Merge tag 'pm-6.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)         (x)
53 #define DO_NUMA(x)      do { (x); } while (0)
54 #else
55 #define NUMA(x)         (0)
56 #define DO_NUMA(x)      do { } while (0)
57 #endif
58
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125         struct mm_slot slot;
126         struct ksm_rmap_item *rmap_list;
127 };
128
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139         struct ksm_mm_slot *mm_slot;
140         unsigned long address;
141         struct ksm_rmap_item **rmap_list;
142         unsigned long seqnr;
143 };
144
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158         union {
159                 struct rb_node node;    /* when node of stable tree */
160                 struct {                /* when listed for migration */
161                         struct list_head *head;
162                         struct {
163                                 struct hlist_node hlist_dup;
164                                 struct list_head list;
165                         };
166                 };
167         };
168         struct hlist_head hlist;
169         union {
170                 unsigned long kpfn;
171                 unsigned long chain_prune_time;
172         };
173         /*
174          * STABLE_NODE_CHAIN can be any negative number in
175          * rmap_hlist_len negative range, but better not -1 to be able
176          * to reliably detect underflows.
177          */
178 #define STABLE_NODE_CHAIN -1024
179         int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181         int nid;
182 #endif
183 };
184
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198         struct ksm_rmap_item *rmap_list;
199         union {
200                 struct anon_vma *anon_vma;      /* when stable */
201 #ifdef CONFIG_NUMA
202                 int nid;                /* when node of unstable tree */
203 #endif
204         };
205         struct mm_struct *mm;
206         unsigned long address;          /* + low bits used for flags below */
207         unsigned int oldchecksum;       /* when unstable */
208         union {
209                 struct rb_node node;    /* when node of unstable tree */
210                 struct {                /* when listed from stable tree */
211                         struct ksm_stable_node *head;
212                         struct hlist_node hlist;
213                 };
214         };
215 };
216
217 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
219 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
220
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233
234 static struct ksm_mm_slot ksm_mm_head = {
235         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238         .mm_slot = &ksm_mm_head,
239 };
240
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes  1U
287 #define ksm_nr_node_ids         1
288 #endif
289
290 #define KSM_RUN_STOP    0
291 #define KSM_RUN_MERGE   1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303                 sizeof(struct __struct), __alignof__(struct __struct),\
304                 (__flags), NULL)
305
306 static int __init ksm_slab_init(void)
307 {
308         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309         if (!rmap_item_cache)
310                 goto out;
311
312         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313         if (!stable_node_cache)
314                 goto out_free1;
315
316         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
317         if (!mm_slot_cache)
318                 goto out_free2;
319
320         return 0;
321
322 out_free2:
323         kmem_cache_destroy(stable_node_cache);
324 out_free1:
325         kmem_cache_destroy(rmap_item_cache);
326 out:
327         return -ENOMEM;
328 }
329
330 static void __init ksm_slab_free(void)
331 {
332         kmem_cache_destroy(mm_slot_cache);
333         kmem_cache_destroy(stable_node_cache);
334         kmem_cache_destroy(rmap_item_cache);
335         mm_slot_cache = NULL;
336 }
337
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
339 {
340         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
344 {
345         return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349                                              struct ksm_stable_node *chain)
350 {
351         VM_BUG_ON(is_stable_node_dup(dup));
352         dup->head = STABLE_NODE_DUP_HEAD;
353         VM_BUG_ON(!is_stable_node_chain(chain));
354         hlist_add_head(&dup->hlist_dup, &chain->hlist);
355         ksm_stable_node_dups++;
356 }
357
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
359 {
360         VM_BUG_ON(!is_stable_node_dup(dup));
361         hlist_del(&dup->hlist_dup);
362         ksm_stable_node_dups--;
363 }
364
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
366 {
367         VM_BUG_ON(is_stable_node_chain(dup));
368         if (is_stable_node_dup(dup))
369                 __stable_node_dup_del(dup);
370         else
371                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373         dup->head = NULL;
374 #endif
375 }
376
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
378 {
379         struct ksm_rmap_item *rmap_item;
380
381         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382                                                 __GFP_NORETRY | __GFP_NOWARN);
383         if (rmap_item)
384                 ksm_rmap_items++;
385         return rmap_item;
386 }
387
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
389 {
390         ksm_rmap_items--;
391         rmap_item->mm->ksm_rmap_items--;
392         rmap_item->mm = NULL;   /* debug safety */
393         kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
396 static inline struct ksm_stable_node *alloc_stable_node(void)
397 {
398         /*
399          * The allocation can take too long with GFP_KERNEL when memory is under
400          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401          * grants access to memory reserves, helping to avoid this problem.
402          */
403         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
407 {
408         VM_BUG_ON(stable_node->rmap_hlist_len &&
409                   !is_stable_node_chain(stable_node));
410         kmem_cache_free(stable_node_cache, stable_node);
411 }
412
413 /*
414  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415  * page tables after it has passed through ksm_exit() - which, if necessary,
416  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
417  * a special flag: they can just back out as soon as mm_users goes to zero.
418  * ksm_test_exit() is used throughout to make this test for exit: in some
419  * places for correctness, in some places just to avoid unnecessary work.
420  */
421 static inline bool ksm_test_exit(struct mm_struct *mm)
422 {
423         return atomic_read(&mm->mm_users) == 0;
424 }
425
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427                         struct mm_walk *walk)
428 {
429         struct page *page = NULL;
430         spinlock_t *ptl;
431         pte_t *pte;
432         pte_t ptent;
433         int ret;
434
435         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
436         if (!pte)
437                 return 0;
438         ptent = ptep_get(pte);
439         if (pte_present(ptent)) {
440                 page = vm_normal_page(walk->vma, addr, ptent);
441         } else if (!pte_none(ptent)) {
442                 swp_entry_t entry = pte_to_swp_entry(ptent);
443
444                 /*
445                  * As KSM pages remain KSM pages until freed, no need to wait
446                  * here for migration to end.
447                  */
448                 if (is_migration_entry(entry))
449                         page = pfn_swap_entry_to_page(entry);
450         }
451         ret = page && PageKsm(page);
452         pte_unmap_unlock(pte, ptl);
453         return ret;
454 }
455
456 static const struct mm_walk_ops break_ksm_ops = {
457         .pmd_entry = break_ksm_pmd_entry,
458 };
459
460 /*
461  * We use break_ksm to break COW on a ksm page by triggering unsharing,
462  * such that the ksm page will get replaced by an exclusive anonymous page.
463  *
464  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
465  * in case the application has unmapped and remapped mm,addr meanwhile.
466  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
467  * mmap of /dev/mem, where we would not want to touch it.
468  *
469  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
470  * of the process that owns 'vma'.  We also do not want to enforce
471  * protection keys here anyway.
472  */
473 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
474 {
475         vm_fault_t ret = 0;
476
477         do {
478                 int ksm_page;
479
480                 cond_resched();
481                 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
482                                                &break_ksm_ops, NULL);
483                 if (WARN_ON_ONCE(ksm_page < 0))
484                         return ksm_page;
485                 if (!ksm_page)
486                         return 0;
487                 ret = handle_mm_fault(vma, addr,
488                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
489                                       NULL);
490         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
491         /*
492          * We must loop until we no longer find a KSM page because
493          * handle_mm_fault() may back out if there's any difficulty e.g. if
494          * pte accessed bit gets updated concurrently.
495          *
496          * VM_FAULT_SIGBUS could occur if we race with truncation of the
497          * backing file, which also invalidates anonymous pages: that's
498          * okay, that truncation will have unmapped the PageKsm for us.
499          *
500          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502          * current task has TIF_MEMDIE set, and will be OOM killed on return
503          * to user; and ksmd, having no mm, would never be chosen for that.
504          *
505          * But if the mm is in a limited mem_cgroup, then the fault may fail
506          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507          * even ksmd can fail in this way - though it's usually breaking ksm
508          * just to undo a merge it made a moment before, so unlikely to oom.
509          *
510          * That's a pity: we might therefore have more kernel pages allocated
511          * than we're counting as nodes in the stable tree; but ksm_do_scan
512          * will retry to break_cow on each pass, so should recover the page
513          * in due course.  The important thing is to not let VM_MERGEABLE
514          * be cleared while any such pages might remain in the area.
515          */
516         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518
519 static bool vma_ksm_compatible(struct vm_area_struct *vma)
520 {
521         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
522                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
523                              VM_MIXEDMAP))
524                 return false;           /* just ignore the advice */
525
526         if (vma_is_dax(vma))
527                 return false;
528
529 #ifdef VM_SAO
530         if (vma->vm_flags & VM_SAO)
531                 return false;
532 #endif
533 #ifdef VM_SPARC_ADI
534         if (vma->vm_flags & VM_SPARC_ADI)
535                 return false;
536 #endif
537
538         return true;
539 }
540
541 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
542                 unsigned long addr)
543 {
544         struct vm_area_struct *vma;
545         if (ksm_test_exit(mm))
546                 return NULL;
547         vma = vma_lookup(mm, addr);
548         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
549                 return NULL;
550         return vma;
551 }
552
553 static void break_cow(struct ksm_rmap_item *rmap_item)
554 {
555         struct mm_struct *mm = rmap_item->mm;
556         unsigned long addr = rmap_item->address;
557         struct vm_area_struct *vma;
558
559         /*
560          * It is not an accident that whenever we want to break COW
561          * to undo, we also need to drop a reference to the anon_vma.
562          */
563         put_anon_vma(rmap_item->anon_vma);
564
565         mmap_read_lock(mm);
566         vma = find_mergeable_vma(mm, addr);
567         if (vma)
568                 break_ksm(vma, addr);
569         mmap_read_unlock(mm);
570 }
571
572 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
573 {
574         struct mm_struct *mm = rmap_item->mm;
575         unsigned long addr = rmap_item->address;
576         struct vm_area_struct *vma;
577         struct page *page;
578
579         mmap_read_lock(mm);
580         vma = find_mergeable_vma(mm, addr);
581         if (!vma)
582                 goto out;
583
584         page = follow_page(vma, addr, FOLL_GET);
585         if (IS_ERR_OR_NULL(page))
586                 goto out;
587         if (is_zone_device_page(page))
588                 goto out_putpage;
589         if (PageAnon(page)) {
590                 flush_anon_page(vma, page, addr);
591                 flush_dcache_page(page);
592         } else {
593 out_putpage:
594                 put_page(page);
595 out:
596                 page = NULL;
597         }
598         mmap_read_unlock(mm);
599         return page;
600 }
601
602 /*
603  * This helper is used for getting right index into array of tree roots.
604  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
605  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
606  * every node has its own stable and unstable tree.
607  */
608 static inline int get_kpfn_nid(unsigned long kpfn)
609 {
610         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
611 }
612
613 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
614                                                    struct rb_root *root)
615 {
616         struct ksm_stable_node *chain = alloc_stable_node();
617         VM_BUG_ON(is_stable_node_chain(dup));
618         if (likely(chain)) {
619                 INIT_HLIST_HEAD(&chain->hlist);
620                 chain->chain_prune_time = jiffies;
621                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
622 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
623                 chain->nid = NUMA_NO_NODE; /* debug */
624 #endif
625                 ksm_stable_node_chains++;
626
627                 /*
628                  * Put the stable node chain in the first dimension of
629                  * the stable tree and at the same time remove the old
630                  * stable node.
631                  */
632                 rb_replace_node(&dup->node, &chain->node, root);
633
634                 /*
635                  * Move the old stable node to the second dimension
636                  * queued in the hlist_dup. The invariant is that all
637                  * dup stable_nodes in the chain->hlist point to pages
638                  * that are write protected and have the exact same
639                  * content.
640                  */
641                 stable_node_chain_add_dup(dup, chain);
642         }
643         return chain;
644 }
645
646 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
647                                           struct rb_root *root)
648 {
649         rb_erase(&chain->node, root);
650         free_stable_node(chain);
651         ksm_stable_node_chains--;
652 }
653
654 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
655 {
656         struct ksm_rmap_item *rmap_item;
657
658         /* check it's not STABLE_NODE_CHAIN or negative */
659         BUG_ON(stable_node->rmap_hlist_len < 0);
660
661         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
662                 if (rmap_item->hlist.next) {
663                         ksm_pages_sharing--;
664                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
665                 } else {
666                         ksm_pages_shared--;
667                 }
668
669                 rmap_item->mm->ksm_merging_pages--;
670
671                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
672                 stable_node->rmap_hlist_len--;
673                 put_anon_vma(rmap_item->anon_vma);
674                 rmap_item->address &= PAGE_MASK;
675                 cond_resched();
676         }
677
678         /*
679          * We need the second aligned pointer of the migrate_nodes
680          * list_head to stay clear from the rb_parent_color union
681          * (aligned and different than any node) and also different
682          * from &migrate_nodes. This will verify that future list.h changes
683          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
684          */
685         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
686         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
687
688         trace_ksm_remove_ksm_page(stable_node->kpfn);
689         if (stable_node->head == &migrate_nodes)
690                 list_del(&stable_node->list);
691         else
692                 stable_node_dup_del(stable_node);
693         free_stable_node(stable_node);
694 }
695
696 enum get_ksm_page_flags {
697         GET_KSM_PAGE_NOLOCK,
698         GET_KSM_PAGE_LOCK,
699         GET_KSM_PAGE_TRYLOCK
700 };
701
702 /*
703  * get_ksm_page: checks if the page indicated by the stable node
704  * is still its ksm page, despite having held no reference to it.
705  * In which case we can trust the content of the page, and it
706  * returns the gotten page; but if the page has now been zapped,
707  * remove the stale node from the stable tree and return NULL.
708  * But beware, the stable node's page might be being migrated.
709  *
710  * You would expect the stable_node to hold a reference to the ksm page.
711  * But if it increments the page's count, swapping out has to wait for
712  * ksmd to come around again before it can free the page, which may take
713  * seconds or even minutes: much too unresponsive.  So instead we use a
714  * "keyhole reference": access to the ksm page from the stable node peeps
715  * out through its keyhole to see if that page still holds the right key,
716  * pointing back to this stable node.  This relies on freeing a PageAnon
717  * page to reset its page->mapping to NULL, and relies on no other use of
718  * a page to put something that might look like our key in page->mapping.
719  * is on its way to being freed; but it is an anomaly to bear in mind.
720  */
721 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
722                                  enum get_ksm_page_flags flags)
723 {
724         struct page *page;
725         void *expected_mapping;
726         unsigned long kpfn;
727
728         expected_mapping = (void *)((unsigned long)stable_node |
729                                         PAGE_MAPPING_KSM);
730 again:
731         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
732         page = pfn_to_page(kpfn);
733         if (READ_ONCE(page->mapping) != expected_mapping)
734                 goto stale;
735
736         /*
737          * We cannot do anything with the page while its refcount is 0.
738          * Usually 0 means free, or tail of a higher-order page: in which
739          * case this node is no longer referenced, and should be freed;
740          * however, it might mean that the page is under page_ref_freeze().
741          * The __remove_mapping() case is easy, again the node is now stale;
742          * the same is in reuse_ksm_page() case; but if page is swapcache
743          * in folio_migrate_mapping(), it might still be our page,
744          * in which case it's essential to keep the node.
745          */
746         while (!get_page_unless_zero(page)) {
747                 /*
748                  * Another check for page->mapping != expected_mapping would
749                  * work here too.  We have chosen the !PageSwapCache test to
750                  * optimize the common case, when the page is or is about to
751                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
752                  * in the ref_freeze section of __remove_mapping(); but Anon
753                  * page->mapping reset to NULL later, in free_pages_prepare().
754                  */
755                 if (!PageSwapCache(page))
756                         goto stale;
757                 cpu_relax();
758         }
759
760         if (READ_ONCE(page->mapping) != expected_mapping) {
761                 put_page(page);
762                 goto stale;
763         }
764
765         if (flags == GET_KSM_PAGE_TRYLOCK) {
766                 if (!trylock_page(page)) {
767                         put_page(page);
768                         return ERR_PTR(-EBUSY);
769                 }
770         } else if (flags == GET_KSM_PAGE_LOCK)
771                 lock_page(page);
772
773         if (flags != GET_KSM_PAGE_NOLOCK) {
774                 if (READ_ONCE(page->mapping) != expected_mapping) {
775                         unlock_page(page);
776                         put_page(page);
777                         goto stale;
778                 }
779         }
780         return page;
781
782 stale:
783         /*
784          * We come here from above when page->mapping or !PageSwapCache
785          * suggests that the node is stale; but it might be under migration.
786          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
787          * before checking whether node->kpfn has been changed.
788          */
789         smp_rmb();
790         if (READ_ONCE(stable_node->kpfn) != kpfn)
791                 goto again;
792         remove_node_from_stable_tree(stable_node);
793         return NULL;
794 }
795
796 /*
797  * Removing rmap_item from stable or unstable tree.
798  * This function will clean the information from the stable/unstable tree.
799  */
800 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
801 {
802         if (rmap_item->address & STABLE_FLAG) {
803                 struct ksm_stable_node *stable_node;
804                 struct page *page;
805
806                 stable_node = rmap_item->head;
807                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
808                 if (!page)
809                         goto out;
810
811                 hlist_del(&rmap_item->hlist);
812                 unlock_page(page);
813                 put_page(page);
814
815                 if (!hlist_empty(&stable_node->hlist))
816                         ksm_pages_sharing--;
817                 else
818                         ksm_pages_shared--;
819
820                 rmap_item->mm->ksm_merging_pages--;
821
822                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
823                 stable_node->rmap_hlist_len--;
824
825                 put_anon_vma(rmap_item->anon_vma);
826                 rmap_item->head = NULL;
827                 rmap_item->address &= PAGE_MASK;
828
829         } else if (rmap_item->address & UNSTABLE_FLAG) {
830                 unsigned char age;
831                 /*
832                  * Usually ksmd can and must skip the rb_erase, because
833                  * root_unstable_tree was already reset to RB_ROOT.
834                  * But be careful when an mm is exiting: do the rb_erase
835                  * if this rmap_item was inserted by this scan, rather
836                  * than left over from before.
837                  */
838                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
839                 BUG_ON(age > 1);
840                 if (!age)
841                         rb_erase(&rmap_item->node,
842                                  root_unstable_tree + NUMA(rmap_item->nid));
843                 ksm_pages_unshared--;
844                 rmap_item->address &= PAGE_MASK;
845         }
846 out:
847         cond_resched();         /* we're called from many long loops */
848 }
849
850 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
851 {
852         while (*rmap_list) {
853                 struct ksm_rmap_item *rmap_item = *rmap_list;
854                 *rmap_list = rmap_item->rmap_list;
855                 remove_rmap_item_from_tree(rmap_item);
856                 free_rmap_item(rmap_item);
857         }
858 }
859
860 /*
861  * Though it's very tempting to unmerge rmap_items from stable tree rather
862  * than check every pte of a given vma, the locking doesn't quite work for
863  * that - an rmap_item is assigned to the stable tree after inserting ksm
864  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
865  * rmap_items from parent to child at fork time (so as not to waste time
866  * if exit comes before the next scan reaches it).
867  *
868  * Similarly, although we'd like to remove rmap_items (so updating counts
869  * and freeing memory) when unmerging an area, it's easier to leave that
870  * to the next pass of ksmd - consider, for example, how ksmd might be
871  * in cmp_and_merge_page on one of the rmap_items we would be removing.
872  */
873 static int unmerge_ksm_pages(struct vm_area_struct *vma,
874                              unsigned long start, unsigned long end)
875 {
876         unsigned long addr;
877         int err = 0;
878
879         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
880                 if (ksm_test_exit(vma->vm_mm))
881                         break;
882                 if (signal_pending(current))
883                         err = -ERESTARTSYS;
884                 else
885                         err = break_ksm(vma, addr);
886         }
887         return err;
888 }
889
890 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
891 {
892         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
893 }
894
895 static inline struct ksm_stable_node *page_stable_node(struct page *page)
896 {
897         return folio_stable_node(page_folio(page));
898 }
899
900 static inline void set_page_stable_node(struct page *page,
901                                         struct ksm_stable_node *stable_node)
902 {
903         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
904         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
905 }
906
907 #ifdef CONFIG_SYSFS
908 /*
909  * Only called through the sysfs control interface:
910  */
911 static int remove_stable_node(struct ksm_stable_node *stable_node)
912 {
913         struct page *page;
914         int err;
915
916         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
917         if (!page) {
918                 /*
919                  * get_ksm_page did remove_node_from_stable_tree itself.
920                  */
921                 return 0;
922         }
923
924         /*
925          * Page could be still mapped if this races with __mmput() running in
926          * between ksm_exit() and exit_mmap(). Just refuse to let
927          * merge_across_nodes/max_page_sharing be switched.
928          */
929         err = -EBUSY;
930         if (!page_mapped(page)) {
931                 /*
932                  * The stable node did not yet appear stale to get_ksm_page(),
933                  * since that allows for an unmapped ksm page to be recognized
934                  * right up until it is freed; but the node is safe to remove.
935                  * This page might be in an LRU cache waiting to be freed,
936                  * or it might be PageSwapCache (perhaps under writeback),
937                  * or it might have been removed from swapcache a moment ago.
938                  */
939                 set_page_stable_node(page, NULL);
940                 remove_node_from_stable_tree(stable_node);
941                 err = 0;
942         }
943
944         unlock_page(page);
945         put_page(page);
946         return err;
947 }
948
949 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
950                                     struct rb_root *root)
951 {
952         struct ksm_stable_node *dup;
953         struct hlist_node *hlist_safe;
954
955         if (!is_stable_node_chain(stable_node)) {
956                 VM_BUG_ON(is_stable_node_dup(stable_node));
957                 if (remove_stable_node(stable_node))
958                         return true;
959                 else
960                         return false;
961         }
962
963         hlist_for_each_entry_safe(dup, hlist_safe,
964                                   &stable_node->hlist, hlist_dup) {
965                 VM_BUG_ON(!is_stable_node_dup(dup));
966                 if (remove_stable_node(dup))
967                         return true;
968         }
969         BUG_ON(!hlist_empty(&stable_node->hlist));
970         free_stable_node_chain(stable_node, root);
971         return false;
972 }
973
974 static int remove_all_stable_nodes(void)
975 {
976         struct ksm_stable_node *stable_node, *next;
977         int nid;
978         int err = 0;
979
980         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
981                 while (root_stable_tree[nid].rb_node) {
982                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
983                                                 struct ksm_stable_node, node);
984                         if (remove_stable_node_chain(stable_node,
985                                                      root_stable_tree + nid)) {
986                                 err = -EBUSY;
987                                 break;  /* proceed to next nid */
988                         }
989                         cond_resched();
990                 }
991         }
992         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
993                 if (remove_stable_node(stable_node))
994                         err = -EBUSY;
995                 cond_resched();
996         }
997         return err;
998 }
999
1000 static int unmerge_and_remove_all_rmap_items(void)
1001 {
1002         struct ksm_mm_slot *mm_slot;
1003         struct mm_slot *slot;
1004         struct mm_struct *mm;
1005         struct vm_area_struct *vma;
1006         int err = 0;
1007
1008         spin_lock(&ksm_mmlist_lock);
1009         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1010                           struct mm_slot, mm_node);
1011         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1012         spin_unlock(&ksm_mmlist_lock);
1013
1014         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1015              mm_slot = ksm_scan.mm_slot) {
1016                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1017
1018                 mm = mm_slot->slot.mm;
1019                 mmap_read_lock(mm);
1020
1021                 /*
1022                  * Exit right away if mm is exiting to avoid lockdep issue in
1023                  * the maple tree
1024                  */
1025                 if (ksm_test_exit(mm))
1026                         goto mm_exiting;
1027
1028                 for_each_vma(vmi, vma) {
1029                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1030                                 continue;
1031                         err = unmerge_ksm_pages(vma,
1032                                                 vma->vm_start, vma->vm_end);
1033                         if (err)
1034                                 goto error;
1035                 }
1036
1037 mm_exiting:
1038                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1039                 mmap_read_unlock(mm);
1040
1041                 spin_lock(&ksm_mmlist_lock);
1042                 slot = list_entry(mm_slot->slot.mm_node.next,
1043                                   struct mm_slot, mm_node);
1044                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1045                 if (ksm_test_exit(mm)) {
1046                         hash_del(&mm_slot->slot.hash);
1047                         list_del(&mm_slot->slot.mm_node);
1048                         spin_unlock(&ksm_mmlist_lock);
1049
1050                         mm_slot_free(mm_slot_cache, mm_slot);
1051                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1052                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1053                         mmdrop(mm);
1054                 } else
1055                         spin_unlock(&ksm_mmlist_lock);
1056         }
1057
1058         /* Clean up stable nodes, but don't worry if some are still busy */
1059         remove_all_stable_nodes();
1060         ksm_scan.seqnr = 0;
1061         return 0;
1062
1063 error:
1064         mmap_read_unlock(mm);
1065         spin_lock(&ksm_mmlist_lock);
1066         ksm_scan.mm_slot = &ksm_mm_head;
1067         spin_unlock(&ksm_mmlist_lock);
1068         return err;
1069 }
1070 #endif /* CONFIG_SYSFS */
1071
1072 static u32 calc_checksum(struct page *page)
1073 {
1074         u32 checksum;
1075         void *addr = kmap_atomic(page);
1076         checksum = xxhash(addr, PAGE_SIZE, 0);
1077         kunmap_atomic(addr);
1078         return checksum;
1079 }
1080
1081 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1082                               pte_t *orig_pte)
1083 {
1084         struct mm_struct *mm = vma->vm_mm;
1085         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1086         int swapped;
1087         int err = -EFAULT;
1088         struct mmu_notifier_range range;
1089         bool anon_exclusive;
1090         pte_t entry;
1091
1092         pvmw.address = page_address_in_vma(page, vma);
1093         if (pvmw.address == -EFAULT)
1094                 goto out;
1095
1096         BUG_ON(PageTransCompound(page));
1097
1098         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1099                                 pvmw.address + PAGE_SIZE);
1100         mmu_notifier_invalidate_range_start(&range);
1101
1102         if (!page_vma_mapped_walk(&pvmw))
1103                 goto out_mn;
1104         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1105                 goto out_unlock;
1106
1107         anon_exclusive = PageAnonExclusive(page);
1108         entry = ptep_get(pvmw.pte);
1109         if (pte_write(entry) || pte_dirty(entry) ||
1110             anon_exclusive || mm_tlb_flush_pending(mm)) {
1111                 swapped = PageSwapCache(page);
1112                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1113                 /*
1114                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1115                  * take any lock, therefore the check that we are going to make
1116                  * with the pagecount against the mapcount is racy and
1117                  * O_DIRECT can happen right after the check.
1118                  * So we clear the pte and flush the tlb before the check
1119                  * this assure us that no O_DIRECT can happen after the check
1120                  * or in the middle of the check.
1121                  *
1122                  * No need to notify as we are downgrading page table to read
1123                  * only not changing it to point to a new page.
1124                  *
1125                  * See Documentation/mm/mmu_notifier.rst
1126                  */
1127                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1128                 /*
1129                  * Check that no O_DIRECT or similar I/O is in progress on the
1130                  * page
1131                  */
1132                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1133                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1134                         goto out_unlock;
1135                 }
1136
1137                 /* See page_try_share_anon_rmap(): clear PTE first. */
1138                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1139                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1140                         goto out_unlock;
1141                 }
1142
1143                 if (pte_dirty(entry))
1144                         set_page_dirty(page);
1145                 entry = pte_mkclean(entry);
1146
1147                 if (pte_write(entry))
1148                         entry = pte_wrprotect(entry);
1149
1150                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1151         }
1152         *orig_pte = entry;
1153         err = 0;
1154
1155 out_unlock:
1156         page_vma_mapped_walk_done(&pvmw);
1157 out_mn:
1158         mmu_notifier_invalidate_range_end(&range);
1159 out:
1160         return err;
1161 }
1162
1163 /**
1164  * replace_page - replace page in vma by new ksm page
1165  * @vma:      vma that holds the pte pointing to page
1166  * @page:     the page we are replacing by kpage
1167  * @kpage:    the ksm page we replace page by
1168  * @orig_pte: the original value of the pte
1169  *
1170  * Returns 0 on success, -EFAULT on failure.
1171  */
1172 static int replace_page(struct vm_area_struct *vma, struct page *page,
1173                         struct page *kpage, pte_t orig_pte)
1174 {
1175         struct mm_struct *mm = vma->vm_mm;
1176         struct folio *folio;
1177         pmd_t *pmd;
1178         pmd_t pmde;
1179         pte_t *ptep;
1180         pte_t newpte;
1181         spinlock_t *ptl;
1182         unsigned long addr;
1183         int err = -EFAULT;
1184         struct mmu_notifier_range range;
1185
1186         addr = page_address_in_vma(page, vma);
1187         if (addr == -EFAULT)
1188                 goto out;
1189
1190         pmd = mm_find_pmd(mm, addr);
1191         if (!pmd)
1192                 goto out;
1193         /*
1194          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1195          * without holding anon_vma lock for write.  So when looking for a
1196          * genuine pmde (in which to find pte), test present and !THP together.
1197          */
1198         pmde = pmdp_get_lockless(pmd);
1199         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1200                 goto out;
1201
1202         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1203                                 addr + PAGE_SIZE);
1204         mmu_notifier_invalidate_range_start(&range);
1205
1206         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1207         if (!ptep)
1208                 goto out_mn;
1209         if (!pte_same(ptep_get(ptep), orig_pte)) {
1210                 pte_unmap_unlock(ptep, ptl);
1211                 goto out_mn;
1212         }
1213         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1214         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1215
1216         /*
1217          * No need to check ksm_use_zero_pages here: we can only have a
1218          * zero_page here if ksm_use_zero_pages was enabled already.
1219          */
1220         if (!is_zero_pfn(page_to_pfn(kpage))) {
1221                 get_page(kpage);
1222                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1223                 newpte = mk_pte(kpage, vma->vm_page_prot);
1224         } else {
1225                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1226                                                vma->vm_page_prot));
1227                 /*
1228                  * We're replacing an anonymous page with a zero page, which is
1229                  * not anonymous. We need to do proper accounting otherwise we
1230                  * will get wrong values in /proc, and a BUG message in dmesg
1231                  * when tearing down the mm.
1232                  */
1233                 dec_mm_counter(mm, MM_ANONPAGES);
1234         }
1235
1236         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1237         /*
1238          * No need to notify as we are replacing a read only page with another
1239          * read only page with the same content.
1240          *
1241          * See Documentation/mm/mmu_notifier.rst
1242          */
1243         ptep_clear_flush(vma, addr, ptep);
1244         set_pte_at_notify(mm, addr, ptep, newpte);
1245
1246         folio = page_folio(page);
1247         page_remove_rmap(page, vma, false);
1248         if (!folio_mapped(folio))
1249                 folio_free_swap(folio);
1250         folio_put(folio);
1251
1252         pte_unmap_unlock(ptep, ptl);
1253         err = 0;
1254 out_mn:
1255         mmu_notifier_invalidate_range_end(&range);
1256 out:
1257         return err;
1258 }
1259
1260 /*
1261  * try_to_merge_one_page - take two pages and merge them into one
1262  * @vma: the vma that holds the pte pointing to page
1263  * @page: the PageAnon page that we want to replace with kpage
1264  * @kpage: the PageKsm page that we want to map instead of page,
1265  *         or NULL the first time when we want to use page as kpage.
1266  *
1267  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1268  */
1269 static int try_to_merge_one_page(struct vm_area_struct *vma,
1270                                  struct page *page, struct page *kpage)
1271 {
1272         pte_t orig_pte = __pte(0);
1273         int err = -EFAULT;
1274
1275         if (page == kpage)                      /* ksm page forked */
1276                 return 0;
1277
1278         if (!PageAnon(page))
1279                 goto out;
1280
1281         /*
1282          * We need the page lock to read a stable PageSwapCache in
1283          * write_protect_page().  We use trylock_page() instead of
1284          * lock_page() because we don't want to wait here - we
1285          * prefer to continue scanning and merging different pages,
1286          * then come back to this page when it is unlocked.
1287          */
1288         if (!trylock_page(page))
1289                 goto out;
1290
1291         if (PageTransCompound(page)) {
1292                 if (split_huge_page(page))
1293                         goto out_unlock;
1294         }
1295
1296         /*
1297          * If this anonymous page is mapped only here, its pte may need
1298          * to be write-protected.  If it's mapped elsewhere, all of its
1299          * ptes are necessarily already write-protected.  But in either
1300          * case, we need to lock and check page_count is not raised.
1301          */
1302         if (write_protect_page(vma, page, &orig_pte) == 0) {
1303                 if (!kpage) {
1304                         /*
1305                          * While we hold page lock, upgrade page from
1306                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1307                          * stable_tree_insert() will update stable_node.
1308                          */
1309                         set_page_stable_node(page, NULL);
1310                         mark_page_accessed(page);
1311                         /*
1312                          * Page reclaim just frees a clean page with no dirty
1313                          * ptes: make sure that the ksm page would be swapped.
1314                          */
1315                         if (!PageDirty(page))
1316                                 SetPageDirty(page);
1317                         err = 0;
1318                 } else if (pages_identical(page, kpage))
1319                         err = replace_page(vma, page, kpage, orig_pte);
1320         }
1321
1322 out_unlock:
1323         unlock_page(page);
1324 out:
1325         return err;
1326 }
1327
1328 /*
1329  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1330  * but no new kernel page is allocated: kpage must already be a ksm page.
1331  *
1332  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1333  */
1334 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1335                                       struct page *page, struct page *kpage)
1336 {
1337         struct mm_struct *mm = rmap_item->mm;
1338         struct vm_area_struct *vma;
1339         int err = -EFAULT;
1340
1341         mmap_read_lock(mm);
1342         vma = find_mergeable_vma(mm, rmap_item->address);
1343         if (!vma)
1344                 goto out;
1345
1346         err = try_to_merge_one_page(vma, page, kpage);
1347         if (err)
1348                 goto out;
1349
1350         /* Unstable nid is in union with stable anon_vma: remove first */
1351         remove_rmap_item_from_tree(rmap_item);
1352
1353         /* Must get reference to anon_vma while still holding mmap_lock */
1354         rmap_item->anon_vma = vma->anon_vma;
1355         get_anon_vma(vma->anon_vma);
1356 out:
1357         mmap_read_unlock(mm);
1358         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1359                                 rmap_item, mm, err);
1360         return err;
1361 }
1362
1363 /*
1364  * try_to_merge_two_pages - take two identical pages and prepare them
1365  * to be merged into one page.
1366  *
1367  * This function returns the kpage if we successfully merged two identical
1368  * pages into one ksm page, NULL otherwise.
1369  *
1370  * Note that this function upgrades page to ksm page: if one of the pages
1371  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1372  */
1373 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1374                                            struct page *page,
1375                                            struct ksm_rmap_item *tree_rmap_item,
1376                                            struct page *tree_page)
1377 {
1378         int err;
1379
1380         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1381         if (!err) {
1382                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1383                                                         tree_page, page);
1384                 /*
1385                  * If that fails, we have a ksm page with only one pte
1386                  * pointing to it: so break it.
1387                  */
1388                 if (err)
1389                         break_cow(rmap_item);
1390         }
1391         return err ? NULL : page;
1392 }
1393
1394 static __always_inline
1395 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1396 {
1397         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1398         /*
1399          * Check that at least one mapping still exists, otherwise
1400          * there's no much point to merge and share with this
1401          * stable_node, as the underlying tree_page of the other
1402          * sharer is going to be freed soon.
1403          */
1404         return stable_node->rmap_hlist_len &&
1405                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1406 }
1407
1408 static __always_inline
1409 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1410 {
1411         return __is_page_sharing_candidate(stable_node, 0);
1412 }
1413
1414 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1415                                     struct ksm_stable_node **_stable_node,
1416                                     struct rb_root *root,
1417                                     bool prune_stale_stable_nodes)
1418 {
1419         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1420         struct hlist_node *hlist_safe;
1421         struct page *_tree_page, *tree_page = NULL;
1422         int nr = 0;
1423         int found_rmap_hlist_len;
1424
1425         if (!prune_stale_stable_nodes ||
1426             time_before(jiffies, stable_node->chain_prune_time +
1427                         msecs_to_jiffies(
1428                                 ksm_stable_node_chains_prune_millisecs)))
1429                 prune_stale_stable_nodes = false;
1430         else
1431                 stable_node->chain_prune_time = jiffies;
1432
1433         hlist_for_each_entry_safe(dup, hlist_safe,
1434                                   &stable_node->hlist, hlist_dup) {
1435                 cond_resched();
1436                 /*
1437                  * We must walk all stable_node_dup to prune the stale
1438                  * stable nodes during lookup.
1439                  *
1440                  * get_ksm_page can drop the nodes from the
1441                  * stable_node->hlist if they point to freed pages
1442                  * (that's why we do a _safe walk). The "dup"
1443                  * stable_node parameter itself will be freed from
1444                  * under us if it returns NULL.
1445                  */
1446                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1447                 if (!_tree_page)
1448                         continue;
1449                 nr += 1;
1450                 if (is_page_sharing_candidate(dup)) {
1451                         if (!found ||
1452                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1453                                 if (found)
1454                                         put_page(tree_page);
1455                                 found = dup;
1456                                 found_rmap_hlist_len = found->rmap_hlist_len;
1457                                 tree_page = _tree_page;
1458
1459                                 /* skip put_page for found dup */
1460                                 if (!prune_stale_stable_nodes)
1461                                         break;
1462                                 continue;
1463                         }
1464                 }
1465                 put_page(_tree_page);
1466         }
1467
1468         if (found) {
1469                 /*
1470                  * nr is counting all dups in the chain only if
1471                  * prune_stale_stable_nodes is true, otherwise we may
1472                  * break the loop at nr == 1 even if there are
1473                  * multiple entries.
1474                  */
1475                 if (prune_stale_stable_nodes && nr == 1) {
1476                         /*
1477                          * If there's not just one entry it would
1478                          * corrupt memory, better BUG_ON. In KSM
1479                          * context with no lock held it's not even
1480                          * fatal.
1481                          */
1482                         BUG_ON(stable_node->hlist.first->next);
1483
1484                         /*
1485                          * There's just one entry and it is below the
1486                          * deduplication limit so drop the chain.
1487                          */
1488                         rb_replace_node(&stable_node->node, &found->node,
1489                                         root);
1490                         free_stable_node(stable_node);
1491                         ksm_stable_node_chains--;
1492                         ksm_stable_node_dups--;
1493                         /*
1494                          * NOTE: the caller depends on the stable_node
1495                          * to be equal to stable_node_dup if the chain
1496                          * was collapsed.
1497                          */
1498                         *_stable_node = found;
1499                         /*
1500                          * Just for robustness, as stable_node is
1501                          * otherwise left as a stable pointer, the
1502                          * compiler shall optimize it away at build
1503                          * time.
1504                          */
1505                         stable_node = NULL;
1506                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1507                            __is_page_sharing_candidate(found, 1)) {
1508                         /*
1509                          * If the found stable_node dup can accept one
1510                          * more future merge (in addition to the one
1511                          * that is underway) and is not at the head of
1512                          * the chain, put it there so next search will
1513                          * be quicker in the !prune_stale_stable_nodes
1514                          * case.
1515                          *
1516                          * NOTE: it would be inaccurate to use nr > 1
1517                          * instead of checking the hlist.first pointer
1518                          * directly, because in the
1519                          * prune_stale_stable_nodes case "nr" isn't
1520                          * the position of the found dup in the chain,
1521                          * but the total number of dups in the chain.
1522                          */
1523                         hlist_del(&found->hlist_dup);
1524                         hlist_add_head(&found->hlist_dup,
1525                                        &stable_node->hlist);
1526                 }
1527         }
1528
1529         *_stable_node_dup = found;
1530         return tree_page;
1531 }
1532
1533 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1534                                                struct rb_root *root)
1535 {
1536         if (!is_stable_node_chain(stable_node))
1537                 return stable_node;
1538         if (hlist_empty(&stable_node->hlist)) {
1539                 free_stable_node_chain(stable_node, root);
1540                 return NULL;
1541         }
1542         return hlist_entry(stable_node->hlist.first,
1543                            typeof(*stable_node), hlist_dup);
1544 }
1545
1546 /*
1547  * Like for get_ksm_page, this function can free the *_stable_node and
1548  * *_stable_node_dup if the returned tree_page is NULL.
1549  *
1550  * It can also free and overwrite *_stable_node with the found
1551  * stable_node_dup if the chain is collapsed (in which case
1552  * *_stable_node will be equal to *_stable_node_dup like if the chain
1553  * never existed). It's up to the caller to verify tree_page is not
1554  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1555  *
1556  * *_stable_node_dup is really a second output parameter of this
1557  * function and will be overwritten in all cases, the caller doesn't
1558  * need to initialize it.
1559  */
1560 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1561                                         struct ksm_stable_node **_stable_node,
1562                                         struct rb_root *root,
1563                                         bool prune_stale_stable_nodes)
1564 {
1565         struct ksm_stable_node *stable_node = *_stable_node;
1566         if (!is_stable_node_chain(stable_node)) {
1567                 if (is_page_sharing_candidate(stable_node)) {
1568                         *_stable_node_dup = stable_node;
1569                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1570                 }
1571                 /*
1572                  * _stable_node_dup set to NULL means the stable_node
1573                  * reached the ksm_max_page_sharing limit.
1574                  */
1575                 *_stable_node_dup = NULL;
1576                 return NULL;
1577         }
1578         return stable_node_dup(_stable_node_dup, _stable_node, root,
1579                                prune_stale_stable_nodes);
1580 }
1581
1582 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1583                                                 struct ksm_stable_node **s_n,
1584                                                 struct rb_root *root)
1585 {
1586         return __stable_node_chain(s_n_d, s_n, root, true);
1587 }
1588
1589 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1590                                           struct ksm_stable_node *s_n,
1591                                           struct rb_root *root)
1592 {
1593         struct ksm_stable_node *old_stable_node = s_n;
1594         struct page *tree_page;
1595
1596         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1597         /* not pruning dups so s_n cannot have changed */
1598         VM_BUG_ON(s_n != old_stable_node);
1599         return tree_page;
1600 }
1601
1602 /*
1603  * stable_tree_search - search for page inside the stable tree
1604  *
1605  * This function checks if there is a page inside the stable tree
1606  * with identical content to the page that we are scanning right now.
1607  *
1608  * This function returns the stable tree node of identical content if found,
1609  * NULL otherwise.
1610  */
1611 static struct page *stable_tree_search(struct page *page)
1612 {
1613         int nid;
1614         struct rb_root *root;
1615         struct rb_node **new;
1616         struct rb_node *parent;
1617         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1618         struct ksm_stable_node *page_node;
1619
1620         page_node = page_stable_node(page);
1621         if (page_node && page_node->head != &migrate_nodes) {
1622                 /* ksm page forked */
1623                 get_page(page);
1624                 return page;
1625         }
1626
1627         nid = get_kpfn_nid(page_to_pfn(page));
1628         root = root_stable_tree + nid;
1629 again:
1630         new = &root->rb_node;
1631         parent = NULL;
1632
1633         while (*new) {
1634                 struct page *tree_page;
1635                 int ret;
1636
1637                 cond_resched();
1638                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1639                 stable_node_any = NULL;
1640                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1641                 /*
1642                  * NOTE: stable_node may have been freed by
1643                  * chain_prune() if the returned stable_node_dup is
1644                  * not NULL. stable_node_dup may have been inserted in
1645                  * the rbtree instead as a regular stable_node (in
1646                  * order to collapse the stable_node chain if a single
1647                  * stable_node dup was found in it). In such case the
1648                  * stable_node is overwritten by the callee to point
1649                  * to the stable_node_dup that was collapsed in the
1650                  * stable rbtree and stable_node will be equal to
1651                  * stable_node_dup like if the chain never existed.
1652                  */
1653                 if (!stable_node_dup) {
1654                         /*
1655                          * Either all stable_node dups were full in
1656                          * this stable_node chain, or this chain was
1657                          * empty and should be rb_erased.
1658                          */
1659                         stable_node_any = stable_node_dup_any(stable_node,
1660                                                               root);
1661                         if (!stable_node_any) {
1662                                 /* rb_erase just run */
1663                                 goto again;
1664                         }
1665                         /*
1666                          * Take any of the stable_node dups page of
1667                          * this stable_node chain to let the tree walk
1668                          * continue. All KSM pages belonging to the
1669                          * stable_node dups in a stable_node chain
1670                          * have the same content and they're
1671                          * write protected at all times. Any will work
1672                          * fine to continue the walk.
1673                          */
1674                         tree_page = get_ksm_page(stable_node_any,
1675                                                  GET_KSM_PAGE_NOLOCK);
1676                 }
1677                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1678                 if (!tree_page) {
1679                         /*
1680                          * If we walked over a stale stable_node,
1681                          * get_ksm_page() will call rb_erase() and it
1682                          * may rebalance the tree from under us. So
1683                          * restart the search from scratch. Returning
1684                          * NULL would be safe too, but we'd generate
1685                          * false negative insertions just because some
1686                          * stable_node was stale.
1687                          */
1688                         goto again;
1689                 }
1690
1691                 ret = memcmp_pages(page, tree_page);
1692                 put_page(tree_page);
1693
1694                 parent = *new;
1695                 if (ret < 0)
1696                         new = &parent->rb_left;
1697                 else if (ret > 0)
1698                         new = &parent->rb_right;
1699                 else {
1700                         if (page_node) {
1701                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1702                                 /*
1703                                  * Test if the migrated page should be merged
1704                                  * into a stable node dup. If the mapcount is
1705                                  * 1 we can migrate it with another KSM page
1706                                  * without adding it to the chain.
1707                                  */
1708                                 if (page_mapcount(page) > 1)
1709                                         goto chain_append;
1710                         }
1711
1712                         if (!stable_node_dup) {
1713                                 /*
1714                                  * If the stable_node is a chain and
1715                                  * we got a payload match in memcmp
1716                                  * but we cannot merge the scanned
1717                                  * page in any of the existing
1718                                  * stable_node dups because they're
1719                                  * all full, we need to wait the
1720                                  * scanned page to find itself a match
1721                                  * in the unstable tree to create a
1722                                  * brand new KSM page to add later to
1723                                  * the dups of this stable_node.
1724                                  */
1725                                 return NULL;
1726                         }
1727
1728                         /*
1729                          * Lock and unlock the stable_node's page (which
1730                          * might already have been migrated) so that page
1731                          * migration is sure to notice its raised count.
1732                          * It would be more elegant to return stable_node
1733                          * than kpage, but that involves more changes.
1734                          */
1735                         tree_page = get_ksm_page(stable_node_dup,
1736                                                  GET_KSM_PAGE_TRYLOCK);
1737
1738                         if (PTR_ERR(tree_page) == -EBUSY)
1739                                 return ERR_PTR(-EBUSY);
1740
1741                         if (unlikely(!tree_page))
1742                                 /*
1743                                  * The tree may have been rebalanced,
1744                                  * so re-evaluate parent and new.
1745                                  */
1746                                 goto again;
1747                         unlock_page(tree_page);
1748
1749                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1750                             NUMA(stable_node_dup->nid)) {
1751                                 put_page(tree_page);
1752                                 goto replace;
1753                         }
1754                         return tree_page;
1755                 }
1756         }
1757
1758         if (!page_node)
1759                 return NULL;
1760
1761         list_del(&page_node->list);
1762         DO_NUMA(page_node->nid = nid);
1763         rb_link_node(&page_node->node, parent, new);
1764         rb_insert_color(&page_node->node, root);
1765 out:
1766         if (is_page_sharing_candidate(page_node)) {
1767                 get_page(page);
1768                 return page;
1769         } else
1770                 return NULL;
1771
1772 replace:
1773         /*
1774          * If stable_node was a chain and chain_prune collapsed it,
1775          * stable_node has been updated to be the new regular
1776          * stable_node. A collapse of the chain is indistinguishable
1777          * from the case there was no chain in the stable
1778          * rbtree. Otherwise stable_node is the chain and
1779          * stable_node_dup is the dup to replace.
1780          */
1781         if (stable_node_dup == stable_node) {
1782                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1783                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1784                 /* there is no chain */
1785                 if (page_node) {
1786                         VM_BUG_ON(page_node->head != &migrate_nodes);
1787                         list_del(&page_node->list);
1788                         DO_NUMA(page_node->nid = nid);
1789                         rb_replace_node(&stable_node_dup->node,
1790                                         &page_node->node,
1791                                         root);
1792                         if (is_page_sharing_candidate(page_node))
1793                                 get_page(page);
1794                         else
1795                                 page = NULL;
1796                 } else {
1797                         rb_erase(&stable_node_dup->node, root);
1798                         page = NULL;
1799                 }
1800         } else {
1801                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1802                 __stable_node_dup_del(stable_node_dup);
1803                 if (page_node) {
1804                         VM_BUG_ON(page_node->head != &migrate_nodes);
1805                         list_del(&page_node->list);
1806                         DO_NUMA(page_node->nid = nid);
1807                         stable_node_chain_add_dup(page_node, stable_node);
1808                         if (is_page_sharing_candidate(page_node))
1809                                 get_page(page);
1810                         else
1811                                 page = NULL;
1812                 } else {
1813                         page = NULL;
1814                 }
1815         }
1816         stable_node_dup->head = &migrate_nodes;
1817         list_add(&stable_node_dup->list, stable_node_dup->head);
1818         return page;
1819
1820 chain_append:
1821         /* stable_node_dup could be null if it reached the limit */
1822         if (!stable_node_dup)
1823                 stable_node_dup = stable_node_any;
1824         /*
1825          * If stable_node was a chain and chain_prune collapsed it,
1826          * stable_node has been updated to be the new regular
1827          * stable_node. A collapse of the chain is indistinguishable
1828          * from the case there was no chain in the stable
1829          * rbtree. Otherwise stable_node is the chain and
1830          * stable_node_dup is the dup to replace.
1831          */
1832         if (stable_node_dup == stable_node) {
1833                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1834                 /* chain is missing so create it */
1835                 stable_node = alloc_stable_node_chain(stable_node_dup,
1836                                                       root);
1837                 if (!stable_node)
1838                         return NULL;
1839         }
1840         /*
1841          * Add this stable_node dup that was
1842          * migrated to the stable_node chain
1843          * of the current nid for this page
1844          * content.
1845          */
1846         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1847         VM_BUG_ON(page_node->head != &migrate_nodes);
1848         list_del(&page_node->list);
1849         DO_NUMA(page_node->nid = nid);
1850         stable_node_chain_add_dup(page_node, stable_node);
1851         goto out;
1852 }
1853
1854 /*
1855  * stable_tree_insert - insert stable tree node pointing to new ksm page
1856  * into the stable tree.
1857  *
1858  * This function returns the stable tree node just allocated on success,
1859  * NULL otherwise.
1860  */
1861 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1862 {
1863         int nid;
1864         unsigned long kpfn;
1865         struct rb_root *root;
1866         struct rb_node **new;
1867         struct rb_node *parent;
1868         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1869         bool need_chain = false;
1870
1871         kpfn = page_to_pfn(kpage);
1872         nid = get_kpfn_nid(kpfn);
1873         root = root_stable_tree + nid;
1874 again:
1875         parent = NULL;
1876         new = &root->rb_node;
1877
1878         while (*new) {
1879                 struct page *tree_page;
1880                 int ret;
1881
1882                 cond_resched();
1883                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1884                 stable_node_any = NULL;
1885                 tree_page = chain(&stable_node_dup, stable_node, root);
1886                 if (!stable_node_dup) {
1887                         /*
1888                          * Either all stable_node dups were full in
1889                          * this stable_node chain, or this chain was
1890                          * empty and should be rb_erased.
1891                          */
1892                         stable_node_any = stable_node_dup_any(stable_node,
1893                                                               root);
1894                         if (!stable_node_any) {
1895                                 /* rb_erase just run */
1896                                 goto again;
1897                         }
1898                         /*
1899                          * Take any of the stable_node dups page of
1900                          * this stable_node chain to let the tree walk
1901                          * continue. All KSM pages belonging to the
1902                          * stable_node dups in a stable_node chain
1903                          * have the same content and they're
1904                          * write protected at all times. Any will work
1905                          * fine to continue the walk.
1906                          */
1907                         tree_page = get_ksm_page(stable_node_any,
1908                                                  GET_KSM_PAGE_NOLOCK);
1909                 }
1910                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1911                 if (!tree_page) {
1912                         /*
1913                          * If we walked over a stale stable_node,
1914                          * get_ksm_page() will call rb_erase() and it
1915                          * may rebalance the tree from under us. So
1916                          * restart the search from scratch. Returning
1917                          * NULL would be safe too, but we'd generate
1918                          * false negative insertions just because some
1919                          * stable_node was stale.
1920                          */
1921                         goto again;
1922                 }
1923
1924                 ret = memcmp_pages(kpage, tree_page);
1925                 put_page(tree_page);
1926
1927                 parent = *new;
1928                 if (ret < 0)
1929                         new = &parent->rb_left;
1930                 else if (ret > 0)
1931                         new = &parent->rb_right;
1932                 else {
1933                         need_chain = true;
1934                         break;
1935                 }
1936         }
1937
1938         stable_node_dup = alloc_stable_node();
1939         if (!stable_node_dup)
1940                 return NULL;
1941
1942         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1943         stable_node_dup->kpfn = kpfn;
1944         set_page_stable_node(kpage, stable_node_dup);
1945         stable_node_dup->rmap_hlist_len = 0;
1946         DO_NUMA(stable_node_dup->nid = nid);
1947         if (!need_chain) {
1948                 rb_link_node(&stable_node_dup->node, parent, new);
1949                 rb_insert_color(&stable_node_dup->node, root);
1950         } else {
1951                 if (!is_stable_node_chain(stable_node)) {
1952                         struct ksm_stable_node *orig = stable_node;
1953                         /* chain is missing so create it */
1954                         stable_node = alloc_stable_node_chain(orig, root);
1955                         if (!stable_node) {
1956                                 free_stable_node(stable_node_dup);
1957                                 return NULL;
1958                         }
1959                 }
1960                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1961         }
1962
1963         return stable_node_dup;
1964 }
1965
1966 /*
1967  * unstable_tree_search_insert - search for identical page,
1968  * else insert rmap_item into the unstable tree.
1969  *
1970  * This function searches for a page in the unstable tree identical to the
1971  * page currently being scanned; and if no identical page is found in the
1972  * tree, we insert rmap_item as a new object into the unstable tree.
1973  *
1974  * This function returns pointer to rmap_item found to be identical
1975  * to the currently scanned page, NULL otherwise.
1976  *
1977  * This function does both searching and inserting, because they share
1978  * the same walking algorithm in an rbtree.
1979  */
1980 static
1981 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1982                                               struct page *page,
1983                                               struct page **tree_pagep)
1984 {
1985         struct rb_node **new;
1986         struct rb_root *root;
1987         struct rb_node *parent = NULL;
1988         int nid;
1989
1990         nid = get_kpfn_nid(page_to_pfn(page));
1991         root = root_unstable_tree + nid;
1992         new = &root->rb_node;
1993
1994         while (*new) {
1995                 struct ksm_rmap_item *tree_rmap_item;
1996                 struct page *tree_page;
1997                 int ret;
1998
1999                 cond_resched();
2000                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2001                 tree_page = get_mergeable_page(tree_rmap_item);
2002                 if (!tree_page)
2003                         return NULL;
2004
2005                 /*
2006                  * Don't substitute a ksm page for a forked page.
2007                  */
2008                 if (page == tree_page) {
2009                         put_page(tree_page);
2010                         return NULL;
2011                 }
2012
2013                 ret = memcmp_pages(page, tree_page);
2014
2015                 parent = *new;
2016                 if (ret < 0) {
2017                         put_page(tree_page);
2018                         new = &parent->rb_left;
2019                 } else if (ret > 0) {
2020                         put_page(tree_page);
2021                         new = &parent->rb_right;
2022                 } else if (!ksm_merge_across_nodes &&
2023                            page_to_nid(tree_page) != nid) {
2024                         /*
2025                          * If tree_page has been migrated to another NUMA node,
2026                          * it will be flushed out and put in the right unstable
2027                          * tree next time: only merge with it when across_nodes.
2028                          */
2029                         put_page(tree_page);
2030                         return NULL;
2031                 } else {
2032                         *tree_pagep = tree_page;
2033                         return tree_rmap_item;
2034                 }
2035         }
2036
2037         rmap_item->address |= UNSTABLE_FLAG;
2038         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2039         DO_NUMA(rmap_item->nid = nid);
2040         rb_link_node(&rmap_item->node, parent, new);
2041         rb_insert_color(&rmap_item->node, root);
2042
2043         ksm_pages_unshared++;
2044         return NULL;
2045 }
2046
2047 /*
2048  * stable_tree_append - add another rmap_item to the linked list of
2049  * rmap_items hanging off a given node of the stable tree, all sharing
2050  * the same ksm page.
2051  */
2052 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2053                                struct ksm_stable_node *stable_node,
2054                                bool max_page_sharing_bypass)
2055 {
2056         /*
2057          * rmap won't find this mapping if we don't insert the
2058          * rmap_item in the right stable_node
2059          * duplicate. page_migration could break later if rmap breaks,
2060          * so we can as well crash here. We really need to check for
2061          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2062          * for other negative values as an underflow if detected here
2063          * for the first time (and not when decreasing rmap_hlist_len)
2064          * would be sign of memory corruption in the stable_node.
2065          */
2066         BUG_ON(stable_node->rmap_hlist_len < 0);
2067
2068         stable_node->rmap_hlist_len++;
2069         if (!max_page_sharing_bypass)
2070                 /* possibly non fatal but unexpected overflow, only warn */
2071                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2072                              ksm_max_page_sharing);
2073
2074         rmap_item->head = stable_node;
2075         rmap_item->address |= STABLE_FLAG;
2076         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2077
2078         if (rmap_item->hlist.next)
2079                 ksm_pages_sharing++;
2080         else
2081                 ksm_pages_shared++;
2082
2083         rmap_item->mm->ksm_merging_pages++;
2084 }
2085
2086 /*
2087  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2088  * if not, compare checksum to previous and if it's the same, see if page can
2089  * be inserted into the unstable tree, or merged with a page already there and
2090  * both transferred to the stable tree.
2091  *
2092  * @page: the page that we are searching identical page to.
2093  * @rmap_item: the reverse mapping into the virtual address of this page
2094  */
2095 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2096 {
2097         struct mm_struct *mm = rmap_item->mm;
2098         struct ksm_rmap_item *tree_rmap_item;
2099         struct page *tree_page = NULL;
2100         struct ksm_stable_node *stable_node;
2101         struct page *kpage;
2102         unsigned int checksum;
2103         int err;
2104         bool max_page_sharing_bypass = false;
2105
2106         stable_node = page_stable_node(page);
2107         if (stable_node) {
2108                 if (stable_node->head != &migrate_nodes &&
2109                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2110                     NUMA(stable_node->nid)) {
2111                         stable_node_dup_del(stable_node);
2112                         stable_node->head = &migrate_nodes;
2113                         list_add(&stable_node->list, stable_node->head);
2114                 }
2115                 if (stable_node->head != &migrate_nodes &&
2116                     rmap_item->head == stable_node)
2117                         return;
2118                 /*
2119                  * If it's a KSM fork, allow it to go over the sharing limit
2120                  * without warnings.
2121                  */
2122                 if (!is_page_sharing_candidate(stable_node))
2123                         max_page_sharing_bypass = true;
2124         }
2125
2126         /* We first start with searching the page inside the stable tree */
2127         kpage = stable_tree_search(page);
2128         if (kpage == page && rmap_item->head == stable_node) {
2129                 put_page(kpage);
2130                 return;
2131         }
2132
2133         remove_rmap_item_from_tree(rmap_item);
2134
2135         if (kpage) {
2136                 if (PTR_ERR(kpage) == -EBUSY)
2137                         return;
2138
2139                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2140                 if (!err) {
2141                         /*
2142                          * The page was successfully merged:
2143                          * add its rmap_item to the stable tree.
2144                          */
2145                         lock_page(kpage);
2146                         stable_tree_append(rmap_item, page_stable_node(kpage),
2147                                            max_page_sharing_bypass);
2148                         unlock_page(kpage);
2149                 }
2150                 put_page(kpage);
2151                 return;
2152         }
2153
2154         /*
2155          * If the hash value of the page has changed from the last time
2156          * we calculated it, this page is changing frequently: therefore we
2157          * don't want to insert it in the unstable tree, and we don't want
2158          * to waste our time searching for something identical to it there.
2159          */
2160         checksum = calc_checksum(page);
2161         if (rmap_item->oldchecksum != checksum) {
2162                 rmap_item->oldchecksum = checksum;
2163                 return;
2164         }
2165
2166         /*
2167          * Same checksum as an empty page. We attempt to merge it with the
2168          * appropriate zero page if the user enabled this via sysfs.
2169          */
2170         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2171                 struct vm_area_struct *vma;
2172
2173                 mmap_read_lock(mm);
2174                 vma = find_mergeable_vma(mm, rmap_item->address);
2175                 if (vma) {
2176                         err = try_to_merge_one_page(vma, page,
2177                                         ZERO_PAGE(rmap_item->address));
2178                         trace_ksm_merge_one_page(
2179                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2180                                 rmap_item, mm, err);
2181                 } else {
2182                         /*
2183                          * If the vma is out of date, we do not need to
2184                          * continue.
2185                          */
2186                         err = 0;
2187                 }
2188                 mmap_read_unlock(mm);
2189                 /*
2190                  * In case of failure, the page was not really empty, so we
2191                  * need to continue. Otherwise we're done.
2192                  */
2193                 if (!err)
2194                         return;
2195         }
2196         tree_rmap_item =
2197                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2198         if (tree_rmap_item) {
2199                 bool split;
2200
2201                 kpage = try_to_merge_two_pages(rmap_item, page,
2202                                                 tree_rmap_item, tree_page);
2203                 /*
2204                  * If both pages we tried to merge belong to the same compound
2205                  * page, then we actually ended up increasing the reference
2206                  * count of the same compound page twice, and split_huge_page
2207                  * failed.
2208                  * Here we set a flag if that happened, and we use it later to
2209                  * try split_huge_page again. Since we call put_page right
2210                  * afterwards, the reference count will be correct and
2211                  * split_huge_page should succeed.
2212                  */
2213                 split = PageTransCompound(page)
2214                         && compound_head(page) == compound_head(tree_page);
2215                 put_page(tree_page);
2216                 if (kpage) {
2217                         /*
2218                          * The pages were successfully merged: insert new
2219                          * node in the stable tree and add both rmap_items.
2220                          */
2221                         lock_page(kpage);
2222                         stable_node = stable_tree_insert(kpage);
2223                         if (stable_node) {
2224                                 stable_tree_append(tree_rmap_item, stable_node,
2225                                                    false);
2226                                 stable_tree_append(rmap_item, stable_node,
2227                                                    false);
2228                         }
2229                         unlock_page(kpage);
2230
2231                         /*
2232                          * If we fail to insert the page into the stable tree,
2233                          * we will have 2 virtual addresses that are pointing
2234                          * to a ksm page left outside the stable tree,
2235                          * in which case we need to break_cow on both.
2236                          */
2237                         if (!stable_node) {
2238                                 break_cow(tree_rmap_item);
2239                                 break_cow(rmap_item);
2240                         }
2241                 } else if (split) {
2242                         /*
2243                          * We are here if we tried to merge two pages and
2244                          * failed because they both belonged to the same
2245                          * compound page. We will split the page now, but no
2246                          * merging will take place.
2247                          * We do not want to add the cost of a full lock; if
2248                          * the page is locked, it is better to skip it and
2249                          * perhaps try again later.
2250                          */
2251                         if (!trylock_page(page))
2252                                 return;
2253                         split_huge_page(page);
2254                         unlock_page(page);
2255                 }
2256         }
2257 }
2258
2259 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2260                                             struct ksm_rmap_item **rmap_list,
2261                                             unsigned long addr)
2262 {
2263         struct ksm_rmap_item *rmap_item;
2264
2265         while (*rmap_list) {
2266                 rmap_item = *rmap_list;
2267                 if ((rmap_item->address & PAGE_MASK) == addr)
2268                         return rmap_item;
2269                 if (rmap_item->address > addr)
2270                         break;
2271                 *rmap_list = rmap_item->rmap_list;
2272                 remove_rmap_item_from_tree(rmap_item);
2273                 free_rmap_item(rmap_item);
2274         }
2275
2276         rmap_item = alloc_rmap_item();
2277         if (rmap_item) {
2278                 /* It has already been zeroed */
2279                 rmap_item->mm = mm_slot->slot.mm;
2280                 rmap_item->mm->ksm_rmap_items++;
2281                 rmap_item->address = addr;
2282                 rmap_item->rmap_list = *rmap_list;
2283                 *rmap_list = rmap_item;
2284         }
2285         return rmap_item;
2286 }
2287
2288 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2289 {
2290         struct mm_struct *mm;
2291         struct ksm_mm_slot *mm_slot;
2292         struct mm_slot *slot;
2293         struct vm_area_struct *vma;
2294         struct ksm_rmap_item *rmap_item;
2295         struct vma_iterator vmi;
2296         int nid;
2297
2298         if (list_empty(&ksm_mm_head.slot.mm_node))
2299                 return NULL;
2300
2301         mm_slot = ksm_scan.mm_slot;
2302         if (mm_slot == &ksm_mm_head) {
2303                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2304
2305                 /*
2306                  * A number of pages can hang around indefinitely in per-cpu
2307                  * LRU cache, raised page count preventing write_protect_page
2308                  * from merging them.  Though it doesn't really matter much,
2309                  * it is puzzling to see some stuck in pages_volatile until
2310                  * other activity jostles them out, and they also prevented
2311                  * LTP's KSM test from succeeding deterministically; so drain
2312                  * them here (here rather than on entry to ksm_do_scan(),
2313                  * so we don't IPI too often when pages_to_scan is set low).
2314                  */
2315                 lru_add_drain_all();
2316
2317                 /*
2318                  * Whereas stale stable_nodes on the stable_tree itself
2319                  * get pruned in the regular course of stable_tree_search(),
2320                  * those moved out to the migrate_nodes list can accumulate:
2321                  * so prune them once before each full scan.
2322                  */
2323                 if (!ksm_merge_across_nodes) {
2324                         struct ksm_stable_node *stable_node, *next;
2325                         struct page *page;
2326
2327                         list_for_each_entry_safe(stable_node, next,
2328                                                  &migrate_nodes, list) {
2329                                 page = get_ksm_page(stable_node,
2330                                                     GET_KSM_PAGE_NOLOCK);
2331                                 if (page)
2332                                         put_page(page);
2333                                 cond_resched();
2334                         }
2335                 }
2336
2337                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2338                         root_unstable_tree[nid] = RB_ROOT;
2339
2340                 spin_lock(&ksm_mmlist_lock);
2341                 slot = list_entry(mm_slot->slot.mm_node.next,
2342                                   struct mm_slot, mm_node);
2343                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2344                 ksm_scan.mm_slot = mm_slot;
2345                 spin_unlock(&ksm_mmlist_lock);
2346                 /*
2347                  * Although we tested list_empty() above, a racing __ksm_exit
2348                  * of the last mm on the list may have removed it since then.
2349                  */
2350                 if (mm_slot == &ksm_mm_head)
2351                         return NULL;
2352 next_mm:
2353                 ksm_scan.address = 0;
2354                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2355         }
2356
2357         slot = &mm_slot->slot;
2358         mm = slot->mm;
2359         vma_iter_init(&vmi, mm, ksm_scan.address);
2360
2361         mmap_read_lock(mm);
2362         if (ksm_test_exit(mm))
2363                 goto no_vmas;
2364
2365         for_each_vma(vmi, vma) {
2366                 if (!(vma->vm_flags & VM_MERGEABLE))
2367                         continue;
2368                 if (ksm_scan.address < vma->vm_start)
2369                         ksm_scan.address = vma->vm_start;
2370                 if (!vma->anon_vma)
2371                         ksm_scan.address = vma->vm_end;
2372
2373                 while (ksm_scan.address < vma->vm_end) {
2374                         if (ksm_test_exit(mm))
2375                                 break;
2376                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2377                         if (IS_ERR_OR_NULL(*page)) {
2378                                 ksm_scan.address += PAGE_SIZE;
2379                                 cond_resched();
2380                                 continue;
2381                         }
2382                         if (is_zone_device_page(*page))
2383                                 goto next_page;
2384                         if (PageAnon(*page)) {
2385                                 flush_anon_page(vma, *page, ksm_scan.address);
2386                                 flush_dcache_page(*page);
2387                                 rmap_item = get_next_rmap_item(mm_slot,
2388                                         ksm_scan.rmap_list, ksm_scan.address);
2389                                 if (rmap_item) {
2390                                         ksm_scan.rmap_list =
2391                                                         &rmap_item->rmap_list;
2392                                         ksm_scan.address += PAGE_SIZE;
2393                                 } else
2394                                         put_page(*page);
2395                                 mmap_read_unlock(mm);
2396                                 return rmap_item;
2397                         }
2398 next_page:
2399                         put_page(*page);
2400                         ksm_scan.address += PAGE_SIZE;
2401                         cond_resched();
2402                 }
2403         }
2404
2405         if (ksm_test_exit(mm)) {
2406 no_vmas:
2407                 ksm_scan.address = 0;
2408                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2409         }
2410         /*
2411          * Nuke all the rmap_items that are above this current rmap:
2412          * because there were no VM_MERGEABLE vmas with such addresses.
2413          */
2414         remove_trailing_rmap_items(ksm_scan.rmap_list);
2415
2416         spin_lock(&ksm_mmlist_lock);
2417         slot = list_entry(mm_slot->slot.mm_node.next,
2418                           struct mm_slot, mm_node);
2419         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2420         if (ksm_scan.address == 0) {
2421                 /*
2422                  * We've completed a full scan of all vmas, holding mmap_lock
2423                  * throughout, and found no VM_MERGEABLE: so do the same as
2424                  * __ksm_exit does to remove this mm from all our lists now.
2425                  * This applies either when cleaning up after __ksm_exit
2426                  * (but beware: we can reach here even before __ksm_exit),
2427                  * or when all VM_MERGEABLE areas have been unmapped (and
2428                  * mmap_lock then protects against race with MADV_MERGEABLE).
2429                  */
2430                 hash_del(&mm_slot->slot.hash);
2431                 list_del(&mm_slot->slot.mm_node);
2432                 spin_unlock(&ksm_mmlist_lock);
2433
2434                 mm_slot_free(mm_slot_cache, mm_slot);
2435                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2436                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2437                 mmap_read_unlock(mm);
2438                 mmdrop(mm);
2439         } else {
2440                 mmap_read_unlock(mm);
2441                 /*
2442                  * mmap_read_unlock(mm) first because after
2443                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2444                  * already have been freed under us by __ksm_exit()
2445                  * because the "mm_slot" is still hashed and
2446                  * ksm_scan.mm_slot doesn't point to it anymore.
2447                  */
2448                 spin_unlock(&ksm_mmlist_lock);
2449         }
2450
2451         /* Repeat until we've completed scanning the whole list */
2452         mm_slot = ksm_scan.mm_slot;
2453         if (mm_slot != &ksm_mm_head)
2454                 goto next_mm;
2455
2456         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2457         ksm_scan.seqnr++;
2458         return NULL;
2459 }
2460
2461 /**
2462  * ksm_do_scan  - the ksm scanner main worker function.
2463  * @scan_npages:  number of pages we want to scan before we return.
2464  */
2465 static void ksm_do_scan(unsigned int scan_npages)
2466 {
2467         struct ksm_rmap_item *rmap_item;
2468         struct page *page;
2469
2470         while (scan_npages-- && likely(!freezing(current))) {
2471                 cond_resched();
2472                 rmap_item = scan_get_next_rmap_item(&page);
2473                 if (!rmap_item)
2474                         return;
2475                 cmp_and_merge_page(page, rmap_item);
2476                 put_page(page);
2477         }
2478 }
2479
2480 static int ksmd_should_run(void)
2481 {
2482         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2483 }
2484
2485 static int ksm_scan_thread(void *nothing)
2486 {
2487         unsigned int sleep_ms;
2488
2489         set_freezable();
2490         set_user_nice(current, 5);
2491
2492         while (!kthread_should_stop()) {
2493                 mutex_lock(&ksm_thread_mutex);
2494                 wait_while_offlining();
2495                 if (ksmd_should_run())
2496                         ksm_do_scan(ksm_thread_pages_to_scan);
2497                 mutex_unlock(&ksm_thread_mutex);
2498
2499                 try_to_freeze();
2500
2501                 if (ksmd_should_run()) {
2502                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2503                         wait_event_interruptible_timeout(ksm_iter_wait,
2504                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2505                                 msecs_to_jiffies(sleep_ms));
2506                 } else {
2507                         wait_event_freezable(ksm_thread_wait,
2508                                 ksmd_should_run() || kthread_should_stop());
2509                 }
2510         }
2511         return 0;
2512 }
2513
2514 static void __ksm_add_vma(struct vm_area_struct *vma)
2515 {
2516         unsigned long vm_flags = vma->vm_flags;
2517
2518         if (vm_flags & VM_MERGEABLE)
2519                 return;
2520
2521         if (vma_ksm_compatible(vma))
2522                 vm_flags_set(vma, VM_MERGEABLE);
2523 }
2524
2525 static int __ksm_del_vma(struct vm_area_struct *vma)
2526 {
2527         int err;
2528
2529         if (!(vma->vm_flags & VM_MERGEABLE))
2530                 return 0;
2531
2532         if (vma->anon_vma) {
2533                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2534                 if (err)
2535                         return err;
2536         }
2537
2538         vm_flags_clear(vma, VM_MERGEABLE);
2539         return 0;
2540 }
2541 /**
2542  * ksm_add_vma - Mark vma as mergeable if compatible
2543  *
2544  * @vma:  Pointer to vma
2545  */
2546 void ksm_add_vma(struct vm_area_struct *vma)
2547 {
2548         struct mm_struct *mm = vma->vm_mm;
2549
2550         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2551                 __ksm_add_vma(vma);
2552 }
2553
2554 static void ksm_add_vmas(struct mm_struct *mm)
2555 {
2556         struct vm_area_struct *vma;
2557
2558         VMA_ITERATOR(vmi, mm, 0);
2559         for_each_vma(vmi, vma)
2560                 __ksm_add_vma(vma);
2561 }
2562
2563 static int ksm_del_vmas(struct mm_struct *mm)
2564 {
2565         struct vm_area_struct *vma;
2566         int err;
2567
2568         VMA_ITERATOR(vmi, mm, 0);
2569         for_each_vma(vmi, vma) {
2570                 err = __ksm_del_vma(vma);
2571                 if (err)
2572                         return err;
2573         }
2574         return 0;
2575 }
2576
2577 /**
2578  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2579  *                        compatible VMA's
2580  *
2581  * @mm:  Pointer to mm
2582  *
2583  * Returns 0 on success, otherwise error code
2584  */
2585 int ksm_enable_merge_any(struct mm_struct *mm)
2586 {
2587         int err;
2588
2589         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2590                 return 0;
2591
2592         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2593                 err = __ksm_enter(mm);
2594                 if (err)
2595                         return err;
2596         }
2597
2598         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2599         ksm_add_vmas(mm);
2600
2601         return 0;
2602 }
2603
2604 /**
2605  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2606  *                         previously enabled via ksm_enable_merge_any().
2607  *
2608  * Disabling merging implies unmerging any merged pages, like setting
2609  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2610  * merging on all compatible VMA's remains enabled.
2611  *
2612  * @mm: Pointer to mm
2613  *
2614  * Returns 0 on success, otherwise error code
2615  */
2616 int ksm_disable_merge_any(struct mm_struct *mm)
2617 {
2618         int err;
2619
2620         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2621                 return 0;
2622
2623         err = ksm_del_vmas(mm);
2624         if (err) {
2625                 ksm_add_vmas(mm);
2626                 return err;
2627         }
2628
2629         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2630         return 0;
2631 }
2632
2633 int ksm_disable(struct mm_struct *mm)
2634 {
2635         mmap_assert_write_locked(mm);
2636
2637         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2638                 return 0;
2639         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2640                 return ksm_disable_merge_any(mm);
2641         return ksm_del_vmas(mm);
2642 }
2643
2644 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2645                 unsigned long end, int advice, unsigned long *vm_flags)
2646 {
2647         struct mm_struct *mm = vma->vm_mm;
2648         int err;
2649
2650         switch (advice) {
2651         case MADV_MERGEABLE:
2652                 if (vma->vm_flags & VM_MERGEABLE)
2653                         return 0;
2654                 if (!vma_ksm_compatible(vma))
2655                         return 0;
2656
2657                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2658                         err = __ksm_enter(mm);
2659                         if (err)
2660                                 return err;
2661                 }
2662
2663                 *vm_flags |= VM_MERGEABLE;
2664                 break;
2665
2666         case MADV_UNMERGEABLE:
2667                 if (!(*vm_flags & VM_MERGEABLE))
2668                         return 0;               /* just ignore the advice */
2669
2670                 if (vma->anon_vma) {
2671                         err = unmerge_ksm_pages(vma, start, end);
2672                         if (err)
2673                                 return err;
2674                 }
2675
2676                 *vm_flags &= ~VM_MERGEABLE;
2677                 break;
2678         }
2679
2680         return 0;
2681 }
2682 EXPORT_SYMBOL_GPL(ksm_madvise);
2683
2684 int __ksm_enter(struct mm_struct *mm)
2685 {
2686         struct ksm_mm_slot *mm_slot;
2687         struct mm_slot *slot;
2688         int needs_wakeup;
2689
2690         mm_slot = mm_slot_alloc(mm_slot_cache);
2691         if (!mm_slot)
2692                 return -ENOMEM;
2693
2694         slot = &mm_slot->slot;
2695
2696         /* Check ksm_run too?  Would need tighter locking */
2697         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2698
2699         spin_lock(&ksm_mmlist_lock);
2700         mm_slot_insert(mm_slots_hash, mm, slot);
2701         /*
2702          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2703          * insert just behind the scanning cursor, to let the area settle
2704          * down a little; when fork is followed by immediate exec, we don't
2705          * want ksmd to waste time setting up and tearing down an rmap_list.
2706          *
2707          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2708          * scanning cursor, otherwise KSM pages in newly forked mms will be
2709          * missed: then we might as well insert at the end of the list.
2710          */
2711         if (ksm_run & KSM_RUN_UNMERGE)
2712                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2713         else
2714                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2715         spin_unlock(&ksm_mmlist_lock);
2716
2717         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2718         mmgrab(mm);
2719
2720         if (needs_wakeup)
2721                 wake_up_interruptible(&ksm_thread_wait);
2722
2723         trace_ksm_enter(mm);
2724         return 0;
2725 }
2726
2727 void __ksm_exit(struct mm_struct *mm)
2728 {
2729         struct ksm_mm_slot *mm_slot;
2730         struct mm_slot *slot;
2731         int easy_to_free = 0;
2732
2733         /*
2734          * This process is exiting: if it's straightforward (as is the
2735          * case when ksmd was never running), free mm_slot immediately.
2736          * But if it's at the cursor or has rmap_items linked to it, use
2737          * mmap_lock to synchronize with any break_cows before pagetables
2738          * are freed, and leave the mm_slot on the list for ksmd to free.
2739          * Beware: ksm may already have noticed it exiting and freed the slot.
2740          */
2741
2742         spin_lock(&ksm_mmlist_lock);
2743         slot = mm_slot_lookup(mm_slots_hash, mm);
2744         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2745         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2746                 if (!mm_slot->rmap_list) {
2747                         hash_del(&slot->hash);
2748                         list_del(&slot->mm_node);
2749                         easy_to_free = 1;
2750                 } else {
2751                         list_move(&slot->mm_node,
2752                                   &ksm_scan.mm_slot->slot.mm_node);
2753                 }
2754         }
2755         spin_unlock(&ksm_mmlist_lock);
2756
2757         if (easy_to_free) {
2758                 mm_slot_free(mm_slot_cache, mm_slot);
2759                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2760                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2761                 mmdrop(mm);
2762         } else if (mm_slot) {
2763                 mmap_write_lock(mm);
2764                 mmap_write_unlock(mm);
2765         }
2766
2767         trace_ksm_exit(mm);
2768 }
2769
2770 struct page *ksm_might_need_to_copy(struct page *page,
2771                         struct vm_area_struct *vma, unsigned long address)
2772 {
2773         struct folio *folio = page_folio(page);
2774         struct anon_vma *anon_vma = folio_anon_vma(folio);
2775         struct page *new_page;
2776
2777         if (PageKsm(page)) {
2778                 if (page_stable_node(page) &&
2779                     !(ksm_run & KSM_RUN_UNMERGE))
2780                         return page;    /* no need to copy it */
2781         } else if (!anon_vma) {
2782                 return page;            /* no need to copy it */
2783         } else if (page->index == linear_page_index(vma, address) &&
2784                         anon_vma->root == vma->anon_vma->root) {
2785                 return page;            /* still no need to copy it */
2786         }
2787         if (!PageUptodate(page))
2788                 return page;            /* let do_swap_page report the error */
2789
2790         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2791         if (new_page &&
2792             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2793                 put_page(new_page);
2794                 new_page = NULL;
2795         }
2796         if (new_page) {
2797                 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2798                         put_page(new_page);
2799                         memory_failure_queue(page_to_pfn(page), 0);
2800                         return ERR_PTR(-EHWPOISON);
2801                 }
2802                 SetPageDirty(new_page);
2803                 __SetPageUptodate(new_page);
2804                 __SetPageLocked(new_page);
2805 #ifdef CONFIG_SWAP
2806                 count_vm_event(KSM_SWPIN_COPY);
2807 #endif
2808         }
2809
2810         return new_page;
2811 }
2812
2813 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2814 {
2815         struct ksm_stable_node *stable_node;
2816         struct ksm_rmap_item *rmap_item;
2817         int search_new_forks = 0;
2818
2819         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2820
2821         /*
2822          * Rely on the page lock to protect against concurrent modifications
2823          * to that page's node of the stable tree.
2824          */
2825         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2826
2827         stable_node = folio_stable_node(folio);
2828         if (!stable_node)
2829                 return;
2830 again:
2831         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2832                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2833                 struct anon_vma_chain *vmac;
2834                 struct vm_area_struct *vma;
2835
2836                 cond_resched();
2837                 if (!anon_vma_trylock_read(anon_vma)) {
2838                         if (rwc->try_lock) {
2839                                 rwc->contended = true;
2840                                 return;
2841                         }
2842                         anon_vma_lock_read(anon_vma);
2843                 }
2844                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2845                                                0, ULONG_MAX) {
2846                         unsigned long addr;
2847
2848                         cond_resched();
2849                         vma = vmac->vma;
2850
2851                         /* Ignore the stable/unstable/sqnr flags */
2852                         addr = rmap_item->address & PAGE_MASK;
2853
2854                         if (addr < vma->vm_start || addr >= vma->vm_end)
2855                                 continue;
2856                         /*
2857                          * Initially we examine only the vma which covers this
2858                          * rmap_item; but later, if there is still work to do,
2859                          * we examine covering vmas in other mms: in case they
2860                          * were forked from the original since ksmd passed.
2861                          */
2862                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2863                                 continue;
2864
2865                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2866                                 continue;
2867
2868                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2869                                 anon_vma_unlock_read(anon_vma);
2870                                 return;
2871                         }
2872                         if (rwc->done && rwc->done(folio)) {
2873                                 anon_vma_unlock_read(anon_vma);
2874                                 return;
2875                         }
2876                 }
2877                 anon_vma_unlock_read(anon_vma);
2878         }
2879         if (!search_new_forks++)
2880                 goto again;
2881 }
2882
2883 #ifdef CONFIG_MEMORY_FAILURE
2884 /*
2885  * Collect processes when the error hit an ksm page.
2886  */
2887 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2888                        int force_early)
2889 {
2890         struct ksm_stable_node *stable_node;
2891         struct ksm_rmap_item *rmap_item;
2892         struct folio *folio = page_folio(page);
2893         struct vm_area_struct *vma;
2894         struct task_struct *tsk;
2895
2896         stable_node = folio_stable_node(folio);
2897         if (!stable_node)
2898                 return;
2899         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2900                 struct anon_vma *av = rmap_item->anon_vma;
2901
2902                 anon_vma_lock_read(av);
2903                 read_lock(&tasklist_lock);
2904                 for_each_process(tsk) {
2905                         struct anon_vma_chain *vmac;
2906                         unsigned long addr;
2907                         struct task_struct *t =
2908                                 task_early_kill(tsk, force_early);
2909                         if (!t)
2910                                 continue;
2911                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2912                                                        ULONG_MAX)
2913                         {
2914                                 vma = vmac->vma;
2915                                 if (vma->vm_mm == t->mm) {
2916                                         addr = rmap_item->address & PAGE_MASK;
2917                                         add_to_kill_ksm(t, page, vma, to_kill,
2918                                                         addr);
2919                                 }
2920                         }
2921                 }
2922                 read_unlock(&tasklist_lock);
2923                 anon_vma_unlock_read(av);
2924         }
2925 }
2926 #endif
2927
2928 #ifdef CONFIG_MIGRATION
2929 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2930 {
2931         struct ksm_stable_node *stable_node;
2932
2933         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2934         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2935         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2936
2937         stable_node = folio_stable_node(folio);
2938         if (stable_node) {
2939                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2940                 stable_node->kpfn = folio_pfn(newfolio);
2941                 /*
2942                  * newfolio->mapping was set in advance; now we need smp_wmb()
2943                  * to make sure that the new stable_node->kpfn is visible
2944                  * to get_ksm_page() before it can see that folio->mapping
2945                  * has gone stale (or that folio_test_swapcache has been cleared).
2946                  */
2947                 smp_wmb();
2948                 set_page_stable_node(&folio->page, NULL);
2949         }
2950 }
2951 #endif /* CONFIG_MIGRATION */
2952
2953 #ifdef CONFIG_MEMORY_HOTREMOVE
2954 static void wait_while_offlining(void)
2955 {
2956         while (ksm_run & KSM_RUN_OFFLINE) {
2957                 mutex_unlock(&ksm_thread_mutex);
2958                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2959                             TASK_UNINTERRUPTIBLE);
2960                 mutex_lock(&ksm_thread_mutex);
2961         }
2962 }
2963
2964 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2965                                          unsigned long start_pfn,
2966                                          unsigned long end_pfn)
2967 {
2968         if (stable_node->kpfn >= start_pfn &&
2969             stable_node->kpfn < end_pfn) {
2970                 /*
2971                  * Don't get_ksm_page, page has already gone:
2972                  * which is why we keep kpfn instead of page*
2973                  */
2974                 remove_node_from_stable_tree(stable_node);
2975                 return true;
2976         }
2977         return false;
2978 }
2979
2980 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2981                                            unsigned long start_pfn,
2982                                            unsigned long end_pfn,
2983                                            struct rb_root *root)
2984 {
2985         struct ksm_stable_node *dup;
2986         struct hlist_node *hlist_safe;
2987
2988         if (!is_stable_node_chain(stable_node)) {
2989                 VM_BUG_ON(is_stable_node_dup(stable_node));
2990                 return stable_node_dup_remove_range(stable_node, start_pfn,
2991                                                     end_pfn);
2992         }
2993
2994         hlist_for_each_entry_safe(dup, hlist_safe,
2995                                   &stable_node->hlist, hlist_dup) {
2996                 VM_BUG_ON(!is_stable_node_dup(dup));
2997                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2998         }
2999         if (hlist_empty(&stable_node->hlist)) {
3000                 free_stable_node_chain(stable_node, root);
3001                 return true; /* notify caller that tree was rebalanced */
3002         } else
3003                 return false;
3004 }
3005
3006 static void ksm_check_stable_tree(unsigned long start_pfn,
3007                                   unsigned long end_pfn)
3008 {
3009         struct ksm_stable_node *stable_node, *next;
3010         struct rb_node *node;
3011         int nid;
3012
3013         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3014                 node = rb_first(root_stable_tree + nid);
3015                 while (node) {
3016                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3017                         if (stable_node_chain_remove_range(stable_node,
3018                                                            start_pfn, end_pfn,
3019                                                            root_stable_tree +
3020                                                            nid))
3021                                 node = rb_first(root_stable_tree + nid);
3022                         else
3023                                 node = rb_next(node);
3024                         cond_resched();
3025                 }
3026         }
3027         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3028                 if (stable_node->kpfn >= start_pfn &&
3029                     stable_node->kpfn < end_pfn)
3030                         remove_node_from_stable_tree(stable_node);
3031                 cond_resched();
3032         }
3033 }
3034
3035 static int ksm_memory_callback(struct notifier_block *self,
3036                                unsigned long action, void *arg)
3037 {
3038         struct memory_notify *mn = arg;
3039
3040         switch (action) {
3041         case MEM_GOING_OFFLINE:
3042                 /*
3043                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3044                  * and remove_all_stable_nodes() while memory is going offline:
3045                  * it is unsafe for them to touch the stable tree at this time.
3046                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3047                  * which do not need the ksm_thread_mutex are all safe.
3048                  */
3049                 mutex_lock(&ksm_thread_mutex);
3050                 ksm_run |= KSM_RUN_OFFLINE;
3051                 mutex_unlock(&ksm_thread_mutex);
3052                 break;
3053
3054         case MEM_OFFLINE:
3055                 /*
3056                  * Most of the work is done by page migration; but there might
3057                  * be a few stable_nodes left over, still pointing to struct
3058                  * pages which have been offlined: prune those from the tree,
3059                  * otherwise get_ksm_page() might later try to access a
3060                  * non-existent struct page.
3061                  */
3062                 ksm_check_stable_tree(mn->start_pfn,
3063                                       mn->start_pfn + mn->nr_pages);
3064                 fallthrough;
3065         case MEM_CANCEL_OFFLINE:
3066                 mutex_lock(&ksm_thread_mutex);
3067                 ksm_run &= ~KSM_RUN_OFFLINE;
3068                 mutex_unlock(&ksm_thread_mutex);
3069
3070                 smp_mb();       /* wake_up_bit advises this */
3071                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3072                 break;
3073         }
3074         return NOTIFY_OK;
3075 }
3076 #else
3077 static void wait_while_offlining(void)
3078 {
3079 }
3080 #endif /* CONFIG_MEMORY_HOTREMOVE */
3081
3082 #ifdef CONFIG_PROC_FS
3083 long ksm_process_profit(struct mm_struct *mm)
3084 {
3085         return mm->ksm_merging_pages * PAGE_SIZE -
3086                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3087 }
3088 #endif /* CONFIG_PROC_FS */
3089
3090 #ifdef CONFIG_SYSFS
3091 /*
3092  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3093  */
3094
3095 #define KSM_ATTR_RO(_name) \
3096         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3097 #define KSM_ATTR(_name) \
3098         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3099
3100 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3101                                     struct kobj_attribute *attr, char *buf)
3102 {
3103         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3104 }
3105
3106 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3107                                      struct kobj_attribute *attr,
3108                                      const char *buf, size_t count)
3109 {
3110         unsigned int msecs;
3111         int err;
3112
3113         err = kstrtouint(buf, 10, &msecs);
3114         if (err)
3115                 return -EINVAL;
3116
3117         ksm_thread_sleep_millisecs = msecs;
3118         wake_up_interruptible(&ksm_iter_wait);
3119
3120         return count;
3121 }
3122 KSM_ATTR(sleep_millisecs);
3123
3124 static ssize_t pages_to_scan_show(struct kobject *kobj,
3125                                   struct kobj_attribute *attr, char *buf)
3126 {
3127         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3128 }
3129
3130 static ssize_t pages_to_scan_store(struct kobject *kobj,
3131                                    struct kobj_attribute *attr,
3132                                    const char *buf, size_t count)
3133 {
3134         unsigned int nr_pages;
3135         int err;
3136
3137         err = kstrtouint(buf, 10, &nr_pages);
3138         if (err)
3139                 return -EINVAL;
3140
3141         ksm_thread_pages_to_scan = nr_pages;
3142
3143         return count;
3144 }
3145 KSM_ATTR(pages_to_scan);
3146
3147 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3148                         char *buf)
3149 {
3150         return sysfs_emit(buf, "%lu\n", ksm_run);
3151 }
3152
3153 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3154                          const char *buf, size_t count)
3155 {
3156         unsigned int flags;
3157         int err;
3158
3159         err = kstrtouint(buf, 10, &flags);
3160         if (err)
3161                 return -EINVAL;
3162         if (flags > KSM_RUN_UNMERGE)
3163                 return -EINVAL;
3164
3165         /*
3166          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3167          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3168          * breaking COW to free the pages_shared (but leaves mm_slots
3169          * on the list for when ksmd may be set running again).
3170          */
3171
3172         mutex_lock(&ksm_thread_mutex);
3173         wait_while_offlining();
3174         if (ksm_run != flags) {
3175                 ksm_run = flags;
3176                 if (flags & KSM_RUN_UNMERGE) {
3177                         set_current_oom_origin();
3178                         err = unmerge_and_remove_all_rmap_items();
3179                         clear_current_oom_origin();
3180                         if (err) {
3181                                 ksm_run = KSM_RUN_STOP;
3182                                 count = err;
3183                         }
3184                 }
3185         }
3186         mutex_unlock(&ksm_thread_mutex);
3187
3188         if (flags & KSM_RUN_MERGE)
3189                 wake_up_interruptible(&ksm_thread_wait);
3190
3191         return count;
3192 }
3193 KSM_ATTR(run);
3194
3195 #ifdef CONFIG_NUMA
3196 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3197                                        struct kobj_attribute *attr, char *buf)
3198 {
3199         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3200 }
3201
3202 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3203                                    struct kobj_attribute *attr,
3204                                    const char *buf, size_t count)
3205 {
3206         int err;
3207         unsigned long knob;
3208
3209         err = kstrtoul(buf, 10, &knob);
3210         if (err)
3211                 return err;
3212         if (knob > 1)
3213                 return -EINVAL;
3214
3215         mutex_lock(&ksm_thread_mutex);
3216         wait_while_offlining();
3217         if (ksm_merge_across_nodes != knob) {
3218                 if (ksm_pages_shared || remove_all_stable_nodes())
3219                         err = -EBUSY;
3220                 else if (root_stable_tree == one_stable_tree) {
3221                         struct rb_root *buf;
3222                         /*
3223                          * This is the first time that we switch away from the
3224                          * default of merging across nodes: must now allocate
3225                          * a buffer to hold as many roots as may be needed.
3226                          * Allocate stable and unstable together:
3227                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3228                          */
3229                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3230                                       GFP_KERNEL);
3231                         /* Let us assume that RB_ROOT is NULL is zero */
3232                         if (!buf)
3233                                 err = -ENOMEM;
3234                         else {
3235                                 root_stable_tree = buf;
3236                                 root_unstable_tree = buf + nr_node_ids;
3237                                 /* Stable tree is empty but not the unstable */
3238                                 root_unstable_tree[0] = one_unstable_tree[0];
3239                         }
3240                 }
3241                 if (!err) {
3242                         ksm_merge_across_nodes = knob;
3243                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3244                 }
3245         }
3246         mutex_unlock(&ksm_thread_mutex);
3247
3248         return err ? err : count;
3249 }
3250 KSM_ATTR(merge_across_nodes);
3251 #endif
3252
3253 static ssize_t use_zero_pages_show(struct kobject *kobj,
3254                                    struct kobj_attribute *attr, char *buf)
3255 {
3256         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3257 }
3258 static ssize_t use_zero_pages_store(struct kobject *kobj,
3259                                    struct kobj_attribute *attr,
3260                                    const char *buf, size_t count)
3261 {
3262         int err;
3263         bool value;
3264
3265         err = kstrtobool(buf, &value);
3266         if (err)
3267                 return -EINVAL;
3268
3269         ksm_use_zero_pages = value;
3270
3271         return count;
3272 }
3273 KSM_ATTR(use_zero_pages);
3274
3275 static ssize_t max_page_sharing_show(struct kobject *kobj,
3276                                      struct kobj_attribute *attr, char *buf)
3277 {
3278         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3279 }
3280
3281 static ssize_t max_page_sharing_store(struct kobject *kobj,
3282                                       struct kobj_attribute *attr,
3283                                       const char *buf, size_t count)
3284 {
3285         int err;
3286         int knob;
3287
3288         err = kstrtoint(buf, 10, &knob);
3289         if (err)
3290                 return err;
3291         /*
3292          * When a KSM page is created it is shared by 2 mappings. This
3293          * being a signed comparison, it implicitly verifies it's not
3294          * negative.
3295          */
3296         if (knob < 2)
3297                 return -EINVAL;
3298
3299         if (READ_ONCE(ksm_max_page_sharing) == knob)
3300                 return count;
3301
3302         mutex_lock(&ksm_thread_mutex);
3303         wait_while_offlining();
3304         if (ksm_max_page_sharing != knob) {
3305                 if (ksm_pages_shared || remove_all_stable_nodes())
3306                         err = -EBUSY;
3307                 else
3308                         ksm_max_page_sharing = knob;
3309         }
3310         mutex_unlock(&ksm_thread_mutex);
3311
3312         return err ? err : count;
3313 }
3314 KSM_ATTR(max_page_sharing);
3315
3316 static ssize_t pages_shared_show(struct kobject *kobj,
3317                                  struct kobj_attribute *attr, char *buf)
3318 {
3319         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3320 }
3321 KSM_ATTR_RO(pages_shared);
3322
3323 static ssize_t pages_sharing_show(struct kobject *kobj,
3324                                   struct kobj_attribute *attr, char *buf)
3325 {
3326         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3327 }
3328 KSM_ATTR_RO(pages_sharing);
3329
3330 static ssize_t pages_unshared_show(struct kobject *kobj,
3331                                    struct kobj_attribute *attr, char *buf)
3332 {
3333         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3334 }
3335 KSM_ATTR_RO(pages_unshared);
3336
3337 static ssize_t pages_volatile_show(struct kobject *kobj,
3338                                    struct kobj_attribute *attr, char *buf)
3339 {
3340         long ksm_pages_volatile;
3341
3342         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3343                                 - ksm_pages_sharing - ksm_pages_unshared;
3344         /*
3345          * It was not worth any locking to calculate that statistic,
3346          * but it might therefore sometimes be negative: conceal that.
3347          */
3348         if (ksm_pages_volatile < 0)
3349                 ksm_pages_volatile = 0;
3350         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3351 }
3352 KSM_ATTR_RO(pages_volatile);
3353
3354 static ssize_t general_profit_show(struct kobject *kobj,
3355                                    struct kobj_attribute *attr, char *buf)
3356 {
3357         long general_profit;
3358
3359         general_profit = ksm_pages_sharing * PAGE_SIZE -
3360                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3361
3362         return sysfs_emit(buf, "%ld\n", general_profit);
3363 }
3364 KSM_ATTR_RO(general_profit);
3365
3366 static ssize_t stable_node_dups_show(struct kobject *kobj,
3367                                      struct kobj_attribute *attr, char *buf)
3368 {
3369         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3370 }
3371 KSM_ATTR_RO(stable_node_dups);
3372
3373 static ssize_t stable_node_chains_show(struct kobject *kobj,
3374                                        struct kobj_attribute *attr, char *buf)
3375 {
3376         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3377 }
3378 KSM_ATTR_RO(stable_node_chains);
3379
3380 static ssize_t
3381 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3382                                         struct kobj_attribute *attr,
3383                                         char *buf)
3384 {
3385         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3386 }
3387
3388 static ssize_t
3389 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3390                                          struct kobj_attribute *attr,
3391                                          const char *buf, size_t count)
3392 {
3393         unsigned int msecs;
3394         int err;
3395
3396         err = kstrtouint(buf, 10, &msecs);
3397         if (err)
3398                 return -EINVAL;
3399
3400         ksm_stable_node_chains_prune_millisecs = msecs;
3401
3402         return count;
3403 }
3404 KSM_ATTR(stable_node_chains_prune_millisecs);
3405
3406 static ssize_t full_scans_show(struct kobject *kobj,
3407                                struct kobj_attribute *attr, char *buf)
3408 {
3409         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3410 }
3411 KSM_ATTR_RO(full_scans);
3412
3413 static struct attribute *ksm_attrs[] = {
3414         &sleep_millisecs_attr.attr,
3415         &pages_to_scan_attr.attr,
3416         &run_attr.attr,
3417         &pages_shared_attr.attr,
3418         &pages_sharing_attr.attr,
3419         &pages_unshared_attr.attr,
3420         &pages_volatile_attr.attr,
3421         &full_scans_attr.attr,
3422 #ifdef CONFIG_NUMA
3423         &merge_across_nodes_attr.attr,
3424 #endif
3425         &max_page_sharing_attr.attr,
3426         &stable_node_chains_attr.attr,
3427         &stable_node_dups_attr.attr,
3428         &stable_node_chains_prune_millisecs_attr.attr,
3429         &use_zero_pages_attr.attr,
3430         &general_profit_attr.attr,
3431         NULL,
3432 };
3433
3434 static const struct attribute_group ksm_attr_group = {
3435         .attrs = ksm_attrs,
3436         .name = "ksm",
3437 };
3438 #endif /* CONFIG_SYSFS */
3439
3440 static int __init ksm_init(void)
3441 {
3442         struct task_struct *ksm_thread;
3443         int err;
3444
3445         /* The correct value depends on page size and endianness */
3446         zero_checksum = calc_checksum(ZERO_PAGE(0));
3447         /* Default to false for backwards compatibility */
3448         ksm_use_zero_pages = false;
3449
3450         err = ksm_slab_init();
3451         if (err)
3452                 goto out;
3453
3454         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3455         if (IS_ERR(ksm_thread)) {
3456                 pr_err("ksm: creating kthread failed\n");
3457                 err = PTR_ERR(ksm_thread);
3458                 goto out_free;
3459         }
3460
3461 #ifdef CONFIG_SYSFS
3462         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3463         if (err) {
3464                 pr_err("ksm: register sysfs failed\n");
3465                 kthread_stop(ksm_thread);
3466                 goto out_free;
3467         }
3468 #else
3469         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3470
3471 #endif /* CONFIG_SYSFS */
3472
3473 #ifdef CONFIG_MEMORY_HOTREMOVE
3474         /* There is no significance to this priority 100 */
3475         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3476 #endif
3477         return 0;
3478
3479 out_free:
3480         ksm_slab_free();
3481 out:
3482         return err;
3483 }
3484 subsys_initcall(ksm_init);