ice: remove comment about not supporting driver reinit
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #ifdef CONFIG_NUMA
49 #define NUMA(x)         (x)
50 #define DO_NUMA(x)      do { (x); } while (0)
51 #else
52 #define NUMA(x)         (0)
53 #define DO_NUMA(x)      do { } while (0)
54 #endif
55
56 /**
57  * DOC: Overview
58  *
59  * A few notes about the KSM scanning process,
60  * to make it easier to understand the data structures below:
61  *
62  * In order to reduce excessive scanning, KSM sorts the memory pages by their
63  * contents into a data structure that holds pointers to the pages' locations.
64  *
65  * Since the contents of the pages may change at any moment, KSM cannot just
66  * insert the pages into a normal sorted tree and expect it to find anything.
67  * Therefore KSM uses two data structures - the stable and the unstable tree.
68  *
69  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
70  * by their contents.  Because each such page is write-protected, searching on
71  * this tree is fully assured to be working (except when pages are unmapped),
72  * and therefore this tree is called the stable tree.
73  *
74  * The stable tree node includes information required for reverse
75  * mapping from a KSM page to virtual addresses that map this page.
76  *
77  * In order to avoid large latencies of the rmap walks on KSM pages,
78  * KSM maintains two types of nodes in the stable tree:
79  *
80  * * the regular nodes that keep the reverse mapping structures in a
81  *   linked list
82  * * the "chains" that link nodes ("dups") that represent the same
83  *   write protected memory content, but each "dup" corresponds to a
84  *   different KSM page copy of that content
85  *
86  * Internally, the regular nodes, "dups" and "chains" are represented
87  * using the same struct ksm_stable_node structure.
88  *
89  * In addition to the stable tree, KSM uses a second data structure called the
90  * unstable tree: this tree holds pointers to pages which have been found to
91  * be "unchanged for a period of time".  The unstable tree sorts these pages
92  * by their contents, but since they are not write-protected, KSM cannot rely
93  * upon the unstable tree to work correctly - the unstable tree is liable to
94  * be corrupted as its contents are modified, and so it is called unstable.
95  *
96  * KSM solves this problem by several techniques:
97  *
98  * 1) The unstable tree is flushed every time KSM completes scanning all
99  *    memory areas, and then the tree is rebuilt again from the beginning.
100  * 2) KSM will only insert into the unstable tree, pages whose hash value
101  *    has not changed since the previous scan of all memory areas.
102  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
103  *    colors of the nodes and not on their contents, assuring that even when
104  *    the tree gets "corrupted" it won't get out of balance, so scanning time
105  *    remains the same (also, searching and inserting nodes in an rbtree uses
106  *    the same algorithm, so we have no overhead when we flush and rebuild).
107  * 4) KSM never flushes the stable tree, which means that even if it were to
108  *    take 10 attempts to find a page in the unstable tree, once it is found,
109  *    it is secured in the stable tree.  (When we scan a new page, we first
110  *    compare it against the stable tree, and then against the unstable tree.)
111  *
112  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
113  * stable trees and multiple unstable trees: one of each for each NUMA node.
114  */
115
116 /**
117  * struct ksm_mm_slot - ksm information per mm that is being scanned
118  * @slot: hash lookup from mm to mm_slot
119  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
120  */
121 struct ksm_mm_slot {
122         struct mm_slot slot;
123         struct ksm_rmap_item *rmap_list;
124 };
125
126 /**
127  * struct ksm_scan - cursor for scanning
128  * @mm_slot: the current mm_slot we are scanning
129  * @address: the next address inside that to be scanned
130  * @rmap_list: link to the next rmap to be scanned in the rmap_list
131  * @seqnr: count of completed full scans (needed when removing unstable node)
132  *
133  * There is only the one ksm_scan instance of this cursor structure.
134  */
135 struct ksm_scan {
136         struct ksm_mm_slot *mm_slot;
137         unsigned long address;
138         struct ksm_rmap_item **rmap_list;
139         unsigned long seqnr;
140 };
141
142 /**
143  * struct ksm_stable_node - node of the stable rbtree
144  * @node: rb node of this ksm page in the stable tree
145  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
146  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
147  * @list: linked into migrate_nodes, pending placement in the proper node tree
148  * @hlist: hlist head of rmap_items using this ksm page
149  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
150  * @chain_prune_time: time of the last full garbage collection
151  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
152  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
153  */
154 struct ksm_stable_node {
155         union {
156                 struct rb_node node;    /* when node of stable tree */
157                 struct {                /* when listed for migration */
158                         struct list_head *head;
159                         struct {
160                                 struct hlist_node hlist_dup;
161                                 struct list_head list;
162                         };
163                 };
164         };
165         struct hlist_head hlist;
166         union {
167                 unsigned long kpfn;
168                 unsigned long chain_prune_time;
169         };
170         /*
171          * STABLE_NODE_CHAIN can be any negative number in
172          * rmap_hlist_len negative range, but better not -1 to be able
173          * to reliably detect underflows.
174          */
175 #define STABLE_NODE_CHAIN -1024
176         int rmap_hlist_len;
177 #ifdef CONFIG_NUMA
178         int nid;
179 #endif
180 };
181
182 /**
183  * struct ksm_rmap_item - reverse mapping item for virtual addresses
184  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
185  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
186  * @nid: NUMA node id of unstable tree in which linked (may not match page)
187  * @mm: the memory structure this rmap_item is pointing into
188  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
189  * @oldchecksum: previous checksum of the page at that virtual address
190  * @node: rb node of this rmap_item in the unstable tree
191  * @head: pointer to stable_node heading this list in the stable tree
192  * @hlist: link into hlist of rmap_items hanging off that stable_node
193  */
194 struct ksm_rmap_item {
195         struct ksm_rmap_item *rmap_list;
196         union {
197                 struct anon_vma *anon_vma;      /* when stable */
198 #ifdef CONFIG_NUMA
199                 int nid;                /* when node of unstable tree */
200 #endif
201         };
202         struct mm_struct *mm;
203         unsigned long address;          /* + low bits used for flags below */
204         unsigned int oldchecksum;       /* when unstable */
205         union {
206                 struct rb_node node;    /* when node of unstable tree */
207                 struct {                /* when listed from stable tree */
208                         struct ksm_stable_node *head;
209                         struct hlist_node hlist;
210                 };
211         };
212 };
213
214 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
215 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
216 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
217
218 /* The stable and unstable tree heads */
219 static struct rb_root one_stable_tree[1] = { RB_ROOT };
220 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
221 static struct rb_root *root_stable_tree = one_stable_tree;
222 static struct rb_root *root_unstable_tree = one_unstable_tree;
223
224 /* Recently migrated nodes of stable tree, pending proper placement */
225 static LIST_HEAD(migrate_nodes);
226 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
227
228 #define MM_SLOTS_HASH_BITS 10
229 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
230
231 static struct ksm_mm_slot ksm_mm_head = {
232         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
233 };
234 static struct ksm_scan ksm_scan = {
235         .mm_slot = &ksm_mm_head,
236 };
237
238 static struct kmem_cache *rmap_item_cache;
239 static struct kmem_cache *stable_node_cache;
240 static struct kmem_cache *mm_slot_cache;
241
242 /* The number of nodes in the stable tree */
243 static unsigned long ksm_pages_shared;
244
245 /* The number of page slots additionally sharing those nodes */
246 static unsigned long ksm_pages_sharing;
247
248 /* The number of nodes in the unstable tree */
249 static unsigned long ksm_pages_unshared;
250
251 /* The number of rmap_items in use: to calculate pages_volatile */
252 static unsigned long ksm_rmap_items;
253
254 /* The number of stable_node chains */
255 static unsigned long ksm_stable_node_chains;
256
257 /* The number of stable_node dups linked to the stable_node chains */
258 static unsigned long ksm_stable_node_dups;
259
260 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
261 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
262
263 /* Maximum number of page slots sharing a stable node */
264 static int ksm_max_page_sharing = 256;
265
266 /* Number of pages ksmd should scan in one batch */
267 static unsigned int ksm_thread_pages_to_scan = 100;
268
269 /* Milliseconds ksmd should sleep between batches */
270 static unsigned int ksm_thread_sleep_millisecs = 20;
271
272 /* Checksum of an empty (zeroed) page */
273 static unsigned int zero_checksum __read_mostly;
274
275 /* Whether to merge empty (zeroed) pages with actual zero pages */
276 static bool ksm_use_zero_pages __read_mostly;
277
278 #ifdef CONFIG_NUMA
279 /* Zeroed when merging across nodes is not allowed */
280 static unsigned int ksm_merge_across_nodes = 1;
281 static int ksm_nr_node_ids = 1;
282 #else
283 #define ksm_merge_across_nodes  1U
284 #define ksm_nr_node_ids         1
285 #endif
286
287 #define KSM_RUN_STOP    0
288 #define KSM_RUN_MERGE   1
289 #define KSM_RUN_UNMERGE 2
290 #define KSM_RUN_OFFLINE 4
291 static unsigned long ksm_run = KSM_RUN_STOP;
292 static void wait_while_offlining(void);
293
294 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
296 static DEFINE_MUTEX(ksm_thread_mutex);
297 static DEFINE_SPINLOCK(ksm_mmlist_lock);
298
299 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
300                 sizeof(struct __struct), __alignof__(struct __struct),\
301                 (__flags), NULL)
302
303 static int __init ksm_slab_init(void)
304 {
305         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
306         if (!rmap_item_cache)
307                 goto out;
308
309         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
310         if (!stable_node_cache)
311                 goto out_free1;
312
313         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
314         if (!mm_slot_cache)
315                 goto out_free2;
316
317         return 0;
318
319 out_free2:
320         kmem_cache_destroy(stable_node_cache);
321 out_free1:
322         kmem_cache_destroy(rmap_item_cache);
323 out:
324         return -ENOMEM;
325 }
326
327 static void __init ksm_slab_free(void)
328 {
329         kmem_cache_destroy(mm_slot_cache);
330         kmem_cache_destroy(stable_node_cache);
331         kmem_cache_destroy(rmap_item_cache);
332         mm_slot_cache = NULL;
333 }
334
335 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
336 {
337         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
338 }
339
340 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
341 {
342         return dup->head == STABLE_NODE_DUP_HEAD;
343 }
344
345 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
346                                              struct ksm_stable_node *chain)
347 {
348         VM_BUG_ON(is_stable_node_dup(dup));
349         dup->head = STABLE_NODE_DUP_HEAD;
350         VM_BUG_ON(!is_stable_node_chain(chain));
351         hlist_add_head(&dup->hlist_dup, &chain->hlist);
352         ksm_stable_node_dups++;
353 }
354
355 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
356 {
357         VM_BUG_ON(!is_stable_node_dup(dup));
358         hlist_del(&dup->hlist_dup);
359         ksm_stable_node_dups--;
360 }
361
362 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
363 {
364         VM_BUG_ON(is_stable_node_chain(dup));
365         if (is_stable_node_dup(dup))
366                 __stable_node_dup_del(dup);
367         else
368                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
369 #ifdef CONFIG_DEBUG_VM
370         dup->head = NULL;
371 #endif
372 }
373
374 static inline struct ksm_rmap_item *alloc_rmap_item(void)
375 {
376         struct ksm_rmap_item *rmap_item;
377
378         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
379                                                 __GFP_NORETRY | __GFP_NOWARN);
380         if (rmap_item)
381                 ksm_rmap_items++;
382         return rmap_item;
383 }
384
385 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
386 {
387         ksm_rmap_items--;
388         rmap_item->mm->ksm_rmap_items--;
389         rmap_item->mm = NULL;   /* debug safety */
390         kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
393 static inline struct ksm_stable_node *alloc_stable_node(void)
394 {
395         /*
396          * The allocation can take too long with GFP_KERNEL when memory is under
397          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398          * grants access to memory reserves, helping to avoid this problem.
399          */
400         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
403 static inline void free_stable_node(struct ksm_stable_node *stable_node)
404 {
405         VM_BUG_ON(stable_node->rmap_hlist_len &&
406                   !is_stable_node_chain(stable_node));
407         kmem_cache_free(stable_node_cache, stable_node);
408 }
409
410 /*
411  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
412  * page tables after it has passed through ksm_exit() - which, if necessary,
413  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
414  * a special flag: they can just back out as soon as mm_users goes to zero.
415  * ksm_test_exit() is used throughout to make this test for exit: in some
416  * places for correctness, in some places just to avoid unnecessary work.
417  */
418 static inline bool ksm_test_exit(struct mm_struct *mm)
419 {
420         return atomic_read(&mm->mm_users) == 0;
421 }
422
423 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
424                         struct mm_walk *walk)
425 {
426         struct page *page = NULL;
427         spinlock_t *ptl;
428         pte_t *pte;
429         int ret;
430
431         if (pmd_leaf(*pmd) || !pmd_present(*pmd))
432                 return 0;
433
434         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
435         if (pte_present(*pte)) {
436                 page = vm_normal_page(walk->vma, addr, *pte);
437         } else if (!pte_none(*pte)) {
438                 swp_entry_t entry = pte_to_swp_entry(*pte);
439
440                 /*
441                  * As KSM pages remain KSM pages until freed, no need to wait
442                  * here for migration to end.
443                  */
444                 if (is_migration_entry(entry))
445                         page = pfn_swap_entry_to_page(entry);
446         }
447         ret = page && PageKsm(page);
448         pte_unmap_unlock(pte, ptl);
449         return ret;
450 }
451
452 static const struct mm_walk_ops break_ksm_ops = {
453         .pmd_entry = break_ksm_pmd_entry,
454 };
455
456 /*
457  * We use break_ksm to break COW on a ksm page by triggering unsharing,
458  * such that the ksm page will get replaced by an exclusive anonymous page.
459  *
460  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
461  * in case the application has unmapped and remapped mm,addr meanwhile.
462  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
463  * mmap of /dev/mem, where we would not want to touch it.
464  *
465  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
466  * of the process that owns 'vma'.  We also do not want to enforce
467  * protection keys here anyway.
468  */
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470 {
471         vm_fault_t ret = 0;
472
473         do {
474                 int ksm_page;
475
476                 cond_resched();
477                 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
478                                                &break_ksm_ops, NULL);
479                 if (WARN_ON_ONCE(ksm_page < 0))
480                         return ksm_page;
481                 if (!ksm_page)
482                         return 0;
483                 ret = handle_mm_fault(vma, addr,
484                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
485                                       NULL);
486         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487         /*
488          * We must loop until we no longer find a KSM page because
489          * handle_mm_fault() may back out if there's any difficulty e.g. if
490          * pte accessed bit gets updated concurrently.
491          *
492          * VM_FAULT_SIGBUS could occur if we race with truncation of the
493          * backing file, which also invalidates anonymous pages: that's
494          * okay, that truncation will have unmapped the PageKsm for us.
495          *
496          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
497          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
498          * current task has TIF_MEMDIE set, and will be OOM killed on return
499          * to user; and ksmd, having no mm, would never be chosen for that.
500          *
501          * But if the mm is in a limited mem_cgroup, then the fault may fail
502          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
503          * even ksmd can fail in this way - though it's usually breaking ksm
504          * just to undo a merge it made a moment before, so unlikely to oom.
505          *
506          * That's a pity: we might therefore have more kernel pages allocated
507          * than we're counting as nodes in the stable tree; but ksm_do_scan
508          * will retry to break_cow on each pass, so should recover the page
509          * in due course.  The important thing is to not let VM_MERGEABLE
510          * be cleared while any such pages might remain in the area.
511          */
512         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
513 }
514
515 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
516                 unsigned long addr)
517 {
518         struct vm_area_struct *vma;
519         if (ksm_test_exit(mm))
520                 return NULL;
521         vma = vma_lookup(mm, addr);
522         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
523                 return NULL;
524         return vma;
525 }
526
527 static void break_cow(struct ksm_rmap_item *rmap_item)
528 {
529         struct mm_struct *mm = rmap_item->mm;
530         unsigned long addr = rmap_item->address;
531         struct vm_area_struct *vma;
532
533         /*
534          * It is not an accident that whenever we want to break COW
535          * to undo, we also need to drop a reference to the anon_vma.
536          */
537         put_anon_vma(rmap_item->anon_vma);
538
539         mmap_read_lock(mm);
540         vma = find_mergeable_vma(mm, addr);
541         if (vma)
542                 break_ksm(vma, addr);
543         mmap_read_unlock(mm);
544 }
545
546 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
547 {
548         struct mm_struct *mm = rmap_item->mm;
549         unsigned long addr = rmap_item->address;
550         struct vm_area_struct *vma;
551         struct page *page;
552
553         mmap_read_lock(mm);
554         vma = find_mergeable_vma(mm, addr);
555         if (!vma)
556                 goto out;
557
558         page = follow_page(vma, addr, FOLL_GET);
559         if (IS_ERR_OR_NULL(page))
560                 goto out;
561         if (is_zone_device_page(page))
562                 goto out_putpage;
563         if (PageAnon(page)) {
564                 flush_anon_page(vma, page, addr);
565                 flush_dcache_page(page);
566         } else {
567 out_putpage:
568                 put_page(page);
569 out:
570                 page = NULL;
571         }
572         mmap_read_unlock(mm);
573         return page;
574 }
575
576 /*
577  * This helper is used for getting right index into array of tree roots.
578  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580  * every node has its own stable and unstable tree.
581  */
582 static inline int get_kpfn_nid(unsigned long kpfn)
583 {
584         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
585 }
586
587 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
588                                                    struct rb_root *root)
589 {
590         struct ksm_stable_node *chain = alloc_stable_node();
591         VM_BUG_ON(is_stable_node_chain(dup));
592         if (likely(chain)) {
593                 INIT_HLIST_HEAD(&chain->hlist);
594                 chain->chain_prune_time = jiffies;
595                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
597                 chain->nid = NUMA_NO_NODE; /* debug */
598 #endif
599                 ksm_stable_node_chains++;
600
601                 /*
602                  * Put the stable node chain in the first dimension of
603                  * the stable tree and at the same time remove the old
604                  * stable node.
605                  */
606                 rb_replace_node(&dup->node, &chain->node, root);
607
608                 /*
609                  * Move the old stable node to the second dimension
610                  * queued in the hlist_dup. The invariant is that all
611                  * dup stable_nodes in the chain->hlist point to pages
612                  * that are write protected and have the exact same
613                  * content.
614                  */
615                 stable_node_chain_add_dup(dup, chain);
616         }
617         return chain;
618 }
619
620 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
621                                           struct rb_root *root)
622 {
623         rb_erase(&chain->node, root);
624         free_stable_node(chain);
625         ksm_stable_node_chains--;
626 }
627
628 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
629 {
630         struct ksm_rmap_item *rmap_item;
631
632         /* check it's not STABLE_NODE_CHAIN or negative */
633         BUG_ON(stable_node->rmap_hlist_len < 0);
634
635         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
636                 if (rmap_item->hlist.next)
637                         ksm_pages_sharing--;
638                 else
639                         ksm_pages_shared--;
640
641                 rmap_item->mm->ksm_merging_pages--;
642
643                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644                 stable_node->rmap_hlist_len--;
645                 put_anon_vma(rmap_item->anon_vma);
646                 rmap_item->address &= PAGE_MASK;
647                 cond_resched();
648         }
649
650         /*
651          * We need the second aligned pointer of the migrate_nodes
652          * list_head to stay clear from the rb_parent_color union
653          * (aligned and different than any node) and also different
654          * from &migrate_nodes. This will verify that future list.h changes
655          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
656          */
657         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
659
660         if (stable_node->head == &migrate_nodes)
661                 list_del(&stable_node->list);
662         else
663                 stable_node_dup_del(stable_node);
664         free_stable_node(stable_node);
665 }
666
667 enum get_ksm_page_flags {
668         GET_KSM_PAGE_NOLOCK,
669         GET_KSM_PAGE_LOCK,
670         GET_KSM_PAGE_TRYLOCK
671 };
672
673 /*
674  * get_ksm_page: checks if the page indicated by the stable node
675  * is still its ksm page, despite having held no reference to it.
676  * In which case we can trust the content of the page, and it
677  * returns the gotten page; but if the page has now been zapped,
678  * remove the stale node from the stable tree and return NULL.
679  * But beware, the stable node's page might be being migrated.
680  *
681  * You would expect the stable_node to hold a reference to the ksm page.
682  * But if it increments the page's count, swapping out has to wait for
683  * ksmd to come around again before it can free the page, which may take
684  * seconds or even minutes: much too unresponsive.  So instead we use a
685  * "keyhole reference": access to the ksm page from the stable node peeps
686  * out through its keyhole to see if that page still holds the right key,
687  * pointing back to this stable node.  This relies on freeing a PageAnon
688  * page to reset its page->mapping to NULL, and relies on no other use of
689  * a page to put something that might look like our key in page->mapping.
690  * is on its way to being freed; but it is an anomaly to bear in mind.
691  */
692 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
693                                  enum get_ksm_page_flags flags)
694 {
695         struct page *page;
696         void *expected_mapping;
697         unsigned long kpfn;
698
699         expected_mapping = (void *)((unsigned long)stable_node |
700                                         PAGE_MAPPING_KSM);
701 again:
702         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
703         page = pfn_to_page(kpfn);
704         if (READ_ONCE(page->mapping) != expected_mapping)
705                 goto stale;
706
707         /*
708          * We cannot do anything with the page while its refcount is 0.
709          * Usually 0 means free, or tail of a higher-order page: in which
710          * case this node is no longer referenced, and should be freed;
711          * however, it might mean that the page is under page_ref_freeze().
712          * The __remove_mapping() case is easy, again the node is now stale;
713          * the same is in reuse_ksm_page() case; but if page is swapcache
714          * in folio_migrate_mapping(), it might still be our page,
715          * in which case it's essential to keep the node.
716          */
717         while (!get_page_unless_zero(page)) {
718                 /*
719                  * Another check for page->mapping != expected_mapping would
720                  * work here too.  We have chosen the !PageSwapCache test to
721                  * optimize the common case, when the page is or is about to
722                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
723                  * in the ref_freeze section of __remove_mapping(); but Anon
724                  * page->mapping reset to NULL later, in free_pages_prepare().
725                  */
726                 if (!PageSwapCache(page))
727                         goto stale;
728                 cpu_relax();
729         }
730
731         if (READ_ONCE(page->mapping) != expected_mapping) {
732                 put_page(page);
733                 goto stale;
734         }
735
736         if (flags == GET_KSM_PAGE_TRYLOCK) {
737                 if (!trylock_page(page)) {
738                         put_page(page);
739                         return ERR_PTR(-EBUSY);
740                 }
741         } else if (flags == GET_KSM_PAGE_LOCK)
742                 lock_page(page);
743
744         if (flags != GET_KSM_PAGE_NOLOCK) {
745                 if (READ_ONCE(page->mapping) != expected_mapping) {
746                         unlock_page(page);
747                         put_page(page);
748                         goto stale;
749                 }
750         }
751         return page;
752
753 stale:
754         /*
755          * We come here from above when page->mapping or !PageSwapCache
756          * suggests that the node is stale; but it might be under migration.
757          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
758          * before checking whether node->kpfn has been changed.
759          */
760         smp_rmb();
761         if (READ_ONCE(stable_node->kpfn) != kpfn)
762                 goto again;
763         remove_node_from_stable_tree(stable_node);
764         return NULL;
765 }
766
767 /*
768  * Removing rmap_item from stable or unstable tree.
769  * This function will clean the information from the stable/unstable tree.
770  */
771 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
772 {
773         if (rmap_item->address & STABLE_FLAG) {
774                 struct ksm_stable_node *stable_node;
775                 struct page *page;
776
777                 stable_node = rmap_item->head;
778                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
779                 if (!page)
780                         goto out;
781
782                 hlist_del(&rmap_item->hlist);
783                 unlock_page(page);
784                 put_page(page);
785
786                 if (!hlist_empty(&stable_node->hlist))
787                         ksm_pages_sharing--;
788                 else
789                         ksm_pages_shared--;
790
791                 rmap_item->mm->ksm_merging_pages--;
792
793                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794                 stable_node->rmap_hlist_len--;
795
796                 put_anon_vma(rmap_item->anon_vma);
797                 rmap_item->head = NULL;
798                 rmap_item->address &= PAGE_MASK;
799
800         } else if (rmap_item->address & UNSTABLE_FLAG) {
801                 unsigned char age;
802                 /*
803                  * Usually ksmd can and must skip the rb_erase, because
804                  * root_unstable_tree was already reset to RB_ROOT.
805                  * But be careful when an mm is exiting: do the rb_erase
806                  * if this rmap_item was inserted by this scan, rather
807                  * than left over from before.
808                  */
809                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
810                 BUG_ON(age > 1);
811                 if (!age)
812                         rb_erase(&rmap_item->node,
813                                  root_unstable_tree + NUMA(rmap_item->nid));
814                 ksm_pages_unshared--;
815                 rmap_item->address &= PAGE_MASK;
816         }
817 out:
818         cond_resched();         /* we're called from many long loops */
819 }
820
821 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
822 {
823         while (*rmap_list) {
824                 struct ksm_rmap_item *rmap_item = *rmap_list;
825                 *rmap_list = rmap_item->rmap_list;
826                 remove_rmap_item_from_tree(rmap_item);
827                 free_rmap_item(rmap_item);
828         }
829 }
830
831 /*
832  * Though it's very tempting to unmerge rmap_items from stable tree rather
833  * than check every pte of a given vma, the locking doesn't quite work for
834  * that - an rmap_item is assigned to the stable tree after inserting ksm
835  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
836  * rmap_items from parent to child at fork time (so as not to waste time
837  * if exit comes before the next scan reaches it).
838  *
839  * Similarly, although we'd like to remove rmap_items (so updating counts
840  * and freeing memory) when unmerging an area, it's easier to leave that
841  * to the next pass of ksmd - consider, for example, how ksmd might be
842  * in cmp_and_merge_page on one of the rmap_items we would be removing.
843  */
844 static int unmerge_ksm_pages(struct vm_area_struct *vma,
845                              unsigned long start, unsigned long end)
846 {
847         unsigned long addr;
848         int err = 0;
849
850         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
851                 if (ksm_test_exit(vma->vm_mm))
852                         break;
853                 if (signal_pending(current))
854                         err = -ERESTARTSYS;
855                 else
856                         err = break_ksm(vma, addr);
857         }
858         return err;
859 }
860
861 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
862 {
863         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
864 }
865
866 static inline struct ksm_stable_node *page_stable_node(struct page *page)
867 {
868         return folio_stable_node(page_folio(page));
869 }
870
871 static inline void set_page_stable_node(struct page *page,
872                                         struct ksm_stable_node *stable_node)
873 {
874         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
875         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
876 }
877
878 #ifdef CONFIG_SYSFS
879 /*
880  * Only called through the sysfs control interface:
881  */
882 static int remove_stable_node(struct ksm_stable_node *stable_node)
883 {
884         struct page *page;
885         int err;
886
887         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
888         if (!page) {
889                 /*
890                  * get_ksm_page did remove_node_from_stable_tree itself.
891                  */
892                 return 0;
893         }
894
895         /*
896          * Page could be still mapped if this races with __mmput() running in
897          * between ksm_exit() and exit_mmap(). Just refuse to let
898          * merge_across_nodes/max_page_sharing be switched.
899          */
900         err = -EBUSY;
901         if (!page_mapped(page)) {
902                 /*
903                  * The stable node did not yet appear stale to get_ksm_page(),
904                  * since that allows for an unmapped ksm page to be recognized
905                  * right up until it is freed; but the node is safe to remove.
906                  * This page might be in a pagevec waiting to be freed,
907                  * or it might be PageSwapCache (perhaps under writeback),
908                  * or it might have been removed from swapcache a moment ago.
909                  */
910                 set_page_stable_node(page, NULL);
911                 remove_node_from_stable_tree(stable_node);
912                 err = 0;
913         }
914
915         unlock_page(page);
916         put_page(page);
917         return err;
918 }
919
920 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
921                                     struct rb_root *root)
922 {
923         struct ksm_stable_node *dup;
924         struct hlist_node *hlist_safe;
925
926         if (!is_stable_node_chain(stable_node)) {
927                 VM_BUG_ON(is_stable_node_dup(stable_node));
928                 if (remove_stable_node(stable_node))
929                         return true;
930                 else
931                         return false;
932         }
933
934         hlist_for_each_entry_safe(dup, hlist_safe,
935                                   &stable_node->hlist, hlist_dup) {
936                 VM_BUG_ON(!is_stable_node_dup(dup));
937                 if (remove_stable_node(dup))
938                         return true;
939         }
940         BUG_ON(!hlist_empty(&stable_node->hlist));
941         free_stable_node_chain(stable_node, root);
942         return false;
943 }
944
945 static int remove_all_stable_nodes(void)
946 {
947         struct ksm_stable_node *stable_node, *next;
948         int nid;
949         int err = 0;
950
951         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
952                 while (root_stable_tree[nid].rb_node) {
953                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
954                                                 struct ksm_stable_node, node);
955                         if (remove_stable_node_chain(stable_node,
956                                                      root_stable_tree + nid)) {
957                                 err = -EBUSY;
958                                 break;  /* proceed to next nid */
959                         }
960                         cond_resched();
961                 }
962         }
963         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
964                 if (remove_stable_node(stable_node))
965                         err = -EBUSY;
966                 cond_resched();
967         }
968         return err;
969 }
970
971 static int unmerge_and_remove_all_rmap_items(void)
972 {
973         struct ksm_mm_slot *mm_slot;
974         struct mm_slot *slot;
975         struct mm_struct *mm;
976         struct vm_area_struct *vma;
977         int err = 0;
978
979         spin_lock(&ksm_mmlist_lock);
980         slot = list_entry(ksm_mm_head.slot.mm_node.next,
981                           struct mm_slot, mm_node);
982         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
983         spin_unlock(&ksm_mmlist_lock);
984
985         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
986              mm_slot = ksm_scan.mm_slot) {
987                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
988
989                 mm = mm_slot->slot.mm;
990                 mmap_read_lock(mm);
991                 for_each_vma(vmi, vma) {
992                         if (ksm_test_exit(mm))
993                                 break;
994                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
995                                 continue;
996                         err = unmerge_ksm_pages(vma,
997                                                 vma->vm_start, vma->vm_end);
998                         if (err)
999                                 goto error;
1000                 }
1001
1002                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1003                 mmap_read_unlock(mm);
1004
1005                 spin_lock(&ksm_mmlist_lock);
1006                 slot = list_entry(mm_slot->slot.mm_node.next,
1007                                   struct mm_slot, mm_node);
1008                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1009                 if (ksm_test_exit(mm)) {
1010                         hash_del(&mm_slot->slot.hash);
1011                         list_del(&mm_slot->slot.mm_node);
1012                         spin_unlock(&ksm_mmlist_lock);
1013
1014                         mm_slot_free(mm_slot_cache, mm_slot);
1015                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1016                         mmdrop(mm);
1017                 } else
1018                         spin_unlock(&ksm_mmlist_lock);
1019         }
1020
1021         /* Clean up stable nodes, but don't worry if some are still busy */
1022         remove_all_stable_nodes();
1023         ksm_scan.seqnr = 0;
1024         return 0;
1025
1026 error:
1027         mmap_read_unlock(mm);
1028         spin_lock(&ksm_mmlist_lock);
1029         ksm_scan.mm_slot = &ksm_mm_head;
1030         spin_unlock(&ksm_mmlist_lock);
1031         return err;
1032 }
1033 #endif /* CONFIG_SYSFS */
1034
1035 static u32 calc_checksum(struct page *page)
1036 {
1037         u32 checksum;
1038         void *addr = kmap_atomic(page);
1039         checksum = xxhash(addr, PAGE_SIZE, 0);
1040         kunmap_atomic(addr);
1041         return checksum;
1042 }
1043
1044 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1045                               pte_t *orig_pte)
1046 {
1047         struct mm_struct *mm = vma->vm_mm;
1048         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1049         int swapped;
1050         int err = -EFAULT;
1051         struct mmu_notifier_range range;
1052         bool anon_exclusive;
1053
1054         pvmw.address = page_address_in_vma(page, vma);
1055         if (pvmw.address == -EFAULT)
1056                 goto out;
1057
1058         BUG_ON(PageTransCompound(page));
1059
1060         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1061                                 pvmw.address + PAGE_SIZE);
1062         mmu_notifier_invalidate_range_start(&range);
1063
1064         if (!page_vma_mapped_walk(&pvmw))
1065                 goto out_mn;
1066         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1067                 goto out_unlock;
1068
1069         anon_exclusive = PageAnonExclusive(page);
1070         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1071             anon_exclusive || mm_tlb_flush_pending(mm)) {
1072                 pte_t entry;
1073
1074                 swapped = PageSwapCache(page);
1075                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1076                 /*
1077                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1078                  * take any lock, therefore the check that we are going to make
1079                  * with the pagecount against the mapcount is racy and
1080                  * O_DIRECT can happen right after the check.
1081                  * So we clear the pte and flush the tlb before the check
1082                  * this assure us that no O_DIRECT can happen after the check
1083                  * or in the middle of the check.
1084                  *
1085                  * No need to notify as we are downgrading page table to read
1086                  * only not changing it to point to a new page.
1087                  *
1088                  * See Documentation/mm/mmu_notifier.rst
1089                  */
1090                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1091                 /*
1092                  * Check that no O_DIRECT or similar I/O is in progress on the
1093                  * page
1094                  */
1095                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1096                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1097                         goto out_unlock;
1098                 }
1099
1100                 /* See page_try_share_anon_rmap(): clear PTE first. */
1101                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1102                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1103                         goto out_unlock;
1104                 }
1105
1106                 if (pte_dirty(entry))
1107                         set_page_dirty(page);
1108                 entry = pte_mkclean(entry);
1109
1110                 if (pte_write(entry))
1111                         entry = pte_wrprotect(entry);
1112
1113                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1114         }
1115         *orig_pte = *pvmw.pte;
1116         err = 0;
1117
1118 out_unlock:
1119         page_vma_mapped_walk_done(&pvmw);
1120 out_mn:
1121         mmu_notifier_invalidate_range_end(&range);
1122 out:
1123         return err;
1124 }
1125
1126 /**
1127  * replace_page - replace page in vma by new ksm page
1128  * @vma:      vma that holds the pte pointing to page
1129  * @page:     the page we are replacing by kpage
1130  * @kpage:    the ksm page we replace page by
1131  * @orig_pte: the original value of the pte
1132  *
1133  * Returns 0 on success, -EFAULT on failure.
1134  */
1135 static int replace_page(struct vm_area_struct *vma, struct page *page,
1136                         struct page *kpage, pte_t orig_pte)
1137 {
1138         struct mm_struct *mm = vma->vm_mm;
1139         struct folio *folio;
1140         pmd_t *pmd;
1141         pmd_t pmde;
1142         pte_t *ptep;
1143         pte_t newpte;
1144         spinlock_t *ptl;
1145         unsigned long addr;
1146         int err = -EFAULT;
1147         struct mmu_notifier_range range;
1148
1149         addr = page_address_in_vma(page, vma);
1150         if (addr == -EFAULT)
1151                 goto out;
1152
1153         pmd = mm_find_pmd(mm, addr);
1154         if (!pmd)
1155                 goto out;
1156         /*
1157          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1158          * without holding anon_vma lock for write.  So when looking for a
1159          * genuine pmde (in which to find pte), test present and !THP together.
1160          */
1161         pmde = *pmd;
1162         barrier();
1163         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1164                 goto out;
1165
1166         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1167                                 addr + PAGE_SIZE);
1168         mmu_notifier_invalidate_range_start(&range);
1169
1170         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1171         if (!pte_same(*ptep, orig_pte)) {
1172                 pte_unmap_unlock(ptep, ptl);
1173                 goto out_mn;
1174         }
1175         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1176         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1177
1178         /*
1179          * No need to check ksm_use_zero_pages here: we can only have a
1180          * zero_page here if ksm_use_zero_pages was enabled already.
1181          */
1182         if (!is_zero_pfn(page_to_pfn(kpage))) {
1183                 get_page(kpage);
1184                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1185                 newpte = mk_pte(kpage, vma->vm_page_prot);
1186         } else {
1187                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1188                                                vma->vm_page_prot));
1189                 /*
1190                  * We're replacing an anonymous page with a zero page, which is
1191                  * not anonymous. We need to do proper accounting otherwise we
1192                  * will get wrong values in /proc, and a BUG message in dmesg
1193                  * when tearing down the mm.
1194                  */
1195                 dec_mm_counter(mm, MM_ANONPAGES);
1196         }
1197
1198         flush_cache_page(vma, addr, pte_pfn(*ptep));
1199         /*
1200          * No need to notify as we are replacing a read only page with another
1201          * read only page with the same content.
1202          *
1203          * See Documentation/mm/mmu_notifier.rst
1204          */
1205         ptep_clear_flush(vma, addr, ptep);
1206         set_pte_at_notify(mm, addr, ptep, newpte);
1207
1208         folio = page_folio(page);
1209         page_remove_rmap(page, vma, false);
1210         if (!folio_mapped(folio))
1211                 folio_free_swap(folio);
1212         folio_put(folio);
1213
1214         pte_unmap_unlock(ptep, ptl);
1215         err = 0;
1216 out_mn:
1217         mmu_notifier_invalidate_range_end(&range);
1218 out:
1219         return err;
1220 }
1221
1222 /*
1223  * try_to_merge_one_page - take two pages and merge them into one
1224  * @vma: the vma that holds the pte pointing to page
1225  * @page: the PageAnon page that we want to replace with kpage
1226  * @kpage: the PageKsm page that we want to map instead of page,
1227  *         or NULL the first time when we want to use page as kpage.
1228  *
1229  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1230  */
1231 static int try_to_merge_one_page(struct vm_area_struct *vma,
1232                                  struct page *page, struct page *kpage)
1233 {
1234         pte_t orig_pte = __pte(0);
1235         int err = -EFAULT;
1236
1237         if (page == kpage)                      /* ksm page forked */
1238                 return 0;
1239
1240         if (!PageAnon(page))
1241                 goto out;
1242
1243         /*
1244          * We need the page lock to read a stable PageSwapCache in
1245          * write_protect_page().  We use trylock_page() instead of
1246          * lock_page() because we don't want to wait here - we
1247          * prefer to continue scanning and merging different pages,
1248          * then come back to this page when it is unlocked.
1249          */
1250         if (!trylock_page(page))
1251                 goto out;
1252
1253         if (PageTransCompound(page)) {
1254                 if (split_huge_page(page))
1255                         goto out_unlock;
1256         }
1257
1258         /*
1259          * If this anonymous page is mapped only here, its pte may need
1260          * to be write-protected.  If it's mapped elsewhere, all of its
1261          * ptes are necessarily already write-protected.  But in either
1262          * case, we need to lock and check page_count is not raised.
1263          */
1264         if (write_protect_page(vma, page, &orig_pte) == 0) {
1265                 if (!kpage) {
1266                         /*
1267                          * While we hold page lock, upgrade page from
1268                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1269                          * stable_tree_insert() will update stable_node.
1270                          */
1271                         set_page_stable_node(page, NULL);
1272                         mark_page_accessed(page);
1273                         /*
1274                          * Page reclaim just frees a clean page with no dirty
1275                          * ptes: make sure that the ksm page would be swapped.
1276                          */
1277                         if (!PageDirty(page))
1278                                 SetPageDirty(page);
1279                         err = 0;
1280                 } else if (pages_identical(page, kpage))
1281                         err = replace_page(vma, page, kpage, orig_pte);
1282         }
1283
1284 out_unlock:
1285         unlock_page(page);
1286 out:
1287         return err;
1288 }
1289
1290 /*
1291  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1292  * but no new kernel page is allocated: kpage must already be a ksm page.
1293  *
1294  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1295  */
1296 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1297                                       struct page *page, struct page *kpage)
1298 {
1299         struct mm_struct *mm = rmap_item->mm;
1300         struct vm_area_struct *vma;
1301         int err = -EFAULT;
1302
1303         mmap_read_lock(mm);
1304         vma = find_mergeable_vma(mm, rmap_item->address);
1305         if (!vma)
1306                 goto out;
1307
1308         err = try_to_merge_one_page(vma, page, kpage);
1309         if (err)
1310                 goto out;
1311
1312         /* Unstable nid is in union with stable anon_vma: remove first */
1313         remove_rmap_item_from_tree(rmap_item);
1314
1315         /* Must get reference to anon_vma while still holding mmap_lock */
1316         rmap_item->anon_vma = vma->anon_vma;
1317         get_anon_vma(vma->anon_vma);
1318 out:
1319         mmap_read_unlock(mm);
1320         return err;
1321 }
1322
1323 /*
1324  * try_to_merge_two_pages - take two identical pages and prepare them
1325  * to be merged into one page.
1326  *
1327  * This function returns the kpage if we successfully merged two identical
1328  * pages into one ksm page, NULL otherwise.
1329  *
1330  * Note that this function upgrades page to ksm page: if one of the pages
1331  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1332  */
1333 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1334                                            struct page *page,
1335                                            struct ksm_rmap_item *tree_rmap_item,
1336                                            struct page *tree_page)
1337 {
1338         int err;
1339
1340         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1341         if (!err) {
1342                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1343                                                         tree_page, page);
1344                 /*
1345                  * If that fails, we have a ksm page with only one pte
1346                  * pointing to it: so break it.
1347                  */
1348                 if (err)
1349                         break_cow(rmap_item);
1350         }
1351         return err ? NULL : page;
1352 }
1353
1354 static __always_inline
1355 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1356 {
1357         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1358         /*
1359          * Check that at least one mapping still exists, otherwise
1360          * there's no much point to merge and share with this
1361          * stable_node, as the underlying tree_page of the other
1362          * sharer is going to be freed soon.
1363          */
1364         return stable_node->rmap_hlist_len &&
1365                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1366 }
1367
1368 static __always_inline
1369 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1370 {
1371         return __is_page_sharing_candidate(stable_node, 0);
1372 }
1373
1374 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1375                                     struct ksm_stable_node **_stable_node,
1376                                     struct rb_root *root,
1377                                     bool prune_stale_stable_nodes)
1378 {
1379         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1380         struct hlist_node *hlist_safe;
1381         struct page *_tree_page, *tree_page = NULL;
1382         int nr = 0;
1383         int found_rmap_hlist_len;
1384
1385         if (!prune_stale_stable_nodes ||
1386             time_before(jiffies, stable_node->chain_prune_time +
1387                         msecs_to_jiffies(
1388                                 ksm_stable_node_chains_prune_millisecs)))
1389                 prune_stale_stable_nodes = false;
1390         else
1391                 stable_node->chain_prune_time = jiffies;
1392
1393         hlist_for_each_entry_safe(dup, hlist_safe,
1394                                   &stable_node->hlist, hlist_dup) {
1395                 cond_resched();
1396                 /*
1397                  * We must walk all stable_node_dup to prune the stale
1398                  * stable nodes during lookup.
1399                  *
1400                  * get_ksm_page can drop the nodes from the
1401                  * stable_node->hlist if they point to freed pages
1402                  * (that's why we do a _safe walk). The "dup"
1403                  * stable_node parameter itself will be freed from
1404                  * under us if it returns NULL.
1405                  */
1406                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1407                 if (!_tree_page)
1408                         continue;
1409                 nr += 1;
1410                 if (is_page_sharing_candidate(dup)) {
1411                         if (!found ||
1412                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1413                                 if (found)
1414                                         put_page(tree_page);
1415                                 found = dup;
1416                                 found_rmap_hlist_len = found->rmap_hlist_len;
1417                                 tree_page = _tree_page;
1418
1419                                 /* skip put_page for found dup */
1420                                 if (!prune_stale_stable_nodes)
1421                                         break;
1422                                 continue;
1423                         }
1424                 }
1425                 put_page(_tree_page);
1426         }
1427
1428         if (found) {
1429                 /*
1430                  * nr is counting all dups in the chain only if
1431                  * prune_stale_stable_nodes is true, otherwise we may
1432                  * break the loop at nr == 1 even if there are
1433                  * multiple entries.
1434                  */
1435                 if (prune_stale_stable_nodes && nr == 1) {
1436                         /*
1437                          * If there's not just one entry it would
1438                          * corrupt memory, better BUG_ON. In KSM
1439                          * context with no lock held it's not even
1440                          * fatal.
1441                          */
1442                         BUG_ON(stable_node->hlist.first->next);
1443
1444                         /*
1445                          * There's just one entry and it is below the
1446                          * deduplication limit so drop the chain.
1447                          */
1448                         rb_replace_node(&stable_node->node, &found->node,
1449                                         root);
1450                         free_stable_node(stable_node);
1451                         ksm_stable_node_chains--;
1452                         ksm_stable_node_dups--;
1453                         /*
1454                          * NOTE: the caller depends on the stable_node
1455                          * to be equal to stable_node_dup if the chain
1456                          * was collapsed.
1457                          */
1458                         *_stable_node = found;
1459                         /*
1460                          * Just for robustness, as stable_node is
1461                          * otherwise left as a stable pointer, the
1462                          * compiler shall optimize it away at build
1463                          * time.
1464                          */
1465                         stable_node = NULL;
1466                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1467                            __is_page_sharing_candidate(found, 1)) {
1468                         /*
1469                          * If the found stable_node dup can accept one
1470                          * more future merge (in addition to the one
1471                          * that is underway) and is not at the head of
1472                          * the chain, put it there so next search will
1473                          * be quicker in the !prune_stale_stable_nodes
1474                          * case.
1475                          *
1476                          * NOTE: it would be inaccurate to use nr > 1
1477                          * instead of checking the hlist.first pointer
1478                          * directly, because in the
1479                          * prune_stale_stable_nodes case "nr" isn't
1480                          * the position of the found dup in the chain,
1481                          * but the total number of dups in the chain.
1482                          */
1483                         hlist_del(&found->hlist_dup);
1484                         hlist_add_head(&found->hlist_dup,
1485                                        &stable_node->hlist);
1486                 }
1487         }
1488
1489         *_stable_node_dup = found;
1490         return tree_page;
1491 }
1492
1493 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1494                                                struct rb_root *root)
1495 {
1496         if (!is_stable_node_chain(stable_node))
1497                 return stable_node;
1498         if (hlist_empty(&stable_node->hlist)) {
1499                 free_stable_node_chain(stable_node, root);
1500                 return NULL;
1501         }
1502         return hlist_entry(stable_node->hlist.first,
1503                            typeof(*stable_node), hlist_dup);
1504 }
1505
1506 /*
1507  * Like for get_ksm_page, this function can free the *_stable_node and
1508  * *_stable_node_dup if the returned tree_page is NULL.
1509  *
1510  * It can also free and overwrite *_stable_node with the found
1511  * stable_node_dup if the chain is collapsed (in which case
1512  * *_stable_node will be equal to *_stable_node_dup like if the chain
1513  * never existed). It's up to the caller to verify tree_page is not
1514  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1515  *
1516  * *_stable_node_dup is really a second output parameter of this
1517  * function and will be overwritten in all cases, the caller doesn't
1518  * need to initialize it.
1519  */
1520 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1521                                         struct ksm_stable_node **_stable_node,
1522                                         struct rb_root *root,
1523                                         bool prune_stale_stable_nodes)
1524 {
1525         struct ksm_stable_node *stable_node = *_stable_node;
1526         if (!is_stable_node_chain(stable_node)) {
1527                 if (is_page_sharing_candidate(stable_node)) {
1528                         *_stable_node_dup = stable_node;
1529                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1530                 }
1531                 /*
1532                  * _stable_node_dup set to NULL means the stable_node
1533                  * reached the ksm_max_page_sharing limit.
1534                  */
1535                 *_stable_node_dup = NULL;
1536                 return NULL;
1537         }
1538         return stable_node_dup(_stable_node_dup, _stable_node, root,
1539                                prune_stale_stable_nodes);
1540 }
1541
1542 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1543                                                 struct ksm_stable_node **s_n,
1544                                                 struct rb_root *root)
1545 {
1546         return __stable_node_chain(s_n_d, s_n, root, true);
1547 }
1548
1549 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1550                                           struct ksm_stable_node *s_n,
1551                                           struct rb_root *root)
1552 {
1553         struct ksm_stable_node *old_stable_node = s_n;
1554         struct page *tree_page;
1555
1556         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1557         /* not pruning dups so s_n cannot have changed */
1558         VM_BUG_ON(s_n != old_stable_node);
1559         return tree_page;
1560 }
1561
1562 /*
1563  * stable_tree_search - search for page inside the stable tree
1564  *
1565  * This function checks if there is a page inside the stable tree
1566  * with identical content to the page that we are scanning right now.
1567  *
1568  * This function returns the stable tree node of identical content if found,
1569  * NULL otherwise.
1570  */
1571 static struct page *stable_tree_search(struct page *page)
1572 {
1573         int nid;
1574         struct rb_root *root;
1575         struct rb_node **new;
1576         struct rb_node *parent;
1577         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1578         struct ksm_stable_node *page_node;
1579
1580         page_node = page_stable_node(page);
1581         if (page_node && page_node->head != &migrate_nodes) {
1582                 /* ksm page forked */
1583                 get_page(page);
1584                 return page;
1585         }
1586
1587         nid = get_kpfn_nid(page_to_pfn(page));
1588         root = root_stable_tree + nid;
1589 again:
1590         new = &root->rb_node;
1591         parent = NULL;
1592
1593         while (*new) {
1594                 struct page *tree_page;
1595                 int ret;
1596
1597                 cond_resched();
1598                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1599                 stable_node_any = NULL;
1600                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1601                 /*
1602                  * NOTE: stable_node may have been freed by
1603                  * chain_prune() if the returned stable_node_dup is
1604                  * not NULL. stable_node_dup may have been inserted in
1605                  * the rbtree instead as a regular stable_node (in
1606                  * order to collapse the stable_node chain if a single
1607                  * stable_node dup was found in it). In such case the
1608                  * stable_node is overwritten by the callee to point
1609                  * to the stable_node_dup that was collapsed in the
1610                  * stable rbtree and stable_node will be equal to
1611                  * stable_node_dup like if the chain never existed.
1612                  */
1613                 if (!stable_node_dup) {
1614                         /*
1615                          * Either all stable_node dups were full in
1616                          * this stable_node chain, or this chain was
1617                          * empty and should be rb_erased.
1618                          */
1619                         stable_node_any = stable_node_dup_any(stable_node,
1620                                                               root);
1621                         if (!stable_node_any) {
1622                                 /* rb_erase just run */
1623                                 goto again;
1624                         }
1625                         /*
1626                          * Take any of the stable_node dups page of
1627                          * this stable_node chain to let the tree walk
1628                          * continue. All KSM pages belonging to the
1629                          * stable_node dups in a stable_node chain
1630                          * have the same content and they're
1631                          * write protected at all times. Any will work
1632                          * fine to continue the walk.
1633                          */
1634                         tree_page = get_ksm_page(stable_node_any,
1635                                                  GET_KSM_PAGE_NOLOCK);
1636                 }
1637                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1638                 if (!tree_page) {
1639                         /*
1640                          * If we walked over a stale stable_node,
1641                          * get_ksm_page() will call rb_erase() and it
1642                          * may rebalance the tree from under us. So
1643                          * restart the search from scratch. Returning
1644                          * NULL would be safe too, but we'd generate
1645                          * false negative insertions just because some
1646                          * stable_node was stale.
1647                          */
1648                         goto again;
1649                 }
1650
1651                 ret = memcmp_pages(page, tree_page);
1652                 put_page(tree_page);
1653
1654                 parent = *new;
1655                 if (ret < 0)
1656                         new = &parent->rb_left;
1657                 else if (ret > 0)
1658                         new = &parent->rb_right;
1659                 else {
1660                         if (page_node) {
1661                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1662                                 /*
1663                                  * Test if the migrated page should be merged
1664                                  * into a stable node dup. If the mapcount is
1665                                  * 1 we can migrate it with another KSM page
1666                                  * without adding it to the chain.
1667                                  */
1668                                 if (page_mapcount(page) > 1)
1669                                         goto chain_append;
1670                         }
1671
1672                         if (!stable_node_dup) {
1673                                 /*
1674                                  * If the stable_node is a chain and
1675                                  * we got a payload match in memcmp
1676                                  * but we cannot merge the scanned
1677                                  * page in any of the existing
1678                                  * stable_node dups because they're
1679                                  * all full, we need to wait the
1680                                  * scanned page to find itself a match
1681                                  * in the unstable tree to create a
1682                                  * brand new KSM page to add later to
1683                                  * the dups of this stable_node.
1684                                  */
1685                                 return NULL;
1686                         }
1687
1688                         /*
1689                          * Lock and unlock the stable_node's page (which
1690                          * might already have been migrated) so that page
1691                          * migration is sure to notice its raised count.
1692                          * It would be more elegant to return stable_node
1693                          * than kpage, but that involves more changes.
1694                          */
1695                         tree_page = get_ksm_page(stable_node_dup,
1696                                                  GET_KSM_PAGE_TRYLOCK);
1697
1698                         if (PTR_ERR(tree_page) == -EBUSY)
1699                                 return ERR_PTR(-EBUSY);
1700
1701                         if (unlikely(!tree_page))
1702                                 /*
1703                                  * The tree may have been rebalanced,
1704                                  * so re-evaluate parent and new.
1705                                  */
1706                                 goto again;
1707                         unlock_page(tree_page);
1708
1709                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1710                             NUMA(stable_node_dup->nid)) {
1711                                 put_page(tree_page);
1712                                 goto replace;
1713                         }
1714                         return tree_page;
1715                 }
1716         }
1717
1718         if (!page_node)
1719                 return NULL;
1720
1721         list_del(&page_node->list);
1722         DO_NUMA(page_node->nid = nid);
1723         rb_link_node(&page_node->node, parent, new);
1724         rb_insert_color(&page_node->node, root);
1725 out:
1726         if (is_page_sharing_candidate(page_node)) {
1727                 get_page(page);
1728                 return page;
1729         } else
1730                 return NULL;
1731
1732 replace:
1733         /*
1734          * If stable_node was a chain and chain_prune collapsed it,
1735          * stable_node has been updated to be the new regular
1736          * stable_node. A collapse of the chain is indistinguishable
1737          * from the case there was no chain in the stable
1738          * rbtree. Otherwise stable_node is the chain and
1739          * stable_node_dup is the dup to replace.
1740          */
1741         if (stable_node_dup == stable_node) {
1742                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1743                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1744                 /* there is no chain */
1745                 if (page_node) {
1746                         VM_BUG_ON(page_node->head != &migrate_nodes);
1747                         list_del(&page_node->list);
1748                         DO_NUMA(page_node->nid = nid);
1749                         rb_replace_node(&stable_node_dup->node,
1750                                         &page_node->node,
1751                                         root);
1752                         if (is_page_sharing_candidate(page_node))
1753                                 get_page(page);
1754                         else
1755                                 page = NULL;
1756                 } else {
1757                         rb_erase(&stable_node_dup->node, root);
1758                         page = NULL;
1759                 }
1760         } else {
1761                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1762                 __stable_node_dup_del(stable_node_dup);
1763                 if (page_node) {
1764                         VM_BUG_ON(page_node->head != &migrate_nodes);
1765                         list_del(&page_node->list);
1766                         DO_NUMA(page_node->nid = nid);
1767                         stable_node_chain_add_dup(page_node, stable_node);
1768                         if (is_page_sharing_candidate(page_node))
1769                                 get_page(page);
1770                         else
1771                                 page = NULL;
1772                 } else {
1773                         page = NULL;
1774                 }
1775         }
1776         stable_node_dup->head = &migrate_nodes;
1777         list_add(&stable_node_dup->list, stable_node_dup->head);
1778         return page;
1779
1780 chain_append:
1781         /* stable_node_dup could be null if it reached the limit */
1782         if (!stable_node_dup)
1783                 stable_node_dup = stable_node_any;
1784         /*
1785          * If stable_node was a chain and chain_prune collapsed it,
1786          * stable_node has been updated to be the new regular
1787          * stable_node. A collapse of the chain is indistinguishable
1788          * from the case there was no chain in the stable
1789          * rbtree. Otherwise stable_node is the chain and
1790          * stable_node_dup is the dup to replace.
1791          */
1792         if (stable_node_dup == stable_node) {
1793                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1794                 /* chain is missing so create it */
1795                 stable_node = alloc_stable_node_chain(stable_node_dup,
1796                                                       root);
1797                 if (!stable_node)
1798                         return NULL;
1799         }
1800         /*
1801          * Add this stable_node dup that was
1802          * migrated to the stable_node chain
1803          * of the current nid for this page
1804          * content.
1805          */
1806         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1807         VM_BUG_ON(page_node->head != &migrate_nodes);
1808         list_del(&page_node->list);
1809         DO_NUMA(page_node->nid = nid);
1810         stable_node_chain_add_dup(page_node, stable_node);
1811         goto out;
1812 }
1813
1814 /*
1815  * stable_tree_insert - insert stable tree node pointing to new ksm page
1816  * into the stable tree.
1817  *
1818  * This function returns the stable tree node just allocated on success,
1819  * NULL otherwise.
1820  */
1821 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1822 {
1823         int nid;
1824         unsigned long kpfn;
1825         struct rb_root *root;
1826         struct rb_node **new;
1827         struct rb_node *parent;
1828         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1829         bool need_chain = false;
1830
1831         kpfn = page_to_pfn(kpage);
1832         nid = get_kpfn_nid(kpfn);
1833         root = root_stable_tree + nid;
1834 again:
1835         parent = NULL;
1836         new = &root->rb_node;
1837
1838         while (*new) {
1839                 struct page *tree_page;
1840                 int ret;
1841
1842                 cond_resched();
1843                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1844                 stable_node_any = NULL;
1845                 tree_page = chain(&stable_node_dup, stable_node, root);
1846                 if (!stable_node_dup) {
1847                         /*
1848                          * Either all stable_node dups were full in
1849                          * this stable_node chain, or this chain was
1850                          * empty and should be rb_erased.
1851                          */
1852                         stable_node_any = stable_node_dup_any(stable_node,
1853                                                               root);
1854                         if (!stable_node_any) {
1855                                 /* rb_erase just run */
1856                                 goto again;
1857                         }
1858                         /*
1859                          * Take any of the stable_node dups page of
1860                          * this stable_node chain to let the tree walk
1861                          * continue. All KSM pages belonging to the
1862                          * stable_node dups in a stable_node chain
1863                          * have the same content and they're
1864                          * write protected at all times. Any will work
1865                          * fine to continue the walk.
1866                          */
1867                         tree_page = get_ksm_page(stable_node_any,
1868                                                  GET_KSM_PAGE_NOLOCK);
1869                 }
1870                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1871                 if (!tree_page) {
1872                         /*
1873                          * If we walked over a stale stable_node,
1874                          * get_ksm_page() will call rb_erase() and it
1875                          * may rebalance the tree from under us. So
1876                          * restart the search from scratch. Returning
1877                          * NULL would be safe too, but we'd generate
1878                          * false negative insertions just because some
1879                          * stable_node was stale.
1880                          */
1881                         goto again;
1882                 }
1883
1884                 ret = memcmp_pages(kpage, tree_page);
1885                 put_page(tree_page);
1886
1887                 parent = *new;
1888                 if (ret < 0)
1889                         new = &parent->rb_left;
1890                 else if (ret > 0)
1891                         new = &parent->rb_right;
1892                 else {
1893                         need_chain = true;
1894                         break;
1895                 }
1896         }
1897
1898         stable_node_dup = alloc_stable_node();
1899         if (!stable_node_dup)
1900                 return NULL;
1901
1902         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1903         stable_node_dup->kpfn = kpfn;
1904         set_page_stable_node(kpage, stable_node_dup);
1905         stable_node_dup->rmap_hlist_len = 0;
1906         DO_NUMA(stable_node_dup->nid = nid);
1907         if (!need_chain) {
1908                 rb_link_node(&stable_node_dup->node, parent, new);
1909                 rb_insert_color(&stable_node_dup->node, root);
1910         } else {
1911                 if (!is_stable_node_chain(stable_node)) {
1912                         struct ksm_stable_node *orig = stable_node;
1913                         /* chain is missing so create it */
1914                         stable_node = alloc_stable_node_chain(orig, root);
1915                         if (!stable_node) {
1916                                 free_stable_node(stable_node_dup);
1917                                 return NULL;
1918                         }
1919                 }
1920                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1921         }
1922
1923         return stable_node_dup;
1924 }
1925
1926 /*
1927  * unstable_tree_search_insert - search for identical page,
1928  * else insert rmap_item into the unstable tree.
1929  *
1930  * This function searches for a page in the unstable tree identical to the
1931  * page currently being scanned; and if no identical page is found in the
1932  * tree, we insert rmap_item as a new object into the unstable tree.
1933  *
1934  * This function returns pointer to rmap_item found to be identical
1935  * to the currently scanned page, NULL otherwise.
1936  *
1937  * This function does both searching and inserting, because they share
1938  * the same walking algorithm in an rbtree.
1939  */
1940 static
1941 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1942                                               struct page *page,
1943                                               struct page **tree_pagep)
1944 {
1945         struct rb_node **new;
1946         struct rb_root *root;
1947         struct rb_node *parent = NULL;
1948         int nid;
1949
1950         nid = get_kpfn_nid(page_to_pfn(page));
1951         root = root_unstable_tree + nid;
1952         new = &root->rb_node;
1953
1954         while (*new) {
1955                 struct ksm_rmap_item *tree_rmap_item;
1956                 struct page *tree_page;
1957                 int ret;
1958
1959                 cond_resched();
1960                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1961                 tree_page = get_mergeable_page(tree_rmap_item);
1962                 if (!tree_page)
1963                         return NULL;
1964
1965                 /*
1966                  * Don't substitute a ksm page for a forked page.
1967                  */
1968                 if (page == tree_page) {
1969                         put_page(tree_page);
1970                         return NULL;
1971                 }
1972
1973                 ret = memcmp_pages(page, tree_page);
1974
1975                 parent = *new;
1976                 if (ret < 0) {
1977                         put_page(tree_page);
1978                         new = &parent->rb_left;
1979                 } else if (ret > 0) {
1980                         put_page(tree_page);
1981                         new = &parent->rb_right;
1982                 } else if (!ksm_merge_across_nodes &&
1983                            page_to_nid(tree_page) != nid) {
1984                         /*
1985                          * If tree_page has been migrated to another NUMA node,
1986                          * it will be flushed out and put in the right unstable
1987                          * tree next time: only merge with it when across_nodes.
1988                          */
1989                         put_page(tree_page);
1990                         return NULL;
1991                 } else {
1992                         *tree_pagep = tree_page;
1993                         return tree_rmap_item;
1994                 }
1995         }
1996
1997         rmap_item->address |= UNSTABLE_FLAG;
1998         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1999         DO_NUMA(rmap_item->nid = nid);
2000         rb_link_node(&rmap_item->node, parent, new);
2001         rb_insert_color(&rmap_item->node, root);
2002
2003         ksm_pages_unshared++;
2004         return NULL;
2005 }
2006
2007 /*
2008  * stable_tree_append - add another rmap_item to the linked list of
2009  * rmap_items hanging off a given node of the stable tree, all sharing
2010  * the same ksm page.
2011  */
2012 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2013                                struct ksm_stable_node *stable_node,
2014                                bool max_page_sharing_bypass)
2015 {
2016         /*
2017          * rmap won't find this mapping if we don't insert the
2018          * rmap_item in the right stable_node
2019          * duplicate. page_migration could break later if rmap breaks,
2020          * so we can as well crash here. We really need to check for
2021          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2022          * for other negative values as an underflow if detected here
2023          * for the first time (and not when decreasing rmap_hlist_len)
2024          * would be sign of memory corruption in the stable_node.
2025          */
2026         BUG_ON(stable_node->rmap_hlist_len < 0);
2027
2028         stable_node->rmap_hlist_len++;
2029         if (!max_page_sharing_bypass)
2030                 /* possibly non fatal but unexpected overflow, only warn */
2031                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2032                              ksm_max_page_sharing);
2033
2034         rmap_item->head = stable_node;
2035         rmap_item->address |= STABLE_FLAG;
2036         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2037
2038         if (rmap_item->hlist.next)
2039                 ksm_pages_sharing++;
2040         else
2041                 ksm_pages_shared++;
2042
2043         rmap_item->mm->ksm_merging_pages++;
2044 }
2045
2046 /*
2047  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2048  * if not, compare checksum to previous and if it's the same, see if page can
2049  * be inserted into the unstable tree, or merged with a page already there and
2050  * both transferred to the stable tree.
2051  *
2052  * @page: the page that we are searching identical page to.
2053  * @rmap_item: the reverse mapping into the virtual address of this page
2054  */
2055 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2056 {
2057         struct mm_struct *mm = rmap_item->mm;
2058         struct ksm_rmap_item *tree_rmap_item;
2059         struct page *tree_page = NULL;
2060         struct ksm_stable_node *stable_node;
2061         struct page *kpage;
2062         unsigned int checksum;
2063         int err;
2064         bool max_page_sharing_bypass = false;
2065
2066         stable_node = page_stable_node(page);
2067         if (stable_node) {
2068                 if (stable_node->head != &migrate_nodes &&
2069                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2070                     NUMA(stable_node->nid)) {
2071                         stable_node_dup_del(stable_node);
2072                         stable_node->head = &migrate_nodes;
2073                         list_add(&stable_node->list, stable_node->head);
2074                 }
2075                 if (stable_node->head != &migrate_nodes &&
2076                     rmap_item->head == stable_node)
2077                         return;
2078                 /*
2079                  * If it's a KSM fork, allow it to go over the sharing limit
2080                  * without warnings.
2081                  */
2082                 if (!is_page_sharing_candidate(stable_node))
2083                         max_page_sharing_bypass = true;
2084         }
2085
2086         /* We first start with searching the page inside the stable tree */
2087         kpage = stable_tree_search(page);
2088         if (kpage == page && rmap_item->head == stable_node) {
2089                 put_page(kpage);
2090                 return;
2091         }
2092
2093         remove_rmap_item_from_tree(rmap_item);
2094
2095         if (kpage) {
2096                 if (PTR_ERR(kpage) == -EBUSY)
2097                         return;
2098
2099                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2100                 if (!err) {
2101                         /*
2102                          * The page was successfully merged:
2103                          * add its rmap_item to the stable tree.
2104                          */
2105                         lock_page(kpage);
2106                         stable_tree_append(rmap_item, page_stable_node(kpage),
2107                                            max_page_sharing_bypass);
2108                         unlock_page(kpage);
2109                 }
2110                 put_page(kpage);
2111                 return;
2112         }
2113
2114         /*
2115          * If the hash value of the page has changed from the last time
2116          * we calculated it, this page is changing frequently: therefore we
2117          * don't want to insert it in the unstable tree, and we don't want
2118          * to waste our time searching for something identical to it there.
2119          */
2120         checksum = calc_checksum(page);
2121         if (rmap_item->oldchecksum != checksum) {
2122                 rmap_item->oldchecksum = checksum;
2123                 return;
2124         }
2125
2126         /*
2127          * Same checksum as an empty page. We attempt to merge it with the
2128          * appropriate zero page if the user enabled this via sysfs.
2129          */
2130         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2131                 struct vm_area_struct *vma;
2132
2133                 mmap_read_lock(mm);
2134                 vma = find_mergeable_vma(mm, rmap_item->address);
2135                 if (vma) {
2136                         err = try_to_merge_one_page(vma, page,
2137                                         ZERO_PAGE(rmap_item->address));
2138                 } else {
2139                         /*
2140                          * If the vma is out of date, we do not need to
2141                          * continue.
2142                          */
2143                         err = 0;
2144                 }
2145                 mmap_read_unlock(mm);
2146                 /*
2147                  * In case of failure, the page was not really empty, so we
2148                  * need to continue. Otherwise we're done.
2149                  */
2150                 if (!err)
2151                         return;
2152         }
2153         tree_rmap_item =
2154                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2155         if (tree_rmap_item) {
2156                 bool split;
2157
2158                 kpage = try_to_merge_two_pages(rmap_item, page,
2159                                                 tree_rmap_item, tree_page);
2160                 /*
2161                  * If both pages we tried to merge belong to the same compound
2162                  * page, then we actually ended up increasing the reference
2163                  * count of the same compound page twice, and split_huge_page
2164                  * failed.
2165                  * Here we set a flag if that happened, and we use it later to
2166                  * try split_huge_page again. Since we call put_page right
2167                  * afterwards, the reference count will be correct and
2168                  * split_huge_page should succeed.
2169                  */
2170                 split = PageTransCompound(page)
2171                         && compound_head(page) == compound_head(tree_page);
2172                 put_page(tree_page);
2173                 if (kpage) {
2174                         /*
2175                          * The pages were successfully merged: insert new
2176                          * node in the stable tree and add both rmap_items.
2177                          */
2178                         lock_page(kpage);
2179                         stable_node = stable_tree_insert(kpage);
2180                         if (stable_node) {
2181                                 stable_tree_append(tree_rmap_item, stable_node,
2182                                                    false);
2183                                 stable_tree_append(rmap_item, stable_node,
2184                                                    false);
2185                         }
2186                         unlock_page(kpage);
2187
2188                         /*
2189                          * If we fail to insert the page into the stable tree,
2190                          * we will have 2 virtual addresses that are pointing
2191                          * to a ksm page left outside the stable tree,
2192                          * in which case we need to break_cow on both.
2193                          */
2194                         if (!stable_node) {
2195                                 break_cow(tree_rmap_item);
2196                                 break_cow(rmap_item);
2197                         }
2198                 } else if (split) {
2199                         /*
2200                          * We are here if we tried to merge two pages and
2201                          * failed because they both belonged to the same
2202                          * compound page. We will split the page now, but no
2203                          * merging will take place.
2204                          * We do not want to add the cost of a full lock; if
2205                          * the page is locked, it is better to skip it and
2206                          * perhaps try again later.
2207                          */
2208                         if (!trylock_page(page))
2209                                 return;
2210                         split_huge_page(page);
2211                         unlock_page(page);
2212                 }
2213         }
2214 }
2215
2216 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2217                                             struct ksm_rmap_item **rmap_list,
2218                                             unsigned long addr)
2219 {
2220         struct ksm_rmap_item *rmap_item;
2221
2222         while (*rmap_list) {
2223                 rmap_item = *rmap_list;
2224                 if ((rmap_item->address & PAGE_MASK) == addr)
2225                         return rmap_item;
2226                 if (rmap_item->address > addr)
2227                         break;
2228                 *rmap_list = rmap_item->rmap_list;
2229                 remove_rmap_item_from_tree(rmap_item);
2230                 free_rmap_item(rmap_item);
2231         }
2232
2233         rmap_item = alloc_rmap_item();
2234         if (rmap_item) {
2235                 /* It has already been zeroed */
2236                 rmap_item->mm = mm_slot->slot.mm;
2237                 rmap_item->mm->ksm_rmap_items++;
2238                 rmap_item->address = addr;
2239                 rmap_item->rmap_list = *rmap_list;
2240                 *rmap_list = rmap_item;
2241         }
2242         return rmap_item;
2243 }
2244
2245 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2246 {
2247         struct mm_struct *mm;
2248         struct ksm_mm_slot *mm_slot;
2249         struct mm_slot *slot;
2250         struct vm_area_struct *vma;
2251         struct ksm_rmap_item *rmap_item;
2252         struct vma_iterator vmi;
2253         int nid;
2254
2255         if (list_empty(&ksm_mm_head.slot.mm_node))
2256                 return NULL;
2257
2258         mm_slot = ksm_scan.mm_slot;
2259         if (mm_slot == &ksm_mm_head) {
2260                 /*
2261                  * A number of pages can hang around indefinitely on per-cpu
2262                  * pagevecs, raised page count preventing write_protect_page
2263                  * from merging them.  Though it doesn't really matter much,
2264                  * it is puzzling to see some stuck in pages_volatile until
2265                  * other activity jostles them out, and they also prevented
2266                  * LTP's KSM test from succeeding deterministically; so drain
2267                  * them here (here rather than on entry to ksm_do_scan(),
2268                  * so we don't IPI too often when pages_to_scan is set low).
2269                  */
2270                 lru_add_drain_all();
2271
2272                 /*
2273                  * Whereas stale stable_nodes on the stable_tree itself
2274                  * get pruned in the regular course of stable_tree_search(),
2275                  * those moved out to the migrate_nodes list can accumulate:
2276                  * so prune them once before each full scan.
2277                  */
2278                 if (!ksm_merge_across_nodes) {
2279                         struct ksm_stable_node *stable_node, *next;
2280                         struct page *page;
2281
2282                         list_for_each_entry_safe(stable_node, next,
2283                                                  &migrate_nodes, list) {
2284                                 page = get_ksm_page(stable_node,
2285                                                     GET_KSM_PAGE_NOLOCK);
2286                                 if (page)
2287                                         put_page(page);
2288                                 cond_resched();
2289                         }
2290                 }
2291
2292                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2293                         root_unstable_tree[nid] = RB_ROOT;
2294
2295                 spin_lock(&ksm_mmlist_lock);
2296                 slot = list_entry(mm_slot->slot.mm_node.next,
2297                                   struct mm_slot, mm_node);
2298                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2299                 ksm_scan.mm_slot = mm_slot;
2300                 spin_unlock(&ksm_mmlist_lock);
2301                 /*
2302                  * Although we tested list_empty() above, a racing __ksm_exit
2303                  * of the last mm on the list may have removed it since then.
2304                  */
2305                 if (mm_slot == &ksm_mm_head)
2306                         return NULL;
2307 next_mm:
2308                 ksm_scan.address = 0;
2309                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2310         }
2311
2312         slot = &mm_slot->slot;
2313         mm = slot->mm;
2314         vma_iter_init(&vmi, mm, ksm_scan.address);
2315
2316         mmap_read_lock(mm);
2317         if (ksm_test_exit(mm))
2318                 goto no_vmas;
2319
2320         for_each_vma(vmi, vma) {
2321                 if (!(vma->vm_flags & VM_MERGEABLE))
2322                         continue;
2323                 if (ksm_scan.address < vma->vm_start)
2324                         ksm_scan.address = vma->vm_start;
2325                 if (!vma->anon_vma)
2326                         ksm_scan.address = vma->vm_end;
2327
2328                 while (ksm_scan.address < vma->vm_end) {
2329                         if (ksm_test_exit(mm))
2330                                 break;
2331                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2332                         if (IS_ERR_OR_NULL(*page)) {
2333                                 ksm_scan.address += PAGE_SIZE;
2334                                 cond_resched();
2335                                 continue;
2336                         }
2337                         if (is_zone_device_page(*page))
2338                                 goto next_page;
2339                         if (PageAnon(*page)) {
2340                                 flush_anon_page(vma, *page, ksm_scan.address);
2341                                 flush_dcache_page(*page);
2342                                 rmap_item = get_next_rmap_item(mm_slot,
2343                                         ksm_scan.rmap_list, ksm_scan.address);
2344                                 if (rmap_item) {
2345                                         ksm_scan.rmap_list =
2346                                                         &rmap_item->rmap_list;
2347                                         ksm_scan.address += PAGE_SIZE;
2348                                 } else
2349                                         put_page(*page);
2350                                 mmap_read_unlock(mm);
2351                                 return rmap_item;
2352                         }
2353 next_page:
2354                         put_page(*page);
2355                         ksm_scan.address += PAGE_SIZE;
2356                         cond_resched();
2357                 }
2358         }
2359
2360         if (ksm_test_exit(mm)) {
2361 no_vmas:
2362                 ksm_scan.address = 0;
2363                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2364         }
2365         /*
2366          * Nuke all the rmap_items that are above this current rmap:
2367          * because there were no VM_MERGEABLE vmas with such addresses.
2368          */
2369         remove_trailing_rmap_items(ksm_scan.rmap_list);
2370
2371         spin_lock(&ksm_mmlist_lock);
2372         slot = list_entry(mm_slot->slot.mm_node.next,
2373                           struct mm_slot, mm_node);
2374         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2375         if (ksm_scan.address == 0) {
2376                 /*
2377                  * We've completed a full scan of all vmas, holding mmap_lock
2378                  * throughout, and found no VM_MERGEABLE: so do the same as
2379                  * __ksm_exit does to remove this mm from all our lists now.
2380                  * This applies either when cleaning up after __ksm_exit
2381                  * (but beware: we can reach here even before __ksm_exit),
2382                  * or when all VM_MERGEABLE areas have been unmapped (and
2383                  * mmap_lock then protects against race with MADV_MERGEABLE).
2384                  */
2385                 hash_del(&mm_slot->slot.hash);
2386                 list_del(&mm_slot->slot.mm_node);
2387                 spin_unlock(&ksm_mmlist_lock);
2388
2389                 mm_slot_free(mm_slot_cache, mm_slot);
2390                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2391                 mmap_read_unlock(mm);
2392                 mmdrop(mm);
2393         } else {
2394                 mmap_read_unlock(mm);
2395                 /*
2396                  * mmap_read_unlock(mm) first because after
2397                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2398                  * already have been freed under us by __ksm_exit()
2399                  * because the "mm_slot" is still hashed and
2400                  * ksm_scan.mm_slot doesn't point to it anymore.
2401                  */
2402                 spin_unlock(&ksm_mmlist_lock);
2403         }
2404
2405         /* Repeat until we've completed scanning the whole list */
2406         mm_slot = ksm_scan.mm_slot;
2407         if (mm_slot != &ksm_mm_head)
2408                 goto next_mm;
2409
2410         ksm_scan.seqnr++;
2411         return NULL;
2412 }
2413
2414 /**
2415  * ksm_do_scan  - the ksm scanner main worker function.
2416  * @scan_npages:  number of pages we want to scan before we return.
2417  */
2418 static void ksm_do_scan(unsigned int scan_npages)
2419 {
2420         struct ksm_rmap_item *rmap_item;
2421         struct page *page;
2422
2423         while (scan_npages-- && likely(!freezing(current))) {
2424                 cond_resched();
2425                 rmap_item = scan_get_next_rmap_item(&page);
2426                 if (!rmap_item)
2427                         return;
2428                 cmp_and_merge_page(page, rmap_item);
2429                 put_page(page);
2430         }
2431 }
2432
2433 static int ksmd_should_run(void)
2434 {
2435         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2436 }
2437
2438 static int ksm_scan_thread(void *nothing)
2439 {
2440         unsigned int sleep_ms;
2441
2442         set_freezable();
2443         set_user_nice(current, 5);
2444
2445         while (!kthread_should_stop()) {
2446                 mutex_lock(&ksm_thread_mutex);
2447                 wait_while_offlining();
2448                 if (ksmd_should_run())
2449                         ksm_do_scan(ksm_thread_pages_to_scan);
2450                 mutex_unlock(&ksm_thread_mutex);
2451
2452                 try_to_freeze();
2453
2454                 if (ksmd_should_run()) {
2455                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2456                         wait_event_interruptible_timeout(ksm_iter_wait,
2457                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2458                                 msecs_to_jiffies(sleep_ms));
2459                 } else {
2460                         wait_event_freezable(ksm_thread_wait,
2461                                 ksmd_should_run() || kthread_should_stop());
2462                 }
2463         }
2464         return 0;
2465 }
2466
2467 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2468                 unsigned long end, int advice, unsigned long *vm_flags)
2469 {
2470         struct mm_struct *mm = vma->vm_mm;
2471         int err;
2472
2473         switch (advice) {
2474         case MADV_MERGEABLE:
2475                 /*
2476                  * Be somewhat over-protective for now!
2477                  */
2478                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2479                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2480                                  VM_HUGETLB | VM_MIXEDMAP))
2481                         return 0;               /* just ignore the advice */
2482
2483                 if (vma_is_dax(vma))
2484                         return 0;
2485
2486 #ifdef VM_SAO
2487                 if (*vm_flags & VM_SAO)
2488                         return 0;
2489 #endif
2490 #ifdef VM_SPARC_ADI
2491                 if (*vm_flags & VM_SPARC_ADI)
2492                         return 0;
2493 #endif
2494
2495                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2496                         err = __ksm_enter(mm);
2497                         if (err)
2498                                 return err;
2499                 }
2500
2501                 *vm_flags |= VM_MERGEABLE;
2502                 break;
2503
2504         case MADV_UNMERGEABLE:
2505                 if (!(*vm_flags & VM_MERGEABLE))
2506                         return 0;               /* just ignore the advice */
2507
2508                 if (vma->anon_vma) {
2509                         err = unmerge_ksm_pages(vma, start, end);
2510                         if (err)
2511                                 return err;
2512                 }
2513
2514                 *vm_flags &= ~VM_MERGEABLE;
2515                 break;
2516         }
2517
2518         return 0;
2519 }
2520 EXPORT_SYMBOL_GPL(ksm_madvise);
2521
2522 int __ksm_enter(struct mm_struct *mm)
2523 {
2524         struct ksm_mm_slot *mm_slot;
2525         struct mm_slot *slot;
2526         int needs_wakeup;
2527
2528         mm_slot = mm_slot_alloc(mm_slot_cache);
2529         if (!mm_slot)
2530                 return -ENOMEM;
2531
2532         slot = &mm_slot->slot;
2533
2534         /* Check ksm_run too?  Would need tighter locking */
2535         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2536
2537         spin_lock(&ksm_mmlist_lock);
2538         mm_slot_insert(mm_slots_hash, mm, slot);
2539         /*
2540          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2541          * insert just behind the scanning cursor, to let the area settle
2542          * down a little; when fork is followed by immediate exec, we don't
2543          * want ksmd to waste time setting up and tearing down an rmap_list.
2544          *
2545          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2546          * scanning cursor, otherwise KSM pages in newly forked mms will be
2547          * missed: then we might as well insert at the end of the list.
2548          */
2549         if (ksm_run & KSM_RUN_UNMERGE)
2550                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2551         else
2552                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2553         spin_unlock(&ksm_mmlist_lock);
2554
2555         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2556         mmgrab(mm);
2557
2558         if (needs_wakeup)
2559                 wake_up_interruptible(&ksm_thread_wait);
2560
2561         return 0;
2562 }
2563
2564 void __ksm_exit(struct mm_struct *mm)
2565 {
2566         struct ksm_mm_slot *mm_slot;
2567         struct mm_slot *slot;
2568         int easy_to_free = 0;
2569
2570         /*
2571          * This process is exiting: if it's straightforward (as is the
2572          * case when ksmd was never running), free mm_slot immediately.
2573          * But if it's at the cursor or has rmap_items linked to it, use
2574          * mmap_lock to synchronize with any break_cows before pagetables
2575          * are freed, and leave the mm_slot on the list for ksmd to free.
2576          * Beware: ksm may already have noticed it exiting and freed the slot.
2577          */
2578
2579         spin_lock(&ksm_mmlist_lock);
2580         slot = mm_slot_lookup(mm_slots_hash, mm);
2581         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2582         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2583                 if (!mm_slot->rmap_list) {
2584                         hash_del(&slot->hash);
2585                         list_del(&slot->mm_node);
2586                         easy_to_free = 1;
2587                 } else {
2588                         list_move(&slot->mm_node,
2589                                   &ksm_scan.mm_slot->slot.mm_node);
2590                 }
2591         }
2592         spin_unlock(&ksm_mmlist_lock);
2593
2594         if (easy_to_free) {
2595                 mm_slot_free(mm_slot_cache, mm_slot);
2596                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2597                 mmdrop(mm);
2598         } else if (mm_slot) {
2599                 mmap_write_lock(mm);
2600                 mmap_write_unlock(mm);
2601         }
2602 }
2603
2604 struct page *ksm_might_need_to_copy(struct page *page,
2605                         struct vm_area_struct *vma, unsigned long address)
2606 {
2607         struct folio *folio = page_folio(page);
2608         struct anon_vma *anon_vma = folio_anon_vma(folio);
2609         struct page *new_page;
2610
2611         if (PageKsm(page)) {
2612                 if (page_stable_node(page) &&
2613                     !(ksm_run & KSM_RUN_UNMERGE))
2614                         return page;    /* no need to copy it */
2615         } else if (!anon_vma) {
2616                 return page;            /* no need to copy it */
2617         } else if (page->index == linear_page_index(vma, address) &&
2618                         anon_vma->root == vma->anon_vma->root) {
2619                 return page;            /* still no need to copy it */
2620         }
2621         if (!PageUptodate(page))
2622                 return page;            /* let do_swap_page report the error */
2623
2624         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2625         if (new_page &&
2626             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2627                 put_page(new_page);
2628                 new_page = NULL;
2629         }
2630         if (new_page) {
2631                 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2632                         put_page(new_page);
2633                         memory_failure_queue(page_to_pfn(page), 0);
2634                         return ERR_PTR(-EHWPOISON);
2635                 }
2636                 SetPageDirty(new_page);
2637                 __SetPageUptodate(new_page);
2638                 __SetPageLocked(new_page);
2639 #ifdef CONFIG_SWAP
2640                 count_vm_event(KSM_SWPIN_COPY);
2641 #endif
2642         }
2643
2644         return new_page;
2645 }
2646
2647 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2648 {
2649         struct ksm_stable_node *stable_node;
2650         struct ksm_rmap_item *rmap_item;
2651         int search_new_forks = 0;
2652
2653         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2654
2655         /*
2656          * Rely on the page lock to protect against concurrent modifications
2657          * to that page's node of the stable tree.
2658          */
2659         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2660
2661         stable_node = folio_stable_node(folio);
2662         if (!stable_node)
2663                 return;
2664 again:
2665         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2666                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2667                 struct anon_vma_chain *vmac;
2668                 struct vm_area_struct *vma;
2669
2670                 cond_resched();
2671                 if (!anon_vma_trylock_read(anon_vma)) {
2672                         if (rwc->try_lock) {
2673                                 rwc->contended = true;
2674                                 return;
2675                         }
2676                         anon_vma_lock_read(anon_vma);
2677                 }
2678                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2679                                                0, ULONG_MAX) {
2680                         unsigned long addr;
2681
2682                         cond_resched();
2683                         vma = vmac->vma;
2684
2685                         /* Ignore the stable/unstable/sqnr flags */
2686                         addr = rmap_item->address & PAGE_MASK;
2687
2688                         if (addr < vma->vm_start || addr >= vma->vm_end)
2689                                 continue;
2690                         /*
2691                          * Initially we examine only the vma which covers this
2692                          * rmap_item; but later, if there is still work to do,
2693                          * we examine covering vmas in other mms: in case they
2694                          * were forked from the original since ksmd passed.
2695                          */
2696                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2697                                 continue;
2698
2699                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2700                                 continue;
2701
2702                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2703                                 anon_vma_unlock_read(anon_vma);
2704                                 return;
2705                         }
2706                         if (rwc->done && rwc->done(folio)) {
2707                                 anon_vma_unlock_read(anon_vma);
2708                                 return;
2709                         }
2710                 }
2711                 anon_vma_unlock_read(anon_vma);
2712         }
2713         if (!search_new_forks++)
2714                 goto again;
2715 }
2716
2717 #ifdef CONFIG_MIGRATION
2718 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2719 {
2720         struct ksm_stable_node *stable_node;
2721
2722         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2723         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2724         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2725
2726         stable_node = folio_stable_node(folio);
2727         if (stable_node) {
2728                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2729                 stable_node->kpfn = folio_pfn(newfolio);
2730                 /*
2731                  * newfolio->mapping was set in advance; now we need smp_wmb()
2732                  * to make sure that the new stable_node->kpfn is visible
2733                  * to get_ksm_page() before it can see that folio->mapping
2734                  * has gone stale (or that folio_test_swapcache has been cleared).
2735                  */
2736                 smp_wmb();
2737                 set_page_stable_node(&folio->page, NULL);
2738         }
2739 }
2740 #endif /* CONFIG_MIGRATION */
2741
2742 #ifdef CONFIG_MEMORY_HOTREMOVE
2743 static void wait_while_offlining(void)
2744 {
2745         while (ksm_run & KSM_RUN_OFFLINE) {
2746                 mutex_unlock(&ksm_thread_mutex);
2747                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2748                             TASK_UNINTERRUPTIBLE);
2749                 mutex_lock(&ksm_thread_mutex);
2750         }
2751 }
2752
2753 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2754                                          unsigned long start_pfn,
2755                                          unsigned long end_pfn)
2756 {
2757         if (stable_node->kpfn >= start_pfn &&
2758             stable_node->kpfn < end_pfn) {
2759                 /*
2760                  * Don't get_ksm_page, page has already gone:
2761                  * which is why we keep kpfn instead of page*
2762                  */
2763                 remove_node_from_stable_tree(stable_node);
2764                 return true;
2765         }
2766         return false;
2767 }
2768
2769 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2770                                            unsigned long start_pfn,
2771                                            unsigned long end_pfn,
2772                                            struct rb_root *root)
2773 {
2774         struct ksm_stable_node *dup;
2775         struct hlist_node *hlist_safe;
2776
2777         if (!is_stable_node_chain(stable_node)) {
2778                 VM_BUG_ON(is_stable_node_dup(stable_node));
2779                 return stable_node_dup_remove_range(stable_node, start_pfn,
2780                                                     end_pfn);
2781         }
2782
2783         hlist_for_each_entry_safe(dup, hlist_safe,
2784                                   &stable_node->hlist, hlist_dup) {
2785                 VM_BUG_ON(!is_stable_node_dup(dup));
2786                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2787         }
2788         if (hlist_empty(&stable_node->hlist)) {
2789                 free_stable_node_chain(stable_node, root);
2790                 return true; /* notify caller that tree was rebalanced */
2791         } else
2792                 return false;
2793 }
2794
2795 static void ksm_check_stable_tree(unsigned long start_pfn,
2796                                   unsigned long end_pfn)
2797 {
2798         struct ksm_stable_node *stable_node, *next;
2799         struct rb_node *node;
2800         int nid;
2801
2802         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2803                 node = rb_first(root_stable_tree + nid);
2804                 while (node) {
2805                         stable_node = rb_entry(node, struct ksm_stable_node, node);
2806                         if (stable_node_chain_remove_range(stable_node,
2807                                                            start_pfn, end_pfn,
2808                                                            root_stable_tree +
2809                                                            nid))
2810                                 node = rb_first(root_stable_tree + nid);
2811                         else
2812                                 node = rb_next(node);
2813                         cond_resched();
2814                 }
2815         }
2816         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2817                 if (stable_node->kpfn >= start_pfn &&
2818                     stable_node->kpfn < end_pfn)
2819                         remove_node_from_stable_tree(stable_node);
2820                 cond_resched();
2821         }
2822 }
2823
2824 static int ksm_memory_callback(struct notifier_block *self,
2825                                unsigned long action, void *arg)
2826 {
2827         struct memory_notify *mn = arg;
2828
2829         switch (action) {
2830         case MEM_GOING_OFFLINE:
2831                 /*
2832                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2833                  * and remove_all_stable_nodes() while memory is going offline:
2834                  * it is unsafe for them to touch the stable tree at this time.
2835                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2836                  * which do not need the ksm_thread_mutex are all safe.
2837                  */
2838                 mutex_lock(&ksm_thread_mutex);
2839                 ksm_run |= KSM_RUN_OFFLINE;
2840                 mutex_unlock(&ksm_thread_mutex);
2841                 break;
2842
2843         case MEM_OFFLINE:
2844                 /*
2845                  * Most of the work is done by page migration; but there might
2846                  * be a few stable_nodes left over, still pointing to struct
2847                  * pages which have been offlined: prune those from the tree,
2848                  * otherwise get_ksm_page() might later try to access a
2849                  * non-existent struct page.
2850                  */
2851                 ksm_check_stable_tree(mn->start_pfn,
2852                                       mn->start_pfn + mn->nr_pages);
2853                 fallthrough;
2854         case MEM_CANCEL_OFFLINE:
2855                 mutex_lock(&ksm_thread_mutex);
2856                 ksm_run &= ~KSM_RUN_OFFLINE;
2857                 mutex_unlock(&ksm_thread_mutex);
2858
2859                 smp_mb();       /* wake_up_bit advises this */
2860                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2861                 break;
2862         }
2863         return NOTIFY_OK;
2864 }
2865 #else
2866 static void wait_while_offlining(void)
2867 {
2868 }
2869 #endif /* CONFIG_MEMORY_HOTREMOVE */
2870
2871 #ifdef CONFIG_SYSFS
2872 /*
2873  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2874  */
2875
2876 #define KSM_ATTR_RO(_name) \
2877         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2878 #define KSM_ATTR(_name) \
2879         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2880
2881 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2882                                     struct kobj_attribute *attr, char *buf)
2883 {
2884         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2885 }
2886
2887 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2888                                      struct kobj_attribute *attr,
2889                                      const char *buf, size_t count)
2890 {
2891         unsigned int msecs;
2892         int err;
2893
2894         err = kstrtouint(buf, 10, &msecs);
2895         if (err)
2896                 return -EINVAL;
2897
2898         ksm_thread_sleep_millisecs = msecs;
2899         wake_up_interruptible(&ksm_iter_wait);
2900
2901         return count;
2902 }
2903 KSM_ATTR(sleep_millisecs);
2904
2905 static ssize_t pages_to_scan_show(struct kobject *kobj,
2906                                   struct kobj_attribute *attr, char *buf)
2907 {
2908         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2909 }
2910
2911 static ssize_t pages_to_scan_store(struct kobject *kobj,
2912                                    struct kobj_attribute *attr,
2913                                    const char *buf, size_t count)
2914 {
2915         unsigned int nr_pages;
2916         int err;
2917
2918         err = kstrtouint(buf, 10, &nr_pages);
2919         if (err)
2920                 return -EINVAL;
2921
2922         ksm_thread_pages_to_scan = nr_pages;
2923
2924         return count;
2925 }
2926 KSM_ATTR(pages_to_scan);
2927
2928 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2929                         char *buf)
2930 {
2931         return sysfs_emit(buf, "%lu\n", ksm_run);
2932 }
2933
2934 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2935                          const char *buf, size_t count)
2936 {
2937         unsigned int flags;
2938         int err;
2939
2940         err = kstrtouint(buf, 10, &flags);
2941         if (err)
2942                 return -EINVAL;
2943         if (flags > KSM_RUN_UNMERGE)
2944                 return -EINVAL;
2945
2946         /*
2947          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2948          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2949          * breaking COW to free the pages_shared (but leaves mm_slots
2950          * on the list for when ksmd may be set running again).
2951          */
2952
2953         mutex_lock(&ksm_thread_mutex);
2954         wait_while_offlining();
2955         if (ksm_run != flags) {
2956                 ksm_run = flags;
2957                 if (flags & KSM_RUN_UNMERGE) {
2958                         set_current_oom_origin();
2959                         err = unmerge_and_remove_all_rmap_items();
2960                         clear_current_oom_origin();
2961                         if (err) {
2962                                 ksm_run = KSM_RUN_STOP;
2963                                 count = err;
2964                         }
2965                 }
2966         }
2967         mutex_unlock(&ksm_thread_mutex);
2968
2969         if (flags & KSM_RUN_MERGE)
2970                 wake_up_interruptible(&ksm_thread_wait);
2971
2972         return count;
2973 }
2974 KSM_ATTR(run);
2975
2976 #ifdef CONFIG_NUMA
2977 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2978                                        struct kobj_attribute *attr, char *buf)
2979 {
2980         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2981 }
2982
2983 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2984                                    struct kobj_attribute *attr,
2985                                    const char *buf, size_t count)
2986 {
2987         int err;
2988         unsigned long knob;
2989
2990         err = kstrtoul(buf, 10, &knob);
2991         if (err)
2992                 return err;
2993         if (knob > 1)
2994                 return -EINVAL;
2995
2996         mutex_lock(&ksm_thread_mutex);
2997         wait_while_offlining();
2998         if (ksm_merge_across_nodes != knob) {
2999                 if (ksm_pages_shared || remove_all_stable_nodes())
3000                         err = -EBUSY;
3001                 else if (root_stable_tree == one_stable_tree) {
3002                         struct rb_root *buf;
3003                         /*
3004                          * This is the first time that we switch away from the
3005                          * default of merging across nodes: must now allocate
3006                          * a buffer to hold as many roots as may be needed.
3007                          * Allocate stable and unstable together:
3008                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3009                          */
3010                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3011                                       GFP_KERNEL);
3012                         /* Let us assume that RB_ROOT is NULL is zero */
3013                         if (!buf)
3014                                 err = -ENOMEM;
3015                         else {
3016                                 root_stable_tree = buf;
3017                                 root_unstable_tree = buf + nr_node_ids;
3018                                 /* Stable tree is empty but not the unstable */
3019                                 root_unstable_tree[0] = one_unstable_tree[0];
3020                         }
3021                 }
3022                 if (!err) {
3023                         ksm_merge_across_nodes = knob;
3024                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3025                 }
3026         }
3027         mutex_unlock(&ksm_thread_mutex);
3028
3029         return err ? err : count;
3030 }
3031 KSM_ATTR(merge_across_nodes);
3032 #endif
3033
3034 static ssize_t use_zero_pages_show(struct kobject *kobj,
3035                                    struct kobj_attribute *attr, char *buf)
3036 {
3037         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3038 }
3039 static ssize_t use_zero_pages_store(struct kobject *kobj,
3040                                    struct kobj_attribute *attr,
3041                                    const char *buf, size_t count)
3042 {
3043         int err;
3044         bool value;
3045
3046         err = kstrtobool(buf, &value);
3047         if (err)
3048                 return -EINVAL;
3049
3050         ksm_use_zero_pages = value;
3051
3052         return count;
3053 }
3054 KSM_ATTR(use_zero_pages);
3055
3056 static ssize_t max_page_sharing_show(struct kobject *kobj,
3057                                      struct kobj_attribute *attr, char *buf)
3058 {
3059         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3060 }
3061
3062 static ssize_t max_page_sharing_store(struct kobject *kobj,
3063                                       struct kobj_attribute *attr,
3064                                       const char *buf, size_t count)
3065 {
3066         int err;
3067         int knob;
3068
3069         err = kstrtoint(buf, 10, &knob);
3070         if (err)
3071                 return err;
3072         /*
3073          * When a KSM page is created it is shared by 2 mappings. This
3074          * being a signed comparison, it implicitly verifies it's not
3075          * negative.
3076          */
3077         if (knob < 2)
3078                 return -EINVAL;
3079
3080         if (READ_ONCE(ksm_max_page_sharing) == knob)
3081                 return count;
3082
3083         mutex_lock(&ksm_thread_mutex);
3084         wait_while_offlining();
3085         if (ksm_max_page_sharing != knob) {
3086                 if (ksm_pages_shared || remove_all_stable_nodes())
3087                         err = -EBUSY;
3088                 else
3089                         ksm_max_page_sharing = knob;
3090         }
3091         mutex_unlock(&ksm_thread_mutex);
3092
3093         return err ? err : count;
3094 }
3095 KSM_ATTR(max_page_sharing);
3096
3097 static ssize_t pages_shared_show(struct kobject *kobj,
3098                                  struct kobj_attribute *attr, char *buf)
3099 {
3100         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3101 }
3102 KSM_ATTR_RO(pages_shared);
3103
3104 static ssize_t pages_sharing_show(struct kobject *kobj,
3105                                   struct kobj_attribute *attr, char *buf)
3106 {
3107         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3108 }
3109 KSM_ATTR_RO(pages_sharing);
3110
3111 static ssize_t pages_unshared_show(struct kobject *kobj,
3112                                    struct kobj_attribute *attr, char *buf)
3113 {
3114         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3115 }
3116 KSM_ATTR_RO(pages_unshared);
3117
3118 static ssize_t pages_volatile_show(struct kobject *kobj,
3119                                    struct kobj_attribute *attr, char *buf)
3120 {
3121         long ksm_pages_volatile;
3122
3123         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3124                                 - ksm_pages_sharing - ksm_pages_unshared;
3125         /*
3126          * It was not worth any locking to calculate that statistic,
3127          * but it might therefore sometimes be negative: conceal that.
3128          */
3129         if (ksm_pages_volatile < 0)
3130                 ksm_pages_volatile = 0;
3131         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3132 }
3133 KSM_ATTR_RO(pages_volatile);
3134
3135 static ssize_t stable_node_dups_show(struct kobject *kobj,
3136                                      struct kobj_attribute *attr, char *buf)
3137 {
3138         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3139 }
3140 KSM_ATTR_RO(stable_node_dups);
3141
3142 static ssize_t stable_node_chains_show(struct kobject *kobj,
3143                                        struct kobj_attribute *attr, char *buf)
3144 {
3145         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3146 }
3147 KSM_ATTR_RO(stable_node_chains);
3148
3149 static ssize_t
3150 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3151                                         struct kobj_attribute *attr,
3152                                         char *buf)
3153 {
3154         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3155 }
3156
3157 static ssize_t
3158 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3159                                          struct kobj_attribute *attr,
3160                                          const char *buf, size_t count)
3161 {
3162         unsigned int msecs;
3163         int err;
3164
3165         err = kstrtouint(buf, 10, &msecs);
3166         if (err)
3167                 return -EINVAL;
3168
3169         ksm_stable_node_chains_prune_millisecs = msecs;
3170
3171         return count;
3172 }
3173 KSM_ATTR(stable_node_chains_prune_millisecs);
3174
3175 static ssize_t full_scans_show(struct kobject *kobj,
3176                                struct kobj_attribute *attr, char *buf)
3177 {
3178         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3179 }
3180 KSM_ATTR_RO(full_scans);
3181
3182 static struct attribute *ksm_attrs[] = {
3183         &sleep_millisecs_attr.attr,
3184         &pages_to_scan_attr.attr,
3185         &run_attr.attr,
3186         &pages_shared_attr.attr,
3187         &pages_sharing_attr.attr,
3188         &pages_unshared_attr.attr,
3189         &pages_volatile_attr.attr,
3190         &full_scans_attr.attr,
3191 #ifdef CONFIG_NUMA
3192         &merge_across_nodes_attr.attr,
3193 #endif
3194         &max_page_sharing_attr.attr,
3195         &stable_node_chains_attr.attr,
3196         &stable_node_dups_attr.attr,
3197         &stable_node_chains_prune_millisecs_attr.attr,
3198         &use_zero_pages_attr.attr,
3199         NULL,
3200 };
3201
3202 static const struct attribute_group ksm_attr_group = {
3203         .attrs = ksm_attrs,
3204         .name = "ksm",
3205 };
3206 #endif /* CONFIG_SYSFS */
3207
3208 static int __init ksm_init(void)
3209 {
3210         struct task_struct *ksm_thread;
3211         int err;
3212
3213         /* The correct value depends on page size and endianness */
3214         zero_checksum = calc_checksum(ZERO_PAGE(0));
3215         /* Default to false for backwards compatibility */
3216         ksm_use_zero_pages = false;
3217
3218         err = ksm_slab_init();
3219         if (err)
3220                 goto out;
3221
3222         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3223         if (IS_ERR(ksm_thread)) {
3224                 pr_err("ksm: creating kthread failed\n");
3225                 err = PTR_ERR(ksm_thread);
3226                 goto out_free;
3227         }
3228
3229 #ifdef CONFIG_SYSFS
3230         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3231         if (err) {
3232                 pr_err("ksm: register sysfs failed\n");
3233                 kthread_stop(ksm_thread);
3234                 goto out_free;
3235         }
3236 #else
3237         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3238
3239 #endif /* CONFIG_SYSFS */
3240
3241 #ifdef CONFIG_MEMORY_HOTREMOVE
3242         /* There is no significance to this priority 100 */
3243         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3244 #endif
3245         return 0;
3246
3247 out_free:
3248         ksm_slab_free();
3249 out:
3250         return err;
3251 }
3252 subsys_initcall(ksm_init);