mm/ksm.c: use new hashtable implementation
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39
40 #include <asm/tlbflush.h>
41 #include "internal.h"
42
43 /*
44  * A few notes about the KSM scanning process,
45  * to make it easier to understand the data structures below:
46  *
47  * In order to reduce excessive scanning, KSM sorts the memory pages by their
48  * contents into a data structure that holds pointers to the pages' locations.
49  *
50  * Since the contents of the pages may change at any moment, KSM cannot just
51  * insert the pages into a normal sorted tree and expect it to find anything.
52  * Therefore KSM uses two data structures - the stable and the unstable tree.
53  *
54  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
55  * by their contents.  Because each such page is write-protected, searching on
56  * this tree is fully assured to be working (except when pages are unmapped),
57  * and therefore this tree is called the stable tree.
58  *
59  * In addition to the stable tree, KSM uses a second data structure called the
60  * unstable tree: this tree holds pointers to pages which have been found to
61  * be "unchanged for a period of time".  The unstable tree sorts these pages
62  * by their contents, but since they are not write-protected, KSM cannot rely
63  * upon the unstable tree to work correctly - the unstable tree is liable to
64  * be corrupted as its contents are modified, and so it is called unstable.
65  *
66  * KSM solves this problem by several techniques:
67  *
68  * 1) The unstable tree is flushed every time KSM completes scanning all
69  *    memory areas, and then the tree is rebuilt again from the beginning.
70  * 2) KSM will only insert into the unstable tree, pages whose hash value
71  *    has not changed since the previous scan of all memory areas.
72  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
73  *    colors of the nodes and not on their contents, assuring that even when
74  *    the tree gets "corrupted" it won't get out of balance, so scanning time
75  *    remains the same (also, searching and inserting nodes in an rbtree uses
76  *    the same algorithm, so we have no overhead when we flush and rebuild).
77  * 4) KSM never flushes the stable tree, which means that even if it were to
78  *    take 10 attempts to find a page in the unstable tree, once it is found,
79  *    it is secured in the stable tree.  (When we scan a new page, we first
80  *    compare it against the stable tree, and then against the unstable tree.)
81  */
82
83 /**
84  * struct mm_slot - ksm information per mm that is being scanned
85  * @link: link to the mm_slots hash list
86  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
87  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
88  * @mm: the mm that this information is valid for
89  */
90 struct mm_slot {
91         struct hlist_node link;
92         struct list_head mm_list;
93         struct rmap_item *rmap_list;
94         struct mm_struct *mm;
95 };
96
97 /**
98  * struct ksm_scan - cursor for scanning
99  * @mm_slot: the current mm_slot we are scanning
100  * @address: the next address inside that to be scanned
101  * @rmap_list: link to the next rmap to be scanned in the rmap_list
102  * @seqnr: count of completed full scans (needed when removing unstable node)
103  *
104  * There is only the one ksm_scan instance of this cursor structure.
105  */
106 struct ksm_scan {
107         struct mm_slot *mm_slot;
108         unsigned long address;
109         struct rmap_item **rmap_list;
110         unsigned long seqnr;
111 };
112
113 /**
114  * struct stable_node - node of the stable rbtree
115  * @node: rb node of this ksm page in the stable tree
116  * @hlist: hlist head of rmap_items using this ksm page
117  * @kpfn: page frame number of this ksm page
118  */
119 struct stable_node {
120         struct rb_node node;
121         struct hlist_head hlist;
122         unsigned long kpfn;
123 };
124
125 /**
126  * struct rmap_item - reverse mapping item for virtual addresses
127  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
128  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
129  * @mm: the memory structure this rmap_item is pointing into
130  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
131  * @oldchecksum: previous checksum of the page at that virtual address
132  * @node: rb node of this rmap_item in the unstable tree
133  * @head: pointer to stable_node heading this list in the stable tree
134  * @hlist: link into hlist of rmap_items hanging off that stable_node
135  */
136 struct rmap_item {
137         struct rmap_item *rmap_list;
138         struct anon_vma *anon_vma;      /* when stable */
139         struct mm_struct *mm;
140         unsigned long address;          /* + low bits used for flags below */
141         unsigned int oldchecksum;       /* when unstable */
142         union {
143                 struct rb_node node;    /* when node of unstable tree */
144                 struct {                /* when listed from stable tree */
145                         struct stable_node *head;
146                         struct hlist_node hlist;
147                 };
148         };
149 };
150
151 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
152 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
153 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
154
155 /* The stable and unstable tree heads */
156 static struct rb_root root_stable_tree = RB_ROOT;
157 static struct rb_root root_unstable_tree = RB_ROOT;
158
159 #define MM_SLOTS_HASH_BITS 10
160 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
161
162 static struct mm_slot ksm_mm_head = {
163         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
164 };
165 static struct ksm_scan ksm_scan = {
166         .mm_slot = &ksm_mm_head,
167 };
168
169 static struct kmem_cache *rmap_item_cache;
170 static struct kmem_cache *stable_node_cache;
171 static struct kmem_cache *mm_slot_cache;
172
173 /* The number of nodes in the stable tree */
174 static unsigned long ksm_pages_shared;
175
176 /* The number of page slots additionally sharing those nodes */
177 static unsigned long ksm_pages_sharing;
178
179 /* The number of nodes in the unstable tree */
180 static unsigned long ksm_pages_unshared;
181
182 /* The number of rmap_items in use: to calculate pages_volatile */
183 static unsigned long ksm_rmap_items;
184
185 /* Number of pages ksmd should scan in one batch */
186 static unsigned int ksm_thread_pages_to_scan = 100;
187
188 /* Milliseconds ksmd should sleep between batches */
189 static unsigned int ksm_thread_sleep_millisecs = 20;
190
191 #define KSM_RUN_STOP    0
192 #define KSM_RUN_MERGE   1
193 #define KSM_RUN_UNMERGE 2
194 static unsigned int ksm_run = KSM_RUN_STOP;
195
196 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
197 static DEFINE_MUTEX(ksm_thread_mutex);
198 static DEFINE_SPINLOCK(ksm_mmlist_lock);
199
200 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
201                 sizeof(struct __struct), __alignof__(struct __struct),\
202                 (__flags), NULL)
203
204 static int __init ksm_slab_init(void)
205 {
206         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
207         if (!rmap_item_cache)
208                 goto out;
209
210         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
211         if (!stable_node_cache)
212                 goto out_free1;
213
214         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
215         if (!mm_slot_cache)
216                 goto out_free2;
217
218         return 0;
219
220 out_free2:
221         kmem_cache_destroy(stable_node_cache);
222 out_free1:
223         kmem_cache_destroy(rmap_item_cache);
224 out:
225         return -ENOMEM;
226 }
227
228 static void __init ksm_slab_free(void)
229 {
230         kmem_cache_destroy(mm_slot_cache);
231         kmem_cache_destroy(stable_node_cache);
232         kmem_cache_destroy(rmap_item_cache);
233         mm_slot_cache = NULL;
234 }
235
236 static inline struct rmap_item *alloc_rmap_item(void)
237 {
238         struct rmap_item *rmap_item;
239
240         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
241         if (rmap_item)
242                 ksm_rmap_items++;
243         return rmap_item;
244 }
245
246 static inline void free_rmap_item(struct rmap_item *rmap_item)
247 {
248         ksm_rmap_items--;
249         rmap_item->mm = NULL;   /* debug safety */
250         kmem_cache_free(rmap_item_cache, rmap_item);
251 }
252
253 static inline struct stable_node *alloc_stable_node(void)
254 {
255         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
256 }
257
258 static inline void free_stable_node(struct stable_node *stable_node)
259 {
260         kmem_cache_free(stable_node_cache, stable_node);
261 }
262
263 static inline struct mm_slot *alloc_mm_slot(void)
264 {
265         if (!mm_slot_cache)     /* initialization failed */
266                 return NULL;
267         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
268 }
269
270 static inline void free_mm_slot(struct mm_slot *mm_slot)
271 {
272         kmem_cache_free(mm_slot_cache, mm_slot);
273 }
274
275 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
276 {
277         struct hlist_node *node;
278         struct mm_slot *slot;
279
280         hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
281                 if (slot->mm == mm)
282                         return slot;
283
284         return NULL;
285 }
286
287 static void insert_to_mm_slots_hash(struct mm_struct *mm,
288                                     struct mm_slot *mm_slot)
289 {
290         mm_slot->mm = mm;
291         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
292 }
293
294 static inline int in_stable_tree(struct rmap_item *rmap_item)
295 {
296         return rmap_item->address & STABLE_FLAG;
297 }
298
299 /*
300  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
301  * page tables after it has passed through ksm_exit() - which, if necessary,
302  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
303  * a special flag: they can just back out as soon as mm_users goes to zero.
304  * ksm_test_exit() is used throughout to make this test for exit: in some
305  * places for correctness, in some places just to avoid unnecessary work.
306  */
307 static inline bool ksm_test_exit(struct mm_struct *mm)
308 {
309         return atomic_read(&mm->mm_users) == 0;
310 }
311
312 /*
313  * We use break_ksm to break COW on a ksm page: it's a stripped down
314  *
315  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
316  *              put_page(page);
317  *
318  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
319  * in case the application has unmapped and remapped mm,addr meanwhile.
320  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
321  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
322  */
323 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
324 {
325         struct page *page;
326         int ret = 0;
327
328         do {
329                 cond_resched();
330                 page = follow_page(vma, addr, FOLL_GET);
331                 if (IS_ERR_OR_NULL(page))
332                         break;
333                 if (PageKsm(page))
334                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
335                                                         FAULT_FLAG_WRITE);
336                 else
337                         ret = VM_FAULT_WRITE;
338                 put_page(page);
339         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
340         /*
341          * We must loop because handle_mm_fault() may back out if there's
342          * any difficulty e.g. if pte accessed bit gets updated concurrently.
343          *
344          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
345          * COW has been broken, even if the vma does not permit VM_WRITE;
346          * but note that a concurrent fault might break PageKsm for us.
347          *
348          * VM_FAULT_SIGBUS could occur if we race with truncation of the
349          * backing file, which also invalidates anonymous pages: that's
350          * okay, that truncation will have unmapped the PageKsm for us.
351          *
352          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
353          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
354          * current task has TIF_MEMDIE set, and will be OOM killed on return
355          * to user; and ksmd, having no mm, would never be chosen for that.
356          *
357          * But if the mm is in a limited mem_cgroup, then the fault may fail
358          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
359          * even ksmd can fail in this way - though it's usually breaking ksm
360          * just to undo a merge it made a moment before, so unlikely to oom.
361          *
362          * That's a pity: we might therefore have more kernel pages allocated
363          * than we're counting as nodes in the stable tree; but ksm_do_scan
364          * will retry to break_cow on each pass, so should recover the page
365          * in due course.  The important thing is to not let VM_MERGEABLE
366          * be cleared while any such pages might remain in the area.
367          */
368         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
369 }
370
371 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
372                 unsigned long addr)
373 {
374         struct vm_area_struct *vma;
375         if (ksm_test_exit(mm))
376                 return NULL;
377         vma = find_vma(mm, addr);
378         if (!vma || vma->vm_start > addr)
379                 return NULL;
380         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
381                 return NULL;
382         return vma;
383 }
384
385 static void break_cow(struct rmap_item *rmap_item)
386 {
387         struct mm_struct *mm = rmap_item->mm;
388         unsigned long addr = rmap_item->address;
389         struct vm_area_struct *vma;
390
391         /*
392          * It is not an accident that whenever we want to break COW
393          * to undo, we also need to drop a reference to the anon_vma.
394          */
395         put_anon_vma(rmap_item->anon_vma);
396
397         down_read(&mm->mmap_sem);
398         vma = find_mergeable_vma(mm, addr);
399         if (vma)
400                 break_ksm(vma, addr);
401         up_read(&mm->mmap_sem);
402 }
403
404 static struct page *page_trans_compound_anon(struct page *page)
405 {
406         if (PageTransCompound(page)) {
407                 struct page *head = compound_trans_head(page);
408                 /*
409                  * head may actually be splitted and freed from under
410                  * us but it's ok here.
411                  */
412                 if (PageAnon(head))
413                         return head;
414         }
415         return NULL;
416 }
417
418 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
419 {
420         struct mm_struct *mm = rmap_item->mm;
421         unsigned long addr = rmap_item->address;
422         struct vm_area_struct *vma;
423         struct page *page;
424
425         down_read(&mm->mmap_sem);
426         vma = find_mergeable_vma(mm, addr);
427         if (!vma)
428                 goto out;
429
430         page = follow_page(vma, addr, FOLL_GET);
431         if (IS_ERR_OR_NULL(page))
432                 goto out;
433         if (PageAnon(page) || page_trans_compound_anon(page)) {
434                 flush_anon_page(vma, page, addr);
435                 flush_dcache_page(page);
436         } else {
437                 put_page(page);
438 out:            page = NULL;
439         }
440         up_read(&mm->mmap_sem);
441         return page;
442 }
443
444 static void remove_node_from_stable_tree(struct stable_node *stable_node)
445 {
446         struct rmap_item *rmap_item;
447         struct hlist_node *hlist;
448
449         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
450                 if (rmap_item->hlist.next)
451                         ksm_pages_sharing--;
452                 else
453                         ksm_pages_shared--;
454                 put_anon_vma(rmap_item->anon_vma);
455                 rmap_item->address &= PAGE_MASK;
456                 cond_resched();
457         }
458
459         rb_erase(&stable_node->node, &root_stable_tree);
460         free_stable_node(stable_node);
461 }
462
463 /*
464  * get_ksm_page: checks if the page indicated by the stable node
465  * is still its ksm page, despite having held no reference to it.
466  * In which case we can trust the content of the page, and it
467  * returns the gotten page; but if the page has now been zapped,
468  * remove the stale node from the stable tree and return NULL.
469  *
470  * You would expect the stable_node to hold a reference to the ksm page.
471  * But if it increments the page's count, swapping out has to wait for
472  * ksmd to come around again before it can free the page, which may take
473  * seconds or even minutes: much too unresponsive.  So instead we use a
474  * "keyhole reference": access to the ksm page from the stable node peeps
475  * out through its keyhole to see if that page still holds the right key,
476  * pointing back to this stable node.  This relies on freeing a PageAnon
477  * page to reset its page->mapping to NULL, and relies on no other use of
478  * a page to put something that might look like our key in page->mapping.
479  *
480  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
481  * but this is different - made simpler by ksm_thread_mutex being held, but
482  * interesting for assuming that no other use of the struct page could ever
483  * put our expected_mapping into page->mapping (or a field of the union which
484  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
485  * to keep the page_count protocol described with page_cache_get_speculative.
486  *
487  * Note: it is possible that get_ksm_page() will return NULL one moment,
488  * then page the next, if the page is in between page_freeze_refs() and
489  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
490  * is on its way to being freed; but it is an anomaly to bear in mind.
491  */
492 static struct page *get_ksm_page(struct stable_node *stable_node)
493 {
494         struct page *page;
495         void *expected_mapping;
496
497         page = pfn_to_page(stable_node->kpfn);
498         expected_mapping = (void *)stable_node +
499                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
500         rcu_read_lock();
501         if (page->mapping != expected_mapping)
502                 goto stale;
503         if (!get_page_unless_zero(page))
504                 goto stale;
505         if (page->mapping != expected_mapping) {
506                 put_page(page);
507                 goto stale;
508         }
509         rcu_read_unlock();
510         return page;
511 stale:
512         rcu_read_unlock();
513         remove_node_from_stable_tree(stable_node);
514         return NULL;
515 }
516
517 /*
518  * Removing rmap_item from stable or unstable tree.
519  * This function will clean the information from the stable/unstable tree.
520  */
521 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
522 {
523         if (rmap_item->address & STABLE_FLAG) {
524                 struct stable_node *stable_node;
525                 struct page *page;
526
527                 stable_node = rmap_item->head;
528                 page = get_ksm_page(stable_node);
529                 if (!page)
530                         goto out;
531
532                 lock_page(page);
533                 hlist_del(&rmap_item->hlist);
534                 unlock_page(page);
535                 put_page(page);
536
537                 if (stable_node->hlist.first)
538                         ksm_pages_sharing--;
539                 else
540                         ksm_pages_shared--;
541
542                 put_anon_vma(rmap_item->anon_vma);
543                 rmap_item->address &= PAGE_MASK;
544
545         } else if (rmap_item->address & UNSTABLE_FLAG) {
546                 unsigned char age;
547                 /*
548                  * Usually ksmd can and must skip the rb_erase, because
549                  * root_unstable_tree was already reset to RB_ROOT.
550                  * But be careful when an mm is exiting: do the rb_erase
551                  * if this rmap_item was inserted by this scan, rather
552                  * than left over from before.
553                  */
554                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
555                 BUG_ON(age > 1);
556                 if (!age)
557                         rb_erase(&rmap_item->node, &root_unstable_tree);
558
559                 ksm_pages_unshared--;
560                 rmap_item->address &= PAGE_MASK;
561         }
562 out:
563         cond_resched();         /* we're called from many long loops */
564 }
565
566 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
567                                        struct rmap_item **rmap_list)
568 {
569         while (*rmap_list) {
570                 struct rmap_item *rmap_item = *rmap_list;
571                 *rmap_list = rmap_item->rmap_list;
572                 remove_rmap_item_from_tree(rmap_item);
573                 free_rmap_item(rmap_item);
574         }
575 }
576
577 /*
578  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
579  * than check every pte of a given vma, the locking doesn't quite work for
580  * that - an rmap_item is assigned to the stable tree after inserting ksm
581  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
582  * rmap_items from parent to child at fork time (so as not to waste time
583  * if exit comes before the next scan reaches it).
584  *
585  * Similarly, although we'd like to remove rmap_items (so updating counts
586  * and freeing memory) when unmerging an area, it's easier to leave that
587  * to the next pass of ksmd - consider, for example, how ksmd might be
588  * in cmp_and_merge_page on one of the rmap_items we would be removing.
589  */
590 static int unmerge_ksm_pages(struct vm_area_struct *vma,
591                              unsigned long start, unsigned long end)
592 {
593         unsigned long addr;
594         int err = 0;
595
596         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
597                 if (ksm_test_exit(vma->vm_mm))
598                         break;
599                 if (signal_pending(current))
600                         err = -ERESTARTSYS;
601                 else
602                         err = break_ksm(vma, addr);
603         }
604         return err;
605 }
606
607 #ifdef CONFIG_SYSFS
608 /*
609  * Only called through the sysfs control interface:
610  */
611 static int unmerge_and_remove_all_rmap_items(void)
612 {
613         struct mm_slot *mm_slot;
614         struct mm_struct *mm;
615         struct vm_area_struct *vma;
616         int err = 0;
617
618         spin_lock(&ksm_mmlist_lock);
619         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
620                                                 struct mm_slot, mm_list);
621         spin_unlock(&ksm_mmlist_lock);
622
623         for (mm_slot = ksm_scan.mm_slot;
624                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
625                 mm = mm_slot->mm;
626                 down_read(&mm->mmap_sem);
627                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
628                         if (ksm_test_exit(mm))
629                                 break;
630                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
631                                 continue;
632                         err = unmerge_ksm_pages(vma,
633                                                 vma->vm_start, vma->vm_end);
634                         if (err)
635                                 goto error;
636                 }
637
638                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
639
640                 spin_lock(&ksm_mmlist_lock);
641                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
642                                                 struct mm_slot, mm_list);
643                 if (ksm_test_exit(mm)) {
644                         hash_del(&mm_slot->link);
645                         list_del(&mm_slot->mm_list);
646                         spin_unlock(&ksm_mmlist_lock);
647
648                         free_mm_slot(mm_slot);
649                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
650                         up_read(&mm->mmap_sem);
651                         mmdrop(mm);
652                 } else {
653                         spin_unlock(&ksm_mmlist_lock);
654                         up_read(&mm->mmap_sem);
655                 }
656         }
657
658         ksm_scan.seqnr = 0;
659         return 0;
660
661 error:
662         up_read(&mm->mmap_sem);
663         spin_lock(&ksm_mmlist_lock);
664         ksm_scan.mm_slot = &ksm_mm_head;
665         spin_unlock(&ksm_mmlist_lock);
666         return err;
667 }
668 #endif /* CONFIG_SYSFS */
669
670 static u32 calc_checksum(struct page *page)
671 {
672         u32 checksum;
673         void *addr = kmap_atomic(page);
674         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
675         kunmap_atomic(addr);
676         return checksum;
677 }
678
679 static int memcmp_pages(struct page *page1, struct page *page2)
680 {
681         char *addr1, *addr2;
682         int ret;
683
684         addr1 = kmap_atomic(page1);
685         addr2 = kmap_atomic(page2);
686         ret = memcmp(addr1, addr2, PAGE_SIZE);
687         kunmap_atomic(addr2);
688         kunmap_atomic(addr1);
689         return ret;
690 }
691
692 static inline int pages_identical(struct page *page1, struct page *page2)
693 {
694         return !memcmp_pages(page1, page2);
695 }
696
697 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
698                               pte_t *orig_pte)
699 {
700         struct mm_struct *mm = vma->vm_mm;
701         unsigned long addr;
702         pte_t *ptep;
703         spinlock_t *ptl;
704         int swapped;
705         int err = -EFAULT;
706         unsigned long mmun_start;       /* For mmu_notifiers */
707         unsigned long mmun_end;         /* For mmu_notifiers */
708
709         addr = page_address_in_vma(page, vma);
710         if (addr == -EFAULT)
711                 goto out;
712
713         BUG_ON(PageTransCompound(page));
714
715         mmun_start = addr;
716         mmun_end   = addr + PAGE_SIZE;
717         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
718
719         ptep = page_check_address(page, mm, addr, &ptl, 0);
720         if (!ptep)
721                 goto out_mn;
722
723         if (pte_write(*ptep) || pte_dirty(*ptep)) {
724                 pte_t entry;
725
726                 swapped = PageSwapCache(page);
727                 flush_cache_page(vma, addr, page_to_pfn(page));
728                 /*
729                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
730                  * take any lock, therefore the check that we are going to make
731                  * with the pagecount against the mapcount is racey and
732                  * O_DIRECT can happen right after the check.
733                  * So we clear the pte and flush the tlb before the check
734                  * this assure us that no O_DIRECT can happen after the check
735                  * or in the middle of the check.
736                  */
737                 entry = ptep_clear_flush(vma, addr, ptep);
738                 /*
739                  * Check that no O_DIRECT or similar I/O is in progress on the
740                  * page
741                  */
742                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
743                         set_pte_at(mm, addr, ptep, entry);
744                         goto out_unlock;
745                 }
746                 if (pte_dirty(entry))
747                         set_page_dirty(page);
748                 entry = pte_mkclean(pte_wrprotect(entry));
749                 set_pte_at_notify(mm, addr, ptep, entry);
750         }
751         *orig_pte = *ptep;
752         err = 0;
753
754 out_unlock:
755         pte_unmap_unlock(ptep, ptl);
756 out_mn:
757         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
758 out:
759         return err;
760 }
761
762 /**
763  * replace_page - replace page in vma by new ksm page
764  * @vma:      vma that holds the pte pointing to page
765  * @page:     the page we are replacing by kpage
766  * @kpage:    the ksm page we replace page by
767  * @orig_pte: the original value of the pte
768  *
769  * Returns 0 on success, -EFAULT on failure.
770  */
771 static int replace_page(struct vm_area_struct *vma, struct page *page,
772                         struct page *kpage, pte_t orig_pte)
773 {
774         struct mm_struct *mm = vma->vm_mm;
775         pmd_t *pmd;
776         pte_t *ptep;
777         spinlock_t *ptl;
778         unsigned long addr;
779         int err = -EFAULT;
780         unsigned long mmun_start;       /* For mmu_notifiers */
781         unsigned long mmun_end;         /* For mmu_notifiers */
782
783         addr = page_address_in_vma(page, vma);
784         if (addr == -EFAULT)
785                 goto out;
786
787         pmd = mm_find_pmd(mm, addr);
788         if (!pmd)
789                 goto out;
790         BUG_ON(pmd_trans_huge(*pmd));
791
792         mmun_start = addr;
793         mmun_end   = addr + PAGE_SIZE;
794         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
795
796         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
797         if (!pte_same(*ptep, orig_pte)) {
798                 pte_unmap_unlock(ptep, ptl);
799                 goto out_mn;
800         }
801
802         get_page(kpage);
803         page_add_anon_rmap(kpage, vma, addr);
804
805         flush_cache_page(vma, addr, pte_pfn(*ptep));
806         ptep_clear_flush(vma, addr, ptep);
807         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
808
809         page_remove_rmap(page);
810         if (!page_mapped(page))
811                 try_to_free_swap(page);
812         put_page(page);
813
814         pte_unmap_unlock(ptep, ptl);
815         err = 0;
816 out_mn:
817         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
818 out:
819         return err;
820 }
821
822 static int page_trans_compound_anon_split(struct page *page)
823 {
824         int ret = 0;
825         struct page *transhuge_head = page_trans_compound_anon(page);
826         if (transhuge_head) {
827                 /* Get the reference on the head to split it. */
828                 if (get_page_unless_zero(transhuge_head)) {
829                         /*
830                          * Recheck we got the reference while the head
831                          * was still anonymous.
832                          */
833                         if (PageAnon(transhuge_head))
834                                 ret = split_huge_page(transhuge_head);
835                         else
836                                 /*
837                                  * Retry later if split_huge_page run
838                                  * from under us.
839                                  */
840                                 ret = 1;
841                         put_page(transhuge_head);
842                 } else
843                         /* Retry later if split_huge_page run from under us. */
844                         ret = 1;
845         }
846         return ret;
847 }
848
849 /*
850  * try_to_merge_one_page - take two pages and merge them into one
851  * @vma: the vma that holds the pte pointing to page
852  * @page: the PageAnon page that we want to replace with kpage
853  * @kpage: the PageKsm page that we want to map instead of page,
854  *         or NULL the first time when we want to use page as kpage.
855  *
856  * This function returns 0 if the pages were merged, -EFAULT otherwise.
857  */
858 static int try_to_merge_one_page(struct vm_area_struct *vma,
859                                  struct page *page, struct page *kpage)
860 {
861         pte_t orig_pte = __pte(0);
862         int err = -EFAULT;
863
864         if (page == kpage)                      /* ksm page forked */
865                 return 0;
866
867         if (!(vma->vm_flags & VM_MERGEABLE))
868                 goto out;
869         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
870                 goto out;
871         BUG_ON(PageTransCompound(page));
872         if (!PageAnon(page))
873                 goto out;
874
875         /*
876          * We need the page lock to read a stable PageSwapCache in
877          * write_protect_page().  We use trylock_page() instead of
878          * lock_page() because we don't want to wait here - we
879          * prefer to continue scanning and merging different pages,
880          * then come back to this page when it is unlocked.
881          */
882         if (!trylock_page(page))
883                 goto out;
884         /*
885          * If this anonymous page is mapped only here, its pte may need
886          * to be write-protected.  If it's mapped elsewhere, all of its
887          * ptes are necessarily already write-protected.  But in either
888          * case, we need to lock and check page_count is not raised.
889          */
890         if (write_protect_page(vma, page, &orig_pte) == 0) {
891                 if (!kpage) {
892                         /*
893                          * While we hold page lock, upgrade page from
894                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
895                          * stable_tree_insert() will update stable_node.
896                          */
897                         set_page_stable_node(page, NULL);
898                         mark_page_accessed(page);
899                         err = 0;
900                 } else if (pages_identical(page, kpage))
901                         err = replace_page(vma, page, kpage, orig_pte);
902         }
903
904         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
905                 munlock_vma_page(page);
906                 if (!PageMlocked(kpage)) {
907                         unlock_page(page);
908                         lock_page(kpage);
909                         mlock_vma_page(kpage);
910                         page = kpage;           /* for final unlock */
911                 }
912         }
913
914         unlock_page(page);
915 out:
916         return err;
917 }
918
919 /*
920  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
921  * but no new kernel page is allocated: kpage must already be a ksm page.
922  *
923  * This function returns 0 if the pages were merged, -EFAULT otherwise.
924  */
925 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
926                                       struct page *page, struct page *kpage)
927 {
928         struct mm_struct *mm = rmap_item->mm;
929         struct vm_area_struct *vma;
930         int err = -EFAULT;
931
932         down_read(&mm->mmap_sem);
933         if (ksm_test_exit(mm))
934                 goto out;
935         vma = find_vma(mm, rmap_item->address);
936         if (!vma || vma->vm_start > rmap_item->address)
937                 goto out;
938
939         err = try_to_merge_one_page(vma, page, kpage);
940         if (err)
941                 goto out;
942
943         /* Must get reference to anon_vma while still holding mmap_sem */
944         rmap_item->anon_vma = vma->anon_vma;
945         get_anon_vma(vma->anon_vma);
946 out:
947         up_read(&mm->mmap_sem);
948         return err;
949 }
950
951 /*
952  * try_to_merge_two_pages - take two identical pages and prepare them
953  * to be merged into one page.
954  *
955  * This function returns the kpage if we successfully merged two identical
956  * pages into one ksm page, NULL otherwise.
957  *
958  * Note that this function upgrades page to ksm page: if one of the pages
959  * is already a ksm page, try_to_merge_with_ksm_page should be used.
960  */
961 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
962                                            struct page *page,
963                                            struct rmap_item *tree_rmap_item,
964                                            struct page *tree_page)
965 {
966         int err;
967
968         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
969         if (!err) {
970                 err = try_to_merge_with_ksm_page(tree_rmap_item,
971                                                         tree_page, page);
972                 /*
973                  * If that fails, we have a ksm page with only one pte
974                  * pointing to it: so break it.
975                  */
976                 if (err)
977                         break_cow(rmap_item);
978         }
979         return err ? NULL : page;
980 }
981
982 /*
983  * stable_tree_search - search for page inside the stable tree
984  *
985  * This function checks if there is a page inside the stable tree
986  * with identical content to the page that we are scanning right now.
987  *
988  * This function returns the stable tree node of identical content if found,
989  * NULL otherwise.
990  */
991 static struct page *stable_tree_search(struct page *page)
992 {
993         struct rb_node *node = root_stable_tree.rb_node;
994         struct stable_node *stable_node;
995
996         stable_node = page_stable_node(page);
997         if (stable_node) {                      /* ksm page forked */
998                 get_page(page);
999                 return page;
1000         }
1001
1002         while (node) {
1003                 struct page *tree_page;
1004                 int ret;
1005
1006                 cond_resched();
1007                 stable_node = rb_entry(node, struct stable_node, node);
1008                 tree_page = get_ksm_page(stable_node);
1009                 if (!tree_page)
1010                         return NULL;
1011
1012                 ret = memcmp_pages(page, tree_page);
1013
1014                 if (ret < 0) {
1015                         put_page(tree_page);
1016                         node = node->rb_left;
1017                 } else if (ret > 0) {
1018                         put_page(tree_page);
1019                         node = node->rb_right;
1020                 } else
1021                         return tree_page;
1022         }
1023
1024         return NULL;
1025 }
1026
1027 /*
1028  * stable_tree_insert - insert rmap_item pointing to new ksm page
1029  * into the stable tree.
1030  *
1031  * This function returns the stable tree node just allocated on success,
1032  * NULL otherwise.
1033  */
1034 static struct stable_node *stable_tree_insert(struct page *kpage)
1035 {
1036         struct rb_node **new = &root_stable_tree.rb_node;
1037         struct rb_node *parent = NULL;
1038         struct stable_node *stable_node;
1039
1040         while (*new) {
1041                 struct page *tree_page;
1042                 int ret;
1043
1044                 cond_resched();
1045                 stable_node = rb_entry(*new, struct stable_node, node);
1046                 tree_page = get_ksm_page(stable_node);
1047                 if (!tree_page)
1048                         return NULL;
1049
1050                 ret = memcmp_pages(kpage, tree_page);
1051                 put_page(tree_page);
1052
1053                 parent = *new;
1054                 if (ret < 0)
1055                         new = &parent->rb_left;
1056                 else if (ret > 0)
1057                         new = &parent->rb_right;
1058                 else {
1059                         /*
1060                          * It is not a bug that stable_tree_search() didn't
1061                          * find this node: because at that time our page was
1062                          * not yet write-protected, so may have changed since.
1063                          */
1064                         return NULL;
1065                 }
1066         }
1067
1068         stable_node = alloc_stable_node();
1069         if (!stable_node)
1070                 return NULL;
1071
1072         rb_link_node(&stable_node->node, parent, new);
1073         rb_insert_color(&stable_node->node, &root_stable_tree);
1074
1075         INIT_HLIST_HEAD(&stable_node->hlist);
1076
1077         stable_node->kpfn = page_to_pfn(kpage);
1078         set_page_stable_node(kpage, stable_node);
1079
1080         return stable_node;
1081 }
1082
1083 /*
1084  * unstable_tree_search_insert - search for identical page,
1085  * else insert rmap_item into the unstable tree.
1086  *
1087  * This function searches for a page in the unstable tree identical to the
1088  * page currently being scanned; and if no identical page is found in the
1089  * tree, we insert rmap_item as a new object into the unstable tree.
1090  *
1091  * This function returns pointer to rmap_item found to be identical
1092  * to the currently scanned page, NULL otherwise.
1093  *
1094  * This function does both searching and inserting, because they share
1095  * the same walking algorithm in an rbtree.
1096  */
1097 static
1098 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1099                                               struct page *page,
1100                                               struct page **tree_pagep)
1101
1102 {
1103         struct rb_node **new = &root_unstable_tree.rb_node;
1104         struct rb_node *parent = NULL;
1105
1106         while (*new) {
1107                 struct rmap_item *tree_rmap_item;
1108                 struct page *tree_page;
1109                 int ret;
1110
1111                 cond_resched();
1112                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1113                 tree_page = get_mergeable_page(tree_rmap_item);
1114                 if (IS_ERR_OR_NULL(tree_page))
1115                         return NULL;
1116
1117                 /*
1118                  * Don't substitute a ksm page for a forked page.
1119                  */
1120                 if (page == tree_page) {
1121                         put_page(tree_page);
1122                         return NULL;
1123                 }
1124
1125                 ret = memcmp_pages(page, tree_page);
1126
1127                 parent = *new;
1128                 if (ret < 0) {
1129                         put_page(tree_page);
1130                         new = &parent->rb_left;
1131                 } else if (ret > 0) {
1132                         put_page(tree_page);
1133                         new = &parent->rb_right;
1134                 } else {
1135                         *tree_pagep = tree_page;
1136                         return tree_rmap_item;
1137                 }
1138         }
1139
1140         rmap_item->address |= UNSTABLE_FLAG;
1141         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1142         rb_link_node(&rmap_item->node, parent, new);
1143         rb_insert_color(&rmap_item->node, &root_unstable_tree);
1144
1145         ksm_pages_unshared++;
1146         return NULL;
1147 }
1148
1149 /*
1150  * stable_tree_append - add another rmap_item to the linked list of
1151  * rmap_items hanging off a given node of the stable tree, all sharing
1152  * the same ksm page.
1153  */
1154 static void stable_tree_append(struct rmap_item *rmap_item,
1155                                struct stable_node *stable_node)
1156 {
1157         rmap_item->head = stable_node;
1158         rmap_item->address |= STABLE_FLAG;
1159         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1160
1161         if (rmap_item->hlist.next)
1162                 ksm_pages_sharing++;
1163         else
1164                 ksm_pages_shared++;
1165 }
1166
1167 /*
1168  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1169  * if not, compare checksum to previous and if it's the same, see if page can
1170  * be inserted into the unstable tree, or merged with a page already there and
1171  * both transferred to the stable tree.
1172  *
1173  * @page: the page that we are searching identical page to.
1174  * @rmap_item: the reverse mapping into the virtual address of this page
1175  */
1176 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1177 {
1178         struct rmap_item *tree_rmap_item;
1179         struct page *tree_page = NULL;
1180         struct stable_node *stable_node;
1181         struct page *kpage;
1182         unsigned int checksum;
1183         int err;
1184
1185         remove_rmap_item_from_tree(rmap_item);
1186
1187         /* We first start with searching the page inside the stable tree */
1188         kpage = stable_tree_search(page);
1189         if (kpage) {
1190                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1191                 if (!err) {
1192                         /*
1193                          * The page was successfully merged:
1194                          * add its rmap_item to the stable tree.
1195                          */
1196                         lock_page(kpage);
1197                         stable_tree_append(rmap_item, page_stable_node(kpage));
1198                         unlock_page(kpage);
1199                 }
1200                 put_page(kpage);
1201                 return;
1202         }
1203
1204         /*
1205          * If the hash value of the page has changed from the last time
1206          * we calculated it, this page is changing frequently: therefore we
1207          * don't want to insert it in the unstable tree, and we don't want
1208          * to waste our time searching for something identical to it there.
1209          */
1210         checksum = calc_checksum(page);
1211         if (rmap_item->oldchecksum != checksum) {
1212                 rmap_item->oldchecksum = checksum;
1213                 return;
1214         }
1215
1216         tree_rmap_item =
1217                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1218         if (tree_rmap_item) {
1219                 kpage = try_to_merge_two_pages(rmap_item, page,
1220                                                 tree_rmap_item, tree_page);
1221                 put_page(tree_page);
1222                 /*
1223                  * As soon as we merge this page, we want to remove the
1224                  * rmap_item of the page we have merged with from the unstable
1225                  * tree, and insert it instead as new node in the stable tree.
1226                  */
1227                 if (kpage) {
1228                         remove_rmap_item_from_tree(tree_rmap_item);
1229
1230                         lock_page(kpage);
1231                         stable_node = stable_tree_insert(kpage);
1232                         if (stable_node) {
1233                                 stable_tree_append(tree_rmap_item, stable_node);
1234                                 stable_tree_append(rmap_item, stable_node);
1235                         }
1236                         unlock_page(kpage);
1237
1238                         /*
1239                          * If we fail to insert the page into the stable tree,
1240                          * we will have 2 virtual addresses that are pointing
1241                          * to a ksm page left outside the stable tree,
1242                          * in which case we need to break_cow on both.
1243                          */
1244                         if (!stable_node) {
1245                                 break_cow(tree_rmap_item);
1246                                 break_cow(rmap_item);
1247                         }
1248                 }
1249         }
1250 }
1251
1252 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1253                                             struct rmap_item **rmap_list,
1254                                             unsigned long addr)
1255 {
1256         struct rmap_item *rmap_item;
1257
1258         while (*rmap_list) {
1259                 rmap_item = *rmap_list;
1260                 if ((rmap_item->address & PAGE_MASK) == addr)
1261                         return rmap_item;
1262                 if (rmap_item->address > addr)
1263                         break;
1264                 *rmap_list = rmap_item->rmap_list;
1265                 remove_rmap_item_from_tree(rmap_item);
1266                 free_rmap_item(rmap_item);
1267         }
1268
1269         rmap_item = alloc_rmap_item();
1270         if (rmap_item) {
1271                 /* It has already been zeroed */
1272                 rmap_item->mm = mm_slot->mm;
1273                 rmap_item->address = addr;
1274                 rmap_item->rmap_list = *rmap_list;
1275                 *rmap_list = rmap_item;
1276         }
1277         return rmap_item;
1278 }
1279
1280 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1281 {
1282         struct mm_struct *mm;
1283         struct mm_slot *slot;
1284         struct vm_area_struct *vma;
1285         struct rmap_item *rmap_item;
1286
1287         if (list_empty(&ksm_mm_head.mm_list))
1288                 return NULL;
1289
1290         slot = ksm_scan.mm_slot;
1291         if (slot == &ksm_mm_head) {
1292                 /*
1293                  * A number of pages can hang around indefinitely on per-cpu
1294                  * pagevecs, raised page count preventing write_protect_page
1295                  * from merging them.  Though it doesn't really matter much,
1296                  * it is puzzling to see some stuck in pages_volatile until
1297                  * other activity jostles them out, and they also prevented
1298                  * LTP's KSM test from succeeding deterministically; so drain
1299                  * them here (here rather than on entry to ksm_do_scan(),
1300                  * so we don't IPI too often when pages_to_scan is set low).
1301                  */
1302                 lru_add_drain_all();
1303
1304                 root_unstable_tree = RB_ROOT;
1305
1306                 spin_lock(&ksm_mmlist_lock);
1307                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1308                 ksm_scan.mm_slot = slot;
1309                 spin_unlock(&ksm_mmlist_lock);
1310                 /*
1311                  * Although we tested list_empty() above, a racing __ksm_exit
1312                  * of the last mm on the list may have removed it since then.
1313                  */
1314                 if (slot == &ksm_mm_head)
1315                         return NULL;
1316 next_mm:
1317                 ksm_scan.address = 0;
1318                 ksm_scan.rmap_list = &slot->rmap_list;
1319         }
1320
1321         mm = slot->mm;
1322         down_read(&mm->mmap_sem);
1323         if (ksm_test_exit(mm))
1324                 vma = NULL;
1325         else
1326                 vma = find_vma(mm, ksm_scan.address);
1327
1328         for (; vma; vma = vma->vm_next) {
1329                 if (!(vma->vm_flags & VM_MERGEABLE))
1330                         continue;
1331                 if (ksm_scan.address < vma->vm_start)
1332                         ksm_scan.address = vma->vm_start;
1333                 if (!vma->anon_vma)
1334                         ksm_scan.address = vma->vm_end;
1335
1336                 while (ksm_scan.address < vma->vm_end) {
1337                         if (ksm_test_exit(mm))
1338                                 break;
1339                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1340                         if (IS_ERR_OR_NULL(*page)) {
1341                                 ksm_scan.address += PAGE_SIZE;
1342                                 cond_resched();
1343                                 continue;
1344                         }
1345                         if (PageAnon(*page) ||
1346                             page_trans_compound_anon(*page)) {
1347                                 flush_anon_page(vma, *page, ksm_scan.address);
1348                                 flush_dcache_page(*page);
1349                                 rmap_item = get_next_rmap_item(slot,
1350                                         ksm_scan.rmap_list, ksm_scan.address);
1351                                 if (rmap_item) {
1352                                         ksm_scan.rmap_list =
1353                                                         &rmap_item->rmap_list;
1354                                         ksm_scan.address += PAGE_SIZE;
1355                                 } else
1356                                         put_page(*page);
1357                                 up_read(&mm->mmap_sem);
1358                                 return rmap_item;
1359                         }
1360                         put_page(*page);
1361                         ksm_scan.address += PAGE_SIZE;
1362                         cond_resched();
1363                 }
1364         }
1365
1366         if (ksm_test_exit(mm)) {
1367                 ksm_scan.address = 0;
1368                 ksm_scan.rmap_list = &slot->rmap_list;
1369         }
1370         /*
1371          * Nuke all the rmap_items that are above this current rmap:
1372          * because there were no VM_MERGEABLE vmas with such addresses.
1373          */
1374         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1375
1376         spin_lock(&ksm_mmlist_lock);
1377         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1378                                                 struct mm_slot, mm_list);
1379         if (ksm_scan.address == 0) {
1380                 /*
1381                  * We've completed a full scan of all vmas, holding mmap_sem
1382                  * throughout, and found no VM_MERGEABLE: so do the same as
1383                  * __ksm_exit does to remove this mm from all our lists now.
1384                  * This applies either when cleaning up after __ksm_exit
1385                  * (but beware: we can reach here even before __ksm_exit),
1386                  * or when all VM_MERGEABLE areas have been unmapped (and
1387                  * mmap_sem then protects against race with MADV_MERGEABLE).
1388                  */
1389                 hash_del(&slot->link);
1390                 list_del(&slot->mm_list);
1391                 spin_unlock(&ksm_mmlist_lock);
1392
1393                 free_mm_slot(slot);
1394                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1395                 up_read(&mm->mmap_sem);
1396                 mmdrop(mm);
1397         } else {
1398                 spin_unlock(&ksm_mmlist_lock);
1399                 up_read(&mm->mmap_sem);
1400         }
1401
1402         /* Repeat until we've completed scanning the whole list */
1403         slot = ksm_scan.mm_slot;
1404         if (slot != &ksm_mm_head)
1405                 goto next_mm;
1406
1407         ksm_scan.seqnr++;
1408         return NULL;
1409 }
1410
1411 /**
1412  * ksm_do_scan  - the ksm scanner main worker function.
1413  * @scan_npages - number of pages we want to scan before we return.
1414  */
1415 static void ksm_do_scan(unsigned int scan_npages)
1416 {
1417         struct rmap_item *rmap_item;
1418         struct page *uninitialized_var(page);
1419
1420         while (scan_npages-- && likely(!freezing(current))) {
1421                 cond_resched();
1422                 rmap_item = scan_get_next_rmap_item(&page);
1423                 if (!rmap_item)
1424                         return;
1425                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1426                         cmp_and_merge_page(page, rmap_item);
1427                 put_page(page);
1428         }
1429 }
1430
1431 static int ksmd_should_run(void)
1432 {
1433         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1434 }
1435
1436 static int ksm_scan_thread(void *nothing)
1437 {
1438         set_freezable();
1439         set_user_nice(current, 5);
1440
1441         while (!kthread_should_stop()) {
1442                 mutex_lock(&ksm_thread_mutex);
1443                 if (ksmd_should_run())
1444                         ksm_do_scan(ksm_thread_pages_to_scan);
1445                 mutex_unlock(&ksm_thread_mutex);
1446
1447                 try_to_freeze();
1448
1449                 if (ksmd_should_run()) {
1450                         schedule_timeout_interruptible(
1451                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1452                 } else {
1453                         wait_event_freezable(ksm_thread_wait,
1454                                 ksmd_should_run() || kthread_should_stop());
1455                 }
1456         }
1457         return 0;
1458 }
1459
1460 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1461                 unsigned long end, int advice, unsigned long *vm_flags)
1462 {
1463         struct mm_struct *mm = vma->vm_mm;
1464         int err;
1465
1466         switch (advice) {
1467         case MADV_MERGEABLE:
1468                 /*
1469                  * Be somewhat over-protective for now!
1470                  */
1471                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1472                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1473                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1474                         return 0;               /* just ignore the advice */
1475
1476 #ifdef VM_SAO
1477                 if (*vm_flags & VM_SAO)
1478                         return 0;
1479 #endif
1480
1481                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1482                         err = __ksm_enter(mm);
1483                         if (err)
1484                                 return err;
1485                 }
1486
1487                 *vm_flags |= VM_MERGEABLE;
1488                 break;
1489
1490         case MADV_UNMERGEABLE:
1491                 if (!(*vm_flags & VM_MERGEABLE))
1492                         return 0;               /* just ignore the advice */
1493
1494                 if (vma->anon_vma) {
1495                         err = unmerge_ksm_pages(vma, start, end);
1496                         if (err)
1497                                 return err;
1498                 }
1499
1500                 *vm_flags &= ~VM_MERGEABLE;
1501                 break;
1502         }
1503
1504         return 0;
1505 }
1506
1507 int __ksm_enter(struct mm_struct *mm)
1508 {
1509         struct mm_slot *mm_slot;
1510         int needs_wakeup;
1511
1512         mm_slot = alloc_mm_slot();
1513         if (!mm_slot)
1514                 return -ENOMEM;
1515
1516         /* Check ksm_run too?  Would need tighter locking */
1517         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1518
1519         spin_lock(&ksm_mmlist_lock);
1520         insert_to_mm_slots_hash(mm, mm_slot);
1521         /*
1522          * Insert just behind the scanning cursor, to let the area settle
1523          * down a little; when fork is followed by immediate exec, we don't
1524          * want ksmd to waste time setting up and tearing down an rmap_list.
1525          */
1526         list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1527         spin_unlock(&ksm_mmlist_lock);
1528
1529         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1530         atomic_inc(&mm->mm_count);
1531
1532         if (needs_wakeup)
1533                 wake_up_interruptible(&ksm_thread_wait);
1534
1535         return 0;
1536 }
1537
1538 void __ksm_exit(struct mm_struct *mm)
1539 {
1540         struct mm_slot *mm_slot;
1541         int easy_to_free = 0;
1542
1543         /*
1544          * This process is exiting: if it's straightforward (as is the
1545          * case when ksmd was never running), free mm_slot immediately.
1546          * But if it's at the cursor or has rmap_items linked to it, use
1547          * mmap_sem to synchronize with any break_cows before pagetables
1548          * are freed, and leave the mm_slot on the list for ksmd to free.
1549          * Beware: ksm may already have noticed it exiting and freed the slot.
1550          */
1551
1552         spin_lock(&ksm_mmlist_lock);
1553         mm_slot = get_mm_slot(mm);
1554         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1555                 if (!mm_slot->rmap_list) {
1556                         hash_del(&mm_slot->link);
1557                         list_del(&mm_slot->mm_list);
1558                         easy_to_free = 1;
1559                 } else {
1560                         list_move(&mm_slot->mm_list,
1561                                   &ksm_scan.mm_slot->mm_list);
1562                 }
1563         }
1564         spin_unlock(&ksm_mmlist_lock);
1565
1566         if (easy_to_free) {
1567                 free_mm_slot(mm_slot);
1568                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1569                 mmdrop(mm);
1570         } else if (mm_slot) {
1571                 down_write(&mm->mmap_sem);
1572                 up_write(&mm->mmap_sem);
1573         }
1574 }
1575
1576 struct page *ksm_does_need_to_copy(struct page *page,
1577                         struct vm_area_struct *vma, unsigned long address)
1578 {
1579         struct page *new_page;
1580
1581         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1582         if (new_page) {
1583                 copy_user_highpage(new_page, page, address, vma);
1584
1585                 SetPageDirty(new_page);
1586                 __SetPageUptodate(new_page);
1587                 __set_page_locked(new_page);
1588         }
1589
1590         return new_page;
1591 }
1592
1593 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1594                         unsigned long *vm_flags)
1595 {
1596         struct stable_node *stable_node;
1597         struct rmap_item *rmap_item;
1598         struct hlist_node *hlist;
1599         unsigned int mapcount = page_mapcount(page);
1600         int referenced = 0;
1601         int search_new_forks = 0;
1602
1603         VM_BUG_ON(!PageKsm(page));
1604         VM_BUG_ON(!PageLocked(page));
1605
1606         stable_node = page_stable_node(page);
1607         if (!stable_node)
1608                 return 0;
1609 again:
1610         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1611                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1612                 struct anon_vma_chain *vmac;
1613                 struct vm_area_struct *vma;
1614
1615                 anon_vma_lock_read(anon_vma);
1616                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1617                                                0, ULONG_MAX) {
1618                         vma = vmac->vma;
1619                         if (rmap_item->address < vma->vm_start ||
1620                             rmap_item->address >= vma->vm_end)
1621                                 continue;
1622                         /*
1623                          * Initially we examine only the vma which covers this
1624                          * rmap_item; but later, if there is still work to do,
1625                          * we examine covering vmas in other mms: in case they
1626                          * were forked from the original since ksmd passed.
1627                          */
1628                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1629                                 continue;
1630
1631                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1632                                 continue;
1633
1634                         referenced += page_referenced_one(page, vma,
1635                                 rmap_item->address, &mapcount, vm_flags);
1636                         if (!search_new_forks || !mapcount)
1637                                 break;
1638                 }
1639                 anon_vma_unlock_read(anon_vma);
1640                 if (!mapcount)
1641                         goto out;
1642         }
1643         if (!search_new_forks++)
1644                 goto again;
1645 out:
1646         return referenced;
1647 }
1648
1649 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1650 {
1651         struct stable_node *stable_node;
1652         struct hlist_node *hlist;
1653         struct rmap_item *rmap_item;
1654         int ret = SWAP_AGAIN;
1655         int search_new_forks = 0;
1656
1657         VM_BUG_ON(!PageKsm(page));
1658         VM_BUG_ON(!PageLocked(page));
1659
1660         stable_node = page_stable_node(page);
1661         if (!stable_node)
1662                 return SWAP_FAIL;
1663 again:
1664         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1665                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1666                 struct anon_vma_chain *vmac;
1667                 struct vm_area_struct *vma;
1668
1669                 anon_vma_lock_read(anon_vma);
1670                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1671                                                0, ULONG_MAX) {
1672                         vma = vmac->vma;
1673                         if (rmap_item->address < vma->vm_start ||
1674                             rmap_item->address >= vma->vm_end)
1675                                 continue;
1676                         /*
1677                          * Initially we examine only the vma which covers this
1678                          * rmap_item; but later, if there is still work to do,
1679                          * we examine covering vmas in other mms: in case they
1680                          * were forked from the original since ksmd passed.
1681                          */
1682                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1683                                 continue;
1684
1685                         ret = try_to_unmap_one(page, vma,
1686                                         rmap_item->address, flags);
1687                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1688                                 anon_vma_unlock_read(anon_vma);
1689                                 goto out;
1690                         }
1691                 }
1692                 anon_vma_unlock_read(anon_vma);
1693         }
1694         if (!search_new_forks++)
1695                 goto again;
1696 out:
1697         return ret;
1698 }
1699
1700 #ifdef CONFIG_MIGRATION
1701 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1702                   struct vm_area_struct *, unsigned long, void *), void *arg)
1703 {
1704         struct stable_node *stable_node;
1705         struct hlist_node *hlist;
1706         struct rmap_item *rmap_item;
1707         int ret = SWAP_AGAIN;
1708         int search_new_forks = 0;
1709
1710         VM_BUG_ON(!PageKsm(page));
1711         VM_BUG_ON(!PageLocked(page));
1712
1713         stable_node = page_stable_node(page);
1714         if (!stable_node)
1715                 return ret;
1716 again:
1717         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1718                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1719                 struct anon_vma_chain *vmac;
1720                 struct vm_area_struct *vma;
1721
1722                 anon_vma_lock_read(anon_vma);
1723                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1724                                                0, ULONG_MAX) {
1725                         vma = vmac->vma;
1726                         if (rmap_item->address < vma->vm_start ||
1727                             rmap_item->address >= vma->vm_end)
1728                                 continue;
1729                         /*
1730                          * Initially we examine only the vma which covers this
1731                          * rmap_item; but later, if there is still work to do,
1732                          * we examine covering vmas in other mms: in case they
1733                          * were forked from the original since ksmd passed.
1734                          */
1735                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1736                                 continue;
1737
1738                         ret = rmap_one(page, vma, rmap_item->address, arg);
1739                         if (ret != SWAP_AGAIN) {
1740                                 anon_vma_unlock_read(anon_vma);
1741                                 goto out;
1742                         }
1743                 }
1744                 anon_vma_unlock_read(anon_vma);
1745         }
1746         if (!search_new_forks++)
1747                 goto again;
1748 out:
1749         return ret;
1750 }
1751
1752 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1753 {
1754         struct stable_node *stable_node;
1755
1756         VM_BUG_ON(!PageLocked(oldpage));
1757         VM_BUG_ON(!PageLocked(newpage));
1758         VM_BUG_ON(newpage->mapping != oldpage->mapping);
1759
1760         stable_node = page_stable_node(newpage);
1761         if (stable_node) {
1762                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1763                 stable_node->kpfn = page_to_pfn(newpage);
1764         }
1765 }
1766 #endif /* CONFIG_MIGRATION */
1767
1768 #ifdef CONFIG_MEMORY_HOTREMOVE
1769 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1770                                                  unsigned long end_pfn)
1771 {
1772         struct rb_node *node;
1773
1774         for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1775                 struct stable_node *stable_node;
1776
1777                 stable_node = rb_entry(node, struct stable_node, node);
1778                 if (stable_node->kpfn >= start_pfn &&
1779                     stable_node->kpfn < end_pfn)
1780                         return stable_node;
1781         }
1782         return NULL;
1783 }
1784
1785 static int ksm_memory_callback(struct notifier_block *self,
1786                                unsigned long action, void *arg)
1787 {
1788         struct memory_notify *mn = arg;
1789         struct stable_node *stable_node;
1790
1791         switch (action) {
1792         case MEM_GOING_OFFLINE:
1793                 /*
1794                  * Keep it very simple for now: just lock out ksmd and
1795                  * MADV_UNMERGEABLE while any memory is going offline.
1796                  * mutex_lock_nested() is necessary because lockdep was alarmed
1797                  * that here we take ksm_thread_mutex inside notifier chain
1798                  * mutex, and later take notifier chain mutex inside
1799                  * ksm_thread_mutex to unlock it.   But that's safe because both
1800                  * are inside mem_hotplug_mutex.
1801                  */
1802                 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1803                 break;
1804
1805         case MEM_OFFLINE:
1806                 /*
1807                  * Most of the work is done by page migration; but there might
1808                  * be a few stable_nodes left over, still pointing to struct
1809                  * pages which have been offlined: prune those from the tree.
1810                  */
1811                 while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1812                                         mn->start_pfn + mn->nr_pages)) != NULL)
1813                         remove_node_from_stable_tree(stable_node);
1814                 /* fallthrough */
1815
1816         case MEM_CANCEL_OFFLINE:
1817                 mutex_unlock(&ksm_thread_mutex);
1818                 break;
1819         }
1820         return NOTIFY_OK;
1821 }
1822 #endif /* CONFIG_MEMORY_HOTREMOVE */
1823
1824 #ifdef CONFIG_SYSFS
1825 /*
1826  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1827  */
1828
1829 #define KSM_ATTR_RO(_name) \
1830         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1831 #define KSM_ATTR(_name) \
1832         static struct kobj_attribute _name##_attr = \
1833                 __ATTR(_name, 0644, _name##_show, _name##_store)
1834
1835 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1836                                     struct kobj_attribute *attr, char *buf)
1837 {
1838         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1839 }
1840
1841 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1842                                      struct kobj_attribute *attr,
1843                                      const char *buf, size_t count)
1844 {
1845         unsigned long msecs;
1846         int err;
1847
1848         err = strict_strtoul(buf, 10, &msecs);
1849         if (err || msecs > UINT_MAX)
1850                 return -EINVAL;
1851
1852         ksm_thread_sleep_millisecs = msecs;
1853
1854         return count;
1855 }
1856 KSM_ATTR(sleep_millisecs);
1857
1858 static ssize_t pages_to_scan_show(struct kobject *kobj,
1859                                   struct kobj_attribute *attr, char *buf)
1860 {
1861         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1862 }
1863
1864 static ssize_t pages_to_scan_store(struct kobject *kobj,
1865                                    struct kobj_attribute *attr,
1866                                    const char *buf, size_t count)
1867 {
1868         int err;
1869         unsigned long nr_pages;
1870
1871         err = strict_strtoul(buf, 10, &nr_pages);
1872         if (err || nr_pages > UINT_MAX)
1873                 return -EINVAL;
1874
1875         ksm_thread_pages_to_scan = nr_pages;
1876
1877         return count;
1878 }
1879 KSM_ATTR(pages_to_scan);
1880
1881 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1882                         char *buf)
1883 {
1884         return sprintf(buf, "%u\n", ksm_run);
1885 }
1886
1887 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1888                          const char *buf, size_t count)
1889 {
1890         int err;
1891         unsigned long flags;
1892
1893         err = strict_strtoul(buf, 10, &flags);
1894         if (err || flags > UINT_MAX)
1895                 return -EINVAL;
1896         if (flags > KSM_RUN_UNMERGE)
1897                 return -EINVAL;
1898
1899         /*
1900          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1901          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1902          * breaking COW to free the pages_shared (but leaves mm_slots
1903          * on the list for when ksmd may be set running again).
1904          */
1905
1906         mutex_lock(&ksm_thread_mutex);
1907         if (ksm_run != flags) {
1908                 ksm_run = flags;
1909                 if (flags & KSM_RUN_UNMERGE) {
1910                         set_current_oom_origin();
1911                         err = unmerge_and_remove_all_rmap_items();
1912                         clear_current_oom_origin();
1913                         if (err) {
1914                                 ksm_run = KSM_RUN_STOP;
1915                                 count = err;
1916                         }
1917                 }
1918         }
1919         mutex_unlock(&ksm_thread_mutex);
1920
1921         if (flags & KSM_RUN_MERGE)
1922                 wake_up_interruptible(&ksm_thread_wait);
1923
1924         return count;
1925 }
1926 KSM_ATTR(run);
1927
1928 static ssize_t pages_shared_show(struct kobject *kobj,
1929                                  struct kobj_attribute *attr, char *buf)
1930 {
1931         return sprintf(buf, "%lu\n", ksm_pages_shared);
1932 }
1933 KSM_ATTR_RO(pages_shared);
1934
1935 static ssize_t pages_sharing_show(struct kobject *kobj,
1936                                   struct kobj_attribute *attr, char *buf)
1937 {
1938         return sprintf(buf, "%lu\n", ksm_pages_sharing);
1939 }
1940 KSM_ATTR_RO(pages_sharing);
1941
1942 static ssize_t pages_unshared_show(struct kobject *kobj,
1943                                    struct kobj_attribute *attr, char *buf)
1944 {
1945         return sprintf(buf, "%lu\n", ksm_pages_unshared);
1946 }
1947 KSM_ATTR_RO(pages_unshared);
1948
1949 static ssize_t pages_volatile_show(struct kobject *kobj,
1950                                    struct kobj_attribute *attr, char *buf)
1951 {
1952         long ksm_pages_volatile;
1953
1954         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1955                                 - ksm_pages_sharing - ksm_pages_unshared;
1956         /*
1957          * It was not worth any locking to calculate that statistic,
1958          * but it might therefore sometimes be negative: conceal that.
1959          */
1960         if (ksm_pages_volatile < 0)
1961                 ksm_pages_volatile = 0;
1962         return sprintf(buf, "%ld\n", ksm_pages_volatile);
1963 }
1964 KSM_ATTR_RO(pages_volatile);
1965
1966 static ssize_t full_scans_show(struct kobject *kobj,
1967                                struct kobj_attribute *attr, char *buf)
1968 {
1969         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1970 }
1971 KSM_ATTR_RO(full_scans);
1972
1973 static struct attribute *ksm_attrs[] = {
1974         &sleep_millisecs_attr.attr,
1975         &pages_to_scan_attr.attr,
1976         &run_attr.attr,
1977         &pages_shared_attr.attr,
1978         &pages_sharing_attr.attr,
1979         &pages_unshared_attr.attr,
1980         &pages_volatile_attr.attr,
1981         &full_scans_attr.attr,
1982         NULL,
1983 };
1984
1985 static struct attribute_group ksm_attr_group = {
1986         .attrs = ksm_attrs,
1987         .name = "ksm",
1988 };
1989 #endif /* CONFIG_SYSFS */
1990
1991 static int __init ksm_init(void)
1992 {
1993         struct task_struct *ksm_thread;
1994         int err;
1995
1996         err = ksm_slab_init();
1997         if (err)
1998                 goto out;
1999
2000         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2001         if (IS_ERR(ksm_thread)) {
2002                 printk(KERN_ERR "ksm: creating kthread failed\n");
2003                 err = PTR_ERR(ksm_thread);
2004                 goto out_free;
2005         }
2006
2007 #ifdef CONFIG_SYSFS
2008         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2009         if (err) {
2010                 printk(KERN_ERR "ksm: register sysfs failed\n");
2011                 kthread_stop(ksm_thread);
2012                 goto out_free;
2013         }
2014 #else
2015         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2016
2017 #endif /* CONFIG_SYSFS */
2018
2019 #ifdef CONFIG_MEMORY_HOTREMOVE
2020         /*
2021          * Choose a high priority since the callback takes ksm_thread_mutex:
2022          * later callbacks could only be taking locks which nest within that.
2023          */
2024         hotplug_memory_notifier(ksm_memory_callback, 100);
2025 #endif
2026         return 0;
2027
2028 out_free:
2029         ksm_slab_free();
2030 out:
2031         return err;
2032 }
2033 module_init(ksm_init)