1 // SPDX-License-Identifier: GPL-2.0-only
3 * Memory merging support.
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
8 * Copyright (C) 2008-2009 Red Hat, Inc.
16 #include <linux/errno.h>
18 #include <linux/mm_inline.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
44 #include <asm/tlbflush.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
53 #define DO_NUMA(x) do { (x); } while (0)
56 #define DO_NUMA(x) do { } while (0)
62 * A few notes about the KSM scanning process,
63 * to make it easier to understand the data structures below:
65 * In order to reduce excessive scanning, KSM sorts the memory pages by their
66 * contents into a data structure that holds pointers to the pages' locations.
68 * Since the contents of the pages may change at any moment, KSM cannot just
69 * insert the pages into a normal sorted tree and expect it to find anything.
70 * Therefore KSM uses two data structures - the stable and the unstable tree.
72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73 * by their contents. Because each such page is write-protected, searching on
74 * this tree is fully assured to be working (except when pages are unmapped),
75 * and therefore this tree is called the stable tree.
77 * The stable tree node includes information required for reverse
78 * mapping from a KSM page to virtual addresses that map this page.
80 * In order to avoid large latencies of the rmap walks on KSM pages,
81 * KSM maintains two types of nodes in the stable tree:
83 * * the regular nodes that keep the reverse mapping structures in a
85 * * the "chains" that link nodes ("dups") that represent the same
86 * write protected memory content, but each "dup" corresponds to a
87 * different KSM page copy of that content
89 * Internally, the regular nodes, "dups" and "chains" are represented
90 * using the same struct ksm_stable_node structure.
92 * In addition to the stable tree, KSM uses a second data structure called the
93 * unstable tree: this tree holds pointers to pages which have been found to
94 * be "unchanged for a period of time". The unstable tree sorts these pages
95 * by their contents, but since they are not write-protected, KSM cannot rely
96 * upon the unstable tree to work correctly - the unstable tree is liable to
97 * be corrupted as its contents are modified, and so it is called unstable.
99 * KSM solves this problem by several techniques:
101 * 1) The unstable tree is flushed every time KSM completes scanning all
102 * memory areas, and then the tree is rebuilt again from the beginning.
103 * 2) KSM will only insert into the unstable tree, pages whose hash value
104 * has not changed since the previous scan of all memory areas.
105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106 * colors of the nodes and not on their contents, assuring that even when
107 * the tree gets "corrupted" it won't get out of balance, so scanning time
108 * remains the same (also, searching and inserting nodes in an rbtree uses
109 * the same algorithm, so we have no overhead when we flush and rebuild).
110 * 4) KSM never flushes the stable tree, which means that even if it were to
111 * take 10 attempts to find a page in the unstable tree, once it is found,
112 * it is secured in the stable tree. (When we scan a new page, we first
113 * compare it against the stable tree, and then against the unstable tree.)
115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116 * stable trees and multiple unstable trees: one of each for each NUMA node.
120 * struct ksm_mm_slot - ksm information per mm that is being scanned
121 * @slot: hash lookup from mm to mm_slot
122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126 struct ksm_rmap_item *rmap_list;
130 * struct ksm_scan - cursor for scanning
131 * @mm_slot: the current mm_slot we are scanning
132 * @address: the next address inside that to be scanned
133 * @rmap_list: link to the next rmap to be scanned in the rmap_list
134 * @seqnr: count of completed full scans (needed when removing unstable node)
136 * There is only the one ksm_scan instance of this cursor structure.
139 struct ksm_mm_slot *mm_slot;
140 unsigned long address;
141 struct ksm_rmap_item **rmap_list;
146 * struct ksm_stable_node - node of the stable rbtree
147 * @node: rb node of this ksm page in the stable tree
148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150 * @list: linked into migrate_nodes, pending placement in the proper node tree
151 * @hlist: hlist head of rmap_items using this ksm page
152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153 * @chain_prune_time: time of the last full garbage collection
154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
157 struct ksm_stable_node {
159 struct rb_node node; /* when node of stable tree */
160 struct { /* when listed for migration */
161 struct list_head *head;
163 struct hlist_node hlist_dup;
164 struct list_head list;
168 struct hlist_head hlist;
171 unsigned long chain_prune_time;
174 * STABLE_NODE_CHAIN can be any negative number in
175 * rmap_hlist_len negative range, but better not -1 to be able
176 * to reliably detect underflows.
178 #define STABLE_NODE_CHAIN -1024
186 * struct ksm_rmap_item - reverse mapping item for virtual addresses
187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189 * @nid: NUMA node id of unstable tree in which linked (may not match page)
190 * @mm: the memory structure this rmap_item is pointing into
191 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192 * @oldchecksum: previous checksum of the page at that virtual address
193 * @node: rb node of this rmap_item in the unstable tree
194 * @head: pointer to stable_node heading this list in the stable tree
195 * @hlist: link into hlist of rmap_items hanging off that stable_node
197 struct ksm_rmap_item {
198 struct ksm_rmap_item *rmap_list;
200 struct anon_vma *anon_vma; /* when stable */
202 int nid; /* when node of unstable tree */
205 struct mm_struct *mm;
206 unsigned long address; /* + low bits used for flags below */
207 unsigned int oldchecksum; /* when unstable */
209 struct rb_node node; /* when node of unstable tree */
210 struct { /* when listed from stable tree */
211 struct ksm_stable_node *head;
212 struct hlist_node hlist;
217 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
219 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234 static struct ksm_mm_slot ksm_mm_head = {
235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
237 static struct ksm_scan ksm_scan = {
238 .mm_slot = &ksm_mm_head,
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
286 #define ksm_merge_across_nodes 1U
287 #define ksm_nr_node_ids 1
290 #define KSM_RUN_STOP 0
291 #define KSM_RUN_MERGE 1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303 sizeof(struct __struct), __alignof__(struct __struct),\
306 static int __init ksm_slab_init(void)
308 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309 if (!rmap_item_cache)
312 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313 if (!stable_node_cache)
316 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
323 kmem_cache_destroy(stable_node_cache);
325 kmem_cache_destroy(rmap_item_cache);
330 static void __init ksm_slab_free(void)
332 kmem_cache_destroy(mm_slot_cache);
333 kmem_cache_destroy(stable_node_cache);
334 kmem_cache_destroy(rmap_item_cache);
335 mm_slot_cache = NULL;
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
345 return dup->head == STABLE_NODE_DUP_HEAD;
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349 struct ksm_stable_node *chain)
351 VM_BUG_ON(is_stable_node_dup(dup));
352 dup->head = STABLE_NODE_DUP_HEAD;
353 VM_BUG_ON(!is_stable_node_chain(chain));
354 hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 ksm_stable_node_dups++;
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
360 VM_BUG_ON(!is_stable_node_dup(dup));
361 hlist_del(&dup->hlist_dup);
362 ksm_stable_node_dups--;
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
367 VM_BUG_ON(is_stable_node_chain(dup));
368 if (is_stable_node_dup(dup))
369 __stable_node_dup_del(dup);
371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
379 struct ksm_rmap_item *rmap_item;
381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 __GFP_NORETRY | __GFP_NOWARN);
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
391 rmap_item->mm->ksm_rmap_items--;
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
396 static inline struct ksm_stable_node *alloc_stable_node(void)
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
410 kmem_cache_free(stable_node_cache, stable_node);
414 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415 * page tables after it has passed through ksm_exit() - which, if necessary,
416 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
417 * a special flag: they can just back out as soon as mm_users goes to zero.
418 * ksm_test_exit() is used throughout to make this test for exit: in some
419 * places for correctness, in some places just to avoid unnecessary work.
421 static inline bool ksm_test_exit(struct mm_struct *mm)
423 return atomic_read(&mm->mm_users) == 0;
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427 struct mm_walk *walk)
429 struct page *page = NULL;
435 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438 ptent = ptep_get(pte);
439 if (pte_present(ptent)) {
440 page = vm_normal_page(walk->vma, addr, ptent);
441 } else if (!pte_none(ptent)) {
442 swp_entry_t entry = pte_to_swp_entry(ptent);
445 * As KSM pages remain KSM pages until freed, no need to wait
446 * here for migration to end.
448 if (is_migration_entry(entry))
449 page = pfn_swap_entry_to_page(entry);
451 ret = page && PageKsm(page);
452 pte_unmap_unlock(pte, ptl);
456 static const struct mm_walk_ops break_ksm_ops = {
457 .pmd_entry = break_ksm_pmd_entry,
461 * We use break_ksm to break COW on a ksm page by triggering unsharing,
462 * such that the ksm page will get replaced by an exclusive anonymous page.
464 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
465 * in case the application has unmapped and remapped mm,addr meanwhile.
466 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
467 * mmap of /dev/mem, where we would not want to touch it.
469 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
470 * of the process that owns 'vma'. We also do not want to enforce
471 * protection keys here anyway.
473 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
481 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
482 &break_ksm_ops, NULL);
483 if (WARN_ON_ONCE(ksm_page < 0))
487 ret = handle_mm_fault(vma, addr,
488 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
490 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
492 * We must loop until we no longer find a KSM page because
493 * handle_mm_fault() may back out if there's any difficulty e.g. if
494 * pte accessed bit gets updated concurrently.
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
519 static bool vma_ksm_compatible(struct vm_area_struct *vma)
521 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
522 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
524 return false; /* just ignore the advice */
530 if (vma->vm_flags & VM_SAO)
534 if (vma->vm_flags & VM_SPARC_ADI)
541 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
544 struct vm_area_struct *vma;
545 if (ksm_test_exit(mm))
547 vma = vma_lookup(mm, addr);
548 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
553 static void break_cow(struct ksm_rmap_item *rmap_item)
555 struct mm_struct *mm = rmap_item->mm;
556 unsigned long addr = rmap_item->address;
557 struct vm_area_struct *vma;
560 * It is not an accident that whenever we want to break COW
561 * to undo, we also need to drop a reference to the anon_vma.
563 put_anon_vma(rmap_item->anon_vma);
566 vma = find_mergeable_vma(mm, addr);
568 break_ksm(vma, addr);
569 mmap_read_unlock(mm);
572 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
574 struct mm_struct *mm = rmap_item->mm;
575 unsigned long addr = rmap_item->address;
576 struct vm_area_struct *vma;
580 vma = find_mergeable_vma(mm, addr);
584 page = follow_page(vma, addr, FOLL_GET);
585 if (IS_ERR_OR_NULL(page))
587 if (is_zone_device_page(page))
589 if (PageAnon(page)) {
590 flush_anon_page(vma, page, addr);
591 flush_dcache_page(page);
598 mmap_read_unlock(mm);
603 * This helper is used for getting right index into array of tree roots.
604 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
605 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
606 * every node has its own stable and unstable tree.
608 static inline int get_kpfn_nid(unsigned long kpfn)
610 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
613 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
614 struct rb_root *root)
616 struct ksm_stable_node *chain = alloc_stable_node();
617 VM_BUG_ON(is_stable_node_chain(dup));
619 INIT_HLIST_HEAD(&chain->hlist);
620 chain->chain_prune_time = jiffies;
621 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
622 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
623 chain->nid = NUMA_NO_NODE; /* debug */
625 ksm_stable_node_chains++;
628 * Put the stable node chain in the first dimension of
629 * the stable tree and at the same time remove the old
632 rb_replace_node(&dup->node, &chain->node, root);
635 * Move the old stable node to the second dimension
636 * queued in the hlist_dup. The invariant is that all
637 * dup stable_nodes in the chain->hlist point to pages
638 * that are write protected and have the exact same
641 stable_node_chain_add_dup(dup, chain);
646 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
647 struct rb_root *root)
649 rb_erase(&chain->node, root);
650 free_stable_node(chain);
651 ksm_stable_node_chains--;
654 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
656 struct ksm_rmap_item *rmap_item;
658 /* check it's not STABLE_NODE_CHAIN or negative */
659 BUG_ON(stable_node->rmap_hlist_len < 0);
661 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
662 if (rmap_item->hlist.next) {
664 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
669 rmap_item->mm->ksm_merging_pages--;
671 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
672 stable_node->rmap_hlist_len--;
673 put_anon_vma(rmap_item->anon_vma);
674 rmap_item->address &= PAGE_MASK;
679 * We need the second aligned pointer of the migrate_nodes
680 * list_head to stay clear from the rb_parent_color union
681 * (aligned and different than any node) and also different
682 * from &migrate_nodes. This will verify that future list.h changes
683 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
685 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
686 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
688 trace_ksm_remove_ksm_page(stable_node->kpfn);
689 if (stable_node->head == &migrate_nodes)
690 list_del(&stable_node->list);
692 stable_node_dup_del(stable_node);
693 free_stable_node(stable_node);
696 enum get_ksm_page_flags {
703 * get_ksm_page: checks if the page indicated by the stable node
704 * is still its ksm page, despite having held no reference to it.
705 * In which case we can trust the content of the page, and it
706 * returns the gotten page; but if the page has now been zapped,
707 * remove the stale node from the stable tree and return NULL.
708 * But beware, the stable node's page might be being migrated.
710 * You would expect the stable_node to hold a reference to the ksm page.
711 * But if it increments the page's count, swapping out has to wait for
712 * ksmd to come around again before it can free the page, which may take
713 * seconds or even minutes: much too unresponsive. So instead we use a
714 * "keyhole reference": access to the ksm page from the stable node peeps
715 * out through its keyhole to see if that page still holds the right key,
716 * pointing back to this stable node. This relies on freeing a PageAnon
717 * page to reset its page->mapping to NULL, and relies on no other use of
718 * a page to put something that might look like our key in page->mapping.
719 * is on its way to being freed; but it is an anomaly to bear in mind.
721 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
722 enum get_ksm_page_flags flags)
725 void *expected_mapping;
728 expected_mapping = (void *)((unsigned long)stable_node |
731 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
732 page = pfn_to_page(kpfn);
733 if (READ_ONCE(page->mapping) != expected_mapping)
737 * We cannot do anything with the page while its refcount is 0.
738 * Usually 0 means free, or tail of a higher-order page: in which
739 * case this node is no longer referenced, and should be freed;
740 * however, it might mean that the page is under page_ref_freeze().
741 * The __remove_mapping() case is easy, again the node is now stale;
742 * the same is in reuse_ksm_page() case; but if page is swapcache
743 * in folio_migrate_mapping(), it might still be our page,
744 * in which case it's essential to keep the node.
746 while (!get_page_unless_zero(page)) {
748 * Another check for page->mapping != expected_mapping would
749 * work here too. We have chosen the !PageSwapCache test to
750 * optimize the common case, when the page is or is about to
751 * be freed: PageSwapCache is cleared (under spin_lock_irq)
752 * in the ref_freeze section of __remove_mapping(); but Anon
753 * page->mapping reset to NULL later, in free_pages_prepare().
755 if (!PageSwapCache(page))
760 if (READ_ONCE(page->mapping) != expected_mapping) {
765 if (flags == GET_KSM_PAGE_TRYLOCK) {
766 if (!trylock_page(page)) {
768 return ERR_PTR(-EBUSY);
770 } else if (flags == GET_KSM_PAGE_LOCK)
773 if (flags != GET_KSM_PAGE_NOLOCK) {
774 if (READ_ONCE(page->mapping) != expected_mapping) {
784 * We come here from above when page->mapping or !PageSwapCache
785 * suggests that the node is stale; but it might be under migration.
786 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
787 * before checking whether node->kpfn has been changed.
790 if (READ_ONCE(stable_node->kpfn) != kpfn)
792 remove_node_from_stable_tree(stable_node);
797 * Removing rmap_item from stable or unstable tree.
798 * This function will clean the information from the stable/unstable tree.
800 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
802 if (rmap_item->address & STABLE_FLAG) {
803 struct ksm_stable_node *stable_node;
806 stable_node = rmap_item->head;
807 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
811 hlist_del(&rmap_item->hlist);
815 if (!hlist_empty(&stable_node->hlist))
820 rmap_item->mm->ksm_merging_pages--;
822 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
823 stable_node->rmap_hlist_len--;
825 put_anon_vma(rmap_item->anon_vma);
826 rmap_item->head = NULL;
827 rmap_item->address &= PAGE_MASK;
829 } else if (rmap_item->address & UNSTABLE_FLAG) {
832 * Usually ksmd can and must skip the rb_erase, because
833 * root_unstable_tree was already reset to RB_ROOT.
834 * But be careful when an mm is exiting: do the rb_erase
835 * if this rmap_item was inserted by this scan, rather
836 * than left over from before.
838 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
841 rb_erase(&rmap_item->node,
842 root_unstable_tree + NUMA(rmap_item->nid));
843 ksm_pages_unshared--;
844 rmap_item->address &= PAGE_MASK;
847 cond_resched(); /* we're called from many long loops */
850 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
853 struct ksm_rmap_item *rmap_item = *rmap_list;
854 *rmap_list = rmap_item->rmap_list;
855 remove_rmap_item_from_tree(rmap_item);
856 free_rmap_item(rmap_item);
861 * Though it's very tempting to unmerge rmap_items from stable tree rather
862 * than check every pte of a given vma, the locking doesn't quite work for
863 * that - an rmap_item is assigned to the stable tree after inserting ksm
864 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
865 * rmap_items from parent to child at fork time (so as not to waste time
866 * if exit comes before the next scan reaches it).
868 * Similarly, although we'd like to remove rmap_items (so updating counts
869 * and freeing memory) when unmerging an area, it's easier to leave that
870 * to the next pass of ksmd - consider, for example, how ksmd might be
871 * in cmp_and_merge_page on one of the rmap_items we would be removing.
873 static int unmerge_ksm_pages(struct vm_area_struct *vma,
874 unsigned long start, unsigned long end)
879 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
880 if (ksm_test_exit(vma->vm_mm))
882 if (signal_pending(current))
885 err = break_ksm(vma, addr);
890 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
892 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
895 static inline struct ksm_stable_node *page_stable_node(struct page *page)
897 return folio_stable_node(page_folio(page));
900 static inline void set_page_stable_node(struct page *page,
901 struct ksm_stable_node *stable_node)
903 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
904 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
909 * Only called through the sysfs control interface:
911 static int remove_stable_node(struct ksm_stable_node *stable_node)
916 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
919 * get_ksm_page did remove_node_from_stable_tree itself.
925 * Page could be still mapped if this races with __mmput() running in
926 * between ksm_exit() and exit_mmap(). Just refuse to let
927 * merge_across_nodes/max_page_sharing be switched.
930 if (!page_mapped(page)) {
932 * The stable node did not yet appear stale to get_ksm_page(),
933 * since that allows for an unmapped ksm page to be recognized
934 * right up until it is freed; but the node is safe to remove.
935 * This page might be in an LRU cache waiting to be freed,
936 * or it might be PageSwapCache (perhaps under writeback),
937 * or it might have been removed from swapcache a moment ago.
939 set_page_stable_node(page, NULL);
940 remove_node_from_stable_tree(stable_node);
949 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
950 struct rb_root *root)
952 struct ksm_stable_node *dup;
953 struct hlist_node *hlist_safe;
955 if (!is_stable_node_chain(stable_node)) {
956 VM_BUG_ON(is_stable_node_dup(stable_node));
957 if (remove_stable_node(stable_node))
963 hlist_for_each_entry_safe(dup, hlist_safe,
964 &stable_node->hlist, hlist_dup) {
965 VM_BUG_ON(!is_stable_node_dup(dup));
966 if (remove_stable_node(dup))
969 BUG_ON(!hlist_empty(&stable_node->hlist));
970 free_stable_node_chain(stable_node, root);
974 static int remove_all_stable_nodes(void)
976 struct ksm_stable_node *stable_node, *next;
980 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
981 while (root_stable_tree[nid].rb_node) {
982 stable_node = rb_entry(root_stable_tree[nid].rb_node,
983 struct ksm_stable_node, node);
984 if (remove_stable_node_chain(stable_node,
985 root_stable_tree + nid)) {
987 break; /* proceed to next nid */
992 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
993 if (remove_stable_node(stable_node))
1000 static int unmerge_and_remove_all_rmap_items(void)
1002 struct ksm_mm_slot *mm_slot;
1003 struct mm_slot *slot;
1004 struct mm_struct *mm;
1005 struct vm_area_struct *vma;
1008 spin_lock(&ksm_mmlist_lock);
1009 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1010 struct mm_slot, mm_node);
1011 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1012 spin_unlock(&ksm_mmlist_lock);
1014 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1015 mm_slot = ksm_scan.mm_slot) {
1016 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1018 mm = mm_slot->slot.mm;
1022 * Exit right away if mm is exiting to avoid lockdep issue in
1025 if (ksm_test_exit(mm))
1028 for_each_vma(vmi, vma) {
1029 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1031 err = unmerge_ksm_pages(vma,
1032 vma->vm_start, vma->vm_end);
1038 remove_trailing_rmap_items(&mm_slot->rmap_list);
1039 mmap_read_unlock(mm);
1041 spin_lock(&ksm_mmlist_lock);
1042 slot = list_entry(mm_slot->slot.mm_node.next,
1043 struct mm_slot, mm_node);
1044 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1045 if (ksm_test_exit(mm)) {
1046 hash_del(&mm_slot->slot.hash);
1047 list_del(&mm_slot->slot.mm_node);
1048 spin_unlock(&ksm_mmlist_lock);
1050 mm_slot_free(mm_slot_cache, mm_slot);
1051 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1052 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1055 spin_unlock(&ksm_mmlist_lock);
1058 /* Clean up stable nodes, but don't worry if some are still busy */
1059 remove_all_stable_nodes();
1064 mmap_read_unlock(mm);
1065 spin_lock(&ksm_mmlist_lock);
1066 ksm_scan.mm_slot = &ksm_mm_head;
1067 spin_unlock(&ksm_mmlist_lock);
1070 #endif /* CONFIG_SYSFS */
1072 static u32 calc_checksum(struct page *page)
1075 void *addr = kmap_atomic(page);
1076 checksum = xxhash(addr, PAGE_SIZE, 0);
1077 kunmap_atomic(addr);
1081 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1084 struct mm_struct *mm = vma->vm_mm;
1085 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1088 struct mmu_notifier_range range;
1089 bool anon_exclusive;
1092 pvmw.address = page_address_in_vma(page, vma);
1093 if (pvmw.address == -EFAULT)
1096 BUG_ON(PageTransCompound(page));
1098 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1099 pvmw.address + PAGE_SIZE);
1100 mmu_notifier_invalidate_range_start(&range);
1102 if (!page_vma_mapped_walk(&pvmw))
1104 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1107 anon_exclusive = PageAnonExclusive(page);
1108 entry = ptep_get(pvmw.pte);
1109 if (pte_write(entry) || pte_dirty(entry) ||
1110 anon_exclusive || mm_tlb_flush_pending(mm)) {
1111 swapped = PageSwapCache(page);
1112 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1114 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1115 * take any lock, therefore the check that we are going to make
1116 * with the pagecount against the mapcount is racy and
1117 * O_DIRECT can happen right after the check.
1118 * So we clear the pte and flush the tlb before the check
1119 * this assure us that no O_DIRECT can happen after the check
1120 * or in the middle of the check.
1122 * No need to notify as we are downgrading page table to read
1123 * only not changing it to point to a new page.
1125 * See Documentation/mm/mmu_notifier.rst
1127 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1129 * Check that no O_DIRECT or similar I/O is in progress on the
1132 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1133 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1137 /* See page_try_share_anon_rmap(): clear PTE first. */
1138 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1139 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1143 if (pte_dirty(entry))
1144 set_page_dirty(page);
1145 entry = pte_mkclean(entry);
1147 if (pte_write(entry))
1148 entry = pte_wrprotect(entry);
1150 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1156 page_vma_mapped_walk_done(&pvmw);
1158 mmu_notifier_invalidate_range_end(&range);
1164 * replace_page - replace page in vma by new ksm page
1165 * @vma: vma that holds the pte pointing to page
1166 * @page: the page we are replacing by kpage
1167 * @kpage: the ksm page we replace page by
1168 * @orig_pte: the original value of the pte
1170 * Returns 0 on success, -EFAULT on failure.
1172 static int replace_page(struct vm_area_struct *vma, struct page *page,
1173 struct page *kpage, pte_t orig_pte)
1175 struct mm_struct *mm = vma->vm_mm;
1176 struct folio *folio;
1184 struct mmu_notifier_range range;
1186 addr = page_address_in_vma(page, vma);
1187 if (addr == -EFAULT)
1190 pmd = mm_find_pmd(mm, addr);
1194 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1195 * without holding anon_vma lock for write. So when looking for a
1196 * genuine pmde (in which to find pte), test present and !THP together.
1198 pmde = pmdp_get_lockless(pmd);
1199 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1202 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1204 mmu_notifier_invalidate_range_start(&range);
1206 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1209 if (!pte_same(ptep_get(ptep), orig_pte)) {
1210 pte_unmap_unlock(ptep, ptl);
1213 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1214 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1217 * No need to check ksm_use_zero_pages here: we can only have a
1218 * zero_page here if ksm_use_zero_pages was enabled already.
1220 if (!is_zero_pfn(page_to_pfn(kpage))) {
1222 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1223 newpte = mk_pte(kpage, vma->vm_page_prot);
1225 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1226 vma->vm_page_prot));
1228 * We're replacing an anonymous page with a zero page, which is
1229 * not anonymous. We need to do proper accounting otherwise we
1230 * will get wrong values in /proc, and a BUG message in dmesg
1231 * when tearing down the mm.
1233 dec_mm_counter(mm, MM_ANONPAGES);
1236 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1238 * No need to notify as we are replacing a read only page with another
1239 * read only page with the same content.
1241 * See Documentation/mm/mmu_notifier.rst
1243 ptep_clear_flush(vma, addr, ptep);
1244 set_pte_at_notify(mm, addr, ptep, newpte);
1246 folio = page_folio(page);
1247 page_remove_rmap(page, vma, false);
1248 if (!folio_mapped(folio))
1249 folio_free_swap(folio);
1252 pte_unmap_unlock(ptep, ptl);
1255 mmu_notifier_invalidate_range_end(&range);
1261 * try_to_merge_one_page - take two pages and merge them into one
1262 * @vma: the vma that holds the pte pointing to page
1263 * @page: the PageAnon page that we want to replace with kpage
1264 * @kpage: the PageKsm page that we want to map instead of page,
1265 * or NULL the first time when we want to use page as kpage.
1267 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1269 static int try_to_merge_one_page(struct vm_area_struct *vma,
1270 struct page *page, struct page *kpage)
1272 pte_t orig_pte = __pte(0);
1275 if (page == kpage) /* ksm page forked */
1278 if (!PageAnon(page))
1282 * We need the page lock to read a stable PageSwapCache in
1283 * write_protect_page(). We use trylock_page() instead of
1284 * lock_page() because we don't want to wait here - we
1285 * prefer to continue scanning and merging different pages,
1286 * then come back to this page when it is unlocked.
1288 if (!trylock_page(page))
1291 if (PageTransCompound(page)) {
1292 if (split_huge_page(page))
1297 * If this anonymous page is mapped only here, its pte may need
1298 * to be write-protected. If it's mapped elsewhere, all of its
1299 * ptes are necessarily already write-protected. But in either
1300 * case, we need to lock and check page_count is not raised.
1302 if (write_protect_page(vma, page, &orig_pte) == 0) {
1305 * While we hold page lock, upgrade page from
1306 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1307 * stable_tree_insert() will update stable_node.
1309 set_page_stable_node(page, NULL);
1310 mark_page_accessed(page);
1312 * Page reclaim just frees a clean page with no dirty
1313 * ptes: make sure that the ksm page would be swapped.
1315 if (!PageDirty(page))
1318 } else if (pages_identical(page, kpage))
1319 err = replace_page(vma, page, kpage, orig_pte);
1329 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1330 * but no new kernel page is allocated: kpage must already be a ksm page.
1332 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1334 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1335 struct page *page, struct page *kpage)
1337 struct mm_struct *mm = rmap_item->mm;
1338 struct vm_area_struct *vma;
1342 vma = find_mergeable_vma(mm, rmap_item->address);
1346 err = try_to_merge_one_page(vma, page, kpage);
1350 /* Unstable nid is in union with stable anon_vma: remove first */
1351 remove_rmap_item_from_tree(rmap_item);
1353 /* Must get reference to anon_vma while still holding mmap_lock */
1354 rmap_item->anon_vma = vma->anon_vma;
1355 get_anon_vma(vma->anon_vma);
1357 mmap_read_unlock(mm);
1358 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1359 rmap_item, mm, err);
1364 * try_to_merge_two_pages - take two identical pages and prepare them
1365 * to be merged into one page.
1367 * This function returns the kpage if we successfully merged two identical
1368 * pages into one ksm page, NULL otherwise.
1370 * Note that this function upgrades page to ksm page: if one of the pages
1371 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1373 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1375 struct ksm_rmap_item *tree_rmap_item,
1376 struct page *tree_page)
1380 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1382 err = try_to_merge_with_ksm_page(tree_rmap_item,
1385 * If that fails, we have a ksm page with only one pte
1386 * pointing to it: so break it.
1389 break_cow(rmap_item);
1391 return err ? NULL : page;
1394 static __always_inline
1395 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1397 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1399 * Check that at least one mapping still exists, otherwise
1400 * there's no much point to merge and share with this
1401 * stable_node, as the underlying tree_page of the other
1402 * sharer is going to be freed soon.
1404 return stable_node->rmap_hlist_len &&
1405 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1408 static __always_inline
1409 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1411 return __is_page_sharing_candidate(stable_node, 0);
1414 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1415 struct ksm_stable_node **_stable_node,
1416 struct rb_root *root,
1417 bool prune_stale_stable_nodes)
1419 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1420 struct hlist_node *hlist_safe;
1421 struct page *_tree_page, *tree_page = NULL;
1423 int found_rmap_hlist_len;
1425 if (!prune_stale_stable_nodes ||
1426 time_before(jiffies, stable_node->chain_prune_time +
1428 ksm_stable_node_chains_prune_millisecs)))
1429 prune_stale_stable_nodes = false;
1431 stable_node->chain_prune_time = jiffies;
1433 hlist_for_each_entry_safe(dup, hlist_safe,
1434 &stable_node->hlist, hlist_dup) {
1437 * We must walk all stable_node_dup to prune the stale
1438 * stable nodes during lookup.
1440 * get_ksm_page can drop the nodes from the
1441 * stable_node->hlist if they point to freed pages
1442 * (that's why we do a _safe walk). The "dup"
1443 * stable_node parameter itself will be freed from
1444 * under us if it returns NULL.
1446 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1450 if (is_page_sharing_candidate(dup)) {
1452 dup->rmap_hlist_len > found_rmap_hlist_len) {
1454 put_page(tree_page);
1456 found_rmap_hlist_len = found->rmap_hlist_len;
1457 tree_page = _tree_page;
1459 /* skip put_page for found dup */
1460 if (!prune_stale_stable_nodes)
1465 put_page(_tree_page);
1470 * nr is counting all dups in the chain only if
1471 * prune_stale_stable_nodes is true, otherwise we may
1472 * break the loop at nr == 1 even if there are
1475 if (prune_stale_stable_nodes && nr == 1) {
1477 * If there's not just one entry it would
1478 * corrupt memory, better BUG_ON. In KSM
1479 * context with no lock held it's not even
1482 BUG_ON(stable_node->hlist.first->next);
1485 * There's just one entry and it is below the
1486 * deduplication limit so drop the chain.
1488 rb_replace_node(&stable_node->node, &found->node,
1490 free_stable_node(stable_node);
1491 ksm_stable_node_chains--;
1492 ksm_stable_node_dups--;
1494 * NOTE: the caller depends on the stable_node
1495 * to be equal to stable_node_dup if the chain
1498 *_stable_node = found;
1500 * Just for robustness, as stable_node is
1501 * otherwise left as a stable pointer, the
1502 * compiler shall optimize it away at build
1506 } else if (stable_node->hlist.first != &found->hlist_dup &&
1507 __is_page_sharing_candidate(found, 1)) {
1509 * If the found stable_node dup can accept one
1510 * more future merge (in addition to the one
1511 * that is underway) and is not at the head of
1512 * the chain, put it there so next search will
1513 * be quicker in the !prune_stale_stable_nodes
1516 * NOTE: it would be inaccurate to use nr > 1
1517 * instead of checking the hlist.first pointer
1518 * directly, because in the
1519 * prune_stale_stable_nodes case "nr" isn't
1520 * the position of the found dup in the chain,
1521 * but the total number of dups in the chain.
1523 hlist_del(&found->hlist_dup);
1524 hlist_add_head(&found->hlist_dup,
1525 &stable_node->hlist);
1529 *_stable_node_dup = found;
1533 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1534 struct rb_root *root)
1536 if (!is_stable_node_chain(stable_node))
1538 if (hlist_empty(&stable_node->hlist)) {
1539 free_stable_node_chain(stable_node, root);
1542 return hlist_entry(stable_node->hlist.first,
1543 typeof(*stable_node), hlist_dup);
1547 * Like for get_ksm_page, this function can free the *_stable_node and
1548 * *_stable_node_dup if the returned tree_page is NULL.
1550 * It can also free and overwrite *_stable_node with the found
1551 * stable_node_dup if the chain is collapsed (in which case
1552 * *_stable_node will be equal to *_stable_node_dup like if the chain
1553 * never existed). It's up to the caller to verify tree_page is not
1554 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1556 * *_stable_node_dup is really a second output parameter of this
1557 * function and will be overwritten in all cases, the caller doesn't
1558 * need to initialize it.
1560 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1561 struct ksm_stable_node **_stable_node,
1562 struct rb_root *root,
1563 bool prune_stale_stable_nodes)
1565 struct ksm_stable_node *stable_node = *_stable_node;
1566 if (!is_stable_node_chain(stable_node)) {
1567 if (is_page_sharing_candidate(stable_node)) {
1568 *_stable_node_dup = stable_node;
1569 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1572 * _stable_node_dup set to NULL means the stable_node
1573 * reached the ksm_max_page_sharing limit.
1575 *_stable_node_dup = NULL;
1578 return stable_node_dup(_stable_node_dup, _stable_node, root,
1579 prune_stale_stable_nodes);
1582 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1583 struct ksm_stable_node **s_n,
1584 struct rb_root *root)
1586 return __stable_node_chain(s_n_d, s_n, root, true);
1589 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1590 struct ksm_stable_node *s_n,
1591 struct rb_root *root)
1593 struct ksm_stable_node *old_stable_node = s_n;
1594 struct page *tree_page;
1596 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1597 /* not pruning dups so s_n cannot have changed */
1598 VM_BUG_ON(s_n != old_stable_node);
1603 * stable_tree_search - search for page inside the stable tree
1605 * This function checks if there is a page inside the stable tree
1606 * with identical content to the page that we are scanning right now.
1608 * This function returns the stable tree node of identical content if found,
1611 static struct page *stable_tree_search(struct page *page)
1614 struct rb_root *root;
1615 struct rb_node **new;
1616 struct rb_node *parent;
1617 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1618 struct ksm_stable_node *page_node;
1620 page_node = page_stable_node(page);
1621 if (page_node && page_node->head != &migrate_nodes) {
1622 /* ksm page forked */
1627 nid = get_kpfn_nid(page_to_pfn(page));
1628 root = root_stable_tree + nid;
1630 new = &root->rb_node;
1634 struct page *tree_page;
1638 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1639 stable_node_any = NULL;
1640 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1642 * NOTE: stable_node may have been freed by
1643 * chain_prune() if the returned stable_node_dup is
1644 * not NULL. stable_node_dup may have been inserted in
1645 * the rbtree instead as a regular stable_node (in
1646 * order to collapse the stable_node chain if a single
1647 * stable_node dup was found in it). In such case the
1648 * stable_node is overwritten by the callee to point
1649 * to the stable_node_dup that was collapsed in the
1650 * stable rbtree and stable_node will be equal to
1651 * stable_node_dup like if the chain never existed.
1653 if (!stable_node_dup) {
1655 * Either all stable_node dups were full in
1656 * this stable_node chain, or this chain was
1657 * empty and should be rb_erased.
1659 stable_node_any = stable_node_dup_any(stable_node,
1661 if (!stable_node_any) {
1662 /* rb_erase just run */
1666 * Take any of the stable_node dups page of
1667 * this stable_node chain to let the tree walk
1668 * continue. All KSM pages belonging to the
1669 * stable_node dups in a stable_node chain
1670 * have the same content and they're
1671 * write protected at all times. Any will work
1672 * fine to continue the walk.
1674 tree_page = get_ksm_page(stable_node_any,
1675 GET_KSM_PAGE_NOLOCK);
1677 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1680 * If we walked over a stale stable_node,
1681 * get_ksm_page() will call rb_erase() and it
1682 * may rebalance the tree from under us. So
1683 * restart the search from scratch. Returning
1684 * NULL would be safe too, but we'd generate
1685 * false negative insertions just because some
1686 * stable_node was stale.
1691 ret = memcmp_pages(page, tree_page);
1692 put_page(tree_page);
1696 new = &parent->rb_left;
1698 new = &parent->rb_right;
1701 VM_BUG_ON(page_node->head != &migrate_nodes);
1703 * Test if the migrated page should be merged
1704 * into a stable node dup. If the mapcount is
1705 * 1 we can migrate it with another KSM page
1706 * without adding it to the chain.
1708 if (page_mapcount(page) > 1)
1712 if (!stable_node_dup) {
1714 * If the stable_node is a chain and
1715 * we got a payload match in memcmp
1716 * but we cannot merge the scanned
1717 * page in any of the existing
1718 * stable_node dups because they're
1719 * all full, we need to wait the
1720 * scanned page to find itself a match
1721 * in the unstable tree to create a
1722 * brand new KSM page to add later to
1723 * the dups of this stable_node.
1729 * Lock and unlock the stable_node's page (which
1730 * might already have been migrated) so that page
1731 * migration is sure to notice its raised count.
1732 * It would be more elegant to return stable_node
1733 * than kpage, but that involves more changes.
1735 tree_page = get_ksm_page(stable_node_dup,
1736 GET_KSM_PAGE_TRYLOCK);
1738 if (PTR_ERR(tree_page) == -EBUSY)
1739 return ERR_PTR(-EBUSY);
1741 if (unlikely(!tree_page))
1743 * The tree may have been rebalanced,
1744 * so re-evaluate parent and new.
1747 unlock_page(tree_page);
1749 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1750 NUMA(stable_node_dup->nid)) {
1751 put_page(tree_page);
1761 list_del(&page_node->list);
1762 DO_NUMA(page_node->nid = nid);
1763 rb_link_node(&page_node->node, parent, new);
1764 rb_insert_color(&page_node->node, root);
1766 if (is_page_sharing_candidate(page_node)) {
1774 * If stable_node was a chain and chain_prune collapsed it,
1775 * stable_node has been updated to be the new regular
1776 * stable_node. A collapse of the chain is indistinguishable
1777 * from the case there was no chain in the stable
1778 * rbtree. Otherwise stable_node is the chain and
1779 * stable_node_dup is the dup to replace.
1781 if (stable_node_dup == stable_node) {
1782 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1783 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1784 /* there is no chain */
1786 VM_BUG_ON(page_node->head != &migrate_nodes);
1787 list_del(&page_node->list);
1788 DO_NUMA(page_node->nid = nid);
1789 rb_replace_node(&stable_node_dup->node,
1792 if (is_page_sharing_candidate(page_node))
1797 rb_erase(&stable_node_dup->node, root);
1801 VM_BUG_ON(!is_stable_node_chain(stable_node));
1802 __stable_node_dup_del(stable_node_dup);
1804 VM_BUG_ON(page_node->head != &migrate_nodes);
1805 list_del(&page_node->list);
1806 DO_NUMA(page_node->nid = nid);
1807 stable_node_chain_add_dup(page_node, stable_node);
1808 if (is_page_sharing_candidate(page_node))
1816 stable_node_dup->head = &migrate_nodes;
1817 list_add(&stable_node_dup->list, stable_node_dup->head);
1821 /* stable_node_dup could be null if it reached the limit */
1822 if (!stable_node_dup)
1823 stable_node_dup = stable_node_any;
1825 * If stable_node was a chain and chain_prune collapsed it,
1826 * stable_node has been updated to be the new regular
1827 * stable_node. A collapse of the chain is indistinguishable
1828 * from the case there was no chain in the stable
1829 * rbtree. Otherwise stable_node is the chain and
1830 * stable_node_dup is the dup to replace.
1832 if (stable_node_dup == stable_node) {
1833 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1834 /* chain is missing so create it */
1835 stable_node = alloc_stable_node_chain(stable_node_dup,
1841 * Add this stable_node dup that was
1842 * migrated to the stable_node chain
1843 * of the current nid for this page
1846 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1847 VM_BUG_ON(page_node->head != &migrate_nodes);
1848 list_del(&page_node->list);
1849 DO_NUMA(page_node->nid = nid);
1850 stable_node_chain_add_dup(page_node, stable_node);
1855 * stable_tree_insert - insert stable tree node pointing to new ksm page
1856 * into the stable tree.
1858 * This function returns the stable tree node just allocated on success,
1861 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1865 struct rb_root *root;
1866 struct rb_node **new;
1867 struct rb_node *parent;
1868 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1869 bool need_chain = false;
1871 kpfn = page_to_pfn(kpage);
1872 nid = get_kpfn_nid(kpfn);
1873 root = root_stable_tree + nid;
1876 new = &root->rb_node;
1879 struct page *tree_page;
1883 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1884 stable_node_any = NULL;
1885 tree_page = chain(&stable_node_dup, stable_node, root);
1886 if (!stable_node_dup) {
1888 * Either all stable_node dups were full in
1889 * this stable_node chain, or this chain was
1890 * empty and should be rb_erased.
1892 stable_node_any = stable_node_dup_any(stable_node,
1894 if (!stable_node_any) {
1895 /* rb_erase just run */
1899 * Take any of the stable_node dups page of
1900 * this stable_node chain to let the tree walk
1901 * continue. All KSM pages belonging to the
1902 * stable_node dups in a stable_node chain
1903 * have the same content and they're
1904 * write protected at all times. Any will work
1905 * fine to continue the walk.
1907 tree_page = get_ksm_page(stable_node_any,
1908 GET_KSM_PAGE_NOLOCK);
1910 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1913 * If we walked over a stale stable_node,
1914 * get_ksm_page() will call rb_erase() and it
1915 * may rebalance the tree from under us. So
1916 * restart the search from scratch. Returning
1917 * NULL would be safe too, but we'd generate
1918 * false negative insertions just because some
1919 * stable_node was stale.
1924 ret = memcmp_pages(kpage, tree_page);
1925 put_page(tree_page);
1929 new = &parent->rb_left;
1931 new = &parent->rb_right;
1938 stable_node_dup = alloc_stable_node();
1939 if (!stable_node_dup)
1942 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1943 stable_node_dup->kpfn = kpfn;
1944 set_page_stable_node(kpage, stable_node_dup);
1945 stable_node_dup->rmap_hlist_len = 0;
1946 DO_NUMA(stable_node_dup->nid = nid);
1948 rb_link_node(&stable_node_dup->node, parent, new);
1949 rb_insert_color(&stable_node_dup->node, root);
1951 if (!is_stable_node_chain(stable_node)) {
1952 struct ksm_stable_node *orig = stable_node;
1953 /* chain is missing so create it */
1954 stable_node = alloc_stable_node_chain(orig, root);
1956 free_stable_node(stable_node_dup);
1960 stable_node_chain_add_dup(stable_node_dup, stable_node);
1963 return stable_node_dup;
1967 * unstable_tree_search_insert - search for identical page,
1968 * else insert rmap_item into the unstable tree.
1970 * This function searches for a page in the unstable tree identical to the
1971 * page currently being scanned; and if no identical page is found in the
1972 * tree, we insert rmap_item as a new object into the unstable tree.
1974 * This function returns pointer to rmap_item found to be identical
1975 * to the currently scanned page, NULL otherwise.
1977 * This function does both searching and inserting, because they share
1978 * the same walking algorithm in an rbtree.
1981 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1983 struct page **tree_pagep)
1985 struct rb_node **new;
1986 struct rb_root *root;
1987 struct rb_node *parent = NULL;
1990 nid = get_kpfn_nid(page_to_pfn(page));
1991 root = root_unstable_tree + nid;
1992 new = &root->rb_node;
1995 struct ksm_rmap_item *tree_rmap_item;
1996 struct page *tree_page;
2000 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2001 tree_page = get_mergeable_page(tree_rmap_item);
2006 * Don't substitute a ksm page for a forked page.
2008 if (page == tree_page) {
2009 put_page(tree_page);
2013 ret = memcmp_pages(page, tree_page);
2017 put_page(tree_page);
2018 new = &parent->rb_left;
2019 } else if (ret > 0) {
2020 put_page(tree_page);
2021 new = &parent->rb_right;
2022 } else if (!ksm_merge_across_nodes &&
2023 page_to_nid(tree_page) != nid) {
2025 * If tree_page has been migrated to another NUMA node,
2026 * it will be flushed out and put in the right unstable
2027 * tree next time: only merge with it when across_nodes.
2029 put_page(tree_page);
2032 *tree_pagep = tree_page;
2033 return tree_rmap_item;
2037 rmap_item->address |= UNSTABLE_FLAG;
2038 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2039 DO_NUMA(rmap_item->nid = nid);
2040 rb_link_node(&rmap_item->node, parent, new);
2041 rb_insert_color(&rmap_item->node, root);
2043 ksm_pages_unshared++;
2048 * stable_tree_append - add another rmap_item to the linked list of
2049 * rmap_items hanging off a given node of the stable tree, all sharing
2050 * the same ksm page.
2052 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2053 struct ksm_stable_node *stable_node,
2054 bool max_page_sharing_bypass)
2057 * rmap won't find this mapping if we don't insert the
2058 * rmap_item in the right stable_node
2059 * duplicate. page_migration could break later if rmap breaks,
2060 * so we can as well crash here. We really need to check for
2061 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2062 * for other negative values as an underflow if detected here
2063 * for the first time (and not when decreasing rmap_hlist_len)
2064 * would be sign of memory corruption in the stable_node.
2066 BUG_ON(stable_node->rmap_hlist_len < 0);
2068 stable_node->rmap_hlist_len++;
2069 if (!max_page_sharing_bypass)
2070 /* possibly non fatal but unexpected overflow, only warn */
2071 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2072 ksm_max_page_sharing);
2074 rmap_item->head = stable_node;
2075 rmap_item->address |= STABLE_FLAG;
2076 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2078 if (rmap_item->hlist.next)
2079 ksm_pages_sharing++;
2083 rmap_item->mm->ksm_merging_pages++;
2087 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2088 * if not, compare checksum to previous and if it's the same, see if page can
2089 * be inserted into the unstable tree, or merged with a page already there and
2090 * both transferred to the stable tree.
2092 * @page: the page that we are searching identical page to.
2093 * @rmap_item: the reverse mapping into the virtual address of this page
2095 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2097 struct mm_struct *mm = rmap_item->mm;
2098 struct ksm_rmap_item *tree_rmap_item;
2099 struct page *tree_page = NULL;
2100 struct ksm_stable_node *stable_node;
2102 unsigned int checksum;
2104 bool max_page_sharing_bypass = false;
2106 stable_node = page_stable_node(page);
2108 if (stable_node->head != &migrate_nodes &&
2109 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2110 NUMA(stable_node->nid)) {
2111 stable_node_dup_del(stable_node);
2112 stable_node->head = &migrate_nodes;
2113 list_add(&stable_node->list, stable_node->head);
2115 if (stable_node->head != &migrate_nodes &&
2116 rmap_item->head == stable_node)
2119 * If it's a KSM fork, allow it to go over the sharing limit
2122 if (!is_page_sharing_candidate(stable_node))
2123 max_page_sharing_bypass = true;
2126 /* We first start with searching the page inside the stable tree */
2127 kpage = stable_tree_search(page);
2128 if (kpage == page && rmap_item->head == stable_node) {
2133 remove_rmap_item_from_tree(rmap_item);
2136 if (PTR_ERR(kpage) == -EBUSY)
2139 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2142 * The page was successfully merged:
2143 * add its rmap_item to the stable tree.
2146 stable_tree_append(rmap_item, page_stable_node(kpage),
2147 max_page_sharing_bypass);
2155 * If the hash value of the page has changed from the last time
2156 * we calculated it, this page is changing frequently: therefore we
2157 * don't want to insert it in the unstable tree, and we don't want
2158 * to waste our time searching for something identical to it there.
2160 checksum = calc_checksum(page);
2161 if (rmap_item->oldchecksum != checksum) {
2162 rmap_item->oldchecksum = checksum;
2167 * Same checksum as an empty page. We attempt to merge it with the
2168 * appropriate zero page if the user enabled this via sysfs.
2170 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2171 struct vm_area_struct *vma;
2174 vma = find_mergeable_vma(mm, rmap_item->address);
2176 err = try_to_merge_one_page(vma, page,
2177 ZERO_PAGE(rmap_item->address));
2178 trace_ksm_merge_one_page(
2179 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2180 rmap_item, mm, err);
2183 * If the vma is out of date, we do not need to
2188 mmap_read_unlock(mm);
2190 * In case of failure, the page was not really empty, so we
2191 * need to continue. Otherwise we're done.
2197 unstable_tree_search_insert(rmap_item, page, &tree_page);
2198 if (tree_rmap_item) {
2201 kpage = try_to_merge_two_pages(rmap_item, page,
2202 tree_rmap_item, tree_page);
2204 * If both pages we tried to merge belong to the same compound
2205 * page, then we actually ended up increasing the reference
2206 * count of the same compound page twice, and split_huge_page
2208 * Here we set a flag if that happened, and we use it later to
2209 * try split_huge_page again. Since we call put_page right
2210 * afterwards, the reference count will be correct and
2211 * split_huge_page should succeed.
2213 split = PageTransCompound(page)
2214 && compound_head(page) == compound_head(tree_page);
2215 put_page(tree_page);
2218 * The pages were successfully merged: insert new
2219 * node in the stable tree and add both rmap_items.
2222 stable_node = stable_tree_insert(kpage);
2224 stable_tree_append(tree_rmap_item, stable_node,
2226 stable_tree_append(rmap_item, stable_node,
2232 * If we fail to insert the page into the stable tree,
2233 * we will have 2 virtual addresses that are pointing
2234 * to a ksm page left outside the stable tree,
2235 * in which case we need to break_cow on both.
2238 break_cow(tree_rmap_item);
2239 break_cow(rmap_item);
2243 * We are here if we tried to merge two pages and
2244 * failed because they both belonged to the same
2245 * compound page. We will split the page now, but no
2246 * merging will take place.
2247 * We do not want to add the cost of a full lock; if
2248 * the page is locked, it is better to skip it and
2249 * perhaps try again later.
2251 if (!trylock_page(page))
2253 split_huge_page(page);
2259 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2260 struct ksm_rmap_item **rmap_list,
2263 struct ksm_rmap_item *rmap_item;
2265 while (*rmap_list) {
2266 rmap_item = *rmap_list;
2267 if ((rmap_item->address & PAGE_MASK) == addr)
2269 if (rmap_item->address > addr)
2271 *rmap_list = rmap_item->rmap_list;
2272 remove_rmap_item_from_tree(rmap_item);
2273 free_rmap_item(rmap_item);
2276 rmap_item = alloc_rmap_item();
2278 /* It has already been zeroed */
2279 rmap_item->mm = mm_slot->slot.mm;
2280 rmap_item->mm->ksm_rmap_items++;
2281 rmap_item->address = addr;
2282 rmap_item->rmap_list = *rmap_list;
2283 *rmap_list = rmap_item;
2288 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2290 struct mm_struct *mm;
2291 struct ksm_mm_slot *mm_slot;
2292 struct mm_slot *slot;
2293 struct vm_area_struct *vma;
2294 struct ksm_rmap_item *rmap_item;
2295 struct vma_iterator vmi;
2298 if (list_empty(&ksm_mm_head.slot.mm_node))
2301 mm_slot = ksm_scan.mm_slot;
2302 if (mm_slot == &ksm_mm_head) {
2303 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2306 * A number of pages can hang around indefinitely in per-cpu
2307 * LRU cache, raised page count preventing write_protect_page
2308 * from merging them. Though it doesn't really matter much,
2309 * it is puzzling to see some stuck in pages_volatile until
2310 * other activity jostles them out, and they also prevented
2311 * LTP's KSM test from succeeding deterministically; so drain
2312 * them here (here rather than on entry to ksm_do_scan(),
2313 * so we don't IPI too often when pages_to_scan is set low).
2315 lru_add_drain_all();
2318 * Whereas stale stable_nodes on the stable_tree itself
2319 * get pruned in the regular course of stable_tree_search(),
2320 * those moved out to the migrate_nodes list can accumulate:
2321 * so prune them once before each full scan.
2323 if (!ksm_merge_across_nodes) {
2324 struct ksm_stable_node *stable_node, *next;
2327 list_for_each_entry_safe(stable_node, next,
2328 &migrate_nodes, list) {
2329 page = get_ksm_page(stable_node,
2330 GET_KSM_PAGE_NOLOCK);
2337 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2338 root_unstable_tree[nid] = RB_ROOT;
2340 spin_lock(&ksm_mmlist_lock);
2341 slot = list_entry(mm_slot->slot.mm_node.next,
2342 struct mm_slot, mm_node);
2343 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2344 ksm_scan.mm_slot = mm_slot;
2345 spin_unlock(&ksm_mmlist_lock);
2347 * Although we tested list_empty() above, a racing __ksm_exit
2348 * of the last mm on the list may have removed it since then.
2350 if (mm_slot == &ksm_mm_head)
2353 ksm_scan.address = 0;
2354 ksm_scan.rmap_list = &mm_slot->rmap_list;
2357 slot = &mm_slot->slot;
2359 vma_iter_init(&vmi, mm, ksm_scan.address);
2362 if (ksm_test_exit(mm))
2365 for_each_vma(vmi, vma) {
2366 if (!(vma->vm_flags & VM_MERGEABLE))
2368 if (ksm_scan.address < vma->vm_start)
2369 ksm_scan.address = vma->vm_start;
2371 ksm_scan.address = vma->vm_end;
2373 while (ksm_scan.address < vma->vm_end) {
2374 if (ksm_test_exit(mm))
2376 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2377 if (IS_ERR_OR_NULL(*page)) {
2378 ksm_scan.address += PAGE_SIZE;
2382 if (is_zone_device_page(*page))
2384 if (PageAnon(*page)) {
2385 flush_anon_page(vma, *page, ksm_scan.address);
2386 flush_dcache_page(*page);
2387 rmap_item = get_next_rmap_item(mm_slot,
2388 ksm_scan.rmap_list, ksm_scan.address);
2390 ksm_scan.rmap_list =
2391 &rmap_item->rmap_list;
2392 ksm_scan.address += PAGE_SIZE;
2395 mmap_read_unlock(mm);
2400 ksm_scan.address += PAGE_SIZE;
2405 if (ksm_test_exit(mm)) {
2407 ksm_scan.address = 0;
2408 ksm_scan.rmap_list = &mm_slot->rmap_list;
2411 * Nuke all the rmap_items that are above this current rmap:
2412 * because there were no VM_MERGEABLE vmas with such addresses.
2414 remove_trailing_rmap_items(ksm_scan.rmap_list);
2416 spin_lock(&ksm_mmlist_lock);
2417 slot = list_entry(mm_slot->slot.mm_node.next,
2418 struct mm_slot, mm_node);
2419 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2420 if (ksm_scan.address == 0) {
2422 * We've completed a full scan of all vmas, holding mmap_lock
2423 * throughout, and found no VM_MERGEABLE: so do the same as
2424 * __ksm_exit does to remove this mm from all our lists now.
2425 * This applies either when cleaning up after __ksm_exit
2426 * (but beware: we can reach here even before __ksm_exit),
2427 * or when all VM_MERGEABLE areas have been unmapped (and
2428 * mmap_lock then protects against race with MADV_MERGEABLE).
2430 hash_del(&mm_slot->slot.hash);
2431 list_del(&mm_slot->slot.mm_node);
2432 spin_unlock(&ksm_mmlist_lock);
2434 mm_slot_free(mm_slot_cache, mm_slot);
2435 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2436 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2437 mmap_read_unlock(mm);
2440 mmap_read_unlock(mm);
2442 * mmap_read_unlock(mm) first because after
2443 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2444 * already have been freed under us by __ksm_exit()
2445 * because the "mm_slot" is still hashed and
2446 * ksm_scan.mm_slot doesn't point to it anymore.
2448 spin_unlock(&ksm_mmlist_lock);
2451 /* Repeat until we've completed scanning the whole list */
2452 mm_slot = ksm_scan.mm_slot;
2453 if (mm_slot != &ksm_mm_head)
2456 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2462 * ksm_do_scan - the ksm scanner main worker function.
2463 * @scan_npages: number of pages we want to scan before we return.
2465 static void ksm_do_scan(unsigned int scan_npages)
2467 struct ksm_rmap_item *rmap_item;
2470 while (scan_npages-- && likely(!freezing(current))) {
2472 rmap_item = scan_get_next_rmap_item(&page);
2475 cmp_and_merge_page(page, rmap_item);
2480 static int ksmd_should_run(void)
2482 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2485 static int ksm_scan_thread(void *nothing)
2487 unsigned int sleep_ms;
2490 set_user_nice(current, 5);
2492 while (!kthread_should_stop()) {
2493 mutex_lock(&ksm_thread_mutex);
2494 wait_while_offlining();
2495 if (ksmd_should_run())
2496 ksm_do_scan(ksm_thread_pages_to_scan);
2497 mutex_unlock(&ksm_thread_mutex);
2501 if (ksmd_should_run()) {
2502 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2503 wait_event_interruptible_timeout(ksm_iter_wait,
2504 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2505 msecs_to_jiffies(sleep_ms));
2507 wait_event_freezable(ksm_thread_wait,
2508 ksmd_should_run() || kthread_should_stop());
2514 static void __ksm_add_vma(struct vm_area_struct *vma)
2516 unsigned long vm_flags = vma->vm_flags;
2518 if (vm_flags & VM_MERGEABLE)
2521 if (vma_ksm_compatible(vma))
2522 vm_flags_set(vma, VM_MERGEABLE);
2525 static int __ksm_del_vma(struct vm_area_struct *vma)
2529 if (!(vma->vm_flags & VM_MERGEABLE))
2532 if (vma->anon_vma) {
2533 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2538 vm_flags_clear(vma, VM_MERGEABLE);
2542 * ksm_add_vma - Mark vma as mergeable if compatible
2544 * @vma: Pointer to vma
2546 void ksm_add_vma(struct vm_area_struct *vma)
2548 struct mm_struct *mm = vma->vm_mm;
2550 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2554 static void ksm_add_vmas(struct mm_struct *mm)
2556 struct vm_area_struct *vma;
2558 VMA_ITERATOR(vmi, mm, 0);
2559 for_each_vma(vmi, vma)
2563 static int ksm_del_vmas(struct mm_struct *mm)
2565 struct vm_area_struct *vma;
2568 VMA_ITERATOR(vmi, mm, 0);
2569 for_each_vma(vmi, vma) {
2570 err = __ksm_del_vma(vma);
2578 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2581 * @mm: Pointer to mm
2583 * Returns 0 on success, otherwise error code
2585 int ksm_enable_merge_any(struct mm_struct *mm)
2589 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2592 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2593 err = __ksm_enter(mm);
2598 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2605 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2606 * previously enabled via ksm_enable_merge_any().
2608 * Disabling merging implies unmerging any merged pages, like setting
2609 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2610 * merging on all compatible VMA's remains enabled.
2612 * @mm: Pointer to mm
2614 * Returns 0 on success, otherwise error code
2616 int ksm_disable_merge_any(struct mm_struct *mm)
2620 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2623 err = ksm_del_vmas(mm);
2629 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2633 int ksm_disable(struct mm_struct *mm)
2635 mmap_assert_write_locked(mm);
2637 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2639 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2640 return ksm_disable_merge_any(mm);
2641 return ksm_del_vmas(mm);
2644 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2645 unsigned long end, int advice, unsigned long *vm_flags)
2647 struct mm_struct *mm = vma->vm_mm;
2651 case MADV_MERGEABLE:
2652 if (vma->vm_flags & VM_MERGEABLE)
2654 if (!vma_ksm_compatible(vma))
2657 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2658 err = __ksm_enter(mm);
2663 *vm_flags |= VM_MERGEABLE;
2666 case MADV_UNMERGEABLE:
2667 if (!(*vm_flags & VM_MERGEABLE))
2668 return 0; /* just ignore the advice */
2670 if (vma->anon_vma) {
2671 err = unmerge_ksm_pages(vma, start, end);
2676 *vm_flags &= ~VM_MERGEABLE;
2682 EXPORT_SYMBOL_GPL(ksm_madvise);
2684 int __ksm_enter(struct mm_struct *mm)
2686 struct ksm_mm_slot *mm_slot;
2687 struct mm_slot *slot;
2690 mm_slot = mm_slot_alloc(mm_slot_cache);
2694 slot = &mm_slot->slot;
2696 /* Check ksm_run too? Would need tighter locking */
2697 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2699 spin_lock(&ksm_mmlist_lock);
2700 mm_slot_insert(mm_slots_hash, mm, slot);
2702 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2703 * insert just behind the scanning cursor, to let the area settle
2704 * down a little; when fork is followed by immediate exec, we don't
2705 * want ksmd to waste time setting up and tearing down an rmap_list.
2707 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2708 * scanning cursor, otherwise KSM pages in newly forked mms will be
2709 * missed: then we might as well insert at the end of the list.
2711 if (ksm_run & KSM_RUN_UNMERGE)
2712 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2714 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2715 spin_unlock(&ksm_mmlist_lock);
2717 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2721 wake_up_interruptible(&ksm_thread_wait);
2723 trace_ksm_enter(mm);
2727 void __ksm_exit(struct mm_struct *mm)
2729 struct ksm_mm_slot *mm_slot;
2730 struct mm_slot *slot;
2731 int easy_to_free = 0;
2734 * This process is exiting: if it's straightforward (as is the
2735 * case when ksmd was never running), free mm_slot immediately.
2736 * But if it's at the cursor or has rmap_items linked to it, use
2737 * mmap_lock to synchronize with any break_cows before pagetables
2738 * are freed, and leave the mm_slot on the list for ksmd to free.
2739 * Beware: ksm may already have noticed it exiting and freed the slot.
2742 spin_lock(&ksm_mmlist_lock);
2743 slot = mm_slot_lookup(mm_slots_hash, mm);
2744 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2745 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2746 if (!mm_slot->rmap_list) {
2747 hash_del(&slot->hash);
2748 list_del(&slot->mm_node);
2751 list_move(&slot->mm_node,
2752 &ksm_scan.mm_slot->slot.mm_node);
2755 spin_unlock(&ksm_mmlist_lock);
2758 mm_slot_free(mm_slot_cache, mm_slot);
2759 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2760 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2762 } else if (mm_slot) {
2763 mmap_write_lock(mm);
2764 mmap_write_unlock(mm);
2770 struct page *ksm_might_need_to_copy(struct page *page,
2771 struct vm_area_struct *vma, unsigned long address)
2773 struct folio *folio = page_folio(page);
2774 struct anon_vma *anon_vma = folio_anon_vma(folio);
2775 struct page *new_page;
2777 if (PageKsm(page)) {
2778 if (page_stable_node(page) &&
2779 !(ksm_run & KSM_RUN_UNMERGE))
2780 return page; /* no need to copy it */
2781 } else if (!anon_vma) {
2782 return page; /* no need to copy it */
2783 } else if (page->index == linear_page_index(vma, address) &&
2784 anon_vma->root == vma->anon_vma->root) {
2785 return page; /* still no need to copy it */
2787 if (!PageUptodate(page))
2788 return page; /* let do_swap_page report the error */
2790 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2792 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2797 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2799 memory_failure_queue(page_to_pfn(page), 0);
2800 return ERR_PTR(-EHWPOISON);
2802 SetPageDirty(new_page);
2803 __SetPageUptodate(new_page);
2804 __SetPageLocked(new_page);
2806 count_vm_event(KSM_SWPIN_COPY);
2813 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2815 struct ksm_stable_node *stable_node;
2816 struct ksm_rmap_item *rmap_item;
2817 int search_new_forks = 0;
2819 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2822 * Rely on the page lock to protect against concurrent modifications
2823 * to that page's node of the stable tree.
2825 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2827 stable_node = folio_stable_node(folio);
2831 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2832 struct anon_vma *anon_vma = rmap_item->anon_vma;
2833 struct anon_vma_chain *vmac;
2834 struct vm_area_struct *vma;
2837 if (!anon_vma_trylock_read(anon_vma)) {
2838 if (rwc->try_lock) {
2839 rwc->contended = true;
2842 anon_vma_lock_read(anon_vma);
2844 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2851 /* Ignore the stable/unstable/sqnr flags */
2852 addr = rmap_item->address & PAGE_MASK;
2854 if (addr < vma->vm_start || addr >= vma->vm_end)
2857 * Initially we examine only the vma which covers this
2858 * rmap_item; but later, if there is still work to do,
2859 * we examine covering vmas in other mms: in case they
2860 * were forked from the original since ksmd passed.
2862 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2865 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2868 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2869 anon_vma_unlock_read(anon_vma);
2872 if (rwc->done && rwc->done(folio)) {
2873 anon_vma_unlock_read(anon_vma);
2877 anon_vma_unlock_read(anon_vma);
2879 if (!search_new_forks++)
2883 #ifdef CONFIG_MEMORY_FAILURE
2885 * Collect processes when the error hit an ksm page.
2887 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2890 struct ksm_stable_node *stable_node;
2891 struct ksm_rmap_item *rmap_item;
2892 struct folio *folio = page_folio(page);
2893 struct vm_area_struct *vma;
2894 struct task_struct *tsk;
2896 stable_node = folio_stable_node(folio);
2899 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2900 struct anon_vma *av = rmap_item->anon_vma;
2902 anon_vma_lock_read(av);
2903 read_lock(&tasklist_lock);
2904 for_each_process(tsk) {
2905 struct anon_vma_chain *vmac;
2907 struct task_struct *t =
2908 task_early_kill(tsk, force_early);
2911 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2915 if (vma->vm_mm == t->mm) {
2916 addr = rmap_item->address & PAGE_MASK;
2917 add_to_kill_ksm(t, page, vma, to_kill,
2922 read_unlock(&tasklist_lock);
2923 anon_vma_unlock_read(av);
2928 #ifdef CONFIG_MIGRATION
2929 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2931 struct ksm_stable_node *stable_node;
2933 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2934 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2935 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2937 stable_node = folio_stable_node(folio);
2939 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2940 stable_node->kpfn = folio_pfn(newfolio);
2942 * newfolio->mapping was set in advance; now we need smp_wmb()
2943 * to make sure that the new stable_node->kpfn is visible
2944 * to get_ksm_page() before it can see that folio->mapping
2945 * has gone stale (or that folio_test_swapcache has been cleared).
2948 set_page_stable_node(&folio->page, NULL);
2951 #endif /* CONFIG_MIGRATION */
2953 #ifdef CONFIG_MEMORY_HOTREMOVE
2954 static void wait_while_offlining(void)
2956 while (ksm_run & KSM_RUN_OFFLINE) {
2957 mutex_unlock(&ksm_thread_mutex);
2958 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2959 TASK_UNINTERRUPTIBLE);
2960 mutex_lock(&ksm_thread_mutex);
2964 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2965 unsigned long start_pfn,
2966 unsigned long end_pfn)
2968 if (stable_node->kpfn >= start_pfn &&
2969 stable_node->kpfn < end_pfn) {
2971 * Don't get_ksm_page, page has already gone:
2972 * which is why we keep kpfn instead of page*
2974 remove_node_from_stable_tree(stable_node);
2980 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2981 unsigned long start_pfn,
2982 unsigned long end_pfn,
2983 struct rb_root *root)
2985 struct ksm_stable_node *dup;
2986 struct hlist_node *hlist_safe;
2988 if (!is_stable_node_chain(stable_node)) {
2989 VM_BUG_ON(is_stable_node_dup(stable_node));
2990 return stable_node_dup_remove_range(stable_node, start_pfn,
2994 hlist_for_each_entry_safe(dup, hlist_safe,
2995 &stable_node->hlist, hlist_dup) {
2996 VM_BUG_ON(!is_stable_node_dup(dup));
2997 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2999 if (hlist_empty(&stable_node->hlist)) {
3000 free_stable_node_chain(stable_node, root);
3001 return true; /* notify caller that tree was rebalanced */
3006 static void ksm_check_stable_tree(unsigned long start_pfn,
3007 unsigned long end_pfn)
3009 struct ksm_stable_node *stable_node, *next;
3010 struct rb_node *node;
3013 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3014 node = rb_first(root_stable_tree + nid);
3016 stable_node = rb_entry(node, struct ksm_stable_node, node);
3017 if (stable_node_chain_remove_range(stable_node,
3021 node = rb_first(root_stable_tree + nid);
3023 node = rb_next(node);
3027 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3028 if (stable_node->kpfn >= start_pfn &&
3029 stable_node->kpfn < end_pfn)
3030 remove_node_from_stable_tree(stable_node);
3035 static int ksm_memory_callback(struct notifier_block *self,
3036 unsigned long action, void *arg)
3038 struct memory_notify *mn = arg;
3041 case MEM_GOING_OFFLINE:
3043 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3044 * and remove_all_stable_nodes() while memory is going offline:
3045 * it is unsafe for them to touch the stable tree at this time.
3046 * But unmerge_ksm_pages(), rmap lookups and other entry points
3047 * which do not need the ksm_thread_mutex are all safe.
3049 mutex_lock(&ksm_thread_mutex);
3050 ksm_run |= KSM_RUN_OFFLINE;
3051 mutex_unlock(&ksm_thread_mutex);
3056 * Most of the work is done by page migration; but there might
3057 * be a few stable_nodes left over, still pointing to struct
3058 * pages which have been offlined: prune those from the tree,
3059 * otherwise get_ksm_page() might later try to access a
3060 * non-existent struct page.
3062 ksm_check_stable_tree(mn->start_pfn,
3063 mn->start_pfn + mn->nr_pages);
3065 case MEM_CANCEL_OFFLINE:
3066 mutex_lock(&ksm_thread_mutex);
3067 ksm_run &= ~KSM_RUN_OFFLINE;
3068 mutex_unlock(&ksm_thread_mutex);
3070 smp_mb(); /* wake_up_bit advises this */
3071 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3077 static void wait_while_offlining(void)
3080 #endif /* CONFIG_MEMORY_HOTREMOVE */
3082 #ifdef CONFIG_PROC_FS
3083 long ksm_process_profit(struct mm_struct *mm)
3085 return mm->ksm_merging_pages * PAGE_SIZE -
3086 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3088 #endif /* CONFIG_PROC_FS */
3092 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3095 #define KSM_ATTR_RO(_name) \
3096 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3097 #define KSM_ATTR(_name) \
3098 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3100 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3101 struct kobj_attribute *attr, char *buf)
3103 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3106 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3107 struct kobj_attribute *attr,
3108 const char *buf, size_t count)
3113 err = kstrtouint(buf, 10, &msecs);
3117 ksm_thread_sleep_millisecs = msecs;
3118 wake_up_interruptible(&ksm_iter_wait);
3122 KSM_ATTR(sleep_millisecs);
3124 static ssize_t pages_to_scan_show(struct kobject *kobj,
3125 struct kobj_attribute *attr, char *buf)
3127 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3130 static ssize_t pages_to_scan_store(struct kobject *kobj,
3131 struct kobj_attribute *attr,
3132 const char *buf, size_t count)
3134 unsigned int nr_pages;
3137 err = kstrtouint(buf, 10, &nr_pages);
3141 ksm_thread_pages_to_scan = nr_pages;
3145 KSM_ATTR(pages_to_scan);
3147 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3150 return sysfs_emit(buf, "%lu\n", ksm_run);
3153 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3154 const char *buf, size_t count)
3159 err = kstrtouint(buf, 10, &flags);
3162 if (flags > KSM_RUN_UNMERGE)
3166 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3167 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3168 * breaking COW to free the pages_shared (but leaves mm_slots
3169 * on the list for when ksmd may be set running again).
3172 mutex_lock(&ksm_thread_mutex);
3173 wait_while_offlining();
3174 if (ksm_run != flags) {
3176 if (flags & KSM_RUN_UNMERGE) {
3177 set_current_oom_origin();
3178 err = unmerge_and_remove_all_rmap_items();
3179 clear_current_oom_origin();
3181 ksm_run = KSM_RUN_STOP;
3186 mutex_unlock(&ksm_thread_mutex);
3188 if (flags & KSM_RUN_MERGE)
3189 wake_up_interruptible(&ksm_thread_wait);
3196 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3197 struct kobj_attribute *attr, char *buf)
3199 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3202 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3203 struct kobj_attribute *attr,
3204 const char *buf, size_t count)
3209 err = kstrtoul(buf, 10, &knob);
3215 mutex_lock(&ksm_thread_mutex);
3216 wait_while_offlining();
3217 if (ksm_merge_across_nodes != knob) {
3218 if (ksm_pages_shared || remove_all_stable_nodes())
3220 else if (root_stable_tree == one_stable_tree) {
3221 struct rb_root *buf;
3223 * This is the first time that we switch away from the
3224 * default of merging across nodes: must now allocate
3225 * a buffer to hold as many roots as may be needed.
3226 * Allocate stable and unstable together:
3227 * MAXSMP NODES_SHIFT 10 will use 16kB.
3229 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3231 /* Let us assume that RB_ROOT is NULL is zero */
3235 root_stable_tree = buf;
3236 root_unstable_tree = buf + nr_node_ids;
3237 /* Stable tree is empty but not the unstable */
3238 root_unstable_tree[0] = one_unstable_tree[0];
3242 ksm_merge_across_nodes = knob;
3243 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3246 mutex_unlock(&ksm_thread_mutex);
3248 return err ? err : count;
3250 KSM_ATTR(merge_across_nodes);
3253 static ssize_t use_zero_pages_show(struct kobject *kobj,
3254 struct kobj_attribute *attr, char *buf)
3256 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3258 static ssize_t use_zero_pages_store(struct kobject *kobj,
3259 struct kobj_attribute *attr,
3260 const char *buf, size_t count)
3265 err = kstrtobool(buf, &value);
3269 ksm_use_zero_pages = value;
3273 KSM_ATTR(use_zero_pages);
3275 static ssize_t max_page_sharing_show(struct kobject *kobj,
3276 struct kobj_attribute *attr, char *buf)
3278 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3281 static ssize_t max_page_sharing_store(struct kobject *kobj,
3282 struct kobj_attribute *attr,
3283 const char *buf, size_t count)
3288 err = kstrtoint(buf, 10, &knob);
3292 * When a KSM page is created it is shared by 2 mappings. This
3293 * being a signed comparison, it implicitly verifies it's not
3299 if (READ_ONCE(ksm_max_page_sharing) == knob)
3302 mutex_lock(&ksm_thread_mutex);
3303 wait_while_offlining();
3304 if (ksm_max_page_sharing != knob) {
3305 if (ksm_pages_shared || remove_all_stable_nodes())
3308 ksm_max_page_sharing = knob;
3310 mutex_unlock(&ksm_thread_mutex);
3312 return err ? err : count;
3314 KSM_ATTR(max_page_sharing);
3316 static ssize_t pages_shared_show(struct kobject *kobj,
3317 struct kobj_attribute *attr, char *buf)
3319 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3321 KSM_ATTR_RO(pages_shared);
3323 static ssize_t pages_sharing_show(struct kobject *kobj,
3324 struct kobj_attribute *attr, char *buf)
3326 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3328 KSM_ATTR_RO(pages_sharing);
3330 static ssize_t pages_unshared_show(struct kobject *kobj,
3331 struct kobj_attribute *attr, char *buf)
3333 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3335 KSM_ATTR_RO(pages_unshared);
3337 static ssize_t pages_volatile_show(struct kobject *kobj,
3338 struct kobj_attribute *attr, char *buf)
3340 long ksm_pages_volatile;
3342 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3343 - ksm_pages_sharing - ksm_pages_unshared;
3345 * It was not worth any locking to calculate that statistic,
3346 * but it might therefore sometimes be negative: conceal that.
3348 if (ksm_pages_volatile < 0)
3349 ksm_pages_volatile = 0;
3350 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3352 KSM_ATTR_RO(pages_volatile);
3354 static ssize_t general_profit_show(struct kobject *kobj,
3355 struct kobj_attribute *attr, char *buf)
3357 long general_profit;
3359 general_profit = ksm_pages_sharing * PAGE_SIZE -
3360 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3362 return sysfs_emit(buf, "%ld\n", general_profit);
3364 KSM_ATTR_RO(general_profit);
3366 static ssize_t stable_node_dups_show(struct kobject *kobj,
3367 struct kobj_attribute *attr, char *buf)
3369 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3371 KSM_ATTR_RO(stable_node_dups);
3373 static ssize_t stable_node_chains_show(struct kobject *kobj,
3374 struct kobj_attribute *attr, char *buf)
3376 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3378 KSM_ATTR_RO(stable_node_chains);
3381 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3382 struct kobj_attribute *attr,
3385 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3389 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3390 struct kobj_attribute *attr,
3391 const char *buf, size_t count)
3396 err = kstrtouint(buf, 10, &msecs);
3400 ksm_stable_node_chains_prune_millisecs = msecs;
3404 KSM_ATTR(stable_node_chains_prune_millisecs);
3406 static ssize_t full_scans_show(struct kobject *kobj,
3407 struct kobj_attribute *attr, char *buf)
3409 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3411 KSM_ATTR_RO(full_scans);
3413 static struct attribute *ksm_attrs[] = {
3414 &sleep_millisecs_attr.attr,
3415 &pages_to_scan_attr.attr,
3417 &pages_shared_attr.attr,
3418 &pages_sharing_attr.attr,
3419 &pages_unshared_attr.attr,
3420 &pages_volatile_attr.attr,
3421 &full_scans_attr.attr,
3423 &merge_across_nodes_attr.attr,
3425 &max_page_sharing_attr.attr,
3426 &stable_node_chains_attr.attr,
3427 &stable_node_dups_attr.attr,
3428 &stable_node_chains_prune_millisecs_attr.attr,
3429 &use_zero_pages_attr.attr,
3430 &general_profit_attr.attr,
3434 static const struct attribute_group ksm_attr_group = {
3438 #endif /* CONFIG_SYSFS */
3440 static int __init ksm_init(void)
3442 struct task_struct *ksm_thread;
3445 /* The correct value depends on page size and endianness */
3446 zero_checksum = calc_checksum(ZERO_PAGE(0));
3447 /* Default to false for backwards compatibility */
3448 ksm_use_zero_pages = false;
3450 err = ksm_slab_init();
3454 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3455 if (IS_ERR(ksm_thread)) {
3456 pr_err("ksm: creating kthread failed\n");
3457 err = PTR_ERR(ksm_thread);
3462 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3464 pr_err("ksm: register sysfs failed\n");
3465 kthread_stop(ksm_thread);
3469 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3471 #endif /* CONFIG_SYSFS */
3473 #ifdef CONFIG_MEMORY_HOTREMOVE
3474 /* There is no significance to this priority 100 */
3475 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3484 subsys_initcall(ksm_init);