 * or it might be PageSwapCache (perhaps under writeback),
944 * or it might have been removed from swapcache a moment ago.
946 set_page_stable_node(page, NULL);
947 remove_node_from_stable_tree(stable_node);
956 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
957 struct rb_root *root)
959 struct ksm_stable_node *dup;
960 struct hlist_node *hlist_safe;
962 if (!is_stable_node_chain(stable_node)) {
963 VM_BUG_ON(is_stable_node_dup(stable_node));
964 if (remove_stable_node(stable_node))
970 hlist_for_each_entry_safe(dup, hlist_safe,
971 &stable_node->hlist, hlist_dup) {
972 VM_BUG_ON(!is_stable_node_dup(dup));
973 if (remove_stable_node(dup))
976 BUG_ON(!hlist_empty(&stable_node->hlist));
977 free_stable_node_chain(stable_node, root);
981 static int remove_all_stable_nodes(void)
983 struct ksm_stable_node *stable_node, *next;
987 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
988 while (root_stable_tree[nid].rb_node) {
989 stable_node = rb_entry(root_stable_tree[nid].rb_node,
990 struct ksm_stable_node, node);
991 if (remove_stable_node_chain(stable_node,
992 root_stable_tree + nid)) {
994 break; /* proceed to next nid */
999 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1000 if (remove_stable_node(stable_node))
1007 static int unmerge_and_remove_all_rmap_items(void)
1009 struct ksm_mm_slot *mm_slot;
1010 struct mm_slot *slot;
1011 struct mm_struct *mm;
1012 struct vm_area_struct *vma;
1015 spin_lock(&ksm_mmlist_lock);
1016 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1017 struct mm_slot, mm_node);
1018 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1019 spin_unlock(&ksm_mmlist_lock);
1021 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1022 mm_slot = ksm_scan.mm_slot) {
1023 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1025 mm = mm_slot->slot.mm;
1029 * Exit right away if mm is exiting to avoid lockdep issue in
1032 if (ksm_test_exit(mm))
1035 for_each_vma(vmi, vma) {
1036 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1038 err = unmerge_ksm_pages(vma,
1039 vma->vm_start, vma->vm_end, false);
1045 remove_trailing_rmap_items(&mm_slot->rmap_list);
1046 mmap_read_unlock(mm);
1048 spin_lock(&ksm_mmlist_lock);
1049 slot = list_entry(mm_slot->slot.mm_node.next,
1050 struct mm_slot, mm_node);
1051 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1052 if (ksm_test_exit(mm)) {
1053 hash_del(&mm_slot->slot.hash);
1054 list_del(&mm_slot->slot.mm_node);
1055 spin_unlock(&ksm_mmlist_lock);
1057 mm_slot_free(mm_slot_cache, mm_slot);
1058 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1059 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1062 spin_unlock(&ksm_mmlist_lock);
1065 /* Clean up stable nodes, but don't worry if some are still busy */
1066 remove_all_stable_nodes();
1071 mmap_read_unlock(mm);
1072 spin_lock(&ksm_mmlist_lock);
1073 ksm_scan.mm_slot = &ksm_mm_head;
1074 spin_unlock(&ksm_mmlist_lock);
1077 #endif /* CONFIG_SYSFS */
1079 static u32 calc_checksum(struct page *page)
1082 void *addr = kmap_atomic(page);
1083 checksum = xxhash(addr, PAGE_SIZE, 0);
1084 kunmap_atomic(addr);
1088 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1091 struct mm_struct *mm = vma->vm_mm;
1092 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1095 struct mmu_notifier_range range;
1096 bool anon_exclusive;
1099 pvmw.address = page_address_in_vma(page, vma);
1100 if (pvmw.address == -EFAULT)
1103 BUG_ON(PageTransCompound(page));
1105 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1106 pvmw.address + PAGE_SIZE);
1107 mmu_notifier_invalidate_range_start(&range);
1109 if (!page_vma_mapped_walk(&pvmw))
1111 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1114 anon_exclusive = PageAnonExclusive(page);
1115 entry = ptep_get(pvmw.pte);
1116 if (pte_write(entry) || pte_dirty(entry) ||
1117 anon_exclusive || mm_tlb_flush_pending(mm)) {
1118 swapped = PageSwapCache(page);
1119 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1121 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1122 * take any lock, therefore the check that we are going to make
1123 * with the pagecount against the mapcount is racy and
1124 * O_DIRECT can happen right after the check.
1125 * So we clear the pte and flush the tlb before the check
1126 * this assure us that no O_DIRECT can happen after the check
1127 * or in the middle of the check.
1129 * No need to notify as we are downgrading page table to read
1130 * only not changing it to point to a new page.
1132 * See Documentation/mm/mmu_notifier.rst
1134 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1136 * Check that no O_DIRECT or similar I/O is in progress on the
1139 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1140 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1144 /* See page_try_share_anon_rmap(): clear PTE first. */
1145 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1146 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1150 if (pte_dirty(entry))
1151 set_page_dirty(page);
1152 entry = pte_mkclean(entry);
1154 if (pte_write(entry))
1155 entry = pte_wrprotect(entry);
1157 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1163 page_vma_mapped_walk_done(&pvmw);
1165 mmu_notifier_invalidate_range_end(&range);
1171 * replace_page - replace page in vma by new ksm page
1172 * @vma: vma that holds the pte pointing to page
1173 * @page: the page we are replacing by kpage
1174 * @kpage: the ksm page we replace page by
1175 * @orig_pte: the original value of the pte
1177 * Returns 0 on success, -EFAULT on failure.
1179 static int replace_page(struct vm_area_struct *vma, struct page *page,
1180 struct page *kpage, pte_t orig_pte)
1182 struct mm_struct *mm = vma->vm_mm;
1183 struct folio *folio;
1191 struct mmu_notifier_range range;
1193 addr = page_address_in_vma(page, vma);
1194 if (addr == -EFAULT)
1197 pmd = mm_find_pmd(mm, addr);
1201 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1202 * without holding anon_vma lock for write. So when looking for a
1203 * genuine pmde (in which to find pte), test present and !THP together.
1205 pmde = pmdp_get_lockless(pmd);
1206 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1209 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1211 mmu_notifier_invalidate_range_start(&range);
1213 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1216 if (!pte_same(ptep_get(ptep), orig_pte)) {
1217 pte_unmap_unlock(ptep, ptl);
1220 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1221 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1224 * No need to check ksm_use_zero_pages here: we can only have a
1225 * zero_page here if ksm_use_zero_pages was enabled already.
1227 if (!is_zero_pfn(page_to_pfn(kpage))) {
1229 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1230 newpte = mk_pte(kpage, vma->vm_page_prot);
1232 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1233 vma->vm_page_prot));
1235 * We're replacing an anonymous page with a zero page, which is
1236 * not anonymous. We need to do proper accounting otherwise we
1237 * will get wrong values in /proc, and a BUG message in dmesg
1238 * when tearing down the mm.
1240 dec_mm_counter(mm, MM_ANONPAGES);
1243 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1245 * No need to notify as we are replacing a read only page with another
1246 * read only page with the same content.
1248 * See Documentation/mm/mmu_notifier.rst
1250 ptep_clear_flush(vma, addr, ptep);
1251 set_pte_at_notify(mm, addr, ptep, newpte);
1253 folio = page_folio(page);
1254 page_remove_rmap(page, vma, false);
1255 if (!folio_mapped(folio))
1256 folio_free_swap(folio);
1259 pte_unmap_unlock(ptep, ptl);
1262 mmu_notifier_invalidate_range_end(&range);
1268 * try_to_merge_one_page - take two pages and merge them into one
1269 * @vma: the vma that holds the pte pointing to page
1270 * @page: the PageAnon page that we want to replace with kpage
1271 * @kpage: the PageKsm page that we want to map instead of page,
1272 * or NULL the first time when we want to use page as kpage.
1274 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1276 static int try_to_merge_one_page(struct vm_area_struct *vma,
1277 struct page *page, struct page *kpage)
1279 pte_t orig_pte = __pte(0);
1282 if (page == kpage) /* ksm page forked */
1285 if (!PageAnon(page))
1289 * We need the page lock to read a stable PageSwapCache in
1290 * write_protect_page(). We use trylock_page() instead of
1291 * lock_page() because we don't want to wait here - we
1292 * prefer to continue scanning and merging different pages,
1293 * then come back to this page when it is unlocked.
1295 if (!trylock_page(page))
1298 if (PageTransCompound(page)) {
1299 if (split_huge_page(page))
1304 * If this anonymous page is mapped only here, its pte may need
1305 * to be write-protected. If it's mapped elsewhere, all of its
1306 * ptes are necessarily already write-protected. But in either
1307 * case, we need to lock and check page_count is not raised.
1309 if (write_protect_page(vma, page, &orig_pte) == 0) {
1312 * While we hold page lock, upgrade page from
1313 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1314 * stable_tree_insert() will update stable_node.
1316 set_page_stable_node(page, NULL);
1317 mark_page_accessed(page);
1319 * Page reclaim just frees a clean page with no dirty
1320 * ptes: make sure that the ksm page would be swapped.
1322 if (!PageDirty(page))
1325 } else if (pages_identical(page, kpage))
1326 err = replace_page(vma, page, kpage, orig_pte);
1336 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1337 * but no new kernel page is allocated: kpage must already be a ksm page.
1339 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1341 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1342 struct page *page, struct page *kpage)
1344 struct mm_struct *mm = rmap_item->mm;
1345 struct vm_area_struct *vma;
1349 vma = find_mergeable_vma(mm, rmap_item->address);
1353 err = try_to_merge_one_page(vma, page, kpage);
1357 /* Unstable nid is in union with stable anon_vma: remove first */
1358 remove_rmap_item_from_tree(rmap_item);
1360 /* Must get reference to anon_vma while still holding mmap_lock */
1361 rmap_item->anon_vma = vma->anon_vma;
1362 get_anon_vma(vma->anon_vma);
1364 mmap_read_unlock(mm);
1365 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1366 rmap_item, mm, err);
1371 * try_to_merge_two_pages - take two identical pages and prepare them
1372 * to be merged into one page.
1374 * This function returns the kpage if we successfully merged two identical
1375 * pages into one ksm page, NULL otherwise.
1377 * Note that this function upgrades page to ksm page: if one of the pages
1378 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1380 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1382 struct ksm_rmap_item *tree_rmap_item,
1383 struct page *tree_page)
1387 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1389 err = try_to_merge_with_ksm_page(tree_rmap_item,
1392 * If that fails, we have a ksm page with only one pte
1393 * pointing to it: so break it.
1396 break_cow(rmap_item);
1398 return err ? NULL : page;
1401 static __always_inline
1402 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1404 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1406 * Check that at least one mapping still exists, otherwise
1407 * there's no much point to merge and share with this
1408 * stable_node, as the underlying tree_page of the other
1409 * sharer is going to be freed soon.
1411 return stable_node->rmap_hlist_len &&
1412 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1415 static __always_inline
1416 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1418 return __is_page_sharing_candidate(stable_node, 0);
1421 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1422 struct ksm_stable_node **_stable_node,
1423 struct rb_root *root,
1424 bool prune_stale_stable_nodes)
1426 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1427 struct hlist_node *hlist_safe;
1428 struct page *_tree_page, *tree_page = NULL;
1430 int found_rmap_hlist_len;
1432 if (!prune_stale_stable_nodes ||
1433 time_before(jiffies, stable_node->chain_prune_time +
1435 ksm_stable_node_chains_prune_millisecs)))
1436 prune_stale_stable_nodes = false;
1438 stable_node->chain_prune_time = jiffies;
1440 hlist_for_each_entry_safe(dup, hlist_safe,
1441 &stable_node->hlist, hlist_dup) {
1444 * We must walk all stable_node_dup to prune the stale
1445 * stable nodes during lookup.
1447 * get_ksm_page can drop the nodes from the
1448 * stable_node->hlist if they point to freed pages
1449 * (that's why we do a _safe walk). The "dup"
1450 * stable_node parameter itself will be freed from
1451 * under us if it returns NULL.
1453 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1457 if (is_page_sharing_candidate(dup)) {
1459 dup->rmap_hlist_len > found_rmap_hlist_len) {
1461 put_page(tree_page);
1463 found_rmap_hlist_len = found->rmap_hlist_len;
1464 tree_page = _tree_page;
1466 /* skip put_page for found dup */
1467 if (!prune_stale_stable_nodes)
1472 put_page(_tree_page);
1477 * nr is counting all dups in the chain only if
1478 * prune_stale_stable_nodes is true, otherwise we may
1479 * break the loop at nr == 1 even if there are
1482 if (prune_stale_stable_nodes && nr == 1) {
1484 * If there's not just one entry it would
1485 * corrupt memory, better BUG_ON. In KSM
1486 * context with no lock held it's not even
1489 BUG_ON(stable_node->hlist.first->next);
1492 * There's just one entry and it is below the
1493 * deduplication limit so drop the chain.
1495 rb_replace_node(&stable_node->node, &found->node,
1497 free_stable_node(stable_node);
1498 ksm_stable_node_chains--;
1499 ksm_stable_node_dups--;
1501 * NOTE: the caller depends on the stable_node
1502 * to be equal to stable_node_dup if the chain
1505 *_stable_node = found;
1507 * Just for robustness, as stable_node is
1508 * otherwise left as a stable pointer, the
1509 * compiler shall optimize it away at build
1513 } else if (stable_node->hlist.first != &found->hlist_dup &&
1514 __is_page_sharing_candidate(found, 1)) {
1516 * If the found stable_node dup can accept one
1517 * more future merge (in addition to the one
1518 * that is underway) and is not at the head of
1519 * the chain, put it there so next search will
1520 * be quicker in the !prune_stale_stable_nodes
1523 * NOTE: it would be inaccurate to use nr > 1
1524 * instead of checking the hlist.first pointer
1525 * directly, because in the
1526 * prune_stale_stable_nodes case "nr" isn't
1527 * the position of the found dup in the chain,
1528 * but the total number of dups in the chain.
1530 hlist_del(&found->hlist_dup);
1531 hlist_add_head(&found->hlist_dup,
1532 &stable_node->hlist);
1536 *_stable_node_dup = found;
1540 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1541 struct rb_root *root)
1543 if (!is_stable_node_chain(stable_node))
1545 if (hlist_empty(&stable_node->hlist)) {
1546 free_stable_node_chain(stable_node, root);
1549 return hlist_entry(stable_node->hlist.first,
1550 typeof(*stable_node), hlist_dup);
1554 * Like for get_ksm_page, this function can free the *_stable_node and
1555 * *_stable_node_dup if the returned tree_page is NULL.
1557 * It can also free and overwrite *_stable_node with the found
1558 * stable_node_dup if the chain is collapsed (in which case
1559 * *_stable_node will be equal to *_stable_node_dup like if the chain
1560 * never existed). It's up to the caller to verify tree_page is not
1561 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1563 * *_stable_node_dup is really a second output parameter of this
1564 * function and will be overwritten in all cases, the caller doesn't
1565 * need to initialize it.
1567 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1568 struct ksm_stable_node **_stable_node,
1569 struct rb_root *root,
1570 bool prune_stale_stable_nodes)
1572 struct ksm_stable_node *stable_node = *_stable_node;
1573 if (!is_stable_node_chain(stable_node)) {
1574 if (is_page_sharing_candidate(stable_node)) {
1575 *_stable_node_dup = stable_node;
1576 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1579 * _stable_node_dup set to NULL means the stable_node
1580 * reached the ksm_max_page_sharing limit.
1582 *_stable_node_dup = NULL;
1585 return stable_node_dup(_stable_node_dup, _stable_node, root,
1586 prune_stale_stable_nodes);
1589 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1590 struct ksm_stable_node **s_n,
1591 struct rb_root *root)
1593 return __stable_node_chain(s_n_d, s_n, root, true);
1596 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1597 struct ksm_stable_node *s_n,
1598 struct rb_root *root)
1600 struct ksm_stable_node *old_stable_node = s_n;
1601 struct page *tree_page;
1603 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1604 /* not pruning dups so s_n cannot have changed */
1605 VM_BUG_ON(s_n != old_stable_node);
1610 * stable_tree_search - search for page inside the stable tree
1612 * This function checks if there is a page inside the stable tree
1613 * with identical content to the page that we are scanning right now.
1615 * This function returns the stable tree node of identical content if found,
1618 static struct page *stable_tree_search(struct page *page)
1621 struct rb_root *root;
1622 struct rb_node **new;
1623 struct rb_node *parent;
1624 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1625 struct ksm_stable_node *page_node;
1627 page_node = page_stable_node(page);
1628 if (page_node && page_node->head != &migrate_nodes) {
1629 /* ksm page forked */
1634 nid = get_kpfn_nid(page_to_pfn(page));
1635 root = root_stable_tree + nid;
1637 new = &root->rb_node;
1641 struct page *tree_page;
1645 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1646 stable_node_any = NULL;
1647 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1649 * NOTE: stable_node may have been freed by
1650 * chain_prune() if the returned stable_node_dup is
1651 * not NULL. stable_node_dup may have been inserted in
1652 * the rbtree instead as a regular stable_node (in
1653 * order to collapse the stable_node chain if a single
1654 * stable_node dup was found in it). In such case the
1655 * stable_node is overwritten by the callee to point
1656 * to the stable_node_dup that was collapsed in the
1657 * stable rbtree and stable_node will be equal to
1658 * stable_node_dup like if the chain never existed.
1660 if (!stable_node_dup) {
1662 * Either all stable_node dups were full in
1663 * this stable_node chain, or this chain was
1664 * empty and should be rb_erased.
1666 stable_node_any = stable_node_dup_any(stable_node,
1668 if (!stable_node_any) {
1669 /* rb_erase just run */
1673 * Take any of the stable_node dups page of
1674 * this stable_node chain to let the tree walk
1675 * continue. All KSM pages belonging to the
1676 * stable_node dups in a stable_node chain
1677 * have the same content and they're
1678 * write protected at all times. Any will work
1679 * fine to continue the walk.
1681 tree_page = get_ksm_page(stable_node_any,
1682 GET_KSM_PAGE_NOLOCK);
1684 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1687 * If we walked over a stale stable_node,
1688 * get_ksm_page() will call rb_erase() and it
1689 * may rebalance the tree from under us. So
1690 * restart the search from scratch. Returning
1691 * NULL would be safe too, but we'd generate
1692 * false negative insertions just because some
1693 * stable_node was stale.
1698 ret = memcmp_pages(page, tree_page);
1699 put_page(tree_page);
1703 new = &parent->rb_left;
1705 new = &parent->rb_right;
1708 VM_BUG_ON(page_node->head != &migrate_nodes);
1710 * Test if the migrated page should be merged
1711 * into a stable node dup. If the mapcount is
1712 * 1 we can migrate it with another KSM page
1713 * without adding it to the chain.
1715 if (page_mapcount(page) > 1)
1719 if (!stable_node_dup) {
1721 * If the stable_node is a chain and
1722 * we got a payload match in memcmp
1723 * but we cannot merge the scanned
1724 * page in any of the existing
1725 * stable_node dups because they're
1726 * all full, we need to wait the
1727 * scanned page to find itself a match
1728 * in the unstable tree to create a
1729 * brand new KSM page to add later to
1730 * the dups of this stable_node.
1736 * Lock and unlock the stable_node's page (which
1737 * might already have been migrated) so that page
1738 * migration is sure to notice its raised count.
1739 * It would be more elegant to return stable_node
1740 * than kpage, but that involves more changes.
1742 tree_page = get_ksm_page(stable_node_dup,
1743 GET_KSM_PAGE_TRYLOCK);
1745 if (PTR_ERR(tree_page) == -EBUSY)
1746 return ERR_PTR(-EBUSY);
1748 if (unlikely(!tree_page))
1750 * The tree may have been rebalanced,
1751 * so re-evaluate parent and new.
1754 unlock_page(tree_page);
1756 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1757 NUMA(stable_node_dup->nid)) {
1758 put_page(tree_page);
1768 list_del(&page_node->list);
1769 DO_NUMA(page_node->nid = nid);
1770 rb_link_node(&page_node->node, parent, new);
1771 rb_insert_color(&page_node->node, root);
1773 if (is_page_sharing_candidate(page_node)) {
1781 * If stable_node was a chain and chain_prune collapsed it,
1782 * stable_node has been updated to be the new regular
1783 * stable_node. A collapse of the chain is indistinguishable
1784 * from the case there was no chain in the stable
1785 * rbtree. Otherwise stable_node is the chain and
1786 * stable_node_dup is the dup to replace.
1788 if (stable_node_dup == stable_node) {
1789 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1790 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1791 /* there is no chain */
1793 VM_BUG_ON(page_node->head != &migrate_nodes);
1794 list_del(&page_node->list);
1795 DO_NUMA(page_node->nid = nid);
1796 rb_replace_node(&stable_node_dup->node,
1799 if (is_page_sharing_candidate(page_node))
1804 rb_erase(&stable_node_dup->node, root);
1808 VM_BUG_ON(!is_stable_node_chain(stable_node));
1809 __stable_node_dup_del(stable_node_dup);
1811 VM_BUG_ON(page_node->head != &migrate_nodes);
1812 list_del(&page_node->list);
1813 DO_NUMA(page_node->nid = nid);
1814 stable_node_chain_add_dup(page_node, stable_node);
1815 if (is_page_sharing_candidate(page_node))
1823 stable_node_dup->head = &migrate_nodes;
1824 list_add(&stable_node_dup->list, stable_node_dup->head);
1828 /* stable_node_dup could be null if it reached the limit */
1829 if (!stable_node_dup)
1830 stable_node_dup = stable_node_any;
1832 * If stable_node was a chain and chain_prune collapsed it,
1833 * stable_node has been updated to be the new regular
1834 * stable_node. A collapse of the chain is indistinguishable
1835 * from the case there was no chain in the stable
1836 * rbtree. Otherwise stable_node is the chain and
1837 * stable_node_dup is the dup to replace.
1839 if (stable_node_dup == stable_node) {
1840 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1841 /* chain is missing so create it */
1842 stable_node = alloc_stable_node_chain(stable_node_dup,
1848 * Add this stable_node dup that was
1849 * migrated to the stable_node chain
1850 * of the current nid for this page
1853 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1854 VM_BUG_ON(page_node->head != &migrate_nodes);
1855 list_del(&page_node->list);
1856 DO_NUMA(page_node->nid = nid);
1857 stable_node_chain_add_dup(page_node, stable_node);
1862 * stable_tree_insert - insert stable tree node pointing to new ksm page
1863 * into the stable tree.
1865 * This function returns the stable tree node just allocated on success,
1868 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1872 struct rb_root *root;
1873 struct rb_node **new;
1874 struct rb_node *parent;
1875 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1876 bool need_chain = false;
1878 kpfn = page_to_pfn(kpage);
1879 nid = get_kpfn_nid(kpfn);
1880 root = root_stable_tree + nid;
1883 new = &root->rb_node;
1886 struct page *tree_page;
1890 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1891 stable_node_any = NULL;
1892 tree_page = chain(&stable_node_dup, stable_node, root);
1893 if (!stable_node_dup) {
1895 * Either all stable_node dups were full in
1896 * this stable_node chain, or this chain was
1897 * empty and should be rb_erased.
1899 stable_node_any = stable_node_dup_any(stable_node,
1901 if (!stable_node_any) {
1902 /* rb_erase just run */
1906 * Take any of the stable_node dups page of
1907 * this stable_node chain to let the tree walk
1908 * continue. All KSM pages belonging to the
1909 * stable_node dups in a stable_node chain
1910 * have the same content and they're
1911 * write protected at all times. Any will work
1912 * fine to continue the walk.
1914 tree_page = get_ksm_page(stable_node_any,
1915 GET_KSM_PAGE_NOLOCK);
1917 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1920 * If we walked over a stale stable_node,
1921 * get_ksm_page() will call rb_erase() and it
1922 * may rebalance the tree from under us. So
1923 * restart the search from scratch. Returning
1924 * NULL would be safe too, but we'd generate
1925 * false negative insertions just because some
1926 * stable_node was stale.
1931 ret = memcmp_pages(kpage, tree_page);
1932 put_page(tree_page);
1936 new = &parent->rb_left;
1938 new = &parent->rb_right;
1945 stable_node_dup = alloc_stable_node();
1946 if (!stable_node_dup)
1949 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1950 stable_node_dup->kpfn = kpfn;
1951 set_page_stable_node(kpage, stable_node_dup);
1952 stable_node_dup->rmap_hlist_len = 0;
1953 DO_NUMA(stable_node_dup->nid = nid);
1955 rb_link_node(&stable_node_dup->node, parent, new);
1956 rb_insert_color(&stable_node_dup->node, root);
1958 if (!is_stable_node_chain(stable_node)) {
1959 struct ksm_stable_node *orig = stable_node;
1960 /* chain is missing so create it */
1961 stable_node = alloc_stable_node_chain(orig, root);
1963 free_stable_node(stable_node_dup);
1967 stable_node_chain_add_dup(stable_node_dup, stable_node);
1970 return stable_node_dup;
1974 * unstable_tree_search_insert - search for identical page,
1975 * else insert rmap_item into the unstable tree.
1977 * This function searches for a page in the unstable tree identical to the
1978 * page currently being scanned; and if no identical page is found in the
1979 * tree, we insert rmap_item as a new object into the unstable tree.
1981 * This function returns pointer to rmap_item found to be identical
1982 * to the currently scanned page, NULL otherwise.
1984 * This function does both searching and inserting, because they share
1985 * the same walking algorithm in an rbtree.
1988 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1990 struct page **tree_pagep)
1992 struct rb_node **new;
1993 struct rb_root *root;
1994 struct rb_node *parent = NULL;
1997 nid = get_kpfn_nid(page_to_pfn(page));
1998 root = root_unstable_tree + nid;
1999 new = &root->rb_node;
2002 struct ksm_rmap_item *tree_rmap_item;
2003 struct page *tree_page;
2007 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2008 tree_page = get_mergeable_page(tree_rmap_item);
2013 * Don't substitute a ksm page for a forked page.
2015 if (page == tree_page) {
2016 put_page(tree_page);
2020 ret = memcmp_pages(page, tree_page);
2024 put_page(tree_page);
2025 new = &parent->rb_left;
2026 } else if (ret > 0) {
2027 put_page(tree_page);
2028 new = &parent->rb_right;
2029 } else if (!ksm_merge_across_nodes &&
2030 page_to_nid(tree_page) != nid) {
2032 * If tree_page has been migrated to another NUMA node,
2033 * it will be flushed out and put in the right unstable
2034 * tree next time: only merge with it when across_nodes.
2036 put_page(tree_page);
2039 *tree_pagep = tree_page;
2040 return tree_rmap_item;
2044 rmap_item->address |= UNSTABLE_FLAG;
2045 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2046 DO_NUMA(rmap_item->nid = nid);
2047 rb_link_node(&rmap_item->node, parent, new);
2048 rb_insert_color(&rmap_item->node, root);
2050 ksm_pages_unshared++;
2055 * stable_tree_append - add another rmap_item to the linked list of
2056 * rmap_items hanging off a given node of the stable tree, all sharing
2057 * the same ksm page.
2059 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2060 struct ksm_stable_node *stable_node,
2061 bool max_page_sharing_bypass)
2064 * rmap won't find this mapping if we don't insert the
2065 * rmap_item in the right stable_node
2066 * duplicate. page_migration could break later if rmap breaks,
2067 * so we can as well crash here. We really need to check for
2068 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2069 * for other negative values as an underflow if detected here
2070 * for the first time (and not when decreasing rmap_hlist_len)
2071 * would be sign of memory corruption in the stable_node.
2073 BUG_ON(stable_node->rmap_hlist_len < 0);
2075 stable_node->rmap_hlist_len++;
2076 if (!max_page_sharing_bypass)
2077 /* possibly non fatal but unexpected overflow, only warn */
2078 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2079 ksm_max_page_sharing);
2081 rmap_item->head = stable_node;
2082 rmap_item->address |= STABLE_FLAG;
2083 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2085 if (rmap_item->hlist.next)
2086 ksm_pages_sharing++;
2090 rmap_item->mm->ksm_merging_pages++;
2094 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2095 * if not, compare checksum to previous and if it's the same, see if page can
2096 * be inserted into the unstable tree, or merged with a page already there and
2097 * both transferred to the stable tree.
2099 * @page: the page that we are searching identical page to.
2100 * @rmap_item: the reverse mapping into the virtual address of this page
2102 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2104 struct mm_struct *mm = rmap_item->mm;
2105 struct ksm_rmap_item *tree_rmap_item;
2106 struct page *tree_page = NULL;
2107 struct ksm_stable_node *stable_node;
2109 unsigned int checksum;
2111 bool max_page_sharing_bypass = false;
2113 stable_node = page_stable_node(page);
2115 if (stable_node->head != &migrate_nodes &&
2116 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2117 NUMA(stable_node->nid)) {
2118 stable_node_dup_del(stable_node);
2119 stable_node->head = &migrate_nodes;
2120 list_add(&stable_node->list, stable_node->head);
2122 if (stable_node->head != &migrate_nodes &&
2123 rmap_item->head == stable_node)
2126 * If it's a KSM fork, allow it to go over the sharing limit
2129 if (!is_page_sharing_candidate(stable_node))
2130 max_page_sharing_bypass = true;
2133 /* We first start with searching the page inside the stable tree */
2134 kpage = stable_tree_search(page);
2135 if (kpage == page && rmap_item->head == stable_node) {
2140 remove_rmap_item_from_tree(rmap_item);
2143 if (PTR_ERR(kpage) == -EBUSY)
2146 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2149 * The page was successfully merged:
2150 * add its rmap_item to the stable tree.
2153 stable_tree_append(rmap_item, page_stable_node(kpage),
2154 max_page_sharing_bypass);
2162 * If the hash value of the page has changed from the last time
2163 * we calculated it, this page is changing frequently: therefore we
2164 * don't want to insert it in the unstable tree, and we don't want
2165 * to waste our time searching for something identical to it there.
2167 checksum = calc_checksum(page);
2168 if (rmap_item->oldchecksum != checksum) {
2169 rmap_item->oldchecksum = checksum;
2174 * Same checksum as an empty page. We attempt to merge it with the
2175 * appropriate zero page if the user enabled this via sysfs.
2177 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2178 struct vm_area_struct *vma;
2181 vma = find_mergeable_vma(mm, rmap_item->address);
2183 err = try_to_merge_one_page(vma, page,
2184 ZERO_PAGE(rmap_item->address));
2185 trace_ksm_merge_one_page(
2186 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2187 rmap_item, mm, err);
2190 * If the vma is out of date, we do not need to
2195 mmap_read_unlock(mm);
2197 * In case of failure, the page was not really empty, so we
2198 * need to continue. Otherwise we're done.
2204 unstable_tree_search_insert(rmap_item, page, &tree_page);
2205 if (tree_rmap_item) {
2208 kpage = try_to_merge_two_pages(rmap_item, page,
2209 tree_rmap_item, tree_page);
2211 * If both pages we tried to merge belong to the same compound
2212 * page, then we actually ended up increasing the reference
2213 * count of the same compound page twice, and split_huge_page
2215 * Here we set a flag if that happened, and we use it later to
2216 * try split_huge_page again. Since we call put_page right
2217 * afterwards, the reference count will be correct and
2218 * split_huge_page should succeed.
2220 split = PageTransCompound(page)
2221 && compound_head(page) == compound_head(tree_page);
2222 put_page(tree_page);
2225 * The pages were successfully merged: insert new
2226 * node in the stable tree and add both rmap_items.
2229 stable_node = stable_tree_insert(kpage);
2231 stable_tree_append(tree_rmap_item, stable_node,
2233 stable_tree_append(rmap_item, stable_node,
2239 * If we fail to insert the page into the stable tree,
2240 * we will have 2 virtual addresses that are pointing
2241 * to a ksm page left outside the stable tree,
2242 * in which case we need to break_cow on both.
2245 break_cow(tree_rmap_item);
2246 break_cow(rmap_item);
2250 * We are here if we tried to merge two pages and
2251 * failed because they both belonged to the same
2252 * compound page. We will split the page now, but no
2253 * merging will take place.
2254 * We do not want to add the cost of a full lock; if
2255 * the page is locked, it is better to skip it and
2256 * perhaps try again later.
2258 if (!trylock_page(page))
2260 split_huge_page(page);
2266 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2267 struct ksm_rmap_item **rmap_list,
2270 struct ksm_rmap_item *rmap_item;
2272 while (*rmap_list) {
2273 rmap_item = *rmap_list;
2274 if ((rmap_item->address & PAGE_MASK) == addr)
2276 if (rmap_item->address > addr)
2278 *rmap_list = rmap_item->rmap_list;
2279 remove_rmap_item_from_tree(rmap_item);
2280 free_rmap_item(rmap_item);
2283 rmap_item = alloc_rmap_item();
2285 /* It has already been zeroed */
2286 rmap_item->mm = mm_slot->slot.mm;
2287 rmap_item->mm->ksm_rmap_items++;
2288 rmap_item->address = addr;
2289 rmap_item->rmap_list = *rmap_list;
2290 *rmap_list = rmap_item;
2295 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2297 struct mm_struct *mm;
2298 struct ksm_mm_slot *mm_slot;
2299 struct mm_slot *slot;
2300 struct vm_area_struct *vma;
2301 struct ksm_rmap_item *rmap_item;
2302 struct vma_iterator vmi;
2305 if (list_empty(&ksm_mm_head.slot.mm_node))
2308 mm_slot = ksm_scan.mm_slot;
2309 if (mm_slot == &ksm_mm_head) {
2310 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2313 * A number of pages can hang around indefinitely in per-cpu
2314 * LRU cache, raised page count preventing write_protect_page
2315 * from merging them. Though it doesn't really matter much,
2316 * it is puzzling to see some stuck in pages_volatile until
2317 * other activity jostles them out, and they also prevented
2318 * LTP's KSM test from succeeding deterministically; so drain
2319 * them here (here rather than on entry to ksm_do_scan(),
2320 * so we don't IPI too often when pages_to_scan is set low).
2322 lru_add_drain_all();
2325 * Whereas stale stable_nodes on the stable_tree itself
2326 * get pruned in the regular course of stable_tree_search(),
2327 * those moved out to the migrate_nodes list can accumulate:
2328 * so prune them once before each full scan.
2330 if (!ksm_merge_across_nodes) {
2331 struct ksm_stable_node *stable_node, *next;
2334 list_for_each_entry_safe(stable_node, next,
2335 &migrate_nodes, list) {
2336 page = get_ksm_page(stable_node,
2337 GET_KSM_PAGE_NOLOCK);
2344 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2345 root_unstable_tree[nid] = RB_ROOT;
2347 spin_lock(&ksm_mmlist_lock);
2348 slot = list_entry(mm_slot->slot.mm_node.next,
2349 struct mm_slot, mm_node);
2350 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2351 ksm_scan.mm_slot = mm_slot;
2352 spin_unlock(&ksm_mmlist_lock);
2354 * Although we tested list_empty() above, a racing __ksm_exit
2355 * of the last mm on the list may have removed it since then.
2357 if (mm_slot == &ksm_mm_head)
2360 ksm_scan.address = 0;
2361 ksm_scan.rmap_list = &mm_slot->rmap_list;
2364 slot = &mm_slot->slot;
2366 vma_iter_init(&vmi, mm, ksm_scan.address);
2369 if (ksm_test_exit(mm))
2372 for_each_vma(vmi, vma) {
2373 if (!(vma->vm_flags & VM_MERGEABLE))
2375 if (ksm_scan.address < vma->vm_start)
2376 ksm_scan.address = vma->vm_start;
2378 ksm_scan.address = vma->vm_end;
2380 while (ksm_scan.address < vma->vm_end) {
2381 if (ksm_test_exit(mm))
2383 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2384 if (IS_ERR_OR_NULL(*page)) {
2385 ksm_scan.address += PAGE_SIZE;
2389 if (is_zone_device_page(*page))
2391 if (PageAnon(*page)) {
2392 flush_anon_page(vma, *page, ksm_scan.address);
2393 flush_dcache_page(*page);
2394 rmap_item = get_next_rmap_item(mm_slot,
2395 ksm_scan.rmap_list, ksm_scan.address);
2397 ksm_scan.rmap_list =
2398 &rmap_item->rmap_list;
2399 ksm_scan.address += PAGE_SIZE;
2402 mmap_read_unlock(mm);
2407 ksm_scan.address += PAGE_SIZE;
2412 if (ksm_test_exit(mm)) {
2414 ksm_scan.address = 0;
2415 ksm_scan.rmap_list = &mm_slot->rmap_list;
2418 * Nuke all the rmap_items that are above this current rmap:
2419 * because there were no VM_MERGEABLE vmas with such addresses.
2421 remove_trailing_rmap_items(ksm_scan.rmap_list);
2423 spin_lock(&ksm_mmlist_lock);
2424 slot = list_entry(mm_slot->slot.mm_node.next,
2425 struct mm_slot, mm_node);
2426 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2427 if (ksm_scan.address == 0) {
2429 * We've completed a full scan of all vmas, holding mmap_lock
2430 * throughout, and found no VM_MERGEABLE: so do the same as
2431 * __ksm_exit does to remove this mm from all our lists now.
2432 * This applies either when cleaning up after __ksm_exit
2433 * (but beware: we can reach here even before __ksm_exit),
2434 * or when all VM_MERGEABLE areas have been unmapped (and
2435 * mmap_lock then protects against race with MADV_MERGEABLE).
2437 hash_del(&mm_slot->slot.hash);
2438 list_del(&mm_slot->slot.mm_node);
2439 spin_unlock(&ksm_mmlist_lock);
2441 mm_slot_free(mm_slot_cache, mm_slot);
2442 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2443 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2444 mmap_read_unlock(mm);
2447 mmap_read_unlock(mm);
2449 * mmap_read_unlock(mm) first because after
2450 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2451 * already have been freed under us by __ksm_exit()
2452 * because the "mm_slot" is still hashed and
2453 * ksm_scan.mm_slot doesn't point to it anymore.
2455 spin_unlock(&ksm_mmlist_lock);
2458 /* Repeat until we've completed scanning the whole list */
2459 mm_slot = ksm_scan.mm_slot;
2460 if (mm_slot != &ksm_mm_head)
2463 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2469 * ksm_do_scan - the ksm scanner main worker function.
2470 * @scan_npages: number of pages we want to scan before we return.
2472 static void ksm_do_scan(unsigned int scan_npages)
2474 struct ksm_rmap_item *rmap_item;
2477 while (scan_npages-- && likely(!freezing(current))) {
2479 rmap_item = scan_get_next_rmap_item(&page);
2482 cmp_and_merge_page(page, rmap_item);
2487 static int ksmd_should_run(void)
2489 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2492 static int ksm_scan_thread(void *nothing)
2494 unsigned int sleep_ms;
2497 set_user_nice(current, 5);
2499 while (!kthread_should_stop()) {
2500 mutex_lock(&ksm_thread_mutex);
2501 wait_while_offlining();
2502 if (ksmd_should_run())
2503 ksm_do_scan(ksm_thread_pages_to_scan);
2504 mutex_unlock(&ksm_thread_mutex);
2508 if (ksmd_should_run()) {
2509 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2510 wait_event_interruptible_timeout(ksm_iter_wait,
2511 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2512 msecs_to_jiffies(sleep_ms));
2514 wait_event_freezable(ksm_thread_wait,
2515 ksmd_should_run() || kthread_should_stop());
2521 static void __ksm_add_vma(struct vm_area_struct *vma)
2523 unsigned long vm_flags = vma->vm_flags;
2525 if (vm_flags & VM_MERGEABLE)
2528 if (vma_ksm_compatible(vma))
2529 vm_flags_set(vma, VM_MERGEABLE);
2532 static int __ksm_del_vma(struct vm_area_struct *vma)
2536 if (!(vma->vm_flags & VM_MERGEABLE))
2539 if (vma->anon_vma) {
2540 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2545 vm_flags_clear(vma, VM_MERGEABLE);
2549 * ksm_add_vma - Mark vma as mergeable if compatible
2551 * @vma: Pointer to vma
2553 void ksm_add_vma(struct vm_area_struct *vma)
2555 struct mm_struct *mm = vma->vm_mm;
2557 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2561 static void ksm_add_vmas(struct mm_struct *mm)
2563 struct vm_area_struct *vma;
2565 VMA_ITERATOR(vmi, mm, 0);
2566 for_each_vma(vmi, vma)
2570 static int ksm_del_vmas(struct mm_struct *mm)
2572 struct vm_area_struct *vma;
2575 VMA_ITERATOR(vmi, mm, 0);
2576 for_each_vma(vmi, vma) {
2577 err = __ksm_del_vma(vma);
2585 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2588 * @mm: Pointer to mm
2590 * Returns 0 on success, otherwise error code
2592 int ksm_enable_merge_any(struct mm_struct *mm)
2596 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2599 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2600 err = __ksm_enter(mm);
2605 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2612 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2613 * previously enabled via ksm_enable_merge_any().
2615 * Disabling merging implies unmerging any merged pages, like setting
2616 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2617 * merging on all compatible VMA's remains enabled.
2619 * @mm: Pointer to mm
2621 * Returns 0 on success, otherwise error code
2623 int ksm_disable_merge_any(struct mm_struct *mm)
2627 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2630 err = ksm_del_vmas(mm);
2636 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2640 int ksm_disable(struct mm_struct *mm)
2642 mmap_assert_write_locked(mm);
2644 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2646 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2647 return ksm_disable_merge_any(mm);
2648 return ksm_del_vmas(mm);
2651 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2652 unsigned long end, int advice, unsigned long *vm_flags)
2654 struct mm_struct *mm = vma->vm_mm;
2658 case MADV_MERGEABLE:
2659 if (vma->vm_flags & VM_MERGEABLE)
2661 if (!vma_ksm_compatible(vma))
2664 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2665 err = __ksm_enter(mm);
2670 *vm_flags |= VM_MERGEABLE;
2673 case MADV_UNMERGEABLE:
2674 if (!(*vm_flags & VM_MERGEABLE))
2675 return 0; /* just ignore the advice */
2677 if (vma->anon_vma) {
2678 err = unmerge_ksm_pages(vma, start, end, true);
2683 *vm_flags &= ~VM_MERGEABLE;
2689 EXPORT_SYMBOL_GPL(ksm_madvise);
2691 int __ksm_enter(struct mm_struct *mm)
2693 struct ksm_mm_slot *mm_slot;
2694 struct mm_slot *slot;
2697 mm_slot = mm_slot_alloc(mm_slot_cache);
2701 slot = &mm_slot->slot;
2703 /* Check ksm_run too? Would need tighter locking */
2704 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2706 spin_lock(&ksm_mmlist_lock);
2707 mm_slot_insert(mm_slots_hash, mm, slot);
2709 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2710 * insert just behind the scanning cursor, to let the area settle
2711 * down a little; when fork is followed by immediate exec, we don't
2712 * want ksmd to waste time setting up and tearing down an rmap_list.
2714 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2715 * scanning cursor, otherwise KSM pages in newly forked mms will be
2716 * missed: then we might as well insert at the end of the list.
2718 if (ksm_run & KSM_RUN_UNMERGE)
2719 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2721 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2722 spin_unlock(&ksm_mmlist_lock);
2724 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2728 wake_up_interruptible(&ksm_thread_wait);
2730 trace_ksm_enter(mm);
2734 void __ksm_exit(struct mm_struct *mm)
2736 struct ksm_mm_slot *mm_slot;
2737 struct mm_slot *slot;
2738 int easy_to_free = 0;
2741 * This process is exiting: if it's straightforward (as is the
2742 * case when ksmd was never running), free mm_slot immediately.
2743 * But if it's at the cursor or has rmap_items linked to it, use
2744 * mmap_lock to synchronize with any break_cows before pagetables
2745 * are freed, and leave the mm_slot on the list for ksmd to free.
2746 * Beware: ksm may already have noticed it exiting and freed the slot.
2749 spin_lock(&ksm_mmlist_lock);
2750 slot = mm_slot_lookup(mm_slots_hash, mm);
2751 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2752 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2753 if (!mm_slot->rmap_list) {
2754 hash_del(&slot->hash);
2755 list_del(&slot->mm_node);
2758 list_move(&slot->mm_node,
2759 &ksm_scan.mm_slot->slot.mm_node);
2762 spin_unlock(&ksm_mmlist_lock);
2765 mm_slot_free(mm_slot_cache, mm_slot);
2766 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2767 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2769 } else if (mm_slot) {
2770 mmap_write_lock(mm);
2771 mmap_write_unlock(mm);
2777 struct page *ksm_might_need_to_copy(struct page *page,
2778 struct vm_area_struct *vma, unsigned long address)
2780 struct folio *folio = page_folio(page);
2781 struct anon_vma *anon_vma = folio_anon_vma(folio);
2782 struct page *new_page;
2784 if (PageKsm(page)) {
2785 if (page_stable_node(page) &&
2786 !(ksm_run & KSM_RUN_UNMERGE))
2787 return page; /* no need to copy it */
2788 } else if (!anon_vma) {
2789 return page; /* no need to copy it */
2790 } else if (page->index == linear_page_index(vma, address) &&
2791 anon_vma->root == vma->anon_vma->root) {
2792 return page; /* still no need to copy it */
2794 if (PageHWPoison(page))
2795 return ERR_PTR(-EHWPOISON);
2796 if (!PageUptodate(page))
2797 return page; /* let do_swap_page report the error */
2799 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2801 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2806 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2808 memory_failure_queue(page_to_pfn(page), 0);
2809 return ERR_PTR(-EHWPOISON);
2811 SetPageDirty(new_page);
2812 __SetPageUptodate(new_page);
2813 __SetPageLocked(new_page);
2815 count_vm_event(KSM_SWPIN_COPY);
2822 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2824 struct ksm_stable_node *stable_node;
2825 struct ksm_rmap_item *rmap_item;
2826 int search_new_forks = 0;
2828 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2831 * Rely on the page lock to protect against concurrent modifications
2832 * to that page's node of the stable tree.
2834 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2836 stable_node = folio_stable_node(folio);
2840 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2841 struct anon_vma *anon_vma = rmap_item->anon_vma;
2842 struct anon_vma_chain *vmac;
2843 struct vm_area_struct *vma;
2846 if (!anon_vma_trylock_read(anon_vma)) {
2847 if (rwc->try_lock) {
2848 rwc->contended = true;
2851 anon_vma_lock_read(anon_vma);
2853 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2860 /* Ignore the stable/unstable/sqnr flags */
2861 addr = rmap_item->address & PAGE_MASK;
2863 if (addr < vma->vm_start || addr >= vma->vm_end)
2866 * Initially we examine only the vma which covers this
2867 * rmap_item; but later, if there is still work to do,
2868 * we examine covering vmas in other mms: in case they
2869 * were forked from the original since ksmd passed.
2871 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2874 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2877 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2878 anon_vma_unlock_read(anon_vma);
2881 if (rwc->done && rwc->done(folio)) {
2882 anon_vma_unlock_read(anon_vma);
2886 anon_vma_unlock_read(anon_vma);
2888 if (!search_new_forks++)
2892 #ifdef CONFIG_MEMORY_FAILURE
2894 * Collect processes when the error hit an ksm page.
2896 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2899 struct ksm_stable_node *stable_node;
2900 struct ksm_rmap_item *rmap_item;
2901 struct folio *folio = page_folio(page);
2902 struct vm_area_struct *vma;
2903 struct task_struct *tsk;
2905 stable_node = folio_stable_node(folio);
2908 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2909 struct anon_vma *av = rmap_item->anon_vma;
2911 anon_vma_lock_read(av);
2912 read_lock(&tasklist_lock);
2913 for_each_process(tsk) {
2914 struct anon_vma_chain *vmac;
2916 struct task_struct *t =
2917 task_early_kill(tsk, force_early);
2920 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2924 if (vma->vm_mm == t->mm) {
2925 addr = rmap_item->address & PAGE_MASK;
2926 add_to_kill_ksm(t, page, vma, to_kill,
2931 read_unlock(&tasklist_lock);
2932 anon_vma_unlock_read(av);
2937 #ifdef CONFIG_MIGRATION
2938 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2940 struct ksm_stable_node *stable_node;
2942 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2943 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2944 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2946 stable_node = folio_stable_node(folio);
2948 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2949 stable_node->kpfn = folio_pfn(newfolio);
2951 * newfolio->mapping was set in advance; now we need smp_wmb()
2952 * to make sure that the new stable_node->kpfn is visible
2953 * to get_ksm_page() before it can see that folio->mapping
2954 * has gone stale (or that folio_test_swapcache has been cleared).
2957 set_page_stable_node(&folio->page, NULL);
2960 #endif /* CONFIG_MIGRATION */
2962 #ifdef CONFIG_MEMORY_HOTREMOVE
2963 static void wait_while_offlining(void)
2965 while (ksm_run & KSM_RUN_OFFLINE) {
2966 mutex_unlock(&ksm_thread_mutex);
2967 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2968 TASK_UNINTERRUPTIBLE);
2969 mutex_lock(&ksm_thread_mutex);
2973 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2974 unsigned long start_pfn,
2975 unsigned long end_pfn)
2977 if (stable_node->kpfn >= start_pfn &&
2978 stable_node->kpfn < end_pfn) {
2980 * Don't get_ksm_page, page has already gone:
2981 * which is why we keep kpfn instead of page*
2983 remove_node_from_stable_tree(stable_node);
2989 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2990 unsigned long start_pfn,
2991 unsigned long end_pfn,
2992 struct rb_root *root)
2994 struct ksm_stable_node *dup;
2995 struct hlist_node *hlist_safe;
2997 if (!is_stable_node_chain(stable_node)) {
2998 VM_BUG_ON(is_stable_node_dup(stable_node));
2999 return stable_node_dup_remove_range(stable_node, start_pfn,
3003 hlist_for_each_entry_safe(dup, hlist_safe,
3004 &stable_node->hlist, hlist_dup) {
3005 VM_BUG_ON(!is_stable_node_dup(dup));
3006 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3008 if (hlist_empty(&stable_node->hlist)) {
3009 free_stable_node_chain(stable_node, root);
3010 return true; /* notify caller that tree was rebalanced */
3015 static void ksm_check_stable_tree(unsigned long start_pfn,
3016 unsigned long end_pfn)
3018 struct ksm_stable_node *stable_node, *next;
3019 struct rb_node *node;
3022 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3023 node = rb_first(root_stable_tree + nid);
3025 stable_node = rb_entry(node, struct ksm_stable_node, node);
3026 if (stable_node_chain_remove_range(stable_node,
3030 node = rb_first(root_stable_tree + nid);
3032 node = rb_next(node);
3036 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3037 if (stable_node->kpfn >= start_pfn &&
3038 stable_node->kpfn < end_pfn)
3039 remove_node_from_stable_tree(stable_node);
3044 static int ksm_memory_callback(struct notifier_block *self,
3045 unsigned long action, void *arg)
3047 struct memory_notify *mn = arg;
3050 case MEM_GOING_OFFLINE:
3052 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3053 * and remove_all_stable_nodes() while memory is going offline:
3054 * it is unsafe for them to touch the stable tree at this time.
3055 * But unmerge_ksm_pages(), rmap lookups and other entry points
3056 * which do not need the ksm_thread_mutex are all safe.
3058 mutex_lock(&ksm_thread_mutex);
3059 ksm_run |= KSM_RUN_OFFLINE;
3060 mutex_unlock(&ksm_thread_mutex);
3065 * Most of the work is done by page migration; but there might
3066 * be a few stable_nodes left over, still pointing to struct
3067 * pages which have been offlined: prune those from the tree,
3068 * otherwise get_ksm_page() might later try to access a
3069 * non-existent struct page.
3071 ksm_check_stable_tree(mn->start_pfn,
3072 mn->start_pfn + mn->nr_pages);
3074 case MEM_CANCEL_OFFLINE:
3075 mutex_lock(&ksm_thread_mutex);
3076 ksm_run &= ~KSM_RUN_OFFLINE;
3077 mutex_unlock(&ksm_thread_mutex);
3079 smp_mb(); /* wake_up_bit advises this */
3080 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3086 static void wait_while_offlining(void)
3089 #endif /* CONFIG_MEMORY_HOTREMOVE */
3091 #ifdef CONFIG_PROC_FS
3092 long ksm_process_profit(struct mm_struct *mm)
3094 return mm->ksm_merging_pages * PAGE_SIZE -
3095 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3097 #endif /* CONFIG_PROC_FS */
3101 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3104 #define KSM_ATTR_RO(_name) \
3105 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3106 #define KSM_ATTR(_name) \
3107 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3109 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3110 struct kobj_attribute *attr, char *buf)
3112 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3115 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3116 struct kobj_attribute *attr,
3117 const char *buf, size_t count)
3122 err = kstrtouint(buf, 10, &msecs);
3126 ksm_thread_sleep_millisecs = msecs;
3127 wake_up_interruptible(&ksm_iter_wait);
3131 KSM_ATTR(sleep_millisecs);
3133 static ssize_t pages_to_scan_show(struct kobject *kobj,
3134 struct kobj_attribute *attr, char *buf)
3136 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3139 static ssize_t pages_to_scan_store(struct kobject *kobj,
3140 struct kobj_attribute *attr,
3141 const char *buf, size_t count)
3143 unsigned int nr_pages;
3146 err = kstrtouint(buf, 10, &nr_pages);
3150 ksm_thread_pages_to_scan = nr_pages;
3154 KSM_ATTR(pages_to_scan);
3156 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3159 return sysfs_emit(buf, "%lu\n", ksm_run);
3162 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3163 const char *buf, size_t count)
3168 err = kstrtouint(buf, 10, &flags);
3171 if (flags > KSM_RUN_UNMERGE)
3175 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3176 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3177 * breaking COW to free the pages_shared (but leaves mm_slots
3178 * on the list for when ksmd may be set running again).
3181 mutex_lock(&ksm_thread_mutex);
3182 wait_while_offlining();
3183 if (ksm_run != flags) {
3185 if (flags & KSM_RUN_UNMERGE) {
3186 set_current_oom_origin();
3187 err = unmerge_and_remove_all_rmap_items();
3188 clear_current_oom_origin();
3190 ksm_run = KSM_RUN_STOP;
3195 mutex_unlock(&ksm_thread_mutex);
3197 if (flags & KSM_RUN_MERGE)
3198 wake_up_interruptible(&ksm_thread_wait);
3205 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3206 struct kobj_attribute *attr, char *buf)
3208 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3211 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3212 struct kobj_attribute *attr,
3213 const char *buf, size_t count)
3218 err = kstrtoul(buf, 10, &knob);
3224 mutex_lock(&ksm_thread_mutex);
3225 wait_while_offlining();
3226 if (ksm_merge_across_nodes != knob) {
3227 if (ksm_pages_shared || remove_all_stable_nodes())
3229 else if (root_stable_tree == one_stable_tree) {
3230 struct rb_root *buf;
3232 * This is the first time that we switch away from the
3233 * default of merging across nodes: must now allocate
3234 * a buffer to hold as many roots as may be needed.
3235 * Allocate stable and unstable together:
3236 * MAXSMP NODES_SHIFT 10 will use 16kB.
3238 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3240 /* Let us assume that RB_ROOT is NULL is zero */
3244 root_stable_tree = buf;
3245 root_unstable_tree = buf + nr_node_ids;
3246 /* Stable tree is empty but not the unstable */
3247 root_unstable_tree[0] = one_unstable_tree[0];
3251 ksm_merge_across_nodes = knob;
3252 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3255 mutex_unlock(&ksm_thread_mutex);
3257 return err ? err : count;
3259 KSM_ATTR(merge_across_nodes);
3262 static ssize_t use_zero_pages_show(struct kobject *kobj,
3263 struct kobj_attribute *attr, char *buf)
3265 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3267 static ssize_t use_zero_pages_store(struct kobject *kobj,
3268 struct kobj_attribute *attr,
3269 const char *buf, size_t count)
3274 err = kstrtobool(buf, &value);
3278 ksm_use_zero_pages = value;
3282 KSM_ATTR(use_zero_pages);
3284 static ssize_t max_page_sharing_show(struct kobject *kobj,
3285 struct kobj_attribute *attr, char *buf)
3287 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3290 static ssize_t max_page_sharing_store(struct kobject *kobj,
3291 struct kobj_attribute *attr,
3292 const char *buf, size_t count)
3297 err = kstrtoint(buf, 10, &knob);
3301 * When a KSM page is created it is shared by 2 mappings. This
3302 * being a signed comparison, it implicitly verifies it's not
3308 if (READ_ONCE(ksm_max_page_sharing) == knob)
3311 mutex_lock(&ksm_thread_mutex);
3312 wait_while_offlining();
3313 if (ksm_max_page_sharing != knob) {
3314 if (ksm_pages_shared || remove_all_stable_nodes())
3317 ksm_max_page_sharing = knob;
3319 mutex_unlock(&ksm_thread_mutex);
3321 return err ? err : count;
3323 KSM_ATTR(max_page_sharing);
3325 static ssize_t pages_shared_show(struct kobject *kobj,
3326 struct kobj_attribute *attr, char *buf)
3328 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3330 KSM_ATTR_RO(pages_shared);
3332 static ssize_t pages_sharing_show(struct kobject *kobj,
3333 struct kobj_attribute *attr, char *buf)
3335 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3337 KSM_ATTR_RO(pages_sharing);
3339 static ssize_t pages_unshared_show(struct kobject *kobj,
3340 struct kobj_attribute *attr, char *buf)
3342 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3344 KSM_ATTR_RO(pages_unshared);
3346 static ssize_t pages_volatile_show(struct kobject *kobj,
3347 struct kobj_attribute *attr, char *buf)
3349 long ksm_pages_volatile;
3351 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3352 - ksm_pages_sharing - ksm_pages_unshared;
3354 * It was not worth any locking to calculate that statistic,
3355 * but it might therefore sometimes be negative: conceal that.
3357 if (ksm_pages_volatile < 0)
3358 ksm_pages_volatile = 0;
3359 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3361 KSM_ATTR_RO(pages_volatile);
3363 static ssize_t general_profit_show(struct kobject *kobj,
3364 struct kobj_attribute *attr, char *buf)
3366 long general_profit;
3368 general_profit = ksm_pages_sharing * PAGE_SIZE -
3369 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3371 return sysfs_emit(buf, "%ld\n", general_profit);
3373 KSM_ATTR_RO(general_profit);
3375 static ssize_t stable_node_dups_show(struct kobject *kobj,
3376 struct kobj_attribute *attr, char *buf)
3378 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3380 KSM_ATTR_RO(stable_node_dups);
3382 static ssize_t stable_node_chains_show(struct kobject *kobj,
3383 struct kobj_attribute *attr, char *buf)
3385 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3387 KSM_ATTR_RO(stable_node_chains);
3390 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3391 struct kobj_attribute *attr,
3394 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3398 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3399 struct kobj_attribute *attr,
3400 const char *buf, size_t count)
3405 err = kstrtouint(buf, 10, &msecs);
3409 ksm_stable_node_chains_prune_millisecs = msecs;
3413 KSM_ATTR(stable_node_chains_prune_millisecs);
3415 static ssize_t full_scans_show(struct kobject *kobj,
3416 struct kobj_attribute *attr, char *buf)
3418 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3420 KSM_ATTR_RO(full_scans);
3422 static struct attribute *ksm_attrs[] = {
3423 &sleep_millisecs_attr.attr,
3424 &pages_to_scan_attr.attr,
3426 &pages_shared_attr.attr,
3427 &pages_sharing_attr.attr,
3428 &pages_unshared_attr.attr,
3429 &pages_volatile_attr.attr,
3430 &full_scans_attr.attr,
3432 &merge_across_nodes_attr.attr,
3434 &max_page_sharing_attr.attr,
3435 &stable_node_chains_attr.attr,
3436 &stable_node_dups_attr.attr,
3437 &stable_node_chains_prune_millisecs_attr.attr,
3438 &use_zero_pages_attr.attr,
3439 &general_profit_attr.attr,
3443 static const struct attribute_group ksm_attr_group = {
3447 #endif /* CONFIG_SYSFS */
3449 static int __init ksm_init(void)
3451 struct task_struct *ksm_thread;
3454 /* The correct value depends on page size and endianness */
3455 zero_checksum = calc_checksum(ZERO_PAGE(0));
3456 /* Default to false for backwards compatibility */
3457 ksm_use_zero_pages = false;
3459 err = ksm_slab_init();
3463 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3464 if (IS_ERR(ksm_thread)) {
3465 pr_err("ksm: creating kthread failed\n");
3466 err = PTR_ERR(ksm_thread);
3471 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3473 pr_err("ksm: register sysfs failed\n");
3474 kthread_stop(ksm_thread);
3478 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3480 #endif /* CONFIG_SYSFS */
3482 #ifdef CONFIG_MEMORY_HOTREMOVE
3483 /* There is no significance to this priority 100 */
3484 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3493 subsys_initcall(ksm_init);