ksm: allocate roots when needed
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287         if (rmap_item)
288                 ksm_rmap_items++;
289         return rmap_item;
290 }
291
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294         ksm_rmap_items--;
295         rmap_item->mm = NULL;   /* debug safety */
296         kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306         kmem_cache_free(stable_node_cache, stable_node);
307 }
308
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311         if (!mm_slot_cache)     /* initialization failed */
312                 return NULL;
313         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318         kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323         struct hlist_node *node;
324         struct mm_slot *slot;
325
326         hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
327                 if (slot->mm == mm)
328                         return slot;
329
330         return NULL;
331 }
332
333 static void insert_to_mm_slots_hash(struct mm_struct *mm,
334                                     struct mm_slot *mm_slot)
335 {
336         mm_slot->mm = mm;
337         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
338 }
339
340 /*
341  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342  * page tables after it has passed through ksm_exit() - which, if necessary,
343  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
344  * a special flag: they can just back out as soon as mm_users goes to zero.
345  * ksm_test_exit() is used throughout to make this test for exit: in some
346  * places for correctness, in some places just to avoid unnecessary work.
347  */
348 static inline bool ksm_test_exit(struct mm_struct *mm)
349 {
350         return atomic_read(&mm->mm_users) == 0;
351 }
352
353 /*
354  * We use break_ksm to break COW on a ksm page: it's a stripped down
355  *
356  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357  *              put_page(page);
358  *
359  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360  * in case the application has unmapped and remapped mm,addr meanwhile.
361  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
362  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
363  */
364 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
365 {
366         struct page *page;
367         int ret = 0;
368
369         do {
370                 cond_resched();
371                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
372                 if (IS_ERR_OR_NULL(page))
373                         break;
374                 if (PageKsm(page))
375                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
376                                                         FAULT_FLAG_WRITE);
377                 else
378                         ret = VM_FAULT_WRITE;
379                 put_page(page);
380         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
381         /*
382          * We must loop because handle_mm_fault() may back out if there's
383          * any difficulty e.g. if pte accessed bit gets updated concurrently.
384          *
385          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386          * COW has been broken, even if the vma does not permit VM_WRITE;
387          * but note that a concurrent fault might break PageKsm for us.
388          *
389          * VM_FAULT_SIGBUS could occur if we race with truncation of the
390          * backing file, which also invalidates anonymous pages: that's
391          * okay, that truncation will have unmapped the PageKsm for us.
392          *
393          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395          * current task has TIF_MEMDIE set, and will be OOM killed on return
396          * to user; and ksmd, having no mm, would never be chosen for that.
397          *
398          * But if the mm is in a limited mem_cgroup, then the fault may fail
399          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400          * even ksmd can fail in this way - though it's usually breaking ksm
401          * just to undo a merge it made a moment before, so unlikely to oom.
402          *
403          * That's a pity: we might therefore have more kernel pages allocated
404          * than we're counting as nodes in the stable tree; but ksm_do_scan
405          * will retry to break_cow on each pass, so should recover the page
406          * in due course.  The important thing is to not let VM_MERGEABLE
407          * be cleared while any such pages might remain in the area.
408          */
409         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
410 }
411
412 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413                 unsigned long addr)
414 {
415         struct vm_area_struct *vma;
416         if (ksm_test_exit(mm))
417                 return NULL;
418         vma = find_vma(mm, addr);
419         if (!vma || vma->vm_start > addr)
420                 return NULL;
421         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422                 return NULL;
423         return vma;
424 }
425
426 static void break_cow(struct rmap_item *rmap_item)
427 {
428         struct mm_struct *mm = rmap_item->mm;
429         unsigned long addr = rmap_item->address;
430         struct vm_area_struct *vma;
431
432         /*
433          * It is not an accident that whenever we want to break COW
434          * to undo, we also need to drop a reference to the anon_vma.
435          */
436         put_anon_vma(rmap_item->anon_vma);
437
438         down_read(&mm->mmap_sem);
439         vma = find_mergeable_vma(mm, addr);
440         if (vma)
441                 break_ksm(vma, addr);
442         up_read(&mm->mmap_sem);
443 }
444
445 static struct page *page_trans_compound_anon(struct page *page)
446 {
447         if (PageTransCompound(page)) {
448                 struct page *head = compound_trans_head(page);
449                 /*
450                  * head may actually be splitted and freed from under
451                  * us but it's ok here.
452                  */
453                 if (PageAnon(head))
454                         return head;
455         }
456         return NULL;
457 }
458
459 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
460 {
461         struct mm_struct *mm = rmap_item->mm;
462         unsigned long addr = rmap_item->address;
463         struct vm_area_struct *vma;
464         struct page *page;
465
466         down_read(&mm->mmap_sem);
467         vma = find_mergeable_vma(mm, addr);
468         if (!vma)
469                 goto out;
470
471         page = follow_page(vma, addr, FOLL_GET);
472         if (IS_ERR_OR_NULL(page))
473                 goto out;
474         if (PageAnon(page) || page_trans_compound_anon(page)) {
475                 flush_anon_page(vma, page, addr);
476                 flush_dcache_page(page);
477         } else {
478                 put_page(page);
479 out:            page = NULL;
480         }
481         up_read(&mm->mmap_sem);
482         return page;
483 }
484
485 /*
486  * This helper is used for getting right index into array of tree roots.
487  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
488  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
489  * every node has its own stable and unstable tree.
490  */
491 static inline int get_kpfn_nid(unsigned long kpfn)
492 {
493         return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
494 }
495
496 static void remove_node_from_stable_tree(struct stable_node *stable_node)
497 {
498         struct rmap_item *rmap_item;
499         struct hlist_node *hlist;
500
501         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
502                 if (rmap_item->hlist.next)
503                         ksm_pages_sharing--;
504                 else
505                         ksm_pages_shared--;
506                 put_anon_vma(rmap_item->anon_vma);
507                 rmap_item->address &= PAGE_MASK;
508                 cond_resched();
509         }
510
511         if (stable_node->head == &migrate_nodes)
512                 list_del(&stable_node->list);
513         else
514                 rb_erase(&stable_node->node,
515                          root_stable_tree + NUMA(stable_node->nid));
516         free_stable_node(stable_node);
517 }
518
519 /*
520  * get_ksm_page: checks if the page indicated by the stable node
521  * is still its ksm page, despite having held no reference to it.
522  * In which case we can trust the content of the page, and it
523  * returns the gotten page; but if the page has now been zapped,
524  * remove the stale node from the stable tree and return NULL.
525  * But beware, the stable node's page might be being migrated.
526  *
527  * You would expect the stable_node to hold a reference to the ksm page.
528  * But if it increments the page's count, swapping out has to wait for
529  * ksmd to come around again before it can free the page, which may take
530  * seconds or even minutes: much too unresponsive.  So instead we use a
531  * "keyhole reference": access to the ksm page from the stable node peeps
532  * out through its keyhole to see if that page still holds the right key,
533  * pointing back to this stable node.  This relies on freeing a PageAnon
534  * page to reset its page->mapping to NULL, and relies on no other use of
535  * a page to put something that might look like our key in page->mapping.
536  * is on its way to being freed; but it is an anomaly to bear in mind.
537  */
538 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
539 {
540         struct page *page;
541         void *expected_mapping;
542         unsigned long kpfn;
543
544         expected_mapping = (void *)stable_node +
545                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
546 again:
547         kpfn = ACCESS_ONCE(stable_node->kpfn);
548         page = pfn_to_page(kpfn);
549
550         /*
551          * page is computed from kpfn, so on most architectures reading
552          * page->mapping is naturally ordered after reading node->kpfn,
553          * but on Alpha we need to be more careful.
554          */
555         smp_read_barrier_depends();
556         if (ACCESS_ONCE(page->mapping) != expected_mapping)
557                 goto stale;
558
559         /*
560          * We cannot do anything with the page while its refcount is 0.
561          * Usually 0 means free, or tail of a higher-order page: in which
562          * case this node is no longer referenced, and should be freed;
563          * however, it might mean that the page is under page_freeze_refs().
564          * The __remove_mapping() case is easy, again the node is now stale;
565          * but if page is swapcache in migrate_page_move_mapping(), it might
566          * still be our page, in which case it's essential to keep the node.
567          */
568         while (!get_page_unless_zero(page)) {
569                 /*
570                  * Another check for page->mapping != expected_mapping would
571                  * work here too.  We have chosen the !PageSwapCache test to
572                  * optimize the common case, when the page is or is about to
573                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
574                  * in the freeze_refs section of __remove_mapping(); but Anon
575                  * page->mapping reset to NULL later, in free_pages_prepare().
576                  */
577                 if (!PageSwapCache(page))
578                         goto stale;
579                 cpu_relax();
580         }
581
582         if (ACCESS_ONCE(page->mapping) != expected_mapping) {
583                 put_page(page);
584                 goto stale;
585         }
586
587         if (lock_it) {
588                 lock_page(page);
589                 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
590                         unlock_page(page);
591                         put_page(page);
592                         goto stale;
593                 }
594         }
595         return page;
596
597 stale:
598         /*
599          * We come here from above when page->mapping or !PageSwapCache
600          * suggests that the node is stale; but it might be under migration.
601          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
602          * before checking whether node->kpfn has been changed.
603          */
604         smp_rmb();
605         if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
606                 goto again;
607         remove_node_from_stable_tree(stable_node);
608         return NULL;
609 }
610
611 /*
612  * Removing rmap_item from stable or unstable tree.
613  * This function will clean the information from the stable/unstable tree.
614  */
615 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
616 {
617         if (rmap_item->address & STABLE_FLAG) {
618                 struct stable_node *stable_node;
619                 struct page *page;
620
621                 stable_node = rmap_item->head;
622                 page = get_ksm_page(stable_node, true);
623                 if (!page)
624                         goto out;
625
626                 hlist_del(&rmap_item->hlist);
627                 unlock_page(page);
628                 put_page(page);
629
630                 if (stable_node->hlist.first)
631                         ksm_pages_sharing--;
632                 else
633                         ksm_pages_shared--;
634
635                 put_anon_vma(rmap_item->anon_vma);
636                 rmap_item->address &= PAGE_MASK;
637
638         } else if (rmap_item->address & UNSTABLE_FLAG) {
639                 unsigned char age;
640                 /*
641                  * Usually ksmd can and must skip the rb_erase, because
642                  * root_unstable_tree was already reset to RB_ROOT.
643                  * But be careful when an mm is exiting: do the rb_erase
644                  * if this rmap_item was inserted by this scan, rather
645                  * than left over from before.
646                  */
647                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
648                 BUG_ON(age > 1);
649                 if (!age)
650                         rb_erase(&rmap_item->node,
651                                  root_unstable_tree + NUMA(rmap_item->nid));
652                 ksm_pages_unshared--;
653                 rmap_item->address &= PAGE_MASK;
654         }
655 out:
656         cond_resched();         /* we're called from many long loops */
657 }
658
659 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
660                                        struct rmap_item **rmap_list)
661 {
662         while (*rmap_list) {
663                 struct rmap_item *rmap_item = *rmap_list;
664                 *rmap_list = rmap_item->rmap_list;
665                 remove_rmap_item_from_tree(rmap_item);
666                 free_rmap_item(rmap_item);
667         }
668 }
669
670 /*
671  * Though it's very tempting to unmerge rmap_items from stable tree rather
672  * than check every pte of a given vma, the locking doesn't quite work for
673  * that - an rmap_item is assigned to the stable tree after inserting ksm
674  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
675  * rmap_items from parent to child at fork time (so as not to waste time
676  * if exit comes before the next scan reaches it).
677  *
678  * Similarly, although we'd like to remove rmap_items (so updating counts
679  * and freeing memory) when unmerging an area, it's easier to leave that
680  * to the next pass of ksmd - consider, for example, how ksmd might be
681  * in cmp_and_merge_page on one of the rmap_items we would be removing.
682  */
683 static int unmerge_ksm_pages(struct vm_area_struct *vma,
684                              unsigned long start, unsigned long end)
685 {
686         unsigned long addr;
687         int err = 0;
688
689         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
690                 if (ksm_test_exit(vma->vm_mm))
691                         break;
692                 if (signal_pending(current))
693                         err = -ERESTARTSYS;
694                 else
695                         err = break_ksm(vma, addr);
696         }
697         return err;
698 }
699
700 #ifdef CONFIG_SYSFS
701 /*
702  * Only called through the sysfs control interface:
703  */
704 static int remove_stable_node(struct stable_node *stable_node)
705 {
706         struct page *page;
707         int err;
708
709         page = get_ksm_page(stable_node, true);
710         if (!page) {
711                 /*
712                  * get_ksm_page did remove_node_from_stable_tree itself.
713                  */
714                 return 0;
715         }
716
717         if (WARN_ON_ONCE(page_mapped(page))) {
718                 /*
719                  * This should not happen: but if it does, just refuse to let
720                  * merge_across_nodes be switched - there is no need to panic.
721                  */
722                 err = -EBUSY;
723         } else {
724                 /*
725                  * The stable node did not yet appear stale to get_ksm_page(),
726                  * since that allows for an unmapped ksm page to be recognized
727                  * right up until it is freed; but the node is safe to remove.
728                  * This page might be in a pagevec waiting to be freed,
729                  * or it might be PageSwapCache (perhaps under writeback),
730                  * or it might have been removed from swapcache a moment ago.
731                  */
732                 set_page_stable_node(page, NULL);
733                 remove_node_from_stable_tree(stable_node);
734                 err = 0;
735         }
736
737         unlock_page(page);
738         put_page(page);
739         return err;
740 }
741
742 static int remove_all_stable_nodes(void)
743 {
744         struct stable_node *stable_node;
745         struct list_head *this, *next;
746         int nid;
747         int err = 0;
748
749         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
750                 while (root_stable_tree[nid].rb_node) {
751                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
752                                                 struct stable_node, node);
753                         if (remove_stable_node(stable_node)) {
754                                 err = -EBUSY;
755                                 break;  /* proceed to next nid */
756                         }
757                         cond_resched();
758                 }
759         }
760         list_for_each_safe(this, next, &migrate_nodes) {
761                 stable_node = list_entry(this, struct stable_node, list);
762                 if (remove_stable_node(stable_node))
763                         err = -EBUSY;
764                 cond_resched();
765         }
766         return err;
767 }
768
769 static int unmerge_and_remove_all_rmap_items(void)
770 {
771         struct mm_slot *mm_slot;
772         struct mm_struct *mm;
773         struct vm_area_struct *vma;
774         int err = 0;
775
776         spin_lock(&ksm_mmlist_lock);
777         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778                                                 struct mm_slot, mm_list);
779         spin_unlock(&ksm_mmlist_lock);
780
781         for (mm_slot = ksm_scan.mm_slot;
782                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783                 mm = mm_slot->mm;
784                 down_read(&mm->mmap_sem);
785                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786                         if (ksm_test_exit(mm))
787                                 break;
788                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789                                 continue;
790                         err = unmerge_ksm_pages(vma,
791                                                 vma->vm_start, vma->vm_end);
792                         if (err)
793                                 goto error;
794                 }
795
796                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797
798                 spin_lock(&ksm_mmlist_lock);
799                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
800                                                 struct mm_slot, mm_list);
801                 if (ksm_test_exit(mm)) {
802                         hash_del(&mm_slot->link);
803                         list_del(&mm_slot->mm_list);
804                         spin_unlock(&ksm_mmlist_lock);
805
806                         free_mm_slot(mm_slot);
807                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
808                         up_read(&mm->mmap_sem);
809                         mmdrop(mm);
810                 } else {
811                         spin_unlock(&ksm_mmlist_lock);
812                         up_read(&mm->mmap_sem);
813                 }
814         }
815
816         /* Clean up stable nodes, but don't worry if some are still busy */
817         remove_all_stable_nodes();
818         ksm_scan.seqnr = 0;
819         return 0;
820
821 error:
822         up_read(&mm->mmap_sem);
823         spin_lock(&ksm_mmlist_lock);
824         ksm_scan.mm_slot = &ksm_mm_head;
825         spin_unlock(&ksm_mmlist_lock);
826         return err;
827 }
828 #endif /* CONFIG_SYSFS */
829
830 static u32 calc_checksum(struct page *page)
831 {
832         u32 checksum;
833         void *addr = kmap_atomic(page);
834         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835         kunmap_atomic(addr);
836         return checksum;
837 }
838
839 static int memcmp_pages(struct page *page1, struct page *page2)
840 {
841         char *addr1, *addr2;
842         int ret;
843
844         addr1 = kmap_atomic(page1);
845         addr2 = kmap_atomic(page2);
846         ret = memcmp(addr1, addr2, PAGE_SIZE);
847         kunmap_atomic(addr2);
848         kunmap_atomic(addr1);
849         return ret;
850 }
851
852 static inline int pages_identical(struct page *page1, struct page *page2)
853 {
854         return !memcmp_pages(page1, page2);
855 }
856
857 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858                               pte_t *orig_pte)
859 {
860         struct mm_struct *mm = vma->vm_mm;
861         unsigned long addr;
862         pte_t *ptep;
863         spinlock_t *ptl;
864         int swapped;
865         int err = -EFAULT;
866         unsigned long mmun_start;       /* For mmu_notifiers */
867         unsigned long mmun_end;         /* For mmu_notifiers */
868
869         addr = page_address_in_vma(page, vma);
870         if (addr == -EFAULT)
871                 goto out;
872
873         BUG_ON(PageTransCompound(page));
874
875         mmun_start = addr;
876         mmun_end   = addr + PAGE_SIZE;
877         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
878
879         ptep = page_check_address(page, mm, addr, &ptl, 0);
880         if (!ptep)
881                 goto out_mn;
882
883         if (pte_write(*ptep) || pte_dirty(*ptep)) {
884                 pte_t entry;
885
886                 swapped = PageSwapCache(page);
887                 flush_cache_page(vma, addr, page_to_pfn(page));
888                 /*
889                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
890                  * take any lock, therefore the check that we are going to make
891                  * with the pagecount against the mapcount is racey and
892                  * O_DIRECT can happen right after the check.
893                  * So we clear the pte and flush the tlb before the check
894                  * this assure us that no O_DIRECT can happen after the check
895                  * or in the middle of the check.
896                  */
897                 entry = ptep_clear_flush(vma, addr, ptep);
898                 /*
899                  * Check that no O_DIRECT or similar I/O is in progress on the
900                  * page
901                  */
902                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
903                         set_pte_at(mm, addr, ptep, entry);
904                         goto out_unlock;
905                 }
906                 if (pte_dirty(entry))
907                         set_page_dirty(page);
908                 entry = pte_mkclean(pte_wrprotect(entry));
909                 set_pte_at_notify(mm, addr, ptep, entry);
910         }
911         *orig_pte = *ptep;
912         err = 0;
913
914 out_unlock:
915         pte_unmap_unlock(ptep, ptl);
916 out_mn:
917         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
918 out:
919         return err;
920 }
921
922 /**
923  * replace_page - replace page in vma by new ksm page
924  * @vma:      vma that holds the pte pointing to page
925  * @page:     the page we are replacing by kpage
926  * @kpage:    the ksm page we replace page by
927  * @orig_pte: the original value of the pte
928  *
929  * Returns 0 on success, -EFAULT on failure.
930  */
931 static int replace_page(struct vm_area_struct *vma, struct page *page,
932                         struct page *kpage, pte_t orig_pte)
933 {
934         struct mm_struct *mm = vma->vm_mm;
935         pmd_t *pmd;
936         pte_t *ptep;
937         spinlock_t *ptl;
938         unsigned long addr;
939         int err = -EFAULT;
940         unsigned long mmun_start;       /* For mmu_notifiers */
941         unsigned long mmun_end;         /* For mmu_notifiers */
942
943         addr = page_address_in_vma(page, vma);
944         if (addr == -EFAULT)
945                 goto out;
946
947         pmd = mm_find_pmd(mm, addr);
948         if (!pmd)
949                 goto out;
950         BUG_ON(pmd_trans_huge(*pmd));
951
952         mmun_start = addr;
953         mmun_end   = addr + PAGE_SIZE;
954         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
955
956         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
957         if (!pte_same(*ptep, orig_pte)) {
958                 pte_unmap_unlock(ptep, ptl);
959                 goto out_mn;
960         }
961
962         get_page(kpage);
963         page_add_anon_rmap(kpage, vma, addr);
964
965         flush_cache_page(vma, addr, pte_pfn(*ptep));
966         ptep_clear_flush(vma, addr, ptep);
967         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
968
969         page_remove_rmap(page);
970         if (!page_mapped(page))
971                 try_to_free_swap(page);
972         put_page(page);
973
974         pte_unmap_unlock(ptep, ptl);
975         err = 0;
976 out_mn:
977         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
978 out:
979         return err;
980 }
981
982 static int page_trans_compound_anon_split(struct page *page)
983 {
984         int ret = 0;
985         struct page *transhuge_head = page_trans_compound_anon(page);
986         if (transhuge_head) {
987                 /* Get the reference on the head to split it. */
988                 if (get_page_unless_zero(transhuge_head)) {
989                         /*
990                          * Recheck we got the reference while the head
991                          * was still anonymous.
992                          */
993                         if (PageAnon(transhuge_head))
994                                 ret = split_huge_page(transhuge_head);
995                         else
996                                 /*
997                                  * Retry later if split_huge_page run
998                                  * from under us.
999                                  */
1000                                 ret = 1;
1001                         put_page(transhuge_head);
1002                 } else
1003                         /* Retry later if split_huge_page run from under us. */
1004                         ret = 1;
1005         }
1006         return ret;
1007 }
1008
1009 /*
1010  * try_to_merge_one_page - take two pages and merge them into one
1011  * @vma: the vma that holds the pte pointing to page
1012  * @page: the PageAnon page that we want to replace with kpage
1013  * @kpage: the PageKsm page that we want to map instead of page,
1014  *         or NULL the first time when we want to use page as kpage.
1015  *
1016  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1017  */
1018 static int try_to_merge_one_page(struct vm_area_struct *vma,
1019                                  struct page *page, struct page *kpage)
1020 {
1021         pte_t orig_pte = __pte(0);
1022         int err = -EFAULT;
1023
1024         if (page == kpage)                      /* ksm page forked */
1025                 return 0;
1026
1027         if (!(vma->vm_flags & VM_MERGEABLE))
1028                 goto out;
1029         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1030                 goto out;
1031         BUG_ON(PageTransCompound(page));
1032         if (!PageAnon(page))
1033                 goto out;
1034
1035         /*
1036          * We need the page lock to read a stable PageSwapCache in
1037          * write_protect_page().  We use trylock_page() instead of
1038          * lock_page() because we don't want to wait here - we
1039          * prefer to continue scanning and merging different pages,
1040          * then come back to this page when it is unlocked.
1041          */
1042         if (!trylock_page(page))
1043                 goto out;
1044         /*
1045          * If this anonymous page is mapped only here, its pte may need
1046          * to be write-protected.  If it's mapped elsewhere, all of its
1047          * ptes are necessarily already write-protected.  But in either
1048          * case, we need to lock and check page_count is not raised.
1049          */
1050         if (write_protect_page(vma, page, &orig_pte) == 0) {
1051                 if (!kpage) {
1052                         /*
1053                          * While we hold page lock, upgrade page from
1054                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1055                          * stable_tree_insert() will update stable_node.
1056                          */
1057                         set_page_stable_node(page, NULL);
1058                         mark_page_accessed(page);
1059                         err = 0;
1060                 } else if (pages_identical(page, kpage))
1061                         err = replace_page(vma, page, kpage, orig_pte);
1062         }
1063
1064         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1065                 munlock_vma_page(page);
1066                 if (!PageMlocked(kpage)) {
1067                         unlock_page(page);
1068                         lock_page(kpage);
1069                         mlock_vma_page(kpage);
1070                         page = kpage;           /* for final unlock */
1071                 }
1072         }
1073
1074         unlock_page(page);
1075 out:
1076         return err;
1077 }
1078
1079 /*
1080  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1081  * but no new kernel page is allocated: kpage must already be a ksm page.
1082  *
1083  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1084  */
1085 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1086                                       struct page *page, struct page *kpage)
1087 {
1088         struct mm_struct *mm = rmap_item->mm;
1089         struct vm_area_struct *vma;
1090         int err = -EFAULT;
1091
1092         down_read(&mm->mmap_sem);
1093         if (ksm_test_exit(mm))
1094                 goto out;
1095         vma = find_vma(mm, rmap_item->address);
1096         if (!vma || vma->vm_start > rmap_item->address)
1097                 goto out;
1098
1099         err = try_to_merge_one_page(vma, page, kpage);
1100         if (err)
1101                 goto out;
1102
1103         /* Unstable nid is in union with stable anon_vma: remove first */
1104         remove_rmap_item_from_tree(rmap_item);
1105
1106         /* Must get reference to anon_vma while still holding mmap_sem */
1107         rmap_item->anon_vma = vma->anon_vma;
1108         get_anon_vma(vma->anon_vma);
1109 out:
1110         up_read(&mm->mmap_sem);
1111         return err;
1112 }
1113
1114 /*
1115  * try_to_merge_two_pages - take two identical pages and prepare them
1116  * to be merged into one page.
1117  *
1118  * This function returns the kpage if we successfully merged two identical
1119  * pages into one ksm page, NULL otherwise.
1120  *
1121  * Note that this function upgrades page to ksm page: if one of the pages
1122  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1123  */
1124 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1125                                            struct page *page,
1126                                            struct rmap_item *tree_rmap_item,
1127                                            struct page *tree_page)
1128 {
1129         int err;
1130
1131         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1132         if (!err) {
1133                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1134                                                         tree_page, page);
1135                 /*
1136                  * If that fails, we have a ksm page with only one pte
1137                  * pointing to it: so break it.
1138                  */
1139                 if (err)
1140                         break_cow(rmap_item);
1141         }
1142         return err ? NULL : page;
1143 }
1144
1145 /*
1146  * stable_tree_search - search for page inside the stable tree
1147  *
1148  * This function checks if there is a page inside the stable tree
1149  * with identical content to the page that we are scanning right now.
1150  *
1151  * This function returns the stable tree node of identical content if found,
1152  * NULL otherwise.
1153  */
1154 static struct page *stable_tree_search(struct page *page)
1155 {
1156         int nid;
1157         struct rb_root *root;
1158         struct rb_node **new;
1159         struct rb_node *parent;
1160         struct stable_node *stable_node;
1161         struct stable_node *page_node;
1162
1163         page_node = page_stable_node(page);
1164         if (page_node && page_node->head != &migrate_nodes) {
1165                 /* ksm page forked */
1166                 get_page(page);
1167                 return page;
1168         }
1169
1170         nid = get_kpfn_nid(page_to_pfn(page));
1171         root = root_stable_tree + nid;
1172 again:
1173         new = &root->rb_node;
1174         parent = NULL;
1175
1176         while (*new) {
1177                 struct page *tree_page;
1178                 int ret;
1179
1180                 cond_resched();
1181                 stable_node = rb_entry(*new, struct stable_node, node);
1182                 tree_page = get_ksm_page(stable_node, false);
1183                 if (!tree_page)
1184                         return NULL;
1185
1186                 ret = memcmp_pages(page, tree_page);
1187                 put_page(tree_page);
1188
1189                 parent = *new;
1190                 if (ret < 0)
1191                         new = &parent->rb_left;
1192                 else if (ret > 0)
1193                         new = &parent->rb_right;
1194                 else {
1195                         /*
1196                          * Lock and unlock the stable_node's page (which
1197                          * might already have been migrated) so that page
1198                          * migration is sure to notice its raised count.
1199                          * It would be more elegant to return stable_node
1200                          * than kpage, but that involves more changes.
1201                          */
1202                         tree_page = get_ksm_page(stable_node, true);
1203                         if (tree_page) {
1204                                 unlock_page(tree_page);
1205                                 if (get_kpfn_nid(stable_node->kpfn) !=
1206                                                 NUMA(stable_node->nid)) {
1207                                         put_page(tree_page);
1208                                         goto replace;
1209                                 }
1210                                 return tree_page;
1211                         }
1212                         /*
1213                          * There is now a place for page_node, but the tree may
1214                          * have been rebalanced, so re-evaluate parent and new.
1215                          */
1216                         if (page_node)
1217                                 goto again;
1218                         return NULL;
1219                 }
1220         }
1221
1222         if (!page_node)
1223                 return NULL;
1224
1225         list_del(&page_node->list);
1226         DO_NUMA(page_node->nid = nid);
1227         rb_link_node(&page_node->node, parent, new);
1228         rb_insert_color(&page_node->node, root);
1229         get_page(page);
1230         return page;
1231
1232 replace:
1233         if (page_node) {
1234                 list_del(&page_node->list);
1235                 DO_NUMA(page_node->nid = nid);
1236                 rb_replace_node(&stable_node->node, &page_node->node, root);
1237                 get_page(page);
1238         } else {
1239                 rb_erase(&stable_node->node, root);
1240                 page = NULL;
1241         }
1242         stable_node->head = &migrate_nodes;
1243         list_add(&stable_node->list, stable_node->head);
1244         return page;
1245 }
1246
1247 /*
1248  * stable_tree_insert - insert stable tree node pointing to new ksm page
1249  * into the stable tree.
1250  *
1251  * This function returns the stable tree node just allocated on success,
1252  * NULL otherwise.
1253  */
1254 static struct stable_node *stable_tree_insert(struct page *kpage)
1255 {
1256         int nid;
1257         unsigned long kpfn;
1258         struct rb_root *root;
1259         struct rb_node **new;
1260         struct rb_node *parent = NULL;
1261         struct stable_node *stable_node;
1262
1263         kpfn = page_to_pfn(kpage);
1264         nid = get_kpfn_nid(kpfn);
1265         root = root_stable_tree + nid;
1266         new = &root->rb_node;
1267
1268         while (*new) {
1269                 struct page *tree_page;
1270                 int ret;
1271
1272                 cond_resched();
1273                 stable_node = rb_entry(*new, struct stable_node, node);
1274                 tree_page = get_ksm_page(stable_node, false);
1275                 if (!tree_page)
1276                         return NULL;
1277
1278                 ret = memcmp_pages(kpage, tree_page);
1279                 put_page(tree_page);
1280
1281                 parent = *new;
1282                 if (ret < 0)
1283                         new = &parent->rb_left;
1284                 else if (ret > 0)
1285                         new = &parent->rb_right;
1286                 else {
1287                         /*
1288                          * It is not a bug that stable_tree_search() didn't
1289                          * find this node: because at that time our page was
1290                          * not yet write-protected, so may have changed since.
1291                          */
1292                         return NULL;
1293                 }
1294         }
1295
1296         stable_node = alloc_stable_node();
1297         if (!stable_node)
1298                 return NULL;
1299
1300         INIT_HLIST_HEAD(&stable_node->hlist);
1301         stable_node->kpfn = kpfn;
1302         set_page_stable_node(kpage, stable_node);
1303         DO_NUMA(stable_node->nid = nid);
1304         rb_link_node(&stable_node->node, parent, new);
1305         rb_insert_color(&stable_node->node, root);
1306
1307         return stable_node;
1308 }
1309
1310 /*
1311  * unstable_tree_search_insert - search for identical page,
1312  * else insert rmap_item into the unstable tree.
1313  *
1314  * This function searches for a page in the unstable tree identical to the
1315  * page currently being scanned; and if no identical page is found in the
1316  * tree, we insert rmap_item as a new object into the unstable tree.
1317  *
1318  * This function returns pointer to rmap_item found to be identical
1319  * to the currently scanned page, NULL otherwise.
1320  *
1321  * This function does both searching and inserting, because they share
1322  * the same walking algorithm in an rbtree.
1323  */
1324 static
1325 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1326                                               struct page *page,
1327                                               struct page **tree_pagep)
1328 {
1329         struct rb_node **new;
1330         struct rb_root *root;
1331         struct rb_node *parent = NULL;
1332         int nid;
1333
1334         nid = get_kpfn_nid(page_to_pfn(page));
1335         root = root_unstable_tree + nid;
1336         new = &root->rb_node;
1337
1338         while (*new) {
1339                 struct rmap_item *tree_rmap_item;
1340                 struct page *tree_page;
1341                 int ret;
1342
1343                 cond_resched();
1344                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1345                 tree_page = get_mergeable_page(tree_rmap_item);
1346                 if (IS_ERR_OR_NULL(tree_page))
1347                         return NULL;
1348
1349                 /*
1350                  * Don't substitute a ksm page for a forked page.
1351                  */
1352                 if (page == tree_page) {
1353                         put_page(tree_page);
1354                         return NULL;
1355                 }
1356
1357                 ret = memcmp_pages(page, tree_page);
1358
1359                 parent = *new;
1360                 if (ret < 0) {
1361                         put_page(tree_page);
1362                         new = &parent->rb_left;
1363                 } else if (ret > 0) {
1364                         put_page(tree_page);
1365                         new = &parent->rb_right;
1366                 } else if (!ksm_merge_across_nodes &&
1367                            page_to_nid(tree_page) != nid) {
1368                         /*
1369                          * If tree_page has been migrated to another NUMA node,
1370                          * it will be flushed out and put in the right unstable
1371                          * tree next time: only merge with it when across_nodes.
1372                          */
1373                         put_page(tree_page);
1374                         return NULL;
1375                 } else {
1376                         *tree_pagep = tree_page;
1377                         return tree_rmap_item;
1378                 }
1379         }
1380
1381         rmap_item->address |= UNSTABLE_FLAG;
1382         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1383         DO_NUMA(rmap_item->nid = nid);
1384         rb_link_node(&rmap_item->node, parent, new);
1385         rb_insert_color(&rmap_item->node, root);
1386
1387         ksm_pages_unshared++;
1388         return NULL;
1389 }
1390
1391 /*
1392  * stable_tree_append - add another rmap_item to the linked list of
1393  * rmap_items hanging off a given node of the stable tree, all sharing
1394  * the same ksm page.
1395  */
1396 static void stable_tree_append(struct rmap_item *rmap_item,
1397                                struct stable_node *stable_node)
1398 {
1399         rmap_item->head = stable_node;
1400         rmap_item->address |= STABLE_FLAG;
1401         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1402
1403         if (rmap_item->hlist.next)
1404                 ksm_pages_sharing++;
1405         else
1406                 ksm_pages_shared++;
1407 }
1408
1409 /*
1410  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1411  * if not, compare checksum to previous and if it's the same, see if page can
1412  * be inserted into the unstable tree, or merged with a page already there and
1413  * both transferred to the stable tree.
1414  *
1415  * @page: the page that we are searching identical page to.
1416  * @rmap_item: the reverse mapping into the virtual address of this page
1417  */
1418 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1419 {
1420         struct rmap_item *tree_rmap_item;
1421         struct page *tree_page = NULL;
1422         struct stable_node *stable_node;
1423         struct page *kpage;
1424         unsigned int checksum;
1425         int err;
1426
1427         stable_node = page_stable_node(page);
1428         if (stable_node) {
1429                 if (stable_node->head != &migrate_nodes &&
1430                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1431                         rb_erase(&stable_node->node,
1432                                  root_stable_tree + NUMA(stable_node->nid));
1433                         stable_node->head = &migrate_nodes;
1434                         list_add(&stable_node->list, stable_node->head);
1435                 }
1436                 if (stable_node->head != &migrate_nodes &&
1437                     rmap_item->head == stable_node)
1438                         return;
1439         }
1440
1441         /* We first start with searching the page inside the stable tree */
1442         kpage = stable_tree_search(page);
1443         if (kpage == page && rmap_item->head == stable_node) {
1444                 put_page(kpage);
1445                 return;
1446         }
1447
1448         remove_rmap_item_from_tree(rmap_item);
1449
1450         if (kpage) {
1451                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1452                 if (!err) {
1453                         /*
1454                          * The page was successfully merged:
1455                          * add its rmap_item to the stable tree.
1456                          */
1457                         lock_page(kpage);
1458                         stable_tree_append(rmap_item, page_stable_node(kpage));
1459                         unlock_page(kpage);
1460                 }
1461                 put_page(kpage);
1462                 return;
1463         }
1464
1465         /*
1466          * If the hash value of the page has changed from the last time
1467          * we calculated it, this page is changing frequently: therefore we
1468          * don't want to insert it in the unstable tree, and we don't want
1469          * to waste our time searching for something identical to it there.
1470          */
1471         checksum = calc_checksum(page);
1472         if (rmap_item->oldchecksum != checksum) {
1473                 rmap_item->oldchecksum = checksum;
1474                 return;
1475         }
1476
1477         tree_rmap_item =
1478                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1479         if (tree_rmap_item) {
1480                 kpage = try_to_merge_two_pages(rmap_item, page,
1481                                                 tree_rmap_item, tree_page);
1482                 put_page(tree_page);
1483                 if (kpage) {
1484                         /*
1485                          * The pages were successfully merged: insert new
1486                          * node in the stable tree and add both rmap_items.
1487                          */
1488                         lock_page(kpage);
1489                         stable_node = stable_tree_insert(kpage);
1490                         if (stable_node) {
1491                                 stable_tree_append(tree_rmap_item, stable_node);
1492                                 stable_tree_append(rmap_item, stable_node);
1493                         }
1494                         unlock_page(kpage);
1495
1496                         /*
1497                          * If we fail to insert the page into the stable tree,
1498                          * we will have 2 virtual addresses that are pointing
1499                          * to a ksm page left outside the stable tree,
1500                          * in which case we need to break_cow on both.
1501                          */
1502                         if (!stable_node) {
1503                                 break_cow(tree_rmap_item);
1504                                 break_cow(rmap_item);
1505                         }
1506                 }
1507         }
1508 }
1509
1510 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1511                                             struct rmap_item **rmap_list,
1512                                             unsigned long addr)
1513 {
1514         struct rmap_item *rmap_item;
1515
1516         while (*rmap_list) {
1517                 rmap_item = *rmap_list;
1518                 if ((rmap_item->address & PAGE_MASK) == addr)
1519                         return rmap_item;
1520                 if (rmap_item->address > addr)
1521                         break;
1522                 *rmap_list = rmap_item->rmap_list;
1523                 remove_rmap_item_from_tree(rmap_item);
1524                 free_rmap_item(rmap_item);
1525         }
1526
1527         rmap_item = alloc_rmap_item();
1528         if (rmap_item) {
1529                 /* It has already been zeroed */
1530                 rmap_item->mm = mm_slot->mm;
1531                 rmap_item->address = addr;
1532                 rmap_item->rmap_list = *rmap_list;
1533                 *rmap_list = rmap_item;
1534         }
1535         return rmap_item;
1536 }
1537
1538 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1539 {
1540         struct mm_struct *mm;
1541         struct mm_slot *slot;
1542         struct vm_area_struct *vma;
1543         struct rmap_item *rmap_item;
1544         int nid;
1545
1546         if (list_empty(&ksm_mm_head.mm_list))
1547                 return NULL;
1548
1549         slot = ksm_scan.mm_slot;
1550         if (slot == &ksm_mm_head) {
1551                 /*
1552                  * A number of pages can hang around indefinitely on per-cpu
1553                  * pagevecs, raised page count preventing write_protect_page
1554                  * from merging them.  Though it doesn't really matter much,
1555                  * it is puzzling to see some stuck in pages_volatile until
1556                  * other activity jostles them out, and they also prevented
1557                  * LTP's KSM test from succeeding deterministically; so drain
1558                  * them here (here rather than on entry to ksm_do_scan(),
1559                  * so we don't IPI too often when pages_to_scan is set low).
1560                  */
1561                 lru_add_drain_all();
1562
1563                 /*
1564                  * Whereas stale stable_nodes on the stable_tree itself
1565                  * get pruned in the regular course of stable_tree_search(),
1566                  * those moved out to the migrate_nodes list can accumulate:
1567                  * so prune them once before each full scan.
1568                  */
1569                 if (!ksm_merge_across_nodes) {
1570                         struct stable_node *stable_node;
1571                         struct list_head *this, *next;
1572                         struct page *page;
1573
1574                         list_for_each_safe(this, next, &migrate_nodes) {
1575                                 stable_node = list_entry(this,
1576                                                 struct stable_node, list);
1577                                 page = get_ksm_page(stable_node, false);
1578                                 if (page)
1579                                         put_page(page);
1580                                 cond_resched();
1581                         }
1582                 }
1583
1584                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1585                         root_unstable_tree[nid] = RB_ROOT;
1586
1587                 spin_lock(&ksm_mmlist_lock);
1588                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1589                 ksm_scan.mm_slot = slot;
1590                 spin_unlock(&ksm_mmlist_lock);
1591                 /*
1592                  * Although we tested list_empty() above, a racing __ksm_exit
1593                  * of the last mm on the list may have removed it since then.
1594                  */
1595                 if (slot == &ksm_mm_head)
1596                         return NULL;
1597 next_mm:
1598                 ksm_scan.address = 0;
1599                 ksm_scan.rmap_list = &slot->rmap_list;
1600         }
1601
1602         mm = slot->mm;
1603         down_read(&mm->mmap_sem);
1604         if (ksm_test_exit(mm))
1605                 vma = NULL;
1606         else
1607                 vma = find_vma(mm, ksm_scan.address);
1608
1609         for (; vma; vma = vma->vm_next) {
1610                 if (!(vma->vm_flags & VM_MERGEABLE))
1611                         continue;
1612                 if (ksm_scan.address < vma->vm_start)
1613                         ksm_scan.address = vma->vm_start;
1614                 if (!vma->anon_vma)
1615                         ksm_scan.address = vma->vm_end;
1616
1617                 while (ksm_scan.address < vma->vm_end) {
1618                         if (ksm_test_exit(mm))
1619                                 break;
1620                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1621                         if (IS_ERR_OR_NULL(*page)) {
1622                                 ksm_scan.address += PAGE_SIZE;
1623                                 cond_resched();
1624                                 continue;
1625                         }
1626                         if (PageAnon(*page) ||
1627                             page_trans_compound_anon(*page)) {
1628                                 flush_anon_page(vma, *page, ksm_scan.address);
1629                                 flush_dcache_page(*page);
1630                                 rmap_item = get_next_rmap_item(slot,
1631                                         ksm_scan.rmap_list, ksm_scan.address);
1632                                 if (rmap_item) {
1633                                         ksm_scan.rmap_list =
1634                                                         &rmap_item->rmap_list;
1635                                         ksm_scan.address += PAGE_SIZE;
1636                                 } else
1637                                         put_page(*page);
1638                                 up_read(&mm->mmap_sem);
1639                                 return rmap_item;
1640                         }
1641                         put_page(*page);
1642                         ksm_scan.address += PAGE_SIZE;
1643                         cond_resched();
1644                 }
1645         }
1646
1647         if (ksm_test_exit(mm)) {
1648                 ksm_scan.address = 0;
1649                 ksm_scan.rmap_list = &slot->rmap_list;
1650         }
1651         /*
1652          * Nuke all the rmap_items that are above this current rmap:
1653          * because there were no VM_MERGEABLE vmas with such addresses.
1654          */
1655         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1656
1657         spin_lock(&ksm_mmlist_lock);
1658         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1659                                                 struct mm_slot, mm_list);
1660         if (ksm_scan.address == 0) {
1661                 /*
1662                  * We've completed a full scan of all vmas, holding mmap_sem
1663                  * throughout, and found no VM_MERGEABLE: so do the same as
1664                  * __ksm_exit does to remove this mm from all our lists now.
1665                  * This applies either when cleaning up after __ksm_exit
1666                  * (but beware: we can reach here even before __ksm_exit),
1667                  * or when all VM_MERGEABLE areas have been unmapped (and
1668                  * mmap_sem then protects against race with MADV_MERGEABLE).
1669                  */
1670                 hash_del(&slot->link);
1671                 list_del(&slot->mm_list);
1672                 spin_unlock(&ksm_mmlist_lock);
1673
1674                 free_mm_slot(slot);
1675                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1676                 up_read(&mm->mmap_sem);
1677                 mmdrop(mm);
1678         } else {
1679                 spin_unlock(&ksm_mmlist_lock);
1680                 up_read(&mm->mmap_sem);
1681         }
1682
1683         /* Repeat until we've completed scanning the whole list */
1684         slot = ksm_scan.mm_slot;
1685         if (slot != &ksm_mm_head)
1686                 goto next_mm;
1687
1688         ksm_scan.seqnr++;
1689         return NULL;
1690 }
1691
1692 /**
1693  * ksm_do_scan  - the ksm scanner main worker function.
1694  * @scan_npages - number of pages we want to scan before we return.
1695  */
1696 static void ksm_do_scan(unsigned int scan_npages)
1697 {
1698         struct rmap_item *rmap_item;
1699         struct page *uninitialized_var(page);
1700
1701         while (scan_npages-- && likely(!freezing(current))) {
1702                 cond_resched();
1703                 rmap_item = scan_get_next_rmap_item(&page);
1704                 if (!rmap_item)
1705                         return;
1706                 cmp_and_merge_page(page, rmap_item);
1707                 put_page(page);
1708         }
1709 }
1710
1711 static int ksmd_should_run(void)
1712 {
1713         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1714 }
1715
1716 static int ksm_scan_thread(void *nothing)
1717 {
1718         set_freezable();
1719         set_user_nice(current, 5);
1720
1721         while (!kthread_should_stop()) {
1722                 mutex_lock(&ksm_thread_mutex);
1723                 wait_while_offlining();
1724                 if (ksmd_should_run())
1725                         ksm_do_scan(ksm_thread_pages_to_scan);
1726                 mutex_unlock(&ksm_thread_mutex);
1727
1728                 try_to_freeze();
1729
1730                 if (ksmd_should_run()) {
1731                         schedule_timeout_interruptible(
1732                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1733                 } else {
1734                         wait_event_freezable(ksm_thread_wait,
1735                                 ksmd_should_run() || kthread_should_stop());
1736                 }
1737         }
1738         return 0;
1739 }
1740
1741 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1742                 unsigned long end, int advice, unsigned long *vm_flags)
1743 {
1744         struct mm_struct *mm = vma->vm_mm;
1745         int err;
1746
1747         switch (advice) {
1748         case MADV_MERGEABLE:
1749                 /*
1750                  * Be somewhat over-protective for now!
1751                  */
1752                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1753                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1754                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1755                         return 0;               /* just ignore the advice */
1756
1757 #ifdef VM_SAO
1758                 if (*vm_flags & VM_SAO)
1759                         return 0;
1760 #endif
1761
1762                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1763                         err = __ksm_enter(mm);
1764                         if (err)
1765                                 return err;
1766                 }
1767
1768                 *vm_flags |= VM_MERGEABLE;
1769                 break;
1770
1771         case MADV_UNMERGEABLE:
1772                 if (!(*vm_flags & VM_MERGEABLE))
1773                         return 0;               /* just ignore the advice */
1774
1775                 if (vma->anon_vma) {
1776                         err = unmerge_ksm_pages(vma, start, end);
1777                         if (err)
1778                                 return err;
1779                 }
1780
1781                 *vm_flags &= ~VM_MERGEABLE;
1782                 break;
1783         }
1784
1785         return 0;
1786 }
1787
1788 int __ksm_enter(struct mm_struct *mm)
1789 {
1790         struct mm_slot *mm_slot;
1791         int needs_wakeup;
1792
1793         mm_slot = alloc_mm_slot();
1794         if (!mm_slot)
1795                 return -ENOMEM;
1796
1797         /* Check ksm_run too?  Would need tighter locking */
1798         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1799
1800         spin_lock(&ksm_mmlist_lock);
1801         insert_to_mm_slots_hash(mm, mm_slot);
1802         /*
1803          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1804          * insert just behind the scanning cursor, to let the area settle
1805          * down a little; when fork is followed by immediate exec, we don't
1806          * want ksmd to waste time setting up and tearing down an rmap_list.
1807          *
1808          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1809          * scanning cursor, otherwise KSM pages in newly forked mms will be
1810          * missed: then we might as well insert at the end of the list.
1811          */
1812         if (ksm_run & KSM_RUN_UNMERGE)
1813                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1814         else
1815                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1816         spin_unlock(&ksm_mmlist_lock);
1817
1818         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1819         atomic_inc(&mm->mm_count);
1820
1821         if (needs_wakeup)
1822                 wake_up_interruptible(&ksm_thread_wait);
1823
1824         return 0;
1825 }
1826
1827 void __ksm_exit(struct mm_struct *mm)
1828 {
1829         struct mm_slot *mm_slot;
1830         int easy_to_free = 0;
1831
1832         /*
1833          * This process is exiting: if it's straightforward (as is the
1834          * case when ksmd was never running), free mm_slot immediately.
1835          * But if it's at the cursor or has rmap_items linked to it, use
1836          * mmap_sem to synchronize with any break_cows before pagetables
1837          * are freed, and leave the mm_slot on the list for ksmd to free.
1838          * Beware: ksm may already have noticed it exiting and freed the slot.
1839          */
1840
1841         spin_lock(&ksm_mmlist_lock);
1842         mm_slot = get_mm_slot(mm);
1843         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1844                 if (!mm_slot->rmap_list) {
1845                         hash_del(&mm_slot->link);
1846                         list_del(&mm_slot->mm_list);
1847                         easy_to_free = 1;
1848                 } else {
1849                         list_move(&mm_slot->mm_list,
1850                                   &ksm_scan.mm_slot->mm_list);
1851                 }
1852         }
1853         spin_unlock(&ksm_mmlist_lock);
1854
1855         if (easy_to_free) {
1856                 free_mm_slot(mm_slot);
1857                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1858                 mmdrop(mm);
1859         } else if (mm_slot) {
1860                 down_write(&mm->mmap_sem);
1861                 up_write(&mm->mmap_sem);
1862         }
1863 }
1864
1865 struct page *ksm_might_need_to_copy(struct page *page,
1866                         struct vm_area_struct *vma, unsigned long address)
1867 {
1868         struct anon_vma *anon_vma = page_anon_vma(page);
1869         struct page *new_page;
1870
1871         if (PageKsm(page)) {
1872                 if (page_stable_node(page) &&
1873                     !(ksm_run & KSM_RUN_UNMERGE))
1874                         return page;    /* no need to copy it */
1875         } else if (!anon_vma) {
1876                 return page;            /* no need to copy it */
1877         } else if (anon_vma->root == vma->anon_vma->root &&
1878                  page->index == linear_page_index(vma, address)) {
1879                 return page;            /* still no need to copy it */
1880         }
1881         if (!PageUptodate(page))
1882                 return page;            /* let do_swap_page report the error */
1883
1884         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1885         if (new_page) {
1886                 copy_user_highpage(new_page, page, address, vma);
1887
1888                 SetPageDirty(new_page);
1889                 __SetPageUptodate(new_page);
1890                 __set_page_locked(new_page);
1891         }
1892
1893         return new_page;
1894 }
1895
1896 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1897                         unsigned long *vm_flags)
1898 {
1899         struct stable_node *stable_node;
1900         struct rmap_item *rmap_item;
1901         struct hlist_node *hlist;
1902         unsigned int mapcount = page_mapcount(page);
1903         int referenced = 0;
1904         int search_new_forks = 0;
1905
1906         VM_BUG_ON(!PageKsm(page));
1907         VM_BUG_ON(!PageLocked(page));
1908
1909         stable_node = page_stable_node(page);
1910         if (!stable_node)
1911                 return 0;
1912 again:
1913         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1914                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1915                 struct anon_vma_chain *vmac;
1916                 struct vm_area_struct *vma;
1917
1918                 anon_vma_lock_read(anon_vma);
1919                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1920                                                0, ULONG_MAX) {
1921                         vma = vmac->vma;
1922                         if (rmap_item->address < vma->vm_start ||
1923                             rmap_item->address >= vma->vm_end)
1924                                 continue;
1925                         /*
1926                          * Initially we examine only the vma which covers this
1927                          * rmap_item; but later, if there is still work to do,
1928                          * we examine covering vmas in other mms: in case they
1929                          * were forked from the original since ksmd passed.
1930                          */
1931                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1932                                 continue;
1933
1934                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1935                                 continue;
1936
1937                         referenced += page_referenced_one(page, vma,
1938                                 rmap_item->address, &mapcount, vm_flags);
1939                         if (!search_new_forks || !mapcount)
1940                                 break;
1941                 }
1942                 anon_vma_unlock_read(anon_vma);
1943                 if (!mapcount)
1944                         goto out;
1945         }
1946         if (!search_new_forks++)
1947                 goto again;
1948 out:
1949         return referenced;
1950 }
1951
1952 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1953 {
1954         struct stable_node *stable_node;
1955         struct hlist_node *hlist;
1956         struct rmap_item *rmap_item;
1957         int ret = SWAP_AGAIN;
1958         int search_new_forks = 0;
1959
1960         VM_BUG_ON(!PageKsm(page));
1961         VM_BUG_ON(!PageLocked(page));
1962
1963         stable_node = page_stable_node(page);
1964         if (!stable_node)
1965                 return SWAP_FAIL;
1966 again:
1967         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1968                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1969                 struct anon_vma_chain *vmac;
1970                 struct vm_area_struct *vma;
1971
1972                 anon_vma_lock_read(anon_vma);
1973                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1974                                                0, ULONG_MAX) {
1975                         vma = vmac->vma;
1976                         if (rmap_item->address < vma->vm_start ||
1977                             rmap_item->address >= vma->vm_end)
1978                                 continue;
1979                         /*
1980                          * Initially we examine only the vma which covers this
1981                          * rmap_item; but later, if there is still work to do,
1982                          * we examine covering vmas in other mms: in case they
1983                          * were forked from the original since ksmd passed.
1984                          */
1985                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1986                                 continue;
1987
1988                         ret = try_to_unmap_one(page, vma,
1989                                         rmap_item->address, flags);
1990                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1991                                 anon_vma_unlock_read(anon_vma);
1992                                 goto out;
1993                         }
1994                 }
1995                 anon_vma_unlock_read(anon_vma);
1996         }
1997         if (!search_new_forks++)
1998                 goto again;
1999 out:
2000         return ret;
2001 }
2002
2003 #ifdef CONFIG_MIGRATION
2004 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
2005                   struct vm_area_struct *, unsigned long, void *), void *arg)
2006 {
2007         struct stable_node *stable_node;
2008         struct hlist_node *hlist;
2009         struct rmap_item *rmap_item;
2010         int ret = SWAP_AGAIN;
2011         int search_new_forks = 0;
2012
2013         VM_BUG_ON(!PageKsm(page));
2014         VM_BUG_ON(!PageLocked(page));
2015
2016         stable_node = page_stable_node(page);
2017         if (!stable_node)
2018                 return ret;
2019 again:
2020         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
2021                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2022                 struct anon_vma_chain *vmac;
2023                 struct vm_area_struct *vma;
2024
2025                 anon_vma_lock_read(anon_vma);
2026                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2027                                                0, ULONG_MAX) {
2028                         vma = vmac->vma;
2029                         if (rmap_item->address < vma->vm_start ||
2030                             rmap_item->address >= vma->vm_end)
2031                                 continue;
2032                         /*
2033                          * Initially we examine only the vma which covers this
2034                          * rmap_item; but later, if there is still work to do,
2035                          * we examine covering vmas in other mms: in case they
2036                          * were forked from the original since ksmd passed.
2037                          */
2038                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2039                                 continue;
2040
2041                         ret = rmap_one(page, vma, rmap_item->address, arg);
2042                         if (ret != SWAP_AGAIN) {
2043                                 anon_vma_unlock_read(anon_vma);
2044                                 goto out;
2045                         }
2046                 }
2047                 anon_vma_unlock_read(anon_vma);
2048         }
2049         if (!search_new_forks++)
2050                 goto again;
2051 out:
2052         return ret;
2053 }
2054
2055 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2056 {
2057         struct stable_node *stable_node;
2058
2059         VM_BUG_ON(!PageLocked(oldpage));
2060         VM_BUG_ON(!PageLocked(newpage));
2061         VM_BUG_ON(newpage->mapping != oldpage->mapping);
2062
2063         stable_node = page_stable_node(newpage);
2064         if (stable_node) {
2065                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2066                 stable_node->kpfn = page_to_pfn(newpage);
2067                 /*
2068                  * newpage->mapping was set in advance; now we need smp_wmb()
2069                  * to make sure that the new stable_node->kpfn is visible
2070                  * to get_ksm_page() before it can see that oldpage->mapping
2071                  * has gone stale (or that PageSwapCache has been cleared).
2072                  */
2073                 smp_wmb();
2074                 set_page_stable_node(oldpage, NULL);
2075         }
2076 }
2077 #endif /* CONFIG_MIGRATION */
2078
2079 #ifdef CONFIG_MEMORY_HOTREMOVE
2080 static int just_wait(void *word)
2081 {
2082         schedule();
2083         return 0;
2084 }
2085
2086 static void wait_while_offlining(void)
2087 {
2088         while (ksm_run & KSM_RUN_OFFLINE) {
2089                 mutex_unlock(&ksm_thread_mutex);
2090                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2091                                 just_wait, TASK_UNINTERRUPTIBLE);
2092                 mutex_lock(&ksm_thread_mutex);
2093         }
2094 }
2095
2096 static void ksm_check_stable_tree(unsigned long start_pfn,
2097                                   unsigned long end_pfn)
2098 {
2099         struct stable_node *stable_node;
2100         struct list_head *this, *next;
2101         struct rb_node *node;
2102         int nid;
2103
2104         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2105                 node = rb_first(root_stable_tree + nid);
2106                 while (node) {
2107                         stable_node = rb_entry(node, struct stable_node, node);
2108                         if (stable_node->kpfn >= start_pfn &&
2109                             stable_node->kpfn < end_pfn) {
2110                                 /*
2111                                  * Don't get_ksm_page, page has already gone:
2112                                  * which is why we keep kpfn instead of page*
2113                                  */
2114                                 remove_node_from_stable_tree(stable_node);
2115                                 node = rb_first(root_stable_tree + nid);
2116                         } else
2117                                 node = rb_next(node);
2118                         cond_resched();
2119                 }
2120         }
2121         list_for_each_safe(this, next, &migrate_nodes) {
2122                 stable_node = list_entry(this, struct stable_node, list);
2123                 if (stable_node->kpfn >= start_pfn &&
2124                     stable_node->kpfn < end_pfn)
2125                         remove_node_from_stable_tree(stable_node);
2126                 cond_resched();
2127         }
2128 }
2129
2130 static int ksm_memory_callback(struct notifier_block *self,
2131                                unsigned long action, void *arg)
2132 {
2133         struct memory_notify *mn = arg;
2134
2135         switch (action) {
2136         case MEM_GOING_OFFLINE:
2137                 /*
2138                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2139                  * and remove_all_stable_nodes() while memory is going offline:
2140                  * it is unsafe for them to touch the stable tree at this time.
2141                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2142                  * which do not need the ksm_thread_mutex are all safe.
2143                  */
2144                 mutex_lock(&ksm_thread_mutex);
2145                 ksm_run |= KSM_RUN_OFFLINE;
2146                 mutex_unlock(&ksm_thread_mutex);
2147                 break;
2148
2149         case MEM_OFFLINE:
2150                 /*
2151                  * Most of the work is done by page migration; but there might
2152                  * be a few stable_nodes left over, still pointing to struct
2153                  * pages which have been offlined: prune those from the tree,
2154                  * otherwise get_ksm_page() might later try to access a
2155                  * non-existent struct page.
2156                  */
2157                 ksm_check_stable_tree(mn->start_pfn,
2158                                       mn->start_pfn + mn->nr_pages);
2159                 /* fallthrough */
2160
2161         case MEM_CANCEL_OFFLINE:
2162                 mutex_lock(&ksm_thread_mutex);
2163                 ksm_run &= ~KSM_RUN_OFFLINE;
2164                 mutex_unlock(&ksm_thread_mutex);
2165
2166                 smp_mb();       /* wake_up_bit advises this */
2167                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2168                 break;
2169         }
2170         return NOTIFY_OK;
2171 }
2172 #else
2173 static void wait_while_offlining(void)
2174 {
2175 }
2176 #endif /* CONFIG_MEMORY_HOTREMOVE */
2177
2178 #ifdef CONFIG_SYSFS
2179 /*
2180  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2181  */
2182
2183 #define KSM_ATTR_RO(_name) \
2184         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2185 #define KSM_ATTR(_name) \
2186         static struct kobj_attribute _name##_attr = \
2187                 __ATTR(_name, 0644, _name##_show, _name##_store)
2188
2189 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2190                                     struct kobj_attribute *attr, char *buf)
2191 {
2192         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2193 }
2194
2195 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2196                                      struct kobj_attribute *attr,
2197                                      const char *buf, size_t count)
2198 {
2199         unsigned long msecs;
2200         int err;
2201
2202         err = strict_strtoul(buf, 10, &msecs);
2203         if (err || msecs > UINT_MAX)
2204                 return -EINVAL;
2205
2206         ksm_thread_sleep_millisecs = msecs;
2207
2208         return count;
2209 }
2210 KSM_ATTR(sleep_millisecs);
2211
2212 static ssize_t pages_to_scan_show(struct kobject *kobj,
2213                                   struct kobj_attribute *attr, char *buf)
2214 {
2215         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2216 }
2217
2218 static ssize_t pages_to_scan_store(struct kobject *kobj,
2219                                    struct kobj_attribute *attr,
2220                                    const char *buf, size_t count)
2221 {
2222         int err;
2223         unsigned long nr_pages;
2224
2225         err = strict_strtoul(buf, 10, &nr_pages);
2226         if (err || nr_pages > UINT_MAX)
2227                 return -EINVAL;
2228
2229         ksm_thread_pages_to_scan = nr_pages;
2230
2231         return count;
2232 }
2233 KSM_ATTR(pages_to_scan);
2234
2235 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2236                         char *buf)
2237 {
2238         return sprintf(buf, "%lu\n", ksm_run);
2239 }
2240
2241 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2242                          const char *buf, size_t count)
2243 {
2244         int err;
2245         unsigned long flags;
2246
2247         err = strict_strtoul(buf, 10, &flags);
2248         if (err || flags > UINT_MAX)
2249                 return -EINVAL;
2250         if (flags > KSM_RUN_UNMERGE)
2251                 return -EINVAL;
2252
2253         /*
2254          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2255          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2256          * breaking COW to free the pages_shared (but leaves mm_slots
2257          * on the list for when ksmd may be set running again).
2258          */
2259
2260         mutex_lock(&ksm_thread_mutex);
2261         wait_while_offlining();
2262         if (ksm_run != flags) {
2263                 ksm_run = flags;
2264                 if (flags & KSM_RUN_UNMERGE) {
2265                         set_current_oom_origin();
2266                         err = unmerge_and_remove_all_rmap_items();
2267                         clear_current_oom_origin();
2268                         if (err) {
2269                                 ksm_run = KSM_RUN_STOP;
2270                                 count = err;
2271                         }
2272                 }
2273         }
2274         mutex_unlock(&ksm_thread_mutex);
2275
2276         if (flags & KSM_RUN_MERGE)
2277                 wake_up_interruptible(&ksm_thread_wait);
2278
2279         return count;
2280 }
2281 KSM_ATTR(run);
2282
2283 #ifdef CONFIG_NUMA
2284 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2285                                 struct kobj_attribute *attr, char *buf)
2286 {
2287         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2288 }
2289
2290 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2291                                    struct kobj_attribute *attr,
2292                                    const char *buf, size_t count)
2293 {
2294         int err;
2295         unsigned long knob;
2296
2297         err = kstrtoul(buf, 10, &knob);
2298         if (err)
2299                 return err;
2300         if (knob > 1)
2301                 return -EINVAL;
2302
2303         mutex_lock(&ksm_thread_mutex);
2304         wait_while_offlining();
2305         if (ksm_merge_across_nodes != knob) {
2306                 if (ksm_pages_shared || remove_all_stable_nodes())
2307                         err = -EBUSY;
2308                 else if (root_stable_tree == one_stable_tree) {
2309                         struct rb_root *buf;
2310                         /*
2311                          * This is the first time that we switch away from the
2312                          * default of merging across nodes: must now allocate
2313                          * a buffer to hold as many roots as may be needed.
2314                          * Allocate stable and unstable together:
2315                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2316                          */
2317                         buf = kcalloc(nr_node_ids + nr_node_ids,
2318                                 sizeof(*buf), GFP_KERNEL | __GFP_ZERO);
2319                         /* Let us assume that RB_ROOT is NULL is zero */
2320                         if (!buf)
2321                                 err = -ENOMEM;
2322                         else {
2323                                 root_stable_tree = buf;
2324                                 root_unstable_tree = buf + nr_node_ids;
2325                                 /* Stable tree is empty but not the unstable */
2326                                 root_unstable_tree[0] = one_unstable_tree[0];
2327                         }
2328                 }
2329                 if (!err) {
2330                         ksm_merge_across_nodes = knob;
2331                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2332                 }
2333         }
2334         mutex_unlock(&ksm_thread_mutex);
2335
2336         return err ? err : count;
2337 }
2338 KSM_ATTR(merge_across_nodes);
2339 #endif
2340
2341 static ssize_t pages_shared_show(struct kobject *kobj,
2342                                  struct kobj_attribute *attr, char *buf)
2343 {
2344         return sprintf(buf, "%lu\n", ksm_pages_shared);
2345 }
2346 KSM_ATTR_RO(pages_shared);
2347
2348 static ssize_t pages_sharing_show(struct kobject *kobj,
2349                                   struct kobj_attribute *attr, char *buf)
2350 {
2351         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2352 }
2353 KSM_ATTR_RO(pages_sharing);
2354
2355 static ssize_t pages_unshared_show(struct kobject *kobj,
2356                                    struct kobj_attribute *attr, char *buf)
2357 {
2358         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2359 }
2360 KSM_ATTR_RO(pages_unshared);
2361
2362 static ssize_t pages_volatile_show(struct kobject *kobj,
2363                                    struct kobj_attribute *attr, char *buf)
2364 {
2365         long ksm_pages_volatile;
2366
2367         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2368                                 - ksm_pages_sharing - ksm_pages_unshared;
2369         /*
2370          * It was not worth any locking to calculate that statistic,
2371          * but it might therefore sometimes be negative: conceal that.
2372          */
2373         if (ksm_pages_volatile < 0)
2374                 ksm_pages_volatile = 0;
2375         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2376 }
2377 KSM_ATTR_RO(pages_volatile);
2378
2379 static ssize_t full_scans_show(struct kobject *kobj,
2380                                struct kobj_attribute *attr, char *buf)
2381 {
2382         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2383 }
2384 KSM_ATTR_RO(full_scans);
2385
2386 static struct attribute *ksm_attrs[] = {
2387         &sleep_millisecs_attr.attr,
2388         &pages_to_scan_attr.attr,
2389         &run_attr.attr,
2390         &pages_shared_attr.attr,
2391         &pages_sharing_attr.attr,
2392         &pages_unshared_attr.attr,
2393         &pages_volatile_attr.attr,
2394         &full_scans_attr.attr,
2395 #ifdef CONFIG_NUMA
2396         &merge_across_nodes_attr.attr,
2397 #endif
2398         NULL,
2399 };
2400
2401 static struct attribute_group ksm_attr_group = {
2402         .attrs = ksm_attrs,
2403         .name = "ksm",
2404 };
2405 #endif /* CONFIG_SYSFS */
2406
2407 static int __init ksm_init(void)
2408 {
2409         struct task_struct *ksm_thread;
2410         int err;
2411
2412         err = ksm_slab_init();
2413         if (err)
2414                 goto out;
2415
2416         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2417         if (IS_ERR(ksm_thread)) {
2418                 printk(KERN_ERR "ksm: creating kthread failed\n");
2419                 err = PTR_ERR(ksm_thread);
2420                 goto out_free;
2421         }
2422
2423 #ifdef CONFIG_SYSFS
2424         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2425         if (err) {
2426                 printk(KERN_ERR "ksm: register sysfs failed\n");
2427                 kthread_stop(ksm_thread);
2428                 goto out_free;
2429         }
2430 #else
2431         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2432
2433 #endif /* CONFIG_SYSFS */
2434
2435 #ifdef CONFIG_MEMORY_HOTREMOVE
2436         /* There is no significance to this priority 100 */
2437         hotplug_memory_notifier(ksm_memory_callback, 100);
2438 #endif
2439         return 0;
2440
2441 out_free:
2442         ksm_slab_free();
2443 out:
2444         return err;
2445 }
2446 module_init(ksm_init)