Merge tag 'for-6.6-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-rpi.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)         (x)
53 #define DO_NUMA(x)      do { (x); } while (0)
54 #else
55 #define NUMA(x)         (0)
56 #define DO_NUMA(x)      do { } while (0)
57 #endif
58
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125         struct mm_slot slot;
126         struct ksm_rmap_item *rmap_list;
127 };
128
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139         struct ksm_mm_slot *mm_slot;
140         unsigned long address;
141         struct ksm_rmap_item **rmap_list;
142         unsigned long seqnr;
143 };
144
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158         union {
159                 struct rb_node node;    /* when node of stable tree */
160                 struct {                /* when listed for migration */
161                         struct list_head *head;
162                         struct {
163                                 struct hlist_node hlist_dup;
164                                 struct list_head list;
165                         };
166                 };
167         };
168         struct hlist_head hlist;
169         union {
170                 unsigned long kpfn;
171                 unsigned long chain_prune_time;
172         };
173         /*
174          * STABLE_NODE_CHAIN can be any negative number in
175          * rmap_hlist_len negative range, but better not -1 to be able
176          * to reliably detect underflows.
177          */
178 #define STABLE_NODE_CHAIN -1024
179         int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181         int nid;
182 #endif
183 };
184
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198         struct ksm_rmap_item *rmap_list;
199         union {
200                 struct anon_vma *anon_vma;      /* when stable */
201 #ifdef CONFIG_NUMA
202                 int nid;                /* when node of unstable tree */
203 #endif
204         };
205         struct mm_struct *mm;
206         unsigned long address;          /* + low bits used for flags below */
207         unsigned int oldchecksum;       /* when unstable */
208         union {
209                 struct rb_node node;    /* when node of unstable tree */
210                 struct {                /* when listed from stable tree */
211                         struct ksm_stable_node *head;
212                         struct hlist_node hlist;
213                 };
214         };
215 };
216
217 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
219 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
220
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233
234 static struct ksm_mm_slot ksm_mm_head = {
235         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238         .mm_slot = &ksm_mm_head,
239 };
240
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244
245 /* The number of pages scanned */
246 static unsigned long ksm_pages_scanned;
247
248 /* The number of nodes in the stable tree */
249 static unsigned long ksm_pages_shared;
250
251 /* The number of page slots additionally sharing those nodes */
252 static unsigned long ksm_pages_sharing;
253
254 /* The number of nodes in the unstable tree */
255 static unsigned long ksm_pages_unshared;
256
257 /* The number of rmap_items in use: to calculate pages_volatile */
258 static unsigned long ksm_rmap_items;
259
260 /* The number of stable_node chains */
261 static unsigned long ksm_stable_node_chains;
262
263 /* The number of stable_node dups linked to the stable_node chains */
264 static unsigned long ksm_stable_node_dups;
265
266 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
267 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
268
269 /* Maximum number of page slots sharing a stable node */
270 static int ksm_max_page_sharing = 256;
271
272 /* Number of pages ksmd should scan in one batch */
273 static unsigned int ksm_thread_pages_to_scan = 100;
274
275 /* Milliseconds ksmd should sleep between batches */
276 static unsigned int ksm_thread_sleep_millisecs = 20;
277
278 /* Checksum of an empty (zeroed) page */
279 static unsigned int zero_checksum __read_mostly;
280
281 /* Whether to merge empty (zeroed) pages with actual zero pages */
282 static bool ksm_use_zero_pages __read_mostly;
283
284 /* The number of zero pages which is placed by KSM */
285 unsigned long ksm_zero_pages;
286
287 #ifdef CONFIG_NUMA
288 /* Zeroed when merging across nodes is not allowed */
289 static unsigned int ksm_merge_across_nodes = 1;
290 static int ksm_nr_node_ids = 1;
291 #else
292 #define ksm_merge_across_nodes  1U
293 #define ksm_nr_node_ids         1
294 #endif
295
296 #define KSM_RUN_STOP    0
297 #define KSM_RUN_MERGE   1
298 #define KSM_RUN_UNMERGE 2
299 #define KSM_RUN_OFFLINE 4
300 static unsigned long ksm_run = KSM_RUN_STOP;
301 static void wait_while_offlining(void);
302
303 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
304 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
305 static DEFINE_MUTEX(ksm_thread_mutex);
306 static DEFINE_SPINLOCK(ksm_mmlist_lock);
307
308 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
309                 sizeof(struct __struct), __alignof__(struct __struct),\
310                 (__flags), NULL)
311
312 static int __init ksm_slab_init(void)
313 {
314         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
315         if (!rmap_item_cache)
316                 goto out;
317
318         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
319         if (!stable_node_cache)
320                 goto out_free1;
321
322         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
323         if (!mm_slot_cache)
324                 goto out_free2;
325
326         return 0;
327
328 out_free2:
329         kmem_cache_destroy(stable_node_cache);
330 out_free1:
331         kmem_cache_destroy(rmap_item_cache);
332 out:
333         return -ENOMEM;
334 }
335
336 static void __init ksm_slab_free(void)
337 {
338         kmem_cache_destroy(mm_slot_cache);
339         kmem_cache_destroy(stable_node_cache);
340         kmem_cache_destroy(rmap_item_cache);
341         mm_slot_cache = NULL;
342 }
343
344 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
345 {
346         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
347 }
348
349 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
350 {
351         return dup->head == STABLE_NODE_DUP_HEAD;
352 }
353
354 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
355                                              struct ksm_stable_node *chain)
356 {
357         VM_BUG_ON(is_stable_node_dup(dup));
358         dup->head = STABLE_NODE_DUP_HEAD;
359         VM_BUG_ON(!is_stable_node_chain(chain));
360         hlist_add_head(&dup->hlist_dup, &chain->hlist);
361         ksm_stable_node_dups++;
362 }
363
364 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
365 {
366         VM_BUG_ON(!is_stable_node_dup(dup));
367         hlist_del(&dup->hlist_dup);
368         ksm_stable_node_dups--;
369 }
370
371 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
372 {
373         VM_BUG_ON(is_stable_node_chain(dup));
374         if (is_stable_node_dup(dup))
375                 __stable_node_dup_del(dup);
376         else
377                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
378 #ifdef CONFIG_DEBUG_VM
379         dup->head = NULL;
380 #endif
381 }
382
383 static inline struct ksm_rmap_item *alloc_rmap_item(void)
384 {
385         struct ksm_rmap_item *rmap_item;
386
387         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
388                                                 __GFP_NORETRY | __GFP_NOWARN);
389         if (rmap_item)
390                 ksm_rmap_items++;
391         return rmap_item;
392 }
393
394 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
395 {
396         ksm_rmap_items--;
397         rmap_item->mm->ksm_rmap_items--;
398         rmap_item->mm = NULL;   /* debug safety */
399         kmem_cache_free(rmap_item_cache, rmap_item);
400 }
401
402 static inline struct ksm_stable_node *alloc_stable_node(void)
403 {
404         /*
405          * The allocation can take too long with GFP_KERNEL when memory is under
406          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
407          * grants access to memory reserves, helping to avoid this problem.
408          */
409         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
410 }
411
412 static inline void free_stable_node(struct ksm_stable_node *stable_node)
413 {
414         VM_BUG_ON(stable_node->rmap_hlist_len &&
415                   !is_stable_node_chain(stable_node));
416         kmem_cache_free(stable_node_cache, stable_node);
417 }
418
419 /*
420  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
421  * page tables after it has passed through ksm_exit() - which, if necessary,
422  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
423  * a special flag: they can just back out as soon as mm_users goes to zero.
424  * ksm_test_exit() is used throughout to make this test for exit: in some
425  * places for correctness, in some places just to avoid unnecessary work.
426  */
427 static inline bool ksm_test_exit(struct mm_struct *mm)
428 {
429         return atomic_read(&mm->mm_users) == 0;
430 }
431
432 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
433                         struct mm_walk *walk)
434 {
435         struct page *page = NULL;
436         spinlock_t *ptl;
437         pte_t *pte;
438         pte_t ptent;
439         int ret;
440
441         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
442         if (!pte)
443                 return 0;
444         ptent = ptep_get(pte);
445         if (pte_present(ptent)) {
446                 page = vm_normal_page(walk->vma, addr, ptent);
447         } else if (!pte_none(ptent)) {
448                 swp_entry_t entry = pte_to_swp_entry(ptent);
449
450                 /*
451                  * As KSM pages remain KSM pages until freed, no need to wait
452                  * here for migration to end.
453                  */
454                 if (is_migration_entry(entry))
455                         page = pfn_swap_entry_to_page(entry);
456         }
457         /* return 1 if the page is an normal ksm page or KSM-placed zero page */
458         ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte);
459         pte_unmap_unlock(pte, ptl);
460         return ret;
461 }
462
463 static const struct mm_walk_ops break_ksm_ops = {
464         .pmd_entry = break_ksm_pmd_entry,
465         .walk_lock = PGWALK_RDLOCK,
466 };
467
468 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
469         .pmd_entry = break_ksm_pmd_entry,
470         .walk_lock = PGWALK_WRLOCK,
471 };
472
473 /*
474  * We use break_ksm to break COW on a ksm page by triggering unsharing,
475  * such that the ksm page will get replaced by an exclusive anonymous page.
476  *
477  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
478  * in case the application has unmapped and remapped mm,addr meanwhile.
479  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
480  * mmap of /dev/mem, where we would not want to touch it.
481  *
482  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
483  * of the process that owns 'vma'.  We also do not want to enforce
484  * protection keys here anyway.
485  */
486 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
487 {
488         vm_fault_t ret = 0;
489         const struct mm_walk_ops *ops = lock_vma ?
490                                 &break_ksm_lock_vma_ops : &break_ksm_ops;
491
492         do {
493                 int ksm_page;
494
495                 cond_resched();
496                 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
497                 if (WARN_ON_ONCE(ksm_page < 0))
498                         return ksm_page;
499                 if (!ksm_page)
500                         return 0;
501                 ret = handle_mm_fault(vma, addr,
502                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
503                                       NULL);
504         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
505         /*
506          * We must loop until we no longer find a KSM page because
507          * handle_mm_fault() may back out if there's any difficulty e.g. if
508          * pte accessed bit gets updated concurrently.
509          *
510          * VM_FAULT_SIGBUS could occur if we race with truncation of the
511          * backing file, which also invalidates anonymous pages: that's
512          * okay, that truncation will have unmapped the PageKsm for us.
513          *
514          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
515          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
516          * current task has TIF_MEMDIE set, and will be OOM killed on return
517          * to user; and ksmd, having no mm, would never be chosen for that.
518          *
519          * But if the mm is in a limited mem_cgroup, then the fault may fail
520          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
521          * even ksmd can fail in this way - though it's usually breaking ksm
522          * just to undo a merge it made a moment before, so unlikely to oom.
523          *
524          * That's a pity: we might therefore have more kernel pages allocated
525          * than we're counting as nodes in the stable tree; but ksm_do_scan
526          * will retry to break_cow on each pass, so should recover the page
527          * in due course.  The important thing is to not let VM_MERGEABLE
528          * be cleared while any such pages might remain in the area.
529          */
530         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
531 }
532
533 static bool vma_ksm_compatible(struct vm_area_struct *vma)
534 {
535         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
536                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
537                              VM_MIXEDMAP))
538                 return false;           /* just ignore the advice */
539
540         if (vma_is_dax(vma))
541                 return false;
542
543 #ifdef VM_SAO
544         if (vma->vm_flags & VM_SAO)
545                 return false;
546 #endif
547 #ifdef VM_SPARC_ADI
548         if (vma->vm_flags & VM_SPARC_ADI)
549                 return false;
550 #endif
551
552         return true;
553 }
554
555 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
556                 unsigned long addr)
557 {
558         struct vm_area_struct *vma;
559         if (ksm_test_exit(mm))
560                 return NULL;
561         vma = vma_lookup(mm, addr);
562         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
563                 return NULL;
564         return vma;
565 }
566
567 static void break_cow(struct ksm_rmap_item *rmap_item)
568 {
569         struct mm_struct *mm = rmap_item->mm;
570         unsigned long addr = rmap_item->address;
571         struct vm_area_struct *vma;
572
573         /*
574          * It is not an accident that whenever we want to break COW
575          * to undo, we also need to drop a reference to the anon_vma.
576          */
577         put_anon_vma(rmap_item->anon_vma);
578
579         mmap_read_lock(mm);
580         vma = find_mergeable_vma(mm, addr);
581         if (vma)
582                 break_ksm(vma, addr, false);
583         mmap_read_unlock(mm);
584 }
585
586 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
587 {
588         struct mm_struct *mm = rmap_item->mm;
589         unsigned long addr = rmap_item->address;
590         struct vm_area_struct *vma;
591         struct page *page;
592
593         mmap_read_lock(mm);
594         vma = find_mergeable_vma(mm, addr);
595         if (!vma)
596                 goto out;
597
598         page = follow_page(vma, addr, FOLL_GET);
599         if (IS_ERR_OR_NULL(page))
600                 goto out;
601         if (is_zone_device_page(page))
602                 goto out_putpage;
603         if (PageAnon(page)) {
604                 flush_anon_page(vma, page, addr);
605                 flush_dcache_page(page);
606         } else {
607 out_putpage:
608                 put_page(page);
609 out:
610                 page = NULL;
611         }
612         mmap_read_unlock(mm);
613         return page;
614 }
615
616 /*
617  * This helper is used for getting right index into array of tree roots.
618  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
619  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
620  * every node has its own stable and unstable tree.
621  */
622 static inline int get_kpfn_nid(unsigned long kpfn)
623 {
624         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
625 }
626
627 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
628                                                    struct rb_root *root)
629 {
630         struct ksm_stable_node *chain = alloc_stable_node();
631         VM_BUG_ON(is_stable_node_chain(dup));
632         if (likely(chain)) {
633                 INIT_HLIST_HEAD(&chain->hlist);
634                 chain->chain_prune_time = jiffies;
635                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
636 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
637                 chain->nid = NUMA_NO_NODE; /* debug */
638 #endif
639                 ksm_stable_node_chains++;
640
641                 /*
642                  * Put the stable node chain in the first dimension of
643                  * the stable tree and at the same time remove the old
644                  * stable node.
645                  */
646                 rb_replace_node(&dup->node, &chain->node, root);
647
648                 /*
649                  * Move the old stable node to the second dimension
650                  * queued in the hlist_dup. The invariant is that all
651                  * dup stable_nodes in the chain->hlist point to pages
652                  * that are write protected and have the exact same
653                  * content.
654                  */
655                 stable_node_chain_add_dup(dup, chain);
656         }
657         return chain;
658 }
659
660 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
661                                           struct rb_root *root)
662 {
663         rb_erase(&chain->node, root);
664         free_stable_node(chain);
665         ksm_stable_node_chains--;
666 }
667
668 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
669 {
670         struct ksm_rmap_item *rmap_item;
671
672         /* check it's not STABLE_NODE_CHAIN or negative */
673         BUG_ON(stable_node->rmap_hlist_len < 0);
674
675         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
676                 if (rmap_item->hlist.next) {
677                         ksm_pages_sharing--;
678                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
679                 } else {
680                         ksm_pages_shared--;
681                 }
682
683                 rmap_item->mm->ksm_merging_pages--;
684
685                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
686                 stable_node->rmap_hlist_len--;
687                 put_anon_vma(rmap_item->anon_vma);
688                 rmap_item->address &= PAGE_MASK;
689                 cond_resched();
690         }
691
692         /*
693          * We need the second aligned pointer of the migrate_nodes
694          * list_head to stay clear from the rb_parent_color union
695          * (aligned and different than any node) and also different
696          * from &migrate_nodes. This will verify that future list.h changes
697          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
698          */
699         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
700         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
701
702         trace_ksm_remove_ksm_page(stable_node->kpfn);
703         if (stable_node->head == &migrate_nodes)
704                 list_del(&stable_node->list);
705         else
706                 stable_node_dup_del(stable_node);
707         free_stable_node(stable_node);
708 }
709
710 enum get_ksm_page_flags {
711         GET_KSM_PAGE_NOLOCK,
712         GET_KSM_PAGE_LOCK,
713         GET_KSM_PAGE_TRYLOCK
714 };
715
716 /*
717  * get_ksm_page: checks if the page indicated by the stable node
718  * is still its ksm page, despite having held no reference to it.
719  * In which case we can trust the content of the page, and it
720  * returns the gotten page; but if the page has now been zapped,
721  * remove the stale node from the stable tree and return NULL.
722  * But beware, the stable node's page might be being migrated.
723  *
724  * You would expect the stable_node to hold a reference to the ksm page.
725  * But if it increments the page's count, swapping out has to wait for
726  * ksmd to come around again before it can free the page, which may take
727  * seconds or even minutes: much too unresponsive.  So instead we use a
728  * "keyhole reference": access to the ksm page from the stable node peeps
729  * out through its keyhole to see if that page still holds the right key,
730  * pointing back to this stable node.  This relies on freeing a PageAnon
731  * page to reset its page->mapping to NULL, and relies on no other use of
732  * a page to put something that might look like our key in page->mapping.
733  * is on its way to being freed; but it is an anomaly to bear in mind.
734  */
735 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
736                                  enum get_ksm_page_flags flags)
737 {
738         struct page *page;
739         void *expected_mapping;
740         unsigned long kpfn;
741
742         expected_mapping = (void *)((unsigned long)stable_node |
743                                         PAGE_MAPPING_KSM);
744 again:
745         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
746         page = pfn_to_page(kpfn);
747         if (READ_ONCE(page->mapping) != expected_mapping)
748                 goto stale;
749
750         /*
751          * We cannot do anything with the page while its refcount is 0.
752          * Usually 0 means free, or tail of a higher-order page: in which
753          * case this node is no longer referenced, and should be freed;
754          * however, it might mean that the page is under page_ref_freeze().
755          * The __remove_mapping() case is easy, again the node is now stale;
756          * the same is in reuse_ksm_page() case; but if page is swapcache
757          * in folio_migrate_mapping(), it might still be our page,
758          * in which case it's essential to keep the node.
759          */
760         while (!get_page_unless_zero(page)) {
761                 /*
762                  * Another check for page->mapping != expected_mapping would
763                  * work here too.  We have chosen the !PageSwapCache test to
764                  * optimize the common case, when the page is or is about to
765                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
766                  * in the ref_freeze section of __remove_mapping(); but Anon
767                  * page->mapping reset to NULL later, in free_pages_prepare().
768                  */
769                 if (!PageSwapCache(page))
770                         goto stale;
771                 cpu_relax();
772         }
773
774         if (READ_ONCE(page->mapping) != expected_mapping) {
775                 put_page(page);
776                 goto stale;
777         }
778
779         if (flags == GET_KSM_PAGE_TRYLOCK) {
780                 if (!trylock_page(page)) {
781                         put_page(page);
782                         return ERR_PTR(-EBUSY);
783                 }
784         } else if (flags == GET_KSM_PAGE_LOCK)
785                 lock_page(page);
786
787         if (flags != GET_KSM_PAGE_NOLOCK) {
788                 if (READ_ONCE(page->mapping) != expected_mapping) {
789                         unlock_page(page);
790                         put_page(page);
791                         goto stale;
792                 }
793         }
794         return page;
795
796 stale:
797         /*
798          * We come here from above when page->mapping or !PageSwapCache
799          * suggests that the node is stale; but it might be under migration.
800          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
801          * before checking whether node->kpfn has been changed.
802          */
803         smp_rmb();
804         if (READ_ONCE(stable_node->kpfn) != kpfn)
805                 goto again;
806         remove_node_from_stable_tree(stable_node);
807         return NULL;
808 }
809
810 /*
811  * Removing rmap_item from stable or unstable tree.
812  * This function will clean the information from the stable/unstable tree.
813  */
814 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
815 {
816         if (rmap_item->address & STABLE_FLAG) {
817                 struct ksm_stable_node *stable_node;
818                 struct page *page;
819
820                 stable_node = rmap_item->head;
821                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
822                 if (!page)
823                         goto out;
824
825                 hlist_del(&rmap_item->hlist);
826                 unlock_page(page);
827                 put_page(page);
828
829                 if (!hlist_empty(&stable_node->hlist))
830                         ksm_pages_sharing--;
831                 else
832                         ksm_pages_shared--;
833
834                 rmap_item->mm->ksm_merging_pages--;
835
836                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
837                 stable_node->rmap_hlist_len--;
838
839                 put_anon_vma(rmap_item->anon_vma);
840                 rmap_item->head = NULL;
841                 rmap_item->address &= PAGE_MASK;
842
843         } else if (rmap_item->address & UNSTABLE_FLAG) {
844                 unsigned char age;
845                 /*
846                  * Usually ksmd can and must skip the rb_erase, because
847                  * root_unstable_tree was already reset to RB_ROOT.
848                  * But be careful when an mm is exiting: do the rb_erase
849                  * if this rmap_item was inserted by this scan, rather
850                  * than left over from before.
851                  */
852                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
853                 BUG_ON(age > 1);
854                 if (!age)
855                         rb_erase(&rmap_item->node,
856                                  root_unstable_tree + NUMA(rmap_item->nid));
857                 ksm_pages_unshared--;
858                 rmap_item->address &= PAGE_MASK;
859         }
860 out:
861         cond_resched();         /* we're called from many long loops */
862 }
863
864 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
865 {
866         while (*rmap_list) {
867                 struct ksm_rmap_item *rmap_item = *rmap_list;
868                 *rmap_list = rmap_item->rmap_list;
869                 remove_rmap_item_from_tree(rmap_item);
870                 free_rmap_item(rmap_item);
871         }
872 }
873
874 /*
875  * Though it's very tempting to unmerge rmap_items from stable tree rather
876  * than check every pte of a given vma, the locking doesn't quite work for
877  * that - an rmap_item is assigned to the stable tree after inserting ksm
878  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
879  * rmap_items from parent to child at fork time (so as not to waste time
880  * if exit comes before the next scan reaches it).
881  *
882  * Similarly, although we'd like to remove rmap_items (so updating counts
883  * and freeing memory) when unmerging an area, it's easier to leave that
884  * to the next pass of ksmd - consider, for example, how ksmd might be
885  * in cmp_and_merge_page on one of the rmap_items we would be removing.
886  */
887 static int unmerge_ksm_pages(struct vm_area_struct *vma,
888                              unsigned long start, unsigned long end, bool lock_vma)
889 {
890         unsigned long addr;
891         int err = 0;
892
893         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
894                 if (ksm_test_exit(vma->vm_mm))
895                         break;
896                 if (signal_pending(current))
897                         err = -ERESTARTSYS;
898                 else
899                         err = break_ksm(vma, addr, lock_vma);
900         }
901         return err;
902 }
903
904 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
905 {
906         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
907 }
908
909 static inline struct ksm_stable_node *page_stable_node(struct page *page)
910 {
911         return folio_stable_node(page_folio(page));
912 }
913
914 static inline void set_page_stable_node(struct page *page,
915                                         struct ksm_stable_node *stable_node)
916 {
917         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
918         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
919 }
920
921 #ifdef CONFIG_SYSFS
922 /*
923  * Only called through the sysfs control interface:
924  */
925 static int remove_stable_node(struct ksm_stable_node *stable_node)
926 {
927         struct page *page;
928         int err;
929
930         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
931         if (!page) {
932                 /*
933                  * get_ksm_page did remove_node_from_stable_tree itself.
934                  */
935                 return 0;
936         }
937
938         /*
939          * Page could be still mapped if this races with __mmput() running in
940          * between ksm_exit() and exit_mmap(). Just refuse to let
941          * merge_across_nodes/max_page_sharing be switched.
942          */
943         err = -EBUSY;
944         if (!page_mapped(page)) {
945                 /*
946                  * The stable node did not yet appear stale to get_ksm_page(),
947                  * since that allows for an unmapped ksm page to be recognized
948                  * right up until it is freed; but the node is safe to remove.
949                  * This page might be in an LRU cache waiting to be freed,
950                  * or it might be PageSwapCache (perhaps under writeback),
951                  * or it might have been removed from swapcache a moment ago.
952                  */
953                 set_page_stable_node(page, NULL);
954                 remove_node_from_stable_tree(stable_node);
955                 err = 0;
956         }
957
958         unlock_page(page);
959         put_page(page);
960         return err;
961 }
962
963 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
964                                     struct rb_root *root)
965 {
966         struct ksm_stable_node *dup;
967         struct hlist_node *hlist_safe;
968
969         if (!is_stable_node_chain(stable_node)) {
970                 VM_BUG_ON(is_stable_node_dup(stable_node));
971                 if (remove_stable_node(stable_node))
972                         return true;
973                 else
974                         return false;
975         }
976
977         hlist_for_each_entry_safe(dup, hlist_safe,
978                                   &stable_node->hlist, hlist_dup) {
979                 VM_BUG_ON(!is_stable_node_dup(dup));
980                 if (remove_stable_node(dup))
981                         return true;
982         }
983         BUG_ON(!hlist_empty(&stable_node->hlist));
984         free_stable_node_chain(stable_node, root);
985         return false;
986 }
987
988 static int remove_all_stable_nodes(void)
989 {
990         struct ksm_stable_node *stable_node, *next;
991         int nid;
992         int err = 0;
993
994         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
995                 while (root_stable_tree[nid].rb_node) {
996                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
997                                                 struct ksm_stable_node, node);
998                         if (remove_stable_node_chain(stable_node,
999                                                      root_stable_tree + nid)) {
1000                                 err = -EBUSY;
1001                                 break;  /* proceed to next nid */
1002                         }
1003                         cond_resched();
1004                 }
1005         }
1006         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1007                 if (remove_stable_node(stable_node))
1008                         err = -EBUSY;
1009                 cond_resched();
1010         }
1011         return err;
1012 }
1013
1014 static int unmerge_and_remove_all_rmap_items(void)
1015 {
1016         struct ksm_mm_slot *mm_slot;
1017         struct mm_slot *slot;
1018         struct mm_struct *mm;
1019         struct vm_area_struct *vma;
1020         int err = 0;
1021
1022         spin_lock(&ksm_mmlist_lock);
1023         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1024                           struct mm_slot, mm_node);
1025         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1026         spin_unlock(&ksm_mmlist_lock);
1027
1028         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1029              mm_slot = ksm_scan.mm_slot) {
1030                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1031
1032                 mm = mm_slot->slot.mm;
1033                 mmap_read_lock(mm);
1034
1035                 /*
1036                  * Exit right away if mm is exiting to avoid lockdep issue in
1037                  * the maple tree
1038                  */
1039                 if (ksm_test_exit(mm))
1040                         goto mm_exiting;
1041
1042                 for_each_vma(vmi, vma) {
1043                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1044                                 continue;
1045                         err = unmerge_ksm_pages(vma,
1046                                                 vma->vm_start, vma->vm_end, false);
1047                         if (err)
1048                                 goto error;
1049                 }
1050
1051 mm_exiting:
1052                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1053                 mmap_read_unlock(mm);
1054
1055                 spin_lock(&ksm_mmlist_lock);
1056                 slot = list_entry(mm_slot->slot.mm_node.next,
1057                                   struct mm_slot, mm_node);
1058                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1059                 if (ksm_test_exit(mm)) {
1060                         hash_del(&mm_slot->slot.hash);
1061                         list_del(&mm_slot->slot.mm_node);
1062                         spin_unlock(&ksm_mmlist_lock);
1063
1064                         mm_slot_free(mm_slot_cache, mm_slot);
1065                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1066                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1067                         mmdrop(mm);
1068                 } else
1069                         spin_unlock(&ksm_mmlist_lock);
1070         }
1071
1072         /* Clean up stable nodes, but don't worry if some are still busy */
1073         remove_all_stable_nodes();
1074         ksm_scan.seqnr = 0;
1075         return 0;
1076
1077 error:
1078         mmap_read_unlock(mm);
1079         spin_lock(&ksm_mmlist_lock);
1080         ksm_scan.mm_slot = &ksm_mm_head;
1081         spin_unlock(&ksm_mmlist_lock);
1082         return err;
1083 }
1084 #endif /* CONFIG_SYSFS */
1085
1086 static u32 calc_checksum(struct page *page)
1087 {
1088         u32 checksum;
1089         void *addr = kmap_atomic(page);
1090         checksum = xxhash(addr, PAGE_SIZE, 0);
1091         kunmap_atomic(addr);
1092         return checksum;
1093 }
1094
1095 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1096                               pte_t *orig_pte)
1097 {
1098         struct mm_struct *mm = vma->vm_mm;
1099         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1100         int swapped;
1101         int err = -EFAULT;
1102         struct mmu_notifier_range range;
1103         bool anon_exclusive;
1104         pte_t entry;
1105
1106         pvmw.address = page_address_in_vma(page, vma);
1107         if (pvmw.address == -EFAULT)
1108                 goto out;
1109
1110         BUG_ON(PageTransCompound(page));
1111
1112         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1113                                 pvmw.address + PAGE_SIZE);
1114         mmu_notifier_invalidate_range_start(&range);
1115
1116         if (!page_vma_mapped_walk(&pvmw))
1117                 goto out_mn;
1118         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1119                 goto out_unlock;
1120
1121         anon_exclusive = PageAnonExclusive(page);
1122         entry = ptep_get(pvmw.pte);
1123         if (pte_write(entry) || pte_dirty(entry) ||
1124             anon_exclusive || mm_tlb_flush_pending(mm)) {
1125                 swapped = PageSwapCache(page);
1126                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1127                 /*
1128                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1129                  * take any lock, therefore the check that we are going to make
1130                  * with the pagecount against the mapcount is racy and
1131                  * O_DIRECT can happen right after the check.
1132                  * So we clear the pte and flush the tlb before the check
1133                  * this assure us that no O_DIRECT can happen after the check
1134                  * or in the middle of the check.
1135                  *
1136                  * No need to notify as we are downgrading page table to read
1137                  * only not changing it to point to a new page.
1138                  *
1139                  * See Documentation/mm/mmu_notifier.rst
1140                  */
1141                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1142                 /*
1143                  * Check that no O_DIRECT or similar I/O is in progress on the
1144                  * page
1145                  */
1146                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1147                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1148                         goto out_unlock;
1149                 }
1150
1151                 /* See page_try_share_anon_rmap(): clear PTE first. */
1152                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1153                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1154                         goto out_unlock;
1155                 }
1156
1157                 if (pte_dirty(entry))
1158                         set_page_dirty(page);
1159                 entry = pte_mkclean(entry);
1160
1161                 if (pte_write(entry))
1162                         entry = pte_wrprotect(entry);
1163
1164                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1165         }
1166         *orig_pte = entry;
1167         err = 0;
1168
1169 out_unlock:
1170         page_vma_mapped_walk_done(&pvmw);
1171 out_mn:
1172         mmu_notifier_invalidate_range_end(&range);
1173 out:
1174         return err;
1175 }
1176
1177 /**
1178  * replace_page - replace page in vma by new ksm page
1179  * @vma:      vma that holds the pte pointing to page
1180  * @page:     the page we are replacing by kpage
1181  * @kpage:    the ksm page we replace page by
1182  * @orig_pte: the original value of the pte
1183  *
1184  * Returns 0 on success, -EFAULT on failure.
1185  */
1186 static int replace_page(struct vm_area_struct *vma, struct page *page,
1187                         struct page *kpage, pte_t orig_pte)
1188 {
1189         struct mm_struct *mm = vma->vm_mm;
1190         struct folio *folio;
1191         pmd_t *pmd;
1192         pmd_t pmde;
1193         pte_t *ptep;
1194         pte_t newpte;
1195         spinlock_t *ptl;
1196         unsigned long addr;
1197         int err = -EFAULT;
1198         struct mmu_notifier_range range;
1199
1200         addr = page_address_in_vma(page, vma);
1201         if (addr == -EFAULT)
1202                 goto out;
1203
1204         pmd = mm_find_pmd(mm, addr);
1205         if (!pmd)
1206                 goto out;
1207         /*
1208          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1209          * without holding anon_vma lock for write.  So when looking for a
1210          * genuine pmde (in which to find pte), test present and !THP together.
1211          */
1212         pmde = pmdp_get_lockless(pmd);
1213         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1214                 goto out;
1215
1216         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1217                                 addr + PAGE_SIZE);
1218         mmu_notifier_invalidate_range_start(&range);
1219
1220         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1221         if (!ptep)
1222                 goto out_mn;
1223         if (!pte_same(ptep_get(ptep), orig_pte)) {
1224                 pte_unmap_unlock(ptep, ptl);
1225                 goto out_mn;
1226         }
1227         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1228         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1229
1230         /*
1231          * No need to check ksm_use_zero_pages here: we can only have a
1232          * zero_page here if ksm_use_zero_pages was enabled already.
1233          */
1234         if (!is_zero_pfn(page_to_pfn(kpage))) {
1235                 get_page(kpage);
1236                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1237                 newpte = mk_pte(kpage, vma->vm_page_prot);
1238         } else {
1239                 /*
1240                  * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1241                  * we can easily track all KSM-placed zero pages by checking if
1242                  * the dirty bit in zero page's PTE is set.
1243                  */
1244                 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1245                 ksm_zero_pages++;
1246                 mm->ksm_zero_pages++;
1247                 /*
1248                  * We're replacing an anonymous page with a zero page, which is
1249                  * not anonymous. We need to do proper accounting otherwise we
1250                  * will get wrong values in /proc, and a BUG message in dmesg
1251                  * when tearing down the mm.
1252                  */
1253                 dec_mm_counter(mm, MM_ANONPAGES);
1254         }
1255
1256         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1257         /*
1258          * No need to notify as we are replacing a read only page with another
1259          * read only page with the same content.
1260          *
1261          * See Documentation/mm/mmu_notifier.rst
1262          */
1263         ptep_clear_flush(vma, addr, ptep);
1264         set_pte_at_notify(mm, addr, ptep, newpte);
1265
1266         folio = page_folio(page);
1267         page_remove_rmap(page, vma, false);
1268         if (!folio_mapped(folio))
1269                 folio_free_swap(folio);
1270         folio_put(folio);
1271
1272         pte_unmap_unlock(ptep, ptl);
1273         err = 0;
1274 out_mn:
1275         mmu_notifier_invalidate_range_end(&range);
1276 out:
1277         return err;
1278 }
1279
1280 /*
1281  * try_to_merge_one_page - take two pages and merge them into one
1282  * @vma: the vma that holds the pte pointing to page
1283  * @page: the PageAnon page that we want to replace with kpage
1284  * @kpage: the PageKsm page that we want to map instead of page,
1285  *         or NULL the first time when we want to use page as kpage.
1286  *
1287  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1288  */
1289 static int try_to_merge_one_page(struct vm_area_struct *vma,
1290                                  struct page *page, struct page *kpage)
1291 {
1292         pte_t orig_pte = __pte(0);
1293         int err = -EFAULT;
1294
1295         if (page == kpage)                      /* ksm page forked */
1296                 return 0;
1297
1298         if (!PageAnon(page))
1299                 goto out;
1300
1301         /*
1302          * We need the page lock to read a stable PageSwapCache in
1303          * write_protect_page().  We use trylock_page() instead of
1304          * lock_page() because we don't want to wait here - we
1305          * prefer to continue scanning and merging different pages,
1306          * then come back to this page when it is unlocked.
1307          */
1308         if (!trylock_page(page))
1309                 goto out;
1310
1311         if (PageTransCompound(page)) {
1312                 if (split_huge_page(page))
1313                         goto out_unlock;
1314         }
1315
1316         /*
1317          * If this anonymous page is mapped only here, its pte may need
1318          * to be write-protected.  If it's mapped elsewhere, all of its
1319          * ptes are necessarily already write-protected.  But in either
1320          * case, we need to lock and check page_count is not raised.
1321          */
1322         if (write_protect_page(vma, page, &orig_pte) == 0) {
1323                 if (!kpage) {
1324                         /*
1325                          * While we hold page lock, upgrade page from
1326                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1327                          * stable_tree_insert() will update stable_node.
1328                          */
1329                         set_page_stable_node(page, NULL);
1330                         mark_page_accessed(page);
1331                         /*
1332                          * Page reclaim just frees a clean page with no dirty
1333                          * ptes: make sure that the ksm page would be swapped.
1334                          */
1335                         if (!PageDirty(page))
1336                                 SetPageDirty(page);
1337                         err = 0;
1338                 } else if (pages_identical(page, kpage))
1339                         err = replace_page(vma, page, kpage, orig_pte);
1340         }
1341
1342 out_unlock:
1343         unlock_page(page);
1344 out:
1345         return err;
1346 }
1347
1348 /*
1349  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1350  * but no new kernel page is allocated: kpage must already be a ksm page.
1351  *
1352  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1353  */
1354 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1355                                       struct page *page, struct page *kpage)
1356 {
1357         struct mm_struct *mm = rmap_item->mm;
1358         struct vm_area_struct *vma;
1359         int err = -EFAULT;
1360
1361         mmap_read_lock(mm);
1362         vma = find_mergeable_vma(mm, rmap_item->address);
1363         if (!vma)
1364                 goto out;
1365
1366         err = try_to_merge_one_page(vma, page, kpage);
1367         if (err)
1368                 goto out;
1369
1370         /* Unstable nid is in union with stable anon_vma: remove first */
1371         remove_rmap_item_from_tree(rmap_item);
1372
1373         /* Must get reference to anon_vma while still holding mmap_lock */
1374         rmap_item->anon_vma = vma->anon_vma;
1375         get_anon_vma(vma->anon_vma);
1376 out:
1377         mmap_read_unlock(mm);
1378         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1379                                 rmap_item, mm, err);
1380         return err;
1381 }
1382
1383 /*
1384  * try_to_merge_two_pages - take two identical pages and prepare them
1385  * to be merged into one page.
1386  *
1387  * This function returns the kpage if we successfully merged two identical
1388  * pages into one ksm page, NULL otherwise.
1389  *
1390  * Note that this function upgrades page to ksm page: if one of the pages
1391  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1392  */
1393 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1394                                            struct page *page,
1395                                            struct ksm_rmap_item *tree_rmap_item,
1396                                            struct page *tree_page)
1397 {
1398         int err;
1399
1400         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1401         if (!err) {
1402                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1403                                                         tree_page, page);
1404                 /*
1405                  * If that fails, we have a ksm page with only one pte
1406                  * pointing to it: so break it.
1407                  */
1408                 if (err)
1409                         break_cow(rmap_item);
1410         }
1411         return err ? NULL : page;
1412 }
1413
1414 static __always_inline
1415 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1416 {
1417         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1418         /*
1419          * Check that at least one mapping still exists, otherwise
1420          * there's no much point to merge and share with this
1421          * stable_node, as the underlying tree_page of the other
1422          * sharer is going to be freed soon.
1423          */
1424         return stable_node->rmap_hlist_len &&
1425                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1426 }
1427
1428 static __always_inline
1429 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1430 {
1431         return __is_page_sharing_candidate(stable_node, 0);
1432 }
1433
1434 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1435                                     struct ksm_stable_node **_stable_node,
1436                                     struct rb_root *root,
1437                                     bool prune_stale_stable_nodes)
1438 {
1439         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1440         struct hlist_node *hlist_safe;
1441         struct page *_tree_page, *tree_page = NULL;
1442         int nr = 0;
1443         int found_rmap_hlist_len;
1444
1445         if (!prune_stale_stable_nodes ||
1446             time_before(jiffies, stable_node->chain_prune_time +
1447                         msecs_to_jiffies(
1448                                 ksm_stable_node_chains_prune_millisecs)))
1449                 prune_stale_stable_nodes = false;
1450         else
1451                 stable_node->chain_prune_time = jiffies;
1452
1453         hlist_for_each_entry_safe(dup, hlist_safe,
1454                                   &stable_node->hlist, hlist_dup) {
1455                 cond_resched();
1456                 /*
1457                  * We must walk all stable_node_dup to prune the stale
1458                  * stable nodes during lookup.
1459                  *
1460                  * get_ksm_page can drop the nodes from the
1461                  * stable_node->hlist if they point to freed pages
1462                  * (that's why we do a _safe walk). The "dup"
1463                  * stable_node parameter itself will be freed from
1464                  * under us if it returns NULL.
1465                  */
1466                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1467                 if (!_tree_page)
1468                         continue;
1469                 nr += 1;
1470                 if (is_page_sharing_candidate(dup)) {
1471                         if (!found ||
1472                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1473                                 if (found)
1474                                         put_page(tree_page);
1475                                 found = dup;
1476                                 found_rmap_hlist_len = found->rmap_hlist_len;
1477                                 tree_page = _tree_page;
1478
1479                                 /* skip put_page for found dup */
1480                                 if (!prune_stale_stable_nodes)
1481                                         break;
1482                                 continue;
1483                         }
1484                 }
1485                 put_page(_tree_page);
1486         }
1487
1488         if (found) {
1489                 /*
1490                  * nr is counting all dups in the chain only if
1491                  * prune_stale_stable_nodes is true, otherwise we may
1492                  * break the loop at nr == 1 even if there are
1493                  * multiple entries.
1494                  */
1495                 if (prune_stale_stable_nodes && nr == 1) {
1496                         /*
1497                          * If there's not just one entry it would
1498                          * corrupt memory, better BUG_ON. In KSM
1499                          * context with no lock held it's not even
1500                          * fatal.
1501                          */
1502                         BUG_ON(stable_node->hlist.first->next);
1503
1504                         /*
1505                          * There's just one entry and it is below the
1506                          * deduplication limit so drop the chain.
1507                          */
1508                         rb_replace_node(&stable_node->node, &found->node,
1509                                         root);
1510                         free_stable_node(stable_node);
1511                         ksm_stable_node_chains--;
1512                         ksm_stable_node_dups--;
1513                         /*
1514                          * NOTE: the caller depends on the stable_node
1515                          * to be equal to stable_node_dup if the chain
1516                          * was collapsed.
1517                          */
1518                         *_stable_node = found;
1519                         /*
1520                          * Just for robustness, as stable_node is
1521                          * otherwise left as a stable pointer, the
1522                          * compiler shall optimize it away at build
1523                          * time.
1524                          */
1525                         stable_node = NULL;
1526                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1527                            __is_page_sharing_candidate(found, 1)) {
1528                         /*
1529                          * If the found stable_node dup can accept one
1530                          * more future merge (in addition to the one
1531                          * that is underway) and is not at the head of
1532                          * the chain, put it there so next search will
1533                          * be quicker in the !prune_stale_stable_nodes
1534                          * case.
1535                          *
1536                          * NOTE: it would be inaccurate to use nr > 1
1537                          * instead of checking the hlist.first pointer
1538                          * directly, because in the
1539                          * prune_stale_stable_nodes case "nr" isn't
1540                          * the position of the found dup in the chain,
1541                          * but the total number of dups in the chain.
1542                          */
1543                         hlist_del(&found->hlist_dup);
1544                         hlist_add_head(&found->hlist_dup,
1545                                        &stable_node->hlist);
1546                 }
1547         }
1548
1549         *_stable_node_dup = found;
1550         return tree_page;
1551 }
1552
1553 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1554                                                struct rb_root *root)
1555 {
1556         if (!is_stable_node_chain(stable_node))
1557                 return stable_node;
1558         if (hlist_empty(&stable_node->hlist)) {
1559                 free_stable_node_chain(stable_node, root);
1560                 return NULL;
1561         }
1562         return hlist_entry(stable_node->hlist.first,
1563                            typeof(*stable_node), hlist_dup);
1564 }
1565
1566 /*
1567  * Like for get_ksm_page, this function can free the *_stable_node and
1568  * *_stable_node_dup if the returned tree_page is NULL.
1569  *
1570  * It can also free and overwrite *_stable_node with the found
1571  * stable_node_dup if the chain is collapsed (in which case
1572  * *_stable_node will be equal to *_stable_node_dup like if the chain
1573  * never existed). It's up to the caller to verify tree_page is not
1574  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1575  *
1576  * *_stable_node_dup is really a second output parameter of this
1577  * function and will be overwritten in all cases, the caller doesn't
1578  * need to initialize it.
1579  */
1580 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1581                                         struct ksm_stable_node **_stable_node,
1582                                         struct rb_root *root,
1583                                         bool prune_stale_stable_nodes)
1584 {
1585         struct ksm_stable_node *stable_node = *_stable_node;
1586         if (!is_stable_node_chain(stable_node)) {
1587                 if (is_page_sharing_candidate(stable_node)) {
1588                         *_stable_node_dup = stable_node;
1589                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1590                 }
1591                 /*
1592                  * _stable_node_dup set to NULL means the stable_node
1593                  * reached the ksm_max_page_sharing limit.
1594                  */
1595                 *_stable_node_dup = NULL;
1596                 return NULL;
1597         }
1598         return stable_node_dup(_stable_node_dup, _stable_node, root,
1599                                prune_stale_stable_nodes);
1600 }
1601
1602 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1603                                                 struct ksm_stable_node **s_n,
1604                                                 struct rb_root *root)
1605 {
1606         return __stable_node_chain(s_n_d, s_n, root, true);
1607 }
1608
1609 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1610                                           struct ksm_stable_node *s_n,
1611                                           struct rb_root *root)
1612 {
1613         struct ksm_stable_node *old_stable_node = s_n;
1614         struct page *tree_page;
1615
1616         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1617         /* not pruning dups so s_n cannot have changed */
1618         VM_BUG_ON(s_n != old_stable_node);
1619         return tree_page;
1620 }
1621
1622 /*
1623  * stable_tree_search - search for page inside the stable tree
1624  *
1625  * This function checks if there is a page inside the stable tree
1626  * with identical content to the page that we are scanning right now.
1627  *
1628  * This function returns the stable tree node of identical content if found,
1629  * NULL otherwise.
1630  */
1631 static struct page *stable_tree_search(struct page *page)
1632 {
1633         int nid;
1634         struct rb_root *root;
1635         struct rb_node **new;
1636         struct rb_node *parent;
1637         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1638         struct ksm_stable_node *page_node;
1639
1640         page_node = page_stable_node(page);
1641         if (page_node && page_node->head != &migrate_nodes) {
1642                 /* ksm page forked */
1643                 get_page(page);
1644                 return page;
1645         }
1646
1647         nid = get_kpfn_nid(page_to_pfn(page));
1648         root = root_stable_tree + nid;
1649 again:
1650         new = &root->rb_node;
1651         parent = NULL;
1652
1653         while (*new) {
1654                 struct page *tree_page;
1655                 int ret;
1656
1657                 cond_resched();
1658                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1659                 stable_node_any = NULL;
1660                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1661                 /*
1662                  * NOTE: stable_node may have been freed by
1663                  * chain_prune() if the returned stable_node_dup is
1664                  * not NULL. stable_node_dup may have been inserted in
1665                  * the rbtree instead as a regular stable_node (in
1666                  * order to collapse the stable_node chain if a single
1667                  * stable_node dup was found in it). In such case the
1668                  * stable_node is overwritten by the callee to point
1669                  * to the stable_node_dup that was collapsed in the
1670                  * stable rbtree and stable_node will be equal to
1671                  * stable_node_dup like if the chain never existed.
1672                  */
1673                 if (!stable_node_dup) {
1674                         /*
1675                          * Either all stable_node dups were full in
1676                          * this stable_node chain, or this chain was
1677                          * empty and should be rb_erased.
1678                          */
1679                         stable_node_any = stable_node_dup_any(stable_node,
1680                                                               root);
1681                         if (!stable_node_any) {
1682                                 /* rb_erase just run */
1683                                 goto again;
1684                         }
1685                         /*
1686                          * Take any of the stable_node dups page of
1687                          * this stable_node chain to let the tree walk
1688                          * continue. All KSM pages belonging to the
1689                          * stable_node dups in a stable_node chain
1690                          * have the same content and they're
1691                          * write protected at all times. Any will work
1692                          * fine to continue the walk.
1693                          */
1694                         tree_page = get_ksm_page(stable_node_any,
1695                                                  GET_KSM_PAGE_NOLOCK);
1696                 }
1697                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1698                 if (!tree_page) {
1699                         /*
1700                          * If we walked over a stale stable_node,
1701                          * get_ksm_page() will call rb_erase() and it
1702                          * may rebalance the tree from under us. So
1703                          * restart the search from scratch. Returning
1704                          * NULL would be safe too, but we'd generate
1705                          * false negative insertions just because some
1706                          * stable_node was stale.
1707                          */
1708                         goto again;
1709                 }
1710
1711                 ret = memcmp_pages(page, tree_page);
1712                 put_page(tree_page);
1713
1714                 parent = *new;
1715                 if (ret < 0)
1716                         new = &parent->rb_left;
1717                 else if (ret > 0)
1718                         new = &parent->rb_right;
1719                 else {
1720                         if (page_node) {
1721                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1722                                 /*
1723                                  * Test if the migrated page should be merged
1724                                  * into a stable node dup. If the mapcount is
1725                                  * 1 we can migrate it with another KSM page
1726                                  * without adding it to the chain.
1727                                  */
1728                                 if (page_mapcount(page) > 1)
1729                                         goto chain_append;
1730                         }
1731
1732                         if (!stable_node_dup) {
1733                                 /*
1734                                  * If the stable_node is a chain and
1735                                  * we got a payload match in memcmp
1736                                  * but we cannot merge the scanned
1737                                  * page in any of the existing
1738                                  * stable_node dups because they're
1739                                  * all full, we need to wait the
1740                                  * scanned page to find itself a match
1741                                  * in the unstable tree to create a
1742                                  * brand new KSM page to add later to
1743                                  * the dups of this stable_node.
1744                                  */
1745                                 return NULL;
1746                         }
1747
1748                         /*
1749                          * Lock and unlock the stable_node's page (which
1750                          * might already have been migrated) so that page
1751                          * migration is sure to notice its raised count.
1752                          * It would be more elegant to return stable_node
1753                          * than kpage, but that involves more changes.
1754                          */
1755                         tree_page = get_ksm_page(stable_node_dup,
1756                                                  GET_KSM_PAGE_TRYLOCK);
1757
1758                         if (PTR_ERR(tree_page) == -EBUSY)
1759                                 return ERR_PTR(-EBUSY);
1760
1761                         if (unlikely(!tree_page))
1762                                 /*
1763                                  * The tree may have been rebalanced,
1764                                  * so re-evaluate parent and new.
1765                                  */
1766                                 goto again;
1767                         unlock_page(tree_page);
1768
1769                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1770                             NUMA(stable_node_dup->nid)) {
1771                                 put_page(tree_page);
1772                                 goto replace;
1773                         }
1774                         return tree_page;
1775                 }
1776         }
1777
1778         if (!page_node)
1779                 return NULL;
1780
1781         list_del(&page_node->list);
1782         DO_NUMA(page_node->nid = nid);
1783         rb_link_node(&page_node->node, parent, new);
1784         rb_insert_color(&page_node->node, root);
1785 out:
1786         if (is_page_sharing_candidate(page_node)) {
1787                 get_page(page);
1788                 return page;
1789         } else
1790                 return NULL;
1791
1792 replace:
1793         /*
1794          * If stable_node was a chain and chain_prune collapsed it,
1795          * stable_node has been updated to be the new regular
1796          * stable_node. A collapse of the chain is indistinguishable
1797          * from the case there was no chain in the stable
1798          * rbtree. Otherwise stable_node is the chain and
1799          * stable_node_dup is the dup to replace.
1800          */
1801         if (stable_node_dup == stable_node) {
1802                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1803                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1804                 /* there is no chain */
1805                 if (page_node) {
1806                         VM_BUG_ON(page_node->head != &migrate_nodes);
1807                         list_del(&page_node->list);
1808                         DO_NUMA(page_node->nid = nid);
1809                         rb_replace_node(&stable_node_dup->node,
1810                                         &page_node->node,
1811                                         root);
1812                         if (is_page_sharing_candidate(page_node))
1813                                 get_page(page);
1814                         else
1815                                 page = NULL;
1816                 } else {
1817                         rb_erase(&stable_node_dup->node, root);
1818                         page = NULL;
1819                 }
1820         } else {
1821                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1822                 __stable_node_dup_del(stable_node_dup);
1823                 if (page_node) {
1824                         VM_BUG_ON(page_node->head != &migrate_nodes);
1825                         list_del(&page_node->list);
1826                         DO_NUMA(page_node->nid = nid);
1827                         stable_node_chain_add_dup(page_node, stable_node);
1828                         if (is_page_sharing_candidate(page_node))
1829                                 get_page(page);
1830                         else
1831                                 page = NULL;
1832                 } else {
1833                         page = NULL;
1834                 }
1835         }
1836         stable_node_dup->head = &migrate_nodes;
1837         list_add(&stable_node_dup->list, stable_node_dup->head);
1838         return page;
1839
1840 chain_append:
1841         /* stable_node_dup could be null if it reached the limit */
1842         if (!stable_node_dup)
1843                 stable_node_dup = stable_node_any;
1844         /*
1845          * If stable_node was a chain and chain_prune collapsed it,
1846          * stable_node has been updated to be the new regular
1847          * stable_node. A collapse of the chain is indistinguishable
1848          * from the case there was no chain in the stable
1849          * rbtree. Otherwise stable_node is the chain and
1850          * stable_node_dup is the dup to replace.
1851          */
1852         if (stable_node_dup == stable_node) {
1853                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1854                 /* chain is missing so create it */
1855                 stable_node = alloc_stable_node_chain(stable_node_dup,
1856                                                       root);
1857                 if (!stable_node)
1858                         return NULL;
1859         }
1860         /*
1861          * Add this stable_node dup that was
1862          * migrated to the stable_node chain
1863          * of the current nid for this page
1864          * content.
1865          */
1866         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1867         VM_BUG_ON(page_node->head != &migrate_nodes);
1868         list_del(&page_node->list);
1869         DO_NUMA(page_node->nid = nid);
1870         stable_node_chain_add_dup(page_node, stable_node);
1871         goto out;
1872 }
1873
1874 /*
1875  * stable_tree_insert - insert stable tree node pointing to new ksm page
1876  * into the stable tree.
1877  *
1878  * This function returns the stable tree node just allocated on success,
1879  * NULL otherwise.
1880  */
1881 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1882 {
1883         int nid;
1884         unsigned long kpfn;
1885         struct rb_root *root;
1886         struct rb_node **new;
1887         struct rb_node *parent;
1888         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1889         bool need_chain = false;
1890
1891         kpfn = page_to_pfn(kpage);
1892         nid = get_kpfn_nid(kpfn);
1893         root = root_stable_tree + nid;
1894 again:
1895         parent = NULL;
1896         new = &root->rb_node;
1897
1898         while (*new) {
1899                 struct page *tree_page;
1900                 int ret;
1901
1902                 cond_resched();
1903                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1904                 stable_node_any = NULL;
1905                 tree_page = chain(&stable_node_dup, stable_node, root);
1906                 if (!stable_node_dup) {
1907                         /*
1908                          * Either all stable_node dups were full in
1909                          * this stable_node chain, or this chain was
1910                          * empty and should be rb_erased.
1911                          */
1912                         stable_node_any = stable_node_dup_any(stable_node,
1913                                                               root);
1914                         if (!stable_node_any) {
1915                                 /* rb_erase just run */
1916                                 goto again;
1917                         }
1918                         /*
1919                          * Take any of the stable_node dups page of
1920                          * this stable_node chain to let the tree walk
1921                          * continue. All KSM pages belonging to the
1922                          * stable_node dups in a stable_node chain
1923                          * have the same content and they're
1924                          * write protected at all times. Any will work
1925                          * fine to continue the walk.
1926                          */
1927                         tree_page = get_ksm_page(stable_node_any,
1928                                                  GET_KSM_PAGE_NOLOCK);
1929                 }
1930                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1931                 if (!tree_page) {
1932                         /*
1933                          * If we walked over a stale stable_node,
1934                          * get_ksm_page() will call rb_erase() and it
1935                          * may rebalance the tree from under us. So
1936                          * restart the search from scratch. Returning
1937                          * NULL would be safe too, but we'd generate
1938                          * false negative insertions just because some
1939                          * stable_node was stale.
1940                          */
1941                         goto again;
1942                 }
1943
1944                 ret = memcmp_pages(kpage, tree_page);
1945                 put_page(tree_page);
1946
1947                 parent = *new;
1948                 if (ret < 0)
1949                         new = &parent->rb_left;
1950                 else if (ret > 0)
1951                         new = &parent->rb_right;
1952                 else {
1953                         need_chain = true;
1954                         break;
1955                 }
1956         }
1957
1958         stable_node_dup = alloc_stable_node();
1959         if (!stable_node_dup)
1960                 return NULL;
1961
1962         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1963         stable_node_dup->kpfn = kpfn;
1964         set_page_stable_node(kpage, stable_node_dup);
1965         stable_node_dup->rmap_hlist_len = 0;
1966         DO_NUMA(stable_node_dup->nid = nid);
1967         if (!need_chain) {
1968                 rb_link_node(&stable_node_dup->node, parent, new);
1969                 rb_insert_color(&stable_node_dup->node, root);
1970         } else {
1971                 if (!is_stable_node_chain(stable_node)) {
1972                         struct ksm_stable_node *orig = stable_node;
1973                         /* chain is missing so create it */
1974                         stable_node = alloc_stable_node_chain(orig, root);
1975                         if (!stable_node) {
1976                                 free_stable_node(stable_node_dup);
1977                                 return NULL;
1978                         }
1979                 }
1980                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1981         }
1982
1983         return stable_node_dup;
1984 }
1985
1986 /*
1987  * unstable_tree_search_insert - search for identical page,
1988  * else insert rmap_item into the unstable tree.
1989  *
1990  * This function searches for a page in the unstable tree identical to the
1991  * page currently being scanned; and if no identical page is found in the
1992  * tree, we insert rmap_item as a new object into the unstable tree.
1993  *
1994  * This function returns pointer to rmap_item found to be identical
1995  * to the currently scanned page, NULL otherwise.
1996  *
1997  * This function does both searching and inserting, because they share
1998  * the same walking algorithm in an rbtree.
1999  */
2000 static
2001 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2002                                               struct page *page,
2003                                               struct page **tree_pagep)
2004 {
2005         struct rb_node **new;
2006         struct rb_root *root;
2007         struct rb_node *parent = NULL;
2008         int nid;
2009
2010         nid = get_kpfn_nid(page_to_pfn(page));
2011         root = root_unstable_tree + nid;
2012         new = &root->rb_node;
2013
2014         while (*new) {
2015                 struct ksm_rmap_item *tree_rmap_item;
2016                 struct page *tree_page;
2017                 int ret;
2018
2019                 cond_resched();
2020                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2021                 tree_page = get_mergeable_page(tree_rmap_item);
2022                 if (!tree_page)
2023                         return NULL;
2024
2025                 /*
2026                  * Don't substitute a ksm page for a forked page.
2027                  */
2028                 if (page == tree_page) {
2029                         put_page(tree_page);
2030                         return NULL;
2031                 }
2032
2033                 ret = memcmp_pages(page, tree_page);
2034
2035                 parent = *new;
2036                 if (ret < 0) {
2037                         put_page(tree_page);
2038                         new = &parent->rb_left;
2039                 } else if (ret > 0) {
2040                         put_page(tree_page);
2041                         new = &parent->rb_right;
2042                 } else if (!ksm_merge_across_nodes &&
2043                            page_to_nid(tree_page) != nid) {
2044                         /*
2045                          * If tree_page has been migrated to another NUMA node,
2046                          * it will be flushed out and put in the right unstable
2047                          * tree next time: only merge with it when across_nodes.
2048                          */
2049                         put_page(tree_page);
2050                         return NULL;
2051                 } else {
2052                         *tree_pagep = tree_page;
2053                         return tree_rmap_item;
2054                 }
2055         }
2056
2057         rmap_item->address |= UNSTABLE_FLAG;
2058         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2059         DO_NUMA(rmap_item->nid = nid);
2060         rb_link_node(&rmap_item->node, parent, new);
2061         rb_insert_color(&rmap_item->node, root);
2062
2063         ksm_pages_unshared++;
2064         return NULL;
2065 }
2066
2067 /*
2068  * stable_tree_append - add another rmap_item to the linked list of
2069  * rmap_items hanging off a given node of the stable tree, all sharing
2070  * the same ksm page.
2071  */
2072 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2073                                struct ksm_stable_node *stable_node,
2074                                bool max_page_sharing_bypass)
2075 {
2076         /*
2077          * rmap won't find this mapping if we don't insert the
2078          * rmap_item in the right stable_node
2079          * duplicate. page_migration could break later if rmap breaks,
2080          * so we can as well crash here. We really need to check for
2081          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2082          * for other negative values as an underflow if detected here
2083          * for the first time (and not when decreasing rmap_hlist_len)
2084          * would be sign of memory corruption in the stable_node.
2085          */
2086         BUG_ON(stable_node->rmap_hlist_len < 0);
2087
2088         stable_node->rmap_hlist_len++;
2089         if (!max_page_sharing_bypass)
2090                 /* possibly non fatal but unexpected overflow, only warn */
2091                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2092                              ksm_max_page_sharing);
2093
2094         rmap_item->head = stable_node;
2095         rmap_item->address |= STABLE_FLAG;
2096         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2097
2098         if (rmap_item->hlist.next)
2099                 ksm_pages_sharing++;
2100         else
2101                 ksm_pages_shared++;
2102
2103         rmap_item->mm->ksm_merging_pages++;
2104 }
2105
2106 /*
2107  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2108  * if not, compare checksum to previous and if it's the same, see if page can
2109  * be inserted into the unstable tree, or merged with a page already there and
2110  * both transferred to the stable tree.
2111  *
2112  * @page: the page that we are searching identical page to.
2113  * @rmap_item: the reverse mapping into the virtual address of this page
2114  */
2115 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2116 {
2117         struct mm_struct *mm = rmap_item->mm;
2118         struct ksm_rmap_item *tree_rmap_item;
2119         struct page *tree_page = NULL;
2120         struct ksm_stable_node *stable_node;
2121         struct page *kpage;
2122         unsigned int checksum;
2123         int err;
2124         bool max_page_sharing_bypass = false;
2125
2126         stable_node = page_stable_node(page);
2127         if (stable_node) {
2128                 if (stable_node->head != &migrate_nodes &&
2129                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2130                     NUMA(stable_node->nid)) {
2131                         stable_node_dup_del(stable_node);
2132                         stable_node->head = &migrate_nodes;
2133                         list_add(&stable_node->list, stable_node->head);
2134                 }
2135                 if (stable_node->head != &migrate_nodes &&
2136                     rmap_item->head == stable_node)
2137                         return;
2138                 /*
2139                  * If it's a KSM fork, allow it to go over the sharing limit
2140                  * without warnings.
2141                  */
2142                 if (!is_page_sharing_candidate(stable_node))
2143                         max_page_sharing_bypass = true;
2144         }
2145
2146         /* We first start with searching the page inside the stable tree */
2147         kpage = stable_tree_search(page);
2148         if (kpage == page && rmap_item->head == stable_node) {
2149                 put_page(kpage);
2150                 return;
2151         }
2152
2153         remove_rmap_item_from_tree(rmap_item);
2154
2155         if (kpage) {
2156                 if (PTR_ERR(kpage) == -EBUSY)
2157                         return;
2158
2159                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2160                 if (!err) {
2161                         /*
2162                          * The page was successfully merged:
2163                          * add its rmap_item to the stable tree.
2164                          */
2165                         lock_page(kpage);
2166                         stable_tree_append(rmap_item, page_stable_node(kpage),
2167                                            max_page_sharing_bypass);
2168                         unlock_page(kpage);
2169                 }
2170                 put_page(kpage);
2171                 return;
2172         }
2173
2174         /*
2175          * If the hash value of the page has changed from the last time
2176          * we calculated it, this page is changing frequently: therefore we
2177          * don't want to insert it in the unstable tree, and we don't want
2178          * to waste our time searching for something identical to it there.
2179          */
2180         checksum = calc_checksum(page);
2181         if (rmap_item->oldchecksum != checksum) {
2182                 rmap_item->oldchecksum = checksum;
2183                 return;
2184         }
2185
2186         /*
2187          * Same checksum as an empty page. We attempt to merge it with the
2188          * appropriate zero page if the user enabled this via sysfs.
2189          */
2190         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2191                 struct vm_area_struct *vma;
2192
2193                 mmap_read_lock(mm);
2194                 vma = find_mergeable_vma(mm, rmap_item->address);
2195                 if (vma) {
2196                         err = try_to_merge_one_page(vma, page,
2197                                         ZERO_PAGE(rmap_item->address));
2198                         trace_ksm_merge_one_page(
2199                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2200                                 rmap_item, mm, err);
2201                 } else {
2202                         /*
2203                          * If the vma is out of date, we do not need to
2204                          * continue.
2205                          */
2206                         err = 0;
2207                 }
2208                 mmap_read_unlock(mm);
2209                 /*
2210                  * In case of failure, the page was not really empty, so we
2211                  * need to continue. Otherwise we're done.
2212                  */
2213                 if (!err)
2214                         return;
2215         }
2216         tree_rmap_item =
2217                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2218         if (tree_rmap_item) {
2219                 bool split;
2220
2221                 kpage = try_to_merge_two_pages(rmap_item, page,
2222                                                 tree_rmap_item, tree_page);
2223                 /*
2224                  * If both pages we tried to merge belong to the same compound
2225                  * page, then we actually ended up increasing the reference
2226                  * count of the same compound page twice, and split_huge_page
2227                  * failed.
2228                  * Here we set a flag if that happened, and we use it later to
2229                  * try split_huge_page again. Since we call put_page right
2230                  * afterwards, the reference count will be correct and
2231                  * split_huge_page should succeed.
2232                  */
2233                 split = PageTransCompound(page)
2234                         && compound_head(page) == compound_head(tree_page);
2235                 put_page(tree_page);
2236                 if (kpage) {
2237                         /*
2238                          * The pages were successfully merged: insert new
2239                          * node in the stable tree and add both rmap_items.
2240                          */
2241                         lock_page(kpage);
2242                         stable_node = stable_tree_insert(kpage);
2243                         if (stable_node) {
2244                                 stable_tree_append(tree_rmap_item, stable_node,
2245                                                    false);
2246                                 stable_tree_append(rmap_item, stable_node,
2247                                                    false);
2248                         }
2249                         unlock_page(kpage);
2250
2251                         /*
2252                          * If we fail to insert the page into the stable tree,
2253                          * we will have 2 virtual addresses that are pointing
2254                          * to a ksm page left outside the stable tree,
2255                          * in which case we need to break_cow on both.
2256                          */
2257                         if (!stable_node) {
2258                                 break_cow(tree_rmap_item);
2259                                 break_cow(rmap_item);
2260                         }
2261                 } else if (split) {
2262                         /*
2263                          * We are here if we tried to merge two pages and
2264                          * failed because they both belonged to the same
2265                          * compound page. We will split the page now, but no
2266                          * merging will take place.
2267                          * We do not want to add the cost of a full lock; if
2268                          * the page is locked, it is better to skip it and
2269                          * perhaps try again later.
2270                          */
2271                         if (!trylock_page(page))
2272                                 return;
2273                         split_huge_page(page);
2274                         unlock_page(page);
2275                 }
2276         }
2277 }
2278
2279 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2280                                             struct ksm_rmap_item **rmap_list,
2281                                             unsigned long addr)
2282 {
2283         struct ksm_rmap_item *rmap_item;
2284
2285         while (*rmap_list) {
2286                 rmap_item = *rmap_list;
2287                 if ((rmap_item->address & PAGE_MASK) == addr)
2288                         return rmap_item;
2289                 if (rmap_item->address > addr)
2290                         break;
2291                 *rmap_list = rmap_item->rmap_list;
2292                 remove_rmap_item_from_tree(rmap_item);
2293                 free_rmap_item(rmap_item);
2294         }
2295
2296         rmap_item = alloc_rmap_item();
2297         if (rmap_item) {
2298                 /* It has already been zeroed */
2299                 rmap_item->mm = mm_slot->slot.mm;
2300                 rmap_item->mm->ksm_rmap_items++;
2301                 rmap_item->address = addr;
2302                 rmap_item->rmap_list = *rmap_list;
2303                 *rmap_list = rmap_item;
2304         }
2305         return rmap_item;
2306 }
2307
2308 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2309 {
2310         struct mm_struct *mm;
2311         struct ksm_mm_slot *mm_slot;
2312         struct mm_slot *slot;
2313         struct vm_area_struct *vma;
2314         struct ksm_rmap_item *rmap_item;
2315         struct vma_iterator vmi;
2316         int nid;
2317
2318         if (list_empty(&ksm_mm_head.slot.mm_node))
2319                 return NULL;
2320
2321         mm_slot = ksm_scan.mm_slot;
2322         if (mm_slot == &ksm_mm_head) {
2323                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2324
2325                 /*
2326                  * A number of pages can hang around indefinitely in per-cpu
2327                  * LRU cache, raised page count preventing write_protect_page
2328                  * from merging them.  Though it doesn't really matter much,
2329                  * it is puzzling to see some stuck in pages_volatile until
2330                  * other activity jostles them out, and they also prevented
2331                  * LTP's KSM test from succeeding deterministically; so drain
2332                  * them here (here rather than on entry to ksm_do_scan(),
2333                  * so we don't IPI too often when pages_to_scan is set low).
2334                  */
2335                 lru_add_drain_all();
2336
2337                 /*
2338                  * Whereas stale stable_nodes on the stable_tree itself
2339                  * get pruned in the regular course of stable_tree_search(),
2340                  * those moved out to the migrate_nodes list can accumulate:
2341                  * so prune them once before each full scan.
2342                  */
2343                 if (!ksm_merge_across_nodes) {
2344                         struct ksm_stable_node *stable_node, *next;
2345                         struct page *page;
2346
2347                         list_for_each_entry_safe(stable_node, next,
2348                                                  &migrate_nodes, list) {
2349                                 page = get_ksm_page(stable_node,
2350                                                     GET_KSM_PAGE_NOLOCK);
2351                                 if (page)
2352                                         put_page(page);
2353                                 cond_resched();
2354                         }
2355                 }
2356
2357                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2358                         root_unstable_tree[nid] = RB_ROOT;
2359
2360                 spin_lock(&ksm_mmlist_lock);
2361                 slot = list_entry(mm_slot->slot.mm_node.next,
2362                                   struct mm_slot, mm_node);
2363                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2364                 ksm_scan.mm_slot = mm_slot;
2365                 spin_unlock(&ksm_mmlist_lock);
2366                 /*
2367                  * Although we tested list_empty() above, a racing __ksm_exit
2368                  * of the last mm on the list may have removed it since then.
2369                  */
2370                 if (mm_slot == &ksm_mm_head)
2371                         return NULL;
2372 next_mm:
2373                 ksm_scan.address = 0;
2374                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2375         }
2376
2377         slot = &mm_slot->slot;
2378         mm = slot->mm;
2379         vma_iter_init(&vmi, mm, ksm_scan.address);
2380
2381         mmap_read_lock(mm);
2382         if (ksm_test_exit(mm))
2383                 goto no_vmas;
2384
2385         for_each_vma(vmi, vma) {
2386                 if (!(vma->vm_flags & VM_MERGEABLE))
2387                         continue;
2388                 if (ksm_scan.address < vma->vm_start)
2389                         ksm_scan.address = vma->vm_start;
2390                 if (!vma->anon_vma)
2391                         ksm_scan.address = vma->vm_end;
2392
2393                 while (ksm_scan.address < vma->vm_end) {
2394                         if (ksm_test_exit(mm))
2395                                 break;
2396                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2397                         if (IS_ERR_OR_NULL(*page)) {
2398                                 ksm_scan.address += PAGE_SIZE;
2399                                 cond_resched();
2400                                 continue;
2401                         }
2402                         if (is_zone_device_page(*page))
2403                                 goto next_page;
2404                         if (PageAnon(*page)) {
2405                                 flush_anon_page(vma, *page, ksm_scan.address);
2406                                 flush_dcache_page(*page);
2407                                 rmap_item = get_next_rmap_item(mm_slot,
2408                                         ksm_scan.rmap_list, ksm_scan.address);
2409                                 if (rmap_item) {
2410                                         ksm_scan.rmap_list =
2411                                                         &rmap_item->rmap_list;
2412                                         ksm_scan.address += PAGE_SIZE;
2413                                 } else
2414                                         put_page(*page);
2415                                 mmap_read_unlock(mm);
2416                                 return rmap_item;
2417                         }
2418 next_page:
2419                         put_page(*page);
2420                         ksm_scan.address += PAGE_SIZE;
2421                         cond_resched();
2422                 }
2423         }
2424
2425         if (ksm_test_exit(mm)) {
2426 no_vmas:
2427                 ksm_scan.address = 0;
2428                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2429         }
2430         /*
2431          * Nuke all the rmap_items that are above this current rmap:
2432          * because there were no VM_MERGEABLE vmas with such addresses.
2433          */
2434         remove_trailing_rmap_items(ksm_scan.rmap_list);
2435
2436         spin_lock(&ksm_mmlist_lock);
2437         slot = list_entry(mm_slot->slot.mm_node.next,
2438                           struct mm_slot, mm_node);
2439         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2440         if (ksm_scan.address == 0) {
2441                 /*
2442                  * We've completed a full scan of all vmas, holding mmap_lock
2443                  * throughout, and found no VM_MERGEABLE: so do the same as
2444                  * __ksm_exit does to remove this mm from all our lists now.
2445                  * This applies either when cleaning up after __ksm_exit
2446                  * (but beware: we can reach here even before __ksm_exit),
2447                  * or when all VM_MERGEABLE areas have been unmapped (and
2448                  * mmap_lock then protects against race with MADV_MERGEABLE).
2449                  */
2450                 hash_del(&mm_slot->slot.hash);
2451                 list_del(&mm_slot->slot.mm_node);
2452                 spin_unlock(&ksm_mmlist_lock);
2453
2454                 mm_slot_free(mm_slot_cache, mm_slot);
2455                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2456                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2457                 mmap_read_unlock(mm);
2458                 mmdrop(mm);
2459         } else {
2460                 mmap_read_unlock(mm);
2461                 /*
2462                  * mmap_read_unlock(mm) first because after
2463                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2464                  * already have been freed under us by __ksm_exit()
2465                  * because the "mm_slot" is still hashed and
2466                  * ksm_scan.mm_slot doesn't point to it anymore.
2467                  */
2468                 spin_unlock(&ksm_mmlist_lock);
2469         }
2470
2471         /* Repeat until we've completed scanning the whole list */
2472         mm_slot = ksm_scan.mm_slot;
2473         if (mm_slot != &ksm_mm_head)
2474                 goto next_mm;
2475
2476         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2477         ksm_scan.seqnr++;
2478         return NULL;
2479 }
2480
2481 /**
2482  * ksm_do_scan  - the ksm scanner main worker function.
2483  * @scan_npages:  number of pages we want to scan before we return.
2484  */
2485 static void ksm_do_scan(unsigned int scan_npages)
2486 {
2487         struct ksm_rmap_item *rmap_item;
2488         struct page *page;
2489         unsigned int npages = scan_npages;
2490
2491         while (npages-- && likely(!freezing(current))) {
2492                 cond_resched();
2493                 rmap_item = scan_get_next_rmap_item(&page);
2494                 if (!rmap_item)
2495                         return;
2496                 cmp_and_merge_page(page, rmap_item);
2497                 put_page(page);
2498         }
2499
2500         ksm_pages_scanned += scan_npages - npages;
2501 }
2502
2503 static int ksmd_should_run(void)
2504 {
2505         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2506 }
2507
2508 static int ksm_scan_thread(void *nothing)
2509 {
2510         unsigned int sleep_ms;
2511
2512         set_freezable();
2513         set_user_nice(current, 5);
2514
2515         while (!kthread_should_stop()) {
2516                 mutex_lock(&ksm_thread_mutex);
2517                 wait_while_offlining();
2518                 if (ksmd_should_run())
2519                         ksm_do_scan(ksm_thread_pages_to_scan);
2520                 mutex_unlock(&ksm_thread_mutex);
2521
2522                 try_to_freeze();
2523
2524                 if (ksmd_should_run()) {
2525                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2526                         wait_event_interruptible_timeout(ksm_iter_wait,
2527                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2528                                 msecs_to_jiffies(sleep_ms));
2529                 } else {
2530                         wait_event_freezable(ksm_thread_wait,
2531                                 ksmd_should_run() || kthread_should_stop());
2532                 }
2533         }
2534         return 0;
2535 }
2536
2537 static void __ksm_add_vma(struct vm_area_struct *vma)
2538 {
2539         unsigned long vm_flags = vma->vm_flags;
2540
2541         if (vm_flags & VM_MERGEABLE)
2542                 return;
2543
2544         if (vma_ksm_compatible(vma))
2545                 vm_flags_set(vma, VM_MERGEABLE);
2546 }
2547
2548 static int __ksm_del_vma(struct vm_area_struct *vma)
2549 {
2550         int err;
2551
2552         if (!(vma->vm_flags & VM_MERGEABLE))
2553                 return 0;
2554
2555         if (vma->anon_vma) {
2556                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2557                 if (err)
2558                         return err;
2559         }
2560
2561         vm_flags_clear(vma, VM_MERGEABLE);
2562         return 0;
2563 }
2564 /**
2565  * ksm_add_vma - Mark vma as mergeable if compatible
2566  *
2567  * @vma:  Pointer to vma
2568  */
2569 void ksm_add_vma(struct vm_area_struct *vma)
2570 {
2571         struct mm_struct *mm = vma->vm_mm;
2572
2573         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2574                 __ksm_add_vma(vma);
2575 }
2576
2577 static void ksm_add_vmas(struct mm_struct *mm)
2578 {
2579         struct vm_area_struct *vma;
2580
2581         VMA_ITERATOR(vmi, mm, 0);
2582         for_each_vma(vmi, vma)
2583                 __ksm_add_vma(vma);
2584 }
2585
2586 static int ksm_del_vmas(struct mm_struct *mm)
2587 {
2588         struct vm_area_struct *vma;
2589         int err;
2590
2591         VMA_ITERATOR(vmi, mm, 0);
2592         for_each_vma(vmi, vma) {
2593                 err = __ksm_del_vma(vma);
2594                 if (err)
2595                         return err;
2596         }
2597         return 0;
2598 }
2599
2600 /**
2601  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2602  *                        compatible VMA's
2603  *
2604  * @mm:  Pointer to mm
2605  *
2606  * Returns 0 on success, otherwise error code
2607  */
2608 int ksm_enable_merge_any(struct mm_struct *mm)
2609 {
2610         int err;
2611
2612         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2613                 return 0;
2614
2615         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2616                 err = __ksm_enter(mm);
2617                 if (err)
2618                         return err;
2619         }
2620
2621         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2622         ksm_add_vmas(mm);
2623
2624         return 0;
2625 }
2626
2627 /**
2628  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2629  *                         previously enabled via ksm_enable_merge_any().
2630  *
2631  * Disabling merging implies unmerging any merged pages, like setting
2632  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2633  * merging on all compatible VMA's remains enabled.
2634  *
2635  * @mm: Pointer to mm
2636  *
2637  * Returns 0 on success, otherwise error code
2638  */
2639 int ksm_disable_merge_any(struct mm_struct *mm)
2640 {
2641         int err;
2642
2643         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2644                 return 0;
2645
2646         err = ksm_del_vmas(mm);
2647         if (err) {
2648                 ksm_add_vmas(mm);
2649                 return err;
2650         }
2651
2652         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2653         return 0;
2654 }
2655
2656 int ksm_disable(struct mm_struct *mm)
2657 {
2658         mmap_assert_write_locked(mm);
2659
2660         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2661                 return 0;
2662         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2663                 return ksm_disable_merge_any(mm);
2664         return ksm_del_vmas(mm);
2665 }
2666
2667 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2668                 unsigned long end, int advice, unsigned long *vm_flags)
2669 {
2670         struct mm_struct *mm = vma->vm_mm;
2671         int err;
2672
2673         switch (advice) {
2674         case MADV_MERGEABLE:
2675                 if (vma->vm_flags & VM_MERGEABLE)
2676                         return 0;
2677                 if (!vma_ksm_compatible(vma))
2678                         return 0;
2679
2680                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2681                         err = __ksm_enter(mm);
2682                         if (err)
2683                                 return err;
2684                 }
2685
2686                 *vm_flags |= VM_MERGEABLE;
2687                 break;
2688
2689         case MADV_UNMERGEABLE:
2690                 if (!(*vm_flags & VM_MERGEABLE))
2691                         return 0;               /* just ignore the advice */
2692
2693                 if (vma->anon_vma) {
2694                         err = unmerge_ksm_pages(vma, start, end, true);
2695                         if (err)
2696                                 return err;
2697                 }
2698
2699                 *vm_flags &= ~VM_MERGEABLE;
2700                 break;
2701         }
2702
2703         return 0;
2704 }
2705 EXPORT_SYMBOL_GPL(ksm_madvise);
2706
2707 int __ksm_enter(struct mm_struct *mm)
2708 {
2709         struct ksm_mm_slot *mm_slot;
2710         struct mm_slot *slot;
2711         int needs_wakeup;
2712
2713         mm_slot = mm_slot_alloc(mm_slot_cache);
2714         if (!mm_slot)
2715                 return -ENOMEM;
2716
2717         slot = &mm_slot->slot;
2718
2719         /* Check ksm_run too?  Would need tighter locking */
2720         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2721
2722         spin_lock(&ksm_mmlist_lock);
2723         mm_slot_insert(mm_slots_hash, mm, slot);
2724         /*
2725          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2726          * insert just behind the scanning cursor, to let the area settle
2727          * down a little; when fork is followed by immediate exec, we don't
2728          * want ksmd to waste time setting up and tearing down an rmap_list.
2729          *
2730          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2731          * scanning cursor, otherwise KSM pages in newly forked mms will be
2732          * missed: then we might as well insert at the end of the list.
2733          */
2734         if (ksm_run & KSM_RUN_UNMERGE)
2735                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2736         else
2737                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2738         spin_unlock(&ksm_mmlist_lock);
2739
2740         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2741         mmgrab(mm);
2742
2743         if (needs_wakeup)
2744                 wake_up_interruptible(&ksm_thread_wait);
2745
2746         trace_ksm_enter(mm);
2747         return 0;
2748 }
2749
2750 void __ksm_exit(struct mm_struct *mm)
2751 {
2752         struct ksm_mm_slot *mm_slot;
2753         struct mm_slot *slot;
2754         int easy_to_free = 0;
2755
2756         /*
2757          * This process is exiting: if it's straightforward (as is the
2758          * case when ksmd was never running), free mm_slot immediately.
2759          * But if it's at the cursor or has rmap_items linked to it, use
2760          * mmap_lock to synchronize with any break_cows before pagetables
2761          * are freed, and leave the mm_slot on the list for ksmd to free.
2762          * Beware: ksm may already have noticed it exiting and freed the slot.
2763          */
2764
2765         spin_lock(&ksm_mmlist_lock);
2766         slot = mm_slot_lookup(mm_slots_hash, mm);
2767         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2768         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2769                 if (!mm_slot->rmap_list) {
2770                         hash_del(&slot->hash);
2771                         list_del(&slot->mm_node);
2772                         easy_to_free = 1;
2773                 } else {
2774                         list_move(&slot->mm_node,
2775                                   &ksm_scan.mm_slot->slot.mm_node);
2776                 }
2777         }
2778         spin_unlock(&ksm_mmlist_lock);
2779
2780         if (easy_to_free) {
2781                 mm_slot_free(mm_slot_cache, mm_slot);
2782                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2783                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2784                 mmdrop(mm);
2785         } else if (mm_slot) {
2786                 mmap_write_lock(mm);
2787                 mmap_write_unlock(mm);
2788         }
2789
2790         trace_ksm_exit(mm);
2791 }
2792
2793 struct page *ksm_might_need_to_copy(struct page *page,
2794                         struct vm_area_struct *vma, unsigned long address)
2795 {
2796         struct folio *folio = page_folio(page);
2797         struct anon_vma *anon_vma = folio_anon_vma(folio);
2798         struct page *new_page;
2799
2800         if (PageKsm(page)) {
2801                 if (page_stable_node(page) &&
2802                     !(ksm_run & KSM_RUN_UNMERGE))
2803                         return page;    /* no need to copy it */
2804         } else if (!anon_vma) {
2805                 return page;            /* no need to copy it */
2806         } else if (page->index == linear_page_index(vma, address) &&
2807                         anon_vma->root == vma->anon_vma->root) {
2808                 return page;            /* still no need to copy it */
2809         }
2810         if (PageHWPoison(page))
2811                 return ERR_PTR(-EHWPOISON);
2812         if (!PageUptodate(page))
2813                 return page;            /* let do_swap_page report the error */
2814
2815         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2816         if (new_page &&
2817             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2818                 put_page(new_page);
2819                 new_page = NULL;
2820         }
2821         if (new_page) {
2822                 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2823                         put_page(new_page);
2824                         memory_failure_queue(page_to_pfn(page), 0);
2825                         return ERR_PTR(-EHWPOISON);
2826                 }
2827                 SetPageDirty(new_page);
2828                 __SetPageUptodate(new_page);
2829                 __SetPageLocked(new_page);
2830 #ifdef CONFIG_SWAP
2831                 count_vm_event(KSM_SWPIN_COPY);
2832 #endif
2833         }
2834
2835         return new_page;
2836 }
2837
2838 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2839 {
2840         struct ksm_stable_node *stable_node;
2841         struct ksm_rmap_item *rmap_item;
2842         int search_new_forks = 0;
2843
2844         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2845
2846         /*
2847          * Rely on the page lock to protect against concurrent modifications
2848          * to that page's node of the stable tree.
2849          */
2850         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2851
2852         stable_node = folio_stable_node(folio);
2853         if (!stable_node)
2854                 return;
2855 again:
2856         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2857                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2858                 struct anon_vma_chain *vmac;
2859                 struct vm_area_struct *vma;
2860
2861                 cond_resched();
2862                 if (!anon_vma_trylock_read(anon_vma)) {
2863                         if (rwc->try_lock) {
2864                                 rwc->contended = true;
2865                                 return;
2866                         }
2867                         anon_vma_lock_read(anon_vma);
2868                 }
2869                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2870                                                0, ULONG_MAX) {
2871                         unsigned long addr;
2872
2873                         cond_resched();
2874                         vma = vmac->vma;
2875
2876                         /* Ignore the stable/unstable/sqnr flags */
2877                         addr = rmap_item->address & PAGE_MASK;
2878
2879                         if (addr < vma->vm_start || addr >= vma->vm_end)
2880                                 continue;
2881                         /*
2882                          * Initially we examine only the vma which covers this
2883                          * rmap_item; but later, if there is still work to do,
2884                          * we examine covering vmas in other mms: in case they
2885                          * were forked from the original since ksmd passed.
2886                          */
2887                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2888                                 continue;
2889
2890                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2891                                 continue;
2892
2893                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2894                                 anon_vma_unlock_read(anon_vma);
2895                                 return;
2896                         }
2897                         if (rwc->done && rwc->done(folio)) {
2898                                 anon_vma_unlock_read(anon_vma);
2899                                 return;
2900                         }
2901                 }
2902                 anon_vma_unlock_read(anon_vma);
2903         }
2904         if (!search_new_forks++)
2905                 goto again;
2906 }
2907
2908 #ifdef CONFIG_MEMORY_FAILURE
2909 /*
2910  * Collect processes when the error hit an ksm page.
2911  */
2912 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2913                        int force_early)
2914 {
2915         struct ksm_stable_node *stable_node;
2916         struct ksm_rmap_item *rmap_item;
2917         struct folio *folio = page_folio(page);
2918         struct vm_area_struct *vma;
2919         struct task_struct *tsk;
2920
2921         stable_node = folio_stable_node(folio);
2922         if (!stable_node)
2923                 return;
2924         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2925                 struct anon_vma *av = rmap_item->anon_vma;
2926
2927                 anon_vma_lock_read(av);
2928                 rcu_read_lock();
2929                 for_each_process(tsk) {
2930                         struct anon_vma_chain *vmac;
2931                         unsigned long addr;
2932                         struct task_struct *t =
2933                                 task_early_kill(tsk, force_early);
2934                         if (!t)
2935                                 continue;
2936                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2937                                                        ULONG_MAX)
2938                         {
2939                                 vma = vmac->vma;
2940                                 if (vma->vm_mm == t->mm) {
2941                                         addr = rmap_item->address & PAGE_MASK;
2942                                         add_to_kill_ksm(t, page, vma, to_kill,
2943                                                         addr);
2944                                 }
2945                         }
2946                 }
2947                 rcu_read_unlock();
2948                 anon_vma_unlock_read(av);
2949         }
2950 }
2951 #endif
2952
2953 #ifdef CONFIG_MIGRATION
2954 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2955 {
2956         struct ksm_stable_node *stable_node;
2957
2958         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2959         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2960         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2961
2962         stable_node = folio_stable_node(folio);
2963         if (stable_node) {
2964                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2965                 stable_node->kpfn = folio_pfn(newfolio);
2966                 /*
2967                  * newfolio->mapping was set in advance; now we need smp_wmb()
2968                  * to make sure that the new stable_node->kpfn is visible
2969                  * to get_ksm_page() before it can see that folio->mapping
2970                  * has gone stale (or that folio_test_swapcache has been cleared).
2971                  */
2972                 smp_wmb();
2973                 set_page_stable_node(&folio->page, NULL);
2974         }
2975 }
2976 #endif /* CONFIG_MIGRATION */
2977
2978 #ifdef CONFIG_MEMORY_HOTREMOVE
2979 static void wait_while_offlining(void)
2980 {
2981         while (ksm_run & KSM_RUN_OFFLINE) {
2982                 mutex_unlock(&ksm_thread_mutex);
2983                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2984                             TASK_UNINTERRUPTIBLE);
2985                 mutex_lock(&ksm_thread_mutex);
2986         }
2987 }
2988
2989 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2990                                          unsigned long start_pfn,
2991                                          unsigned long end_pfn)
2992 {
2993         if (stable_node->kpfn >= start_pfn &&
2994             stable_node->kpfn < end_pfn) {
2995                 /*
2996                  * Don't get_ksm_page, page has already gone:
2997                  * which is why we keep kpfn instead of page*
2998                  */
2999                 remove_node_from_stable_tree(stable_node);
3000                 return true;
3001         }
3002         return false;
3003 }
3004
3005 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3006                                            unsigned long start_pfn,
3007                                            unsigned long end_pfn,
3008                                            struct rb_root *root)
3009 {
3010         struct ksm_stable_node *dup;
3011         struct hlist_node *hlist_safe;
3012
3013         if (!is_stable_node_chain(stable_node)) {
3014                 VM_BUG_ON(is_stable_node_dup(stable_node));
3015                 return stable_node_dup_remove_range(stable_node, start_pfn,
3016                                                     end_pfn);
3017         }
3018
3019         hlist_for_each_entry_safe(dup, hlist_safe,
3020                                   &stable_node->hlist, hlist_dup) {
3021                 VM_BUG_ON(!is_stable_node_dup(dup));
3022                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3023         }
3024         if (hlist_empty(&stable_node->hlist)) {
3025                 free_stable_node_chain(stable_node, root);
3026                 return true; /* notify caller that tree was rebalanced */
3027         } else
3028                 return false;
3029 }
3030
3031 static void ksm_check_stable_tree(unsigned long start_pfn,
3032                                   unsigned long end_pfn)
3033 {
3034         struct ksm_stable_node *stable_node, *next;
3035         struct rb_node *node;
3036         int nid;
3037
3038         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3039                 node = rb_first(root_stable_tree + nid);
3040                 while (node) {
3041                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3042                         if (stable_node_chain_remove_range(stable_node,
3043                                                            start_pfn, end_pfn,
3044                                                            root_stable_tree +
3045                                                            nid))
3046                                 node = rb_first(root_stable_tree + nid);
3047                         else
3048                                 node = rb_next(node);
3049                         cond_resched();
3050                 }
3051         }
3052         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3053                 if (stable_node->kpfn >= start_pfn &&
3054                     stable_node->kpfn < end_pfn)
3055                         remove_node_from_stable_tree(stable_node);
3056                 cond_resched();
3057         }
3058 }
3059
3060 static int ksm_memory_callback(struct notifier_block *self,
3061                                unsigned long action, void *arg)
3062 {
3063         struct memory_notify *mn = arg;
3064
3065         switch (action) {
3066         case MEM_GOING_OFFLINE:
3067                 /*
3068                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3069                  * and remove_all_stable_nodes() while memory is going offline:
3070                  * it is unsafe for them to touch the stable tree at this time.
3071                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3072                  * which do not need the ksm_thread_mutex are all safe.
3073                  */
3074                 mutex_lock(&ksm_thread_mutex);
3075                 ksm_run |= KSM_RUN_OFFLINE;
3076                 mutex_unlock(&ksm_thread_mutex);
3077                 break;
3078
3079         case MEM_OFFLINE:
3080                 /*
3081                  * Most of the work is done by page migration; but there might
3082                  * be a few stable_nodes left over, still pointing to struct
3083                  * pages which have been offlined: prune those from the tree,
3084                  * otherwise get_ksm_page() might later try to access a
3085                  * non-existent struct page.
3086                  */
3087                 ksm_check_stable_tree(mn->start_pfn,
3088                                       mn->start_pfn + mn->nr_pages);
3089                 fallthrough;
3090         case MEM_CANCEL_OFFLINE:
3091                 mutex_lock(&ksm_thread_mutex);
3092                 ksm_run &= ~KSM_RUN_OFFLINE;
3093                 mutex_unlock(&ksm_thread_mutex);
3094
3095                 smp_mb();       /* wake_up_bit advises this */
3096                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3097                 break;
3098         }
3099         return NOTIFY_OK;
3100 }
3101 #else
3102 static void wait_while_offlining(void)
3103 {
3104 }
3105 #endif /* CONFIG_MEMORY_HOTREMOVE */
3106
3107 #ifdef CONFIG_PROC_FS
3108 long ksm_process_profit(struct mm_struct *mm)
3109 {
3110         return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3111                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3112 }
3113 #endif /* CONFIG_PROC_FS */
3114
3115 #ifdef CONFIG_SYSFS
3116 /*
3117  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3118  */
3119
3120 #define KSM_ATTR_RO(_name) \
3121         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3122 #define KSM_ATTR(_name) \
3123         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3124
3125 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3126                                     struct kobj_attribute *attr, char *buf)
3127 {
3128         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3129 }
3130
3131 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3132                                      struct kobj_attribute *attr,
3133                                      const char *buf, size_t count)
3134 {
3135         unsigned int msecs;
3136         int err;
3137
3138         err = kstrtouint(buf, 10, &msecs);
3139         if (err)
3140                 return -EINVAL;
3141
3142         ksm_thread_sleep_millisecs = msecs;
3143         wake_up_interruptible(&ksm_iter_wait);
3144
3145         return count;
3146 }
3147 KSM_ATTR(sleep_millisecs);
3148
3149 static ssize_t pages_to_scan_show(struct kobject *kobj,
3150                                   struct kobj_attribute *attr, char *buf)
3151 {
3152         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3153 }
3154
3155 static ssize_t pages_to_scan_store(struct kobject *kobj,
3156                                    struct kobj_attribute *attr,
3157                                    const char *buf, size_t count)
3158 {
3159         unsigned int nr_pages;
3160         int err;
3161
3162         err = kstrtouint(buf, 10, &nr_pages);
3163         if (err)
3164                 return -EINVAL;
3165
3166         ksm_thread_pages_to_scan = nr_pages;
3167
3168         return count;
3169 }
3170 KSM_ATTR(pages_to_scan);
3171
3172 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3173                         char *buf)
3174 {
3175         return sysfs_emit(buf, "%lu\n", ksm_run);
3176 }
3177
3178 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3179                          const char *buf, size_t count)
3180 {
3181         unsigned int flags;
3182         int err;
3183
3184         err = kstrtouint(buf, 10, &flags);
3185         if (err)
3186                 return -EINVAL;
3187         if (flags > KSM_RUN_UNMERGE)
3188                 return -EINVAL;
3189
3190         /*
3191          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3192          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3193          * breaking COW to free the pages_shared (but leaves mm_slots
3194          * on the list for when ksmd may be set running again).
3195          */
3196
3197         mutex_lock(&ksm_thread_mutex);
3198         wait_while_offlining();
3199         if (ksm_run != flags) {
3200                 ksm_run = flags;
3201                 if (flags & KSM_RUN_UNMERGE) {
3202                         set_current_oom_origin();
3203                         err = unmerge_and_remove_all_rmap_items();
3204                         clear_current_oom_origin();
3205                         if (err) {
3206                                 ksm_run = KSM_RUN_STOP;
3207                                 count = err;
3208                         }
3209                 }
3210         }
3211         mutex_unlock(&ksm_thread_mutex);
3212
3213         if (flags & KSM_RUN_MERGE)
3214                 wake_up_interruptible(&ksm_thread_wait);
3215
3216         return count;
3217 }
3218 KSM_ATTR(run);
3219
3220 #ifdef CONFIG_NUMA
3221 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3222                                        struct kobj_attribute *attr, char *buf)
3223 {
3224         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3225 }
3226
3227 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3228                                    struct kobj_attribute *attr,
3229                                    const char *buf, size_t count)
3230 {
3231         int err;
3232         unsigned long knob;
3233
3234         err = kstrtoul(buf, 10, &knob);
3235         if (err)
3236                 return err;
3237         if (knob > 1)
3238                 return -EINVAL;
3239
3240         mutex_lock(&ksm_thread_mutex);
3241         wait_while_offlining();
3242         if (ksm_merge_across_nodes != knob) {
3243                 if (ksm_pages_shared || remove_all_stable_nodes())
3244                         err = -EBUSY;
3245                 else if (root_stable_tree == one_stable_tree) {
3246                         struct rb_root *buf;
3247                         /*
3248                          * This is the first time that we switch away from the
3249                          * default of merging across nodes: must now allocate
3250                          * a buffer to hold as many roots as may be needed.
3251                          * Allocate stable and unstable together:
3252                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3253                          */
3254                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3255                                       GFP_KERNEL);
3256                         /* Let us assume that RB_ROOT is NULL is zero */
3257                         if (!buf)
3258                                 err = -ENOMEM;
3259                         else {
3260                                 root_stable_tree = buf;
3261                                 root_unstable_tree = buf + nr_node_ids;
3262                                 /* Stable tree is empty but not the unstable */
3263                                 root_unstable_tree[0] = one_unstable_tree[0];
3264                         }
3265                 }
3266                 if (!err) {
3267                         ksm_merge_across_nodes = knob;
3268                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3269                 }
3270         }
3271         mutex_unlock(&ksm_thread_mutex);
3272
3273         return err ? err : count;
3274 }
3275 KSM_ATTR(merge_across_nodes);
3276 #endif
3277
3278 static ssize_t use_zero_pages_show(struct kobject *kobj,
3279                                    struct kobj_attribute *attr, char *buf)
3280 {
3281         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3282 }
3283 static ssize_t use_zero_pages_store(struct kobject *kobj,
3284                                    struct kobj_attribute *attr,
3285                                    const char *buf, size_t count)
3286 {
3287         int err;
3288         bool value;
3289
3290         err = kstrtobool(buf, &value);
3291         if (err)
3292                 return -EINVAL;
3293
3294         ksm_use_zero_pages = value;
3295
3296         return count;
3297 }
3298 KSM_ATTR(use_zero_pages);
3299
3300 static ssize_t max_page_sharing_show(struct kobject *kobj,
3301                                      struct kobj_attribute *attr, char *buf)
3302 {
3303         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3304 }
3305
3306 static ssize_t max_page_sharing_store(struct kobject *kobj,
3307                                       struct kobj_attribute *attr,
3308                                       const char *buf, size_t count)
3309 {
3310         int err;
3311         int knob;
3312
3313         err = kstrtoint(buf, 10, &knob);
3314         if (err)
3315                 return err;
3316         /*
3317          * When a KSM page is created it is shared by 2 mappings. This
3318          * being a signed comparison, it implicitly verifies it's not
3319          * negative.
3320          */
3321         if (knob < 2)
3322                 return -EINVAL;
3323
3324         if (READ_ONCE(ksm_max_page_sharing) == knob)
3325                 return count;
3326
3327         mutex_lock(&ksm_thread_mutex);
3328         wait_while_offlining();
3329         if (ksm_max_page_sharing != knob) {
3330                 if (ksm_pages_shared || remove_all_stable_nodes())
3331                         err = -EBUSY;
3332                 else
3333                         ksm_max_page_sharing = knob;
3334         }
3335         mutex_unlock(&ksm_thread_mutex);
3336
3337         return err ? err : count;
3338 }
3339 KSM_ATTR(max_page_sharing);
3340
3341 static ssize_t pages_scanned_show(struct kobject *kobj,
3342                                   struct kobj_attribute *attr, char *buf)
3343 {
3344         return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3345 }
3346 KSM_ATTR_RO(pages_scanned);
3347
3348 static ssize_t pages_shared_show(struct kobject *kobj,
3349                                  struct kobj_attribute *attr, char *buf)
3350 {
3351         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3352 }
3353 KSM_ATTR_RO(pages_shared);
3354
3355 static ssize_t pages_sharing_show(struct kobject *kobj,
3356                                   struct kobj_attribute *attr, char *buf)
3357 {
3358         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3359 }
3360 KSM_ATTR_RO(pages_sharing);
3361
3362 static ssize_t pages_unshared_show(struct kobject *kobj,
3363                                    struct kobj_attribute *attr, char *buf)
3364 {
3365         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3366 }
3367 KSM_ATTR_RO(pages_unshared);
3368
3369 static ssize_t pages_volatile_show(struct kobject *kobj,
3370                                    struct kobj_attribute *attr, char *buf)
3371 {
3372         long ksm_pages_volatile;
3373
3374         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3375                                 - ksm_pages_sharing - ksm_pages_unshared;
3376         /*
3377          * It was not worth any locking to calculate that statistic,
3378          * but it might therefore sometimes be negative: conceal that.
3379          */
3380         if (ksm_pages_volatile < 0)
3381                 ksm_pages_volatile = 0;
3382         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3383 }
3384 KSM_ATTR_RO(pages_volatile);
3385
3386 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3387                                 struct kobj_attribute *attr, char *buf)
3388 {
3389         return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3390 }
3391 KSM_ATTR_RO(ksm_zero_pages);
3392
3393 static ssize_t general_profit_show(struct kobject *kobj,
3394                                    struct kobj_attribute *attr, char *buf)
3395 {
3396         long general_profit;
3397
3398         general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3399                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3400
3401         return sysfs_emit(buf, "%ld\n", general_profit);
3402 }
3403 KSM_ATTR_RO(general_profit);
3404
3405 static ssize_t stable_node_dups_show(struct kobject *kobj,
3406                                      struct kobj_attribute *attr, char *buf)
3407 {
3408         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3409 }
3410 KSM_ATTR_RO(stable_node_dups);
3411
3412 static ssize_t stable_node_chains_show(struct kobject *kobj,
3413                                        struct kobj_attribute *attr, char *buf)
3414 {
3415         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3416 }
3417 KSM_ATTR_RO(stable_node_chains);
3418
3419 static ssize_t
3420 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3421                                         struct kobj_attribute *attr,
3422                                         char *buf)
3423 {
3424         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3425 }
3426
3427 static ssize_t
3428 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3429                                          struct kobj_attribute *attr,
3430                                          const char *buf, size_t count)
3431 {
3432         unsigned int msecs;
3433         int err;
3434
3435         err = kstrtouint(buf, 10, &msecs);
3436         if (err)
3437                 return -EINVAL;
3438
3439         ksm_stable_node_chains_prune_millisecs = msecs;
3440
3441         return count;
3442 }
3443 KSM_ATTR(stable_node_chains_prune_millisecs);
3444
3445 static ssize_t full_scans_show(struct kobject *kobj,
3446                                struct kobj_attribute *attr, char *buf)
3447 {
3448         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3449 }
3450 KSM_ATTR_RO(full_scans);
3451
3452 static struct attribute *ksm_attrs[] = {
3453         &sleep_millisecs_attr.attr,
3454         &pages_to_scan_attr.attr,
3455         &run_attr.attr,
3456         &pages_scanned_attr.attr,
3457         &pages_shared_attr.attr,
3458         &pages_sharing_attr.attr,
3459         &pages_unshared_attr.attr,
3460         &pages_volatile_attr.attr,
3461         &ksm_zero_pages_attr.attr,
3462         &full_scans_attr.attr,
3463 #ifdef CONFIG_NUMA
3464         &merge_across_nodes_attr.attr,
3465 #endif
3466         &max_page_sharing_attr.attr,
3467         &stable_node_chains_attr.attr,
3468         &stable_node_dups_attr.attr,
3469         &stable_node_chains_prune_millisecs_attr.attr,
3470         &use_zero_pages_attr.attr,
3471         &general_profit_attr.attr,
3472         NULL,
3473 };
3474
3475 static const struct attribute_group ksm_attr_group = {
3476         .attrs = ksm_attrs,
3477         .name = "ksm",
3478 };
3479 #endif /* CONFIG_SYSFS */
3480
3481 static int __init ksm_init(void)
3482 {
3483         struct task_struct *ksm_thread;
3484         int err;
3485
3486         /* The correct value depends on page size and endianness */
3487         zero_checksum = calc_checksum(ZERO_PAGE(0));
3488         /* Default to false for backwards compatibility */
3489         ksm_use_zero_pages = false;
3490
3491         err = ksm_slab_init();
3492         if (err)
3493                 goto out;
3494
3495         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3496         if (IS_ERR(ksm_thread)) {
3497                 pr_err("ksm: creating kthread failed\n");
3498                 err = PTR_ERR(ksm_thread);
3499                 goto out_free;
3500         }
3501
3502 #ifdef CONFIG_SYSFS
3503         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3504         if (err) {
3505                 pr_err("ksm: register sysfs failed\n");
3506                 kthread_stop(ksm_thread);
3507                 goto out_free;
3508         }
3509 #else
3510         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3511
3512 #endif /* CONFIG_SYSFS */
3513
3514 #ifdef CONFIG_MEMORY_HOTREMOVE
3515         /* There is no significance to this priority 100 */
3516         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3517 #endif
3518         return 0;
3519
3520 out_free:
3521         ksm_slab_free();
3522 out:
3523         return err;
3524 }
3525 subsys_initcall(ksm_init);