parisc: Mark ex_table entries 32-bit aligned in uaccess.h
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 #include "mm_slot.h"
46
47 #ifdef CONFIG_NUMA
48 #define NUMA(x)         (x)
49 #define DO_NUMA(x)      do { (x); } while (0)
50 #else
51 #define NUMA(x)         (0)
52 #define DO_NUMA(x)      do { } while (0)
53 #endif
54
55 /**
56  * DOC: Overview
57  *
58  * A few notes about the KSM scanning process,
59  * to make it easier to understand the data structures below:
60  *
61  * In order to reduce excessive scanning, KSM sorts the memory pages by their
62  * contents into a data structure that holds pointers to the pages' locations.
63  *
64  * Since the contents of the pages may change at any moment, KSM cannot just
65  * insert the pages into a normal sorted tree and expect it to find anything.
66  * Therefore KSM uses two data structures - the stable and the unstable tree.
67  *
68  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
69  * by their contents.  Because each such page is write-protected, searching on
70  * this tree is fully assured to be working (except when pages are unmapped),
71  * and therefore this tree is called the stable tree.
72  *
73  * The stable tree node includes information required for reverse
74  * mapping from a KSM page to virtual addresses that map this page.
75  *
76  * In order to avoid large latencies of the rmap walks on KSM pages,
77  * KSM maintains two types of nodes in the stable tree:
78  *
79  * * the regular nodes that keep the reverse mapping structures in a
80  *   linked list
81  * * the "chains" that link nodes ("dups") that represent the same
82  *   write protected memory content, but each "dup" corresponds to a
83  *   different KSM page copy of that content
84  *
85  * Internally, the regular nodes, "dups" and "chains" are represented
86  * using the same struct ksm_stable_node structure.
87  *
88  * In addition to the stable tree, KSM uses a second data structure called the
89  * unstable tree: this tree holds pointers to pages which have been found to
90  * be "unchanged for a period of time".  The unstable tree sorts these pages
91  * by their contents, but since they are not write-protected, KSM cannot rely
92  * upon the unstable tree to work correctly - the unstable tree is liable to
93  * be corrupted as its contents are modified, and so it is called unstable.
94  *
95  * KSM solves this problem by several techniques:
96  *
97  * 1) The unstable tree is flushed every time KSM completes scanning all
98  *    memory areas, and then the tree is rebuilt again from the beginning.
99  * 2) KSM will only insert into the unstable tree, pages whose hash value
100  *    has not changed since the previous scan of all memory areas.
101  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
102  *    colors of the nodes and not on their contents, assuring that even when
103  *    the tree gets "corrupted" it won't get out of balance, so scanning time
104  *    remains the same (also, searching and inserting nodes in an rbtree uses
105  *    the same algorithm, so we have no overhead when we flush and rebuild).
106  * 4) KSM never flushes the stable tree, which means that even if it were to
107  *    take 10 attempts to find a page in the unstable tree, once it is found,
108  *    it is secured in the stable tree.  (When we scan a new page, we first
109  *    compare it against the stable tree, and then against the unstable tree.)
110  *
111  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
112  * stable trees and multiple unstable trees: one of each for each NUMA node.
113  */
114
115 /**
116  * struct ksm_mm_slot - ksm information per mm that is being scanned
117  * @slot: hash lookup from mm to mm_slot
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  */
120 struct ksm_mm_slot {
121         struct mm_slot slot;
122         struct ksm_rmap_item *rmap_list;
123 };
124
125 /**
126  * struct ksm_scan - cursor for scanning
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  * @rmap_list: link to the next rmap to be scanned in the rmap_list
130  * @seqnr: count of completed full scans (needed when removing unstable node)
131  *
132  * There is only the one ksm_scan instance of this cursor structure.
133  */
134 struct ksm_scan {
135         struct ksm_mm_slot *mm_slot;
136         unsigned long address;
137         struct ksm_rmap_item **rmap_list;
138         unsigned long seqnr;
139 };
140
141 /**
142  * struct ksm_stable_node - node of the stable rbtree
143  * @node: rb node of this ksm page in the stable tree
144  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
145  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
146  * @list: linked into migrate_nodes, pending placement in the proper node tree
147  * @hlist: hlist head of rmap_items using this ksm page
148  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
149  * @chain_prune_time: time of the last full garbage collection
150  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
151  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
152  */
153 struct ksm_stable_node {
154         union {
155                 struct rb_node node;    /* when node of stable tree */
156                 struct {                /* when listed for migration */
157                         struct list_head *head;
158                         struct {
159                                 struct hlist_node hlist_dup;
160                                 struct list_head list;
161                         };
162                 };
163         };
164         struct hlist_head hlist;
165         union {
166                 unsigned long kpfn;
167                 unsigned long chain_prune_time;
168         };
169         /*
170          * STABLE_NODE_CHAIN can be any negative number in
171          * rmap_hlist_len negative range, but better not -1 to be able
172          * to reliably detect underflows.
173          */
174 #define STABLE_NODE_CHAIN -1024
175         int rmap_hlist_len;
176 #ifdef CONFIG_NUMA
177         int nid;
178 #endif
179 };
180
181 /**
182  * struct ksm_rmap_item - reverse mapping item for virtual addresses
183  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
184  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
185  * @nid: NUMA node id of unstable tree in which linked (may not match page)
186  * @mm: the memory structure this rmap_item is pointing into
187  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
188  * @oldchecksum: previous checksum of the page at that virtual address
189  * @node: rb node of this rmap_item in the unstable tree
190  * @head: pointer to stable_node heading this list in the stable tree
191  * @hlist: link into hlist of rmap_items hanging off that stable_node
192  */
193 struct ksm_rmap_item {
194         struct ksm_rmap_item *rmap_list;
195         union {
196                 struct anon_vma *anon_vma;      /* when stable */
197 #ifdef CONFIG_NUMA
198                 int nid;                /* when node of unstable tree */
199 #endif
200         };
201         struct mm_struct *mm;
202         unsigned long address;          /* + low bits used for flags below */
203         unsigned int oldchecksum;       /* when unstable */
204         union {
205                 struct rb_node node;    /* when node of unstable tree */
206                 struct {                /* when listed from stable tree */
207                         struct ksm_stable_node *head;
208                         struct hlist_node hlist;
209                 };
210         };
211 };
212
213 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
214 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
215 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
216
217 /* The stable and unstable tree heads */
218 static struct rb_root one_stable_tree[1] = { RB_ROOT };
219 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
220 static struct rb_root *root_stable_tree = one_stable_tree;
221 static struct rb_root *root_unstable_tree = one_unstable_tree;
222
223 /* Recently migrated nodes of stable tree, pending proper placement */
224 static LIST_HEAD(migrate_nodes);
225 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
226
227 #define MM_SLOTS_HASH_BITS 10
228 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
229
230 static struct ksm_mm_slot ksm_mm_head = {
231         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
232 };
233 static struct ksm_scan ksm_scan = {
234         .mm_slot = &ksm_mm_head,
235 };
236
237 static struct kmem_cache *rmap_item_cache;
238 static struct kmem_cache *stable_node_cache;
239 static struct kmem_cache *mm_slot_cache;
240
241 /* The number of nodes in the stable tree */
242 static unsigned long ksm_pages_shared;
243
244 /* The number of page slots additionally sharing those nodes */
245 static unsigned long ksm_pages_sharing;
246
247 /* The number of nodes in the unstable tree */
248 static unsigned long ksm_pages_unshared;
249
250 /* The number of rmap_items in use: to calculate pages_volatile */
251 static unsigned long ksm_rmap_items;
252
253 /* The number of stable_node chains */
254 static unsigned long ksm_stable_node_chains;
255
256 /* The number of stable_node dups linked to the stable_node chains */
257 static unsigned long ksm_stable_node_dups;
258
259 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
260 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
261
262 /* Maximum number of page slots sharing a stable node */
263 static int ksm_max_page_sharing = 256;
264
265 /* Number of pages ksmd should scan in one batch */
266 static unsigned int ksm_thread_pages_to_scan = 100;
267
268 /* Milliseconds ksmd should sleep between batches */
269 static unsigned int ksm_thread_sleep_millisecs = 20;
270
271 /* Checksum of an empty (zeroed) page */
272 static unsigned int zero_checksum __read_mostly;
273
274 /* Whether to merge empty (zeroed) pages with actual zero pages */
275 static bool ksm_use_zero_pages __read_mostly;
276
277 #ifdef CONFIG_NUMA
278 /* Zeroed when merging across nodes is not allowed */
279 static unsigned int ksm_merge_across_nodes = 1;
280 static int ksm_nr_node_ids = 1;
281 #else
282 #define ksm_merge_across_nodes  1U
283 #define ksm_nr_node_ids         1
284 #endif
285
286 #define KSM_RUN_STOP    0
287 #define KSM_RUN_MERGE   1
288 #define KSM_RUN_UNMERGE 2
289 #define KSM_RUN_OFFLINE 4
290 static unsigned long ksm_run = KSM_RUN_STOP;
291 static void wait_while_offlining(void);
292
293 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
294 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
295 static DEFINE_MUTEX(ksm_thread_mutex);
296 static DEFINE_SPINLOCK(ksm_mmlist_lock);
297
298 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
299                 sizeof(struct __struct), __alignof__(struct __struct),\
300                 (__flags), NULL)
301
302 static int __init ksm_slab_init(void)
303 {
304         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
305         if (!rmap_item_cache)
306                 goto out;
307
308         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
309         if (!stable_node_cache)
310                 goto out_free1;
311
312         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
313         if (!mm_slot_cache)
314                 goto out_free2;
315
316         return 0;
317
318 out_free2:
319         kmem_cache_destroy(stable_node_cache);
320 out_free1:
321         kmem_cache_destroy(rmap_item_cache);
322 out:
323         return -ENOMEM;
324 }
325
326 static void __init ksm_slab_free(void)
327 {
328         kmem_cache_destroy(mm_slot_cache);
329         kmem_cache_destroy(stable_node_cache);
330         kmem_cache_destroy(rmap_item_cache);
331         mm_slot_cache = NULL;
332 }
333
334 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
335 {
336         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
337 }
338
339 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
340 {
341         return dup->head == STABLE_NODE_DUP_HEAD;
342 }
343
344 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
345                                              struct ksm_stable_node *chain)
346 {
347         VM_BUG_ON(is_stable_node_dup(dup));
348         dup->head = STABLE_NODE_DUP_HEAD;
349         VM_BUG_ON(!is_stable_node_chain(chain));
350         hlist_add_head(&dup->hlist_dup, &chain->hlist);
351         ksm_stable_node_dups++;
352 }
353
354 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
355 {
356         VM_BUG_ON(!is_stable_node_dup(dup));
357         hlist_del(&dup->hlist_dup);
358         ksm_stable_node_dups--;
359 }
360
361 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
362 {
363         VM_BUG_ON(is_stable_node_chain(dup));
364         if (is_stable_node_dup(dup))
365                 __stable_node_dup_del(dup);
366         else
367                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
368 #ifdef CONFIG_DEBUG_VM
369         dup->head = NULL;
370 #endif
371 }
372
373 static inline struct ksm_rmap_item *alloc_rmap_item(void)
374 {
375         struct ksm_rmap_item *rmap_item;
376
377         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
378                                                 __GFP_NORETRY | __GFP_NOWARN);
379         if (rmap_item)
380                 ksm_rmap_items++;
381         return rmap_item;
382 }
383
384 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
385 {
386         ksm_rmap_items--;
387         rmap_item->mm->ksm_rmap_items--;
388         rmap_item->mm = NULL;   /* debug safety */
389         kmem_cache_free(rmap_item_cache, rmap_item);
390 }
391
392 static inline struct ksm_stable_node *alloc_stable_node(void)
393 {
394         /*
395          * The allocation can take too long with GFP_KERNEL when memory is under
396          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
397          * grants access to memory reserves, helping to avoid this problem.
398          */
399         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
400 }
401
402 static inline void free_stable_node(struct ksm_stable_node *stable_node)
403 {
404         VM_BUG_ON(stable_node->rmap_hlist_len &&
405                   !is_stable_node_chain(stable_node));
406         kmem_cache_free(stable_node_cache, stable_node);
407 }
408
409 /*
410  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
411  * page tables after it has passed through ksm_exit() - which, if necessary,
412  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
413  * a special flag: they can just back out as soon as mm_users goes to zero.
414  * ksm_test_exit() is used throughout to make this test for exit: in some
415  * places for correctness, in some places just to avoid unnecessary work.
416  */
417 static inline bool ksm_test_exit(struct mm_struct *mm)
418 {
419         return atomic_read(&mm->mm_users) == 0;
420 }
421
422 /*
423  * We use break_ksm to break COW on a ksm page: it's a stripped down
424  *
425  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
426  *              put_page(page);
427  *
428  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
429  * in case the application has unmapped and remapped mm,addr meanwhile.
430  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
431  * mmap of /dev/mem, where we would not want to touch it.
432  *
433  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
434  * of the process that owns 'vma'.  We also do not want to enforce
435  * protection keys here anyway.
436  */
437 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
438 {
439         struct page *page;
440         vm_fault_t ret = 0;
441
442         do {
443                 cond_resched();
444                 page = follow_page(vma, addr,
445                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
446                 if (IS_ERR_OR_NULL(page))
447                         break;
448                 if (PageKsm(page))
449                         ret = handle_mm_fault(vma, addr,
450                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
451                                               NULL);
452                 else
453                         ret = VM_FAULT_WRITE;
454                 put_page(page);
455         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
456         /*
457          * We must loop because handle_mm_fault() may back out if there's
458          * any difficulty e.g. if pte accessed bit gets updated concurrently.
459          *
460          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
461          * COW has been broken, even if the vma does not permit VM_WRITE;
462          * but note that a concurrent fault might break PageKsm for us.
463          *
464          * VM_FAULT_SIGBUS could occur if we race with truncation of the
465          * backing file, which also invalidates anonymous pages: that's
466          * okay, that truncation will have unmapped the PageKsm for us.
467          *
468          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
469          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
470          * current task has TIF_MEMDIE set, and will be OOM killed on return
471          * to user; and ksmd, having no mm, would never be chosen for that.
472          *
473          * But if the mm is in a limited mem_cgroup, then the fault may fail
474          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
475          * even ksmd can fail in this way - though it's usually breaking ksm
476          * just to undo a merge it made a moment before, so unlikely to oom.
477          *
478          * That's a pity: we might therefore have more kernel pages allocated
479          * than we're counting as nodes in the stable tree; but ksm_do_scan
480          * will retry to break_cow on each pass, so should recover the page
481          * in due course.  The important thing is to not let VM_MERGEABLE
482          * be cleared while any such pages might remain in the area.
483          */
484         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
485 }
486
487 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
488                 unsigned long addr)
489 {
490         struct vm_area_struct *vma;
491         if (ksm_test_exit(mm))
492                 return NULL;
493         vma = vma_lookup(mm, addr);
494         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
495                 return NULL;
496         return vma;
497 }
498
499 static void break_cow(struct ksm_rmap_item *rmap_item)
500 {
501         struct mm_struct *mm = rmap_item->mm;
502         unsigned long addr = rmap_item->address;
503         struct vm_area_struct *vma;
504
505         /*
506          * It is not an accident that whenever we want to break COW
507          * to undo, we also need to drop a reference to the anon_vma.
508          */
509         put_anon_vma(rmap_item->anon_vma);
510
511         mmap_read_lock(mm);
512         vma = find_mergeable_vma(mm, addr);
513         if (vma)
514                 break_ksm(vma, addr);
515         mmap_read_unlock(mm);
516 }
517
518 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
519 {
520         struct mm_struct *mm = rmap_item->mm;
521         unsigned long addr = rmap_item->address;
522         struct vm_area_struct *vma;
523         struct page *page;
524
525         mmap_read_lock(mm);
526         vma = find_mergeable_vma(mm, addr);
527         if (!vma)
528                 goto out;
529
530         page = follow_page(vma, addr, FOLL_GET);
531         if (IS_ERR_OR_NULL(page))
532                 goto out;
533         if (is_zone_device_page(page))
534                 goto out_putpage;
535         if (PageAnon(page)) {
536                 flush_anon_page(vma, page, addr);
537                 flush_dcache_page(page);
538         } else {
539 out_putpage:
540                 put_page(page);
541 out:
542                 page = NULL;
543         }
544         mmap_read_unlock(mm);
545         return page;
546 }
547
548 /*
549  * This helper is used for getting right index into array of tree roots.
550  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
551  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
552  * every node has its own stable and unstable tree.
553  */
554 static inline int get_kpfn_nid(unsigned long kpfn)
555 {
556         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
557 }
558
559 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
560                                                    struct rb_root *root)
561 {
562         struct ksm_stable_node *chain = alloc_stable_node();
563         VM_BUG_ON(is_stable_node_chain(dup));
564         if (likely(chain)) {
565                 INIT_HLIST_HEAD(&chain->hlist);
566                 chain->chain_prune_time = jiffies;
567                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
568 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
569                 chain->nid = NUMA_NO_NODE; /* debug */
570 #endif
571                 ksm_stable_node_chains++;
572
573                 /*
574                  * Put the stable node chain in the first dimension of
575                  * the stable tree and at the same time remove the old
576                  * stable node.
577                  */
578                 rb_replace_node(&dup->node, &chain->node, root);
579
580                 /*
581                  * Move the old stable node to the second dimension
582                  * queued in the hlist_dup. The invariant is that all
583                  * dup stable_nodes in the chain->hlist point to pages
584                  * that are write protected and have the exact same
585                  * content.
586                  */
587                 stable_node_chain_add_dup(dup, chain);
588         }
589         return chain;
590 }
591
592 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
593                                           struct rb_root *root)
594 {
595         rb_erase(&chain->node, root);
596         free_stable_node(chain);
597         ksm_stable_node_chains--;
598 }
599
600 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
601 {
602         struct ksm_rmap_item *rmap_item;
603
604         /* check it's not STABLE_NODE_CHAIN or negative */
605         BUG_ON(stable_node->rmap_hlist_len < 0);
606
607         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
608                 if (rmap_item->hlist.next)
609                         ksm_pages_sharing--;
610                 else
611                         ksm_pages_shared--;
612
613                 rmap_item->mm->ksm_merging_pages--;
614
615                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
616                 stable_node->rmap_hlist_len--;
617                 put_anon_vma(rmap_item->anon_vma);
618                 rmap_item->address &= PAGE_MASK;
619                 cond_resched();
620         }
621
622         /*
623          * We need the second aligned pointer of the migrate_nodes
624          * list_head to stay clear from the rb_parent_color union
625          * (aligned and different than any node) and also different
626          * from &migrate_nodes. This will verify that future list.h changes
627          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
628          */
629         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
630         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
631
632         if (stable_node->head == &migrate_nodes)
633                 list_del(&stable_node->list);
634         else
635                 stable_node_dup_del(stable_node);
636         free_stable_node(stable_node);
637 }
638
639 enum get_ksm_page_flags {
640         GET_KSM_PAGE_NOLOCK,
641         GET_KSM_PAGE_LOCK,
642         GET_KSM_PAGE_TRYLOCK
643 };
644
645 /*
646  * get_ksm_page: checks if the page indicated by the stable node
647  * is still its ksm page, despite having held no reference to it.
648  * In which case we can trust the content of the page, and it
649  * returns the gotten page; but if the page has now been zapped,
650  * remove the stale node from the stable tree and return NULL.
651  * But beware, the stable node's page might be being migrated.
652  *
653  * You would expect the stable_node to hold a reference to the ksm page.
654  * But if it increments the page's count, swapping out has to wait for
655  * ksmd to come around again before it can free the page, which may take
656  * seconds or even minutes: much too unresponsive.  So instead we use a
657  * "keyhole reference": access to the ksm page from the stable node peeps
658  * out through its keyhole to see if that page still holds the right key,
659  * pointing back to this stable node.  This relies on freeing a PageAnon
660  * page to reset its page->mapping to NULL, and relies on no other use of
661  * a page to put something that might look like our key in page->mapping.
662  * is on its way to being freed; but it is an anomaly to bear in mind.
663  */
664 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
665                                  enum get_ksm_page_flags flags)
666 {
667         struct page *page;
668         void *expected_mapping;
669         unsigned long kpfn;
670
671         expected_mapping = (void *)((unsigned long)stable_node |
672                                         PAGE_MAPPING_KSM);
673 again:
674         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
675         page = pfn_to_page(kpfn);
676         if (READ_ONCE(page->mapping) != expected_mapping)
677                 goto stale;
678
679         /*
680          * We cannot do anything with the page while its refcount is 0.
681          * Usually 0 means free, or tail of a higher-order page: in which
682          * case this node is no longer referenced, and should be freed;
683          * however, it might mean that the page is under page_ref_freeze().
684          * The __remove_mapping() case is easy, again the node is now stale;
685          * the same is in reuse_ksm_page() case; but if page is swapcache
686          * in folio_migrate_mapping(), it might still be our page,
687          * in which case it's essential to keep the node.
688          */
689         while (!get_page_unless_zero(page)) {
690                 /*
691                  * Another check for page->mapping != expected_mapping would
692                  * work here too.  We have chosen the !PageSwapCache test to
693                  * optimize the common case, when the page is or is about to
694                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
695                  * in the ref_freeze section of __remove_mapping(); but Anon
696                  * page->mapping reset to NULL later, in free_pages_prepare().
697                  */
698                 if (!PageSwapCache(page))
699                         goto stale;
700                 cpu_relax();
701         }
702
703         if (READ_ONCE(page->mapping) != expected_mapping) {
704                 put_page(page);
705                 goto stale;
706         }
707
708         if (flags == GET_KSM_PAGE_TRYLOCK) {
709                 if (!trylock_page(page)) {
710                         put_page(page);
711                         return ERR_PTR(-EBUSY);
712                 }
713         } else if (flags == GET_KSM_PAGE_LOCK)
714                 lock_page(page);
715
716         if (flags != GET_KSM_PAGE_NOLOCK) {
717                 if (READ_ONCE(page->mapping) != expected_mapping) {
718                         unlock_page(page);
719                         put_page(page);
720                         goto stale;
721                 }
722         }
723         return page;
724
725 stale:
726         /*
727          * We come here from above when page->mapping or !PageSwapCache
728          * suggests that the node is stale; but it might be under migration.
729          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
730          * before checking whether node->kpfn has been changed.
731          */
732         smp_rmb();
733         if (READ_ONCE(stable_node->kpfn) != kpfn)
734                 goto again;
735         remove_node_from_stable_tree(stable_node);
736         return NULL;
737 }
738
739 /*
740  * Removing rmap_item from stable or unstable tree.
741  * This function will clean the information from the stable/unstable tree.
742  */
743 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
744 {
745         if (rmap_item->address & STABLE_FLAG) {
746                 struct ksm_stable_node *stable_node;
747                 struct page *page;
748
749                 stable_node = rmap_item->head;
750                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
751                 if (!page)
752                         goto out;
753
754                 hlist_del(&rmap_item->hlist);
755                 unlock_page(page);
756                 put_page(page);
757
758                 if (!hlist_empty(&stable_node->hlist))
759                         ksm_pages_sharing--;
760                 else
761                         ksm_pages_shared--;
762
763                 rmap_item->mm->ksm_merging_pages--;
764
765                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766                 stable_node->rmap_hlist_len--;
767
768                 put_anon_vma(rmap_item->anon_vma);
769                 rmap_item->head = NULL;
770                 rmap_item->address &= PAGE_MASK;
771
772         } else if (rmap_item->address & UNSTABLE_FLAG) {
773                 unsigned char age;
774                 /*
775                  * Usually ksmd can and must skip the rb_erase, because
776                  * root_unstable_tree was already reset to RB_ROOT.
777                  * But be careful when an mm is exiting: do the rb_erase
778                  * if this rmap_item was inserted by this scan, rather
779                  * than left over from before.
780                  */
781                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
782                 BUG_ON(age > 1);
783                 if (!age)
784                         rb_erase(&rmap_item->node,
785                                  root_unstable_tree + NUMA(rmap_item->nid));
786                 ksm_pages_unshared--;
787                 rmap_item->address &= PAGE_MASK;
788         }
789 out:
790         cond_resched();         /* we're called from many long loops */
791 }
792
793 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
794 {
795         while (*rmap_list) {
796                 struct ksm_rmap_item *rmap_item = *rmap_list;
797                 *rmap_list = rmap_item->rmap_list;
798                 remove_rmap_item_from_tree(rmap_item);
799                 free_rmap_item(rmap_item);
800         }
801 }
802
803 /*
804  * Though it's very tempting to unmerge rmap_items from stable tree rather
805  * than check every pte of a given vma, the locking doesn't quite work for
806  * that - an rmap_item is assigned to the stable tree after inserting ksm
807  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
808  * rmap_items from parent to child at fork time (so as not to waste time
809  * if exit comes before the next scan reaches it).
810  *
811  * Similarly, although we'd like to remove rmap_items (so updating counts
812  * and freeing memory) when unmerging an area, it's easier to leave that
813  * to the next pass of ksmd - consider, for example, how ksmd might be
814  * in cmp_and_merge_page on one of the rmap_items we would be removing.
815  */
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817                              unsigned long start, unsigned long end)
818 {
819         unsigned long addr;
820         int err = 0;
821
822         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823                 if (ksm_test_exit(vma->vm_mm))
824                         break;
825                 if (signal_pending(current))
826                         err = -ERESTARTSYS;
827                 else
828                         err = break_ksm(vma, addr);
829         }
830         return err;
831 }
832
833 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
834 {
835         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
836 }
837
838 static inline struct ksm_stable_node *page_stable_node(struct page *page)
839 {
840         return folio_stable_node(page_folio(page));
841 }
842
843 static inline void set_page_stable_node(struct page *page,
844                                         struct ksm_stable_node *stable_node)
845 {
846         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
847         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
848 }
849
850 #ifdef CONFIG_SYSFS
851 /*
852  * Only called through the sysfs control interface:
853  */
854 static int remove_stable_node(struct ksm_stable_node *stable_node)
855 {
856         struct page *page;
857         int err;
858
859         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
860         if (!page) {
861                 /*
862                  * get_ksm_page did remove_node_from_stable_tree itself.
863                  */
864                 return 0;
865         }
866
867         /*
868          * Page could be still mapped if this races with __mmput() running in
869          * between ksm_exit() and exit_mmap(). Just refuse to let
870          * merge_across_nodes/max_page_sharing be switched.
871          */
872         err = -EBUSY;
873         if (!page_mapped(page)) {
874                 /*
875                  * The stable node did not yet appear stale to get_ksm_page(),
876                  * since that allows for an unmapped ksm page to be recognized
877                  * right up until it is freed; but the node is safe to remove.
878                  * This page might be in a pagevec waiting to be freed,
879                  * or it might be PageSwapCache (perhaps under writeback),
880                  * or it might have been removed from swapcache a moment ago.
881                  */
882                 set_page_stable_node(page, NULL);
883                 remove_node_from_stable_tree(stable_node);
884                 err = 0;
885         }
886
887         unlock_page(page);
888         put_page(page);
889         return err;
890 }
891
892 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
893                                     struct rb_root *root)
894 {
895         struct ksm_stable_node *dup;
896         struct hlist_node *hlist_safe;
897
898         if (!is_stable_node_chain(stable_node)) {
899                 VM_BUG_ON(is_stable_node_dup(stable_node));
900                 if (remove_stable_node(stable_node))
901                         return true;
902                 else
903                         return false;
904         }
905
906         hlist_for_each_entry_safe(dup, hlist_safe,
907                                   &stable_node->hlist, hlist_dup) {
908                 VM_BUG_ON(!is_stable_node_dup(dup));
909                 if (remove_stable_node(dup))
910                         return true;
911         }
912         BUG_ON(!hlist_empty(&stable_node->hlist));
913         free_stable_node_chain(stable_node, root);
914         return false;
915 }
916
917 static int remove_all_stable_nodes(void)
918 {
919         struct ksm_stable_node *stable_node, *next;
920         int nid;
921         int err = 0;
922
923         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
924                 while (root_stable_tree[nid].rb_node) {
925                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
926                                                 struct ksm_stable_node, node);
927                         if (remove_stable_node_chain(stable_node,
928                                                      root_stable_tree + nid)) {
929                                 err = -EBUSY;
930                                 break;  /* proceed to next nid */
931                         }
932                         cond_resched();
933                 }
934         }
935         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
936                 if (remove_stable_node(stable_node))
937                         err = -EBUSY;
938                 cond_resched();
939         }
940         return err;
941 }
942
943 static int unmerge_and_remove_all_rmap_items(void)
944 {
945         struct ksm_mm_slot *mm_slot;
946         struct mm_slot *slot;
947         struct mm_struct *mm;
948         struct vm_area_struct *vma;
949         int err = 0;
950
951         spin_lock(&ksm_mmlist_lock);
952         slot = list_entry(ksm_mm_head.slot.mm_node.next,
953                           struct mm_slot, mm_node);
954         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
955         spin_unlock(&ksm_mmlist_lock);
956
957         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
958              mm_slot = ksm_scan.mm_slot) {
959                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
960
961                 mm = mm_slot->slot.mm;
962                 mmap_read_lock(mm);
963
964                 /*
965                  * Exit right away if mm is exiting to avoid lockdep issue in
966                  * the maple tree
967                  */
968                 if (ksm_test_exit(mm))
969                         goto mm_exiting;
970
971                 for_each_vma(vmi, vma) {
972                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
973                                 continue;
974                         err = unmerge_ksm_pages(vma,
975                                                 vma->vm_start, vma->vm_end);
976                         if (err)
977                                 goto error;
978                 }
979
980 mm_exiting:
981                 remove_trailing_rmap_items(&mm_slot->rmap_list);
982                 mmap_read_unlock(mm);
983
984                 spin_lock(&ksm_mmlist_lock);
985                 slot = list_entry(mm_slot->slot.mm_node.next,
986                                   struct mm_slot, mm_node);
987                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
988                 if (ksm_test_exit(mm)) {
989                         hash_del(&mm_slot->slot.hash);
990                         list_del(&mm_slot->slot.mm_node);
991                         spin_unlock(&ksm_mmlist_lock);
992
993                         mm_slot_free(mm_slot_cache, mm_slot);
994                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
995                         mmdrop(mm);
996                 } else
997                         spin_unlock(&ksm_mmlist_lock);
998         }
999
1000         /* Clean up stable nodes, but don't worry if some are still busy */
1001         remove_all_stable_nodes();
1002         ksm_scan.seqnr = 0;
1003         return 0;
1004
1005 error:
1006         mmap_read_unlock(mm);
1007         spin_lock(&ksm_mmlist_lock);
1008         ksm_scan.mm_slot = &ksm_mm_head;
1009         spin_unlock(&ksm_mmlist_lock);
1010         return err;
1011 }
1012 #endif /* CONFIG_SYSFS */
1013
1014 static u32 calc_checksum(struct page *page)
1015 {
1016         u32 checksum;
1017         void *addr = kmap_atomic(page);
1018         checksum = xxhash(addr, PAGE_SIZE, 0);
1019         kunmap_atomic(addr);
1020         return checksum;
1021 }
1022
1023 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1024                               pte_t *orig_pte)
1025 {
1026         struct mm_struct *mm = vma->vm_mm;
1027         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1028         int swapped;
1029         int err = -EFAULT;
1030         struct mmu_notifier_range range;
1031         bool anon_exclusive;
1032
1033         pvmw.address = page_address_in_vma(page, vma);
1034         if (pvmw.address == -EFAULT)
1035                 goto out;
1036
1037         BUG_ON(PageTransCompound(page));
1038
1039         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1040                                 pvmw.address,
1041                                 pvmw.address + PAGE_SIZE);
1042         mmu_notifier_invalidate_range_start(&range);
1043
1044         if (!page_vma_mapped_walk(&pvmw))
1045                 goto out_mn;
1046         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1047                 goto out_unlock;
1048
1049         anon_exclusive = PageAnonExclusive(page);
1050         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1051             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1052             anon_exclusive || mm_tlb_flush_pending(mm)) {
1053                 pte_t entry;
1054
1055                 swapped = PageSwapCache(page);
1056                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1057                 /*
1058                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1059                  * take any lock, therefore the check that we are going to make
1060                  * with the pagecount against the mapcount is racy and
1061                  * O_DIRECT can happen right after the check.
1062                  * So we clear the pte and flush the tlb before the check
1063                  * this assure us that no O_DIRECT can happen after the check
1064                  * or in the middle of the check.
1065                  *
1066                  * No need to notify as we are downgrading page table to read
1067                  * only not changing it to point to a new page.
1068                  *
1069                  * See Documentation/mm/mmu_notifier.rst
1070                  */
1071                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1072                 /*
1073                  * Check that no O_DIRECT or similar I/O is in progress on the
1074                  * page
1075                  */
1076                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1077                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1078                         goto out_unlock;
1079                 }
1080
1081                 /* See page_try_share_anon_rmap(): clear PTE first. */
1082                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1083                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1084                         goto out_unlock;
1085                 }
1086
1087                 if (pte_dirty(entry))
1088                         set_page_dirty(page);
1089
1090                 if (pte_protnone(entry))
1091                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1092                 else
1093                         entry = pte_mkclean(pte_wrprotect(entry));
1094                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1095         }
1096         *orig_pte = *pvmw.pte;
1097         err = 0;
1098
1099 out_unlock:
1100         page_vma_mapped_walk_done(&pvmw);
1101 out_mn:
1102         mmu_notifier_invalidate_range_end(&range);
1103 out:
1104         return err;
1105 }
1106
1107 /**
1108  * replace_page - replace page in vma by new ksm page
1109  * @vma:      vma that holds the pte pointing to page
1110  * @page:     the page we are replacing by kpage
1111  * @kpage:    the ksm page we replace page by
1112  * @orig_pte: the original value of the pte
1113  *
1114  * Returns 0 on success, -EFAULT on failure.
1115  */
1116 static int replace_page(struct vm_area_struct *vma, struct page *page,
1117                         struct page *kpage, pte_t orig_pte)
1118 {
1119         struct mm_struct *mm = vma->vm_mm;
1120         struct folio *folio;
1121         pmd_t *pmd;
1122         pmd_t pmde;
1123         pte_t *ptep;
1124         pte_t newpte;
1125         spinlock_t *ptl;
1126         unsigned long addr;
1127         int err = -EFAULT;
1128         struct mmu_notifier_range range;
1129
1130         addr = page_address_in_vma(page, vma);
1131         if (addr == -EFAULT)
1132                 goto out;
1133
1134         pmd = mm_find_pmd(mm, addr);
1135         if (!pmd)
1136                 goto out;
1137         /*
1138          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1139          * without holding anon_vma lock for write.  So when looking for a
1140          * genuine pmde (in which to find pte), test present and !THP together.
1141          */
1142         pmde = *pmd;
1143         barrier();
1144         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1145                 goto out;
1146
1147         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1148                                 addr + PAGE_SIZE);
1149         mmu_notifier_invalidate_range_start(&range);
1150
1151         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1152         if (!pte_same(*ptep, orig_pte)) {
1153                 pte_unmap_unlock(ptep, ptl);
1154                 goto out_mn;
1155         }
1156         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1157         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1158
1159         /*
1160          * No need to check ksm_use_zero_pages here: we can only have a
1161          * zero_page here if ksm_use_zero_pages was enabled already.
1162          */
1163         if (!is_zero_pfn(page_to_pfn(kpage))) {
1164                 get_page(kpage);
1165                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1166                 newpte = mk_pte(kpage, vma->vm_page_prot);
1167         } else {
1168                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1169                                                vma->vm_page_prot));
1170                 /*
1171                  * We're replacing an anonymous page with a zero page, which is
1172                  * not anonymous. We need to do proper accounting otherwise we
1173                  * will get wrong values in /proc, and a BUG message in dmesg
1174                  * when tearing down the mm.
1175                  */
1176                 dec_mm_counter(mm, MM_ANONPAGES);
1177         }
1178
1179         flush_cache_page(vma, addr, pte_pfn(*ptep));
1180         /*
1181          * No need to notify as we are replacing a read only page with another
1182          * read only page with the same content.
1183          *
1184          * See Documentation/mm/mmu_notifier.rst
1185          */
1186         ptep_clear_flush(vma, addr, ptep);
1187         set_pte_at_notify(mm, addr, ptep, newpte);
1188
1189         folio = page_folio(page);
1190         page_remove_rmap(page, vma, false);
1191         if (!folio_mapped(folio))
1192                 folio_free_swap(folio);
1193         folio_put(folio);
1194
1195         pte_unmap_unlock(ptep, ptl);
1196         err = 0;
1197 out_mn:
1198         mmu_notifier_invalidate_range_end(&range);
1199 out:
1200         return err;
1201 }
1202
1203 /*
1204  * try_to_merge_one_page - take two pages and merge them into one
1205  * @vma: the vma that holds the pte pointing to page
1206  * @page: the PageAnon page that we want to replace with kpage
1207  * @kpage: the PageKsm page that we want to map instead of page,
1208  *         or NULL the first time when we want to use page as kpage.
1209  *
1210  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1211  */
1212 static int try_to_merge_one_page(struct vm_area_struct *vma,
1213                                  struct page *page, struct page *kpage)
1214 {
1215         pte_t orig_pte = __pte(0);
1216         int err = -EFAULT;
1217
1218         if (page == kpage)                      /* ksm page forked */
1219                 return 0;
1220
1221         if (!PageAnon(page))
1222                 goto out;
1223
1224         /*
1225          * We need the page lock to read a stable PageSwapCache in
1226          * write_protect_page().  We use trylock_page() instead of
1227          * lock_page() because we don't want to wait here - we
1228          * prefer to continue scanning and merging different pages,
1229          * then come back to this page when it is unlocked.
1230          */
1231         if (!trylock_page(page))
1232                 goto out;
1233
1234         if (PageTransCompound(page)) {
1235                 if (split_huge_page(page))
1236                         goto out_unlock;
1237         }
1238
1239         /*
1240          * If this anonymous page is mapped only here, its pte may need
1241          * to be write-protected.  If it's mapped elsewhere, all of its
1242          * ptes are necessarily already write-protected.  But in either
1243          * case, we need to lock and check page_count is not raised.
1244          */
1245         if (write_protect_page(vma, page, &orig_pte) == 0) {
1246                 if (!kpage) {
1247                         /*
1248                          * While we hold page lock, upgrade page from
1249                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1250                          * stable_tree_insert() will update stable_node.
1251                          */
1252                         set_page_stable_node(page, NULL);
1253                         mark_page_accessed(page);
1254                         /*
1255                          * Page reclaim just frees a clean page with no dirty
1256                          * ptes: make sure that the ksm page would be swapped.
1257                          */
1258                         if (!PageDirty(page))
1259                                 SetPageDirty(page);
1260                         err = 0;
1261                 } else if (pages_identical(page, kpage))
1262                         err = replace_page(vma, page, kpage, orig_pte);
1263         }
1264
1265 out_unlock:
1266         unlock_page(page);
1267 out:
1268         return err;
1269 }
1270
1271 /*
1272  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1273  * but no new kernel page is allocated: kpage must already be a ksm page.
1274  *
1275  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1276  */
1277 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1278                                       struct page *page, struct page *kpage)
1279 {
1280         struct mm_struct *mm = rmap_item->mm;
1281         struct vm_area_struct *vma;
1282         int err = -EFAULT;
1283
1284         mmap_read_lock(mm);
1285         vma = find_mergeable_vma(mm, rmap_item->address);
1286         if (!vma)
1287                 goto out;
1288
1289         err = try_to_merge_one_page(vma, page, kpage);
1290         if (err)
1291                 goto out;
1292
1293         /* Unstable nid is in union with stable anon_vma: remove first */
1294         remove_rmap_item_from_tree(rmap_item);
1295
1296         /* Must get reference to anon_vma while still holding mmap_lock */
1297         rmap_item->anon_vma = vma->anon_vma;
1298         get_anon_vma(vma->anon_vma);
1299 out:
1300         mmap_read_unlock(mm);
1301         return err;
1302 }
1303
1304 /*
1305  * try_to_merge_two_pages - take two identical pages and prepare them
1306  * to be merged into one page.
1307  *
1308  * This function returns the kpage if we successfully merged two identical
1309  * pages into one ksm page, NULL otherwise.
1310  *
1311  * Note that this function upgrades page to ksm page: if one of the pages
1312  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1313  */
1314 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1315                                            struct page *page,
1316                                            struct ksm_rmap_item *tree_rmap_item,
1317                                            struct page *tree_page)
1318 {
1319         int err;
1320
1321         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1322         if (!err) {
1323                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1324                                                         tree_page, page);
1325                 /*
1326                  * If that fails, we have a ksm page with only one pte
1327                  * pointing to it: so break it.
1328                  */
1329                 if (err)
1330                         break_cow(rmap_item);
1331         }
1332         return err ? NULL : page;
1333 }
1334
1335 static __always_inline
1336 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1337 {
1338         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1339         /*
1340          * Check that at least one mapping still exists, otherwise
1341          * there's no much point to merge and share with this
1342          * stable_node, as the underlying tree_page of the other
1343          * sharer is going to be freed soon.
1344          */
1345         return stable_node->rmap_hlist_len &&
1346                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1347 }
1348
1349 static __always_inline
1350 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1351 {
1352         return __is_page_sharing_candidate(stable_node, 0);
1353 }
1354
1355 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1356                                     struct ksm_stable_node **_stable_node,
1357                                     struct rb_root *root,
1358                                     bool prune_stale_stable_nodes)
1359 {
1360         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1361         struct hlist_node *hlist_safe;
1362         struct page *_tree_page, *tree_page = NULL;
1363         int nr = 0;
1364         int found_rmap_hlist_len;
1365
1366         if (!prune_stale_stable_nodes ||
1367             time_before(jiffies, stable_node->chain_prune_time +
1368                         msecs_to_jiffies(
1369                                 ksm_stable_node_chains_prune_millisecs)))
1370                 prune_stale_stable_nodes = false;
1371         else
1372                 stable_node->chain_prune_time = jiffies;
1373
1374         hlist_for_each_entry_safe(dup, hlist_safe,
1375                                   &stable_node->hlist, hlist_dup) {
1376                 cond_resched();
1377                 /*
1378                  * We must walk all stable_node_dup to prune the stale
1379                  * stable nodes during lookup.
1380                  *
1381                  * get_ksm_page can drop the nodes from the
1382                  * stable_node->hlist if they point to freed pages
1383                  * (that's why we do a _safe walk). The "dup"
1384                  * stable_node parameter itself will be freed from
1385                  * under us if it returns NULL.
1386                  */
1387                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1388                 if (!_tree_page)
1389                         continue;
1390                 nr += 1;
1391                 if (is_page_sharing_candidate(dup)) {
1392                         if (!found ||
1393                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1394                                 if (found)
1395                                         put_page(tree_page);
1396                                 found = dup;
1397                                 found_rmap_hlist_len = found->rmap_hlist_len;
1398                                 tree_page = _tree_page;
1399
1400                                 /* skip put_page for found dup */
1401                                 if (!prune_stale_stable_nodes)
1402                                         break;
1403                                 continue;
1404                         }
1405                 }
1406                 put_page(_tree_page);
1407         }
1408
1409         if (found) {
1410                 /*
1411                  * nr is counting all dups in the chain only if
1412                  * prune_stale_stable_nodes is true, otherwise we may
1413                  * break the loop at nr == 1 even if there are
1414                  * multiple entries.
1415                  */
1416                 if (prune_stale_stable_nodes && nr == 1) {
1417                         /*
1418                          * If there's not just one entry it would
1419                          * corrupt memory, better BUG_ON. In KSM
1420                          * context with no lock held it's not even
1421                          * fatal.
1422                          */
1423                         BUG_ON(stable_node->hlist.first->next);
1424
1425                         /*
1426                          * There's just one entry and it is below the
1427                          * deduplication limit so drop the chain.
1428                          */
1429                         rb_replace_node(&stable_node->node, &found->node,
1430                                         root);
1431                         free_stable_node(stable_node);
1432                         ksm_stable_node_chains--;
1433                         ksm_stable_node_dups--;
1434                         /*
1435                          * NOTE: the caller depends on the stable_node
1436                          * to be equal to stable_node_dup if the chain
1437                          * was collapsed.
1438                          */
1439                         *_stable_node = found;
1440                         /*
1441                          * Just for robustness, as stable_node is
1442                          * otherwise left as a stable pointer, the
1443                          * compiler shall optimize it away at build
1444                          * time.
1445                          */
1446                         stable_node = NULL;
1447                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1448                            __is_page_sharing_candidate(found, 1)) {
1449                         /*
1450                          * If the found stable_node dup can accept one
1451                          * more future merge (in addition to the one
1452                          * that is underway) and is not at the head of
1453                          * the chain, put it there so next search will
1454                          * be quicker in the !prune_stale_stable_nodes
1455                          * case.
1456                          *
1457                          * NOTE: it would be inaccurate to use nr > 1
1458                          * instead of checking the hlist.first pointer
1459                          * directly, because in the
1460                          * prune_stale_stable_nodes case "nr" isn't
1461                          * the position of the found dup in the chain,
1462                          * but the total number of dups in the chain.
1463                          */
1464                         hlist_del(&found->hlist_dup);
1465                         hlist_add_head(&found->hlist_dup,
1466                                        &stable_node->hlist);
1467                 }
1468         }
1469
1470         *_stable_node_dup = found;
1471         return tree_page;
1472 }
1473
1474 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1475                                                struct rb_root *root)
1476 {
1477         if (!is_stable_node_chain(stable_node))
1478                 return stable_node;
1479         if (hlist_empty(&stable_node->hlist)) {
1480                 free_stable_node_chain(stable_node, root);
1481                 return NULL;
1482         }
1483         return hlist_entry(stable_node->hlist.first,
1484                            typeof(*stable_node), hlist_dup);
1485 }
1486
1487 /*
1488  * Like for get_ksm_page, this function can free the *_stable_node and
1489  * *_stable_node_dup if the returned tree_page is NULL.
1490  *
1491  * It can also free and overwrite *_stable_node with the found
1492  * stable_node_dup if the chain is collapsed (in which case
1493  * *_stable_node will be equal to *_stable_node_dup like if the chain
1494  * never existed). It's up to the caller to verify tree_page is not
1495  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1496  *
1497  * *_stable_node_dup is really a second output parameter of this
1498  * function and will be overwritten in all cases, the caller doesn't
1499  * need to initialize it.
1500  */
1501 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1502                                         struct ksm_stable_node **_stable_node,
1503                                         struct rb_root *root,
1504                                         bool prune_stale_stable_nodes)
1505 {
1506         struct ksm_stable_node *stable_node = *_stable_node;
1507         if (!is_stable_node_chain(stable_node)) {
1508                 if (is_page_sharing_candidate(stable_node)) {
1509                         *_stable_node_dup = stable_node;
1510                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1511                 }
1512                 /*
1513                  * _stable_node_dup set to NULL means the stable_node
1514                  * reached the ksm_max_page_sharing limit.
1515                  */
1516                 *_stable_node_dup = NULL;
1517                 return NULL;
1518         }
1519         return stable_node_dup(_stable_node_dup, _stable_node, root,
1520                                prune_stale_stable_nodes);
1521 }
1522
1523 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1524                                                 struct ksm_stable_node **s_n,
1525                                                 struct rb_root *root)
1526 {
1527         return __stable_node_chain(s_n_d, s_n, root, true);
1528 }
1529
1530 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1531                                           struct ksm_stable_node *s_n,
1532                                           struct rb_root *root)
1533 {
1534         struct ksm_stable_node *old_stable_node = s_n;
1535         struct page *tree_page;
1536
1537         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1538         /* not pruning dups so s_n cannot have changed */
1539         VM_BUG_ON(s_n != old_stable_node);
1540         return tree_page;
1541 }
1542
1543 /*
1544  * stable_tree_search - search for page inside the stable tree
1545  *
1546  * This function checks if there is a page inside the stable tree
1547  * with identical content to the page that we are scanning right now.
1548  *
1549  * This function returns the stable tree node of identical content if found,
1550  * NULL otherwise.
1551  */
1552 static struct page *stable_tree_search(struct page *page)
1553 {
1554         int nid;
1555         struct rb_root *root;
1556         struct rb_node **new;
1557         struct rb_node *parent;
1558         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1559         struct ksm_stable_node *page_node;
1560
1561         page_node = page_stable_node(page);
1562         if (page_node && page_node->head != &migrate_nodes) {
1563                 /* ksm page forked */
1564                 get_page(page);
1565                 return page;
1566         }
1567
1568         nid = get_kpfn_nid(page_to_pfn(page));
1569         root = root_stable_tree + nid;
1570 again:
1571         new = &root->rb_node;
1572         parent = NULL;
1573
1574         while (*new) {
1575                 struct page *tree_page;
1576                 int ret;
1577
1578                 cond_resched();
1579                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1580                 stable_node_any = NULL;
1581                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1582                 /*
1583                  * NOTE: stable_node may have been freed by
1584                  * chain_prune() if the returned stable_node_dup is
1585                  * not NULL. stable_node_dup may have been inserted in
1586                  * the rbtree instead as a regular stable_node (in
1587                  * order to collapse the stable_node chain if a single
1588                  * stable_node dup was found in it). In such case the
1589                  * stable_node is overwritten by the callee to point
1590                  * to the stable_node_dup that was collapsed in the
1591                  * stable rbtree and stable_node will be equal to
1592                  * stable_node_dup like if the chain never existed.
1593                  */
1594                 if (!stable_node_dup) {
1595                         /*
1596                          * Either all stable_node dups were full in
1597                          * this stable_node chain, or this chain was
1598                          * empty and should be rb_erased.
1599                          */
1600                         stable_node_any = stable_node_dup_any(stable_node,
1601                                                               root);
1602                         if (!stable_node_any) {
1603                                 /* rb_erase just run */
1604                                 goto again;
1605                         }
1606                         /*
1607                          * Take any of the stable_node dups page of
1608                          * this stable_node chain to let the tree walk
1609                          * continue. All KSM pages belonging to the
1610                          * stable_node dups in a stable_node chain
1611                          * have the same content and they're
1612                          * write protected at all times. Any will work
1613                          * fine to continue the walk.
1614                          */
1615                         tree_page = get_ksm_page(stable_node_any,
1616                                                  GET_KSM_PAGE_NOLOCK);
1617                 }
1618                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1619                 if (!tree_page) {
1620                         /*
1621                          * If we walked over a stale stable_node,
1622                          * get_ksm_page() will call rb_erase() and it
1623                          * may rebalance the tree from under us. So
1624                          * restart the search from scratch. Returning
1625                          * NULL would be safe too, but we'd generate
1626                          * false negative insertions just because some
1627                          * stable_node was stale.
1628                          */
1629                         goto again;
1630                 }
1631
1632                 ret = memcmp_pages(page, tree_page);
1633                 put_page(tree_page);
1634
1635                 parent = *new;
1636                 if (ret < 0)
1637                         new = &parent->rb_left;
1638                 else if (ret > 0)
1639                         new = &parent->rb_right;
1640                 else {
1641                         if (page_node) {
1642                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1643                                 /*
1644                                  * Test if the migrated page should be merged
1645                                  * into a stable node dup. If the mapcount is
1646                                  * 1 we can migrate it with another KSM page
1647                                  * without adding it to the chain.
1648                                  */
1649                                 if (page_mapcount(page) > 1)
1650                                         goto chain_append;
1651                         }
1652
1653                         if (!stable_node_dup) {
1654                                 /*
1655                                  * If the stable_node is a chain and
1656                                  * we got a payload match in memcmp
1657                                  * but we cannot merge the scanned
1658                                  * page in any of the existing
1659                                  * stable_node dups because they're
1660                                  * all full, we need to wait the
1661                                  * scanned page to find itself a match
1662                                  * in the unstable tree to create a
1663                                  * brand new KSM page to add later to
1664                                  * the dups of this stable_node.
1665                                  */
1666                                 return NULL;
1667                         }
1668
1669                         /*
1670                          * Lock and unlock the stable_node's page (which
1671                          * might already have been migrated) so that page
1672                          * migration is sure to notice its raised count.
1673                          * It would be more elegant to return stable_node
1674                          * than kpage, but that involves more changes.
1675                          */
1676                         tree_page = get_ksm_page(stable_node_dup,
1677                                                  GET_KSM_PAGE_TRYLOCK);
1678
1679                         if (PTR_ERR(tree_page) == -EBUSY)
1680                                 return ERR_PTR(-EBUSY);
1681
1682                         if (unlikely(!tree_page))
1683                                 /*
1684                                  * The tree may have been rebalanced,
1685                                  * so re-evaluate parent and new.
1686                                  */
1687                                 goto again;
1688                         unlock_page(tree_page);
1689
1690                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1691                             NUMA(stable_node_dup->nid)) {
1692                                 put_page(tree_page);
1693                                 goto replace;
1694                         }
1695                         return tree_page;
1696                 }
1697         }
1698
1699         if (!page_node)
1700                 return NULL;
1701
1702         list_del(&page_node->list);
1703         DO_NUMA(page_node->nid = nid);
1704         rb_link_node(&page_node->node, parent, new);
1705         rb_insert_color(&page_node->node, root);
1706 out:
1707         if (is_page_sharing_candidate(page_node)) {
1708                 get_page(page);
1709                 return page;
1710         } else
1711                 return NULL;
1712
1713 replace:
1714         /*
1715          * If stable_node was a chain and chain_prune collapsed it,
1716          * stable_node has been updated to be the new regular
1717          * stable_node. A collapse of the chain is indistinguishable
1718          * from the case there was no chain in the stable
1719          * rbtree. Otherwise stable_node is the chain and
1720          * stable_node_dup is the dup to replace.
1721          */
1722         if (stable_node_dup == stable_node) {
1723                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1724                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1725                 /* there is no chain */
1726                 if (page_node) {
1727                         VM_BUG_ON(page_node->head != &migrate_nodes);
1728                         list_del(&page_node->list);
1729                         DO_NUMA(page_node->nid = nid);
1730                         rb_replace_node(&stable_node_dup->node,
1731                                         &page_node->node,
1732                                         root);
1733                         if (is_page_sharing_candidate(page_node))
1734                                 get_page(page);
1735                         else
1736                                 page = NULL;
1737                 } else {
1738                         rb_erase(&stable_node_dup->node, root);
1739                         page = NULL;
1740                 }
1741         } else {
1742                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1743                 __stable_node_dup_del(stable_node_dup);
1744                 if (page_node) {
1745                         VM_BUG_ON(page_node->head != &migrate_nodes);
1746                         list_del(&page_node->list);
1747                         DO_NUMA(page_node->nid = nid);
1748                         stable_node_chain_add_dup(page_node, stable_node);
1749                         if (is_page_sharing_candidate(page_node))
1750                                 get_page(page);
1751                         else
1752                                 page = NULL;
1753                 } else {
1754                         page = NULL;
1755                 }
1756         }
1757         stable_node_dup->head = &migrate_nodes;
1758         list_add(&stable_node_dup->list, stable_node_dup->head);
1759         return page;
1760
1761 chain_append:
1762         /* stable_node_dup could be null if it reached the limit */
1763         if (!stable_node_dup)
1764                 stable_node_dup = stable_node_any;
1765         /*
1766          * If stable_node was a chain and chain_prune collapsed it,
1767          * stable_node has been updated to be the new regular
1768          * stable_node. A collapse of the chain is indistinguishable
1769          * from the case there was no chain in the stable
1770          * rbtree. Otherwise stable_node is the chain and
1771          * stable_node_dup is the dup to replace.
1772          */
1773         if (stable_node_dup == stable_node) {
1774                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1775                 /* chain is missing so create it */
1776                 stable_node = alloc_stable_node_chain(stable_node_dup,
1777                                                       root);
1778                 if (!stable_node)
1779                         return NULL;
1780         }
1781         /*
1782          * Add this stable_node dup that was
1783          * migrated to the stable_node chain
1784          * of the current nid for this page
1785          * content.
1786          */
1787         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1788         VM_BUG_ON(page_node->head != &migrate_nodes);
1789         list_del(&page_node->list);
1790         DO_NUMA(page_node->nid = nid);
1791         stable_node_chain_add_dup(page_node, stable_node);
1792         goto out;
1793 }
1794
1795 /*
1796  * stable_tree_insert - insert stable tree node pointing to new ksm page
1797  * into the stable tree.
1798  *
1799  * This function returns the stable tree node just allocated on success,
1800  * NULL otherwise.
1801  */
1802 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1803 {
1804         int nid;
1805         unsigned long kpfn;
1806         struct rb_root *root;
1807         struct rb_node **new;
1808         struct rb_node *parent;
1809         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1810         bool need_chain = false;
1811
1812         kpfn = page_to_pfn(kpage);
1813         nid = get_kpfn_nid(kpfn);
1814         root = root_stable_tree + nid;
1815 again:
1816         parent = NULL;
1817         new = &root->rb_node;
1818
1819         while (*new) {
1820                 struct page *tree_page;
1821                 int ret;
1822
1823                 cond_resched();
1824                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1825                 stable_node_any = NULL;
1826                 tree_page = chain(&stable_node_dup, stable_node, root);
1827                 if (!stable_node_dup) {
1828                         /*
1829                          * Either all stable_node dups were full in
1830                          * this stable_node chain, or this chain was
1831                          * empty and should be rb_erased.
1832                          */
1833                         stable_node_any = stable_node_dup_any(stable_node,
1834                                                               root);
1835                         if (!stable_node_any) {
1836                                 /* rb_erase just run */
1837                                 goto again;
1838                         }
1839                         /*
1840                          * Take any of the stable_node dups page of
1841                          * this stable_node chain to let the tree walk
1842                          * continue. All KSM pages belonging to the
1843                          * stable_node dups in a stable_node chain
1844                          * have the same content and they're
1845                          * write protected at all times. Any will work
1846                          * fine to continue the walk.
1847                          */
1848                         tree_page = get_ksm_page(stable_node_any,
1849                                                  GET_KSM_PAGE_NOLOCK);
1850                 }
1851                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1852                 if (!tree_page) {
1853                         /*
1854                          * If we walked over a stale stable_node,
1855                          * get_ksm_page() will call rb_erase() and it
1856                          * may rebalance the tree from under us. So
1857                          * restart the search from scratch. Returning
1858                          * NULL would be safe too, but we'd generate
1859                          * false negative insertions just because some
1860                          * stable_node was stale.
1861                          */
1862                         goto again;
1863                 }
1864
1865                 ret = memcmp_pages(kpage, tree_page);
1866                 put_page(tree_page);
1867
1868                 parent = *new;
1869                 if (ret < 0)
1870                         new = &parent->rb_left;
1871                 else if (ret > 0)
1872                         new = &parent->rb_right;
1873                 else {
1874                         need_chain = true;
1875                         break;
1876                 }
1877         }
1878
1879         stable_node_dup = alloc_stable_node();
1880         if (!stable_node_dup)
1881                 return NULL;
1882
1883         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1884         stable_node_dup->kpfn = kpfn;
1885         set_page_stable_node(kpage, stable_node_dup);
1886         stable_node_dup->rmap_hlist_len = 0;
1887         DO_NUMA(stable_node_dup->nid = nid);
1888         if (!need_chain) {
1889                 rb_link_node(&stable_node_dup->node, parent, new);
1890                 rb_insert_color(&stable_node_dup->node, root);
1891         } else {
1892                 if (!is_stable_node_chain(stable_node)) {
1893                         struct ksm_stable_node *orig = stable_node;
1894                         /* chain is missing so create it */
1895                         stable_node = alloc_stable_node_chain(orig, root);
1896                         if (!stable_node) {
1897                                 free_stable_node(stable_node_dup);
1898                                 return NULL;
1899                         }
1900                 }
1901                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1902         }
1903
1904         return stable_node_dup;
1905 }
1906
1907 /*
1908  * unstable_tree_search_insert - search for identical page,
1909  * else insert rmap_item into the unstable tree.
1910  *
1911  * This function searches for a page in the unstable tree identical to the
1912  * page currently being scanned; and if no identical page is found in the
1913  * tree, we insert rmap_item as a new object into the unstable tree.
1914  *
1915  * This function returns pointer to rmap_item found to be identical
1916  * to the currently scanned page, NULL otherwise.
1917  *
1918  * This function does both searching and inserting, because they share
1919  * the same walking algorithm in an rbtree.
1920  */
1921 static
1922 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1923                                               struct page *page,
1924                                               struct page **tree_pagep)
1925 {
1926         struct rb_node **new;
1927         struct rb_root *root;
1928         struct rb_node *parent = NULL;
1929         int nid;
1930
1931         nid = get_kpfn_nid(page_to_pfn(page));
1932         root = root_unstable_tree + nid;
1933         new = &root->rb_node;
1934
1935         while (*new) {
1936                 struct ksm_rmap_item *tree_rmap_item;
1937                 struct page *tree_page;
1938                 int ret;
1939
1940                 cond_resched();
1941                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1942                 tree_page = get_mergeable_page(tree_rmap_item);
1943                 if (!tree_page)
1944                         return NULL;
1945
1946                 /*
1947                  * Don't substitute a ksm page for a forked page.
1948                  */
1949                 if (page == tree_page) {
1950                         put_page(tree_page);
1951                         return NULL;
1952                 }
1953
1954                 ret = memcmp_pages(page, tree_page);
1955
1956                 parent = *new;
1957                 if (ret < 0) {
1958                         put_page(tree_page);
1959                         new = &parent->rb_left;
1960                 } else if (ret > 0) {
1961                         put_page(tree_page);
1962                         new = &parent->rb_right;
1963                 } else if (!ksm_merge_across_nodes &&
1964                            page_to_nid(tree_page) != nid) {
1965                         /*
1966                          * If tree_page has been migrated to another NUMA node,
1967                          * it will be flushed out and put in the right unstable
1968                          * tree next time: only merge with it when across_nodes.
1969                          */
1970                         put_page(tree_page);
1971                         return NULL;
1972                 } else {
1973                         *tree_pagep = tree_page;
1974                         return tree_rmap_item;
1975                 }
1976         }
1977
1978         rmap_item->address |= UNSTABLE_FLAG;
1979         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1980         DO_NUMA(rmap_item->nid = nid);
1981         rb_link_node(&rmap_item->node, parent, new);
1982         rb_insert_color(&rmap_item->node, root);
1983
1984         ksm_pages_unshared++;
1985         return NULL;
1986 }
1987
1988 /*
1989  * stable_tree_append - add another rmap_item to the linked list of
1990  * rmap_items hanging off a given node of the stable tree, all sharing
1991  * the same ksm page.
1992  */
1993 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
1994                                struct ksm_stable_node *stable_node,
1995                                bool max_page_sharing_bypass)
1996 {
1997         /*
1998          * rmap won't find this mapping if we don't insert the
1999          * rmap_item in the right stable_node
2000          * duplicate. page_migration could break later if rmap breaks,
2001          * so we can as well crash here. We really need to check for
2002          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2003          * for other negative values as an underflow if detected here
2004          * for the first time (and not when decreasing rmap_hlist_len)
2005          * would be sign of memory corruption in the stable_node.
2006          */
2007         BUG_ON(stable_node->rmap_hlist_len < 0);
2008
2009         stable_node->rmap_hlist_len++;
2010         if (!max_page_sharing_bypass)
2011                 /* possibly non fatal but unexpected overflow, only warn */
2012                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2013                              ksm_max_page_sharing);
2014
2015         rmap_item->head = stable_node;
2016         rmap_item->address |= STABLE_FLAG;
2017         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2018
2019         if (rmap_item->hlist.next)
2020                 ksm_pages_sharing++;
2021         else
2022                 ksm_pages_shared++;
2023
2024         rmap_item->mm->ksm_merging_pages++;
2025 }
2026
2027 /*
2028  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2029  * if not, compare checksum to previous and if it's the same, see if page can
2030  * be inserted into the unstable tree, or merged with a page already there and
2031  * both transferred to the stable tree.
2032  *
2033  * @page: the page that we are searching identical page to.
2034  * @rmap_item: the reverse mapping into the virtual address of this page
2035  */
2036 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2037 {
2038         struct mm_struct *mm = rmap_item->mm;
2039         struct ksm_rmap_item *tree_rmap_item;
2040         struct page *tree_page = NULL;
2041         struct ksm_stable_node *stable_node;
2042         struct page *kpage;
2043         unsigned int checksum;
2044         int err;
2045         bool max_page_sharing_bypass = false;
2046
2047         stable_node = page_stable_node(page);
2048         if (stable_node) {
2049                 if (stable_node->head != &migrate_nodes &&
2050                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2051                     NUMA(stable_node->nid)) {
2052                         stable_node_dup_del(stable_node);
2053                         stable_node->head = &migrate_nodes;
2054                         list_add(&stable_node->list, stable_node->head);
2055                 }
2056                 if (stable_node->head != &migrate_nodes &&
2057                     rmap_item->head == stable_node)
2058                         return;
2059                 /*
2060                  * If it's a KSM fork, allow it to go over the sharing limit
2061                  * without warnings.
2062                  */
2063                 if (!is_page_sharing_candidate(stable_node))
2064                         max_page_sharing_bypass = true;
2065         }
2066
2067         /* We first start with searching the page inside the stable tree */
2068         kpage = stable_tree_search(page);
2069         if (kpage == page && rmap_item->head == stable_node) {
2070                 put_page(kpage);
2071                 return;
2072         }
2073
2074         remove_rmap_item_from_tree(rmap_item);
2075
2076         if (kpage) {
2077                 if (PTR_ERR(kpage) == -EBUSY)
2078                         return;
2079
2080                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2081                 if (!err) {
2082                         /*
2083                          * The page was successfully merged:
2084                          * add its rmap_item to the stable tree.
2085                          */
2086                         lock_page(kpage);
2087                         stable_tree_append(rmap_item, page_stable_node(kpage),
2088                                            max_page_sharing_bypass);
2089                         unlock_page(kpage);
2090                 }
2091                 put_page(kpage);
2092                 return;
2093         }
2094
2095         /*
2096          * If the hash value of the page has changed from the last time
2097          * we calculated it, this page is changing frequently: therefore we
2098          * don't want to insert it in the unstable tree, and we don't want
2099          * to waste our time searching for something identical to it there.
2100          */
2101         checksum = calc_checksum(page);
2102         if (rmap_item->oldchecksum != checksum) {
2103                 rmap_item->oldchecksum = checksum;
2104                 return;
2105         }
2106
2107         /*
2108          * Same checksum as an empty page. We attempt to merge it with the
2109          * appropriate zero page if the user enabled this via sysfs.
2110          */
2111         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2112                 struct vm_area_struct *vma;
2113
2114                 mmap_read_lock(mm);
2115                 vma = find_mergeable_vma(mm, rmap_item->address);
2116                 if (vma) {
2117                         err = try_to_merge_one_page(vma, page,
2118                                         ZERO_PAGE(rmap_item->address));
2119                 } else {
2120                         /*
2121                          * If the vma is out of date, we do not need to
2122                          * continue.
2123                          */
2124                         err = 0;
2125                 }
2126                 mmap_read_unlock(mm);
2127                 /*
2128                  * In case of failure, the page was not really empty, so we
2129                  * need to continue. Otherwise we're done.
2130                  */
2131                 if (!err)
2132                         return;
2133         }
2134         tree_rmap_item =
2135                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2136         if (tree_rmap_item) {
2137                 bool split;
2138
2139                 kpage = try_to_merge_two_pages(rmap_item, page,
2140                                                 tree_rmap_item, tree_page);
2141                 /*
2142                  * If both pages we tried to merge belong to the same compound
2143                  * page, then we actually ended up increasing the reference
2144                  * count of the same compound page twice, and split_huge_page
2145                  * failed.
2146                  * Here we set a flag if that happened, and we use it later to
2147                  * try split_huge_page again. Since we call put_page right
2148                  * afterwards, the reference count will be correct and
2149                  * split_huge_page should succeed.
2150                  */
2151                 split = PageTransCompound(page)
2152                         && compound_head(page) == compound_head(tree_page);
2153                 put_page(tree_page);
2154                 if (kpage) {
2155                         /*
2156                          * The pages were successfully merged: insert new
2157                          * node in the stable tree and add both rmap_items.
2158                          */
2159                         lock_page(kpage);
2160                         stable_node = stable_tree_insert(kpage);
2161                         if (stable_node) {
2162                                 stable_tree_append(tree_rmap_item, stable_node,
2163                                                    false);
2164                                 stable_tree_append(rmap_item, stable_node,
2165                                                    false);
2166                         }
2167                         unlock_page(kpage);
2168
2169                         /*
2170                          * If we fail to insert the page into the stable tree,
2171                          * we will have 2 virtual addresses that are pointing
2172                          * to a ksm page left outside the stable tree,
2173                          * in which case we need to break_cow on both.
2174                          */
2175                         if (!stable_node) {
2176                                 break_cow(tree_rmap_item);
2177                                 break_cow(rmap_item);
2178                         }
2179                 } else if (split) {
2180                         /*
2181                          * We are here if we tried to merge two pages and
2182                          * failed because they both belonged to the same
2183                          * compound page. We will split the page now, but no
2184                          * merging will take place.
2185                          * We do not want to add the cost of a full lock; if
2186                          * the page is locked, it is better to skip it and
2187                          * perhaps try again later.
2188                          */
2189                         if (!trylock_page(page))
2190                                 return;
2191                         split_huge_page(page);
2192                         unlock_page(page);
2193                 }
2194         }
2195 }
2196
2197 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2198                                             struct ksm_rmap_item **rmap_list,
2199                                             unsigned long addr)
2200 {
2201         struct ksm_rmap_item *rmap_item;
2202
2203         while (*rmap_list) {
2204                 rmap_item = *rmap_list;
2205                 if ((rmap_item->address & PAGE_MASK) == addr)
2206                         return rmap_item;
2207                 if (rmap_item->address > addr)
2208                         break;
2209                 *rmap_list = rmap_item->rmap_list;
2210                 remove_rmap_item_from_tree(rmap_item);
2211                 free_rmap_item(rmap_item);
2212         }
2213
2214         rmap_item = alloc_rmap_item();
2215         if (rmap_item) {
2216                 /* It has already been zeroed */
2217                 rmap_item->mm = mm_slot->slot.mm;
2218                 rmap_item->mm->ksm_rmap_items++;
2219                 rmap_item->address = addr;
2220                 rmap_item->rmap_list = *rmap_list;
2221                 *rmap_list = rmap_item;
2222         }
2223         return rmap_item;
2224 }
2225
2226 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2227 {
2228         struct mm_struct *mm;
2229         struct ksm_mm_slot *mm_slot;
2230         struct mm_slot *slot;
2231         struct vm_area_struct *vma;
2232         struct ksm_rmap_item *rmap_item;
2233         struct vma_iterator vmi;
2234         int nid;
2235
2236         if (list_empty(&ksm_mm_head.slot.mm_node))
2237                 return NULL;
2238
2239         mm_slot = ksm_scan.mm_slot;
2240         if (mm_slot == &ksm_mm_head) {
2241                 /*
2242                  * A number of pages can hang around indefinitely on per-cpu
2243                  * pagevecs, raised page count preventing write_protect_page
2244                  * from merging them.  Though it doesn't really matter much,
2245                  * it is puzzling to see some stuck in pages_volatile until
2246                  * other activity jostles them out, and they also prevented
2247                  * LTP's KSM test from succeeding deterministically; so drain
2248                  * them here (here rather than on entry to ksm_do_scan(),
2249                  * so we don't IPI too often when pages_to_scan is set low).
2250                  */
2251                 lru_add_drain_all();
2252
2253                 /*
2254                  * Whereas stale stable_nodes on the stable_tree itself
2255                  * get pruned in the regular course of stable_tree_search(),
2256                  * those moved out to the migrate_nodes list can accumulate:
2257                  * so prune them once before each full scan.
2258                  */
2259                 if (!ksm_merge_across_nodes) {
2260                         struct ksm_stable_node *stable_node, *next;
2261                         struct page *page;
2262
2263                         list_for_each_entry_safe(stable_node, next,
2264                                                  &migrate_nodes, list) {
2265                                 page = get_ksm_page(stable_node,
2266                                                     GET_KSM_PAGE_NOLOCK);
2267                                 if (page)
2268                                         put_page(page);
2269                                 cond_resched();
2270                         }
2271                 }
2272
2273                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2274                         root_unstable_tree[nid] = RB_ROOT;
2275
2276                 spin_lock(&ksm_mmlist_lock);
2277                 slot = list_entry(mm_slot->slot.mm_node.next,
2278                                   struct mm_slot, mm_node);
2279                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2280                 ksm_scan.mm_slot = mm_slot;
2281                 spin_unlock(&ksm_mmlist_lock);
2282                 /*
2283                  * Although we tested list_empty() above, a racing __ksm_exit
2284                  * of the last mm on the list may have removed it since then.
2285                  */
2286                 if (mm_slot == &ksm_mm_head)
2287                         return NULL;
2288 next_mm:
2289                 ksm_scan.address = 0;
2290                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2291         }
2292
2293         slot = &mm_slot->slot;
2294         mm = slot->mm;
2295         vma_iter_init(&vmi, mm, ksm_scan.address);
2296
2297         mmap_read_lock(mm);
2298         if (ksm_test_exit(mm))
2299                 goto no_vmas;
2300
2301         for_each_vma(vmi, vma) {
2302                 if (!(vma->vm_flags & VM_MERGEABLE))
2303                         continue;
2304                 if (ksm_scan.address < vma->vm_start)
2305                         ksm_scan.address = vma->vm_start;
2306                 if (!vma->anon_vma)
2307                         ksm_scan.address = vma->vm_end;
2308
2309                 while (ksm_scan.address < vma->vm_end) {
2310                         if (ksm_test_exit(mm))
2311                                 break;
2312                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2313                         if (IS_ERR_OR_NULL(*page)) {
2314                                 ksm_scan.address += PAGE_SIZE;
2315                                 cond_resched();
2316                                 continue;
2317                         }
2318                         if (is_zone_device_page(*page))
2319                                 goto next_page;
2320                         if (PageAnon(*page)) {
2321                                 flush_anon_page(vma, *page, ksm_scan.address);
2322                                 flush_dcache_page(*page);
2323                                 rmap_item = get_next_rmap_item(mm_slot,
2324                                         ksm_scan.rmap_list, ksm_scan.address);
2325                                 if (rmap_item) {
2326                                         ksm_scan.rmap_list =
2327                                                         &rmap_item->rmap_list;
2328                                         ksm_scan.address += PAGE_SIZE;
2329                                 } else
2330                                         put_page(*page);
2331                                 mmap_read_unlock(mm);
2332                                 return rmap_item;
2333                         }
2334 next_page:
2335                         put_page(*page);
2336                         ksm_scan.address += PAGE_SIZE;
2337                         cond_resched();
2338                 }
2339         }
2340
2341         if (ksm_test_exit(mm)) {
2342 no_vmas:
2343                 ksm_scan.address = 0;
2344                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2345         }
2346         /*
2347          * Nuke all the rmap_items that are above this current rmap:
2348          * because there were no VM_MERGEABLE vmas with such addresses.
2349          */
2350         remove_trailing_rmap_items(ksm_scan.rmap_list);
2351
2352         spin_lock(&ksm_mmlist_lock);
2353         slot = list_entry(mm_slot->slot.mm_node.next,
2354                           struct mm_slot, mm_node);
2355         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2356         if (ksm_scan.address == 0) {
2357                 /*
2358                  * We've completed a full scan of all vmas, holding mmap_lock
2359                  * throughout, and found no VM_MERGEABLE: so do the same as
2360                  * __ksm_exit does to remove this mm from all our lists now.
2361                  * This applies either when cleaning up after __ksm_exit
2362                  * (but beware: we can reach here even before __ksm_exit),
2363                  * or when all VM_MERGEABLE areas have been unmapped (and
2364                  * mmap_lock then protects against race with MADV_MERGEABLE).
2365                  */
2366                 hash_del(&mm_slot->slot.hash);
2367                 list_del(&mm_slot->slot.mm_node);
2368                 spin_unlock(&ksm_mmlist_lock);
2369
2370                 mm_slot_free(mm_slot_cache, mm_slot);
2371                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2372                 mmap_read_unlock(mm);
2373                 mmdrop(mm);
2374         } else {
2375                 mmap_read_unlock(mm);
2376                 /*
2377                  * mmap_read_unlock(mm) first because after
2378                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2379                  * already have been freed under us by __ksm_exit()
2380                  * because the "mm_slot" is still hashed and
2381                  * ksm_scan.mm_slot doesn't point to it anymore.
2382                  */
2383                 spin_unlock(&ksm_mmlist_lock);
2384         }
2385
2386         /* Repeat until we've completed scanning the whole list */
2387         mm_slot = ksm_scan.mm_slot;
2388         if (mm_slot != &ksm_mm_head)
2389                 goto next_mm;
2390
2391         ksm_scan.seqnr++;
2392         return NULL;
2393 }
2394
2395 /**
2396  * ksm_do_scan  - the ksm scanner main worker function.
2397  * @scan_npages:  number of pages we want to scan before we return.
2398  */
2399 static void ksm_do_scan(unsigned int scan_npages)
2400 {
2401         struct ksm_rmap_item *rmap_item;
2402         struct page *page;
2403
2404         while (scan_npages-- && likely(!freezing(current))) {
2405                 cond_resched();
2406                 rmap_item = scan_get_next_rmap_item(&page);
2407                 if (!rmap_item)
2408                         return;
2409                 cmp_and_merge_page(page, rmap_item);
2410                 put_page(page);
2411         }
2412 }
2413
2414 static int ksmd_should_run(void)
2415 {
2416         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2417 }
2418
2419 static int ksm_scan_thread(void *nothing)
2420 {
2421         unsigned int sleep_ms;
2422
2423         set_freezable();
2424         set_user_nice(current, 5);
2425
2426         while (!kthread_should_stop()) {
2427                 mutex_lock(&ksm_thread_mutex);
2428                 wait_while_offlining();
2429                 if (ksmd_should_run())
2430                         ksm_do_scan(ksm_thread_pages_to_scan);
2431                 mutex_unlock(&ksm_thread_mutex);
2432
2433                 try_to_freeze();
2434
2435                 if (ksmd_should_run()) {
2436                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2437                         wait_event_interruptible_timeout(ksm_iter_wait,
2438                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2439                                 msecs_to_jiffies(sleep_ms));
2440                 } else {
2441                         wait_event_freezable(ksm_thread_wait,
2442                                 ksmd_should_run() || kthread_should_stop());
2443                 }
2444         }
2445         return 0;
2446 }
2447
2448 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2449                 unsigned long end, int advice, unsigned long *vm_flags)
2450 {
2451         struct mm_struct *mm = vma->vm_mm;
2452         int err;
2453
2454         switch (advice) {
2455         case MADV_MERGEABLE:
2456                 /*
2457                  * Be somewhat over-protective for now!
2458                  */
2459                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2460                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2461                                  VM_HUGETLB | VM_MIXEDMAP))
2462                         return 0;               /* just ignore the advice */
2463
2464                 if (vma_is_dax(vma))
2465                         return 0;
2466
2467 #ifdef VM_SAO
2468                 if (*vm_flags & VM_SAO)
2469                         return 0;
2470 #endif
2471 #ifdef VM_SPARC_ADI
2472                 if (*vm_flags & VM_SPARC_ADI)
2473                         return 0;
2474 #endif
2475
2476                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2477                         err = __ksm_enter(mm);
2478                         if (err)
2479                                 return err;
2480                 }
2481
2482                 *vm_flags |= VM_MERGEABLE;
2483                 break;
2484
2485         case MADV_UNMERGEABLE:
2486                 if (!(*vm_flags & VM_MERGEABLE))
2487                         return 0;               /* just ignore the advice */
2488
2489                 if (vma->anon_vma) {
2490                         err = unmerge_ksm_pages(vma, start, end);
2491                         if (err)
2492                                 return err;
2493                 }
2494
2495                 *vm_flags &= ~VM_MERGEABLE;
2496                 break;
2497         }
2498
2499         return 0;
2500 }
2501 EXPORT_SYMBOL_GPL(ksm_madvise);
2502
2503 int __ksm_enter(struct mm_struct *mm)
2504 {
2505         struct ksm_mm_slot *mm_slot;
2506         struct mm_slot *slot;
2507         int needs_wakeup;
2508
2509         mm_slot = mm_slot_alloc(mm_slot_cache);
2510         if (!mm_slot)
2511                 return -ENOMEM;
2512
2513         slot = &mm_slot->slot;
2514
2515         /* Check ksm_run too?  Would need tighter locking */
2516         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2517
2518         spin_lock(&ksm_mmlist_lock);
2519         mm_slot_insert(mm_slots_hash, mm, slot);
2520         /*
2521          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2522          * insert just behind the scanning cursor, to let the area settle
2523          * down a little; when fork is followed by immediate exec, we don't
2524          * want ksmd to waste time setting up and tearing down an rmap_list.
2525          *
2526          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2527          * scanning cursor, otherwise KSM pages in newly forked mms will be
2528          * missed: then we might as well insert at the end of the list.
2529          */
2530         if (ksm_run & KSM_RUN_UNMERGE)
2531                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2532         else
2533                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2534         spin_unlock(&ksm_mmlist_lock);
2535
2536         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2537         mmgrab(mm);
2538
2539         if (needs_wakeup)
2540                 wake_up_interruptible(&ksm_thread_wait);
2541
2542         return 0;
2543 }
2544
2545 void __ksm_exit(struct mm_struct *mm)
2546 {
2547         struct ksm_mm_slot *mm_slot;
2548         struct mm_slot *slot;
2549         int easy_to_free = 0;
2550
2551         /*
2552          * This process is exiting: if it's straightforward (as is the
2553          * case when ksmd was never running), free mm_slot immediately.
2554          * But if it's at the cursor or has rmap_items linked to it, use
2555          * mmap_lock to synchronize with any break_cows before pagetables
2556          * are freed, and leave the mm_slot on the list for ksmd to free.
2557          * Beware: ksm may already have noticed it exiting and freed the slot.
2558          */
2559
2560         spin_lock(&ksm_mmlist_lock);
2561         slot = mm_slot_lookup(mm_slots_hash, mm);
2562         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2563         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2564                 if (!mm_slot->rmap_list) {
2565                         hash_del(&slot->hash);
2566                         list_del(&slot->mm_node);
2567                         easy_to_free = 1;
2568                 } else {
2569                         list_move(&slot->mm_node,
2570                                   &ksm_scan.mm_slot->slot.mm_node);
2571                 }
2572         }
2573         spin_unlock(&ksm_mmlist_lock);
2574
2575         if (easy_to_free) {
2576                 mm_slot_free(mm_slot_cache, mm_slot);
2577                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2578                 mmdrop(mm);
2579         } else if (mm_slot) {
2580                 mmap_write_lock(mm);
2581                 mmap_write_unlock(mm);
2582         }
2583 }
2584
2585 struct page *ksm_might_need_to_copy(struct page *page,
2586                         struct vm_area_struct *vma, unsigned long address)
2587 {
2588         struct folio *folio = page_folio(page);
2589         struct anon_vma *anon_vma = folio_anon_vma(folio);
2590         struct page *new_page;
2591
2592         if (PageKsm(page)) {
2593                 if (page_stable_node(page) &&
2594                     !(ksm_run & KSM_RUN_UNMERGE))
2595                         return page;    /* no need to copy it */
2596         } else if (!anon_vma) {
2597                 return page;            /* no need to copy it */
2598         } else if (page->index == linear_page_index(vma, address) &&
2599                         anon_vma->root == vma->anon_vma->root) {
2600                 return page;            /* still no need to copy it */
2601         }
2602         if (!PageUptodate(page))
2603                 return page;            /* let do_swap_page report the error */
2604
2605         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2606         if (new_page &&
2607             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2608                 put_page(new_page);
2609                 new_page = NULL;
2610         }
2611         if (new_page) {
2612                 copy_user_highpage(new_page, page, address, vma);
2613
2614                 SetPageDirty(new_page);
2615                 __SetPageUptodate(new_page);
2616                 __SetPageLocked(new_page);
2617 #ifdef CONFIG_SWAP
2618                 count_vm_event(KSM_SWPIN_COPY);
2619 #endif
2620         }
2621
2622         return new_page;
2623 }
2624
2625 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2626 {
2627         struct ksm_stable_node *stable_node;
2628         struct ksm_rmap_item *rmap_item;
2629         int search_new_forks = 0;
2630
2631         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2632
2633         /*
2634          * Rely on the page lock to protect against concurrent modifications
2635          * to that page's node of the stable tree.
2636          */
2637         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2638
2639         stable_node = folio_stable_node(folio);
2640         if (!stable_node)
2641                 return;
2642 again:
2643         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2644                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2645                 struct anon_vma_chain *vmac;
2646                 struct vm_area_struct *vma;
2647
2648                 cond_resched();
2649                 if (!anon_vma_trylock_read(anon_vma)) {
2650                         if (rwc->try_lock) {
2651                                 rwc->contended = true;
2652                                 return;
2653                         }
2654                         anon_vma_lock_read(anon_vma);
2655                 }
2656                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2657                                                0, ULONG_MAX) {
2658                         unsigned long addr;
2659
2660                         cond_resched();
2661                         vma = vmac->vma;
2662
2663                         /* Ignore the stable/unstable/sqnr flags */
2664                         addr = rmap_item->address & PAGE_MASK;
2665
2666                         if (addr < vma->vm_start || addr >= vma->vm_end)
2667                                 continue;
2668                         /*
2669                          * Initially we examine only the vma which covers this
2670                          * rmap_item; but later, if there is still work to do,
2671                          * we examine covering vmas in other mms: in case they
2672                          * were forked from the original since ksmd passed.
2673                          */
2674                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2675                                 continue;
2676
2677                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2678                                 continue;
2679
2680                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2681                                 anon_vma_unlock_read(anon_vma);
2682                                 return;
2683                         }
2684                         if (rwc->done && rwc->done(folio)) {
2685                                 anon_vma_unlock_read(anon_vma);
2686                                 return;
2687                         }
2688                 }
2689                 anon_vma_unlock_read(anon_vma);
2690         }
2691         if (!search_new_forks++)
2692                 goto again;
2693 }
2694
2695 #ifdef CONFIG_MIGRATION
2696 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2697 {
2698         struct ksm_stable_node *stable_node;
2699
2700         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2701         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2702         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2703
2704         stable_node = folio_stable_node(folio);
2705         if (stable_node) {
2706                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2707                 stable_node->kpfn = folio_pfn(newfolio);
2708                 /*
2709                  * newfolio->mapping was set in advance; now we need smp_wmb()
2710                  * to make sure that the new stable_node->kpfn is visible
2711                  * to get_ksm_page() before it can see that folio->mapping
2712                  * has gone stale (or that folio_test_swapcache has been cleared).
2713                  */
2714                 smp_wmb();
2715                 set_page_stable_node(&folio->page, NULL);
2716         }
2717 }
2718 #endif /* CONFIG_MIGRATION */
2719
2720 #ifdef CONFIG_MEMORY_HOTREMOVE
2721 static void wait_while_offlining(void)
2722 {
2723         while (ksm_run & KSM_RUN_OFFLINE) {
2724                 mutex_unlock(&ksm_thread_mutex);
2725                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2726                             TASK_UNINTERRUPTIBLE);
2727                 mutex_lock(&ksm_thread_mutex);
2728         }
2729 }
2730
2731 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2732                                          unsigned long start_pfn,
2733                                          unsigned long end_pfn)
2734 {
2735         if (stable_node->kpfn >= start_pfn &&
2736             stable_node->kpfn < end_pfn) {
2737                 /*
2738                  * Don't get_ksm_page, page has already gone:
2739                  * which is why we keep kpfn instead of page*
2740                  */
2741                 remove_node_from_stable_tree(stable_node);
2742                 return true;
2743         }
2744         return false;
2745 }
2746
2747 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2748                                            unsigned long start_pfn,
2749                                            unsigned long end_pfn,
2750                                            struct rb_root *root)
2751 {
2752         struct ksm_stable_node *dup;
2753         struct hlist_node *hlist_safe;
2754
2755         if (!is_stable_node_chain(stable_node)) {
2756                 VM_BUG_ON(is_stable_node_dup(stable_node));
2757                 return stable_node_dup_remove_range(stable_node, start_pfn,
2758                                                     end_pfn);
2759         }
2760
2761         hlist_for_each_entry_safe(dup, hlist_safe,
2762                                   &stable_node->hlist, hlist_dup) {
2763                 VM_BUG_ON(!is_stable_node_dup(dup));
2764                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2765         }
2766         if (hlist_empty(&stable_node->hlist)) {
2767                 free_stable_node_chain(stable_node, root);
2768                 return true; /* notify caller that tree was rebalanced */
2769         } else
2770                 return false;
2771 }
2772
2773 static void ksm_check_stable_tree(unsigned long start_pfn,
2774                                   unsigned long end_pfn)
2775 {
2776         struct ksm_stable_node *stable_node, *next;
2777         struct rb_node *node;
2778         int nid;
2779
2780         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2781                 node = rb_first(root_stable_tree + nid);
2782                 while (node) {
2783                         stable_node = rb_entry(node, struct ksm_stable_node, node);
2784                         if (stable_node_chain_remove_range(stable_node,
2785                                                            start_pfn, end_pfn,
2786                                                            root_stable_tree +
2787                                                            nid))
2788                                 node = rb_first(root_stable_tree + nid);
2789                         else
2790                                 node = rb_next(node);
2791                         cond_resched();
2792                 }
2793         }
2794         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2795                 if (stable_node->kpfn >= start_pfn &&
2796                     stable_node->kpfn < end_pfn)
2797                         remove_node_from_stable_tree(stable_node);
2798                 cond_resched();
2799         }
2800 }
2801
2802 static int ksm_memory_callback(struct notifier_block *self,
2803                                unsigned long action, void *arg)
2804 {
2805         struct memory_notify *mn = arg;
2806
2807         switch (action) {
2808         case MEM_GOING_OFFLINE:
2809                 /*
2810                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2811                  * and remove_all_stable_nodes() while memory is going offline:
2812                  * it is unsafe for them to touch the stable tree at this time.
2813                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2814                  * which do not need the ksm_thread_mutex are all safe.
2815                  */
2816                 mutex_lock(&ksm_thread_mutex);
2817                 ksm_run |= KSM_RUN_OFFLINE;
2818                 mutex_unlock(&ksm_thread_mutex);
2819                 break;
2820
2821         case MEM_OFFLINE:
2822                 /*
2823                  * Most of the work is done by page migration; but there might
2824                  * be a few stable_nodes left over, still pointing to struct
2825                  * pages which have been offlined: prune those from the tree,
2826                  * otherwise get_ksm_page() might later try to access a
2827                  * non-existent struct page.
2828                  */
2829                 ksm_check_stable_tree(mn->start_pfn,
2830                                       mn->start_pfn + mn->nr_pages);
2831                 fallthrough;
2832         case MEM_CANCEL_OFFLINE:
2833                 mutex_lock(&ksm_thread_mutex);
2834                 ksm_run &= ~KSM_RUN_OFFLINE;
2835                 mutex_unlock(&ksm_thread_mutex);
2836
2837                 smp_mb();       /* wake_up_bit advises this */
2838                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2839                 break;
2840         }
2841         return NOTIFY_OK;
2842 }
2843 #else
2844 static void wait_while_offlining(void)
2845 {
2846 }
2847 #endif /* CONFIG_MEMORY_HOTREMOVE */
2848
2849 #ifdef CONFIG_SYSFS
2850 /*
2851  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2852  */
2853
2854 #define KSM_ATTR_RO(_name) \
2855         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2856 #define KSM_ATTR(_name) \
2857         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2858
2859 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2860                                     struct kobj_attribute *attr, char *buf)
2861 {
2862         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2863 }
2864
2865 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2866                                      struct kobj_attribute *attr,
2867                                      const char *buf, size_t count)
2868 {
2869         unsigned int msecs;
2870         int err;
2871
2872         err = kstrtouint(buf, 10, &msecs);
2873         if (err)
2874                 return -EINVAL;
2875
2876         ksm_thread_sleep_millisecs = msecs;
2877         wake_up_interruptible(&ksm_iter_wait);
2878
2879         return count;
2880 }
2881 KSM_ATTR(sleep_millisecs);
2882
2883 static ssize_t pages_to_scan_show(struct kobject *kobj,
2884                                   struct kobj_attribute *attr, char *buf)
2885 {
2886         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2887 }
2888
2889 static ssize_t pages_to_scan_store(struct kobject *kobj,
2890                                    struct kobj_attribute *attr,
2891                                    const char *buf, size_t count)
2892 {
2893         unsigned int nr_pages;
2894         int err;
2895
2896         err = kstrtouint(buf, 10, &nr_pages);
2897         if (err)
2898                 return -EINVAL;
2899
2900         ksm_thread_pages_to_scan = nr_pages;
2901
2902         return count;
2903 }
2904 KSM_ATTR(pages_to_scan);
2905
2906 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2907                         char *buf)
2908 {
2909         return sysfs_emit(buf, "%lu\n", ksm_run);
2910 }
2911
2912 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2913                          const char *buf, size_t count)
2914 {
2915         unsigned int flags;
2916         int err;
2917
2918         err = kstrtouint(buf, 10, &flags);
2919         if (err)
2920                 return -EINVAL;
2921         if (flags > KSM_RUN_UNMERGE)
2922                 return -EINVAL;
2923
2924         /*
2925          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2926          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2927          * breaking COW to free the pages_shared (but leaves mm_slots
2928          * on the list for when ksmd may be set running again).
2929          */
2930
2931         mutex_lock(&ksm_thread_mutex);
2932         wait_while_offlining();
2933         if (ksm_run != flags) {
2934                 ksm_run = flags;
2935                 if (flags & KSM_RUN_UNMERGE) {
2936                         set_current_oom_origin();
2937                         err = unmerge_and_remove_all_rmap_items();
2938                         clear_current_oom_origin();
2939                         if (err) {
2940                                 ksm_run = KSM_RUN_STOP;
2941                                 count = err;
2942                         }
2943                 }
2944         }
2945         mutex_unlock(&ksm_thread_mutex);
2946
2947         if (flags & KSM_RUN_MERGE)
2948                 wake_up_interruptible(&ksm_thread_wait);
2949
2950         return count;
2951 }
2952 KSM_ATTR(run);
2953
2954 #ifdef CONFIG_NUMA
2955 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2956                                        struct kobj_attribute *attr, char *buf)
2957 {
2958         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2959 }
2960
2961 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2962                                    struct kobj_attribute *attr,
2963                                    const char *buf, size_t count)
2964 {
2965         int err;
2966         unsigned long knob;
2967
2968         err = kstrtoul(buf, 10, &knob);
2969         if (err)
2970                 return err;
2971         if (knob > 1)
2972                 return -EINVAL;
2973
2974         mutex_lock(&ksm_thread_mutex);
2975         wait_while_offlining();
2976         if (ksm_merge_across_nodes != knob) {
2977                 if (ksm_pages_shared || remove_all_stable_nodes())
2978                         err = -EBUSY;
2979                 else if (root_stable_tree == one_stable_tree) {
2980                         struct rb_root *buf;
2981                         /*
2982                          * This is the first time that we switch away from the
2983                          * default of merging across nodes: must now allocate
2984                          * a buffer to hold as many roots as may be needed.
2985                          * Allocate stable and unstable together:
2986                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2987                          */
2988                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2989                                       GFP_KERNEL);
2990                         /* Let us assume that RB_ROOT is NULL is zero */
2991                         if (!buf)
2992                                 err = -ENOMEM;
2993                         else {
2994                                 root_stable_tree = buf;
2995                                 root_unstable_tree = buf + nr_node_ids;
2996                                 /* Stable tree is empty but not the unstable */
2997                                 root_unstable_tree[0] = one_unstable_tree[0];
2998                         }
2999                 }
3000                 if (!err) {
3001                         ksm_merge_across_nodes = knob;
3002                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3003                 }
3004         }
3005         mutex_unlock(&ksm_thread_mutex);
3006
3007         return err ? err : count;
3008 }
3009 KSM_ATTR(merge_across_nodes);
3010 #endif
3011
3012 static ssize_t use_zero_pages_show(struct kobject *kobj,
3013                                    struct kobj_attribute *attr, char *buf)
3014 {
3015         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3016 }
3017 static ssize_t use_zero_pages_store(struct kobject *kobj,
3018                                    struct kobj_attribute *attr,
3019                                    const char *buf, size_t count)
3020 {
3021         int err;
3022         bool value;
3023
3024         err = kstrtobool(buf, &value);
3025         if (err)
3026                 return -EINVAL;
3027
3028         ksm_use_zero_pages = value;
3029
3030         return count;
3031 }
3032 KSM_ATTR(use_zero_pages);
3033
3034 static ssize_t max_page_sharing_show(struct kobject *kobj,
3035                                      struct kobj_attribute *attr, char *buf)
3036 {
3037         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3038 }
3039
3040 static ssize_t max_page_sharing_store(struct kobject *kobj,
3041                                       struct kobj_attribute *attr,
3042                                       const char *buf, size_t count)
3043 {
3044         int err;
3045         int knob;
3046
3047         err = kstrtoint(buf, 10, &knob);
3048         if (err)
3049                 return err;
3050         /*
3051          * When a KSM page is created it is shared by 2 mappings. This
3052          * being a signed comparison, it implicitly verifies it's not
3053          * negative.
3054          */
3055         if (knob < 2)
3056                 return -EINVAL;
3057
3058         if (READ_ONCE(ksm_max_page_sharing) == knob)
3059                 return count;
3060
3061         mutex_lock(&ksm_thread_mutex);
3062         wait_while_offlining();
3063         if (ksm_max_page_sharing != knob) {
3064                 if (ksm_pages_shared || remove_all_stable_nodes())
3065                         err = -EBUSY;
3066                 else
3067                         ksm_max_page_sharing = knob;
3068         }
3069         mutex_unlock(&ksm_thread_mutex);
3070
3071         return err ? err : count;
3072 }
3073 KSM_ATTR(max_page_sharing);
3074
3075 static ssize_t pages_shared_show(struct kobject *kobj,
3076                                  struct kobj_attribute *attr, char *buf)
3077 {
3078         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3079 }
3080 KSM_ATTR_RO(pages_shared);
3081
3082 static ssize_t pages_sharing_show(struct kobject *kobj,
3083                                   struct kobj_attribute *attr, char *buf)
3084 {
3085         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3086 }
3087 KSM_ATTR_RO(pages_sharing);
3088
3089 static ssize_t pages_unshared_show(struct kobject *kobj,
3090                                    struct kobj_attribute *attr, char *buf)
3091 {
3092         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3093 }
3094 KSM_ATTR_RO(pages_unshared);
3095
3096 static ssize_t pages_volatile_show(struct kobject *kobj,
3097                                    struct kobj_attribute *attr, char *buf)
3098 {
3099         long ksm_pages_volatile;
3100
3101         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3102                                 - ksm_pages_sharing - ksm_pages_unshared;
3103         /*
3104          * It was not worth any locking to calculate that statistic,
3105          * but it might therefore sometimes be negative: conceal that.
3106          */
3107         if (ksm_pages_volatile < 0)
3108                 ksm_pages_volatile = 0;
3109         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3110 }
3111 KSM_ATTR_RO(pages_volatile);
3112
3113 static ssize_t stable_node_dups_show(struct kobject *kobj,
3114                                      struct kobj_attribute *attr, char *buf)
3115 {
3116         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3117 }
3118 KSM_ATTR_RO(stable_node_dups);
3119
3120 static ssize_t stable_node_chains_show(struct kobject *kobj,
3121                                        struct kobj_attribute *attr, char *buf)
3122 {
3123         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3124 }
3125 KSM_ATTR_RO(stable_node_chains);
3126
3127 static ssize_t
3128 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3129                                         struct kobj_attribute *attr,
3130                                         char *buf)
3131 {
3132         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3133 }
3134
3135 static ssize_t
3136 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3137                                          struct kobj_attribute *attr,
3138                                          const char *buf, size_t count)
3139 {
3140         unsigned int msecs;
3141         int err;
3142
3143         err = kstrtouint(buf, 10, &msecs);
3144         if (err)
3145                 return -EINVAL;
3146
3147         ksm_stable_node_chains_prune_millisecs = msecs;
3148
3149         return count;
3150 }
3151 KSM_ATTR(stable_node_chains_prune_millisecs);
3152
3153 static ssize_t full_scans_show(struct kobject *kobj,
3154                                struct kobj_attribute *attr, char *buf)
3155 {
3156         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3157 }
3158 KSM_ATTR_RO(full_scans);
3159
3160 static struct attribute *ksm_attrs[] = {
3161         &sleep_millisecs_attr.attr,
3162         &pages_to_scan_attr.attr,
3163         &run_attr.attr,
3164         &pages_shared_attr.attr,
3165         &pages_sharing_attr.attr,
3166         &pages_unshared_attr.attr,
3167         &pages_volatile_attr.attr,
3168         &full_scans_attr.attr,
3169 #ifdef CONFIG_NUMA
3170         &merge_across_nodes_attr.attr,
3171 #endif
3172         &max_page_sharing_attr.attr,
3173         &stable_node_chains_attr.attr,
3174         &stable_node_dups_attr.attr,
3175         &stable_node_chains_prune_millisecs_attr.attr,
3176         &use_zero_pages_attr.attr,
3177         NULL,
3178 };
3179
3180 static const struct attribute_group ksm_attr_group = {
3181         .attrs = ksm_attrs,
3182         .name = "ksm",
3183 };
3184 #endif /* CONFIG_SYSFS */
3185
3186 static int __init ksm_init(void)
3187 {
3188         struct task_struct *ksm_thread;
3189         int err;
3190
3191         /* The correct value depends on page size and endianness */
3192         zero_checksum = calc_checksum(ZERO_PAGE(0));
3193         /* Default to false for backwards compatibility */
3194         ksm_use_zero_pages = false;
3195
3196         err = ksm_slab_init();
3197         if (err)
3198                 goto out;
3199
3200         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3201         if (IS_ERR(ksm_thread)) {
3202                 pr_err("ksm: creating kthread failed\n");
3203                 err = PTR_ERR(ksm_thread);
3204                 goto out_free;
3205         }
3206
3207 #ifdef CONFIG_SYSFS
3208         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3209         if (err) {
3210                 pr_err("ksm: register sysfs failed\n");
3211                 kthread_stop(ksm_thread);
3212                 goto out_free;
3213         }
3214 #else
3215         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3216
3217 #endif /* CONFIG_SYSFS */
3218
3219 #ifdef CONFIG_MEMORY_HOTREMOVE
3220         /* There is no significance to this priority 100 */
3221         hotplug_memory_notifier(ksm_memory_callback, 100);
3222 #endif
3223         return 0;
3224
3225 out_free:
3226         ksm_slab_free();
3227 out:
3228         return err;
3229 }
3230 subsys_initcall(ksm_init);