c067e8dbcc79596f9fb5b5c5157abac966e1e6b7
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @mm: the memory structure this rmap_item is pointing into
154  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
155  * @oldchecksum: previous checksum of the page at that virtual address
156  * @nid: NUMA node id of unstable tree in which linked (may not match page)
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         struct anon_vma *anon_vma;      /* when stable */
164         struct mm_struct *mm;
165         unsigned long address;          /* + low bits used for flags below */
166         unsigned int oldchecksum;       /* when unstable */
167 #ifdef CONFIG_NUMA
168         int nid;
169 #endif
170         union {
171                 struct rb_node node;    /* when node of unstable tree */
172                 struct {                /* when listed from stable tree */
173                         struct stable_node *head;
174                         struct hlist_node hlist;
175                 };
176         };
177 };
178
179 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
180 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
181 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
182
183 /* The stable and unstable tree heads */
184 static struct rb_root root_unstable_tree[MAX_NUMNODES];
185 static struct rb_root root_stable_tree[MAX_NUMNODES];
186
187 /* Recently migrated nodes of stable tree, pending proper placement */
188 static LIST_HEAD(migrate_nodes);
189
190 #define MM_SLOTS_HASH_BITS 10
191 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
192
193 static struct mm_slot ksm_mm_head = {
194         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
195 };
196 static struct ksm_scan ksm_scan = {
197         .mm_slot = &ksm_mm_head,
198 };
199
200 static struct kmem_cache *rmap_item_cache;
201 static struct kmem_cache *stable_node_cache;
202 static struct kmem_cache *mm_slot_cache;
203
204 /* The number of nodes in the stable tree */
205 static unsigned long ksm_pages_shared;
206
207 /* The number of page slots additionally sharing those nodes */
208 static unsigned long ksm_pages_sharing;
209
210 /* The number of nodes in the unstable tree */
211 static unsigned long ksm_pages_unshared;
212
213 /* The number of rmap_items in use: to calculate pages_volatile */
214 static unsigned long ksm_rmap_items;
215
216 /* Number of pages ksmd should scan in one batch */
217 static unsigned int ksm_thread_pages_to_scan = 100;
218
219 /* Milliseconds ksmd should sleep between batches */
220 static unsigned int ksm_thread_sleep_millisecs = 20;
221
222 #ifdef CONFIG_NUMA
223 /* Zeroed when merging across nodes is not allowed */
224 static unsigned int ksm_merge_across_nodes = 1;
225 #else
226 #define ksm_merge_across_nodes  1U
227 #endif
228
229 #define KSM_RUN_STOP    0
230 #define KSM_RUN_MERGE   1
231 #define KSM_RUN_UNMERGE 2
232 #define KSM_RUN_OFFLINE 4
233 static unsigned long ksm_run = KSM_RUN_STOP;
234 static void wait_while_offlining(void);
235
236 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
237 static DEFINE_MUTEX(ksm_thread_mutex);
238 static DEFINE_SPINLOCK(ksm_mmlist_lock);
239
240 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
241                 sizeof(struct __struct), __alignof__(struct __struct),\
242                 (__flags), NULL)
243
244 static int __init ksm_slab_init(void)
245 {
246         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
247         if (!rmap_item_cache)
248                 goto out;
249
250         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
251         if (!stable_node_cache)
252                 goto out_free1;
253
254         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
255         if (!mm_slot_cache)
256                 goto out_free2;
257
258         return 0;
259
260 out_free2:
261         kmem_cache_destroy(stable_node_cache);
262 out_free1:
263         kmem_cache_destroy(rmap_item_cache);
264 out:
265         return -ENOMEM;
266 }
267
268 static void __init ksm_slab_free(void)
269 {
270         kmem_cache_destroy(mm_slot_cache);
271         kmem_cache_destroy(stable_node_cache);
272         kmem_cache_destroy(rmap_item_cache);
273         mm_slot_cache = NULL;
274 }
275
276 static inline struct rmap_item *alloc_rmap_item(void)
277 {
278         struct rmap_item *rmap_item;
279
280         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
281         if (rmap_item)
282                 ksm_rmap_items++;
283         return rmap_item;
284 }
285
286 static inline void free_rmap_item(struct rmap_item *rmap_item)
287 {
288         ksm_rmap_items--;
289         rmap_item->mm = NULL;   /* debug safety */
290         kmem_cache_free(rmap_item_cache, rmap_item);
291 }
292
293 static inline struct stable_node *alloc_stable_node(void)
294 {
295         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
296 }
297
298 static inline void free_stable_node(struct stable_node *stable_node)
299 {
300         kmem_cache_free(stable_node_cache, stable_node);
301 }
302
303 static inline struct mm_slot *alloc_mm_slot(void)
304 {
305         if (!mm_slot_cache)     /* initialization failed */
306                 return NULL;
307         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
308 }
309
310 static inline void free_mm_slot(struct mm_slot *mm_slot)
311 {
312         kmem_cache_free(mm_slot_cache, mm_slot);
313 }
314
315 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
316 {
317         struct hlist_node *node;
318         struct mm_slot *slot;
319
320         hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
321                 if (slot->mm == mm)
322                         return slot;
323
324         return NULL;
325 }
326
327 static void insert_to_mm_slots_hash(struct mm_struct *mm,
328                                     struct mm_slot *mm_slot)
329 {
330         mm_slot->mm = mm;
331         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
332 }
333
334 /*
335  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
336  * page tables after it has passed through ksm_exit() - which, if necessary,
337  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
338  * a special flag: they can just back out as soon as mm_users goes to zero.
339  * ksm_test_exit() is used throughout to make this test for exit: in some
340  * places for correctness, in some places just to avoid unnecessary work.
341  */
342 static inline bool ksm_test_exit(struct mm_struct *mm)
343 {
344         return atomic_read(&mm->mm_users) == 0;
345 }
346
347 /*
348  * We use break_ksm to break COW on a ksm page: it's a stripped down
349  *
350  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
351  *              put_page(page);
352  *
353  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
354  * in case the application has unmapped and remapped mm,addr meanwhile.
355  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
356  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
357  */
358 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
359 {
360         struct page *page;
361         int ret = 0;
362
363         do {
364                 cond_resched();
365                 page = follow_page(vma, addr, FOLL_GET);
366                 if (IS_ERR_OR_NULL(page))
367                         break;
368                 if (PageKsm(page))
369                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
370                                                         FAULT_FLAG_WRITE);
371                 else
372                         ret = VM_FAULT_WRITE;
373                 put_page(page);
374         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
375         /*
376          * We must loop because handle_mm_fault() may back out if there's
377          * any difficulty e.g. if pte accessed bit gets updated concurrently.
378          *
379          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
380          * COW has been broken, even if the vma does not permit VM_WRITE;
381          * but note that a concurrent fault might break PageKsm for us.
382          *
383          * VM_FAULT_SIGBUS could occur if we race with truncation of the
384          * backing file, which also invalidates anonymous pages: that's
385          * okay, that truncation will have unmapped the PageKsm for us.
386          *
387          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
388          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
389          * current task has TIF_MEMDIE set, and will be OOM killed on return
390          * to user; and ksmd, having no mm, would never be chosen for that.
391          *
392          * But if the mm is in a limited mem_cgroup, then the fault may fail
393          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
394          * even ksmd can fail in this way - though it's usually breaking ksm
395          * just to undo a merge it made a moment before, so unlikely to oom.
396          *
397          * That's a pity: we might therefore have more kernel pages allocated
398          * than we're counting as nodes in the stable tree; but ksm_do_scan
399          * will retry to break_cow on each pass, so should recover the page
400          * in due course.  The important thing is to not let VM_MERGEABLE
401          * be cleared while any such pages might remain in the area.
402          */
403         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
404 }
405
406 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
407                 unsigned long addr)
408 {
409         struct vm_area_struct *vma;
410         if (ksm_test_exit(mm))
411                 return NULL;
412         vma = find_vma(mm, addr);
413         if (!vma || vma->vm_start > addr)
414                 return NULL;
415         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
416                 return NULL;
417         return vma;
418 }
419
420 static void break_cow(struct rmap_item *rmap_item)
421 {
422         struct mm_struct *mm = rmap_item->mm;
423         unsigned long addr = rmap_item->address;
424         struct vm_area_struct *vma;
425
426         /*
427          * It is not an accident that whenever we want to break COW
428          * to undo, we also need to drop a reference to the anon_vma.
429          */
430         put_anon_vma(rmap_item->anon_vma);
431
432         down_read(&mm->mmap_sem);
433         vma = find_mergeable_vma(mm, addr);
434         if (vma)
435                 break_ksm(vma, addr);
436         up_read(&mm->mmap_sem);
437 }
438
439 static struct page *page_trans_compound_anon(struct page *page)
440 {
441         if (PageTransCompound(page)) {
442                 struct page *head = compound_trans_head(page);
443                 /*
444                  * head may actually be splitted and freed from under
445                  * us but it's ok here.
446                  */
447                 if (PageAnon(head))
448                         return head;
449         }
450         return NULL;
451 }
452
453 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
454 {
455         struct mm_struct *mm = rmap_item->mm;
456         unsigned long addr = rmap_item->address;
457         struct vm_area_struct *vma;
458         struct page *page;
459
460         down_read(&mm->mmap_sem);
461         vma = find_mergeable_vma(mm, addr);
462         if (!vma)
463                 goto out;
464
465         page = follow_page(vma, addr, FOLL_GET);
466         if (IS_ERR_OR_NULL(page))
467                 goto out;
468         if (PageAnon(page) || page_trans_compound_anon(page)) {
469                 flush_anon_page(vma, page, addr);
470                 flush_dcache_page(page);
471         } else {
472                 put_page(page);
473 out:            page = NULL;
474         }
475         up_read(&mm->mmap_sem);
476         return page;
477 }
478
479 /*
480  * This helper is used for getting right index into array of tree roots.
481  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
482  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
483  * every node has its own stable and unstable tree.
484  */
485 static inline int get_kpfn_nid(unsigned long kpfn)
486 {
487         return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
488 }
489
490 static void remove_node_from_stable_tree(struct stable_node *stable_node)
491 {
492         struct rmap_item *rmap_item;
493         struct hlist_node *hlist;
494
495         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
496                 if (rmap_item->hlist.next)
497                         ksm_pages_sharing--;
498                 else
499                         ksm_pages_shared--;
500                 put_anon_vma(rmap_item->anon_vma);
501                 rmap_item->address &= PAGE_MASK;
502                 cond_resched();
503         }
504
505         if (stable_node->head == &migrate_nodes)
506                 list_del(&stable_node->list);
507         else
508                 rb_erase(&stable_node->node,
509                          &root_stable_tree[NUMA(stable_node->nid)]);
510         free_stable_node(stable_node);
511 }
512
513 /*
514  * get_ksm_page: checks if the page indicated by the stable node
515  * is still its ksm page, despite having held no reference to it.
516  * In which case we can trust the content of the page, and it
517  * returns the gotten page; but if the page has now been zapped,
518  * remove the stale node from the stable tree and return NULL.
519  * But beware, the stable node's page might be being migrated.
520  *
521  * You would expect the stable_node to hold a reference to the ksm page.
522  * But if it increments the page's count, swapping out has to wait for
523  * ksmd to come around again before it can free the page, which may take
524  * seconds or even minutes: much too unresponsive.  So instead we use a
525  * "keyhole reference": access to the ksm page from the stable node peeps
526  * out through its keyhole to see if that page still holds the right key,
527  * pointing back to this stable node.  This relies on freeing a PageAnon
528  * page to reset its page->mapping to NULL, and relies on no other use of
529  * a page to put something that might look like our key in page->mapping.
530  * is on its way to being freed; but it is an anomaly to bear in mind.
531  */
532 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
533 {
534         struct page *page;
535         void *expected_mapping;
536         unsigned long kpfn;
537
538         expected_mapping = (void *)stable_node +
539                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
540 again:
541         kpfn = ACCESS_ONCE(stable_node->kpfn);
542         page = pfn_to_page(kpfn);
543
544         /*
545          * page is computed from kpfn, so on most architectures reading
546          * page->mapping is naturally ordered after reading node->kpfn,
547          * but on Alpha we need to be more careful.
548          */
549         smp_read_barrier_depends();
550         if (ACCESS_ONCE(page->mapping) != expected_mapping)
551                 goto stale;
552
553         /*
554          * We cannot do anything with the page while its refcount is 0.
555          * Usually 0 means free, or tail of a higher-order page: in which
556          * case this node is no longer referenced, and should be freed;
557          * however, it might mean that the page is under page_freeze_refs().
558          * The __remove_mapping() case is easy, again the node is now stale;
559          * but if page is swapcache in migrate_page_move_mapping(), it might
560          * still be our page, in which case it's essential to keep the node.
561          */
562         while (!get_page_unless_zero(page)) {
563                 /*
564                  * Another check for page->mapping != expected_mapping would
565                  * work here too.  We have chosen the !PageSwapCache test to
566                  * optimize the common case, when the page is or is about to
567                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
568                  * in the freeze_refs section of __remove_mapping(); but Anon
569                  * page->mapping reset to NULL later, in free_pages_prepare().
570                  */
571                 if (!PageSwapCache(page))
572                         goto stale;
573                 cpu_relax();
574         }
575
576         if (ACCESS_ONCE(page->mapping) != expected_mapping) {
577                 put_page(page);
578                 goto stale;
579         }
580
581         if (lock_it) {
582                 lock_page(page);
583                 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
584                         unlock_page(page);
585                         put_page(page);
586                         goto stale;
587                 }
588         }
589         return page;
590
591 stale:
592         /*
593          * We come here from above when page->mapping or !PageSwapCache
594          * suggests that the node is stale; but it might be under migration.
595          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
596          * before checking whether node->kpfn has been changed.
597          */
598         smp_rmb();
599         if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
600                 goto again;
601         remove_node_from_stable_tree(stable_node);
602         return NULL;
603 }
604
605 /*
606  * Removing rmap_item from stable or unstable tree.
607  * This function will clean the information from the stable/unstable tree.
608  */
609 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
610 {
611         if (rmap_item->address & STABLE_FLAG) {
612                 struct stable_node *stable_node;
613                 struct page *page;
614
615                 stable_node = rmap_item->head;
616                 page = get_ksm_page(stable_node, true);
617                 if (!page)
618                         goto out;
619
620                 hlist_del(&rmap_item->hlist);
621                 unlock_page(page);
622                 put_page(page);
623
624                 if (stable_node->hlist.first)
625                         ksm_pages_sharing--;
626                 else
627                         ksm_pages_shared--;
628
629                 put_anon_vma(rmap_item->anon_vma);
630                 rmap_item->address &= PAGE_MASK;
631
632         } else if (rmap_item->address & UNSTABLE_FLAG) {
633                 unsigned char age;
634                 /*
635                  * Usually ksmd can and must skip the rb_erase, because
636                  * root_unstable_tree was already reset to RB_ROOT.
637                  * But be careful when an mm is exiting: do the rb_erase
638                  * if this rmap_item was inserted by this scan, rather
639                  * than left over from before.
640                  */
641                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
642                 BUG_ON(age > 1);
643                 if (!age)
644                         rb_erase(&rmap_item->node,
645                                  &root_unstable_tree[NUMA(rmap_item->nid)]);
646                 ksm_pages_unshared--;
647                 rmap_item->address &= PAGE_MASK;
648         }
649 out:
650         cond_resched();         /* we're called from many long loops */
651 }
652
653 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
654                                        struct rmap_item **rmap_list)
655 {
656         while (*rmap_list) {
657                 struct rmap_item *rmap_item = *rmap_list;
658                 *rmap_list = rmap_item->rmap_list;
659                 remove_rmap_item_from_tree(rmap_item);
660                 free_rmap_item(rmap_item);
661         }
662 }
663
664 /*
665  * Though it's very tempting to unmerge rmap_items from stable tree rather
666  * than check every pte of a given vma, the locking doesn't quite work for
667  * that - an rmap_item is assigned to the stable tree after inserting ksm
668  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
669  * rmap_items from parent to child at fork time (so as not to waste time
670  * if exit comes before the next scan reaches it).
671  *
672  * Similarly, although we'd like to remove rmap_items (so updating counts
673  * and freeing memory) when unmerging an area, it's easier to leave that
674  * to the next pass of ksmd - consider, for example, how ksmd might be
675  * in cmp_and_merge_page on one of the rmap_items we would be removing.
676  */
677 static int unmerge_ksm_pages(struct vm_area_struct *vma,
678                              unsigned long start, unsigned long end)
679 {
680         unsigned long addr;
681         int err = 0;
682
683         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
684                 if (ksm_test_exit(vma->vm_mm))
685                         break;
686                 if (signal_pending(current))
687                         err = -ERESTARTSYS;
688                 else
689                         err = break_ksm(vma, addr);
690         }
691         return err;
692 }
693
694 #ifdef CONFIG_SYSFS
695 /*
696  * Only called through the sysfs control interface:
697  */
698 static int remove_stable_node(struct stable_node *stable_node)
699 {
700         struct page *page;
701         int err;
702
703         page = get_ksm_page(stable_node, true);
704         if (!page) {
705                 /*
706                  * get_ksm_page did remove_node_from_stable_tree itself.
707                  */
708                 return 0;
709         }
710
711         if (WARN_ON_ONCE(page_mapped(page))) {
712                 /*
713                  * This should not happen: but if it does, just refuse to let
714                  * merge_across_nodes be switched - there is no need to panic.
715                  */
716                 err = -EBUSY;
717         } else {
718                 /*
719                  * The stable node did not yet appear stale to get_ksm_page(),
720                  * since that allows for an unmapped ksm page to be recognized
721                  * right up until it is freed; but the node is safe to remove.
722                  * This page might be in a pagevec waiting to be freed,
723                  * or it might be PageSwapCache (perhaps under writeback),
724                  * or it might have been removed from swapcache a moment ago.
725                  */
726                 set_page_stable_node(page, NULL);
727                 remove_node_from_stable_tree(stable_node);
728                 err = 0;
729         }
730
731         unlock_page(page);
732         put_page(page);
733         return err;
734 }
735
736 static int remove_all_stable_nodes(void)
737 {
738         struct stable_node *stable_node;
739         struct list_head *this, *next;
740         int nid;
741         int err = 0;
742
743         for (nid = 0; nid < nr_node_ids; nid++) {
744                 while (root_stable_tree[nid].rb_node) {
745                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
746                                                 struct stable_node, node);
747                         if (remove_stable_node(stable_node)) {
748                                 err = -EBUSY;
749                                 break;  /* proceed to next nid */
750                         }
751                         cond_resched();
752                 }
753         }
754         list_for_each_safe(this, next, &migrate_nodes) {
755                 stable_node = list_entry(this, struct stable_node, list);
756                 if (remove_stable_node(stable_node))
757                         err = -EBUSY;
758                 cond_resched();
759         }
760         return err;
761 }
762
763 static int unmerge_and_remove_all_rmap_items(void)
764 {
765         struct mm_slot *mm_slot;
766         struct mm_struct *mm;
767         struct vm_area_struct *vma;
768         int err = 0;
769
770         spin_lock(&ksm_mmlist_lock);
771         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
772                                                 struct mm_slot, mm_list);
773         spin_unlock(&ksm_mmlist_lock);
774
775         for (mm_slot = ksm_scan.mm_slot;
776                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
777                 mm = mm_slot->mm;
778                 down_read(&mm->mmap_sem);
779                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
780                         if (ksm_test_exit(mm))
781                                 break;
782                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
783                                 continue;
784                         err = unmerge_ksm_pages(vma,
785                                                 vma->vm_start, vma->vm_end);
786                         if (err)
787                                 goto error;
788                 }
789
790                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
791
792                 spin_lock(&ksm_mmlist_lock);
793                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
794                                                 struct mm_slot, mm_list);
795                 if (ksm_test_exit(mm)) {
796                         hash_del(&mm_slot->link);
797                         list_del(&mm_slot->mm_list);
798                         spin_unlock(&ksm_mmlist_lock);
799
800                         free_mm_slot(mm_slot);
801                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
802                         up_read(&mm->mmap_sem);
803                         mmdrop(mm);
804                 } else {
805                         spin_unlock(&ksm_mmlist_lock);
806                         up_read(&mm->mmap_sem);
807                 }
808         }
809
810         /* Clean up stable nodes, but don't worry if some are still busy */
811         remove_all_stable_nodes();
812         ksm_scan.seqnr = 0;
813         return 0;
814
815 error:
816         up_read(&mm->mmap_sem);
817         spin_lock(&ksm_mmlist_lock);
818         ksm_scan.mm_slot = &ksm_mm_head;
819         spin_unlock(&ksm_mmlist_lock);
820         return err;
821 }
822 #endif /* CONFIG_SYSFS */
823
824 static u32 calc_checksum(struct page *page)
825 {
826         u32 checksum;
827         void *addr = kmap_atomic(page);
828         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
829         kunmap_atomic(addr);
830         return checksum;
831 }
832
833 static int memcmp_pages(struct page *page1, struct page *page2)
834 {
835         char *addr1, *addr2;
836         int ret;
837
838         addr1 = kmap_atomic(page1);
839         addr2 = kmap_atomic(page2);
840         ret = memcmp(addr1, addr2, PAGE_SIZE);
841         kunmap_atomic(addr2);
842         kunmap_atomic(addr1);
843         return ret;
844 }
845
846 static inline int pages_identical(struct page *page1, struct page *page2)
847 {
848         return !memcmp_pages(page1, page2);
849 }
850
851 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
852                               pte_t *orig_pte)
853 {
854         struct mm_struct *mm = vma->vm_mm;
855         unsigned long addr;
856         pte_t *ptep;
857         spinlock_t *ptl;
858         int swapped;
859         int err = -EFAULT;
860         unsigned long mmun_start;       /* For mmu_notifiers */
861         unsigned long mmun_end;         /* For mmu_notifiers */
862
863         addr = page_address_in_vma(page, vma);
864         if (addr == -EFAULT)
865                 goto out;
866
867         BUG_ON(PageTransCompound(page));
868
869         mmun_start = addr;
870         mmun_end   = addr + PAGE_SIZE;
871         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
872
873         ptep = page_check_address(page, mm, addr, &ptl, 0);
874         if (!ptep)
875                 goto out_mn;
876
877         if (pte_write(*ptep) || pte_dirty(*ptep)) {
878                 pte_t entry;
879
880                 swapped = PageSwapCache(page);
881                 flush_cache_page(vma, addr, page_to_pfn(page));
882                 /*
883                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
884                  * take any lock, therefore the check that we are going to make
885                  * with the pagecount against the mapcount is racey and
886                  * O_DIRECT can happen right after the check.
887                  * So we clear the pte and flush the tlb before the check
888                  * this assure us that no O_DIRECT can happen after the check
889                  * or in the middle of the check.
890                  */
891                 entry = ptep_clear_flush(vma, addr, ptep);
892                 /*
893                  * Check that no O_DIRECT or similar I/O is in progress on the
894                  * page
895                  */
896                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
897                         set_pte_at(mm, addr, ptep, entry);
898                         goto out_unlock;
899                 }
900                 if (pte_dirty(entry))
901                         set_page_dirty(page);
902                 entry = pte_mkclean(pte_wrprotect(entry));
903                 set_pte_at_notify(mm, addr, ptep, entry);
904         }
905         *orig_pte = *ptep;
906         err = 0;
907
908 out_unlock:
909         pte_unmap_unlock(ptep, ptl);
910 out_mn:
911         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
912 out:
913         return err;
914 }
915
916 /**
917  * replace_page - replace page in vma by new ksm page
918  * @vma:      vma that holds the pte pointing to page
919  * @page:     the page we are replacing by kpage
920  * @kpage:    the ksm page we replace page by
921  * @orig_pte: the original value of the pte
922  *
923  * Returns 0 on success, -EFAULT on failure.
924  */
925 static int replace_page(struct vm_area_struct *vma, struct page *page,
926                         struct page *kpage, pte_t orig_pte)
927 {
928         struct mm_struct *mm = vma->vm_mm;
929         pmd_t *pmd;
930         pte_t *ptep;
931         spinlock_t *ptl;
932         unsigned long addr;
933         int err = -EFAULT;
934         unsigned long mmun_start;       /* For mmu_notifiers */
935         unsigned long mmun_end;         /* For mmu_notifiers */
936
937         addr = page_address_in_vma(page, vma);
938         if (addr == -EFAULT)
939                 goto out;
940
941         pmd = mm_find_pmd(mm, addr);
942         if (!pmd)
943                 goto out;
944         BUG_ON(pmd_trans_huge(*pmd));
945
946         mmun_start = addr;
947         mmun_end   = addr + PAGE_SIZE;
948         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
949
950         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
951         if (!pte_same(*ptep, orig_pte)) {
952                 pte_unmap_unlock(ptep, ptl);
953                 goto out_mn;
954         }
955
956         get_page(kpage);
957         page_add_anon_rmap(kpage, vma, addr);
958
959         flush_cache_page(vma, addr, pte_pfn(*ptep));
960         ptep_clear_flush(vma, addr, ptep);
961         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
962
963         page_remove_rmap(page);
964         if (!page_mapped(page))
965                 try_to_free_swap(page);
966         put_page(page);
967
968         pte_unmap_unlock(ptep, ptl);
969         err = 0;
970 out_mn:
971         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
972 out:
973         return err;
974 }
975
976 static int page_trans_compound_anon_split(struct page *page)
977 {
978         int ret = 0;
979         struct page *transhuge_head = page_trans_compound_anon(page);
980         if (transhuge_head) {
981                 /* Get the reference on the head to split it. */
982                 if (get_page_unless_zero(transhuge_head)) {
983                         /*
984                          * Recheck we got the reference while the head
985                          * was still anonymous.
986                          */
987                         if (PageAnon(transhuge_head))
988                                 ret = split_huge_page(transhuge_head);
989                         else
990                                 /*
991                                  * Retry later if split_huge_page run
992                                  * from under us.
993                                  */
994                                 ret = 1;
995                         put_page(transhuge_head);
996                 } else
997                         /* Retry later if split_huge_page run from under us. */
998                         ret = 1;
999         }
1000         return ret;
1001 }
1002
1003 /*
1004  * try_to_merge_one_page - take two pages and merge them into one
1005  * @vma: the vma that holds the pte pointing to page
1006  * @page: the PageAnon page that we want to replace with kpage
1007  * @kpage: the PageKsm page that we want to map instead of page,
1008  *         or NULL the first time when we want to use page as kpage.
1009  *
1010  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1011  */
1012 static int try_to_merge_one_page(struct vm_area_struct *vma,
1013                                  struct page *page, struct page *kpage)
1014 {
1015         pte_t orig_pte = __pte(0);
1016         int err = -EFAULT;
1017
1018         if (page == kpage)                      /* ksm page forked */
1019                 return 0;
1020
1021         if (!(vma->vm_flags & VM_MERGEABLE))
1022                 goto out;
1023         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1024                 goto out;
1025         BUG_ON(PageTransCompound(page));
1026         if (!PageAnon(page))
1027                 goto out;
1028
1029         /*
1030          * We need the page lock to read a stable PageSwapCache in
1031          * write_protect_page().  We use trylock_page() instead of
1032          * lock_page() because we don't want to wait here - we
1033          * prefer to continue scanning and merging different pages,
1034          * then come back to this page when it is unlocked.
1035          */
1036         if (!trylock_page(page))
1037                 goto out;
1038         /*
1039          * If this anonymous page is mapped only here, its pte may need
1040          * to be write-protected.  If it's mapped elsewhere, all of its
1041          * ptes are necessarily already write-protected.  But in either
1042          * case, we need to lock and check page_count is not raised.
1043          */
1044         if (write_protect_page(vma, page, &orig_pte) == 0) {
1045                 if (!kpage) {
1046                         /*
1047                          * While we hold page lock, upgrade page from
1048                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1049                          * stable_tree_insert() will update stable_node.
1050                          */
1051                         set_page_stable_node(page, NULL);
1052                         mark_page_accessed(page);
1053                         err = 0;
1054                 } else if (pages_identical(page, kpage))
1055                         err = replace_page(vma, page, kpage, orig_pte);
1056         }
1057
1058         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1059                 munlock_vma_page(page);
1060                 if (!PageMlocked(kpage)) {
1061                         unlock_page(page);
1062                         lock_page(kpage);
1063                         mlock_vma_page(kpage);
1064                         page = kpage;           /* for final unlock */
1065                 }
1066         }
1067
1068         unlock_page(page);
1069 out:
1070         return err;
1071 }
1072
1073 /*
1074  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1075  * but no new kernel page is allocated: kpage must already be a ksm page.
1076  *
1077  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1078  */
1079 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1080                                       struct page *page, struct page *kpage)
1081 {
1082         struct mm_struct *mm = rmap_item->mm;
1083         struct vm_area_struct *vma;
1084         int err = -EFAULT;
1085
1086         down_read(&mm->mmap_sem);
1087         if (ksm_test_exit(mm))
1088                 goto out;
1089         vma = find_vma(mm, rmap_item->address);
1090         if (!vma || vma->vm_start > rmap_item->address)
1091                 goto out;
1092
1093         err = try_to_merge_one_page(vma, page, kpage);
1094         if (err)
1095                 goto out;
1096
1097         /* Must get reference to anon_vma while still holding mmap_sem */
1098         rmap_item->anon_vma = vma->anon_vma;
1099         get_anon_vma(vma->anon_vma);
1100 out:
1101         up_read(&mm->mmap_sem);
1102         return err;
1103 }
1104
1105 /*
1106  * try_to_merge_two_pages - take two identical pages and prepare them
1107  * to be merged into one page.
1108  *
1109  * This function returns the kpage if we successfully merged two identical
1110  * pages into one ksm page, NULL otherwise.
1111  *
1112  * Note that this function upgrades page to ksm page: if one of the pages
1113  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1114  */
1115 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1116                                            struct page *page,
1117                                            struct rmap_item *tree_rmap_item,
1118                                            struct page *tree_page)
1119 {
1120         int err;
1121
1122         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1123         if (!err) {
1124                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1125                                                         tree_page, page);
1126                 /*
1127                  * If that fails, we have a ksm page with only one pte
1128                  * pointing to it: so break it.
1129                  */
1130                 if (err)
1131                         break_cow(rmap_item);
1132         }
1133         return err ? NULL : page;
1134 }
1135
1136 /*
1137  * stable_tree_search - search for page inside the stable tree
1138  *
1139  * This function checks if there is a page inside the stable tree
1140  * with identical content to the page that we are scanning right now.
1141  *
1142  * This function returns the stable tree node of identical content if found,
1143  * NULL otherwise.
1144  */
1145 static struct page *stable_tree_search(struct page *page)
1146 {
1147         int nid;
1148         struct rb_node **new;
1149         struct rb_node *parent;
1150         struct stable_node *stable_node;
1151         struct stable_node *page_node;
1152
1153         page_node = page_stable_node(page);
1154         if (page_node && page_node->head != &migrate_nodes) {
1155                 /* ksm page forked */
1156                 get_page(page);
1157                 return page;
1158         }
1159
1160         nid = get_kpfn_nid(page_to_pfn(page));
1161 again:
1162         new = &root_stable_tree[nid].rb_node;
1163         parent = NULL;
1164
1165         while (*new) {
1166                 struct page *tree_page;
1167                 int ret;
1168
1169                 cond_resched();
1170                 stable_node = rb_entry(*new, struct stable_node, node);
1171                 tree_page = get_ksm_page(stable_node, false);
1172                 if (!tree_page)
1173                         return NULL;
1174
1175                 ret = memcmp_pages(page, tree_page);
1176                 put_page(tree_page);
1177
1178                 parent = *new;
1179                 if (ret < 0)
1180                         new = &parent->rb_left;
1181                 else if (ret > 0)
1182                         new = &parent->rb_right;
1183                 else {
1184                         /*
1185                          * Lock and unlock the stable_node's page (which
1186                          * might already have been migrated) so that page
1187                          * migration is sure to notice its raised count.
1188                          * It would be more elegant to return stable_node
1189                          * than kpage, but that involves more changes.
1190                          */
1191                         tree_page = get_ksm_page(stable_node, true);
1192                         if (tree_page) {
1193                                 unlock_page(tree_page);
1194                                 if (get_kpfn_nid(stable_node->kpfn) !=
1195                                                 NUMA(stable_node->nid)) {
1196                                         put_page(tree_page);
1197                                         goto replace;
1198                                 }
1199                                 return tree_page;
1200                         }
1201                         /*
1202                          * There is now a place for page_node, but the tree may
1203                          * have been rebalanced, so re-evaluate parent and new.
1204                          */
1205                         if (page_node)
1206                                 goto again;
1207                         return NULL;
1208                 }
1209         }
1210
1211         if (!page_node)
1212                 return NULL;
1213
1214         list_del(&page_node->list);
1215         DO_NUMA(page_node->nid = nid);
1216         rb_link_node(&page_node->node, parent, new);
1217         rb_insert_color(&page_node->node, &root_stable_tree[nid]);
1218         get_page(page);
1219         return page;
1220
1221 replace:
1222         if (page_node) {
1223                 list_del(&page_node->list);
1224                 DO_NUMA(page_node->nid = nid);
1225                 rb_replace_node(&stable_node->node,
1226                                 &page_node->node, &root_stable_tree[nid]);
1227                 get_page(page);
1228         } else {
1229                 rb_erase(&stable_node->node, &root_stable_tree[nid]);
1230                 page = NULL;
1231         }
1232         stable_node->head = &migrate_nodes;
1233         list_add(&stable_node->list, stable_node->head);
1234         return page;
1235 }
1236
1237 /*
1238  * stable_tree_insert - insert stable tree node pointing to new ksm page
1239  * into the stable tree.
1240  *
1241  * This function returns the stable tree node just allocated on success,
1242  * NULL otherwise.
1243  */
1244 static struct stable_node *stable_tree_insert(struct page *kpage)
1245 {
1246         int nid;
1247         unsigned long kpfn;
1248         struct rb_node **new;
1249         struct rb_node *parent = NULL;
1250         struct stable_node *stable_node;
1251
1252         kpfn = page_to_pfn(kpage);
1253         nid = get_kpfn_nid(kpfn);
1254         new = &root_stable_tree[nid].rb_node;
1255
1256         while (*new) {
1257                 struct page *tree_page;
1258                 int ret;
1259
1260                 cond_resched();
1261                 stable_node = rb_entry(*new, struct stable_node, node);
1262                 tree_page = get_ksm_page(stable_node, false);
1263                 if (!tree_page)
1264                         return NULL;
1265
1266                 ret = memcmp_pages(kpage, tree_page);
1267                 put_page(tree_page);
1268
1269                 parent = *new;
1270                 if (ret < 0)
1271                         new = &parent->rb_left;
1272                 else if (ret > 0)
1273                         new = &parent->rb_right;
1274                 else {
1275                         /*
1276                          * It is not a bug that stable_tree_search() didn't
1277                          * find this node: because at that time our page was
1278                          * not yet write-protected, so may have changed since.
1279                          */
1280                         return NULL;
1281                 }
1282         }
1283
1284         stable_node = alloc_stable_node();
1285         if (!stable_node)
1286                 return NULL;
1287
1288         INIT_HLIST_HEAD(&stable_node->hlist);
1289         stable_node->kpfn = kpfn;
1290         set_page_stable_node(kpage, stable_node);
1291         DO_NUMA(stable_node->nid = nid);
1292         rb_link_node(&stable_node->node, parent, new);
1293         rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
1294
1295         return stable_node;
1296 }
1297
1298 /*
1299  * unstable_tree_search_insert - search for identical page,
1300  * else insert rmap_item into the unstable tree.
1301  *
1302  * This function searches for a page in the unstable tree identical to the
1303  * page currently being scanned; and if no identical page is found in the
1304  * tree, we insert rmap_item as a new object into the unstable tree.
1305  *
1306  * This function returns pointer to rmap_item found to be identical
1307  * to the currently scanned page, NULL otherwise.
1308  *
1309  * This function does both searching and inserting, because they share
1310  * the same walking algorithm in an rbtree.
1311  */
1312 static
1313 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1314                                               struct page *page,
1315                                               struct page **tree_pagep)
1316 {
1317         struct rb_node **new;
1318         struct rb_root *root;
1319         struct rb_node *parent = NULL;
1320         int nid;
1321
1322         nid = get_kpfn_nid(page_to_pfn(page));
1323         root = &root_unstable_tree[nid];
1324         new = &root->rb_node;
1325
1326         while (*new) {
1327                 struct rmap_item *tree_rmap_item;
1328                 struct page *tree_page;
1329                 int ret;
1330
1331                 cond_resched();
1332                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1333                 tree_page = get_mergeable_page(tree_rmap_item);
1334                 if (IS_ERR_OR_NULL(tree_page))
1335                         return NULL;
1336
1337                 /*
1338                  * Don't substitute a ksm page for a forked page.
1339                  */
1340                 if (page == tree_page) {
1341                         put_page(tree_page);
1342                         return NULL;
1343                 }
1344
1345                 /*
1346                  * If tree_page has been migrated to another NUMA node, it
1347                  * will be flushed out and put into the right unstable tree
1348                  * next time: only merge with it if merge_across_nodes.
1349                  */
1350                 if (!ksm_merge_across_nodes && page_to_nid(tree_page) != nid) {
1351                         put_page(tree_page);
1352                         return NULL;
1353                 }
1354
1355                 ret = memcmp_pages(page, tree_page);
1356
1357                 parent = *new;
1358                 if (ret < 0) {
1359                         put_page(tree_page);
1360                         new = &parent->rb_left;
1361                 } else if (ret > 0) {
1362                         put_page(tree_page);
1363                         new = &parent->rb_right;
1364                 } else {
1365                         *tree_pagep = tree_page;
1366                         return tree_rmap_item;
1367                 }
1368         }
1369
1370         rmap_item->address |= UNSTABLE_FLAG;
1371         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1372         DO_NUMA(rmap_item->nid = nid);
1373         rb_link_node(&rmap_item->node, parent, new);
1374         rb_insert_color(&rmap_item->node, root);
1375
1376         ksm_pages_unshared++;
1377         return NULL;
1378 }
1379
1380 /*
1381  * stable_tree_append - add another rmap_item to the linked list of
1382  * rmap_items hanging off a given node of the stable tree, all sharing
1383  * the same ksm page.
1384  */
1385 static void stable_tree_append(struct rmap_item *rmap_item,
1386                                struct stable_node *stable_node)
1387 {
1388         rmap_item->head = stable_node;
1389         rmap_item->address |= STABLE_FLAG;
1390         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1391
1392         if (rmap_item->hlist.next)
1393                 ksm_pages_sharing++;
1394         else
1395                 ksm_pages_shared++;
1396 }
1397
1398 /*
1399  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1400  * if not, compare checksum to previous and if it's the same, see if page can
1401  * be inserted into the unstable tree, or merged with a page already there and
1402  * both transferred to the stable tree.
1403  *
1404  * @page: the page that we are searching identical page to.
1405  * @rmap_item: the reverse mapping into the virtual address of this page
1406  */
1407 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1408 {
1409         struct rmap_item *tree_rmap_item;
1410         struct page *tree_page = NULL;
1411         struct stable_node *stable_node;
1412         struct page *kpage;
1413         unsigned int checksum;
1414         int err;
1415
1416         stable_node = page_stable_node(page);
1417         if (stable_node) {
1418                 if (stable_node->head != &migrate_nodes &&
1419                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1420                         rb_erase(&stable_node->node,
1421                                  &root_stable_tree[NUMA(stable_node->nid)]);
1422                         stable_node->head = &migrate_nodes;
1423                         list_add(&stable_node->list, stable_node->head);
1424                 }
1425                 if (stable_node->head != &migrate_nodes &&
1426                     rmap_item->head == stable_node)
1427                         return;
1428         }
1429
1430         /* We first start with searching the page inside the stable tree */
1431         kpage = stable_tree_search(page);
1432         if (kpage == page && rmap_item->head == stable_node) {
1433                 put_page(kpage);
1434                 return;
1435         }
1436
1437         remove_rmap_item_from_tree(rmap_item);
1438
1439         if (kpage) {
1440                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1441                 if (!err) {
1442                         /*
1443                          * The page was successfully merged:
1444                          * add its rmap_item to the stable tree.
1445                          */
1446                         lock_page(kpage);
1447                         stable_tree_append(rmap_item, page_stable_node(kpage));
1448                         unlock_page(kpage);
1449                 }
1450                 put_page(kpage);
1451                 return;
1452         }
1453
1454         /*
1455          * If the hash value of the page has changed from the last time
1456          * we calculated it, this page is changing frequently: therefore we
1457          * don't want to insert it in the unstable tree, and we don't want
1458          * to waste our time searching for something identical to it there.
1459          */
1460         checksum = calc_checksum(page);
1461         if (rmap_item->oldchecksum != checksum) {
1462                 rmap_item->oldchecksum = checksum;
1463                 return;
1464         }
1465
1466         tree_rmap_item =
1467                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1468         if (tree_rmap_item) {
1469                 kpage = try_to_merge_two_pages(rmap_item, page,
1470                                                 tree_rmap_item, tree_page);
1471                 put_page(tree_page);
1472                 /*
1473                  * As soon as we merge this page, we want to remove the
1474                  * rmap_item of the page we have merged with from the unstable
1475                  * tree, and insert it instead as new node in the stable tree.
1476                  */
1477                 if (kpage) {
1478                         remove_rmap_item_from_tree(tree_rmap_item);
1479
1480                         lock_page(kpage);
1481                         stable_node = stable_tree_insert(kpage);
1482                         if (stable_node) {
1483                                 stable_tree_append(tree_rmap_item, stable_node);
1484                                 stable_tree_append(rmap_item, stable_node);
1485                         }
1486                         unlock_page(kpage);
1487
1488                         /*
1489                          * If we fail to insert the page into the stable tree,
1490                          * we will have 2 virtual addresses that are pointing
1491                          * to a ksm page left outside the stable tree,
1492                          * in which case we need to break_cow on both.
1493                          */
1494                         if (!stable_node) {
1495                                 break_cow(tree_rmap_item);
1496                                 break_cow(rmap_item);
1497                         }
1498                 }
1499         }
1500 }
1501
1502 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1503                                             struct rmap_item **rmap_list,
1504                                             unsigned long addr)
1505 {
1506         struct rmap_item *rmap_item;
1507
1508         while (*rmap_list) {
1509                 rmap_item = *rmap_list;
1510                 if ((rmap_item->address & PAGE_MASK) == addr)
1511                         return rmap_item;
1512                 if (rmap_item->address > addr)
1513                         break;
1514                 *rmap_list = rmap_item->rmap_list;
1515                 remove_rmap_item_from_tree(rmap_item);
1516                 free_rmap_item(rmap_item);
1517         }
1518
1519         rmap_item = alloc_rmap_item();
1520         if (rmap_item) {
1521                 /* It has already been zeroed */
1522                 rmap_item->mm = mm_slot->mm;
1523                 rmap_item->address = addr;
1524                 rmap_item->rmap_list = *rmap_list;
1525                 *rmap_list = rmap_item;
1526         }
1527         return rmap_item;
1528 }
1529
1530 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1531 {
1532         struct mm_struct *mm;
1533         struct mm_slot *slot;
1534         struct vm_area_struct *vma;
1535         struct rmap_item *rmap_item;
1536         int nid;
1537
1538         if (list_empty(&ksm_mm_head.mm_list))
1539                 return NULL;
1540
1541         slot = ksm_scan.mm_slot;
1542         if (slot == &ksm_mm_head) {
1543                 /*
1544                  * A number of pages can hang around indefinitely on per-cpu
1545                  * pagevecs, raised page count preventing write_protect_page
1546                  * from merging them.  Though it doesn't really matter much,
1547                  * it is puzzling to see some stuck in pages_volatile until
1548                  * other activity jostles them out, and they also prevented
1549                  * LTP's KSM test from succeeding deterministically; so drain
1550                  * them here (here rather than on entry to ksm_do_scan(),
1551                  * so we don't IPI too often when pages_to_scan is set low).
1552                  */
1553                 lru_add_drain_all();
1554
1555                 /*
1556                  * Whereas stale stable_nodes on the stable_tree itself
1557                  * get pruned in the regular course of stable_tree_search(),
1558                  * those moved out to the migrate_nodes list can accumulate:
1559                  * so prune them once before each full scan.
1560                  */
1561                 if (!ksm_merge_across_nodes) {
1562                         struct stable_node *stable_node;
1563                         struct list_head *this, *next;
1564                         struct page *page;
1565
1566                         list_for_each_safe(this, next, &migrate_nodes) {
1567                                 stable_node = list_entry(this,
1568                                                 struct stable_node, list);
1569                                 page = get_ksm_page(stable_node, false);
1570                                 if (page)
1571                                         put_page(page);
1572                                 cond_resched();
1573                         }
1574                 }
1575
1576                 for (nid = 0; nid < nr_node_ids; nid++)
1577                         root_unstable_tree[nid] = RB_ROOT;
1578
1579                 spin_lock(&ksm_mmlist_lock);
1580                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1581                 ksm_scan.mm_slot = slot;
1582                 spin_unlock(&ksm_mmlist_lock);
1583                 /*
1584                  * Although we tested list_empty() above, a racing __ksm_exit
1585                  * of the last mm on the list may have removed it since then.
1586                  */
1587                 if (slot == &ksm_mm_head)
1588                         return NULL;
1589 next_mm:
1590                 ksm_scan.address = 0;
1591                 ksm_scan.rmap_list = &slot->rmap_list;
1592         }
1593
1594         mm = slot->mm;
1595         down_read(&mm->mmap_sem);
1596         if (ksm_test_exit(mm))
1597                 vma = NULL;
1598         else
1599                 vma = find_vma(mm, ksm_scan.address);
1600
1601         for (; vma; vma = vma->vm_next) {
1602                 if (!(vma->vm_flags & VM_MERGEABLE))
1603                         continue;
1604                 if (ksm_scan.address < vma->vm_start)
1605                         ksm_scan.address = vma->vm_start;
1606                 if (!vma->anon_vma)
1607                         ksm_scan.address = vma->vm_end;
1608
1609                 while (ksm_scan.address < vma->vm_end) {
1610                         if (ksm_test_exit(mm))
1611                                 break;
1612                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1613                         if (IS_ERR_OR_NULL(*page)) {
1614                                 ksm_scan.address += PAGE_SIZE;
1615                                 cond_resched();
1616                                 continue;
1617                         }
1618                         if (PageAnon(*page) ||
1619                             page_trans_compound_anon(*page)) {
1620                                 flush_anon_page(vma, *page, ksm_scan.address);
1621                                 flush_dcache_page(*page);
1622                                 rmap_item = get_next_rmap_item(slot,
1623                                         ksm_scan.rmap_list, ksm_scan.address);
1624                                 if (rmap_item) {
1625                                         ksm_scan.rmap_list =
1626                                                         &rmap_item->rmap_list;
1627                                         ksm_scan.address += PAGE_SIZE;
1628                                 } else
1629                                         put_page(*page);
1630                                 up_read(&mm->mmap_sem);
1631                                 return rmap_item;
1632                         }
1633                         put_page(*page);
1634                         ksm_scan.address += PAGE_SIZE;
1635                         cond_resched();
1636                 }
1637         }
1638
1639         if (ksm_test_exit(mm)) {
1640                 ksm_scan.address = 0;
1641                 ksm_scan.rmap_list = &slot->rmap_list;
1642         }
1643         /*
1644          * Nuke all the rmap_items that are above this current rmap:
1645          * because there were no VM_MERGEABLE vmas with such addresses.
1646          */
1647         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1648
1649         spin_lock(&ksm_mmlist_lock);
1650         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1651                                                 struct mm_slot, mm_list);
1652         if (ksm_scan.address == 0) {
1653                 /*
1654                  * We've completed a full scan of all vmas, holding mmap_sem
1655                  * throughout, and found no VM_MERGEABLE: so do the same as
1656                  * __ksm_exit does to remove this mm from all our lists now.
1657                  * This applies either when cleaning up after __ksm_exit
1658                  * (but beware: we can reach here even before __ksm_exit),
1659                  * or when all VM_MERGEABLE areas have been unmapped (and
1660                  * mmap_sem then protects against race with MADV_MERGEABLE).
1661                  */
1662                 hash_del(&slot->link);
1663                 list_del(&slot->mm_list);
1664                 spin_unlock(&ksm_mmlist_lock);
1665
1666                 free_mm_slot(slot);
1667                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1668                 up_read(&mm->mmap_sem);
1669                 mmdrop(mm);
1670         } else {
1671                 spin_unlock(&ksm_mmlist_lock);
1672                 up_read(&mm->mmap_sem);
1673         }
1674
1675         /* Repeat until we've completed scanning the whole list */
1676         slot = ksm_scan.mm_slot;
1677         if (slot != &ksm_mm_head)
1678                 goto next_mm;
1679
1680         ksm_scan.seqnr++;
1681         return NULL;
1682 }
1683
1684 /**
1685  * ksm_do_scan  - the ksm scanner main worker function.
1686  * @scan_npages - number of pages we want to scan before we return.
1687  */
1688 static void ksm_do_scan(unsigned int scan_npages)
1689 {
1690         struct rmap_item *rmap_item;
1691         struct page *uninitialized_var(page);
1692
1693         while (scan_npages-- && likely(!freezing(current))) {
1694                 cond_resched();
1695                 rmap_item = scan_get_next_rmap_item(&page);
1696                 if (!rmap_item)
1697                         return;
1698                 cmp_and_merge_page(page, rmap_item);
1699                 put_page(page);
1700         }
1701 }
1702
1703 static int ksmd_should_run(void)
1704 {
1705         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1706 }
1707
1708 static int ksm_scan_thread(void *nothing)
1709 {
1710         set_freezable();
1711         set_user_nice(current, 5);
1712
1713         while (!kthread_should_stop()) {
1714                 mutex_lock(&ksm_thread_mutex);
1715                 wait_while_offlining();
1716                 if (ksmd_should_run())
1717                         ksm_do_scan(ksm_thread_pages_to_scan);
1718                 mutex_unlock(&ksm_thread_mutex);
1719
1720                 try_to_freeze();
1721
1722                 if (ksmd_should_run()) {
1723                         schedule_timeout_interruptible(
1724                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1725                 } else {
1726                         wait_event_freezable(ksm_thread_wait,
1727                                 ksmd_should_run() || kthread_should_stop());
1728                 }
1729         }
1730         return 0;
1731 }
1732
1733 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1734                 unsigned long end, int advice, unsigned long *vm_flags)
1735 {
1736         struct mm_struct *mm = vma->vm_mm;
1737         int err;
1738
1739         switch (advice) {
1740         case MADV_MERGEABLE:
1741                 /*
1742                  * Be somewhat over-protective for now!
1743                  */
1744                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1745                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1746                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1747                         return 0;               /* just ignore the advice */
1748
1749 #ifdef VM_SAO
1750                 if (*vm_flags & VM_SAO)
1751                         return 0;
1752 #endif
1753
1754                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1755                         err = __ksm_enter(mm);
1756                         if (err)
1757                                 return err;
1758                 }
1759
1760                 *vm_flags |= VM_MERGEABLE;
1761                 break;
1762
1763         case MADV_UNMERGEABLE:
1764                 if (!(*vm_flags & VM_MERGEABLE))
1765                         return 0;               /* just ignore the advice */
1766
1767                 if (vma->anon_vma) {
1768                         err = unmerge_ksm_pages(vma, start, end);
1769                         if (err)
1770                                 return err;
1771                 }
1772
1773                 *vm_flags &= ~VM_MERGEABLE;
1774                 break;
1775         }
1776
1777         return 0;
1778 }
1779
1780 int __ksm_enter(struct mm_struct *mm)
1781 {
1782         struct mm_slot *mm_slot;
1783         int needs_wakeup;
1784
1785         mm_slot = alloc_mm_slot();
1786         if (!mm_slot)
1787                 return -ENOMEM;
1788
1789         /* Check ksm_run too?  Would need tighter locking */
1790         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1791
1792         spin_lock(&ksm_mmlist_lock);
1793         insert_to_mm_slots_hash(mm, mm_slot);
1794         /*
1795          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1796          * insert just behind the scanning cursor, to let the area settle
1797          * down a little; when fork is followed by immediate exec, we don't
1798          * want ksmd to waste time setting up and tearing down an rmap_list.
1799          *
1800          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1801          * scanning cursor, otherwise KSM pages in newly forked mms will be
1802          * missed: then we might as well insert at the end of the list.
1803          */
1804         if (ksm_run & KSM_RUN_UNMERGE)
1805                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1806         else
1807                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1808         spin_unlock(&ksm_mmlist_lock);
1809
1810         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1811         atomic_inc(&mm->mm_count);
1812
1813         if (needs_wakeup)
1814                 wake_up_interruptible(&ksm_thread_wait);
1815
1816         return 0;
1817 }
1818
1819 void __ksm_exit(struct mm_struct *mm)
1820 {
1821         struct mm_slot *mm_slot;
1822         int easy_to_free = 0;
1823
1824         /*
1825          * This process is exiting: if it's straightforward (as is the
1826          * case when ksmd was never running), free mm_slot immediately.
1827          * But if it's at the cursor or has rmap_items linked to it, use
1828          * mmap_sem to synchronize with any break_cows before pagetables
1829          * are freed, and leave the mm_slot on the list for ksmd to free.
1830          * Beware: ksm may already have noticed it exiting and freed the slot.
1831          */
1832
1833         spin_lock(&ksm_mmlist_lock);
1834         mm_slot = get_mm_slot(mm);
1835         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1836                 if (!mm_slot->rmap_list) {
1837                         hash_del(&mm_slot->link);
1838                         list_del(&mm_slot->mm_list);
1839                         easy_to_free = 1;
1840                 } else {
1841                         list_move(&mm_slot->mm_list,
1842                                   &ksm_scan.mm_slot->mm_list);
1843                 }
1844         }
1845         spin_unlock(&ksm_mmlist_lock);
1846
1847         if (easy_to_free) {
1848                 free_mm_slot(mm_slot);
1849                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1850                 mmdrop(mm);
1851         } else if (mm_slot) {
1852                 down_write(&mm->mmap_sem);
1853                 up_write(&mm->mmap_sem);
1854         }
1855 }
1856
1857 struct page *ksm_might_need_to_copy(struct page *page,
1858                         struct vm_area_struct *vma, unsigned long address)
1859 {
1860         struct anon_vma *anon_vma = page_anon_vma(page);
1861         struct page *new_page;
1862
1863         if (PageKsm(page)) {
1864                 if (page_stable_node(page) &&
1865                     !(ksm_run & KSM_RUN_UNMERGE))
1866                         return page;    /* no need to copy it */
1867         } else if (!anon_vma) {
1868                 return page;            /* no need to copy it */
1869         } else if (anon_vma->root == vma->anon_vma->root &&
1870                  page->index == linear_page_index(vma, address)) {
1871                 return page;            /* still no need to copy it */
1872         }
1873         if (!PageUptodate(page))
1874                 return page;            /* let do_swap_page report the error */
1875
1876         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1877         if (new_page) {
1878                 copy_user_highpage(new_page, page, address, vma);
1879
1880                 SetPageDirty(new_page);
1881                 __SetPageUptodate(new_page);
1882                 __set_page_locked(new_page);
1883         }
1884
1885         return new_page;
1886 }
1887
1888 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1889                         unsigned long *vm_flags)
1890 {
1891         struct stable_node *stable_node;
1892         struct rmap_item *rmap_item;
1893         struct hlist_node *hlist;
1894         unsigned int mapcount = page_mapcount(page);
1895         int referenced = 0;
1896         int search_new_forks = 0;
1897
1898         VM_BUG_ON(!PageKsm(page));
1899         VM_BUG_ON(!PageLocked(page));
1900
1901         stable_node = page_stable_node(page);
1902         if (!stable_node)
1903                 return 0;
1904 again:
1905         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1906                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1907                 struct anon_vma_chain *vmac;
1908                 struct vm_area_struct *vma;
1909
1910                 anon_vma_lock_read(anon_vma);
1911                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1912                                                0, ULONG_MAX) {
1913                         vma = vmac->vma;
1914                         if (rmap_item->address < vma->vm_start ||
1915                             rmap_item->address >= vma->vm_end)
1916                                 continue;
1917                         /*
1918                          * Initially we examine only the vma which covers this
1919                          * rmap_item; but later, if there is still work to do,
1920                          * we examine covering vmas in other mms: in case they
1921                          * were forked from the original since ksmd passed.
1922                          */
1923                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1924                                 continue;
1925
1926                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1927                                 continue;
1928
1929                         referenced += page_referenced_one(page, vma,
1930                                 rmap_item->address, &mapcount, vm_flags);
1931                         if (!search_new_forks || !mapcount)
1932                                 break;
1933                 }
1934                 anon_vma_unlock_read(anon_vma);
1935                 if (!mapcount)
1936                         goto out;
1937         }
1938         if (!search_new_forks++)
1939                 goto again;
1940 out:
1941         return referenced;
1942 }
1943
1944 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1945 {
1946         struct stable_node *stable_node;
1947         struct hlist_node *hlist;
1948         struct rmap_item *rmap_item;
1949         int ret = SWAP_AGAIN;
1950         int search_new_forks = 0;
1951
1952         VM_BUG_ON(!PageKsm(page));
1953         VM_BUG_ON(!PageLocked(page));
1954
1955         stable_node = page_stable_node(page);
1956         if (!stable_node)
1957                 return SWAP_FAIL;
1958 again:
1959         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1960                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1961                 struct anon_vma_chain *vmac;
1962                 struct vm_area_struct *vma;
1963
1964                 anon_vma_lock_read(anon_vma);
1965                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1966                                                0, ULONG_MAX) {
1967                         vma = vmac->vma;
1968                         if (rmap_item->address < vma->vm_start ||
1969                             rmap_item->address >= vma->vm_end)
1970                                 continue;
1971                         /*
1972                          * Initially we examine only the vma which covers this
1973                          * rmap_item; but later, if there is still work to do,
1974                          * we examine covering vmas in other mms: in case they
1975                          * were forked from the original since ksmd passed.
1976                          */
1977                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1978                                 continue;
1979
1980                         ret = try_to_unmap_one(page, vma,
1981                                         rmap_item->address, flags);
1982                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1983                                 anon_vma_unlock_read(anon_vma);
1984                                 goto out;
1985                         }
1986                 }
1987                 anon_vma_unlock_read(anon_vma);
1988         }
1989         if (!search_new_forks++)
1990                 goto again;
1991 out:
1992         return ret;
1993 }
1994
1995 #ifdef CONFIG_MIGRATION
1996 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1997                   struct vm_area_struct *, unsigned long, void *), void *arg)
1998 {
1999         struct stable_node *stable_node;
2000         struct hlist_node *hlist;
2001         struct rmap_item *rmap_item;
2002         int ret = SWAP_AGAIN;
2003         int search_new_forks = 0;
2004
2005         VM_BUG_ON(!PageKsm(page));
2006         VM_BUG_ON(!PageLocked(page));
2007
2008         stable_node = page_stable_node(page);
2009         if (!stable_node)
2010                 return ret;
2011 again:
2012         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
2013                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2014                 struct anon_vma_chain *vmac;
2015                 struct vm_area_struct *vma;
2016
2017                 anon_vma_lock_read(anon_vma);
2018                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2019                                                0, ULONG_MAX) {
2020                         vma = vmac->vma;
2021                         if (rmap_item->address < vma->vm_start ||
2022                             rmap_item->address >= vma->vm_end)
2023                                 continue;
2024                         /*
2025                          * Initially we examine only the vma which covers this
2026                          * rmap_item; but later, if there is still work to do,
2027                          * we examine covering vmas in other mms: in case they
2028                          * were forked from the original since ksmd passed.
2029                          */
2030                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2031                                 continue;
2032
2033                         ret = rmap_one(page, vma, rmap_item->address, arg);
2034                         if (ret != SWAP_AGAIN) {
2035                                 anon_vma_unlock_read(anon_vma);
2036                                 goto out;
2037                         }
2038                 }
2039                 anon_vma_unlock_read(anon_vma);
2040         }
2041         if (!search_new_forks++)
2042                 goto again;
2043 out:
2044         return ret;
2045 }
2046
2047 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2048 {
2049         struct stable_node *stable_node;
2050
2051         VM_BUG_ON(!PageLocked(oldpage));
2052         VM_BUG_ON(!PageLocked(newpage));
2053         VM_BUG_ON(newpage->mapping != oldpage->mapping);
2054
2055         stable_node = page_stable_node(newpage);
2056         if (stable_node) {
2057                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2058                 stable_node->kpfn = page_to_pfn(newpage);
2059                 /*
2060                  * newpage->mapping was set in advance; now we need smp_wmb()
2061                  * to make sure that the new stable_node->kpfn is visible
2062                  * to get_ksm_page() before it can see that oldpage->mapping
2063                  * has gone stale (or that PageSwapCache has been cleared).
2064                  */
2065                 smp_wmb();
2066                 set_page_stable_node(oldpage, NULL);
2067         }
2068 }
2069 #endif /* CONFIG_MIGRATION */
2070
2071 #ifdef CONFIG_MEMORY_HOTREMOVE
2072 static int just_wait(void *word)
2073 {
2074         schedule();
2075         return 0;
2076 }
2077
2078 static void wait_while_offlining(void)
2079 {
2080         while (ksm_run & KSM_RUN_OFFLINE) {
2081                 mutex_unlock(&ksm_thread_mutex);
2082                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2083                                 just_wait, TASK_UNINTERRUPTIBLE);
2084                 mutex_lock(&ksm_thread_mutex);
2085         }
2086 }
2087
2088 static void ksm_check_stable_tree(unsigned long start_pfn,
2089                                   unsigned long end_pfn)
2090 {
2091         struct stable_node *stable_node;
2092         struct list_head *this, *next;
2093         struct rb_node *node;
2094         int nid;
2095
2096         for (nid = 0; nid < nr_node_ids; nid++) {
2097                 node = rb_first(&root_stable_tree[nid]);
2098                 while (node) {
2099                         stable_node = rb_entry(node, struct stable_node, node);
2100                         if (stable_node->kpfn >= start_pfn &&
2101                             stable_node->kpfn < end_pfn) {
2102                                 /*
2103                                  * Don't get_ksm_page, page has already gone:
2104                                  * which is why we keep kpfn instead of page*
2105                                  */
2106                                 remove_node_from_stable_tree(stable_node);
2107                                 node = rb_first(&root_stable_tree[nid]);
2108                         } else
2109                                 node = rb_next(node);
2110                         cond_resched();
2111                 }
2112         }
2113         list_for_each_safe(this, next, &migrate_nodes) {
2114                 stable_node = list_entry(this, struct stable_node, list);
2115                 if (stable_node->kpfn >= start_pfn &&
2116                     stable_node->kpfn < end_pfn)
2117                         remove_node_from_stable_tree(stable_node);
2118                 cond_resched();
2119         }
2120 }
2121
2122 static int ksm_memory_callback(struct notifier_block *self,
2123                                unsigned long action, void *arg)
2124 {
2125         struct memory_notify *mn = arg;
2126
2127         switch (action) {
2128         case MEM_GOING_OFFLINE:
2129                 /*
2130                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2131                  * and remove_all_stable_nodes() while memory is going offline:
2132                  * it is unsafe for them to touch the stable tree at this time.
2133                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2134                  * which do not need the ksm_thread_mutex are all safe.
2135                  */
2136                 mutex_lock(&ksm_thread_mutex);
2137                 ksm_run |= KSM_RUN_OFFLINE;
2138                 mutex_unlock(&ksm_thread_mutex);
2139                 break;
2140
2141         case MEM_OFFLINE:
2142                 /*
2143                  * Most of the work is done by page migration; but there might
2144                  * be a few stable_nodes left over, still pointing to struct
2145                  * pages which have been offlined: prune those from the tree,
2146                  * otherwise get_ksm_page() might later try to access a
2147                  * non-existent struct page.
2148                  */
2149                 ksm_check_stable_tree(mn->start_pfn,
2150                                       mn->start_pfn + mn->nr_pages);
2151                 /* fallthrough */
2152
2153         case MEM_CANCEL_OFFLINE:
2154                 mutex_lock(&ksm_thread_mutex);
2155                 ksm_run &= ~KSM_RUN_OFFLINE;
2156                 mutex_unlock(&ksm_thread_mutex);
2157
2158                 smp_mb();       /* wake_up_bit advises this */
2159                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2160                 break;
2161         }
2162         return NOTIFY_OK;
2163 }
2164 #else
2165 static void wait_while_offlining(void)
2166 {
2167 }
2168 #endif /* CONFIG_MEMORY_HOTREMOVE */
2169
2170 #ifdef CONFIG_SYSFS
2171 /*
2172  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2173  */
2174
2175 #define KSM_ATTR_RO(_name) \
2176         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2177 #define KSM_ATTR(_name) \
2178         static struct kobj_attribute _name##_attr = \
2179                 __ATTR(_name, 0644, _name##_show, _name##_store)
2180
2181 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2182                                     struct kobj_attribute *attr, char *buf)
2183 {
2184         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2185 }
2186
2187 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2188                                      struct kobj_attribute *attr,
2189                                      const char *buf, size_t count)
2190 {
2191         unsigned long msecs;
2192         int err;
2193
2194         err = strict_strtoul(buf, 10, &msecs);
2195         if (err || msecs > UINT_MAX)
2196                 return -EINVAL;
2197
2198         ksm_thread_sleep_millisecs = msecs;
2199
2200         return count;
2201 }
2202 KSM_ATTR(sleep_millisecs);
2203
2204 static ssize_t pages_to_scan_show(struct kobject *kobj,
2205                                   struct kobj_attribute *attr, char *buf)
2206 {
2207         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2208 }
2209
2210 static ssize_t pages_to_scan_store(struct kobject *kobj,
2211                                    struct kobj_attribute *attr,
2212                                    const char *buf, size_t count)
2213 {
2214         int err;
2215         unsigned long nr_pages;
2216
2217         err = strict_strtoul(buf, 10, &nr_pages);
2218         if (err || nr_pages > UINT_MAX)
2219                 return -EINVAL;
2220
2221         ksm_thread_pages_to_scan = nr_pages;
2222
2223         return count;
2224 }
2225 KSM_ATTR(pages_to_scan);
2226
2227 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2228                         char *buf)
2229 {
2230         return sprintf(buf, "%lu\n", ksm_run);
2231 }
2232
2233 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2234                          const char *buf, size_t count)
2235 {
2236         int err;
2237         unsigned long flags;
2238
2239         err = strict_strtoul(buf, 10, &flags);
2240         if (err || flags > UINT_MAX)
2241                 return -EINVAL;
2242         if (flags > KSM_RUN_UNMERGE)
2243                 return -EINVAL;
2244
2245         /*
2246          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2247          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2248          * breaking COW to free the pages_shared (but leaves mm_slots
2249          * on the list for when ksmd may be set running again).
2250          */
2251
2252         mutex_lock(&ksm_thread_mutex);
2253         wait_while_offlining();
2254         if (ksm_run != flags) {
2255                 ksm_run = flags;
2256                 if (flags & KSM_RUN_UNMERGE) {
2257                         set_current_oom_origin();
2258                         err = unmerge_and_remove_all_rmap_items();
2259                         clear_current_oom_origin();
2260                         if (err) {
2261                                 ksm_run = KSM_RUN_STOP;
2262                                 count = err;
2263                         }
2264                 }
2265         }
2266         mutex_unlock(&ksm_thread_mutex);
2267
2268         if (flags & KSM_RUN_MERGE)
2269                 wake_up_interruptible(&ksm_thread_wait);
2270
2271         return count;
2272 }
2273 KSM_ATTR(run);
2274
2275 #ifdef CONFIG_NUMA
2276 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2277                                 struct kobj_attribute *attr, char *buf)
2278 {
2279         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2280 }
2281
2282 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2283                                    struct kobj_attribute *attr,
2284                                    const char *buf, size_t count)
2285 {
2286         int err;
2287         unsigned long knob;
2288
2289         err = kstrtoul(buf, 10, &knob);
2290         if (err)
2291                 return err;
2292         if (knob > 1)
2293                 return -EINVAL;
2294
2295         mutex_lock(&ksm_thread_mutex);
2296         wait_while_offlining();
2297         if (ksm_merge_across_nodes != knob) {
2298                 if (ksm_pages_shared || remove_all_stable_nodes())
2299                         err = -EBUSY;
2300                 else
2301                         ksm_merge_across_nodes = knob;
2302         }
2303         mutex_unlock(&ksm_thread_mutex);
2304
2305         return err ? err : count;
2306 }
2307 KSM_ATTR(merge_across_nodes);
2308 #endif
2309
2310 static ssize_t pages_shared_show(struct kobject *kobj,
2311                                  struct kobj_attribute *attr, char *buf)
2312 {
2313         return sprintf(buf, "%lu\n", ksm_pages_shared);
2314 }
2315 KSM_ATTR_RO(pages_shared);
2316
2317 static ssize_t pages_sharing_show(struct kobject *kobj,
2318                                   struct kobj_attribute *attr, char *buf)
2319 {
2320         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2321 }
2322 KSM_ATTR_RO(pages_sharing);
2323
2324 static ssize_t pages_unshared_show(struct kobject *kobj,
2325                                    struct kobj_attribute *attr, char *buf)
2326 {
2327         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2328 }
2329 KSM_ATTR_RO(pages_unshared);
2330
2331 static ssize_t pages_volatile_show(struct kobject *kobj,
2332                                    struct kobj_attribute *attr, char *buf)
2333 {
2334         long ksm_pages_volatile;
2335
2336         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2337                                 - ksm_pages_sharing - ksm_pages_unshared;
2338         /*
2339          * It was not worth any locking to calculate that statistic,
2340          * but it might therefore sometimes be negative: conceal that.
2341          */
2342         if (ksm_pages_volatile < 0)
2343                 ksm_pages_volatile = 0;
2344         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2345 }
2346 KSM_ATTR_RO(pages_volatile);
2347
2348 static ssize_t full_scans_show(struct kobject *kobj,
2349                                struct kobj_attribute *attr, char *buf)
2350 {
2351         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2352 }
2353 KSM_ATTR_RO(full_scans);
2354
2355 static struct attribute *ksm_attrs[] = {
2356         &sleep_millisecs_attr.attr,
2357         &pages_to_scan_attr.attr,
2358         &run_attr.attr,
2359         &pages_shared_attr.attr,
2360         &pages_sharing_attr.attr,
2361         &pages_unshared_attr.attr,
2362         &pages_volatile_attr.attr,
2363         &full_scans_attr.attr,
2364 #ifdef CONFIG_NUMA
2365         &merge_across_nodes_attr.attr,
2366 #endif
2367         NULL,
2368 };
2369
2370 static struct attribute_group ksm_attr_group = {
2371         .attrs = ksm_attrs,
2372         .name = "ksm",
2373 };
2374 #endif /* CONFIG_SYSFS */
2375
2376 static int __init ksm_init(void)
2377 {
2378         struct task_struct *ksm_thread;
2379         int err;
2380         int nid;
2381
2382         err = ksm_slab_init();
2383         if (err)
2384                 goto out;
2385
2386         for (nid = 0; nid < nr_node_ids; nid++)
2387                 root_stable_tree[nid] = RB_ROOT;
2388
2389         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2390         if (IS_ERR(ksm_thread)) {
2391                 printk(KERN_ERR "ksm: creating kthread failed\n");
2392                 err = PTR_ERR(ksm_thread);
2393                 goto out_free;
2394         }
2395
2396 #ifdef CONFIG_SYSFS
2397         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2398         if (err) {
2399                 printk(KERN_ERR "ksm: register sysfs failed\n");
2400                 kthread_stop(ksm_thread);
2401                 goto out_free;
2402         }
2403 #else
2404         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2405
2406 #endif /* CONFIG_SYSFS */
2407
2408 #ifdef CONFIG_MEMORY_HOTREMOVE
2409         /* There is no significance to this priority 100 */
2410         hotplug_memory_notifier(ksm_memory_callback, 100);
2411 #endif
2412         return 0;
2413
2414 out_free:
2415         ksm_slab_free();
2416 out:
2417         return err;
2418 }
2419 module_init(ksm_init)